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Abstract: To analyze multimodal three-dimensional medical images, interpolation is required for
resampling which—unavoidably—introduces an interpolation error. In this work we describe the
interpolation method used for imaging and neuroimaging and we characterize the Gibbs effect
occurring when using such methods. In the experimental section we consider three segmented
three-dimensional images resampled with three different neuroimaging software tools for comparing
undersampling and oversampling strategies and to identify where the oversampling error lies. The
experimental results indicate that undersampling to the lowest image size is advantageous in terms
of mean value per segment errors and that the oversampling error is larger where the gradient is
steeper, showing a Gibbs effect.

Keywords: multimodal imaging; Gibbs effect; multivariate interpolation

MSC: 68U10; 65D05; 41A15

1. Introduction

In the context of multimodal medical imaging [1–3], image data of the same physical
body are obtained from different imaging systems. The resulting images have different
geometrical resolutions in terms of Full Width at Half Maximum (FWHM) [4] and by
consequence different samplings of the same Field Of View (FOV). In many cases, two
types of image sources are involved, producing:

• one (or more) morphological, high-resolution image, usually obtained by Computed
Tomography (CT) or by Magnetic resonance Imaging (MRI);

• one (or more) functional, low-resolution image. A functional image is typically ob-
tained by Single Photon Emission Computed Tomography (SPECT), Positron Emission
Tomography (PET) [3], functional MRI (fMRI) [5] or by emerging systems as Magnetic
Particle Imaging (MPI) [6].

Thanks to their high spatial resolution, morphological images can be used for identi-
fying different structures of the physical body under examination through segmentation.
In order to estimate the mean activity (or any other statistical moment) of the functional
images inside each of the segments or Volumes of Interest (VOIs), it is mandatory that the
segmentation and the functional images have the same size. This can be achieved either
by oversampling the functional image to reach the same resolution of the morphological
reference or by undersampling the segmentation image [7,8]. Despite what common sense
may suggest, the latter is preferable, due to the bigger interpolation errors occurring in
oversampling. This represents a paradox (we will later refer to this effect as the resam-
pling paradox), but also a big waste of time since an accurate segmentation image at high
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resolution (in the case of the human brain) is obtained typically after 10–20 h of manual
work or 3–10 h of automatic segmentation pipelines [9].

In this paper we describe the interpolation methods used in imaging and medical
imaging, focusing on the Gibbs effect [6,10–12]. The Gibbs effect results in an interpolation
error due to a discontinuity and consists in of non-physical oscillations of higher amplitude
around the discontinuity. We found a pointwise error bound for the proposed interpo-
lation methods that does not vanish in the proximity of the point of discontinuity as the
number of samples increases and that is larger in the intervals of sampling points closer to
the discontinuity.

We then consider three of the most used software suites in neuroimaging performing
undersampling and oversampling of three different test images. The results confirm the
resampling paradox and point out that the oversampling interpolation errors are due to
the Gibbs effect as the voxelwise error is mostly concentrated around the borders of the
VOIs, where most of the discontinuities lie.

The authors of this paper refer to their experience in the field of PET/MRI neuroimag-
ing [13], but the analysis and conclusions are applicable for any multimodal image setting
and any scanned physical body.

The paper is organized as follows. The next section is dedicated to mathematical
formulations and preliminary definitions, in which we mention some results that will be
useful to understand the experimental settings and the error measures. Section three is
dedicated to interpolation methods in imaging along with error estimations related to
Gibbs effect. In the “Materials and Methods” section we introduce and shortly describe
the three test images used in experiments, the tools used to perform undersampling and
oversampling, the error measures defined for comparing undersampling versus oversam-
pling and last the measures defined for detecting the oversampling error spatial location.
Results and some explanatory comments are presented in Sections 4 and 5. This work does
not propose a method to reduce oversampling errors. However, in Section 6 we indicate
possible manners of overcoming the interpolation errors issues analyzed in this paper as
well as with some recent findings which have shown their efficiency in preventing the
Gibbs effect.

2. Preliminaries and Definitions
2.1. The Gibbs Effect

The Gibbs effect is the non-physical oscillation generated when a discontinuous
function is approximated by a truncated Fourier series [10,14]. This effect appears also in
interpolation and does not vanish as the number of samples increases, but the undershoots
and overshoots tend to remain stable. The overshoots have higher intensity around the
borders of the discontinuities and tend to vanish as the border becomes more distant.

The Gibbs phenomenon appears everywhere in signal processing; in MRI it is also
referred to as the “ringing effect” (or ringing artifact) [11,12,15] for the wave-like oscillation
appearing radially around the borders of the image discontinuities that are observed in
image reconstruction and image resampling.

In Figure 1 it is possible to observe a simple example of Gibbs effect on the Heaviside
step function; both in Truncated Fourier approximation and interpolation, oscillations not
present in the original signal appear around the discontinuity, gradually mitigating their
amplitude as the distance from the discontinuity increases. In Figure 2 an example of
ringing effect is given using a phantom image.
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Figure 1. From left to right: Truncated Fourier series, polynomial interpolation (on Chebyshev–Lobatto nodes) and cubic
splines interpolation (on equispaced nodes) of the Heaviside step function.

