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Abstract

This paper proposes Bayesian methods for estimating the cointegration rank using

Bayes factors. We consider natural conjugate priors for computing Bayes factors. First,

we estimate the cointegrating vectors for each possible rank. Then, we compute the Bayes

factors for each rank against 0 rank. Monte Carlo simulations show that using Bayes factor

with conjugate priors produces fairly good results. We apply the method to demand for

money in the US.
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JEL classi�cation: C11; C12; C32

1 Introduction

This paper introduces Bayesian analysis of cointegrated VAR systems. Several researchers

have proposed Bayesian approach to cointegrated VAR systems. These include Kleibergen

and van Dijk (1994), who proposed using a Je�rey's prior instead of di�use prior for the

cointegrating vectors since the marginal posteriors may be nonintegrable with reduced rank

of cointegrating vector. Geweke(1996) developed general methods for Bayesian inference with

noninformative reference priors in the reduced rank regression model. Kleibergen and Paap

(1999) use a singular value decomposition of the unrestricted long-run multiplier matrix, �,

for identi�cation of the cointegrating vectors and for Bayesian posterior odds analysis of the

rank of �. Bauwens and Lubrano (1996) reduce the ECM to the form of a multivariate

regression model to identify the parameters. The cointegrating rank is assumed to be known

a priori, based on a theoretical economic model that de�nes equilibrium economic relations.

�The author thanks two anonymous referees, Luc Bauwens, Mike Clements, Richard Paap and audiences at

the workshop �Recent Advances in Bayesian Econometrics (2001)� in Marseilles for their useful comments on

an earlier version of this paper.
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If we are interested in identifying the cointegration rank, they suggest checking the plot of the

posterior density of the eigenvalues of generated sample �0�, which are equal to the square

of the singular values of �. However, this informal visual inspection gives ambiguous results.
1

Bauwens, et al (1999) suggest using the trace test of Johansen, since �on the Bayesian side,

the topic of selecting the cointegrating rank has not yet given very useful and convincing

results�(p.283).

In this paper we propose a simple method of determining of the cointegration rank by

Bayes factors. The method is very straightforward. We consider using the conjugate priors

for all parameters. If there exist r cointegrating vectors in the system, the adjustment term �

has rank r. Applying the Bayes factor to �, which has r rank, against the null of �, which has

rank 0, for each rank gives the posterior probabilities for its rank. The procedure for obtaining

the posteriors has some similarities with Bauwens and Lubrano method. However, instead of

using di�use priors for all parameters, the conjugate priors are chosen to be able to compute

the Bayes factors.

The plan of this paper is as follows. Section 2 presents the prior speci�cations and derives

the posterior densities for estimation of the cointegrated VAR systems. In Section 3 the Bayes

factors for cointegration rank is introduced. Section 4 illustrates Monte Carlo simulations with

DGPs of 1000 iterations for each rank to compare the performance of the proposed Bayesian

methods with the classical Johansen test. In Section 5, an illustrative example of the demand

for money in the United Sates is presented. Section 6 concludes. All computations in this

paper are performed using code written by the author with Ox v2.20 for Linux (Doornik,

1998).

2 Bayesian Inference in Cointegration Analysis

In this section we present Bayesian analysis of cointegration. Let Xt denote an I(1) vector

of n-dimensional time series with r linear cointegrating relations, then unrestricted VECM

representation with deterministic trend is:

�Xt = �+ �z +

p�1X
i=1

	i�Xt�i + "t (1)

where z =
h
X

0
t�1 t

i0
,  =

h
�
0

Æ

i
, t = p; p + 1; : : : ; T , p is the number of lags in VAR,

and the errors, "t, are assumed N (0;
P
) and independent over time. �, ", 	, �, �, and � are

parameters of dimensions n� 1; n� 1, n� n, n� n, n� r, and n� r, respectively.

