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1. INTRODUCTION

Let T := R/27Z and a € R. We introduce 4, : L*(T) — L*(T) to be defined by
Go () () = TNy (z) (1.1)

Tlu(z)] = /QW d9/ )2 ”u”;; Dy, (1.2)

To get some insight, Z[u(z)] can be though of as the unique periodic primitive of |u|?> with zero
average, therefore we can formally write

Tu(a)] = 07 (lul? — 5 Jull3.)

We will much exploit this intuition in the sequel.

where

An alternative formulation of (1.1) is through the initial value problem
d
%%yu =iZlY Y%, Yu=u. (1.3)

The map a — ¥, is a one parameter group of transformations of L?(T), in fact
% =1d and Y ©90, = Yai 410, , forany aj,as € R. (1.4)

This gauge was introduced in the periodic setting in [16] in the context of the derivative nonlinear
Schodinger equation (DNLS). It has been conveniently used in different contexts regarding the
DNLS: just to mention few examples, the study of the local well-posedness at low regularity is
based on the use of such a gauge transformation [16, 15, 8] and it revealed to be crucial also in the
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proof of the invariance of the Gibbs measures associated with the integrals of motions of DNLS
[22, 12].

In this paper we investigate the way these maps transform the Gaussian measure on L?(T)
with covariance operator [1 + (—A)®]~! for s > 1. Thanks to separability and the isomorphism
between C2N+1 and

Ey :=spanc{e"™® : |n| < N}
the space L?(T) inherits the measurable-space structure by a standard limit procedure and we will

denote by %(L*(T)) the Borel o-algebra on L?(T). We denote by 7, the Gaussian measure on
P(L*(T)) induced by the map

W ZMei"$7 (1.5)

1
nez (L4 [nf>*)2

where {g,(w)}nez are independent, identically distributed complex centred Gaussian random vari-
ables with unitary variance. For any s € R the triple (L?(T), %(L?(T)),s) is a Gaussian proba-
bility space satisfying the concentration properties:

%( N HS'(T)>_1, 73<H55(T)>_0.

’ _1
s'<s 2

The LP spaces associated to 7, are denoted by LP(7,). For more details about this construction
we refer for instance to [19].

Our main result is the quasi-invariance under the group {%,}.cr of 7s restricted to a ball
in L*(T), of arbitrary size, defined by B(R) := {u : |lu||z2(r) < R} for all s > 1. Henceforth we
set for brevity

Fs(A) = vs(An{[lull <R}),  AeB(LX(T)). (1.6)

Theorem 1.1. Let s > %, R > 0. Then for every a € R there is pg > 1 and po € LP(7s) for all
p € [1,po) such that

(3 0 0)(A) = /A palu)ia(du), A€ BIAT)). (17)

The restriction of the measure to a ball B(R) of L? is possible as ¥, leaves invariant the L?(T)
norm for all . It is worthy to remark that, unlike all the other works on the subject [31, 23, 11,
12, 3], we are not imposing any smallness assumption on R. This observation may be useful in the
attempt of proving probabilistc global well-posedness for DNLS without imposing any smallness
assumption on the L? norm. Remarkable results in this direction are [20, 17] and [I| where the
authors prove that DNLS is globally well-posed on the real line R in weighted and in translation
invariant Sobolev spaces, respectively. The well-posedness in the periodic setting and large L?
norm remains a challenging open problem.

The transformation of Gaussian measures have been intensively studied since long, starting from
the fundamental theorem of Cameron-Martin [4] for shift maps. The Cameron-Martin theorem
was then extended in two non-overlapping directions, by Girsanov [13] (for non-anticipative maps)
and by Kuo [18] and Ramer [29] (for anticipative maps). Nowadays these results are well estab-
lished and the lay at the very basis of the development of stochastic calculus, but they have been
achieved primarily by a functional analytic approach, exploiting the properties of the generator of
the transformation, which needs to be at least Hilbert-Schmidt for anticipative maps. Further de-
velopments have been achieved by means of Malliavin calculus [5, 6, 21, 37], essentially identifying
more general classes of maps allowing quasi-invariance of Gaussian measures in functional spaces.

The problem witnessed recently a resurgence of interest mainly concerning the evolution of the
Brownian motion (or related processes) along the flow of dispersive PDEs [33, 24, 25, 26, 27, 28, 14,
30, 10, 7]. A new analytic approach was introduced for flows of dispersive nonlinear equations in



QUASI-INVARIANCE OF GAUSSIAN MEASURES 3

[33]. The argument (inspired by the previous works [34, 35, 36, 9]), exploits directly the properties
of the flow of the PDE under consideration. However, this technique does not provide an explicit
approximation of the density of the infinite dimensional change of coordinates induced by the flow.

Given this framework, the DNLS gauge transformations ¥, represent an interesting mathemati-
cal challenge, as they are anticipative maps whose generator is not Hilbert-Schmidt. Therefore none
of the classical results [29, 13, 5, 6] applies. Nonetheless we can successfully exploit the method
of [33] and we show in this paper that we can push it to deal with regularity up to H"(T) for
any r > 0, corresponding to Gaussian measures v, with s > % Our result extends (and improves,
getting rid of the small L? norm restriction) the earlier analysis of [23, 12] valid for integer s > 1. It
will become clear from our analysis that the restriction s > % is most likely optimal. In particular
for lower values of s the support of v, is no longer on classical functions and the extension of our
result to such values of s would certainly require some renormalisation procedure.