Figure 2. Ringing effect in a Shepp–Logan phantom. The effect has been magnified for visualiza-
tion purposes.

2.2. An Image and Its Sampling

A 3-dimensional image can be defined as a trivariatefunction [16]

f : Ω ⊂ R3 → R (1)

where the domain Ω is called Field of View (FOV) and is a rectangular parallelepiped
Ω = [a1, b1]× [a2, b2]× [a3, b3].

A raster image is obtained by sampling an image f on Ω with a regular and equispaced
three-dimensional grid X = {xijk} of cardinality I × J × K, i.e.,

xijk =
(

xi, yj, zk
)
=

(
(b1 − a1)

i− 1
I − 1

+ a1, (b2 − a2)
j− 1
J − 1

+ a2, (b3 − a3)
k− 1
K− 1

+ a3

)
(2)

with i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . , K.
The intensity values of the raster image are stored in an array F = f |X of size I× J×K

Fijk = f (xijk). (3)

The sampling grid is usually not stored in a file to save disk space and kept implicit.

2.3. Resampling an Image

Resampling an image means to compute it over another regular and equispaced grid
X̃ (called evaluation grid). We refer to undersampling if X̃ has a lower cardinality than
X, oversampling in the opposite case. Being the exact function f not known in general, to
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perform resampling it is necessary to compute the interpolant P f of the image intensity
values on the known grid X over the evaluation grid X̃. This means, once chosen, a basis
B = {Bijk(·)} defines an interpolating function

P f : Ω ⊂ R3 → R (4)

P f (·) = ∑
ijk

cijkBijk(·) (5)

with cijk coefficients such that the interpolation conditions

P f (xijk) = f (xijk) (6)

are fulfilled. At last, the resampled image is computed as the array P f |X̃ .
Interpolation methods used in neuroimaging will be discussed in detail in the next section.

2.4. Boolean Images and Morphological Operators

A Boolean image is an image sampled over a grid as in Equation (3), but with all
Boolean entries, i.e.,

M ∈ {0, 1}I×J×K; (7)

a Boolean image can be represented equivalently by the set of its true-valued indices

I(M) := {(i, j, k) |Mijk = 1} ⊂ Z3. (8)

This representation allows one to make some definitions (cf e.g., [17]). Given M ∈
{0, 1}I×J×K a Boolean image, I = I(M) its index representation, and and image F ∈
RI×J×K sampled over the same grid, we can define:

• the volume of M, as the cardinality of the corresponding index representation

Vol(M) = |I(M)| (9)

• the restriction of F to M as the array of the values of F in the voxels where M is equal
to one

F[M] := {Fijk | (i, j, k) ∈ I(M)} (10)

• the shift by a vector v ∈ Z3

Iv = {a + v | a ∈ I}

• the dilation by a structuring element H ⊂ Z3

I ⊕ H =
⋃

h∈H

Ih (11)

• the erosion by a structuring element M ⊂ Z3

I 	 H =
⋂

h∈H

I−h (12)

The structuring element used in this work is the three-dimensional cross

H = {(0, 0, 0), (1, 0, 0), (−1, 0, 0), (0, 1, 0), (0,−1, 0), (0, 0, 1), (0, 0,−1)}.

Intuitively, the dilation of a Boolean image A is a Boolean image returning one if any
of the surrounding voxel of A is one, zero otherwise; on the other side the erosion returns
one if all the surrounding voxels are one, zero otherwise.
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2.5. Segmentation of an Image

A segmentation of an image means partitioning the FOV Ω into non-overlapping sets
(cf, e.g., [18]) called VOIs (Volumes Of Interest) from now on

Ω =
n⋃

p=0
Γp such that Γp ∩ Γq = ∅ ∀ p 6= q = 0, . . . , n. (13)

For each Γp we can define a Boolean image Mp as the array of elements

(Mp)ijk =

{
1 xijk ∈ Γp
0 otherwise

with size equal to the cardinality of its sampling grid X.
The segmentation image is an array of the same size as the image F with as value

the integer number p corresponding to the number of segments Γp to whom each voxel
belongs that is

M :=
n

∑
p=0

p Mp.

The zero-indexed VOI usually represents the background, the part of the FOV that
does not contain the object under examination.

2.6. Statistical Moments of an Image Inside a Voi

Computing a statistical moment µN of an image f on a VOI Γp corresponds to com-
puting the integral

µN( f ; Γp) :=
1

meas(Γp)

∫
Γp

xN f (x) dx

N = (n1, n2, n3) being a multi-index [19,20]. Since the images are discrete, the moment is
approximated by its discrete version (with a slight abuse of notation, we call it µN as well)

µN( f ; Γp) ≈ µN(F[Mp]) :=
1

Vol(Mp)
∑

(i,j,k)∈I(Mp)

xN
ijkFijk (14)

F[Mp] being the restriction of F to Mp defined in Equation (10), Vol(Mp) the volume cf.
Equation (9), I(Mp) the index representation as defined in Equation (8) and xijk belonging
to the sampling grid X. cf. Equation (3).