Equation (1) can be rewritten in matrix format as:

Y = X� + Z
0
�
0 +E =WB +E (2)

where

1Tsurumi and Wago (1996) use a highest-posterior-density-region (HPDR) test to � , then derive the

posterior pdfs for singular values to see whether 99% highest-posterior-density-interval (HPDI) contains zero.

2



Y =

266664
�X 0

p

�X 0
p+1
.
.
.

�X 0

T

377775, Z =

266664
X

0
p�1 p

X
0
p p+ 1
.
.
.

.

.

.

X
0

T�1 T

377775, E =

266664
"
0
p

"
0
p+1
.
.
.

"
0

T

377775, � =

266664
�
0

	0
1
.
.
.

	0
p�1

377775,

X =

266664
1 �X 0
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.
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T�1 � � � �X 0
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377775, W =
h
X Z

0

i
, B =

"
�

�
0

#
.

Let m be the number of columns of Y , so that m = T � p+1, then X is m� (1+n(p� 1)) , �

((1+n(p�1))�n) , W (m�k), where k = 1+n(p�1)+r, and B (k�n). Thus, equation (2)

represents the multivariate regression format of (1). This representation is a starting point.

We then describe the prior and likelihood speci�cations in order to derive posteriors.

First, we consider the case of applying the conjugate priors for some parameters. Our

strategy to select priors is to choose a conjugate prior only for the parameters that are used in

computing Bayes factor. For other parameters except for the cointegrating vector, we consider

non-informative priors.

The conjugate prior density for B conditional on covariance � follows a matrix-variate

normal distribution with covariance matrix �
A
�1

of the form

p(B j �) / j�j�k=2
jAj

n=2 exp

�
�
1

2
tr
�
��1 (B � P )0A (B � P )

	�
(3)

where A is (k � k) PDS and P (k � n), k = n(p� 1) + r+ 1 (the number of columns in W ).

Choosing hyperparameters, P and A, in (3) should be careful since these have direct e�ect on

the value of Bayes factor. Kleibergen and Paap (1996) choose The idea of using data in priors

is similar to a g-prior proposed by Zellner (1986).

For the prior density for the covariance � in (2), we can assign an inverted Wishart

p(�) / jSj
h=2
j�j�(h+n+1) exp

�
�
1

2
tr
�
��1

S
��

(4)

where h is a degree of freedom, S an n� n PDS.

The prior for � can be given as a matrix-variate normal

� (�) / jQj
�n=2

jHj
r=2 exp

�
�
1

2
tr

n
Q
�1
�
� � �

�0
H
�
� � �

�o�
(5)

where � is a prior mean of �, Q is r � r PDS, H is n � n PDS. Note that r
2
restrictions

for identi�cation are imposed on �, for example, �
0 = ( Ir �

0
? ),2 where �? is (n � r) � r

unrestricted matrix. If we assign r
2
restrictions on � as Ir, then only a part of �, �?, follows

a matrix-variate normal.

If we assume that B, � and � are mutually independent, then the joint prior of the

parameters in (2) is p(B; �;�) / p(Bj�)p(�)p(�) and thus can be derived as

2The restrictions imposed on � need not to be Ir but can be any r2 restrictions. See Bauwens and Lubrano

(1996, page 14)
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p(B;�; �) / � (�) jAjn=2j�j�
k+h+n+1

2 exp

�
�
1

2
tr
�
��1

�
S + (B � P )0A(B � P )

�	�
(6)

To derive the conditional posterior distributions, we need to derive the likelihood functions.

The likelihood function for B;�; and � is given by:

L (Y j B;�; �) / j�j�t=2 exp
n
�

1
2
tr

h
��1

nbS + (B � bB)0W 0
W (B � bB)oio (7)

where bB = (W 0
W )�1W 0

Y , and bS = (Y �W bB)0(Y �W bB).
Next we derive the posteriors from the priors and the likelihood function speci�ed above.

