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Abstract 

This report describes a general method to correlate the features determining the performance of an 

electrocatalyst (EC), including the accessibility of O2 to the active sites and the kinetic activation 

barrier, with the outcome of conventional electrochemical experiments. The method has been 

implemented for oxygen reduction reaction (ORR) ECs by cyclic voltammetry with the thin-film 

rotating ring-disk electrode (CV-TF-RRDE) setup. The method: (i) does not rely on the 

simplifications associated with the Butler-Volmer (BV) kinetic description of electrochemical 

processes; and (ii) does not make assumptions on the specific features of the EC, allowing to 

compare accurately the kinetic performance of ORR ECs with a completely different chemistry. 

Finally, with respect to other widespread figures of merit (e.g., the half-wave potential E1/2), the 

figure of merit here proposed i.e., E(jPt(5%), allows for much more accurate comparisons of the 

kinetic performance of ECs.  

 

 

 

 

 

 

 

 

Keywords: Comparison of kinetic performance; Oxygen Reduction Reaction; Cyclic Voltammetry 

with the Thin-Film Rotating Ring Disk technique; Accessibility; Activation barrier. 
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1. Introduction 

The oxygen reduction reaction (ORR) is exploited in the operation of several electrochemical 

energy conversion and storage devices, such as metal-air batteries (e.g., Li-air, Zn-air, Al-air, etc.) 

[1-5] and fuel cells (e.g., proton exchange membrane fuel cells, PEMFCs; anion-exchange 

membrane fuel cells, AEMFCs, etc.) [6-10]. In these systems, the ORR is very often the slowest 

electrochemical process, thus yielding large overpotentials and thus degrading the overall energy 

efficiency of the final device. In this concern, the development of suitable electrocatalysts (ECs) 

able to promote the ORR is of fundamental importance. Such ECs are able to abate the activation 

energy (Ea) of the process, typically by introducing intermediate step reactions characterized by a 

lower Ea [11, 12]. The best performing ORR ECs are based on Pt or other platinum-group metals 

(PGMs), which unfortunately are not abundant in Earth’s crust and thus are classified as critical raw 

materials. This supply bottleneck [13, 14] is a crucial issue, especially in the perspective of using 

PGM-based ECs in the fabrication of high-energy and high-power electrochemical energy 

conversion devices on a large scale (e.g., for automotive applications). A detailed study able to shed 

light on the operating mechanism of an EC requires the use of a large number of complex 

techniques and, when studied “in situ”, the assembly ant the test of a final device. Therefore, the 

development of simple methods able to provide information on the crucial properties of the ECs are 

highly welcome. Cyclic voltammetry with the thin-film rotating ring disk electrode (CV-TF-RRDE) 

is one of the most powerful methods for the investigation of electrochemical systems, especially in 

the case of heterogeneous reactions [15]. Indeed, the CV-TF-RRDE technique allows to study the 

kinetics of an EC (that is typically deposited onto the tip of the working electrode) limiting as much 

as possible the formation of interfaces at the EC/electrolyte [15] and the influence of complex 

phenomena, such as the charge and mass transport events on measured parameters. Indeed, in CV-

TF-RRDE measurements charge- and mass-transport phenomena are not time-dependent; thus, their 

analysis is quite simple. The ORR mechanism is significantly influenced by a number of conditions 

such as: (i) the reaction environment (e.g., aqueous or organic); and (ii) the pH (i.e., acidic, neutral 
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or alkaline) [16, 17]. In addition to the modulation of the kinetic parameters of the reaction 

mechanism, the local environment is also able to modify the products of the ORR and thus the type 

of reaction pathway. Indeed, depending on the number of electrons exchanged during the ORR: (a) 

in aqueous conditions, water (H2O) or hydrogen peroxide (H2O2) can be formed [18, 19]; while (b) 

in non-aqueous media, metal oxide, peroxide, superoxide, or hydroxide species (e.g., Li2O, Li2O2, 

LiO2, LiOH) are obtained [20-22]. 

