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Abstract. The problem of the parameters estimation for the polynomial in the
input variables regression function is formulated and solved. The input and output
variables of the regression function are multidimensional-matrices. The parame-
ters of the regression function are assumed to be random independent multidimen-
sional matrices with Gaussian distribution and known mean value and dispersion
matrices. The solution to this problem is a multidimensional-matrix system of the
linear algebraic equations in multidimensional-matrix unknowns — function re-
gression parameters. We have considered particular case of quadratic regression
function, for which we have obtained formulas for parameters calculation. The
computer simulation of the quadratic regression functions is performed for the
two-dimensional matrix input and output variables.

Keywords: regression function, parameters estimations, maximum likelihood
estimations, Bayesian estimations, multidimensional matrices

1. Introduction

To date the most popular methods to estimate the parameters of the regression
function are maximum likelihood method and least squares method [1, 2]. The es-
timations obtained by this method have good asymptotic properties and it is the
justification to their application. But usage of classical methods becomes problem-
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atic in the case of a small size of the sample. In this connection Bayesian method to
estimate the parameters of the regression function is more attractive. The possibility
of using the samples with a small size is a significant advantage of the Bayesian ap-
proach. Interest to Bayesian inference lies in the problem of optimal (dual) control
of regression objects [3, 4, 5], in econometrics [6], in other areas [7, 8]. The existing
investigations into Bayesian approach relate mainly to linear in the parameters and
in the input variables regression functions. There are also more general results. So,
in work [5] Bayesian estimations of the parameters were obtained for the regression
function represented as a scalar product of the parameter vector and the vector of
the basis functions. Such representation is applicable to both linear and nonlinear
regression functions in the input variables. However, such an approach is bad for-
malized and do not has the algorithmic generality; i. e. the mathematical expression
for the vector of the basis functions is not determined and the software implementa-
tion is inapplicable for any number of variables and any degree of the polynomial.

In the present paper we investigate a multidimensional-matrix polynomial in
the input variables regression function. In this case there are not the disadvantages
pointed above. Such an effect is achieved by the new multidimensional-matrix
representation of the polynomial regression function.

2. Problem statement

Let us consider some object with g-dimensional-matrix input variable
x=(x;), J =i>Jass J,)» p - dimensional-matrix output variable 1 = (1,),
i =(f},4y ) [9, 10], and suppose that output variable 1 is stochastically de-
pendent on input variable y so there is conditional probability density f(n/ x).
We denote ) = (p(x) regression function 1 on y and assume that dependence n
on y could be represented in the form 1 = @(x) + €, where ¢ is p-dimensional
random matrix. Let for some values X, X, ,..., X, of input variable y we obtained
the values ¥, 1,¥, 255 Y, , of output variable n (observations, measurements)
as follows:

You=0(x)+z,, p=1..,n, (1)
where z is a realization of the random matrix €, which we will name as errors of
the measurements. We will consider the Gaussian distribution of the matrix € with
zero mean value and dispersion matrix R .

Here and below we will use the following notations for indices of multidimen-
sional matrices: i,,1,,..., are separate indices, f(p) = (ip Iyyees ip) is a set of p in-

dices (p - multiindex), i, 1y = (i y1>8( )22 i pys) 1 @ set of k p-multiindices.
Let the hypothetic regression function be the polynomial of m-th degree [10]:

P(x) = Z O’kq(c(p,kq)xk) = z Oha (xkc(kq,p)) , m=0,12,.., (2)
k=0 k=0
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where C( ka)

sion function, C( pkg 18 (P +kq) - multidimensional matrix:

and C (kq.p) ATC multidimensional-matrix parameters of the regres-

Copkg =(¢; = )5 iy =(lslynsdy) J(qk) Gigno T Jigno).

WpyoJ(qh)
It is symmetric relative to p-multiindices ](q)l, ](q)2, - ](q)k The matrix C(k “p)

is transposed matrix C ok ), i.