The joint posterior distribution for the conjugate priors for � is proportional to the joint prior

(6) times the likelihood function (7), thus we have

p (B;�; � j Y ) / p (B;�; �)L (Y j B;�; �)

/ � (�) jAj
n

2 j�j�(t+h+k+n+1)=2

� exp

�
�
1

2
tr

n
��1

h
S + (B � P )0A(B � P ) + bS + (B � bB)0W 0

W (B � bBio�
/ � (�) j�j�

c

2 exp

�
�
1

2
tr

n
��1

h
S + bS + (P � bB)0[A�1 + (W 0

W )�1]�1(P � bB)
+(B �B?)

0
A?(B �B?)

�	�
= � (�) j�j�

c

2 exp

�
�
1

2
tr
�
��1

�
S? + (B �B?)

0
A?(B �B?)

�	�
(8)

where c = t+ k + h+ n+ 1, A? = A+W
0
W , B? = (A+W

0
W )�1(AP +W

0
W bB),

and S? = S + bS + (P � bB)0[A�1 + (W 0
W )�1]�1(P � bB).

From (8), the conditional posterior of � is derived as an inverted Wishart distribution, and

the conditional posterior of B as a matrix-variate normal density with covariance, � 
 A
�1
? ,

that is,

p(� j �; Y ) / jS?j
t=2
j�j�(t+h+n+1)=2 exp

�
�
1

2
tr
�
��1

S?

��
(9)

p(B j �; �; Y ) / jA?j
n=2
j�j�k=2 exp

�
�
1

2
tr
�
��1(B �B?)

0
A?(B �B?)

	�
(10)

Thus, by multiplying (9) and (10), and integrating with respect to �, we obtain the posterior

density of B conditional on �, which is a matrix-variate Student-t form,

p(B j �; Y ) / jS?j
t=2
jA?j

n=2
jS? + (B �B?)

0
A?(B �B?)j

�(t+k)=2
(11)

The joint posterior of B and � can be derived by integrating (8) with respect to �,
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p(B; � j Y ) / � (�) jS? + (B �B?)
0
A?(B �B?) j

�(t+h+k+1)=2
(12)

By integrating (12) with respect to B we obtain the posterior density of the cointegrating

vector �,

p(� j Y ) / � (�) j S? j
�(t+h+1)=2

j A? j
�n=2

(13)

The properties of (13) are not known, so that we have to resort to numerical integration

techniques as Bauwens and Lubrano (1996) use importance sampling to compute poly-t pos-

terior results on parameters. Other feasible methods are the Metropolis-Hastings algorithm

and the Griddy-Gibbs sampling. The Metropolis-Hastings
3
algorithm requires assignment of

a good approximating function, the candidate-generating function, to the posterior to draw

random numbers, as importance sampling requires the importance function. Since the Griddy-

Gibbs sampling method does not require such an approximation, we employ the Griddy-Gibbs

sampler for estimation of the cointegrating vector as Bauwens and Giot (1998) use the sam-

pler for estimation of two cointegrating vectors.The Griddy-Gibbs sampler that is proposed

by Ritter and Tanner (1992) approximates the true cdf of each conditional distribution by a

piecewise linear function and then sample from the approximations. The disadvantage of this

sampling method is that we have to assign proper range and the number of the grid. The

range should be chosen so that the generated numbers are not truncated.

3 Bayes Factors for Cointegration Tests

This section introduces the computation of the Bayes factors for cointegration rank. Subsection

3.1 describes brie�y the basic concept of the Bayes factors and some computation techniques.

Subsection 3.2 presents the computation of the Bayes factors for cointegration rank.

3.1 Bayes Factors and Determination of Rank

The Bayes factor, which is de�ned as the ratio of marginal likelihood of null and alternative

hypothesis, has been used for model selection. The Bayes factors can be used to construct

posterior probabilities for all models that seemed plausible. In classical hypothesis test, one

model represents the truth and the test is based on a pairwise comparison of the alternative.

For a detailed discussion of the advantages of Bayesian methods, see Koop and Potter (1999).