 

In this report, a simple and general method is proposed in order to determine and compare suitable 

parameters describing the efficiency in the kinetic regime of a broad number of chemically different 

ECs for the ORR. This method is based on CV-TF-RRDE measurements and allows us to study and 

compare ECs operating in both aqueous and non-aqueous media. The method is: (a) easily 

transferable to a large variety of electrochemical reactions which are exploited in several energy 

conversion and storage systems; (b) based on a general physico-chemical formalism which allows 

to detect and interpret the experimental parameters which are diagnostic for a rigorous comparison 

of kinetic performance of different ECs.  The proposed general physico-chemical framework 

accounts of the kinetic conversion of mass flow throughout the electrode into electrons. This target 

is achieved describing the redox process occurring at the electrode in terms of a general kinetic rate 

concept.  Here no Butler-Volmer (BV) description of the process occurring at the electrode is 

assumed. Indeed, as clearly reported elsewhere [23], BV equation is the result of the kred = kox = k0 

approximation, where kred and kox are the elementary reduction and oxidation rate constants, 

respectively, and k0 is the “standard rate constant” characterizing the exchange current (i0). The 

motivation is that in real ECs: (a) in general it is observed that kred   kox   k
0; and (b) to compare 

kinetically different materials exhibiting a very different chemistry is crucial to determine both kred 

and kox. Central to this approach is the idea that in a redox process an EC is conceptually a material 
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able to reduce the energy barrier going from the reactants to the activated complex   Δ𝐺0,𝑜𝑥
‡

, and in 

the opposite process from the products into the activated complex Δ𝐺0,𝑟𝑒𝑑
‡

  (see Scheme 1).   

 

Scheme 1. Energy barriers of the EC in the O + ne- → R reduction reaction. 

 

Another approximation which in the derivation of the BV equation resulted in the kred  kox  k
0 

condition and which is difficult to obtain in real ECs is the assumption that the bulk concentration 

of the oxidized reagent species (e.g., O2) is equivalent to that of the reduced products (e.g., H2O), so 

that the forward and backward rate constants in the ORR are coincident [23].  

 

Owing to these motivations, herein a physico-chemical formalism is proposed which, tightly to the 

experimental conditions usually used in the CV-TF-RRDE measurements, rationalizes: (a) the 

measuring strategy adopted for the correct determination of the kinetic catalytic ability of the ECs; 

and (b) the method used to carry out a rigorous comparison between catalytic abilities of ECs based 

on completely different chemistries. 
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2. Description of the Formalism 

The following general redox process converts an oxidized specie (Ox) into a reduced species (Red) 

upon exchange of ntot electrons (see Eq. 1): 

 

𝑂𝑥 + 𝑛𝑡𝑜𝑡𝑒− ⟶ 𝑅𝑒𝑑                                                          (1) 

 

In the presence of a net reduction current the overall rate, νnet, of the process is given by: 

 

𝜈𝑛𝑒𝑡 = 𝑘𝑟𝑒𝑑𝐶𝑜𝑥(0, 𝑡) − 𝑘𝑜𝑥𝐶𝑟𝑒𝑑(0, 𝑡)                                              (2) 

 

where kred and kox are the rate constants of reduction and oxidation processes, respectively. 𝐶𝑜𝑥(0, 𝑡) 

and 𝐶𝑟𝑒𝑑(0, 𝑡) are the concentration of the oxidized and reducted species on the ECs surface  (x = 0) 

at time t. Each rate constant ki (i = red, ox) can be expressed by Arrhenius equations: 

 

𝑘𝑖 = 𝑓𝑖𝑒𝑥𝑝 (−
Δ𝐺𝑖

‡

𝑅𝑇
)                                                       (3) 

 

where R is the ideal gas constant, T the absolute temperature, fi the decay rate to the products and 

Δ𝐺𝑖
‡
 the activation barrier of either the forward (reduction, i = red) and the backward (oxidation, i = 

ox) processes. As elsewhere described [23], when the electrode is at a potential E, the activation 

barriers Δ𝐺𝑖
‡
 (i = red, ox) are: 

 

{
Δ𝐺𝑟𝑒𝑑

‡ = Δ𝐺0,𝑟𝑒𝑑
‡ +

𝛼𝑛𝐹

𝑅𝑇
(𝐸 − 𝐸0′

)

   Δ𝐺𝑜𝑥
‡ = Δ𝐺0,𝑜𝑥

‡ −
(1−𝛼)𝑛𝐹

𝑅𝑇
(𝐸 − 𝐸0′

)
                                       (4) 
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where F the Faraday constant, 𝐸0′
 the formal electrode potential, Δ𝐺0,𝑖

‡
 (i = red, ox) the activation 

barrier at the formal electrode potential 𝐸0′
, α the symmetry factor and n the number of exchanged 

electrons in the rate-determining step of the redox process. By substituting Eq. 4 into Eq. 3, kred and 

kox become: 

