Optical Materials 75 (2018) 821-826

Contents lists available at ScienceDirect

Optical Materials

journal homepage: www.elsevier.com/locate/optmat

Growth and spectroscopic properties of Sm³⁺:KY(WO₄)₂ crystal

M.P. Demesh^{a,*}, O.P. Dernovich^a, N.V. Gusakova^a, A.S. Yasukevich^a, A.A. Kornienko^b, E.B. Dunina^b, L.A. Fomicheva^c, A.A. Pavlyuk^d, N.V. Kuleshov^a

^a Center for Optical Materials and Technologies, Belarusian National Technical University, 65 Nezalezhnasti Ave., Minsk, 220013, Belarus

^b Vitebsk State Technological University, 72 Moskovskaya Ave., Vitebsk, 210035, Belarus

^c Belarusian State University of Informatics and Radioelectronics, 6 Brovki Str., Minsk, 220013, Belarus

ARTICLE INFO

Article history Received 8 November 2017 Received in revised form 28 November 2017 Accepted 1 December 2017 Available online 6 December 2017

Keywords: Double tungstate Samarium Crystal growth Absorption Luminescence Cross-relaxation

1. Introduction

There is increasing interest in finding new solid state media emitting in the visible spectral range. Rare-earth ions with emission in the visible spectral range are attractive for solid state lasers (without any nonlinear frequency conversion) and different applications: medicine (photodynamic therapy [1]), biophotonics, spectroscopy, quantum optics (atom trapping, atomic clocks, sodium guide stars [2]), communication, color displays, high density optical data storage and replacement dye lasers. Sm³⁺- doped materials could be promising for these applications due to its strong orange-yellow fluorescence. Spectroscopic properties have been evaluated for Sm-doped single crystals [3–12], glasses [13,14], ceramics [15] and phosphors [16]. These investigations have shown the Sm^{3+} as a promising ion for solid state optical materials. Moreover, laser oscillation in the Sm^{3+} doped LiLuF₄ and SrAl₁₂O₁₉ crystals was obtained successfully [17].

The family of potassium double tungstates α -KRE(WO₄)₂ (RE = Y and Ln) crystals activated by rare-earth ions is a well-known host

Corresponding author. E-mail address: demesh87@gmail.com (M.P. Demesh). for solid-state lasers [18]. The main advantage of these crystals as a laser media is relatively high values of absorption and emission cross sections of rare-earth dopants. Also, double tungstates can be doped with high concentration of active ions without significant fluorescence quenching because of relatively large distances between the dopants ions [19].

This paper is devoted to the comprehensive spectroscopic characterization of Sm³⁺:KY(WO₄)₂ (Sm:KYW) as a potential optical material. Polarization dependent absorption and fluorescence spectra were recorded. The conventional Judd-Ofelt theory and theories which take into account the influence of excited configurations were applied to determine the radiative properties of Sm³⁺ ions. Fluorescence decay curve of the ⁴G_{5/2} level was registered and the excited state relaxation dynamics was discussed.

2. Experimental details

Sm:KYW crystal was grown by the modified Czochralski technique at low temperature gradient (<1deg/cm) using the [010] oriented seed crystal from the potassium ditungstate $(K_2W_2O_7)$ flux [20]. The mass content of the Sm^{3+} ions in the KYW crystal was determined using an ICP spectrometer IRIS Intrepid HR Duo (Thermal Elemental) and was found to be 0.434 ± 0.004 wt%. The

^d Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, 3 Acad. Lavrentiev Ave., Novosibirsk, 630090, Russia

ABSTRACT

A Sm³⁺:KY(WO₄)₂ crystal was grown by the modified Czochralski technique. Polarized absorption and fluorescence spectra, as well as a fluorescence decay curve, were recorded at room temperature. Radiative properties such as emission probabilities, branching ratios and radiative lifetimes were investigated within the framework of the Judd-Ofelt theory as well as the theory of f-f transition intensities which takes into account the influence of the excited configurations. Emission cross section spectra were determined. ⁴G_{5/2} fluorescence decay was analyzed within the framework of the Inokuti-Hirayama model. The spectroscopic properties of Sm:KYW crystal were compared with those of other Sm³⁺doped materials.

© 2017 Elsevier B.V. All rights reserved.

samarium concentration was calculated to be $1.14 \cdot 10^{20}$ cm⁻³ using measured volumetric crystal density of 6.58 g/cm³. The as-grown crystal (see Fig. 1) was clear and had a good optical quality.