This operation is feasible only if the image and the segmentation image are sampled at
the same grid X. To obtain the moment of two differently-sampled images, it is necessary
to resample either the image F or the VOI image M to the same size of the other one. Since
the mean µ0 = µ(0,0,0) is by far the most used statistical moment in neuroimaging, we chose
to use it for the experiments in this paper.

3. Image Interpolation and Gibbs Effect

As stated in Section 2.2, image resampling is computed by interpolation. This section
is dedicated to the definition of the most used interpolation methods in imaging and
to prove some theorems that will allow us to characterize the Gibbs effect when using
such methods.

3.1. Basis Construction

Given an image
f : Ω = [a1, b1]× [a2, b2]× [a3, b3]→ R

sampled over an equispaced grid X = {xijk} as in Equation (2), we compute the interpolant
as a linear combination of the elements of a chosen basis B.
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Since the size of an image can be very large (nowadays up to 108 voxels), it is necessary
to build the interpolation basis as cardinal, compactly supported and separable [21–23].
The basis constructions is as follows.

(I) Let ωa : R+ → R, with a ∈ N the support radius, a function such that:

(i) ωa(0) = 1;
(ii) ωa(k) = 0 ∀ k ∈ N \ {0};
(iii) ωa(r) = 0 ∀ r ≥ a.

A list of functions satisfying (i)–(iii) is given in Table 1 (more functions can be found
in [21,23]).

(II) Let ti = (β− α) i
N + α, with i = 0, . . . , N a set of equispaced points of the interval

[α, β]. Then we define for t ∈ [α, β] the univariate basis

wσ(t− ti) =
ωa(σ|t− ti|)

∑N
j=0 ωa(σ|t− tj|)

. (15)

with σ = N
β−α .

This basis is cardinal for (i)–(ii), has compact support for (iii), radial as it depends on
the absolute value of its argument, and is normalized for construction.

(III) The trivariate interpolation basis corresponding to the set X is

B =
{

Wijk(·)
}

ijk

where Wijk is the separable kernel function

Wijk(x, y, z) = wσ1(x− xi) wσ2(y− yi) wσ3(z− zi)

with σ1 = b1−a1
I−1 , σ2 = b2−a2

J−1 , and σ3 = b3−a3
K−1 .

It is easy to verify that the basis B is cardinal over X, i.e.,

Wijk(xi′ j′k′) =

{
1 if i′ = i, j′ = j, k′ = k
0 otherwise

(16)

Furthermore, this basis is normalized by Equation (15)

∑
ijk

Wijk(x) = 1 ∀x ∈ Ω. (17)

3.2. Interpolation by Convolution

Under the assumptions of the previous subsection, we define interpolant at x =
(x, y, z) ∈ Ω

P f (x) = ∑
ijk

f (xijk)Wijk(x). (18)

Since the basis is cardinal, the interpolation conditions (6) are fulfilled

P f (xi′ j′k′) = ∑
ijk

f (xijk)Wijk(xi′ j′k′) = f (xi′ j′k′) ∀i′, j′, k′.

W being a separable kernel function, Equation (18) translates to

P f (x) =
K

∑
k=1

(
J

∑
j=1

(
I

∑
i=1

f (xijk)wσ1(x− xi)

)
wσ2(y− yj)

)
wσ3(z− zk) (19)

and the evaluation of the interpolant at a given point can be performed in three steps:

1. compute αjk = ∑I
i=1 f (xijk)wσ1(x− xi);
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2. then get βk = ∑J
j=1 αjkwσ2(y− yi);

3. at last P f (x) = ∑K
k=1 βkwσ3(z− zi).

Since the basis functions are separable, the interpolant (18) is equivalent to a discrete
convolution and the literature names it interpolation by convolution [21].

It is interesting to notice that such a technique is easily extendable to larger dimensions.
Since each dimension is treated separately, we will discuss the interpolation problem as
univariate. The results concerning error estimates that we present in the next subsection
are easy to extend to the trivariate interpolation by the convolution introduced above.

3.3. Error Estimates for the Univariate Interpolation

Let us suppose without loss of generality that the function

f : [0, 1]→ R

is known at xi =
i
N , i = 0, . . . , N.

By using a function ωa(r) satisfying (I), we define the interpolating function

PN
f (x) =

N

∑
i=0

w(x− xi) f (xi). (20)

with w as in (15) with σ set to N.
The following shows the advantages of using compact support functions to save

memory and CPU time.

Lemma 1. Suppose that x ∈ (xk, xk+1) for some k ∈ 0, . . . , N − 1 and that the support radius is
a ∈ N. Then

PN
f (x) =

min(N,k+a−1)

∑
i=max(0,k−a)

w(x− xi) f (xi).

Proof. If i < k− a the following will result

N|x− xi| = N((xk − xi) + (x− xi)) = N
(

k− i
N

+ (x− xi)

)
> a.

In similar way it is easy to show that if i > k + a− 1 then N|x− xi| > a.
By consequence of (iii) in both cases ωa(N|x− xi|) = 0 and hence w(x− xi) = 0.

