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Causal neuroanatomy can be mapped in animal models by pre-
cisely modulating different brain circuits in well-controlled 
experiments1,2. However, it can be challenging to translate 

these findings into human therapeutics3,4. In humans, mapping of 
psychiatric symptoms is based primarily on correlation, resulting in 
a ‘causality’ gap when attempting to translate this information into 
effective treatments. Causality may be inferred in humans based on 
the clinical effects of focal brain lesions, transcranial magnetic stim-
ulation (TMS) and deep brain stimulation (DBS)2. These modali-
ties have each been used to link depression symptoms to specific 

brain circuits based on the location of lesions or stimulation sites 
that affect depression severity2,5–9. Each result has been proposed as 
a potential solution to the causality gap between neuroimaging cor-
relates and effective treatments2,10.

It remains unclear whether these three causal sources of infor-
mation converge on the same circuit or therapeutic target2,11,12. 
Heterogeneity in lesion location, stimulation site location, neuro-
modulation modality, patient population, depression symptoms, 
depression subtypes and numerous other factors argue against 
a common neuroanatomical substrate. If these causal sources of 
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information converge on a similar brain circuit despite this hetero-
geneity, this would have implications for localization and treatment 
of depression and for bridging the causality gap more generally2. For 
example, it has been proposed that TMS and DBS sites connected to 
similar circuits may modulate similar symptoms13, lesions causing a 
symptom may be connected to the same circuit as brain stimulation 
targets that relieve that symptom5 and similar symptoms map to 
similar circuits across different diagnoses6,14. Confirmation of these 
hypotheses may lead to a transformative framework for targeting 
brain stimulation treatments2,12.

To address these questions, we analysed 14 independent datasets 
of patients with brain lesions, TMS or DBS. Each dataset included 
variability in the lesion or stimulation locations and variability in 
depression symptoms, measured after the lesion or before and after 
therapeutic brain stimulation. We also extended this approach to 
three additional datasets of patients with brain lesions or DBS sites 
associated with motor symptoms of Parkinson’s disease (PD). The 
brain regions functionally connected to each location were identi-
fied using a normative connectome database. This method identifies 
a polysynaptic brain circuit underlying each location, allowing one 
to test whether lesions or stimulation sites in different brain regions 
intersect the same population-derived circuit5. We test whether 
TMS and DBS sites that affect depression are connected to the same 
brain circuit, whether lesion locations associated with depression 
and stimulation sites that affect depression are connected to the 
same brain circuit, whether this circuit is associated with depres-
sion severity irrespective of baseline diagnosis and whether this 
approach is relevant beyond depression.

Results
Characteristics of included datasets. We identified 14 datasets 
including 461 lesions (Fig. 1a)15, 151 TMS sites (Fig. 1b)8,16–18 and 
101 DBS sites (Fig. 1c)9,19–23 (Supplementary Table 1). Five datasets 
included patients who were evaluated for depression severity after 
penetrating brain injury, ischaemic stroke or haemorrhagic stroke. 
Seven datasets included patients who were treated for primary 
major depressive disorder (MDD) with either TMS (four datas-
ets) or DBS (three datasets). Finally, two datasets included patients 
receiving DBS for other disorders (PD or epilepsy), but which mea-
sured change in depressive symptoms as a potential side effect.

Similar ‘depression circuits’ across 14 independent datasets. The 
location of each lesion or brain stimulation site (Fig. 2a–c, top pan-
els) was mapped to an underlying brain circuit using a large nor-
mative connectome database (n = 1,000) and previously validated 
methods (Fig. 2a–c, bottom panels)5. The normative connectome 
was used to estimate connectivity of each lesion or stimulation site 
to every voxel in the brain. At each voxel, a Pearson r value was 
computed for the correlation between depression score and lesion 
or stimulation site connectivity to that voxel (Fig. 2a–c, right pan-
els), yielding a population-derived ‘circuit map’ for each of the 14 
datasets (Supplementary Fig. 1).

Cross-dataset similarity was assessed by computing the spa-
tial correlation between each pair of circuit maps (for example, 
dataset 1 versus dataset 2) and by comparing each circuit map 
with a combined map from the other 13 datasets. Significance 
was assessed using permutation testing, in which the spatial cor-
relation was re-computed after randomly pairing each patient’s 
lesion or stimulation site with a different patient’s depression 
score within the same dataset6. The average pairwise similarity 
between circuit maps, weighted by sample size, was higher than 
expected by chance (mean spatial r = 0.24, 95% CI 0.19 to 0.29, 
P < 0.001) (Fig. 3a and Supplementary Fig. S2a) and similar to a 
weighted mean map generated from the other 13 datasets (mean 
spatial r = 0.45, 95% CI 0.33 to 0.57, P < 0.001). Results were 
unchanged when using Kendall tau (P < 0.001) or Euclidean dis-

tance (P = 0.0013) instead of Pearson correlation or when includ-
ing lesion size as a covariate.

