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Abstract. A generative autoencoder for the rational 
design of potential inhibitors of the SARS-CoV-2 main 
protease able to block the catalytic site of this 
functionally important viral enzyme was developed. 
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I. INTRODUCTION

To date, computer-aided drug design has become 
an important tool allowing one to significantly reduce 
the time and costs required for developing novel 
therapeutic agents. In recent years, computer-assisted 
mathematical and statistical models, such as machine 
learning, are increasingly being used for drug design 
and discovery. Despite these methods becoming more 
common in chemoinformatics, their potential in this 
field is yet to be revealed.  

Generative models have proven to be promising in 
tasks of text [1] and image [2] generation, including 
generation of medical images like X-ray ones. Despite 
the traditional similarity-based virtual screening of 
chemical databases, such as PubСhem 
(https://pubchem.ncbi.nlm.nih.gov/) [3], provide wide 
possibilities for identification of novel potential drugs, 
it has certain disadvantages compared to generative 
statistical models. One of the major incentives to use 
generative models is a better exploration of a 
molecular feature space. Similarity-based search 
provides exploration of focused chemical space, 
limited by search space diversity of compounds at 
disposal, while generative statistical models allow one 

to cover molecular feature space of much wider 
chemical diversity. The second reason for generative 
model superiority is conditional sampling. Generation 
of new molecules from a chemical space is not the 
only option: predicted binding free energy could be 
used as an additional dimension, which allows one to 
generate molecules from a subset of investigated 
chemical space with a preset binding affinity. 

This study is devoted to the development of the 
generative autoencoder based on a linear molecule 
representation in the Simplified Molecular Input 
Line Entry System (SMILES) format [4]. One of the 
core ideas behind using SMILES, or more precisely, 
vectorized SMILES for model training was the 
recovery capabilities of such data. As was shown in a 
study [5], generative models provide a decent ground 
for screening results enrichment, however use of 
descriptors like fingerprints may complicate the 
recovery of the chemical structures themselves. In 
contrast, SMILES-based embeddings are supposed to 
be a good alternative to using fingerprints in deep 
learning chemoinformatics approaches when the 
ability to restore the structure of chemical 
compounds is important. That is why the SMILES 
embeddings were chosen as the architectural 
basement for the constructed generative autoencoder 
to generate potential inhibitors of the selected protein 
target. 

II. MATERIALS AND METHODS

A. Training Set Preparation

The developed generative autoencoder is built to be
specific for a target protein, and, therefore, the training 
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dataset should include compounds potentially active 
against the selected protein. As noted before, the 
autoencoder developed here was adopted and applied 
for generation of potential anti-SARS-CoV-2 
inhibitors, and, accordingly, a virtual compound 
library of potential anti-SARS-CoV-2 agents was 
formed for preparation of a training dataset. The 
preparation procedure of this molecular library was as 
follows: 

a) Pharmacophore-based Virtual Screening: To
identify small-molecule compounds potentially active 
against SARS-CoV-2 main protease (Mpro), the 
pharmacophore-based virtual screening was 
performed using the Pharmit server software 
(http://pharmit.csb.pitt.edu/) [6]. Seventeen 
pharmacophore models were built based on 6 
peptidomimetics and 10 small-molecule inhibitors of 
SARS-CoV reported in a study [7], using web-server 
PharmaGist [8]. Virtual screening was performed in 
the nine Pharmit molecular libraries containing over 
213.5 million chemical structures, resulting in a set of 
711102 compounds that satisfied one of the seventeen 
constructed pharmacophore models. The Pubchem 
API wrapped in Python 3 (https://www.python.org/) 
module PubChemPy (https://pubchempy. 
readthedocs.io/) was used to additionally enrich the 
screened dataset with potential inhibitors based on the 
selected PubChem compounds by the similarity search 
with a Tanimoto similarity coefficient of 0.8. 

b) Molecular Docking: Compounds identified by
the pharmacophore-based virtual screening and 
PubChem similarity search were subject to the 
preliminary molecular docking with the unliganded 
SARS-CoV-2 Mpro structure. The compounds were 
then filtered based on the values of the docking 
scoring function with the threshold of –7 kcal/mol, 
which corresponds to the standard activity threshold 
of 10 μM commonly used in vitro screening. The 
dataset of 353467 potentially active compounds was 
subject to the refining molecular docking with the 
unliganded SARS-CoV-2 Mpro structure. Analysis of 
the distribution of scoring function values after the 
refining docking resulted in the filtration of 
successfully docked compounds above the selected 
threshold of –6 kcal/mol. 