This means that—at most—only the a nodes before and the a nodes after x are involved
in computing PN

f (x).
In order to obtain an estimate of the error we now define two constants that will be

useful for overestimating the terms |w(x− xi)|. Let

Mw = max
x∈[0,1]

|ωa(N|x− xi|)|, (21)

and

mw = min
x∈[0,1]

∣∣∣∣∣ N

∑
j=0

ωa(N|x− xj|)
∣∣∣∣∣. (22)

Both constants are relatively easy to compute analytically. In fact, supposing x ∈
(xk, xk+1) and a < k < N − a, we can exploit the radiality of w and the fact that the nodes
are evenly spaced to rewrite the sum in Equation (22) by coupling the a nodes before and
after the point x

k+a−1

∑
j=k−a

ωa(N|x− xj|) =
a−1

∑
p=0

ωa(δk + p) + ωa(1− δk + p), (23)
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where δk = N|x− xk| ∈ (0, 1). Hence, we can compute exactly the constant as

mw = min
t∈[0,1]

∣∣∣∣∣a−1

∑
p=0

ωa(t + p) + ωa(1− t + p)

∣∣∣∣∣. (24)

More easily, Equation (21) can be rewritten as

Mw = max
t∈[0,a]

|ωa(t)|. (25)

Table 1. Name and definition of the basis functions ωa used in imaging and neuroimaging, along with the support radius
a and the constants mω and Mω . The shape parameter for the Gaussian in this paper is chosen as ε = 2; in such case
mw ≈ 0.736. As sinc function we mean the normalized sinc, defined as sinc(x) = sin(πx)/(πx) if x 6= 0; sinc(0) = 0.

Name Definition ωa(r) a mw Mw

(Truncated) Gaussian

{
exp(−ε2r2) if r ∈ [0, 1)
0 otherwise

1 2exp(−ε2/4) 1

Nearest Neighbor

{
1 if r ∈ [0, 1/2)
0 otherwise

1 1 1

Linear

{
1− r if r ∈ [0, 1)
0 otherwise

1 1 1

Cubic


r3 − 2r2 + 1 if r ∈ [0, 1)
−r3 + 5r2 − 8r + 4 if r ∈ [1, 2)
0 otherwise

2 0.75 1

Lanczos

{
sinc(x)sinc(x/2) if r ∈ [0, 2)
0 otherwise

2 1 + 2sinc(3/2)sinc(3/4) ≈ 0.8726 1

Once calculated the values of mw and Mw we can bound

|w(x− xi)| ≤
Mw

mw
(26)

for every x ∈ (xk, xk+1) such that a ≤ k ≤ N − a + 1 and i = k− a, . . . , k + a− 1.

The values of mw and Mw have been computed exactly for each choice of ωa and
shown in Table 1. The reader, if interested can see the computation of the constants in the
GitHub page of this paper https://github.com/pog87/GibbsEffectMultimodal (accessed
on 9 June 2021). It is worth noticing that in general it is not true that mw 6= 0; such condition
will be assumed as hypothesis in what follows.

We can finally enounce and prove a theorem for the pointwise interpolation error
bound. The theorem can be seen as a particular case of the results published in [24], of
which we give a different proof. Other error estimates for Gibbs effect in radial basis
function interpolation can be found in [14,25].

Theorem 1 (Pointwise error bound). Let f : [0, 1] → R be a function sampled over N + 1
equispaced points xi =

i
N , i = 0, . . . , N, and w the basis function defined in Equation (20). If the

interpolation point x ∈ (xk, xk+1) with a ≤ k ≤ N − a + 1 and mw > 0, then

|PN
f (x)− f (x)| ≤ Mw

mw

k+a−1

∑
i=k−a

| f (x)− f (xi)|. (27)

https://github.com/pog87/GibbsEffectMultimodal
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Proof. Being the basis normalized to one and by effect of Lemma 1

PN
f (x)− f (x) =

k+a−1

∑
i=k−a

w(x− xi)( f (xi)− f (x)).

Taking the absolute values, by triangular inequality and Equation (26) we obtain (27).

This result ensures that for Mw
mw

small enough the error will not be propagated uncon-
trollably. Looking at Table 1, we can see that such a constant ratio is sufficiently small for
each of the chosen basis functions. A particular attention must be dedicated in choosing
the shape parameter for the Gaussian-based interpolation. In fact if we choose too large an
ε the mw consequently becomes zero. In the experiments of this paper the shape parameter
is set to ε = 2 in accordance with the most popular neuroimaging software.

Corollary 1. In the hypothesis of Theorem 1, if f is continuous in x ∈ [0, 1], then

lim
N→∞

|PN
f (x)− f (x)| = 0.

Proof. If x = 0 or x = 1 the result holds. Otherwise we can assume without loss of
generality that for big enough N, x ∈ (xk, xk+1) is not close to the domain boundaries, i.e.,
a ≤ k ≤ N − a.