To rule out methodological bias, we conducted a control analy-
sis using patient age instead of depression scores. Age is presum-
ably unrelated to stimulation or lesion location, so we hypothesized 
that this analysis would yield significantly weaker cross-dataset 
similarity. Indeed, the 14 control maps did not match one another 
(mean spatial r = −0.02, 95% CI −0.09 to 0.05, P = 0.86, Bayes factor 
(BF)01 = 1.01) and did not match a map generated from the other 13 
datasets (mean spatial r = −0.01, 95% CI −0.14 to 0.11, BF01 = 1.001). 
The control maps did not match the depression circuit maps (mean 
spatial r = −0.05, 95% CI −0.12 to 0.02, P = 0.93, BF01 = 1.003). 
Similarity between control maps was significantly weaker than sim-
ilarity between depression circuit maps (P = 0.0023).

Convergence across brain lesions, TMS and DBS. To determine 
whether lesions, TMS and DBS converge on the same circuit, we 
grouped the different datasets according to modality. Depression 
circuit maps derived from brain lesion datasets were similar to cir-
cuit maps derived from TMS datasets (mean spatial r = 0.28, 95% 
CI 0.17 to 0.39, P = 0.0025), DBS datasets (mean spatial r = 0.19, 
95% CI 0.10 to 0.28, P = 0.0037) or both neuromodulation modali-
ties combined (mean spatial r = 0.25, 95% CI 0.18 to 0.32, P < 0.001) 
(Fig. 3 and Supplementary Fig. 2a). Depression circuit maps derived 
from TMS were similar to those derived from DBS (mean spatial 
r = 0.25, 95% CI 0.11 to 0.39, P < 0.001) (Fig. 3 and Supplementary 
Fig. 2a).

As a control, this analysis was also repeated using patient age 
instead of depression score. We hypothesized that this analysis 
would yield significantly weaker cross-dataset spatial correlation. 
Age-based circuit maps derived from brain lesions were not simi-
lar to those derived from TMS (mean spatial r = −0.04, 95% CI 
−0.17 to 0.09, P = 0.70, BF01 = 1.07), DBS (mean spatial r = −0.14, 
95% CI −0.26 to −0.02, P = 0.97, BF01 = 6.8) or both neuromodula-
tion modalities combined (mean spatial r = −0.07, 95% CI −0.17 
to 0.02, BF01 = 3.4). Control maps derived from TMS were not 
similar to those derived from DBS (mean spatial r = 0.01, 95% CI 
−0.14 to 0.16, P = 0.43, BF01 = 0.99). In all cases, similarity between 
control maps was significantly weaker than similarity between 
depression circuit maps (P = 0.0038). Control maps from neuro-
modulation datasets did not match depression circuit maps from 
lesion datasets (mean spatial r = −0.11, 95% CI −0.19 to −0.03, 
BF01 = 16.9). Control maps from lesion datasets also did not sig-
nificantly match depression circuit maps from neuromodulation 
datasets (mean spatial r = 0.07, 95% CI −0.02 to 0.17), although 
Bayesian analysis indicates moderate evidence for a correlation 
(BF01 = 0.29) (Fig. 4a).

Finally, we assessed whether within-modality similarity of our 
depression circuit maps was stronger than between-modality simi-
larity. We compared each depression circuit map with a combined 
map generated from the remaining datasets within a modality (for 
example, TMS dataset 1 versus three other TMS datasets) or between 
different modalities (for example, TMS dataset 1 versus nine DBS/
lesion datasets). Within-modality similarity (spatial r = 0.46) was 
identical to between-modality similarity (spatial r = 0.46). We also 
repeated this analysis using pairwise comparisons between circuit 
maps, which yielded a similar result (spatial r = 0.24 versus r = 0.25, 
respectively).

The circuit is transdiagnostic but specific to depression. We 
compared depression circuit maps derived from datasets of 
patients with MDD (seven datasets, n = 199) with those derived 
from datasets of patients with other diagnoses such as stroke, pen-
etrating head trauma, PD and epilepsy (seven datasets, n = 518). 
Depression circuit maps derived from MDD datasets were similar 
to depression circuit maps derived from patients without MDD 
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(mean spatial r = 0.26, 95% CI 0.19 to 0.33, P < 0.001) (Fig. 4b and 
Supplementary Fig. 2).

To assess whether this result was driven by overall clinical sever-
ity/disability rather than depression, this analysis was repeated 
using the severity of the primary presenting symptom in non-MDD 
datasets. This control analysis included stroke severity, PD motor 
improvement or seizure frequency improvement. Control circuit 
maps from non-MDD datasets failed to match depression circuit 
maps from MDD datasets (mean spatial r = −0.03, 95% CI −0.09 to 

0.03, BF01 = 1.04), and this spatial cross-correlation was significantly 
weaker than the cross-correlation between the depression circuit 
maps used in our primary analysis (P < 0.001) (Fig. 4b).

To assess specificity to depression versus other cognitive or 
emotional symptoms, we generated control circuit maps using 
34 other cognitive/emotional scores, which were available in 
our two largest datasets (Vietnam Head Injury Study (VHIS) 
and St. Louis). Our leave-one-dataset-out depression circuit 
map (generated from the other 13 datasets) was more similar 

a  VHIS (n = 196) St. Louis (n = 100) Melbourne (n = 63) Monash (n = 51) Chicago (n = 51)
Penetrating lesions Ischaemic stroke Ischaemic stroke Ischaemic stroke Haemorrhagic stroke

Number of patients Number of patients Number of patients Number of patients Number of patients

c Atlanta (n = 27) Berlin (n = 9) Boston (n = 8) Berlin (n = 32) Maastricht (n = 25)

sgACC (MDD) sgACC (MDD) VC/VS (MDD) STN (Parkinson’s) ANT (epilepsy)

b Boston (n = 30) Monash (n = 24) OPT-TMS (n = 81) Ann Arbor (n = 16)