A special mention is deserved by the case s = 1, addressed in [23] by the following nice proba-
bilistic argument. The typical trajectories of 7; are complex Brownian bridges, for which modulus
and phase are conditionally independent after a time-change. Since the gauge acts in fact as a
modulus-dependent phase-shift, conditionally on the modulus Cameron-Martin theorem applies.
In this way the authors were able not only to prove quasi-invariance but also the precise change
of variable formula via Cameron-Martin theorem. Unfortunately this trick is very much based on
the specific properties of the complex Brownian bridge and seems to be difficult to reproduce for
general Gaussian measures. We stress that the small mass restriction here emerges by the so-called
Novikov condition, which amounts to require uniform integrability of the density of the change of
variables. To ensure this property the authors rely on the analysis of [31] of the Gibbs measure of
the derivative NLS, as the leading order terms in the exponent of the density are the same.

Even though we do not attack the problem directly, our work gives a strong indication that
the change of variable formula established in [23] does not require any condition on the mass.
Otherwise the problem of determining the precise densities given by the gauge map is still open
for s # 1. Let us point out that (with the notable exception of [7]) most of the works, appeared
recently on the subject in the context of dispersive PDEs, cannot specify the Radon-Nykodim
derivative by means of a suitable approximation procedure.

The low fractional regularity brings some new challenges. The main problem is to find a good
replacement to the classical integration by parts formula (or equivalently in our case Leibniz for-
mula) valid for fractional derivatives. Indeed the explicit representation of the variation of the
Sobolev norm for integral regularity given in [12, Lemma 2.9] was obtained by a direct exploit
of the Leibniz rule and does not easily generalise to fractional regularity. Therefore we have to
base our analysis on a less transparent representation in terms of Fourier coefficients, which is not
evidently of similar form. Indeed the gauge map can be written as identity plus smoothing only
for high frequencies, but the low frequency contribution is hard to bound. Therefore we have to
isolate the low frequency term and operate on it a fractional integration by parts in order to profit
by a convenient cancellation given by the imaginary part as in the DNSL integrals of motion (the
same kind of difficulty is solved in [30] with similar methods). In fact, as already remarked in
[12], the terms appearing from the transformation along the flow of ¥, of the Sobolev norms are
of the same type of the DNLS energies. Therefore, even though equation (1.3) is much easier than
DNLS, therefore the analytical difficulties are less challenging, from the probabilistic viewpoint to
study the transformed Sobolev norm via {¥, },cr or the energies of DNLS is mostly equivalent.
This constitutes a crucial point of this work as, albeit the flow is very regular, the Sobolev norms
are hard to bound within the support of the Gaussian measure ~s.

The paper is organised as follows. In Section 2 a suitable approximation of the gauge map is
presented and some first properties are stated. The most important being that this approximations
behave well with the finite dimensional Lebesgue measures in the frequency space (see Section 4)
and that the approximating gauge flow and the true gauge flow are asymptotically close. In
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Section 3 we present the main argument of the proof, which is essentially the adaptation from [33]
to our case, leaving most of the specifics to the subsequent sections: in Section 4 we study the
behaviour of the Jacobian determinant; in Section 5 and Section 6 we show that the derivative
of the Sobolev norm along the flow computed in zero is a sub-exponential random variable w.r.t.
7s restricted to a ball of L2. This is the most technical part of the paper. First in Section 5 we
show the quantity of interest to converge in L?(v;) and then in Section 6 we employ the argument
of [2] to show sub-exponential behaviour. In both sections we need to separate small and high
frequencies as explained before. The splitting differs slightly in the two sections, but is similar in
spirit.

Notations. Throughout we denote by wu(n) the n-th Fourier coefficient of u : T — C. E[] the
expectation value w.r.t. ;. We define the fractional derivative of order s as

u® (n) = |nf*u(n). (1.8)

We use the following definition for the fractional Sobolev seminorm
lulfe = D 0l lu(n)?
neZ,n#0
and we define the fractional Sobolev norm as
lullFre = llullFe + [lull.- (1.9)

We have by Plancherel

Julfy. = [ 1P, (110)

We also have || - || gocry >~ || - || L2(T). Given R > 0, we denote with B(R) the ball of center zero and
radius R in the L?(T)-topology. We set

;?S(A) = Es[lB(R)ﬂA]'
Let Py be the the projection on the first N Fourier modes

PNZeimcn = Z ene, . (1.11)

nez In] < N
We define
5. (A) 1= Es[Lypyul,2 < RINA]
for any measurable A. Note that R is always implicit in the definition of 4, and 45 y. For j € N
the Littlewood-Paley projector is denoted by A; := Py; — Py;—1; we write |n| ~ 27 to shorten
2771 < |n| < 27 for j € N, while for j = 0 |n| ~ 1 shortens |n| < 1. We write X <Y to denote
that X < CY for some positive constant C' independent on X, Y.

We denote by Ey the orthogonal complement of Ey in the topology of L*(T). Letting v
the measure induced on EJJ\; by the map

gn(W) 6inz
wr Y TENEESTRAE (1.12)

|n|>N

: 1L
the measure ~; factorises over Exy x Ey as

1
ve(du) = Z—e—%”PNuH?rsLN(dPNu) VN (dPs yu), (1.13)
N
where Ly is the Lebesgue measure induced on Ey by the isomorphism between R2GN+1) and Ey

and Zp is a renormalisation factor.
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We will use the Bernstein inequality for estimating tail probabilities in the following form. Let
X1,..., Xy iid. sub-exponential component of X € RY and a € RY. Then there are ¢,C > 0

such that
al t t2
P a;Xi|>2t] <exp|—cmin| ——, ——= . 1.14
(Z | ) p (~emin (ar g ) (14
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2. APPROXIMATED FLOW

Let Py be the the projection on the first NV Fourier modes (see (1.11)). Given N € N we define
an approximation ¢ : L2(T) — L2(T) of 4, using the truncated system (compare with (1.3))
d
da
By convention P,, = Id. It is immediate to show that, for all N € N the flow map is globally
(in time) well defined, since the frequencies > N evolves under the identity map and the frequen-
cies < N evolves as the solution of an ODE with conserved L? norm (see Lemma 2.1). In the
case N = oo this is a consequence of the explicit representation formula (1.1). An immediate
consequence of (2.2) is that

GN (u) = iPy (Z[PNGY (W]PNYIY (0), 9 (u) = u. (2.1)

19 N ullr2 = lull2,  Va€R,
note, however, that |u| # |4~ u|, which is only the case when N = oo (see again (1.1)).

It is also clear, looking at the definition (2.1), that the map o — 42 is a one parameter group
of transformations, for all N € NU {oco}.