KYW is a biaxial crystal, with a monoclinic structure (space group $C_{2h}^6 - 2/m$, Z = 4). Unit cell parameters for crystallographic setting I2/c are a = 8.05 Å, b = 10.35 Å, c = 7.54 Å, $\beta = 94^\circ$. There are two possible crystallographic settings C2/c and I2/c for this space group, however, the last one better describes the crystal habit [18]. Optical properties of KYW crystal are different for directions along the optical indicatrix axes N_p , N_m , N_g . Principal axis N_p coincides with the crystallographic **b** axis ([010]). The other two ones lie in the **a-c** plane. The principal axis N_g is rotated at 19° anticlockwise from **c** crystallographic axis. Its orientation was determined using a polarizing microscope POLAM-L213-BE (LOMO).

Samarium ions substitute yttrium ions in the KYW crystal and occupy the C₂ local point symmetry positions. The ionic radius of Sm^{3+} ion (1.079 Å) is close to one of the Y^{3+} (1.019 Å) for eight-fold coordination [21]. The separation between Y-Y pairs affects the energy transfer between the dopant ions. For KYW crystal this distance in the YO₈ chain parallel to the [101] direction is 0.406(3) nm and between different chains is 0.604(2) nm [18].

For the spectroscopic investigations a sample of Sm:KYW crystal was cut parallel to principal optical plains. The absorption and luminescence spectra of the Sm:KYW crystal were measured at room temperature with light polarized parallel to the three principal optical indicatrix axes. The absorption spectra in polarized light were recorded by a CARY 5000 spectrophotometer with a spectral bandwidth (SBW) of 0.1 nm in the UV and visible ranges and 0.3 nm in the NIR spectral range.

Fluorescence spectra were recorded under an InGaN-laser diode excitation at 405 nm. The luminescence emission was collected by a wide-aperture lens and focused onto the entrance slit of a mono-chromator MDR-23 (SBW = 0.1 nm). The signal was detected with a Hamamatsu C5460-01 APD module connected to a SR830 Standford lock-in amplifier. A Glan-Taylor polarizer was used to separate light polarizations. A gray body light source with a color temperature of 2900 K was used to correct the measured spectra with respect to detector response, grating efficiency, and other optical elements.

The decay curve of the upper manifold (${}^{4}G_{5/2}$) was registered under pulsed excitation at 480 nm by means of an optical parametric oscillator LOTIS TII LT-2214, which was pumped by a third harmonic of the flashlamp-pumped Q-switched Nd:YAG laser LOTIS TII LS-2137. The fluorescence emission at the wavelength of 649 nm was imaged by wide aperture lens onto the entrance slit of a monochromator MDR-12. The signal was detected by a fast Hamamatsu photodetector C5460 connected to an oscilloscope with a bandwidth of 500 MHz.

Fig. 1. Sm-doped KYW crystal boule.

3. Results and discussion

3.1. Absorption spectra

The polarized dependent absorption spectra of the Sm:KYW were recorded in the 350-570 nm and 970-3100 nm spectral ranges. The spectra were corrected for the Fresnel losses using the Sellmeier's coefficients for the KYW crystal [18]. The spectra of absorption cross section σ_{GSA} in the visible and NIR spectral ranges are shown in Fig. 2. The absorption bands within the 4f⁵ samarium configuration can be divided into two groups. The first one, appearing in the NIR region consists of quite intense lines which are assigned to the spin-allowed transitions from the ground state ${}^{6}H_{5/}$ $_{2}$ to the excited multiplets ${}^{6}H_{l'}$ and ${}^{6}F_{l'}$. Another group located in the UV and visible regions consists of a great number of closely spaced levels. Spin forbidden transitions occur between these levels and the ground state level. Hence the intensities of lines are weak, excepting spin allowed ${}^{6}H_{5/2} \rightarrow {}^{6}P_{l'}$ transitions. It should be noted, that identification of observed absorption bands in the UV-vis spectral range is difficult due to their strong levels overlapping. Assignments of the spectral lines for the excited states from the ground state were performed according to Ref. [22].

The absorption spectra of the Sm:KYW exhibits significant polarization dependence with dominant $E||N_m$ polarization. The strongest transition ${}^{6}\text{H}_{5/2} \rightarrow {}^{6}\text{P}_{3/2}$ has a peak value of absorption cross section of $9.2 \cdot 10^{-20}$ cm² at 404.6 nm for $E||N_m$ polarization. This value is larger than observed in Sm:NaGd(MoO₄)₂ [6], Sm:GdVO₄ [11], Sm:(Ca,Mg,Zr)GGG [12] Sm,Mg:SRA, [17].