c) SMILES space revision and vectorization:
Based on a linear SMILES notation, the dataset of 
selected compounds was cleared from those 
containing non-recognizable atoms, non-abundant 
isotopes, other than druglike (H, C, N, O, P, S, F, Cl, 
Br, I) atoms or those which molecular weight was 
above the selected threshold of 1000 Da. Structure 
representations of the prepared compounds in the 
linear notation SMILES were obtained by Python 3 
using the RDKit (http://www.rdkit.org/) module 

which was also used previously for the described 
dataset cleaning. Based on the frequency distribution 
of SMILES elements in the prepared dataset, 
compounds possessing at least one SMILES element 
with frequency less than 0.001 were filtered out. 
Finally, distribution of SMILES lengths was 
investigated and compounds with SMILES 
representation longer than 120 characters were 
eliminated. After all the filters applied, the dataset 
consisted of 342102 distinct ligands and their 
corresponding SMILES. The SMILES were 
vectorized into a matrix according to the maximum 
length and symbols vocabulary size, with the added 
start and end symbols represented by “!” and “E”. 

The obtained 342102 compounds combined with 
the corresponding values of molecular docking 
scoring function formed the dataset which was split 
into the training, validation, and test sets comprising 
70%, 15% and 15% of the original dataset, 
respectively. When forming the subsets, a stratified 
split was used to preserve equal energy distributions 
within all 3 sets. The validation set was used to 
evaluate the model’s ability to reconstruct the input 
SMILES during training, while test SMILES were 
used to sample new compounds from by adding 
distortion to their latent representation. Thus, the 
corresponding datasets for model training, validation 
and generation of new molecules were prepared. 

B. 3D Structures Generation for Generated
Molecules

To evaluate the ability of deep learning model to 
generate novel compounds active towards the target 
protein, molecular docking of these molecules should 
be performed. In doing so, 3D structures of the 
generated molecules are required. To obtain these 3D 
structures from a linear notation SMILES, a script was 
developed in Python 3 using the RDKit module. The 
generation pipeline included the following steps: 
SMILES input, SMILES validity check, 2D 
coordinates generation, 3D coordinates generation, 
optimization of the structure in the MMFF94 force 
field, addition of hydrogen atoms, and re-optimization 
in the MMFF94 force field. Generation of 3D 
coordinates was performed using the ETKDGv3 [9] 
algorithm. 

C. Molecular Docking

a) Preparation of Protein Structure: The crystal
structure of the unliganded SARS-CoV-2 Mpro was 
taken from the Protein Data Bank (PDB ID: 6Y84; 
https://www.rcsb.org/pdb/). This SARS-CoV-2 Mpro 
structure was prepared by adding hydrogen atoms and 
annotating atoms with partial charges by Gasteiger 
scheme [10] followed by the structure optimization in 
the UFF force field [11] using the OpenBabel 
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Fig. 1. Architectures of the autoencoder models: (I) Unsupervised (embeddings) model; 

(II) Semi-supervised (embeddings and energy) model

software [12]. The structure of SARS-CoV-2 Mpro 
prepared in this way was used for the preliminary and 
refining molecular docking both during the dataset 
preparation as well as for molecular docking of the 
generated compounds. 

b) Preparation of Ligand Structures: Prior to the
preliminary docking, preparation of the ligand 
structures was the same as described for the SARS-
CoV-2 Mpro structure. This procedure was performed 
using OpenBabel but included an additional step of 
rotatable bonds identification which is auto-made by 
this software. However, prior to the refining molecular 
docking, the ligand structures were prepared via the 
following two steps: i) optimization in the MMFF94 
force field [13, 14] to remove steric clashes and 
addition of  hydrogen atoms that are absent in the 
initial structure, both using the RDKit module in 
Python 3, ii) addition of partial charges by Gasteiger 
scheme and rotatable bonds identification using 
MGLTools (http://mgltools.scripps.edu/). It should be 
noted that before subjecting the generated compounds 
to molecular docking, 3D structures of novel ligands 
were obtained from the generated linear SMILES 
notations, as described above. Further preparation 
steps of the generated compounds for molecular 
docking included the addition of partial charges by 
Gasteiger scheme and rotatable bonds identification 
performed by MGLTools. 