Therefore,

k+a−1

∑
i=k−a

| f (x)− f (xi)| =
k

∑
i=k−a

| f (x)− f (xi)|+
k+a−1

∑
j=k+1

| f (x)− f (xj)|

passing to the limit we obtain

a
∣∣ f (x)− f (x−)

∣∣+ a
∣∣ f (x)− f (x+)

∣∣ (28)

f being continuous in x, f (x−) = f (x+) = f (x), hence by Theorem 1 we conclude.

As consequence of this corollary, the interpolation scheme described in this work will
not be subject to the Runge effect. This holds for any local interpolation scheme such as,
e.g., splines.

Corollary 2. In the hypothesis of Theorem 1, if f is discontinuous at x ∈ [0, 1], and the limit of
the error exists, then

0 ≤ lim
N→∞

|PN
f (x)− f (x)| ≤ a

Mw

mw
| f (x−)− f (x+)|.

This shows that in case of discontinuity, the error bound does not vanish when
increasing the number of samples, which corresponds to the description of the Gibbs effect
given in Section 2.1.

As a last theoretical result, we show that the error bound increases as the evaluation
point x moves closer to the discontinuity. Let us suppose that

f (t) =

{
f−(t) t ≤ ξ

f+(t) t > ξ
(29)

with f− ∈ C(ξ − ε, ξ) and f+ ∈ C(ξ, ξ + ε) for some ε > 0 and that the evaluation point x
belongs to (ξ − ε, ξ + ε). As shown before, if N|x− ξ| > a, the discontinuity has no effect
on PN

f , as the interpolation acts locally. The next Corollary concerns what happens in the
opposite case.
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Corollary 3. In the hypothesis of Theorem 1, if f is bounded and discontinuous at ξ, x ∈ (xk, xk+1)
with a < k < N − a and ξ ∈ [xk+p, xk+p+1] with p ∈ {−a, . . . , a− 2}, calling

F =
k+a−1

∑
k−a
| f (x)− f (xi)|,

then:

• Case 1 ξ ≤ x (so p ≤ 0):

pc1 + c2 ≤ F ≤ pC1 + C2 (30)

with c1, c2, C1, C2 ∈ R, c1, C1 > 0;

• Case 2 ξ > x (so p > 0):

pr1 + r2 ≤ F ≤ pR1 + R2 (31)

with r1, r2, R1, R2 ∈ R, r1, R1 < 0.

Proof. Let us suppose that f−((ξ − ε, ξ)) = [a, b] and f+((ξ, ξ + ε)) = [α, β] with a ≤ b <
α ≤ β. This assumption will not produce loose generality, in fact if N is large enough
the images of the left and right neighborhoods will not intersect, and in the opposite case
α ≤ β < a ≤ b the proof is similar. Now, let

∆ f+ = β− α; ∆ f− = b− a;

∆ = β− a; δ = α− b.

Let us split F in the (a + p + 1) nodes before and the (a − p − 1) nodes after the
discontinuity, so that

F =
k+p

∑
i=k−a

| f (x)− f (xi)|+
k+a−1

∑
j=k+p+1

| f (x)− f (xj)|.

In Case 1 the xj will be on the same side of x and the xi on the opposite, so all the
terms | f (x)− f (xj)| can be underestimated with zero and overestimated with ∆ f+, while
all the terms | f (x)− f (xi)| will fall between δ and ∆; hence,

(a+ p+ 1)δ ≤ F ≤ (a+ p+ 1)∆+(a− p− 1)∆ f+ = p(∆−∆ f+)+ (a+ 1)∆+(a− 1)∆ f+,

proving the first case as ∆ > ∆ f+ and δ > 0.
Similarly for the Case 2,

(a− p + 1)δ ≤ F ≤ (a + p + 1)∆ f+ + (a− p− 1)∆,

which proves (31).

By Corollary 3, the value of F will increase as p approaches zero both from the left or
from the right, and by consequence the error bound shown in Theorem 1 will increase with
the decrease in |p|, where |p| is the distance between the intervals of nodes in which x and
ξ lie. This corresponds to the description of the Gibbs Effect in Section 2.1, stating that the
overshoots and undershoots can be larger in the proximity of a discontinuity.
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3.4. Error Estimates for the Trivariate Interpolation

The error estimate given in the previous subsection can be extended to the trivariate
case—which corresponds to an image interpolation by convolution—and in general to any
dimensional separable interpolation.

Theorem 2. Let f be a 3d image (1) sampled over an equispaced grid X (2). Let P f any interpolant
of form (18) using basis functions

Wijk(x, y, z) = wσ1(x− xi) wσ2(y− yi) wσ3(z− zi)

built using (I)–(III) and with wσ1 , wσ2 , wσ3 such that mw > 0, then

|P f (x)− f (x)| ≤
(

Mw

mw

)3

∑
ijk
| f (x)− f (xijk)| (32)

Proof. Since the basis is normalized (17), we can write

P f (x)− f (x) = ∑
ijk

(
f (xijk)− f (x)

)
Wijk(x).

By taking the absolute value, using the triangular inequality and applying Theorem 1
three times, we conclude.

The interested reader can see the experimental verification of this error bound in
the GitHub repo https://github.com/pog87/GibbsEffectMultimodal (accessed on 9 June
2021).