{
   𝑘𝑟𝑒𝑑 = 𝑓𝑟𝑒𝑑𝑒𝑥𝑝 (−

Δ𝐺0,𝑟𝑒𝑑
‡

𝑅𝑇
) 𝑒𝑥𝑝 [−

𝛼𝑛𝐹

𝑅𝑇
(𝐸 − 𝐸0′

)]

 𝑘𝑜𝑥 = 𝑓𝑜𝑥𝑒𝑥𝑝 (−
Δ𝐺0,𝑜𝑥

‡

𝑅𝑇
) 𝑒𝑥𝑝 [

(1−𝛼)𝑛𝐹

𝑅𝑇
(𝐸 − 𝐸0′

)]

                             (5) 

 

where the first two terms in each of these equations yield a product that is independent of electrode 

potential and which depends only on the structure, morphology and composition of the ECs.   

 

The substitution of Eq. 5 into Eq. 2, also considering: 

 

𝑗𝑟𝑒𝑑 =
𝑛𝑡𝑜𝑡𝐹

𝐴
𝜈𝑛𝑒𝑡                                                           (6) 

 

where A is the area of the electrode, yields: 

 

𝑗𝑟𝑒𝑑 =
𝑛𝑡𝑜𝑡𝐹

𝐴
[𝑓𝑟𝑒𝑑𝑒𝑥𝑝 (−

Δ𝐺0,𝑟𝑒𝑑
‡

𝑅𝑇
) 𝑒𝑥𝑝 [−

𝛼𝑛𝐹

𝑅𝑇
(𝐸 − 𝐸0′

)] 𝐶𝑜𝑥(0, 𝑡) − 𝑓𝑜𝑥𝑒𝑥𝑝 (−
Δ𝐺0,𝑜𝑥

‡

𝑅𝑇
) 𝑒𝑥𝑝 [

(1−𝛼)𝑛𝐹

𝑅𝑇
(𝐸 −

𝐸0′
)] 𝐶𝑟𝑒𝑑(0, 𝑡)]               (7) 

 

Now, if we consider that the ORR is very sluggish, and the current density of the reverse oxidation 

process during ORR is negligible due to the large overpotentials, Eq. 7 becomes 

 

𝑗𝑟𝑒𝑑 =
𝑛𝑡𝑜𝑡𝐹

𝐴
[𝐶𝑜𝑥(0, 𝑡)𝑓𝑟𝑒𝑑𝑒𝑥𝑝 (−

Δ𝐺0,𝑟𝑒𝑑
‡

𝑅𝑇
) 𝑒𝑥𝑝 [

𝛼𝑛𝐹𝜂

𝑅𝑇
]]                              (8) 
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where η= 𝐸0′
- E is the overpotential with respect to the formal electrode potential 𝐸0′

. For the sake 

of comparison, Eq. 8 can be generalized and by simple algebraic manipulations the overpotential 𝜂𝑖 

both for a benchmark EC (i = Pt) and for the EC under study (i = EC) can be expressed as:  

 

𝜂𝑖 = 𝑇𝑠𝑙,𝑖𝑙𝑛 (
𝑗𝑖(𝜂𝑖)𝐴

𝑛𝑡𝑜𝑡,𝑖 𝐹𝐶𝑜𝑥,𝑃𝑡(0,𝑡) 𝑓𝑟𝑒𝑑,𝑖
) + 𝑇𝑠𝑙,𝑖 (

Δ𝐺0,𝑟𝑒𝑑,𝑖
‡

𝑅𝑇
)                            (9) 

 

𝑇𝑠𝑙,𝑖 =
𝑅𝑇

𝛼𝑖𝑛𝑖𝐹
  coincides exactly with the ηi vs. log(ji) Tafel slope. By using Eq. 9 and considering as 

the “benchmark” a commercial state-of-the-art platinum EC, the difference in the ORR 

overpotentials is evaluated: 

 