c) Molecular Docking Settings: The preliminary
molecular docking was performed using the 
QuickVina 2 [15] program, and refining molecular 
docking was carried out by AutoDock Vina [16] 
software, both in the approximation of rigid receptor 

and flexible ligands. In both cases, the grid box 
included the catalytic site of SARS-CoV-2 Mpro with 
the following parameters: ΔX = 19 Å, ΔY = 21 Å, 
ΔZ = 23 Å centered at X = –20 Å, Y = 19 Å, 
Z = –26 Å. Thus, the grid box volume was 
19×2 ×23 = 9177 Å3. The value of the exhaustiveness 
parameter defining the number of individual sampling 
“runs” was set to 10 and 50 for preliminary and 
refining docking, respectively. 

D. Deep learning

a) Models Architectures: Two deep learning
models have been developed, namely an unsupervised 
SMILES-based Long Short-Term Memory (LSTM) 
[17] autoencoder (model I) and a semi-supervised
SMILES-based LSTM autoencoder (model II) in
which the value of binding free energy was used as an
additional dimension in latent space to learn from the
docked compounds and a value to sample around in
the generation mode.

Model I (Fig. 1, I) takes vectorized SMILES as 
input, which follow through the LSTM layer. The 
peculiarity of this model is defined by the fact that 
LSTM output itself is not used, instead the hidden and 
cell states vectors are derived, which are concatenated 
together and then put through a dense layer. The 
output of this dense layer serves as a latent vector or 
SMILES embeddings in the context of the 
autoencoder. The embeddings are fed to two dense 
layers in parallel, creating initial hidden and cell state 
inputs for the LSTM layer in the decoder part. There 
is also the decoder input layer used as input for the 
decoder LSTM, which in the training mode receives 
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Fig. 2. Train and validation losses for autoencoder model: (A) Semi-supervised (embeddings & energy) model; 

(B) Unsupervised (embeddings) model

the same vectorized SMILES as the encoder input, 
and, as a conventional LSTM generative model, it 
predicts the next symbol. However, in the generation 
mode, decoder input starts the generation process with 
a start symbol only, embeddings are used to predict 
the initial states of decoder LSTM and they basically 
define which kind of SMILES will be generated. 

The so-defined energy model (Fig. 1, II) differs 

from model I in the neuron responsible for the binding 

affinity value situated on the latent layer of the model. 

While model I allows one to generate molecules from 

random SMILES embeddings as well as adding noise 

to SMILES embeddings of ligands with predicted 

affinity, the energy model enables one to generate new 

ligands with a preset property of binding affinity, in 

addition to attempts to manipulate SMILES 

embeddings of the given ligands to try to improve 

their structures after decoding and thus increase the 

value of binding affinity. 

b) Models Training: Both models were composed

layer by layer using TensorFlow 2.1

(https://www.tensorflow.org/) high-level API. The

models were subject to 150 epochs of training,

additionally “Reduce learning rate on a plateau” and

“Early stopping” callbacks were used to help the model

converge to a better local minima and also avoid

overfitting. Stochastic gradient descent optimization

method Adam [18] was used as an optimizer with 0.005

learning rate initial value and the categorical cross-

entropy loss function was chosen. The loss score

progress for both models is shown in Fig. 2.

E. Deep Learning-based Compounds Generation

Two methods of generation were subjects of our
consideration: generation from random numbers 
drawn from normal distributions, where distributions 
parameters were derived using test data distribution on 
the latent layer for each vector component. For this 
method, the process of generation for model II implied 
setting an a priori value of binding free energy to 

approximate generated ligands with. Experiments for 
different thresholds were carried out. The major idea 
of the second method of generation was to sample best 
ligands from the test set, to try to add noise to their 
embeddings. This approach is supposed to change the 
reconstructed ligand, and, in the case of model II, also 
increase the predicted binding affinity, forcing the 
generation of more promising ligands. The 
combinations of two autoencoder models and two 
generation methods are summarized in Table I. 

III. RESULTS AND DISCUSSION

As noted above, both models were tested using 
each of two generation methods. The results obtained 
were evaluated  based on the values of binding affinity 
predicted by molecular docking, as well as by 
comparing these values with those calculated for the 
reference compounds used in the virtual experiments 
as a positive control.  

The results of compound generation common for 
all of the conducted simulations are summarized in 
Table II. 