4. Materials and Methods
4.1. Images

A set of three images have been used for numerical experiments

1. The 3D Shepp–Logan (SL) phantom [26], a picewise-constant function made by the
weighted sum of characteristic functions over different ellipsoids. The SL images
were created in python with tomopy and nibabel [27] and saved in nifti format. The
Segmention was made with a python script by grouping the voxels of the same
intensity values. Size: 256× 256× 256;

2. A 3D isotropic MRI, T1-weighted of one of the authors’ heads. Skull-stripping and
automatical segmentation was conducted with GIF [28]. Size: 180× 560× 560;

3. The CT of a walnut, downloaded from http://www.informatik.uni-leipzig.de/∼
wiebel/public_data/ (accessed on 9 June 2021) along with its segmentation image [29].
Size: 400× 296× 352.

In Figure 3 we observe a slice of each image and the corresponding segmentation image.
Each image was undersampled with a factor of 2 per dimension using nibabel, except

for the SL phantom; in this case, the exact function of the image is known and hence
the undersampled version was calculated analytically. This corresponds to the common
PET/MRI setting, where the morphological MRI image is about (1 mm)3 per voxel, whereas
the functional PET image is sampled at (2 mm)3.

The undersampled version of each image in this experiment acts as a functional
image. We decide not to take into account the Partial Volume Effect (PVE) [30] of the
imaging systems because the aim of this work is to investigate only the interpolation errors
in resampling. Since the high-resolution values are known, we are able to estimate the
interpolation errors that occur in resampling.

https://github.com/pog87/GibbsEffectMultimodal
http://www.informatik.uni-leipzig.de/~wiebel/public_data/index.html
http://www.informatik.uni-leipzig.de/~wiebel/public_data/index.html
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Figure 3. From left to right: a slice of the the SL phantom, Brain MRI and walnut CT. In the second row are the corresponding
segmentation images, with a different color used for each different VOI.

4.2. Software Used

Three different tools from commonly used neuroimaging software suites were used to
perform interpolation for undersampling and oversampling.

1. antsApplyTransforms from Advanced Normalization Tools (ANTs) [31,32] v2.2.0,
with interpolation options:

(a) Nearest and Multilabel for undersampling segmentation;
(b) Linear, Gaussian, LanczosWindowedSinc and Splines for oversampling func-

tional image;

2. flirt from FMRIB Software Library (FSL) [33–35] v5.0.8, with interpolation options:

(a) Nearest for undersampling;
(b) Trilinear and Splines for oversampling;

3. mri_convert from Freesurfer [12,36] v5.3, with interpolation options:

(a) Nearest for undersampling;
(b) Trilinear and Splines for oversampling.

The Nearest, (Tri-)Linear, and Splines options refer to the Nearest Neighbor,
Linear and Cubic basis function, respectively, as reported in Table 1. Multilabel means that
each VOI has been Gaussian-filtered, interpolated with cubic splines and finally each voxel
has been assigned to the argument of maximal value. Gaussian and LanczosWindowedSinc
indicate a Gaussian and Lanczos-2 interpolation, respectively. The formulation of each of
these functions can be found in Table 1.

Another popular neuroimaging tool is Insight Toolkit (ITK) [37]. Since ANTs are
written on top of ITK and inherits its interpolation methods, we decided not to include
this tool in our experiments. The shown results using ANTs resampling are expected to be
consistent with ITK.

The whole dataset and code used for the experiments has been uploaded to the page
https://github.com/pog87/GibbsEffectMultimodal (accessed on 9 June 2021) for the sake
of reproducibility.

https://github.com/pog87/GibbsEffectMultimodal
https://github.com/pog87/GibbsEffectMultimodal
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4.3. Evaluating the Error

As indicator of the performance of the undersampling versus oversampling proce-
dures, we chose the relative 2-norm error with respect to the reference mean values of the
original, high-resolution image.

The reference mean values are defined as the mean intensity values of the original
high-resolution image I and the high-resolution segmentation M,

v = µ0(I[M]) = {µ0(I[Mp])}p=0,...,n,

being µ0 the discrete mean (14). Such values are available in our experiments because of
the choice to use undersampled images acting as functional, but are unknown in real cases
of multimodal image analysis.

We computed the undersampling and oversampling approximations of v as the means:

1. by using functional image F and undersampled segmentation M−

v− = µ0(F[M−]);

2. by using oversampled functional image F+ and segmentation M

v+ = µ0(F+[M]);

Hence, the relative 2-norm error between the reference values and the under/over-
sampling values is evaluated for each image and interpolation method as

err± =
‖v− v±‖2

‖v‖2
(33)

Undersampling and oversampling errors will be compared for all the test images
and software to confirm or deny the resampling paradox. Results are presented in the
dedicated section.

4.4. Locating the Oversampling Error

As the segmentation of high-resolution images is time-consuming, it is preferable
to use the oversampling procedure, but it could be a source of larger errors. To better
understand such interpolation error, it is necessary to further investigate the source of the
oversampling interpolation error. Namely, we want to know where the voxelwise error

E = |I − F+| (34)

is larger. As an example, in Figure 4 (bottom left) a slice of the voxelwise interpolation
error is shown.