𝜂𝐸𝐶 − 𝜂𝑃𝑡 = [𝑇𝑠𝑙,𝐸𝐶𝑙𝑛 (
𝑗𝐸𝐶(𝜂𝐸𝐶)𝐴

𝑛𝑡𝑜𝑡,𝐸𝐶𝐹𝐶𝑜𝑥,𝐸𝐶(0,𝑡)𝑓𝑟𝑒𝑑,𝐸𝐶
) + 𝑇𝑠𝑙,𝐸𝐶 (

Δ𝐺0,𝑟𝑒𝑑,𝐸𝐶
‡

𝑅𝑇
)] − [𝑇𝑠𝑙,𝑃𝑡𝑙𝑛 (

𝑗𝑃𝑡(𝜂𝑃𝑡)𝐴

𝑛𝑡𝑜𝑡,𝑃𝑡𝐹𝐶𝑜𝑥,𝑃𝑡(0,𝑡)𝑓𝑟𝑒𝑑,𝑃𝑡
) + 𝑇𝑠𝑙,𝑃𝑡 (

Δ𝐺0,𝑟𝑒𝑑,𝑃𝑡
‡

𝑅𝑇
)] (10) 

 

Eq. 10 is a powerful tool which permits the development of a simple and straightforward method to 

compare in the kinetic region the ORR performance of different types of ECs with respect to that of 

a Pt benchmark. To achieve this target it is first necessary to select the best condition to measure the 

ORR kinetic parameters of the Pt benchmark. This is obtained by determining in the “cyclic 

voltammetry with the thin-film rotating ring-disk electrode” (CV-TF-RRDE) ORR profiles a 

current density, 𝑗𝑃𝑡(5%) =
5

100
𝑗𝑃𝑡,𝑑, corresponding to 5% of the diffusion-limited current density 

(jPt,d) at E ≈ 0.35 V vs. RHE (see Figure 1).  
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Figure 1. The concept of E(jPt(5%)) value. 

 

The motivation is clear if we consider that:  

 

i. the performance of an ORR EC can be evaluated by fixing in the ORR the yield in current of 

a specific amount of consumed O2; 

ii. it is crucial to monitor the electrocatalytic kinetic parameters such as the activation energy 

barrier and the symmetry factor characterizing this process; 

iii. in a reference EC, the most suitable condition in the kinetic regime to convert an amount of 

O2 into current is to monitor the electrode potential at jPt(5%). 

 

On these bases, a given EC can be studied in the ORR with respect to the Pt benchmark by 

evaluating the difference in the overpotentials when they yield the same current density, i.e., 

jPt(5%): 

 

𝑗𝐸𝐶(𝜂𝐸𝐶) = 𝑗𝑃𝑡(𝜂𝑃𝑡) = 𝑗𝑃𝑡(5%)       .                                     (11) 
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Considering that: 

𝑇𝑠𝑙,𝑖 =
𝑅𝑇

𝛼𝑖𝑛𝑖𝐹
=

𝑅𝑇

𝐹
𝜔𝑖  with   𝜔𝑖 =

1

𝛼𝑖𝑛𝑖
=  

1

𝛾𝑖
                                 (12)  

 

𝜔𝑖 is the “selectivity parameter” (i = EC, Pt), and 𝛾𝑖 = 𝛼𝑖𝑛𝑖 the transfer coefficient  [24]. Since in 

the ORR 0 ≤ ni ≤ 4 and 0 ≤ αi ≤ 1, then it results that 0 ≤ γi ≤ 4 and 0.25 ≤ ωi ≤ ∞. By substituting 

Eq. 11 and Eq. 12 into Eq. 10, it is possible to correlate the overpotential of the EC to that of Pt 

reference as follows: 

𝜂𝐸𝐶 = 𝜂𝑃𝑡 +
𝑅𝑇

𝐹
{(𝜔𝐸𝐶 − 𝜔𝑃𝑡)[𝑙𝑛(𝑗𝑃𝑡(5%)) + 𝑙𝑛(𝐴) − 𝑙𝑛𝐹] + [𝑙𝑛

(𝐴𝐸𝐶)𝜔𝐸𝐶

(𝐴𝑃𝑡)𝜔𝑃𝑡
] −

[𝑙𝑛
(𝑛𝑡𝑜𝑡,𝐸𝐶𝑓𝑟𝑒𝑑,𝐸𝐶)

𝜔𝐸𝐶

(𝑛𝑡𝑜𝑡,𝑃𝑡𝑓𝑟𝑒𝑑,𝑃𝑡)
𝜔𝑃𝑡 ] − [𝑙𝑛

(𝐶𝑜𝑥,𝐸𝐶(0,𝑡))
𝜔𝐸𝐶

(𝐶𝑜𝑥,𝑃𝑡(0,𝑡))
𝜔𝑃𝑡 ] + [

𝜔𝐸𝐶Δ𝐺0,𝑟𝑒𝑑,𝐸𝐶
‡ −𝜔𝑃𝑡Δ𝐺0,𝑟𝑒𝑑,𝑃𝑡

‡

𝑅𝑇
]}                                       (13) 

 

Eq. 13 can be re-written in the following simple form: 

 

𝜂𝐸𝐶 = 𝜂𝑃𝑡 + 𝜂𝑒𝑥𝑝 + 𝜂𝑠+ 𝜂𝐴 + 𝜂𝑘𝑖𝑛                                           (14) 

where: 

 𝜂𝑃𝑡 is the ORR overpotential of the Pt benchmark at jPt(5%). 