Lemma 2.1. Let N € NU {oo}. For all u € L*(T) we have
1PN ull 2 = || Prul 2 (2.2)
For the proof of (2.2) we refer to [12, Section 6]. Moreover, we have the following L2-stability
result.

Lemma 2.2. Let N € NU{co}. Then

19N w — GNol|;2 < oClel(IPxullZa+Prvlly,) (w—v)| 12 . (2.3)

Proof. Until the end of the proof N € NU {co}. Decomposing
GNy -GN = PyGNu — PygNv + (Id =Py ) (9N u) — (1d — Py ) (9N v)
= Py Nu — PygNv + (Id =Py ) (u — v),

where the second identity follows by the fact that 42 is the identity on the frequencies > N
(remember definition (2.1)), the (2.3) follows by

| Py — Py o] e < eI UIPs it IPrelza)| Py — )] (2.4)
To prove (2.4) we will need the inequalities
IZ(PN G u)ll L S IPNG2 ullZe = | PrulZe (2.5)
and
|IZ[PNG u] = Z[PNG 0]l S IPNYa'u+ PNGY vll 2| PG w — Py vl (2.6)
< (IPxullzz + | Pyollz2) | PN u — PyGa v e -
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These follow immediately recalling the form (1.2) of Z[-] and (2.2). Let
6N (u,v) == Pn9Nu — Py9Nv.

Notice that 82 (u,v) solves

%62’(% v) = iPn (Z[PNGY uloY (u,v) + (Z[PNGN u] — I[PNG N v]) PyG2v) .

Pairing this in L? with 6% (u,v) we get
d -
105 (w, )32 = 2Re i / I[Py G u) 6 (u,v) P+ / (ZIPN G2 u] — TIPNG Y 0]) (PN o)X (w,0))

Using the Holder and Cauchy—Schwartz inequalities and (2.5), (2.6), we arrive to

%H%V(uvv)ll%a < |ZIPNG ]|l L= 160 (u,v)| 2
+ I ZIPN G u] = Z[PNG V)| Lo | PN Ga 0l 210 (u,0) 2
S (IPvullfe + [1Pvoll72) 105 (u, v)l[2

so that (2.4) follows by Gronwall’s lemma.

O
The flow ¥ approximates 4> = ¢, for large N in the L?(T) topology, uniformly on compact
sets. This is proved in Lemma 2.4. Before we need the following statement.

Lemma 2.3. The map
(o, u) € R x L*(T) — 9,u € L*(T)

18 continuous.

Proof. Decomposing
o = Gl < Gats — Gt + |G — S
The statement easily follows by the estimate (2.4) and
[9av = Gpvl|L2 < lo = Bll[vllZ2-

To prove this we assume § < « and we integrate (2.1) over [, ], so that

Gov —Ygv = Z/ Z[Gr (V)]G (v)d
B

Taking the L? norm of this identity and using Minkowsky’s and Hélder inequalities and (2.5), (2.2)
we arrive to

ot~ Tpilr < [ I (00 120

< /B TS ()|~ |G (0) [ 2’ < /ﬁ lolade’ = o — Bl[[v][2,
as claimed. ]

Lemma 2.4. Let N € N and & > 0. Let A be a compact subset of L*>(T). Then
lim sup  ||Gou — GNu||2 = 0. (2.7)

N—=o0yeca, ol < a
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Proof. We decompose
Gou—9Nu = PnGpu — PNGNu+ (I1d — Py ) (Gpu — 4N )
= Py9%,u — PNgoivu + (Id =Py )(Gou — u),

where the second identity follows by the fact that 4% is the identity on the frequencies > N
(remember definition (2.1)).

Since A is compact, it is in particular bounded, so that ||Jul| 2 < R for some R > 1, and by (2.2)
also ||9,ul|r2 < R. Thus we have

lim  sup (I —Py)%aul e + | (1d—Py)ul 2 = 0, (2.8)

N=ooyea, ol < a
so that the (2.7) follows by

lim  sup  ||Pn%au — PnZNullp2 =0. (2.9)
N—=ooyea, ol < a

To prove (2.9) we will need the inequalities (2.5) and
|Z[%ou] = ZIPNG ul|[ e S B2 | PyGou — PnEy ulfz + R?||(1d —Pr)Zoull7s | (2.10)
valid for N € NU {oo}, which follows by
IZ[Gou] = ZIPNGa ulll oo S |G + PN ull 2| Gar — Py ull 2
< R|[Gau — Py¥ ull 12,
which easily follows by the definition (1.2) of Z[-] and (2.2). Let
6évu = P9 u — PNgéVu.
Notice that 5 u solves