Kass and Raftery (1995) provide an excellent survey of the Bayes factor.

Suppose, with data Y and the likelihood functions with the parameters �, there are two

hypotheses H0 and H1. The Bayes factor BF01 is de�ned as follows:

BF01 =
Pr(Y jH0)

Pr(Y jH1)

3For more details, consult Chen, et al (2000), Evans and Swartz (2000). For tutorial for the M-H algorithm,

see Chib and Greenberg (1995).
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=

R
p(�jH0)L(Y j�;H0)d�R
p(�jH1)L(Y j�;H1)d�

(14)

With the prior odds, de�ned as Pr(H0)=Pr(H1), we can compute the posterior odds, which

are

PosteriorOdds01 =
Pr(H0jY )

Pr(H1jY )
=

Pr(Y jH0)

Pr(Y jH1)
�
Pr(H0)

Pr(H1)
(15)

When several models are being considered, the posterior odds yield the posterior probabili-

ties. Suppose q models with H0;H1; : : : ;Hq�1 are being considered, and each hypotheses of

H1;H2; : : : ;Hq�1 is compared with H0. Then the posterior probability for model i under Hi

is

Pr(HijY ) =
PosteriorOddsi0Pq
j=0PosteriorOddsj0

(16)

where PosteriorOdds00 is de�ned to be 1. These posterior probabilities are used to select the

cointegrating rank, model selection, or as weights for forecasting.

There are several methods to compute the Bayes factors given in (14). For example, the

Laplace approximation method (Tierney and Kadane, 1986), or using numerical integration

techniques such as importance sampling (Geweke, 1989) or the Metropolis-Hastings algorithm.

See Kass and Raftery (1995) for details. Chib (1995) proposes a simple approach to compute

the marginal likelihood from the Gibbs output.

In the case of nested models computation of the Bayes factor can be simpli�ed by using

the generalized Savage-Dickey density ratio, proposed by Verdinelli and Wasserman (1995),

which is based on Dickey (1971). Suppose we wish to test the null H0 : � = �0 versus H1 :

� 6= �0, where � can be scalar, vector, or matrix. With the condition that p(�j�0) = p0(�),

where (�; �) = � , then the Bayes factor can be computed with the Savage-Dickey density

ratio

BF01 =
p(�0jY )

p(�0)
(17)

The denominator, the marginal prior for � evaluated at � = �0, in (17) is trivial to calcu-

late. The numerator, the marginal posterior for � evaluated at � = �0, can be calculated by

integrating out the other parameters, such as:

p(�0jY ) =

Z
p(�0j�; Y )p(�jY )d�

'
1

N

NX
i=1

p(�0j�
(i)
; Y ) (18)

where �(i)
, i = 1; : : : ; N , are sample draws from the posterior.
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3.2 Bayes Factor for Cointegration Rank

The Bayes factors are used for model selection, and thus can also be used for rank selection of

the cointegration. Kleibergen and Paap (1999) propose a cointegration rank test by Bayes fac-

tors using a decomposition derived from the singular value decomposition. In this subsection,

we propose a much simpler method for rank test using Bayes factors.

In a cointegrated system with n variables which are I(1), if there are r cointegrating vectors,

then the error correction term � has reduced rank of r: � can be decomposed as products

of � and �
0
, both of which have reduced rank r. Since � is unrestricted and also is given a

rank reduction when cointegration exists, we compute the Bayes factor for � that is against

the null � = 0 for determining the number of the rank using inverted form of (17) for each

possible rank (r = 0; 1; : : : ; n).

BFrj0 =

R R R R
p (�; �;�;�)L (Y j �; �;�;�) d�d�d�d�

(1=Cr) �
R R R

p (�; �;�;�) j
rank(�)=0

L (Y j �; �;�;�) j
rank(�)=0

d�d�d�

=
p(�0 = 0r�n)

(1=Cr) � p(�0 = 0r�njY )
(19)

where Cr =
R R R

p(�; �;�;�) jrank(�)=0 d�d�d� is the correction factor that is required for

reduction of dimension.