 𝜂𝑒𝑥𝑝 =
𝑅𝑇

𝐹
{(𝜔𝐸𝐶 − 𝜔𝑃𝑡)[𝑙𝑛(𝑗𝑃𝑡(5%)) + 𝑙𝑛(𝐴) − 𝑙𝑛𝐹]} is the overpotential which accounts 

of the experimental conditions (e.g., temperature, area of the electrode). 

 𝜂𝑠 = −
𝑅𝑇

𝐹
{𝑙𝑛

(𝑛𝑡𝑜𝑡,𝐸𝐶𝑓𝑟𝑒𝑑,𝐸𝐶)
𝜔𝐸𝐶

(𝑛𝑡𝑜𝑡,𝑃𝑡𝑓𝑟𝑒𝑑,𝑃𝑡)
𝜔𝑃𝑡 } is the “selectivity overpotential”. This depends on the total 

number of electrons involved in the process and on the reaction decay rate to the products. 

When the total number of electrons exchanged and the decay rate to the products of a given 

EC are smaller than the corresponding figures exhibited by the Pt benchmark, 𝜂𝐸𝐶  increases. 
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 𝜂𝐴 = −
𝑅𝑇

𝐹
[𝑙𝑛

(𝐶𝑜𝑥,𝐸𝐶(0,𝑡))
𝜔𝐸𝐶

(𝐶𝑜𝑥,𝑃𝑡(0,𝑡))
𝜔𝑃𝑡 ] is the “accessibility overpotential”. This term accounts for the 

actual concentration of O2 adsorbed on the surface of the active sites of a given EC with 

respect to that of the Pt benchmark. When the active sites of the EC are “more accessible” 

than those of the Pt benchmark, 𝜂𝐴 decreases. As shown below, 𝜂𝐴 might be relevant also at 

very low current densities (e.g., at jPt(5%)), i.e., in conditions when usually the issues arising 

from the mass transport of reactants and products are considered negligible. 

 𝜂𝑘𝑖𝑛 = [
𝜔𝐸𝐶Δ𝐺0,𝑟𝑒𝑑,𝐸𝐶

‡ −𝜔𝑃𝑡Δ𝐺0,𝑟𝑒𝑑,𝑃𝑡
‡

𝐹
] is related to the difference in energy activation barriers 

between the EC and the Pt benchmark. If the energy barrier of the EC is larger than that of 

the Pt benchmark, 𝜂𝐸𝐶  increases. 

 

Eq. 14 can be used to study the ORR process in a variety of environmental conditions (e.g., in an 

acidic medium, in an alkaline medium, in an organic solvent) and involving a number of different 

products (e.g., water, peroxide, superoxide, etc…). Finally, the selectivity parameter 𝜔𝑖, i.e., the 

parameter that describes the electrochemical behavior of the EC and of the Pt benchmark in the 

process of interest, can be determined experimentally from the Tafel slope of the ORR at a current 

density close to jPt(5%). This allows to reduce the number of undefined parameters in Eq. 13. Taken 

all together, Eq. 13 and Eq. 14 are crucial results to gauge which features of the EC are the most 

relevant in order to optimize the overall overpotential, 𝜂𝐸𝐶 , in the process of interest. 

 

It is found that, in aqueous environments (either acidic or alkaline), a wide variety of ECs (both 

comprising platinum and “Pt-free”) exhibit in the ORR at room temperature and at very low 

current densities (≈ jPt(5%)) a  Tafel slope of the same order of magnitude (ca. 70 mV·dec-1) [15]. 

As elsewhere reported, for a wide variety of ECs in these conditions the ORR is bottlenecked by the 

first electron transfer from the electrode to an O2 molecule adsorbed on the active sites of the EC 
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[15, 24, 25]. In this case, O2 adsorption events take place in accordance with the Temkin isotherm 

[15, 24, 25]. 