“5.5 cm” target Beam F3 target “5 cm” target Task fMRI-based target

0 7 14 21 28 0           3       6         9 0                   2                   4 0             2        4           6 0        2        4                  6

R L

Fig. 1 | Lesion locations and brain stimulation sites across 14 datasets. a–c, The analysis included 461 brain lesions across five datasets and three different 
diagnoses (a); 151 TMS sites across four datasets, one diagnosis (major depressive disorder) and four different TMS targets (b); and 101 DBS sites across 
five datasets, three different diagnoses and four different DBS targets (c). OPT-TMS, Optimizing TMS for the Treatment of Depression Study; sgACC, 
subgenual anterior cingulate cortex; VC/VS, ventral capsule/ventral striatum; STN, subthalamic nucleus; ANT, anterior nucleus of the thalamus.
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to the VHIS depression circuit map than to the 28 control cir-
cuit maps (r = 0.54 versus r < 0.35) (Supplementary Fig. 3a). Our 
leave-one-dataset-out depression circuit map was also more simi-
lar to the St. Louis depression circuit map than to the six control 

circuit maps (r = 0.39 versus r < 0.23) (Supplementary Fig. 3b). 
Across both datasets, the leave-one-dataset-out maps were sig-
nificantly more similar to the depression circuit maps than to the 
other circuit maps (P = 0.0032).

–2              3

–2 3

Non-responder Partial responder Responder

Transcranial magnetic stimulation (one of four datasets)

Severe depression Mild depression No depression

Brain lesions (one of five datasets)

Non-responder Partial responder Responder

c Deep brain stimulation (one of five datasets)

a

b

–2              3

t

t

t

Fig. 2 | Identifying depression circuit maps for each cohort. a–c, Brain lesions (a), TMS sites (b) and DBS sites (c) were all mapped to a common brain 
atlas (top row of each panel). Functional connectivity of each lesion location or stimulation site was computed using a normative connectome database 
(bottom row of each panel). Positive functional connectivity is shown in warm colours (red, orange, yellow), and negative functional connectivity in 
cool colours (blue, teal, green). Connections most associated with depression score (lesion datasets) or change in depression score (brain stimulation 
datasets) were identified for each dataset (right column). The colour scale was inverted for TMS datasets because TMS sites that improve depression are 
thought to be anti-correlated to DBS sites that improve depression or lesion sites associated with lower risk of depression.
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Combining all datasets and explaining clinical variance. We gen-
erated a combined depression circuit map by taking the mean of all 
14 circuit maps, weighted by the sample size of each dataset (Fig. 5a). 
Peak regions in this combined map include the intraparietal sulcus, 
dorsolateral prefrontal cortex, inferior frontal gyrus, ventromedial 

prefrontal cortex and subgenual cingulate cortex (Supplementary 
Table 2). Compared with a consensus brain network parcellation24, 
our circuit was most similar to the dorsal attention network and 
frontoparietal control network, and was most anti-correlated to the 
default mode network and limbic network (Supplementary Fig. 4).
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Fig. 3 | Depression circuit maps are similar across 14 datasets (n = 713). a, The 14 circuit maps were consistently similar to one another (mean r = 0.24, 
95% CI 0.19 to 0.29), as depicted in this cross-correlogram comparing different datasets. Permutation testing confirmed that the weighted mean 
cross-correlation was significantly stronger than expected by chance (P < 0.001, 10,000 permutations). Green colours represent high spatial correlation 
between circuit maps, black boxes represent neutral correlation and red boxes represent negative correlation. b, Representative example of correlation 
between circuit maps generated from randomly permuted data. This analysis confirmed that no overall cross-correlation is expected by chance (mean 
r = 0.00, 95% CI −0.01 to 0.01). c, Depression circuit maps were similar between lesion datasets (n = 461), TMS datasets (n = 151) and DBS datasets 
(n = 101). Permutation testing confirmed that each comparison was significantly stronger than expected by chance (P < 0.005, 10,000 permutations). For 
display purposes, depression circuit maps were averaged (weighted mean) across datasets within each modality. The colour scale on TMS circuit maps is 
inverted to facilitate visual comparison with lesion and DBS circuit maps.
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In a leave-one-dataset-out analysis, we assessed whether connec-
tivity of the stimulation site to our depression circuit could predict 
depression outcomes after TMS and DBS. In each neuromodula-
tion dataset, each patient’s stimulation site connectivity profile was 
compared with a circuit map generated from the remaining 13 data-
sets using spatial correlations. Across all neuromodulation datasets, 
connectivity to our circuit predicted the efficacy of treatment targets 
(weighted mean r = 0.22, 95% CI 0.11 to 0.33 P < 0.001) (Fig. 5b). 
The leave-one-dataset-out circuit independently predicted clinical 
variance in TMS datasets (weighted mean r = 0.24, P = 0.0034) and 
DBS datasets (weighted mean r = 0.21, P = 0.033).