If there exists r cointegrating vectors, the Bayes factor for �
0

(r�n)
in (19) is the most

unlikely to be zero and thus should have the highest value in Bayes factors for other possible

ranks. Note that the Bayes factor for rank 0 equals to 1. In case of no cointegration, the Bayes

factors for �
0

(r�n)
, where r 6= 0, are less than 1. If we assign an equal prior probability to each

cointegration rank, the posterior probability for each rank can be computed as in (16)

Pr(rjY ) =
BFrj0Pn
j=0BFjj0

(20)

where BF0j0 is de�ned as 1.

The posterior probabilities given by (20) can be used for solutions of the prediction, de-

cision making and inference problems that take account of model uncertainty. Generally, the

hypothesis that has the highest posterior probability can be selected as the 'best' model, only

if it dominates the others. Otherwise, analyses will fail to take uncertainty into account.

To compute the Bayes factors using (19), we use (18) with samples from the posteriors.

Since �
0
is a partitioned element of B in (2) and thus the prior for alpha is a matrix-variate

Student-t distribution as shown in (3), so the numerator of (19) is:

p
�
�
0 = 0(n�r)

�
= �

�
nr

2 jSj
h

2 jA22:1j
n=2

8<:
nY

j=1

�
�
h+r+1�j

2

�
�
�
h+1�j

2

�
9=; jSj

�
h+r

2 (21)

where A22:1 = A22 �A21A
�1
11 A12 , A =

"
A11 A12

A21 A22

#
, A11 is ((n(p� 1) + 1)� (n(p� 1) + 1))
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, A12 ((n(p� 1) + 1) � r) , A21 (r � (n(p� 1) + 1)) , A22 (r � r).

The posterior for alpha, which is a matrix-variate Student-t from (11), can be estimated by

(18) as follows:

p(�0 = 0(n�r)jY ) =

Z
p(�0 = 0j�; Y )p(�jY )d� '

1

N

NX
i=1

p(�0 = 0j�(i); Y )

=
1

N

NX
i=1

�
�

nr

2 jS
(i)
? j

t+h

2 jA
(i)
?22;1j

n

2

(
nY

i=1

�
�
t+h+r+1�i

2

�
�
�
t+h+1�i

2

� )
�jS

(i)
? +B

(i)0

?2 A
(i)
?22:1B

(i)
?2 j

�
t+r

2 (22)

where �
(i)
, S

(i)
? , and A

(i)
? are obtained from the i th iteration of the Gibbs sampler, A?22:1 =

A?22 � A?21A
�1
?11A?12 , A? =

"
A?11 A?12

A?21 A?22

#
, A?11 is ((n(p� 1) + 1) � (n(p� 1) + 1)) , A?12

((n(p� 1) + 1)� r) , A?21 (r � (n(p� 1) + 1)) , A?22 (r� r) , B?2 is obtained by partition of

B? as B? =

"
B?1

B?2

#
, where B?1 is ((n(p� 1) + 1)� n), B?2 (r � n).

To compute the value of Cr in (19), Chen's method (1992) can be used as
R R R R

p (�; �;�;�) d�d�d�d� =

1,

Cr =

Z Z Z
p (�; �;�;�) j�=0 d�d�d�

=

R R R
p (�; �;�;�) j�=0 d�d�d�R R R R
p (�; �;�;�) d�d�d�d�

=

R R R
p (�; �;�;�) j�=0

�R
! (� j �;�;�) d�

�
d�d�d�R R R R

p (�; �;�;�) d�d�d�d�

=

R R R R
p (�; �;�;�) j�=0 ! (� j �;�;�) d�d�d�d�R R R R

p (�; �;�;�) d�d�d�d�

'
1

N

NX
i=1

p

�
�
(i)
j �

(i)
;�(i);�(i)

�
�
p
�
� = 0; �(i);�(i);�(i)