H kg kg _ B kg kg
(p kq) (C(kq p)) C(kq,p) - (C(p,kq)) >
where H

prkakq and Bp+kq=kq
‘onward’ respectively [10]. We also denote ** (C, p’kq)xk) (0, kq)-rolled prod-

=005k s the (0,0)

are transpose substitutions of the types ‘back’ and

uct of matrices C( k)

- rolled degree of the matrix x [9, 10].

kq is product between k and ¢, X

In these conditions the measurement Y, , (1) has the probability density

f(yo,u /xu’c(p,o)’ C(p,q) LA C(p,mq)) =
1 _ m
=C, CXP(_E PR (Do =2 O’kq(c(p,kq)xﬁ))z)j s u=L.,n. G

k=0
where C is a normalizing constant, R ' is (0, p) - inverse to R_matrix [9, 10].
The problem consists in finding the estimations of parameters C(p ko) (C ka p))

of the regression function (2) by using the given measurements (xlayo,l >
(xzayo,z)a---a (xnayo,n)-

3. Bayesian multidimensional-matrix polynomial empirical regression
In addition to the assumptions (1)—(3) we will consider the parameter C(p ko)

of multidimensional-matrix polynomial regression (2) as a random matrix with

Gaussian priori probability density

fa (C(p,kq)) = K(p,kq) eXp(__(O 2pka) (Ra (p.kq) (C(p,kq) - Ca,(p,kq))z) 5 (4)
k=0,12,...m, m=0,.2,...

— H gk —
Where K a,(p.kq) — (Ca,(kq,p)) e 4 Ca,(kq,p) B

(p:kq)
b . .y . . .
= (Ca,(p,kq)) P4 s a priori mean value (p+kq) - dimensional matrix),

B iighq s Bpirgrg) .
Ry i)’ isa

is a normalizing constant, C

_ (H py1q g H pikg.kg)
a,(p.kq) — (Ra,(kq,p)) > Ra,(kq,p)

R
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priori  dispersion  matrix = ( 2( p+ k(]) - dimensional  matrix),

1 (H kg g H prkg kg) 1 (Bikg kg Bprig.kg)
R, (pkg) (Ra (kg p)) , R, (kq.p) (Ra «p kq>) , are

(0, p + kg) -inverse to the Ra,(p,kq) , R
C

(pq)°>° "™

Ja (C(p 0)>eee (p mq)) Hf( (p, kq)) ®)
In these assumptions on the base of measurements LY, (5,1, )

C f
(p,0)> C(z.hq)’ e C(g,mq)
the unknown parameters C (9.0 C(p RS i. e. the estimations minimizing the

a,(kq,p) matrices respectlvely, We will

C

assume that the parameters C (p.mq)

(9.0)? are independent, i. e.

(xn, Vo, n)we will find the Bayesian estimations C

average risk:

r= E(W( (p,0g)2*"> ¢ C(p,Oq)”"’ C(p,mq)))a

(p,mq)>
where W (C,.0q)5+++> Cpmgy» €
bol of mathematical expectation.

Theorem. Under conditions (1)—(3), (4), (5) relative to the multidimension-
al-matrix polynomial regresswn and quadratic loss function the Bayesian esti-
mations C > C(p,q) " C(p,mq) of the parameters Cp,O)’ C(p’q), C(p’mq)
satisfy the following system of linear multidimensional-matrix equations:

m
0.(p+rq) 0.(p+kg) (17 Tin _
"R paaCoraa) + 20 Vi Clpng) =

(p.0g) >+ C(p)mq)) is loss function, £ is a sym-

:O,p (R;I SW;, )+O,(p+kq)(R—1

a,(p.hq) a(/ﬂ»q

) A=0,L..,m_(6)

where § , and S, , are defined by expressions
e x"x

n n
0,0 A _N00 kA
=Z (yuxu)’ Sxkxk _Z (xuxu)
p=1 p=l1
Vi, 18 (2p + kq +\q)-dimensional matrix,
_ 0,0, p-1
Vir= (R, Sxkx'“ ),
Rs_1 is (0, p)-inverse to the R, matrix, Vkai,z is transposed in accordance with
and

substitution T , matrix ¥, o a
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T Lpy>Viga s J(p)sLig
kX T | - - =

tpyr J (1o Ligr» Viga
We do not provide a proof of the theorem.

4. Bayesian multidimensional-matrix quadratic empirical regression

Assumption m = 2 in the expression (2) gives us quadratic regression function:

0, 0,2 2
Y= Clront (€t (€, n X)) ™
In works [11, 12] one can find the algorithm of calculation of the ML-estima-

ti fth t
1ons of the parameters C(p,Oq)’ C(p,lq), C(p,zq)

Here we obtain the Bayesian estimations of these parameters.

for the regression function (7).