Comparison with prior established methods. We hypothesized 
that our mapping and targeting approach would outperform 
established methods for both causal brain mapping and neuro-
modulation targeting. First, we repeated the primary analysis using 
voxel-lesion symptom mapping (VLSM), a tool that is widely used 
to localize behaviours using lesions25. Similar approaches have also 
been applied to TMS16 and DBS26. VLSM failed to detect significant 
similarity across all 14 datasets (mean spatial r = −0.03, P = 0.91, 
BF01 = 1.001).

Next, we compared our approach with existing approaches for 
connectivity-based neuromodulation targeting. For each TMS 

Depression severity
(seven MDD datasets)

Depression severity
(seven non-MDD datasets)

P < 0.001

P < 0.001

Lesions Neuromodulation (real)

a

b

Neuromodulation (control)

Other symptom severity (control) 
(seven non-MDD cohorts)

–3 3 –5.0 4.5 –3 3

–4.5 4.5–3.5 3.5–4.5 4.5

t

t t t

t t

Fig. 4 | Depression circuit maps are similar across lesions, neuromodulation and diagnoses. a, Depression circuit maps were similar between lesion 
datasets and neuromodulation datasets (mean r = 0.25, 95% CI 0.16 to 0.34). Permutation testing confirmed that this similarity was stronger than 
expected by chance (P < 0.001, 10,000 permutations). In a control analysis, there was no similarity between depression circuit maps from lesion datasets 
and age-based circuit maps from neuromodulation datasets (r = −0.11, 95% CI −0.21 to −0.01, P = 0.93). b, Depression circuit maps were similar between 
MDD patients and non-MDD patients (mean r = 0.26, 95% CI 0.16 to 0.36, P < 0.001). Permutation testing confirmed that this similarity was stronger 
than expected by chance (P < 0.001, 10,000 permutations). In a control analysis, there was no similarity between depression circuit maps from MDD 
datasets and ‘other symptom severity’ circuit maps in non-MDD datasets (r = −0.03, 95% CI −0.12 to 0.06, P = 0.77).
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and DBS site, we computed connectivity to the subgenual cingu-
late cortex, which has been shown to predict TMS response8,18 and 
has been used as a DBS target27. Indeed, antidepressant efficacy of 
each stimulation site was correlated with its connectivity to the sub-
genual cingulate (weighted mean r = −0.13, 95% CI −0.24 to −0.02, 
P = 0.039). Connectivity to our leave-one-dataset-out depression 
circuit predicted outcomes (weighted mean r = 0.22, 95% CI 0.11 
to 0.33, P < 0.001) significantly better than connectivity to the sub-
genual cingulate (P = 0.012).

Generalizability of the method beyond depression. To demon-
strate that this approach can generalize to other neuropsychiatric 
disorders, we also repeated the analysis using previously published 
data on motor symptoms of PD, the most common clinical indi-
cation for DBS. This included 29 case reports of lesion-induced 
parkinsonism28, 95 patients (two datasets) who received DBS for 
PD28 and one TMS site (primary motor cortex, hand knob) which 
demonstrated efficacy for PD in a meta-analysis of ten random-
ized trials29.

The PD circuit derived from lesions was similar to the PD 
circuit derived from DBS (P = 0.01) (Supplementary Fig. 5). 
Connectivity to the motor cortex TMS target predicted change in 
PD motor symptoms with DBS (P = 0.02) and risk of parkinson-
ism after a brain lesion (P = 0.0005) (Supplementary Fig. 5). In a 
leave-one-dataset-out analysis, the PD circuit predicted motor 
improvement with DBS (r = 0.26, P = 0.01).

To confirm specificity, we used the PD circuit as a control for 
depression and vice versa. Connectivity to the PD circuit was inde-
pendently predictive of motor improvement (P = 0.0003) after 
controlling for connectivity to the depression circuit. Connectivity 
to the depression circuit was independently predictive of mood 
improvement (P = 0.02) after controlling for connectivity to the PD 
circuit. By itself, the depression circuit did not significantly predict 
motor improvement with DBS (r = −0.06, P = 0.58, BF01 = 3.4). The 
PD circuit also did not significantly predict depression improve-
ment with TMS and DBS (r = 0.06, P = 0.32), although Bayesian 
analysis indicates moderate evidence for a correlation (BF01 = 0.29).

Discussion
Across 14 independent datasets, we found that mapping depres-
sion based on brain lesions, TMS sites and DBS sites converged on 
a common neuroanatomical substrate. This convergence was robust 
despite many sources of heterogeneity that should bias us against a 
common substrate, including different lesion distributions, lesion 
aetiologies, stimulation targets, stimulation modalities and neu-
ropsychiatric diagnoses. Our convergent circuit includes regions 
previously implicated in depression such as the subgenual cingu-
late, ventromedial prefrontal cortex and dorsolateral prefrontal 
cortex30–34. However, our different datasets converged on a common 
brain circuit or brain network, not an individual brain region. The 
circuit was consistent with prior work on large-scale brain networks 
in depression, as it is similar to the dorsal attention network and the 
frontoparietal control network and anti-correlated with the default 
mode network and limbic network35. This neuroanatomical conver-
gence has several important implications.