𝜔𝑃𝑡 = 𝜔𝐸𝐶 =  𝜔 ≅ 1.18                                                   (15) 

 

In addition, if we consider that the free-energy surface in the vicinity of the activated state 

bottlenecking the ORR typically does not change significantly for different ECs [26], we can 

assume that fred,EC ≈ fred,Pt. As a result, Eq. 13 can be rewritten as follows: 

 

𝜂𝐸𝐶 = 𝜂𝑃𝑡 − 𝑇𝑠𝑙𝑙𝑛 (
𝑛𝐸𝐶,𝑡𝑜𝑡

𝑛𝑃𝑡,𝑡𝑜𝑡
) − 𝑇𝑠𝑙𝑙𝑛 (

𝐶𝑜𝑥,𝐸𝐶(0, 𝑡)

𝐶𝑜𝑥,𝑃𝑡(0, 𝑡)
) +

𝜔

𝐹
(Δ𝐺0,𝑟𝑒𝑑,𝐸𝐶

‡ − Δ𝐺0,𝑟𝑒𝑑,𝑃𝑡
‡ ) = 

= 𝜂𝑃𝑡 + 𝜂𝑠+ 𝜂𝐴 + 𝜂𝑘𝑖𝑛         (16) 

 

Where, as described above, we can assume Tsl as the Tafel slope of the ORR (ca. 70 mV∙dec-1).  

 

3. Impact on 𝜂𝐸𝐶of the different overpotentials at E(jPt(5%)) 

In Eq. 16 𝜂𝑠, 𝜂𝐴, and 𝜂𝑘𝑖𝑛 play a crucial role in the modulation of the magnitude of 𝜂𝐸𝐶  at jPt(5%). 

To gauge the relative impact of these overpotentials on 𝜂𝐸𝐶 , the profiles of 𝜂𝑠, 𝜂𝐴, and 𝜂𝑘𝑖𝑛 are 

simulated adopting the following general conditions. For the 𝜂𝑠 of the Pt benchmark at E(jPt(5%)) it 

is assumed a total number of 4 electrons (ntot = 4). For the other ECs, ntot,EC can typically range 

between 2 (ORR EC yielding only H2O2) and 4 (ORR EC yielding only water). It should be noted 

that in organic solvents the ORR can also yield the superoxide ion, corresponding to the exchange 

of only one electron [20]. Hence, in general the following boundary conditions are adopted: 

   

   0.5 ≤ (
𝑛𝐸𝐶,𝑡𝑜𝑡

𝑛𝑃𝑡,𝑡𝑜𝑡
) ≤ 1                                                     (17) 
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For the evaluation of 𝜂𝐴, it is reasonable to admit that the density of O2 adsorbed on the surface of 

the active sites: (i) depends on the composition, structure and morphology of the EC; and (ii) is 

different from that of the Pt benchmark. On these bases, it is reasonable to assume that: 

 

 0.01 ≤ (
𝐶𝑜𝑥,𝐸𝐶(0,𝑡)

𝐶𝑜𝑥,𝑃𝑡(0,𝑡)
) ≤ 5                                                 (18) 

 

For the evaluation of 𝜂𝑘𝑖𝑛, studies elsewhere reported estimate for the ORR on a Pt nanoparticle an 

activation barrier on the order of 1.13 eV  (ca. 109 kJ·mol-1) [27]. Starting from this Δ𝐺0,𝑟𝑒𝑑,𝑃𝑡
‡

 

value for the benchmark, in the simulation of  𝜂𝑘𝑖𝑛 it is reasonable to consider that Δ𝐺0,𝑟𝑒𝑑,𝐸𝐶
‡

 ranges 

within the following boundary conditions:  

 

Δ𝐺0,𝑟𝑒𝑑,𝑃𝑡
‡ − 50% ∙ Δ𝐺0,𝑟𝑒𝑑,𝑃𝑡

‡ ≤ Δ𝐺0,𝑟𝑒𝑑,𝐸𝐶
‡ ≤ Δ𝐺0,𝑟𝑒𝑑,𝑃𝑡

‡ + 50% ∙ Δ𝐺0,𝑟𝑒𝑑,𝑃𝑡
‡

  i.e. 