The system of equations (6) for these parameters contains three equations:

0,(p+0q) 0,(p+0q) 0.0 0.(p+lq) (17 Ti0 0.(p+29) (171200 _
(R0 Cipog) )+ Vo (pog) )t V0 Clpag)t 25" Copng) =
0 N4 -1 0,(p+0q)
(R S x° )+ (Ra(p Oq)Ca,(p,Oq)) >

0,(p+lq) 0,(p+0q) Ty, 0,(p+lq) T, 0,(p+2q) D, _
TR, P Clpop )TN Clag )T Clpag) =

eirinCorp)t

=PRSS O IO(R 10 C

a(plg)~a(p, 1q))

0,(p+29) 0,(p+0q) (17102 0,(p+g) (1702 0,(p+2q) (7 D22 _
(R Clpag))+ V05" Cipog )+ N2 Copag )+ 5 Cng) =

OP(R S )+0 (F‘*‘Z‘l)(Ra (p, 2q)Ca (p, Zq))

Collecting similar terms we obtain the following system of equations:

0 1, 0.p+q) (771 Olp2a) T =
p((Ra ! o 4 I/(),((])O)C(p,Oq))+ p+q (VL(I]O (p,lq))_'_ P+2q (VZ’%"C(I,,zq)) =
0 0,
p(R S 10 )+ p(Ra (P, Oq)Cav(onq)) i

0, T 0,(p+q) T, 0,(p+2q) (17 2. —
P03 ClpogH T (R gy F Vit C a2 W51 Cyagy) =

a,(p.lq

="(R S, D+HP(RYC

a(p.lq) a,(p.lq)) >

0,p (VTo :C

0(p+q) 0,(p+29) L, _
o) F W, 1zc(p )R, 2y V23 )C ) =

O -1 0 2
P (R; S D)+ A q)( a(p 2q)Ca,(p,2q))'
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With notations
T
R(p,Oq) (R (p,0q) + I/(),%O) »
Ry =Ropi + V0
(p.1q) a,(p.lq) L/
R (R Tz 2)
(p.29) a(p, 2q)
=""(R S, TR, 00 Coinon)
0,p 0,(p+q)
B,.,="" (R S+ R, 10 Caipin)
B 0= (R S )+ oe2g . C )
(p29) a(p.2q) " a(p.2q)/ >

we rewrite this system in the form:
0,p 0.(p+q) (17110 0,(p+29) (1720 _
(R0 Cipoog) )+ (Mo Cpan)t+ (26" Clpag) = B,
0,p (17T 0,(p+q) 0,(p+29) (17 D1 _
Vo1 Cipop)t (Rip1g)Clpaa)t V21" Cirag) = Bipigy»
0.p 17702 0.(p+q) (17112 0,(p+29) _
(V05" Cpog)t V2" Cap)t (Ri)20Cp2) = Bipizg)-

12K

This system of equations can be solved by the elimination method.

5. Conclusion

In conclusion, we outline the main results of this work and note their particu-
larities.

1. The problem of the building of the Bayesian multidimensional-matrix
polynomial regression was formulated and solved. This regression has the fol-
lowing particularities compared with existing regressions: 1) the more general
multidimensional-matrix polynomial regression function, when input and output
variables are the multidimensional matrices, is considered; 2) a new untraditional
multidimensional-matrix form of the representation of the regression function in
the manner of multidimensional-matrix polynomial is used. Besides, the priory
distributions of the multidimensional-matrix parameters of the regression function
are supposed as Gaussian. The general solution of this problem is the system of the
linear multidimensional-matrix equations relative the multidimensional-matrix
parameters of the regression function.

2. On the base of the general solution the algorithm of the parameters calcula-
tion of the Bayesian multidimensional-matrix quadratic empirical regression func-
tions was obtained.
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3. The computer simulation of the quadratic Bayesian empirical regressions
function with two-dimensional input and output variables was performed. The
simulation confirmed the correctness of the theoretical results and illustrated the
important benefits of the Bayesian approach to have the algorithmic generality and
to obtain the estimations on the small number of the measurements.
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