A. Embeddings Model, Random Vectors Generator

Despite the fact, that this model does not use both
reference compounds for generation and values of 
binding energy, it is capable of generating new 
potential inhibitors of the selected target only by 
generating compounds from the embeddings 
distributions inferred from the training data. In the set 
of generated compounds, the share of molecules with 
the predicted values of binding free energy less than –
9 kcal/mol  was 3.2%, which exceeds the same share 
in the training dataset (1.8%) by almost 2 times. 

B. Embeddings Model, Test Set Compounds Used To

Generate New Compounds From

This generation method utilizes compounds 
available and tries to generate new potential inhibitors 
from them. The share of generated compounds with 
high binding affinity is considerably larger, with 38% 
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TABLE I. DESCRIPTION OF INVESTIGATED COMBINATIONS 

OF GENERATIVE LSTM AUTOENCODER MODELS AND

GENERATION METHODS 

Model 

Generation 

starting point 

description 

Generation process 

description 

Unsupervised 

(Embeddings 

model) 

Random number 

vectors drawn 

from fitted 

normal 

distributions 

Random numbers are 

used as embeddings 

and fed to the decoder 

Unsupervised 

(Embeddings 

model) 

Compounds with 

free binding 

energy less than 

–9 kcal/mol,

sampled from

test set

Embeddings for these 

compounds are 

calculated, then 

distortion is added and 

updated embeddings 

are fed to the decoder 

Semi-

supervised 

(Energy 

model) 

Random number 

vectors drawn 

from fitted 

normal 

distributions and 

a preset free 

binding energy 

value 

Random vectors are 

used as embeddings 

and are passed as 

latent layer inputs 

along with a preset 

free binding energy 

value 

Semi-

supervised 

(Energy 

model) 

Compounds with 

free binding 

energy less than 

–8 kcal/mol,

sampled from

test set and

improved free

binding energy

values

Embeddings for these 

compounds are 

calculated, then 

distortion is added and 

updated embeddings 

along with improved 

free binding energy 

values are passed to 

the decoder 

TABLE II.  COMPOUNDS GENERATION RESULTS USING TWO GENERATIVE LSTM AUTOENCODER MODELS AND TWO GENERATION METHODS 

Model name, 

generation method 

Number of 

generated 

compounds 

Number of 

successfully 

docked 

compounds 

Number of 

compounds with the 

predicted binding 

free energy less than 

–8 kcal/mol

Lowest predicted 

binding free 

energy, kcal/mol 

Fraction of generated 

compounds with a lower 

binding affinity 

compared to reference 

compounds or energy 

threshold 

Embeddings, random 

vectors
1000 986 277 –10.6 – 

Embeddings, reference 

compounds 
2543 2518 967 –10.3 > 10.0 % 

Energy, random vectors 

and energy value 
600 594 161 –9.3 > 17.4 % 

Energy, reference 

compounds and 

improved energy values 
662 658 266 –10.4 > 12.2 % 

of compounds exhibiting the predicted values of 
binding free energy less than –8 kcal/mol and 4% of 
compounds showing the predicted values less than –
9 kcal/mol. 

C. Energy Model, Generation from Random Numbers
with a Set of Preset Thresholds of Binding Affinities

The semi-supervised model utilizes a version of 
“style and content” disentanglement for molecular 
data. According to the results obtained, 31% and 64% 
of generated compounds showed the values of binding 
energy within the deviations from the pre-defined 

energy value equal to 1 kcal/mol and 2 kcal/mol, 
respectively. 

D. Energy Model, Test Set Compounds Used as
Starting Points to Generate More Compounds, Energy
Threshold is Shifted Towards Lower Energy by 0.5
and 1.0 kcal/mol Steps

This combination of the model and method proved 
to generate the top compounds throughout all four 
modes of generation. 52% of generated compounds are 
located within 1 kcal/mol deviation from the reference 
compounds, while 16% of generated compounds have 
the values of binding free energy lower than –
9 kcal/mol. 

IV. CONCLUSION

 Two generative autoencoder models for prediction 
of novel drugs against SARS-CoV-2 were developed 
and applied to identify potential inhibitors able to 
block the catalytic site of the coronavirus main 
protease. The designed generative models combined 
with molecular docking proved their  great potential to 
enrich screening pipelines with new compounds with 
desired properties. The generative power of the 
designed models is confirmed by the fact that out of 
4805 successfully generated compounds only one 
compound was found  in the original dataset. This 
indicates the richness of unexplored chemical space 
and proves an importance of development and 
application of generative models in drug design and 
discovery. 
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