First, TMS sites and DBS sites that modulate depression were 
connected to a similar circuit. To our knowledge, this is the stron-
gest evidence to date that invasive and non-invasive brain stimula-
tion are targeting the same circuit to treat the same symptom12,13. 
Given recent negative trials of DBS20,36 and TMS37 for depression, 
our circuit may serve as a refined therapeutic target to improve 
neuromodulation outcomes in future trials. More broadly, this find-
ing supports the use of circuit mapping to define neuromodulation 
targets6,8,9 and translate therapy between stimulation modalities for 
various neuropsychiatric disorders13. Furthermore, our findings 
support the notion that high-frequency TMS and high-frequency 
DBS modulate brain circuits in opposite directions13, as the TMS 
and DBS maps were inverted with respect to each other.

Second, lesion locations associated with depression and stimu-
lation sites that modulate depression were connected to a similar 
circuit. This finding generalized to Parkinson’s disease as lesion 
locations associated with parkinsonism and stimulation sites that 
modulate parkinsonism were connected to a similar circuit, which 
was distinct from our depression circuit. To our knowledge, this 
is the strongest evidence to date showing that lesions causing a 
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Fig. 5 | Combining all circuit maps and predicting clinical variance. a, A combined ‘depression circuit’ was generated from all 14 datasets. Peaks in 
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sulcus and extrastriate visual cortex. Negative peaks included the subgenual cingulate cortex and ventromedial prefrontal cortex. Peaks are listed in 
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symptom can identify therapeutic targets for symptom relief. Given 
that lesion network mapping has been used to map a broad range 
of neuropsychiatric symptoms, from amnesia to criminality5, our 
approach may have therapeutic implications well beyond depres-
sion and Parkinson’s disease.

Third, we identified similar depression circuits in patients with 
MDD, penetrating brain injury, stroke, epilepsy and PD. This sug-
gests that depression symptoms map to a similar neuroanatomical 
substrate independent of whether the symptoms are caused by a pri-
mary psychiatric disorder, a structural brain lesion or a side effect 
of DBS. This finding is consistent with the recent Research Domain 
Criteria initiative, which seeks to establish transdiagnostic con-
structs for psychiatric symptom severity38. Our findings were also 
specific to depression relative to other neuropsychiatric symptoms, 
but further work is needed to conclusively confirm specificity.

Fourth, our findings were consistent across 14 independent 
datasets. Most prior studies in depression have focused on a sin-
gle dataset30–34, although larger studies are beginning to appear14. 
Meta-analyses often find poor consistency in neuroimaging cor-
relates of depression33,34. To our knowledge, our consistency 
across 14 datasets, including a leave-one-dataset-out analysis, 
is one of the strongest demonstrations of result consistency for a 
psychiatric condition. Furthermore, the results survived rigor-
ous permutation-based statistical testing, a highly conservative 
approach that prevents type I error due to multiple comparisons or 
a biased analysis.

Fifth, it is worth highlighting our focus on ‘causal’ sources of 
information such as lesions and brain stimulation. This resolves 
some of the interpretive ambiguity associated with neuroimaging 
correlates of depressive symptoms or antidepressant efficacy of 
non-anatomically targeted treatments39. By combining brain lesions 
and brain stimulation, this study moves us towards the goal of “map-
ping causal circuitry in human depression”2, potentially facilitating 
more direct translation to targeted therapeutics.

Finally, our parsimonious mapping and targeting model outper-
formed established approaches for both lesion-based brain mapping 
and connectivity-based neuromodulation targeting. Our approach 
identified relationships that were not apparent using VLSM, illus-
trating the potential of brain connectivity to detect trends beyond 
what is possible using anatomical location alone. Our approach 
also explained more clinical variance than subgenual connectivity, 
which is widely used to target neuromodulation40–44.

Our analysis may seem circular or biased given that the TMS and 
DBS sites for MDD were chosen because they were already known 
to be part of a ‘depression circuit’. However, our depression circuit 
was derived from the variance across stimulation sites within each 
target, not simply the location of the intended target. For example, 
the left prefrontal cortex appears as part of our depression circuit 
not because it was targeted with TMS but because different TMS 
sites across the left prefrontal cortex produced different effects 
on depression, different DBS sites produced different effects on 
depression symptoms depending on their connectivity to the left 
prefrontal cortex and different lesion locations were associated with 
different amounts of depression depending on their connectivity to 
left prefrontal cortex. It is also worth noting that this concern is not 
relevant for lesions, which were randomly distributed throughout 
the brain yet identified a depression circuit that was very similar to 
the circuit identified from TMS or DBS sites.

There are several limitations. First, this analysis was retrospective, 
taking advantage of existing datasets with heterogeneous popula-
tions and outcome metrics, limiting the amount of variance that can 
be explained. Prospective validation is required to confirm whether 
targeting our circuit results in improved antidepressant response. 
Second, most datasets only included a single depression score with-
out subscales, which may also limit the amount of variance that 
can be explained. Given that different symptom clusters respond 

to stimulation of different circuits with TMS6, future work with 
more detailed phenotyping may enable further subclassification. 
Third, we used a normative functional connectome for all circuit 
mapping, as prior work suggests that using a disease-matched con-
nectome makes little difference for either depression or Parkinson’s 
disease6,8. However, this analysis could be repeated using connec-
tomes that are age, gender and disease matched to each dataset. 
Similarly, this analysis could be repeated using measures of struc-
tural white matter connectivity or individualized functional con-
nectivity9,18,45. Individualized connectivity may explain additional 
variance, but adds additional noise to the analysis46. Individualized 
neurostimulation-induced electric field modelling may also be 
valuable, but prior work has shown it to yield similar functional 
connectivity estimates to our simplified model47.