54.51 𝑘𝐽 ∙ 𝑚𝑜𝑙−1 ≤ Δ𝐺0,𝑟𝑒𝑑,𝐸𝐶
‡ ≤ 163.5 𝑘𝐽 ∙ 𝑚𝑜𝑙−1  .                         (19) 

 

The results of the simulations are displayed in Figure 2. The value of Tsl is set to 70 mV∙dec-1, 

corresponding to ω = 1.18 (see Eq. 15). 
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Figure 2. Simulation on boundary conditions expressed by Eq. 17, Eq. 18 and Eq. 19 of ηs (left 

panel), ηA (center panel) and ηkin (right panel) values, respectively. 

 

Figure 2 demonstrates that ηs has little impact on the overall overpotential of the EC. In detail, it 

results that the ORR overpotential characterizing an EC able to reduce O2 exclusively to hydrogen 

peroxide (ntot = 2) is only ca. 48 mV larger than that of an EC able to convert O2 exclusively to 

water (ntot = 4). The impact of the accessibility overpotential (𝜂𝐴) on 𝜂𝐸𝐶  is much more relevant. 

Indeed, with respect to the Pt benchmark, a tenfold decrease of the O2 density on the electrode 

surface of the EC would trigger an increase in the overpotential of ca. 160 mV. At jEC(5%), ηkin is 

the most important contribution to 𝜂𝐸𝐶 . Indeed, if the ORR activation barrier of an EC is only 25 

kJ·mol-1 larger than that of the Pt benchmark, the ORR overpotential increases by more than 300 

mV. This is the difference commonly existing experimentally between the best ORR Pt-based ECs 

and most of the poor “Pt-free” ECs.  
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4. Application of the formalism to real cases 

The framework described in Section 3 is implemented by means of conventional ORR 

measurements in the CV-TF-RRDE setup. A detailed discussion of the CV-TF-RRDE setup, of the 

approaches that are adopted to bind the EC to be tested on the RRDE tip and of the rationale 

underlying the selection of the experimental parameters (e.g., temperature, rotation rate of the 

RRDE, composition of the support electrolyte) is outside the scope of this work and can be found in 

the literature [28]. The data analysis starts by determining the ORR faradic currents adopting the 

procedures described elsewhere [15]. iR correction is carried out, allowing for the accurate 

determination of the electrode potential accounting for the ohmic drops in the system. In 

conventional aqueous media, both under acidic and alkaline media, jPt,d is ca. 6 mA·cm-2 as the 

RRDE is spun at 1600 rpm [29, 30].  Accordingly in these conditions, that are adopted herein, 

jPt(5%) is typically on the order of ca. 0. mA·cm-2. This latter value is: (i) large enough to ensure 

that the errors introduced upon the removal of the capacitive currents are small; and (ii) small 

enough to justify the neglect of the corrections due to mass transport arising from the RRDE 

experimental setup. In conclusion jPt(5%) matches with the desired ORR kinetic current density, 

thus ensuring the accuracy of the framework described in Section 3 upon implementation in 

practical systems [15]. Figure 1 shows the determination of E(jPt(5%)) from CV-TF-RRDE 

profiles. Figure 3(a) summarizes the  E(jPt(5%)) of different “model” ORR ECs in an alkaline 

environment (0.1 M KOH). This is meant to mimic the operating conditions that the EC would find 

at the cathode of an anion-exchange membrane fuel cell (AEMFC) or of a metal-air battery. These 

ECs, which are selected representatives among the extremely broad variety of materials reported in 

the literature [31, 32], consist of: (i) a conventional Pt/C benchmark with 10 wt% of Pt supported on 

Vulcan XC-72R; (ii) a “Pt-free” EC of the type reported elsewhere [8]; and (iii) an advanced ORR 

EC comprising active sites based on a Pt-Ni alloy [33]. The “Pt-free” EC and the advanced ORR 

EC comprising active sites based on a Pt-Ni alloy were obtained in our laboratory following the 

synthesis reported elsewhere [8, 33]. 
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For the sake of comparison, Figure 3(b) displays for the same ECs also the potential at half wave, 

E1/2.  E1/2 is the typical figure of merit commonly adopted in the literature for the comparison of the 

performance of different ORR ECs [34, 35]. The values of E(jPt(5%)) and E1/2 are reported in Table 

1 and shown in Figure 3(a) and Figure 3(b), respectively. 