We computed a VOI around the borders of the segmentation image as

δM =
n∨

p=0
δMp (35)

where
∨

means the logic OR operator, and each border δMp is computed as

δMp = dilate(Mp, 3)⊗ erode(Mp, 3)

where ⊗ denotes the voxelwise logic xor operator, dilate(X, n) and erode(X, n) the
binary erosion an dilation morphological operators repeated n times. Erosion and dilation
operators are implemented in scikit-image Python package [38]. An example of δM can
be found in Figure 4 (top right).
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Figure 4. Upper left: a slice of the walnut CT I. Upper right: the borders δM computed as in Equation (35) at the same slice. Bottom
left: the pointwise absolute error E (as in Equation (34)) in ANTs linear interpolation. Bottom right: ∇I, the norm of the gradient of
the original image computed with Equation (36).

We also estimate the 2-norm of the gradient of the high-resolution image I

∇I :=
∥∥∥∥(∂ f

∂x
,

∂ f
∂y

,
∂ f
∂z

)∥∥∥∥
2

(36)

where each partial derivative of the function f defined in (1) is estimated with Sobel operator
(cf. [39]) in scikit-image. An example of ∇I is in Figure 4 (bottom right).

As a dissimilarity measure between images, we use the Dissimilarity Structural SIMi-
larity index (DSSIM), defined as

DSSIM(A, B) := 1− SSIM(A, B)

where the Structural SIMilarity index (or SSIM, is a [0, 1]-valued similarity measure which
has been shown to be a stable metric for multivariate interpolation [8,40,41] and it is
defined as

SSIM(A, B) =
(2ĀB̄ + c1)(2ΣAB + c2)

(Ā2 + B̄2 + c1)(Σ2
A + Σ2

B + c2)

being Ā the mean, ΣA the standard deviation, and c1, c2 two real default constants used for
stability. For the tuning of the parameters c1, c2 refer e.g., to [40]. The SSIM of two identical
images is 1, which means that the DSSIM is zero.

Using scikit-image we compute the global error DSSIM(I, F+), the error at the
borders δM as DSSIM(I[δM], F+[δM]) and the percent ratio between the two in order to
assess how much of the error is located in the borders.

Moreover, we want to know how much of the image gradient is located at the borders
and which part of the FOV volume is taken by the border in terms of number of voxels.
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In fact although we expect an ideal segmentation to perfectly identify all of the
different parts of the object in the FOV, in practice a segmentation can miss some signal
discontinuity. We decided to take into account

∇I[δM](%) :=
‖∇I[δM]‖1

‖∇I‖1
· 100

as a measure of the ratio of the image gradient located in the VOIs border δM. Moreover,
to ensure that δM does not cover too much of the FOV—in such case a high gradient ratio
would be unavoidable—we computed the Volume ratio

Vol(δM)(%) :=
Vol(δM)

meas(Ω)
· 100.

5. Experimental Results

The results of the VOI-wise analysis are shown in Tables 2 and 3. In all the cases but
one, undersampling the segmentation images leads to a smaller relative 2-norm error (and
∞-norm, respectively) on estimating the mean intensity in the VOIs.

Table 2. Relative errors in two-norm of the mean value per VOI, computed with Equation (33).
Minimal error per software per image in red. Empty cells indicate the same as above.

Software Sampling Method SL Phantom Brain MRI Walnut CT

ANTs under Nearest 0.11715 0.00251 0.00029
MultiLabel 0.11714 0.00287 0.00098

over Linear 0.16559 0.02427 0.01965
Gaussian 0.24197 0.05616 0.04605
Lanczos 0.12989 0.01415 0.01425
Splines 0.12790 0.00791 0.00751

FSL under Nearest 0.10845 0.00327 0.00383

over Trilinear 0.16528 0.02430 0.02025
Splines 0.10403 0.00792 0.00759

Freesurfer under Nearest 0.11716 0.00252 0.00029

over Trilinear 0.16559 0.02427 0.01965
Splines 0.12644 0.00792 0.00751

In Figures 5 and 6 you can observe a comparison between a slice of the original, high
quality Shepp–Logan phantom and the same slice of the oversampled images using all the
methods used in this work. From these images it is possible to guess that for the most part
the errors are located around the discontinuities.

In Table 4 the DDSIM and DSSIM at the borders are listed for each image, software
and interpolation method. The ratio of the error located in the borders is 80 to 85% for
the SL phantom, whose borders host the totality of the gradient, the phantom being a
picewise-constant function. The brain image holds the 89% of the gradient and an error
percentage of about 30–55%. The walnut image has the lowest gradient percentage (71%)
and the lowest error percentage, spanning from 19 to 31%.
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Table 3. Relative errors in ∞-norm of the mean value per VOI. Minimal error per software per image
in red. Empty cells indicate the same as above.