%55 u = iPn (Z[Gau)0) u + (Z[Gau] — I[PNY2 u]) PND u) .
Pairing this in L? with 6Yu we get
%nagun; ~ 2Re i(/I[gauH(SiVuF +/(z[%u} ~ Z(Px ) Py(4 ) w)55)
Using the Holder and Cauchy—Schwartz inequalities and (2.5), (2.10), we arrive to
%H%\[UH%? SN ZEaulll o=l ull7z + 1 Z[Fat] = ZIPNG, ulll oo || PGS ull L2163 ull 2 (2.11)
< R?||(1d —Py)%au)ll72 + R2(|05 ullZ- -
Thus, using the fact that 52 u|,—¢ = 0, the Grénwall’s inequality gives

«
16 ulj2, < R2H7151 / (1 — Py)%w)|22 do’, || < |a. (2.12)

Recalling (2.8), (2.2) and using dominated convergence, it is clear that the right hand side of (2.12)
goes to zero as N — oco. On the other hand, using Lemma 2.3, it is clear that the maps

(,u) € [—a,a] x A — EN(a,u) ::/ R?||(1d —PN)Q%/U)H%Z do/
0

are continuous, for all N € N. Since ZV are defined on a compact set, are monotonic (w.r.t. IN)
and they vanish in the limit N — oo (as we have just proved), by Dini’s theorem we have that

they converge to zero uniformly. Recalling (2.12), this complete the proof. O

The next result is a direct corollary of Lemma 2.4.
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Corollary 2.5. Let € > 0 and & > 0. For all compact subset A of L*(T), there exists N* such
that

G, (A) C 4N (A+ B(e)).
for all o] < @ and for all N > N*.

Proof. Let u € A and u? := 9N 4, u. Since

gNuN =G u, (2.13)
it suffices to prove

u—u|L2 <e, (2.14)

for all sufficiently large N, uniformly in u € A, |a|] < a@. Indeed, if (2.14) holds, it means that for
all u € A we have found

u € u+ B(e) C A+ Ble)
such that (see (2.13))
Gou=9NuN € 4N (A + B(e)).

To prove (2.14) we notice that, since A is a compact subset of L? we have |Ju||;2 < C4 for all u € A.
Thus

lim  sup |u—uN|=lim sup |GV, GNu -GN G u)| e
N weAa| < & N weAa| < a
< lim sup €319 ull 2 HIPNGaull2) g Ny @ 4|1
N ueA

< 20y sup ||9Nu — Goul| 2 = 0.
N uea

where we used (2.3) in the first inequality, (2.2) in the second inequality and (2.7) to take the limit
over N. This completes the proof of Corollary 2.5. 0

3. PrROOF OF THEOREM 1.1
Here we give the main argument to prove Theorem 1.1, leaving all the (many) auxiliary state-
ments to the next sections. We follow the strategy introduced in [33].

First we define the measure

Ys,N(A) := Es[L{an(|pyull,. < £} » A€ B(L*(T)). (3.1)

Recall that 45 n(A) also depends on R, even though we will not track this dependence to simplify
the notations.
Using the group property of {4V} ,cr we can easily check that
d . N d . N\ (N
L Gan oI =Gy o g )@N )| (32)

Now we use the factorisation (1.13) and Proposition 4.1 of [33], so that for all E C %(L?) we have
Yo, (G2 (E)) = / s(du)l
Yo.N (Yo (E)) gg(E)7 ()11 pyul,s < BRI
1 1
— [ IR N AP )1y, < et DI Ol exp (51 PwYully — FlPwl )

- 1 1
= [ otawlaet DRy wlexw (H1Pvally, - JlPveul, )
E
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where DPNy%N (u) denotes the Jacobian matrix associated to Py%2 and in the second identity we
used (2.2). Using this identity with £ = 4V A, we arrive to

San 0 GN(GN A) = /

1 1 -
[ Jdet DRl exp ( GlPvully - 1Pl ) duv(a)

so that, using (4.2) to compute the derivative in da at a = 0 of | det DPy%N (u)|, we can rewrite
(3.2) as

d
—(Fs,n 04 ) (G A
L G ot @A)
~ . - d
= / s, (du)n(u) div Py (Z[Pyu]Pyuw)) + / ’ysyN(du)d—HPN%O{Vqu .
9N A 9N A o a=
~ . - d
= / s, (du)n(u) div Py (Z[Pyu]Pyuw)) + / ’Ys,N(dU)d*HgaPNUH%,S (3.3)
YN A 9N A o a=
where n(u) := i%, so in particular |n| = 1, and we also used
LN uly| = Pl (34
da @ “la=0 da'"® He | o= '
To prove (3.4), bearing in mind (1.8), (1.10), (2.1), we observe that
d - d (s)
—|1Pn N ul|%, = 2Re / (PN Nu)® (PN%V u)
da a=0 da a=0
— 2Re / a0 (T Py %N | Py g N u) )
a=0
- -5 —(s) . (s) _
=2Re | Pyu  (iZ]Pyu]Pnu)'® =
= 2Re /gaPNu(s)(iZ[gQPNu]gaPNu)(S) .
7P (2 " d 2
= 2Re /(%QPNu) (da%aPNu> ‘a:O = %HE%PN@LH eloo - (3:5)

Now, the first summand in (3.3) gives a vanishing contribution as N — co. Indeed by Proposi-
tion 4.4 below and Hoélder inequality there is € > 0 such that

- : SN (GN A
/ 5o (du)| div Py (Z[Pyu]Pyul) | S ’VN(N# . (3.6)
@M A
On the second summand use again Holder inequality:
- d - _1l d
[, Genti ol | <547 | L el (37)
9N A a a=0 do o=0l[1o (5, )
Hereafter we set
R* 1= max (R%T, RZ1). (3.8)
Proposition 3.1. Let s > % and R > 0. For all N there is a C' > 0 such that
d
— |9 Prul|?,. < CR*p. 3.9
| apaly| . (39)
Altogether
d 1
- Ganog)(A)| < CR PN A) T, (3.10)
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which implies