 

Table 1. Comparison between E(jPt(5%)) and E1/2 for a variety of “model” ORR ECs(a) 

Electrocatalyst E(jPt(5%)) / mV vs. RHE E1/2 / mV vs. RHE 

Pt/C ref. 955 873 

“Pt-free” EC 903 822 

Pt-Ni alloy EC 983 895 
(a)Voltammograms measured at 20 mV/sec; temperature = 298 K; support electrolyte = 0.1 M 

KOH; rotating speed 1600 rpm; Ering = 1.2 V vs. RHE. 

 

 

Figure 3. (a) Determination of E(jPt(5%)) values for selected ORR ECs. (b) Determination of E1/2 

values of selected ORR ECs.  

 

For the selected EC, the current density at which E1/2 is determined depends on the specific value of 

jEC,d and on several factors including the transport phenomena and, in accordance with the Levich 
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analysis [23], the total number of electrons exchanged during the ORR. Figure 3 shows that, with 

respect to both the Pt/C benchmark and the Pt-Ni alloy EC, the “Pt-free” EC produces a significant 

larger amount of H2O2 thus lowering the total number of exchanged electrons and consequently jd. 

In addition, the current density (jEC,1/2) at E1/2 is ca. 10 times larger than that of jPt(5%). This has two 

important consequences:  

 

i. The corrections that are necessary to determine the ORR kinetic current densities in a RRDE 

setup are significant: specifically, jk,ORR = 2·jEC,1/2, hence the correction to the measured 

current density is equal to 100%. In this range, even small errors in the determination of jEC,d 

affect significantly the accuracy of jk,ORR [15]. 

ii. 
𝐶𝑜𝑥,𝐸𝐶(0,𝑡)

𝐶𝑜𝑥,𝑃𝑡(0,𝑡)
≠ 1, since at large current densities the morphology of the ECs can easily lead to a 

different accessibility of O2 to the active sites caused by mass transport issues. The 

contribution to the 𝜂𝐸𝐶  of resulting accessibility overpotential, ηA, is very significant (see 

Figure 2). 

 

From these considerations, it is clear that E1/2 is a very “rough” and unsuitable figure of merit to 

adopt in order to compare the pure catalytic ORR activity of ECs. Indeed, in ECs, owing to their 

different composition, structure and morphology with respect to reference material, the contribution 

of ηs and ηA to the E1/2  is relevant. Taking all together, E(jPt(5%)) is an accurate figure of merit to 

gauge the “pure” kinetic performance in the ORR of an EC as it is immediately correlated to the 

crucial catalytic feature of the material, i.e. the activation free energy barrier of the EC.  

 

5. Conclusions 

This report describes a very general method to compare accurately the catalytic activity of different 

ECs. This method is based on a formalism which does not involve the usually-adopted Butler-
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Volmer (BV) description of electrocatalytic processes. This formalism takes into account that: (i) 

the rate constants of the elementary reduction and of the reverse oxidation processes at the interface 

during the EC operation can be different; and (ii) the concentration on the electrode of the oxidized 

and of the reduced species involved in the ORR are typically different. In principle, the method can 

be applied to most processes involved in the operation of electrochemical energy conversion and 

storage devices, on the condition that they trigger overpotentials larger than 100-150 mV. Hence, 

the formalism could be applied to diverse processes such as the ORR, the oxygen evolution reaction 

(OER) and the methanol oxidation reaction (MOR), both in an aqueous and in a non-aqueous 

environment. It does not make any assumption on the specific features of the EC including the 

morphology and the chemical composition. The proposed formalism compares the potential of an 

EC with that of a benchmark EC both tested exactly in the same conditions and producing the same 

current density. Specifically, the method consists in the study of the CV-TF-RRDE profiles at a 

current density which is equal to 5% of the diffusion-limited ORR current density of a Pt 

benchmark (jPt(5%)). In this condition the measured electrode potential E(jPt(5%)) is correlated with 

the crucial features of an EC, such as: (i) the number of electrons exchanged in the ORR; (ii) the 

accessibility of O2 to the active sites; and (iii) the kinetic activation barrier for the ORR. This 

correlation retains its accuracy regardless of the specific features of the EC, including the 

morphology and the chemical composition. It is also demonstrated that, with respect to other figures 

of merit discussed in the literature such as E1/2, E(jPt(5%)) is a much more accurate and quantitative 

parameter to gauge the ORR kinetics of ECs. In summary the method here reported, by simple CV-

TF-RRDE measurements, provides useful parameters able to shed light and identify which features 

characterizing an ORR EC need to be optimized for application into a practical electrochemical 

device. 
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