3.2. Analysis of f-f transition intensities

To determine the transition intensities of Sm^{3+} ion in KYW crystal the Judd-Ofelt theory [23,24] was applied. The detailed description of the Judd-Ofelt analysis can be found in many papers but here we provide basics of this procedure. Measured absorption spectra were used to calculate experimental oscillator strengths f_{exp} between manifolds with quantum numbers *J* and *J*':

$$f_{\exp}(JJ') = \frac{mc^2}{\pi e^2 N_0 \overline{\lambda}^2} \int \overline{\alpha_{JJ'}(\lambda)} d\lambda, \tag{1}$$

where $\overline{\alpha_{IJ'}(\lambda)} = [\alpha_{Np}(\lambda) + \alpha_{Nm}(\lambda) + \alpha_{Ng}(\lambda)]/3$ is the polarization averaged absorption coefficient, $\overline{\lambda}$ is the weighted mean wavelength, N_0 is the concentration of Sm³⁺ ions. It should be noticed, that contribution of the magnetic dipole (MD) transitions ($\Delta J = 0$, ± 1) from the ground state level to the several excited state levels was taken into account and, consequently, the electric dipole (ED) oscillator strengths f_{exp}^{ed} were obtained. The values of the double reduced-matrix elements $||U^{(t)}||$ were calculated from the intermediate coupling approximation using the free-ion parameters for samarium ion in glasses [25]. The values of experimental and calculated ED absorption oscillator strengths f_{exp}^{ed} and f_{J0}^{ed} , respectively, and the root mean square deviation are given in Table 1. Three phenomenological intensity parameters Ω_t were evaluated by the least-square fitting procedure and are presented in Table 2.

The influence of the excited configurations on the absorption and luminescence spectral characteristics in the case of Sm³⁺ ions may be significant [26]. It was shown [26], that applying the theory of *f*-*f* transition intensities, which takes into account the influence of $4f^{N-1}5d$ excited configuration, improves the agreement of the calculated results with the experimental data. Thus, to determine the radiative properties of Sm³⁺ ion in KYW crystal we applied the theory of *f*-*f* transition intensities for the system with the

Fig. 2. Polarized ground absorption cross sections of Sm:KYW. Please note the different scales.

Table 1 Experimental (f_{\exp}^{ed}) and calculated (f^{ed}) oscillator strength.

Transition ${}^{6}\text{H}_{5/2} \rightarrow$	Wavelength range (nm)	$\overline{\lambda}$ (nm)	$f_{ m exp}^{ed}$, 10^{-6}	f_{JO}^{ed} , 10^{-6}	f_{MJO}^{ed} , 10^{-6}	f_{ICI}^{ed} , 10 ⁻⁶
⁶ H _{11/2}	2400-3100	2744	1.406	1.188	1.166	1.347
⁶ H _{13/2}	1780-2130	1957	0.292	0.347	0.342	0.389
${}^{6}F_{1/2} + {}^{6}H_{15/2} + {}^{6}F_{3/2} + {}^{6}F_{5/2}$	1325-1700	1443	15.083	15.082	15.084	15.084
⁶ F _{7/2}	1180-1320	1251	6.5	6.509	6.509	6.504
⁶ F _{9/2}	1035-1145	1092	3.535	3.572	3.578	3.532
⁶ F _{11/2}	920-980	953	0.478	0.561	0.565	0.531
${}^{4}G_{5/2}$	545-575	561	0.086	0.076	0.078	0.079
${}^{4}F_{3/2}$	526-540	531	0.146	0.017	0.018	0.02
RMS deviation				$0.11 \cdot 10^{-6}$	$0.13 \cdot 10^{-6}$	$0.1 \cdot 10^{-6}$

Table 2

Intensity parameters (Ω_t) for Sm³⁺-doped crystals.

Crystal	$\Omega_2 (10^{-20}{ m cm}^2)$	$\Omega_4 (10^{-20} \mathrm{cm}^2)$	$\Omega_6 (10^{-20}{ m cm}^2)$	Refs.
Sm:KYW (JO)	10.63	7.16	3.074	This work
Sm:KYW (MJO)	11.567	7.722	3.303	
		$\alpha = 0.018 \cdot 10^4 \text{ cm}$		
Sm:KYW (ICI)	14	7.49	1.11	
	$R_2 = 0.052 \cdot 10^4 \text{ cm}$	$R_4 = 0.016 \cdot 10^4 \text{ cm}$	$R_6 = -0.467 \cdot 10^4 \text{ cm}$	
Sm:NaGd(MoO ₄) ₂	8.65	4.4	1.96	[6]
Sm:LiNbO3	2.11	4.5	1.45	[8]
Sm:CaNb ₂ O ₆	8.02	5.37	1.45	[9]

intermediate configuration interaction [27] (denoted as the ICI approximation). The line strength of the ED transition from initial J manifold to some terminal J' manifold, in this case, can be evaluated by the formula:

parameters related to the configuration interaction.