In conclusion, these results support the existence of at least one 
neuroanatomical substrate for depression symptoms. More broadly, 
by combining lesion locations, non-invasive stimulation sites and 
invasive stimulation sites, we introduce a method for identify-
ing a convergent neuroanatomical substrate for neurological and 
psychiatric symptoms. Future work should seek to prospectively 
determine whether this convergent substrate provides an improved 
target for neuromodulation therapies.

Methods
Characteristics of included datasets. We sought out multiple datasets that 
included magnetic resonance imaging or computed tomography of focal brain 
lesions and stimulation sites. Lesions and stimulation sites showed incidentally 
variable locations in different patients. Localization methods are described in the 
Supplementary Information. All depression datasets included continuous scores 
on a validated depression metric. All PD datasets included either a clear case 
description of lesion-induced parkinsonism or continuous scores on the Unified 
Parkinson’s Disease Rating Scale (UPDRS). In each dataset, participants provided 
informed consent to data collection or the institutional review board approved 
retrospective analysis of symptom and imaging data.

Patients with missing data were excluded from the analysis. To avoid bias due 
to unequal variances, unequal sample sizes or inconsistent severity cut-offs for 
different datasets, each dataset was analysed independently. Study characteristics 
are summarized in Supplementary Table 1.

No statistical methods were used to pre-determine sample size, but our sample 
sizes are larger than the largest prior studies of lesions7, TMS sites6 or DBS sites21 in 
depression.

Generation of circuit maps. A normative human connectome database was used 
to compute mean resting-state functional connectivity of each patient’s lesion or 
stimulation site based on 1,000 healthy subjects, as previously described5–7. This 
yielded a whole-brain connectivity map of each patient’s lesion or stimulation site 
(Fig. 2).

In the TMS and DBS datasets with depression outcomes, these connectivity 
maps were compared with change in depression score using partial Pearson 
correlation at each voxel, controlling for pre-treatment depression severity. In the 
lesion datasets with depression outcomes, connectivity maps were compared with 
overall depression scores using Pearson correlation at each voxel. For each dataset, 
this analysis yielded a whole-brain ‘circuit map’ of connections correlated with 
antidepressant efficacy (for TMS and DBS) or depression severity (for lesions). 
TMS-based circuit maps were multiplied by −1 because TMS sites that improve 
depression are thought to be anti-correlated to DBS sites that improve depression13 
or lesion sites associated with lower risk of depression5,7. Inverting the circuit maps 
for TMS also facilitates visual comparison across all three modalities (Fig. 2).

In the PD DBS datasets, patient-specific connectivity maps were compared 
with change in UPDRS score. The connectivity of lesions causing parkinsonism 
was estimated using a one-sample t test at each voxel. For each dataset, this yielded 
a whole-brain circuit map of connections associated with parkinsonism. In the 
absence of individualized TMS sites, we generated a group-mean region of interest 
at the M1 hand knob (MNI coordinates [−40, −20, 62]), which has been shown to 
be the most effective TMS target for Parkinson’s disease29.

We generated control circuit maps using two different approaches. For all 
datasets, control maps were generated using patient age, which is presumably 
unrelated to stimulation site or lesion location, rather than depression scores. For 
all non-MDD datasets, additional control maps were generated using severity of the 
primary presenting symptom, including National Institutes of Health Stroke Scale 
(stroke patients), Neurobehavioral Rating Scale (penetrating brain injury patients), 
UPDRS (Parkinson’s disease patients) and seizure frequency (epilepsy patients).

Computational and statistical methods. All computational/statistical analyses 
were conducted using customized MATLAB scripts, except as otherwise specified. 
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All correlation coefficients were Fisher-transformed before further analysis. To 
facilitate comparison across datasets with different sample sizes, voxel-wise Fisher 
z values were converted to t values. All parametric P values were computed using 
a two-tailed hypothesis test. Similarity between different maps was assessed using 
spatial correlations.

To confirm similarity across different datasets, we computed the mean spatial 
cross-correlation between the circuit maps in each analysis. Because the datasets 
were collected in highly heterogeneous settings, they could not be assumed to 
have identical distributions. To address this, statistical significance was addressed 
using a non-parametric multi-level block permutation testing approach. In this 
permutation test, the mean spatial correlation was re-computed 25,000 times 
in simulated data. The null distribution of this permutation test was defined by 
randomly re-assigning each patient’s connectivity map with a different patient’s 
clinical variables within the same dataset. A P value was defined as the percentage 
of randomly permuted results that were stronger than the real result, as in prior 
work6.

For null findings, the resulting t values were used to compute BFs, which 
were used to compare likelihood of the null hypothesis with the likelihood of the 
alternative hypothesis48. In the case of spatial correlations, the null hypothesis was 
that there is no similarity between the two maps in question. Thus, for the purpose 
of calculating BFs, stronger positive correlations were considered to support the 
alternative hypothesis, while weaker positive correlations and negative correlations 
were considered to support the null hypothesis49.