Software Sampling Method SL Phantom Brain MRI Walnut CT

ANTs under Nearest 0.12516 0.00425 0.00031
MultiLabel 0.12515 0.00441 0.00106

over Linear 0.17679 0.03075 0.02246
Gaussian 0.25852 0.06774 0.05099
Lanczos 0.13884 0.01929 0.01661
Splines 0.13646 0.01261 0.00940

FSL under Nearest 0.11173 0.00479 0.00526

over Trilinear 0.17663 0.03077 0.02322
Splines 0.11108 0.01265 0.00953

Freesurfer under Nearest 0.12516 0.00425 0.00031

over Trilinear 0.17679 0.03075 0.02246
Splines 0.13488 0.01262 0.00940

Figure 5. A slice of the Shepp–Logan phantom in High Resolution (center), and oversampled in ANTs with four different
basis functions (all around).
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Figure 6. A slice of the Shepp–Logan phantom in High Resolution (center), and oversampled in FLS (left) and Freesurfer
(right) using the Trilinear (top) and Splines (bottom) basis function, respectively.

Table 4. Interpolation oversampling errors in terms of DSSIM(I, F+) (the smaller the better), DSSIM at the segmentation
border VOI DSSIM(δM) = DSSIM(I[δM], F+[δM]) and its percentage. Per image, per method. Percentage of the image
gradient at the borders δM and percentage volume of δM over the whole FOV. Empty cells indicate the same as above.

Image Software Method DSSIM DSSIM(δM) % ∇I[δM](%) Vol(δM)(%)

SL ANTs Linear 0.037153 0.031298 84.242829 100.000000 14.897966
Gaussian 0.047003 0.038652 82.233787
Lanczos 0.042190 0.035423 83.961040
Splines 0.041255 0.034414 83.418321

FSL Trilinear 0.029491 0.023908 81.068121
Splines 0.033593 0.027387 81.524186

Freesurfer Trilinear 0.037153 0.031298 84.242829
Splines 0.038853 0.031272 80.488007

Brain ANTs Linear 0.062901 0.034254 54.457968 89.20926 18.886478
Gaussian 0.111262 0.051932 46.675099
Lanczos 0.080985 0.033880 41.835420
Splines 0.102826 0.033518 32.596547

FSL Trilinear 0.062913 0.034261 54.457173
Splines 0.102840 0.033526 32.599943

Freesurfer Trilinear 0.062901 0.034254 54.457961
Splines 0.102826 0.033518 32.596537

Walnut ANTs Linear 0.044889 0.011284 25.137363 71.41374 14.234087
Gaussian 0.091228 0.028299 31.020122
Lanczos 0.079741 0.021932 27.503712
Splines 0.114494 0.021974 19.191816

FSL Trilinear 0.046841 0.012816 27.360825
Splines 0.114795 0.022474 19.577444

Freesurfer Trilinear 0.044889 0.011284 25.137374
Splines 0.114494 0.021973 19.191790
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6. Discussion

The resampling paradox is confirmed by these data shown in Table 2, as the errors
in estimating the mean value of the VOIs assessed by undersampling the segmentation
image are smaller than any error produced by oversampling the functional images. The
only exception is the splines interpolation in FSL, which seems to be produced by an error
compensation in the computation of the mean values. This is confirmed by its DSSIM
shown in Table 4, which is larger than the DSSIM given by the Trilinear interpolation
in FSL.

These data also indicate that the interpolation error occurring in oversampling is a
Gibbs effect, confirming the results proven in the theoretical section. As we can intuitively
infer from Figure 4, the pointwise error is mostly located in voxels where the gradient is
higher. This intuition is confirmed by inspecting Table 4 as the most of the error lies at the
borders of the VOIs when the gradient at the border is higher and decreases in cases where
the segmentation misses some high-gradient zones.

In the case of the walnut CT image, it can be observed in Figures 3 and 4 that the
provided segmentation misses some of the inner skin surrounding the seed and some gaps
within the seed.

It is also noticeable that the error percentage in the borders has the tendency to be
lower if the error is higher, possibly showing a propagation of the Gibbs effect around
the borders.

7. Conclusions and Future Works

The Gibbs effect has been proven to appear in interpolation by convolution and
is confirmed by experimental results to be the largest source of interpolation error in
multimodal medical imaging.

The resampling paradox is confirmed experimentally. Undersampling is—as a matter
of fact—the most chosen option in multimodal neuroimaging, despite the fact that the
segmentation at high resolution results in a waste of effort and time.

In order to avoid this effect a new interpolation technique is needed allowing an
oversampling of functional images which minimizes the Gibbs effect. This technique
would permit extraction of more precise features of the functional images, and possibly
enhance their statistical power following more trustful clinical assessments.

A promising approach is given by interpolation by convolution with the scale factor
Point Spread Function (sfPSF) [42] which takes into account the different FWHM of the
morphological and functional images. As an alternative, spectral filtering [6] could be a
fast and efficient way of dealing with the Gibbs effect. Another interesting method we can
consider is the Fake-Nodes interpolation introduced in [43], which has been shown to be
an effective approach for univariate interpolation without resampling and multivariate
approximation of data [44,45], reducing the Gibbs effect. Deep learning-based techniques
for super-resolution can be also considered [46] when dealing with border-related over-
sampling errors.
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