% (v 04N )(A))? < CR*. (3.11)
Thus 1
(Fs.v 092 )(A) < (CR|a] + 3s.n (A) )P < ((CRYPlaf” + 7 v (4))277" (3.12)

Let 6 > 0 and 5(A) < d. Since

LangiPyulle < RY = Lanjull,2 < RYs  Vs7a8. as N — oo,
by dominated convergence we have
(35,5 © G2 )(A) < ((CR")P|af? +26)2P7 1, (3.13)

for all N sufficiently large (the choice of N only depends on A). Now letting & := —4011%* we have
that for all |a| < &:
1
(Fs,v 0 9N)(A) < 3 (277 +62°%1) | Vp>1. (3.14)

Therefore for any ¢ € (0,1/2) we can take p = —log, ¢ and see that there is 0 < § < £2 such that
F(A) <8 = (Fsno¥9M)A)<e, o/ <a. (3.15)
To upgrade (3.15) to the limiting version for N — co we use Corollary 2.5.

Let us take R > 0 and any compact A C B(R), such that 7,(A) < §/2. Since A is compact, we
can choose a small enough ¢’ > 0 such that

Fs(A+ B(')) <94. (3.16)
By (3.15) for |a| < & we get
Fo.N (G (A+ B(')) <.
Corollary 2.5 and the obvious inclusion B(R) C {||Pyul|l2 < R} implies that, for all N sufficiently

large (again the choice of N only depends on A):
4,(A)NB(R) c 9N (A+ B(")) n{||Pyvul2 < R}.
Thus
(f;/s o %a)(A) = ’Ys(ga(A) N B(R))
<s(92 (A + B(E)) n{|[Pvulls < RY) = s v (92 (A + B(€))) <e.

In conclusion there exists @ such that the following holds. For all ¢ € (0,1/2) we can take

0 < 6 < €2 such that for any |a| < |@| and for any compact A C B(R), we have
F(A) <6 = (Fs0%)(A)<e. (3.17)

We can extend the previous relation to any A € %(L?(T)) N B(R) using the regularity of 7,
(inherited by 7s) by the general procedure explained in [33, Lemma 8.1|, which easily adapts here.
This proves the local almost invariance of 45 under ¥, |a| < @. Since @ only depends on R and

the restriction w € B(R) is invariant under ¥, we can globalise to o € R by the usual gluing
procedure.

Therefore we have shown (1.7), where the density p, is in L'(s). It remains to prove there
exists pp > 1 such that the density lies in all the spaces LP(%;) for p € [1,pg). First of all we start
by a somewhat more quantitative version of (3.15).

Lemma 3.2. Let s > 1/2. There exist oy > 0 such that the following holds. For all |a| < g and
for all A € B(L*) N B(R) one has

(Fs 0 %) (A) < 275(A)'/2. (3.18)

More precisely we can choose ag = ¢/R*, where ¢ > 0 is an absolute constant and R* is a function
of the mass R defined in (3.8).
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Proof. Let fix A and let us start again by (see (3.12))
(v 0 GN)(A) < (CR*|a] + 7o (A) 7). (3.19)
We can assume 7,(A) > 0, otherwise (3.18) is consequence of (3.17). Thus, since
Fs.N(A) = As(A) >0 as N — oo
we have, for all sufficiently large N (the choice of N only depends on A)
Sun(A) < 23,(A)
Thus we can bound the right hand side of (3.19) as

p 1
N 1 . 2CR* N log [ 14+CR*|a|(27s(A)) " P
(CR*|a] + (27:(A))7 )P = 275(A) <1 + (2(A|;)“1> = 29,(A)e” «( ! ) . (3.20)
Vs P
Now we can pick
1
p=p(A) = log CEXO such that  (29,(A)) % =e. (3.21)
Thus
(Fs,v 0 9N )(A) < 295 (PyA)eP 08O e0) < 93 (Py A)ePCH e (3.22)
Then we claim that
epCR ea < :)/S(A)fl/Q ) (323)
To have that, it must be
1 1 P
CRea < —log—~ = = 3.24
petteas loss ) 2 (324

which is true for |a] < ap with ag = ¢/R* and c sufficiently small. Plugging (3.23) into (3.22) we
arrive to

(Fs.v 092 )(A) < 23:(A)%, ol < ao. (3.25)
Finally we upgrade (3.25) to (3.18) using Corollary 2.5 as in the non quantitative argument above.
O

The size of a in Lemma (3.2) can be arbitrarily increased but paying an arbitrarily small factor
loss on the exponent on the right hand side of (3.18) [25, Remark 5.6]. We have the following

Lemma 3.3. Let s > 1/2 and o € R. There exist an absolute constant C > 1 such that for all
A€ B(L*) N B(R) one has

1

(s ©Fa)(A) < 475(A)ETToT . (3.26)

Proof. We can assume o > 0. Let o be given as in the previous lemma. We can also assume
ag € (0,1). Let now define M as the largest integer such that agM < «. We will show that for all
M e NU {0} we have

o= (M+1)

(35 0 9a)(A) < 25550277 5,(A) . for a € [agM, ap(M +1)] . (3.27)
Since apM > a— oy (by definition of M) one has 2= (M+1) > 9~ ag (@ta0) o 9=a5 (F D) Wil means
that the (3.26) follows by (3.27), recalling that ap = ¢/R* for some absolute small constant ¢ > 0.
It remains to prove (3.27). When M = 0 (which means that 0 < a < ), the (3.27) follows by
(3.18). Let assume we have proved (3.27) up to M — 1. In particular we have
~ _ B M-1g5-j _
Ts(Gaonr (A)) = (s © Fagam)(A) = (35 (Gaonr(A))'/? < 22070 275,(4) (3.28)
Writing « € [agM, ag(M 4 1)] as a = agM + o with |o/| < ap and using (3.18)-(3.28) we have
(s © Do) (A) = (s © Gar) Gagns (4)) < 275 (Zagrr (4))/?