Combining and comparing circuit maps. The 14 circuit maps were then 
categorized to assess for similarity between different modalities or diagnoses. 
Categories included TMS, DBS, neuromodulation (TMS and DBS combined), 
lesions, MDD (all modalities) and non-MDD (all modalities). MDD and 
non-MDD datasets were defined according to the inclusion criteria of the original 
study. We hypothesized that (1) TMS, DBS and lesion datasets would yield similar 
circuits, (2) lesions and neuromodulation would yield similar circuits and (3) 
MDD and non-MDD patients would yield similar circuits. To statistically compare 
different categories, we computed the mean spatial cross-correlation of all circuit 
maps in one category with all circuit maps in the other category. Significance was 
assessed using permutation testing as above.

To visualize the map for each category, circuit maps from different datasets 
were combined into a mean circuit map across all voxels, weighted by the sample 
size of each dataset. This weighted mean approach was chosen over a combined 
linear model because it maintains independence between datasets, thus reducing 
the statistical penalty associated with combining heterogeneous datasets50.

Each dataset’s circuit map was also compared with a leave-one-dataset-out 
circuit map generated by taking the weighted mean of the other 13 circuit maps. 
This yielded a leave-one-dataset-out spatial correlation for each dataset. The 
weighted mean of these spatial correlations was considered to represent the overall 
similarity between each circuit map and the remaining circuit maps. This value was 
assessed for significance using permutation testing as above.

Assessing specificity to depression. To confirm that the results were not 
driven by overall clinical severity, we repeated the analysis using the control 
circuit maps generated from severity of non-depressive symptoms in non-MDD 
datasets. Using the same statistical methods described above, we hypothesized 
that (1) the control circuit maps would not be significantly similar between 
different datasets, modalities or diagnoses and (2) the control circuit maps 
would not significantly match the depression circuit maps. We also hypothesized 
that the spatial cross-correlation between depression circuit maps would be 
significantly stronger than the spatial cross-correlation between control circuit 
maps using a paired t test.

To assess specificity to depression, we then generated symptom-specific circuit 
maps based on other cognitive/emotional scales, which were available in our two 
largest datasets. In the VHIS dataset (n = 196), we generated 28 circuit maps based 
on the Mini Mental State Examination and each of the 27 symptoms measured by 
the Neurobehavioral Rating Scale. In the St. Louis dataset (n = 100), we generated 
six circuit maps based on the Boston Naming Test, animal naming test (verbal 
fluency), Hopkins Verbal Learning Test (learning/memory), Brief Visuospatial 
Memory Test (visual memory), clock draw test (visuospatial skills) and spatial 
span test (attention). In each dataset, we used spatial correlations to compare the 
symptom-specific maps with a leave-one-dataset-out depression map generated 
from the other 13 datasets. We hypothesized that the leave-one-dataset-out 
depression maps would be more similar to each dataset’s depression map than to its 
other symptom-specific maps.

To test for significance, we regenerated these cognitive/emotional circuit 
maps 25,000 times after randomly permuting each patient’s clinical outcomes 
with a different patient’s neuroimaging results. We again used spatial correlation 
to compare each of these maps with a leave-one-dataset-out depression map. We 
averaged the resulting Fisher-transformed spatial correlations, yielding a null 
distribution of 25,000 spatial correlation values expected by random chance. We 
computed a P value as the percentage of these values that exceeded the weighted 
mean correlation between the leave-one-dataset-out map and each dataset’s 
depression circuit map.

Explaining clinical variance. For each neuromodulation dataset, 
treatment-induced change in depression score was predicted using a 
leave-one-dataset-out map constructed from the other 13 datasets. Within each 
dataset, spatial correlations were computed between each patient’s stimulation 
site connectivity profile and the leave-one-dataset-out map. This yielded a metric 
representing the similarity between the patient’s stimulation site connectivity and 
the ‘ideal’ stimulation site connectivity. In each dataset, this similarity metric was 
compared with improvement in depression score using partial Pearson correlation, 
controlling for baseline depression severity. Across all datasets, these correlations 
were combined into a single weighted mean value representing the degree to which 
our circuit predicted neuromodulation outcomes across all datasets. Significance 
was assessed using permutation testing as above.

Finally, a combined depression circuit map was generated based on the 
weighted mean of all 14 datasets. Peaks in this circuit map were identified using 
the functional MRI (fMRI) of the brain software library (FSL) ‘cluster’ algorithm 
with a detection threshold of P < 0.00005 and minimum cluster extent of 100 mm3, 
consistent with conservative statistical guidelines51.

Comparison with prior established methods. We hypothesized that our model 
would be superior to existing methods for both causal brain mapping and 
neuromodulation targeting. First, we compared our causal mapping approach with 
VLSM, a tool that can identify lesion locations or stimulation sites associated with 
a particular behavioural outcome (without considering connectivity)25. Next, we 
compared our connectivity-based targeting approach with the current consensus 
approach, which identifies optimal TMS targets based on subgenual cingulate 
connectivity8,18.

Using VLSM, we assessed whether particular lesion locations and stimulation 
sites were associated with depression, irrespective of their connectivity. At each 
voxel, we used a t test to compare depression severity between patients whose 
lesions or stimulation sites overlapped with that voxel versus patients whose lesions 
or stimulation sites did not overlap with that voxel. This yielded a whole-brain map 
of lesion locations or stimulation sites associated with depression severity.