Additionally, we applied the modified Judd-Ofelt theory (MJO) [28]. In this case, only the excited configuration of the opposite parity makes a significant contribution, and the line strength can be

$$S_{calc}^{ed}(JJ') = \sum_{t=2,4,6} \mathcal{Q}_t \Big[1 + 2R_t \Big(E_J + E_{J'} - 2E_f^0 \Big) \Big] \cdot \Big| \Big\langle 4f^n [SL]J \Big\| U^{(t)} \Big\| 4f^n [S'L']J' \Big\rangle \Big|^2,$$

here E_J and $E_{J'}$ are the energies of the combined multiplets, E_{f}^0 is the average energy of $4f^N$ configuration and R_t are additional

obtained from the following equation:

(2)

$$S_{calc}^{ed}(JJ') = \sum_{t=2,4,6} \Omega_t \left[1 + 2\alpha \left(E_J + E_{J'} - 2E_f^0 \right) \right] \cdot \left| \left\langle 4f^n [SL]J \right\| U^{(t)} \right\| 4f^n [S'L']J' \right\rangle \right|^2$$

The values of the experimental and the calculated ED absorption oscillator strengths f_{exp}^{ed} and f_{calc}^{ed} , respectively, are given in Table 1.

The obtained intensity parameters Ω_t for Sm:KYW are listed in Table 2 and compared with ones for other samarium doped crystals. The high value of the parameter Ω_2 suggests the high degree of covalency of the bonds between rare earth ions and their ligands [29].

Obtained intensity parameters were used to calculate ED radiative transition probabilities A_{ed} . Several transitions from the upper ⁴G_{5/2} level to the lower multiplets fulfill the selection rules for MD transitions. MD radiative transition probabilities A_{md} can be calculated separately and added to the ED transition probabilities. The total radiative transition probability can be expressed as [22]:

$$A_{\Sigma}(JJ') = \frac{64\pi^4 e^2}{3h(2J+1)\overline{\lambda}^3} \left[\frac{n(n^2+2)^2}{9} S_{ed} + n^3 S_{md} \right].$$
(4)

The calculated luminescence branching ratios for $J' \rightarrow J$ transitions $\beta_{J'J} = A(J'J) / \sum A(J'J)$ and the radiative lifetime $\tau_{rad} = 1 / \sum A(J'J)$ are presented in Table 3.

As can be seen from Table 3 there is no significant difference in the results obtained by using the three theories (JO, MJO and ICI approximation) for Sm:KYW crystal, in contrast with the Sm:LiNbO₃ crystal [26]. It indicates a small effect of the excited configurations on the absorption spectra in our case.

3.3. Fluorescence properties

Polarized fluorescence spectra of Sm:KYW in the range of 540–970 nm were recorded under excitation at 405 nm and corrected to the spectral response of the luminescence set-up. Overview of polarization averaged fluorescence spectrum is presented in Fig. 3. The observed emission bands are related to the radiative transitions from ${}^{4}G_{5/2}$ manifold to the lower lying levels. Manifold to manifold branching ratios for the transitions from the upper state the ${}^{4}G_{5/2}$ to the lower lying states are found from:

$$\beta_{J'J} = \frac{\int \lambda I_{J'J}(\lambda) d\lambda}{\sum_{J} \int \lambda I_{J'J}(\lambda) d\lambda}$$
(5)

here $I_{J'J}(\lambda)$ is the spectral density fluorescence power in arbitrary units. The experimental averaged values of $\beta_{J'J}$ over three polarizations with respect to calculated ones are presented in Table 4. It can be seen that measured and calculated values are in a good agreement. It is evident that almost 90% emitted energy is distributed in the visible spectral range. In the case of Sm:KYW, Sm:NaGd(MoO₄)₂ [6] and Sm:CaNb₂O₆ [7] almost the half of the emitted energy belongs to the ${}^{4}G_{5/2} \rightarrow {}^{6}H_{9/2}$ transition. But for the most of Sm³⁺-doped materials, the transition is ${}^{4}G_{5/2} \rightarrow {}^{6}H_{7/2}$ has the highest intensity [2,5,7,8,10–17].