�
p
�
�(i); �(i);�(i);�(i)

�
=

1

N

NX
i=1

p
�
� = 0; �(i);�(i);�(i)

�
p
�
�(i);�(i);�(i)

�
=

1

N

NX
i=1

p
�
� = 0;�(i) j �(i)

�
p
�
�
(i)
�
p
�
�(i)

�
p
�
�(i) j �(i)

�
p
�
�(i)

�
p
�
�(i)

�
=

1

N

NX
i=1

p
�
� = 0;�(i) j �(i)

�
p
�
�(i) j �(i)

� (23)

where p (� = 0;� j �) and p (� j �) in the last line of (23) are derived from (4).

The Bayes factor for alpha can be obtained by dividing (21) by (22) and an inverse of

(23). When the posterior probabilities are considered, we assign equal prior probabilities to

8



the possible cointegration ranks such that Pr(�rank=r) = 1=(n + 1) for r = 0; 1; : : : ; n. With

these n+ 1 Bayes factors, we can compute the posterior probabilities for each rank by using

(16).

Note that the method described above has the disadvantage over other methods such as

Johansen's and Kelibergen and Paap's methods. Their methods are based on eigenvalues

or singular values of the long-run matrix �, while our method is based on testing for zero

restrictions on adjustment parameters. The Bayes factors we obtain in our methodology

depend upon r
2
restrictions for identi�cation imposed on �. Thus, di�erent choice of the

ordering of the variables generates di�erent value of Bayes factors.

4 Monte Carlo Simulation

To illustrate the performance of Bayesian tests for the rank of cointegration described in the

previous section, we perform some Monte Carlo simulations. The data generating processes

(DGPs) consist of a four-variable VAR with an intercept term having various number of

cointegrating vectors (0, 1, 2, 3 and 4) as following:

1. 4yt = �+ et

2. 4yt = �+

266664
�0:2

�0:2

�0:2

0:2

377775
h
1 0 0 �1

i
yt�1 + et

3. 4yt = �+

266664
�0:2 �0:2

0:2 �0:2

0:2 0:2

�0:2 0:2

377775
"
1 0 0 �1

0 1 0 �1

#
yt�1 + et

4. 4yt = �+

266664
�0:2 �0:2 �0:2

0:2 �0:2 �0:2

0:2 0:2 �0:2

0:2 0:2 0:2

377775
264 1 0 0 �1

0 1 0 �1

0 0 1 �1

375 yt�1 + et

5. 4yt = �+

266664
�0:2 �0:2 �0:2 �0:2

0:2 �0:2 �0:2 �0:2

0:2 0:2 �0:2 �0:2

0:2 0:2 0:2 �0:2

377775
266664

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

377775 yt�1 + et

where � =
h
0:1 0:1 0:1 0:1

i0
, and et � NID(0; I4).

We demonstrate the performance of the test by varying the true rank. Each simulation of

DGPs for various ranks is repeated 1000 times. The sample size t is 150, of which the �rst

50 are used for the �rst experiment and the rest of 100 are used for the second experiment.

We consider a VAR(1) model with a constant term throughout the experiments. As noted

9



in the previous section, since the testing procedure depends upon the chosen ordering of the

variables in the VAR, the ordering of the individual series in y is changed randomly during

the simulation experiment.

The prior parameter speci�cations for the natural conjugate prior in (3) are given with

P = 0 and A = �(cW 0cW )=T , where cW =
�
X Z b� �

and b� = 0(n�r). The speci�cation for A

is a g-prior proposed by Zellner (1986) and used by Kleibergen and Paap. In this experiments,

we assign � = 1 and 0.01 to see how this prior speci�cation a�ects the results. We also specify

the prior parameters for � in (5) with �? = 0, Q = In , H = �Z
0
Z, where � = 1=T . As

for the prior speci�cation for � in (4), we assign S = �X
0
X and h = n + 1. For Johansen's

LR trace test, the cointegrating rank for each iteration is chosen by p-value with the 5 per

cent signi�cance level and then the number of each selected rank is counted over iterations to

obtain the rates of selection for each rank
4
.