<2 (221'”261 2‘]&8(,4)27”1)1/2 < 2Zito 25, (4)2 MY

2—]%

b
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as claimed.
O

We are now ready to prove that the density p,, is slightly more than just integrable, for all « € R.
Proposition 3.4. Let s > 1/2, R > 0 and o € R. There exists po(|a|, R) > 1 such that
pa € LP(vs) forall p < po(lal, R).

In fact we have po(Jaf, R) — 1 as |a] — oo.

Proof. With reference to (3.26) we let for brevity

1
so that it becomes
(:Ys © ga)(A) < :}/S(A)l_é . (3-30)

Since C' > 1 we have § € (0,1) and § — 1 as a — 0o. Let now A > 0 and set
= {u : pou) > A}.
Therefore using (3.30) we have for |a| < ag

1 ~ 1,
)\'Vs (du) < < pa(u)7s(du) = X('Vs © ga)(AA,a) S

A)\a -
/\ Az a

Fs(Axa)' 0. (3.31)

y\)—'
> =

Consequently

1\ /8
Ys(Axa) S (/\) : (3.32)
Finally, we write
loaly=p [ (A 0 < o,
0

thanks to (3.32) if 67! — (p — 1) > 1, that is p < §~'. The statement follows letting py := 6.
Indeed, recalling the definition (3.29) of § (in particular § € (0,1)) and the fact that R* only
depends on R, we have pg = po(|a|, R) > 1, as claimed.

O

4. THE JACOBIAN DETERMINANT

We denote the divergence operator div when applied to an n—th dimensional vectorial function
H : Ey x Ey— C as

div H(Pyu, Pyti) = ) (aa;{;) * 8811%))

In| <N
Let us recall Proposition 6.6 of [12].
Proposition 4.1. We have

det[(DPNGN)(u)] = exp (/ dao/ diviPy (I[PN%éY(u)]PN%g(u))) . (4.1)
0
Thus p
- det(DZN) (u) = idivPy (Z[Pnu]Pyu)) . (4.2)
We set for s’ > 0 and ng € N
Loy = Lot molu] i= sup (nu(n)]) - (4.3)

n 2= no
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Lemma 4.2. For all s’ € [0, s) there is a Cs,¢ > 0 such that

'Ys(Ls’,no 2 t) < 0378/67%7%(5*5 ) (4'4)
Os,s’p
1LY nollzriry < =57 (4.5)
N
Proof. Tt suffices to prove (4.4), then (4.5) readily follows.
For 6 > 0 a simple Gaussian integral gives
o 02 nQS'
on’® |lu(n _
Es[e ‘ ( )‘] = exp (2:[—1—7’]/25) .
Therefore by Markov inequality
, 92 n2s'
o (nluln) 2 1) < exp | —00+ S
7s (1 fu(n)| exp< + 5 1+n23>
for any 6 > 0 and in particular picking 6 = ¢(1 + n2*)n"2*" we have
Vs <n5/|u(n)| > t) < exp (—t2(1 + nQS)/2n2‘S/) .
Thereby by union bound
s s C  _2,26-5)
’YS(LS’,no >t) < Z exXp (—t2(1+n2)/2n2 ) < S—S’e 2 "0 s
In| 2 no
where C' is uniformly bounded for ny € N. Then (4.4) follows.
O
Lemma 4.3. Let s > 1, s' € (3,5), e € (0,1). The following bound holds
. | Pyul|? log2N
|div Py (Z[Pyu]Pyuw))| < T—L + L2 e NG (4.6)
Proof. A direct computation from (1.2) yields
i .
(Z[PNnu])(0) =0, (Z[Pyu])(m) = - Z u()u(l —m) if m#0, (4.7)
[e],]e—m| < N
thus
. 1 _
i (Z[Pyu]Pyu) (n) = > — > u(n —m)u(O)a(l —m),  (4.8)
m:m#0,|Jn—m| < N £:)2],]6—m|, < N
and
1
divi = —Ju(n —m)|*
iviPy (Z[Pyu]Pyu)) 2 > > —Ju(n —m)|
In] < N m:m#0,Jn—-m| <N
N N+n 1
= 2 (lu(=n)P = u(m)]?) > g
n=1 m=N—n+1
We pick any ¢ € (0, %) and split the sum in 1 < n < N¢ and n > N°¢. For the first part we notice
N4+n
1 2n—1
— SIn(N —In (N — H=In(l4+ —— 4.
m:NZ_nHmNn( +n)—1In( n+1) n< +N—n+1> (4.9)
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so that we have

[N?] N+n

E 1 2N® -1 | Prul|?,
2 2 9 2
—~ (|U(*n)| - |u(n)| ) m:NE_n-H m S ||U||L2 In <1 + N_N-+ 1) < N

For n > N¢ we use |u(n)|* < n_Q‘S/Li, |nve) and (4.9) to estimate the modulus the second part of
the sum as (remember s’ > 1/2)

N N

1 2n—1 1 In2N
2 2 2
Lvey D porl (1 TN g 1) <SW@N)LY |y Y 27 S Nas—ne Lalve) -
n=|N¢|+1 n=|N¢|+1
This completes the proof of (4.6). O

Therefore the following result is easily proven:
Proposition 4.4. Let R >0, € € (0, 1) small enough. There is c(R) > 0 such that
c(R)