(3)

The stimulated emission (SE) cross sections σ_{SE} for the most intense transitions ${}^{4}G_{5/2} \rightarrow {}^{6}H_{J}$ (J = 5/2, 7/2, 9/2 and 11/2) were calculated by the Füchtbauer–Ladenburg formula [30]:

$$\tau_{SE}^{\alpha}(\lambda) = \beta \frac{\lambda^5}{8\pi c n^2 \tau_{rad}} \frac{3I^{\alpha}(\lambda)}{\int \left[I^{Np}(\lambda) + I^{Nm}(\lambda) + I^{Ng}(\lambda)\right] \lambda d\lambda},\tag{6}$$

here $I^{\alpha}(\lambda)$ is the spectral density of fluorescence power ($\alpha = N_m, N_p$ and N_g polarizations), τ_{rad} is the radiative lifetime of the ${}^4G_{5/2}$ level, β is the branching ratio of the corresponding transition. The obtained SE-spectra are displayed in Fig. 4 for the wavelength range between 555 nm and 730 nm. The highest cross section was found

Fig. 3. Polarization averaged fluorescence spectra of Sm:KYW crystal.

Table 3 The calculated radiative probabilities (A_{Σ}), fluorescence branching ratios (β) in Sm:KYW crystal.

Transition ${}^{4}G_{5/2} \rightarrow$	$\overline{\lambda}$ (nm)	A_{Σ} (JO) (s ⁻¹)	A_{Σ} (MJO) (s ⁻¹)	A_{Σ} (ICI) (s-1)	β_{calc} (JO)	β_{calc} (MJO)	β_{calc} (ICI)
⁶ H _{5/2}	560	57.98	59.34	60.29	0.0048	0.0465	0.0471
⁶ H _{7/2}	595	331.13	344.29	300.96	0.2725	0.2697	0.2349
⁶ H _{9/2}	640	529.81	558.74	601.47	0.436	0.4377	0.4695
⁶ H _{11/2}	701	111.42	117.32	106.9	0.0917	0.0919	0.0834
⁶ H _{13/2}	772	15.17	16	8.5	0.0125	0.0125	0.0066
⁶ F _{1/2}	869	13.17	14.13	16.62	0.0108	0.011	0.013
⁶ H _{15/2}	877	27.44	28.68	61.74	0.0226	0.0225	0.0248
⁶ F _{3/2}	887	0.92	0.98	0.44	0.0008	0.0008	0.0004
⁶ F _{5/2}	923	99.34	103.32	121.9	0.0818	0.0833	0.0952
⁶ F _{7/2}	1007	13.09	13.89	13.3	0.0108	0.0109	0.0104
⁶ F _{9/2}	1131	14.69	15.91	18.4	0.0121	0.0125	0.0144
⁶ F _{11/2}	1343	0.89	0.92	0.59	0.0007	0.0008	0.0005
$ au_{rad}$ (µs)					823	783	780

Table 4 Measured (β_{II}) and calculated (β_{calc}) branching ratios for the ${}^{4}G_{5/2}$ level in Sm:KYW crystal.

Transition ${}^{4}G_{5/2} \rightarrow$	Wavelength range, nm	β_{calc} (J-O)	β_{calc} (MJO)	β_{calc} (ICI)	$\beta_{J'J}$
⁶ H _{5/2}	545-580	4.8	4.6	4.7	5.8
⁶ H _{7/2}	580-625	27.3	27	23.5	26.2
⁶ H _{9/2}	625-678	43.6	43.8	46.9	43.9
⁶ H _{11/2}	685-737	9.2	9.2	8.3	8.1
⁶ H _{13/2}	765-810	1.2	1.3	0.7	0.8
${}^{6}F_{1/2, 3/2, 5/2} + {}^{6}H_{15/2}$	865–970	11.6	11.8	13.3	15.2

Fig. 4. Stimulated emission cross sections spectra of Sm:KYW crystal.

to be $7.2 \cdot 10^{-21}$ cm² ($\lambda = 649.7$ nm) for N_p polarization and $5.2 \cdot 10^{-21}$ cm² ($\lambda = 651.6$ nm) for N_m polarization. In Table 5 we compare obtained in this study emission spectroscopic parameters of Sm:KYW crystal with ones of other Sm-doped materials.