Table 1 summarizes the results of Monte Carlo simulation with the sample size t is 50. The

values in the columns are the average posterior probabilities of 1,000 iterations for each true

rank. For each iteration, the Griddy-Gibbs sampling is performed with 5,000 draws and the

�rst 1,000 discarded. The column labelled as Pr(r|Y) with � = 1 shows the average posterior

probabilities when � = 1. As shown in the table, the highest average posterior probability for

each rank indicates the correct rank. With the sample size is 50, the overall performances are

slightly improved when � = 0:01, larger prior variance.

4The results of the Johansen tests in this paper are obtained by using Pc�ml class of Ox v2.20. The source

code of the class was modi�ed and recompiled for the simulations.
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Table 1: Monte Carlo Results: The Average Posterior Probabilities with T = 50

Pr(r|Y) Pr(r|Y) Johansen's

DGP rank r with � = 1 with � = 0:01 trace test

True rank 0 0.755 0.814 0.843

r = 0 1 0.093 0.113 0.128

2 0.068 0.050 0.029

3 0.051 0.017 0.000

4 0.033 0.001 0.000

True rank 0 0.034 0.050 0.391

r = 1 1 0.669 0.715 0.493

2 0.160 0.131 0.094

3 0.117 0.065 0.012

4 0.020 0.039 0.011

True rank 0 0.000 0.000 0.000

r = 2 1 0.000 0.000 0.235

2 0.818 0.852 0.655

3 0.120 0.092 0.049

4 0.061 0.057 0.061

True rank 0 0.000 0.000 0.000

r = 3 1 0.000 0.000 0.123

2 0.059 0.067 0.558

3 0.661 0.698 0.170

4 0.280 0.236 0.149

True rank 0 0.000 0.000 0.001

r = 4 1 0.000 0.000 0.039

2 0.003 0.001 0.271

3 0.037 0.060 0.123

4 0.959 0.939 0.566

The last column shows the results by Johansen's trace test. The results show that the test

apparently su�ers from the shortage of samples especially for higher ranks. To improve the

�nite sample properties for the likelihood ratio test, Johansen (2000) proposed using Bartlett

correction for a VAR with small sample.

Increasing the sample size to 100 improves the performances of all tests as shown in Table

2. All highest average posterior probabilities indicate the true rank. Larger the prior variance

on � (less value in �), it tends to choose a lower rank.
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Table 2: Monte Carlo Results: The Average Posterior Probabilities with T = 100

DGP rank r Pr(r|Y) Pr(r|Y) Johansen's

with � = 1 with � = 0:01 trace test

True rank 0 0.922 0.931 0.891

r = 0 1 0.060 0.061 0.089

2 0.014 0.007 0.018

3 0.003 0.000 0.002

4 0.000 0.000 0.000

True rank 0 0.000 0.000 0.110

r = 1 1 0.886 0.914 0.803

2 0.106 0.080 0.087

3 0.005 0.005 0.000

4 0.002 0.000 0.000

True rank 0 0.000 0.000 0.000

r = 2 1 0.000 0.000 0.041

2 0.961 0.927 0.949

3 0.038 0.072 0.033

4 0.001 0.002 0.017

True rank 0 0.000 0.000 0.000

r = 3 1 0.000 0.000 0.000

2 0.019 0.012 0.216

3 0.965 0.946 0.605

4 0.016 0.042 0.179

True rank 0 0.000 0.000 0.000

r = 4 1 0.000 0.000 0.000

2 0.000 0.000 0.001

3 0.022 0.034 0.011

4 0.978 0.966 0.988

5 Illustrative Example: The Demand for Money in the US

In this section, we illustrate an example of cointegration analysis using the method that is

presented in previous sections. The focus is to show the usefulness of our method with a

relatively small sample size and to compare two methods of computing Bayes factors and

Johansen's likelihood ratio test. The example is cointegration test for the demand for money

in the United States.