L ghul, < my div Py (Z[PrulPyu))| ) S P - (4.10)
5. L?(s)-CONVERGENCE

We start by a useful representation formula for

d
Fy := F[Pyu] i= —||%. Pyul%.| . 5.1
v = FlPyul = <Pyl (5.1)

Lemma 5.1. Let s >0, N € N and u € L*(T). We have
Fy=Fyx +Fy , (5.2)
where
> . _p> — [ma > _ _
Fy :=F?Z [Pyu] := 2Re > 1 wu(ny)u(ng)a(m )i(ms) (5.3)
mi; — Ny
[m1,2],n1,2] <N
ni—mi#0
[n1—ma| 2 min(|n1l,|mal)

ni+ng=mi+ms

Fy = F<[Pnu] (5.4)
, (s)k (m1 —na)"tmy ¥ N
=2 Z WRe ( Z s u(n1)u(n2)u(m1)u(m2)) .
k>1 [ma2l,|n12| <N
’I’Llfmlio

|n1—m1|<min(|ny|,|m1])
ni+ngo=mi+mas

Proof. We use for s > 0 the Taylor series converging for |z| < 1

(1+2)° = Z %xk ) (5.5)

k>0

where (s); denotes the falling factorial

(8)o=1, (9)k:= 1_[(3—]')7 k>1.
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Let now compute

i)k
(o Pru)n) = 1w sy (mu(n) + 3 PO (2P ) )
E>1
Oék
= u(n) +ia Z u(ny)(Z[Pnul)(p) + ﬁr(k‘, n). (5.6)
[ni] < Nyn—p=n1 k>2

Using an integration by parts in the definition of the Fourier coefficient ((Z[Pyu])*u)(n) , we obtain
[r(k, )| < C(n)I(Z[Pyul)* Pyull o < Cn) ™' || Pyul 3t
Therefore, for o small enough, we get the estimate

%o Pyull%. — |Pvull?. — 2alm ( > |m1|2$ﬂ(m1)u(n1)I[PNu](p))‘ < CO)pyull o @

[my,n1| < N
my—p=ni

Thus

d N, 2 d 2
dOéHga U” s @=0 daHg@ NU” s

— 91 255 )
o= (T P am)u(n) TPyl (p)
Imi,n1] < N
mi1—p=ni

Now we conveniently represent

d
— || Py %
2o [GaPrullly.

_ < =
=Fy +Fy ,
a=0
where

FZ :=2Im ( 3 |m1\2Sa(m1)u(n1)z[PNu](p)) (5.7)
|mi,ni| < N

[pl 2 min(|n1|,|mal)
mi—p=n1

F5 :==2Im ( Z [ |®|ng —&—p\sﬂ(ml)u(nl)I[PNu](p)) . (5.8)
|m1,n1| < N,mi—p=n1
|p|<min(|n1],|m1])

Then (5.3) is easily obtained from (5.7) by using
0 ifp=0
(Z[Pnul)(p) = — L3 lnal fmal < N u(n2)i(my) i p# 0. (5.9)

p=nz—ma2

Let us look at F. Using (5.5) we have

Fy

s k
2t ( 3 a3 (k)!k|:1|kﬂ(m1)u(n1)I[PNu](p)>

[m1,n1| < Nymy—p=n1 E>0
|pl<min(|n1],|mal)

s k
2t ( > mal*nal® 3 (k)!k| TP p)) (510

[m1,n1| < N,mi—p=na E>1
[pl<min(|n1],|mal)

as Z{ul(p) = Z[ul(—p) yields

m( Y mPlatm)un)TPyap)) = 0. (5.11)
|mi,m1| < Nymi—p=n1
[p|<min(|n1],|m1])

When we plug (5.9) in (5.10) we obtain (5.4). O
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Remark 5.2. By the same argument we also have
|25

m
Fy = 2Re ( 3 ma ™
mp —n1
|ma2||n12| K N
ni+ng=mi+ma
ni—mai7#0

u(nl)u(ng)ﬂ(ml)ﬂ(mg)) . (5.12)

In what follows we shall use the Wick formula for expectation values of multilinear forms of
Gaussian random variables in the following form. Let ¢ € N and S; be the symmetric group on

{1,...,¢}, whose elements are denoted by o. Recalling (1.5) we have
¢
m] My Ne ()
Es[Hu(nj) ] 3 H e (5.13)
j=1 oc€Sy j=1
Z H mJa"U(J)
oeSy j=1

where (-) = (1+ |-|?)!/2. We convey that the labels m; (respectively n;) are associated to the
Fourier coefficients of @ (respectively u). We say that o contracts the pairs of indexes (m;, nq(;))
and we shorten for any Q C Z¢ x Z*

o(Q) == QN {m; =ngy,i=1,...,0}, o€,
We also define the set € to be obtained by Q swapping the role of n; and m; i =1,...¢.
The following elementary bound will be useful in the proof of the forthcoming Lemma 5.5.
Lemma 5.3. Let s > % Then

1 1 C
2 T = S (5:14)

qEZL qEZ

for a constant C which only depends on s. Similarly

1 C
oA S (5.15)

q€Z

Proof. The identity in (5.14) is just a change of variables. We just show (5.14), namely

1 C
2 oo S W

qEZ

being the proof of (5.15) almost identical. First we notice that
1 2 1 C
E S == E — < —.
2s = _ 4\2s
szl 12! p—a)*) =g -a* b
Then we notice that for |¢| < % we have by triangle inequality |p — ¢| > |p| — |q| > ‘p‘ , so that