3.4. Fluorescence dynamics

The fluorescence lifetime of the ${}^{4}G_{5/2}$ manifold was measured at 650 nm (${}^{4}G_{5/2} \rightarrow {}^{6}H_{7/2}$ transition) under excitation at 480 nm. Fig. 5 shows a semilog plot of ${}^{4}G_{5/2}$ fluorescence decay curve, which has a non-exponential character due to the contribution of nonradiative cross-relaxation processes [31]. For Sm³⁺ ions the following resonance cross-relaxation mechanisms are possible: ${}^{4}G_{5/2} + {}^{6}F_{5/2} = {}^{6}H_{5/2} + {}^{6}F_{11/2}$ and ${}^{4}G_{5/2} + {}^{6}F_{11/2} = {}^{6}H_{5/2} + {}^{6}F_{5/2}$. Additionally, phonon-assisted cross-relaxation processes can occur. The decay curve can be fitted by the Inokuti-Hirayama (IH) model [32] for dipole–dipole energy transfer mechanism using the following expression:

Fig. 5. Fluorescence decay curve of the ${}^{4}G_{5/2}$ multiplet of Sm:KYW crystal. The solid line represents fitted decay assuming dipole-dipole interactions.

$$I(t) = I_0 \exp\left(-t/\tau_0 - \gamma\sqrt{t}\right) \tag{7}$$

here τ_0 is an intrinsic lifetime of donor ions in the absence of an energy transfer. The parameter γ determines disordered static energy transfer and can be found by the following formula:

$$\gamma = \frac{4\pi^{3/2}}{3} N_0 R_0^3 \tag{8}$$

here R_0 is the critical transfer distance at which the nonradiative energy transfer rate becomes equal to the spontaneous emission rate [32]. The fitting procedure provides $\gamma = 18.2 \text{ s}^{-1/2}$ and $\tau_0 = 0.78$ ms. The comparable values of τ_{rad} and τ_0 show that there is no sufficient energy migration among the donors and we have dominantly the static disordered decay in this case [33]. The critical distance R_0 was derived as 0.84 nm and the average distance between samarium ions $R_{av} = (4\pi N_0/3)^{-1/3}$ was estimated to be 1.3 nm. Since the critical distance R_0 has a lower value than R_{av} it is expected that cross-relaxation processes which depopulate ${}^4G_{5/2}$ level in the Sm³⁺(1.8 at%):KYW crystal are inefficient. The donoracceptor energy transfer parameter $C_{DA} = R_0^6 \cdot \tau_0^{-1}$ was evaluated to be 4.6 $\cdot 10^{-52}$ m⁶s⁻¹.

Mean fluorescence lifetime τ_{f} was estimated to be 612 μs by the formula:

Table 5			
Emission spectroscopic	properties of some	Sm ³⁺ -doped	crystals.

Crystal	N_{Sm} , (10 ²⁰ cm ⁻³)	λ_{peak} (nm)	$\sigma_{SE} (10^{-21} { m cm}^2)$	$ au_{meas}$ (µs)	$ au_{rad}$ (µs)	η %	Refs.
Sm:Gd ₂ SiO ₅	0.48	601	3.54	1.74	1.78	98	[5]
Sm:NaGd(MoO ₄) ₂	1.69	646	3.13	0.56	0.98	57	[6]
Sm:SrAl ₁₂ O ₁₉	1.5	593	1.3	2.33	2.76	84	[7]
Sm:LiNbO₃	1.2	603	2.5	0.84	1.12	75	[8]
Sm:CaNb ₂ O ₆	1.8	657	3	0.73	0.78	94	[9]
Sm:LuLiF ₄	0.74	605	1.2	2.65	4.6	58	[10]
Sm:KYW	1.14	650	7.2	0.612	0.78	78	This work

$$\tau_f = \frac{\int t I(\lambda) d\lambda}{\int I(\lambda) d\lambda}.$$
(9)

The calculated radiative and experimentally determined emission lifetimes allow estimating the quantum yield of fluorescence which is about 78%. Table 5 lists the values of fluorescence lifetime and quantum efficiency η of the ${}^{4}G_{5/2}$ multiplet of several Sm $^{3+}$ -doped crystals. The obtained results allow making a conclusion, that Sm(1.8 at%):KYW crystal has the quantum yield comparable to ones for other Sm-doped crystals.

4. Conclusions

We report on modified Czochralski growth and spectroscopic study of a 1.8 at% Sm³⁺-doped KY(WO₄)₂ crystal. The spin allowed GSA-transition at 404.6 nm possesses a peak value of absorption cross sections of $9.2 \cdot 10^{-20}$ cm² for $E||N_m$ polarization. The highest stimulated emission cross sections of $7.2 \cdot 10^{-21}$ cm² and $5.2 \cdot 10^{-21}$ cm² were found in the orange spectral range at 649.7 nm $(N_n$ -polarization) and 651.6 nm $(N_m$ -polarization), respectively. To the best of our knowledge, Sm:KYW has the highest values of σ_{GSA} and σ_{SE} among known Sm-doped materials. The *f*-*f* transition intensities were calculated by applying the conventional and the modified Judd-Ofelt theories as well as the theory for the system with the intermediate configuration interaction. Based on these calculations the radiative lifetime of the upper state ${}^{4}G_{5/2}$ was derived to be about of 0.78 ms. The fluoresce lifetime and quantum efficiency of the ${}^{4}G_{5/2}$ multiplet were found to be 0.61 ms and 78%, respectively.