There are many papers on the estimation of the money demand function, see Goldfeld and

Sichel (1990). A typical money demand equation is

mt � pt = �+ yyt + RRt + et (24)
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where mt is the log of money, pt is the log of price level, yt is log of income, Rt is the nominal

interest rate.

The data used for our analysis is based on the annual data provided by Lucas (1988). The

money stock (mt) is measured by M1. The income (yt) is the net national product. The

interest rate (Rt) is the annual rate of the six-month commercial paper. We use a part of the

range of the original data - from 1933 to 1989. With 60 observations, we test cointegration

among three variables - (m� p), y, and R.

Before analyzing the application, we brie�y explain Bayesian hypothesis testing for the

number of lags in VAR. Since we do not know the actual lag length for the VAR and choice

of the appropriate lag length a�ects the cointegration analysis, we apply our method that

explained in Section 3 to select the lag length. Let's consider a VAR model, Y = XB + E,

where B =
�
�
0 �0

1 � � � �0
p

�
, and X consists of vectors of lagged Y and 1s in the �rst

column. With conjugate and/or di�use priors, we have the posteriors which are similar to our

posteriors that are given in Section 3. Then compute the Bayes factor for each �i = 0 to select

the appropriate lag length. Note that for this test we do not assign the correction factor C in

Bayes factor.

The Bayes factor selects the appropriate lag length in the VAR is 1 dominantly, though

the AIC indicates 2 lags in the VAR. We model a VAR(1) with a constant term for our

cointegration analysis.

The prior speci�cations are the same as in the previous Monte Carlo experiments. We

assign equal prior probability to each rank. Table 3 illustrates the posterior probabilities with

� = 1 and 0.01 and p-values of Johansen's trace test. For � = 1 we see that the posterior

probabilities indicate that there is one cointegration relation with 98.5 per cent. For � = 0:01

our method supports one cointegration relation more strongly with 99.4 per cent. Thus, both

results by di�erent prior speci�cation select one cointegration relation, although Johansen's

test results in no cointegration.

Table 3: Selection of the Cointegration Rank

rank Pr(r|Y) w/ � = 1 Pr(r|Y) w/ � = 0:01 Johansen's p-value

r = 0 0.0000 0.0042 0.1045

r = 1 0.9850 0.9940 0.2234

r = 2 0.0150 0.0019 0.3190

r = 3 0.0000 0.0000 �-

The posterior means of the cointegration relation among the variables Yt =
�
mt � pt; yt; Rt

�
is � =

�
1 �0:876 0:109

�
. Note that the �rst element of � is restricted to be 1 for identi-

�cation. The left column of Figure 1 shows the posterior densities of the second and the third

element of �. The right column of Figure 1 shows the posterior densities of the three elements

in �.
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Figure 1: Posterior Densities of �
?
(the left column) and � (the right column)
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6 Conclusion

This paper shows simple methods of Bayesian cointegration analysis. The Bayes factors are

used for computing the posterior probabilities for each rank. Monte Carlo experiments show

that the methods proposed in this paper provide fairly good results.

The method that we propose requires to impose r
2
restrictions on � for each possible rank

and then to estimate � for each rank before computing Bayes factors for rank selection. Thus,

the choice of the restrictions on � a�ects the values of Bayes factors in some degree.

Another disadvantage of the method is computing time. Computing time depends upon

the algorithm we choose for estimating the cointegrating vectors. In this paper the Griddy-

Gibbs sampler, which requires heavy computations, is chosen simply because we do not need

to assign an approximation function that is needed in Metropolis-Hastings or importance

sampling. However, it will not be a problem in the future with much faster computers.

In this paper, a matrix-variate normal density for the cointegrating vector is chosen as a

prior. Instead, Je�rey's or reference priors are also worth considering as Kleibergen and Paap

used Je�reys' priors for their cointegration analysis.
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