We then attempted to explain clinical variance using stimulation site 
connectivity to the subgenual cingulate. Within each dataset, we computed the 
mean connectivity of each patient’s stimulation site to the subgenual cingulate, 
following the methods described in ref. 8. In each dataset, subgenual connectivity 
was compared with improvement in depression score using partial Pearson 
correlation, controlling for baseline depression severity. Across all datasets, these 
correlations were combined into a single weighted mean value representing the 
degree to which our circuit predicted neuromodulation outcomes across all 
datasets. The predictive value of subgenual connectivity was compared with the 
predictive value of our depression circuit using a Z test for dependent correlations 
within each dataset.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
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The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
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A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
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AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated
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Software and code
Policy information about availability of computer code

Data collection Lesion network maps was constructed using in-house scripts in combination with public human connectome data, as described in our prior 
work (MD Fox, NEJM 2018).

Data analysis Except as specified otherwise, all statistical analyses were conducted using novel MATLAB scripts as described in the manuscript.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
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- A description of any restrictions on data availability

This manuscript involved 14 different datasets from different institutions. Each dataset is available upon reasonable request from the investigators that collected it.
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Sample size Because there is no standard method for estimating sample size for this type of study, we attempted to identify as many datasets as possible 
that linked lesions and neurostimulation sites to depression scores (or Parkinson's disease motor scores, in the case of our secondary 
analysis). To our knowledge, this is the largest study of its kind.

Data exclusions All subjects with complete neuroimaging and depression scores (primary analysis) or Parkinson's disease motor scores (secondary analysis - 
re-analysis of our prior publications)  were included.

Replication As outlined in the manuscript, we used rigorous statistical techniques to assess overall reproducibility across multiple independent datasets. 
All replication attempts were successful.

Randomization Rather than prospective randomization, this study capitalized on incidental variability of lesions, TMS sites, and DBS sites (as described in the 
manuscript). This incidental variability was presumed to be random, making it an instrumental variable.

Blinding Blinding was not relevant because this was a secondary analysis of existing datasets. We mitigated the risk of observer bias by testing our 
previously-published hypothesis (Fox et al, PNAS 2014) in multiple independent datasets.

Reporting for specific materials, systems and methods
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Clinical data

Dual use research of concern

Methods
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ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics In the primary analysis (major depression), participants included (1) adults who had incidental brain lesions due to 
penetrating trauma or stroke, (2) adults who completed depression inventories before and after therapeutic TMS for major 
depression, or (3) adults who completed depression inventories before and after therapeutic DBS for major depression, 
Parkinson's disease, or epilepsy. In the secondary analysis (Parkinson's disease), participants included (1) adults who 
developed parkinsonism after a focal brain lesion, and (2) adults who received therapeutic DBS for Parkinson's disease.

Recruitment We included all relevant datasets that we were able to access. Each dataset had different recruitment parameters depending 
on the study type. For the primary analysis, the respective study types are listed in Table S1. For the secondary analysis, the 
details are described in our prior publications (Horn et al., 2017; Joutsa et al., 2018) 

Ethics oversight The study was approved by the IRB at Beth Israel Deaconess Medical Center (Boston, MA) and by the individual IRBs at each 
individual data collection site.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Magnetic resonance imaging

Experimental design

Design type Individualized structural MRI and/or head CT combined with normative resting-state fMRI

Design specifications Structural MRI or CT scans were used to localize lesions and/or stimulation sites. Normative resting-state fMRI data 
from a large connectome database (n=1000) were used to estimate connectivity of each site.

Behavioral performance measures Each dataset used different depression scales (delineated in Table S1).

Acquisition

Imaging type(s) Normative resting-state fMRI (n=1000 healthy controls) and individualized structural MRI (n=365) or head CT (n=348)

Field strength MRI data collected using 3T scanner

Sequence & imaging parameters Normative resting-state fMRI acquisitionn parameters: repetition time (TR) = 3,000 ms, echo time (TE) = 30 ms, flip 
angle (FA) = 85°, 3 × 3 × 3-mm voxels, field of view (FOV) = 216, and 47 axial slices collected with interleaved acquisition 
and no gap between slices. Each functional run lasted 6.2 min (124 time points). One or two runs were acquired per 
subject (average of 1.7 runs). 
 
Each dataset used different structural imaging parameters, as described in the manuscript.

Area of acquisition Whole brain

Diffusion MRI Used Not used

Preprocessing

Preprocessing software FreeSurfer + in-house preprocessing scripts, as in the GSP1000 dataset (details in Yeo et al, J Neurophysiol 2011)

Normalization Nonlinear volume-based registration as in Friston et al, 1995

Normalization template MNI ICBM152

Noise and artifact removal Low-pass temporal filtering, head-motion regression, global signal regression, and ventricular and white matter signal 
regression

Volume censoring Motion regression

Statistical modeling & inference

Model type and settings Lesion network mapping or stimulation site network mapping with voxel-wise partial least squares regression model (details 
described in manuscript).

Effect(s) tested Lesion datasets: Correlation between lesion connectivity and depression severity 
Neurostimulation datasets: Partial correlation between stimulation site connectivity and post-treatment depression severity, 
controlling for pre-treatment depression severity.

Specify type of analysis: Whole brain ROI-based Both

Statistic type for inference
(See Eklund et al. 2016)

Voxel-wise

Correction Whole-brain spatial correlations with permutation testing - there were no multiple comparisons because the spatial 
correlation yields only a single value, which was the primary metric.

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Functional and/or effective connectivity Mean Pearson correlation across the normative dataset (n=1000) for each lesion or stimulation site.
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