Acknowledgment

Authors greatly appreciate Dr. Rainer Bertram from the Institute for Crystal Growth (Berlin) for the measurement of the Sm³⁺ ions concentration.

References

- B.J. Chen, L.F. Shen, E.Y.B. Pun, H. Lin, Sm³⁺-doped germanate glass channel waveguide as light source for minimally invasive photodynamic therapy surgery, Opt. Express 20 (2011) 879–889.
- [2] L.A. Thompson, C.A. Gerdner, Experiments on laser guide stars at Mauna Kea Observatory or adaptive imaging in astronomy, Nature 328 (1987) 229-231.
- [3] D. Pugh-Thomas, Spectroscopic properties and Judd–Ofelt analysis of BaY₂F₈: Sm³⁺, J. Opt. Soc. Am. B 31 (2014) 1777–1785.
- [4] J.B. Gruber, M.E. Hills, M.P. Nadler, M.R. Kokta, C.A. Morison, Absorption spectra and energy levels of Sm³⁺:Y₃Al₅O₁₂, Chem. Phys. 113 (1987) 175–186.
- [5] A. Strzęp, R. Lisiecki, P. Solarz, G. Dominiak-Dzik, W. Ryba-Romanowski, M. Berkowski, Optical spectra and excited state relaxation dynamics of Sm³⁺ in Gd₂SiO₅ single crystal, Appl. Phys. B 106 (2012) 85–93.
- [6] J. Huang, J. Huang, Y. Lin, X. Gong, Y. Chen, Z. Luo, Y. Huang, Spectroscopic properties of Sm³⁺-doped NaGd(MoO₄)₂ crystal for visible laser application, J. Lumin. 187 (2017) 235–239.
- [7] C. Gheorghe, L. Gheorghe, A. Achim, S. Hau, R.D. Avram, Optical properties of Sm³⁺ doped strontium hexaaluminate single crystals, J. Alloys Compd. 622 (2015) 296–302.
- [8] G. Dominiak-Dzik, Sm³⁺-doped LiNbO₃ crystal, optical properties and emission cross-sections, J. Alloys Compd. 391 (2005) 23–32.

- [9] A. Strzęp, W. Ryba-Romanowski, R. Lisiecki, X. Xu, J. Xu, J. Di, Spectroscopic characterization of CaNb₂O₆ single crystal doped with samarium ions, J. Lumin. 151 (2004) 123–129.
- [10] G.Q. Wang, X.H. Gong, Y.F. Lin, Y.J. Chen, J.H. Huang, Z.D. Luo, Y.D. Huang, Polarized spectral properties of Sm³⁺:LiLuF₄ crystal for visible laser application, Opt. Mater. 37 (2014) 229–234.
- [11] X. He, L. Zhang, G. Chen, Y. Hang, Crystal growth and spectral properties of Sm:GdVO, J. Alloys Compd. 467 (2009) 366–369.
- [12] W. Zhou, Q. Zhang, J. Xiao, J. Luo, W. Liu, H. Jiang, S. Yin, Sm³⁺-doped (Ca,Mg,Zr)GGG crystal: a potential reddish-orange laser crystal, J. Alloys Compd. 491 (2010) 618–622.
- [13] R. Vijaya, V. Venkatramu, P. Babu, C.K. Jayasankara, U.R. Rodríguez-Mendoza, V. Lavín, Spectroscopic properties of Sm³⁺ ions in phosphate and fluorophosphate glasses, J. Non-Cryst. Solids 365 (2013) 85–92.
- [14] Sk. Mahamuda, K. Swapna, M. Venkateswarlu, A.S. Rao, S. Shakya, G.V. Prakash, Spectral characterizations of Sm³⁺ ions doped Oxy-fluoroborate glasses for visible orange luminescent applications, J. Lumin. 154 (2014) 410–424.
- [15] C. Gheorghe, A. Lupei, F.M. Voicu, C. Tiseanu, Emission properties and site occupation of Sm³⁺ ion doped Lu₂O₃ translucent ceramics, J. Alloys Compd. 588 (2014) 388–393.
- [16] Yu-C. Li, Yen-H. Chang, Yu-F. Lin, Yee-S. Chang, Yi-J. Lin, Synthesis and luminescent properties of Ln³⁺ (Eu³⁺, Sm³⁺, Dy³⁺)-doped lanthanum aluminum germanate LaAlGe₂O₇ phosphors, J. Alloys Compd. 439 (2007) 367–375.
- [17] D.-T. Marzahl, P.W. Metz, C. Kränkel, G. Huber, Spectroscopy and laser operation of Sm³⁺-doped lithium lutetium tetrafluoride (LiLuF₄) and strontium hexaaluminate (SrAl₁₂O₁₉), Opt. Express 23 (2015) 21118–21127.
- [18] A.A. Kaminskii, A.F. Konstantinova, V.P. Orekhova, A.V. Butashin, R.F. Klevtsova, A.A. Pavlyuk, Optical and nonlinear laser properties of the χ⁽³⁾active monoclinic α-KY(WO₄)₂ crystals, Cryst. Rep. 46 (2001) 665–672.
- [19] P. Klopp, U. Griebner, V. Petrov, X. Mateos, M.A. Bursukova, M.C. Pujol, R. Sole, J. Gavalda, M. Aguilo, F. Güell, J. Massons, T. Kirilov, F. Diaz, Laser operation of the new stoichiometric crystal KYb(WO₄)₂, Appl. Phys. B 74 (2002) 185–189.
- [20] A.A. Pavlyuk, Ya.V. Vasiliev, L.Yu. Kharchenko, F.A. Kuznetsov, Low thermal gradient technique and method for large oxide crystals growth from melt and flux, Proc. Asia Pac. Soc. Adv. Mater. (1993) 164–171. APSAM-92, Shanghai, China.
- [21] R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. Sect. A 32 (1976) 751–767.
- [22] W.T. Carnall, H. Crosswhite, H.M. Crosswhite, Energy Level Structure and Transition Probabilities in the Spectra of the Trivalent Lanthanides in LaF3 – Annual Report, Argonne National Laboratory, 1975.
- [23] B.R. Judd, Optical absorption intensities of rare-earth ions, Phys. Rev. 127 (1962) 750-761.
- [24] G.S. Ofelt, Intensities of crystal spectra of rare-earth ions, J. Phys. Chem. 37 (1962) 511–520.
- [25] C.K. Jayasankar, E. Rukmini, Optical properties of Sm³⁺ ions in zinc and alkali zinc borosulphate glasses, Opt. Mater. 8 (1997) 193–205.
- [26] E.B. Dunina, A.A. Kornienko, Influence of excited configurations on the intensities of electric-dipole transitions of rare-earth ions, Opt. Spectrosc. 116 (2014) 706–711.
- [27] A.A. Kornienko, A.A. Kaminskii, E.B. Dunina, Dependence of the line strength of *f*-*f* transitions on the manifold energy. II. Analysis of Pr³⁺ in KPrP₄O₁₂, Phys. Status Solidi B 157 (1990) 267–273.
- [28] R.T. Genova, I.R. Martin, U.R. Rodriguez-Mendoza, F. Lahoz, A.D. Lozano-Gorrin, P. Nunez, J. Gonzalez-Platas, V. Lavin, Optical intensities of Pr³⁺ ions in transpatrent oxyfluoride glass and glass-ceramic. Applications of the standard and modified Judd-Ofelt theories, J. Alloys Compd. 380 (2004) 167–172.
- [29] S.A. Davis, F.S. Richardson, Hypersensitivity in the absorption spectra of Erbium (III) complexes in aqueous solution, Inorg. Chem. 23 (1984) 184–189.
- [30] S.A. Payne, L.L. Chase, L.K. Smith, W.L. Kway, W.F. Krupke, Infrared crosssection measurements for crystals doped with Er³⁺, Tm³⁺, and Ho³⁺, IEEE J. Quant. Electron. 28 (1992) 2619–2630.
- [31] A.G. Avanesov, T.T. Basiev, Yu.K. Voron'ko, B.I. Denker, G.C. Maksimova, V.A. Myzina, V.V. Osiko, V.S. Fedorov, Investigation of spatial distribution impurities solids by the method of kinetic luminescent spectroscopy, Sov. Phys. JETP 57 (1983) 596–604.
- [32] M. Inokuti, F. Hirayama, Influence of energy transfer by the exchange mechanism on donor luminescence, J. Phys. Chem. 43 (1965) 1978–1989.
- [33] Yu.K. Voronko, T.G. Mamedov, V.V. Osiko, A.M. Prokhorov, V.P. Sakun, I.A. Shcherbakov, Sov. Phys. JETP 44 (1976) 251-261.

826