1 P 1 1
> WSEZW@ (5.16)

q€Zi|q|< 12l (p—a) q€z

2 1 5 1 \= _C
() T (S <

<
S p

where we used Holder inequality with the conjugate pair 2s which concludes the proof. [

25 1
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Lemma 5.4. Let e € (0,1). Then

> LI Ce (5.17)

2 2 1—¢
lq|€Z,q7#p {a P?) ()

Proof. 1t is clearly sufficient to show that for all p € N\ {0} we have

Z 1 < Ce
(@ -9 =

1—¢
p
q > 1,q#p

We split the sum over g =1,...,p— 1 and ¢ > p+ 1. In the first case we estimate

Lo iy 1270 )
< [ _ _
2 NZP2—Q Z2p<p q p+q) pgq (5.18)

= (- p?) =

In the second case we estimate

Z<212>§Z 212_Z;<1+ 1) (5:19)

¢>pt1 T TP Spn @ TP SNG4t
1 1 1 1
Loy ()
P ST NP qg+p
£ 1
T+e 14¢ 14e
1 1 1 1
< > > <+> (5.20)
1— 1+ —
pF il ¢ s NP q+p

where we used Holder inequality with the conjugate pair 1€i, 1+ e. Of course the second factor

in the above formula is finite for any € > 0. The third factor is also finite as

1 1
T+e T+e
1 1 1+e 1 1+e 1 1+4¢
S (Hrem) |2 @) 2 ()
g>pr NITP O A4TP az1 M a>1ep NP
which is bounded for £ > 0. We conclude
C-
(5.20) < =
p
which ends the proof. O

The following lemma is crucial for the rest of the paper. The idea behind is that exploiting
the cancellations induced by the randomness one can recover the e-derivative loss of Fjy. Since
we deal with a Gaussian space, it suffices to do that in L2. The L? bound is achieved using
the Wick formula (1.5) for expectation values of multilinear forms of Gaussian random variables.
Another important tool used in the proof (to handle the permutations (f)-(g)-(h) in (5.26)) is the
decomposition (5.1). The idea of this decomposition is to treat separately the low and high Fourier
modes of Z[u]. For the high Fourier modes we take advantage of the regularisation given by the
fact that Z[u] is an anti-derivative. For the low Fourier modes we used the cancellation (5.11) in
order to eliminate the first term (corresponding to k& = 1) of the Taylor expansion (5.10), which is
the less regular.

Lemma 5.5. Let s >1/2 and M € N. Then Fyy — F in L*(vs) as M — oo, with
1
1

M D (521

1 Far — Fllzaey,) S
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Proof. Let N > M and define for a,b € N

A‘}VM = {|nasl, map| < N, [ng —me| = min(|ng|, |mal), na # mq,

Ng + Ny = Mg +my , max(|map|, [nap|) > M} .

We have
- ‘m1|23 B B
Fn — Fy = 2Re ( ; mu(m1)u(m2)u(n1)u(n2)) .
AN M

Now we square

2s 2s
mi n
P - Fuf =1 3 M )
PENES mp —mng n3—m3j 1
N,M N,M

and take the expected value w.r.t. -y, using formula (5.13) with ¢ =4

1 |m1|23 ‘n3‘2s 4 B
Iy = Fulldei,y = Y B[ T am;)u(n;)|

mip — N1 Ny —ms
A}\}?A4XA?\;?AI j=1

2 4
- E{ mi Z H am
my = nyng —my =

1,2 3.4
AN X AN M

Therefore
4

|ng |25 2s 1
- Z Z - & H ;)2

n —ning —n !
0€S1 o (AL, xA%h,) ) 37 Me(3) ;4

18

(5.22)

(5.23)

(5.24)

(5.25)

We note that contractions with o(j) = j for some j € {1,...,4} yields U(A}\}?M X A}g’\}?M) = 0.

Therefore the sum over o runs actually in

Sy:={c€8s:0(j)#4Vi=1,...,4}),

which contains 9 elements. Moreover the contribution of o = (2,1,4,3) to (5.25) is

2s 2s 2s
Z [na |ns| . ( Z |12 )2
- b
Ng —N1Ng — N ng —n
Ini| < Nyi=1,....4 27 a0 [na]lna| < N 2o
na#n1,na#n3 7l2757l1

max(|nl,[nz]),max(|nsl,|na|)>M max(|n1l,[nz|) = M

which is zero, due to its antisymmetry w.r.t. ny — —ni,ne — —ns. It remains to consider the

following 8 permutations:

(reduces to (b))

RN N RN
DN = = Wk W

NS N CR CRE N IY
Wk Wk W=

EORIOSSCS

Py
NN N N N N S
e — NN

(5.26)
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e Case (a), 0 = (3,1,4,2). Note that ny +n2 = ny(1) +ng(2) and nz +ny4 = ny(3) +ng(4) reduces
to ny = ng, so we need to evaluate

> 1

‘ ol < Nam1,2.4 (n2 — na)(n2 — ny)(n1)>*(n4)>
NoFny,NaFng

max(|ny|,|nz2|),max(|nz|,|na|)>M

1
< 2 2 — Yz — ) () ()

[ni| < N,i=1,2,4
max(|n1l,|nz|),max(|nz|,|nal)>M

(5.27)

If |no| > M, taking advantage of the symmetry w.r.t. ny <> ny, we get

1 1 2 1 1
S Z ( Z >25) 5 Z <n2>2 S’M (5~28)

~Y
na|>M ng —nyg) (n
Ina| M<|n2| < N |n4\<N< 2~ n4) (N4 M < |nal <N

(5.27)

where we used (5.14) in the second inequality. Otherwise it has to be |ni| > M, so that

11 1 1
(n1)?® (nq)?s ( 2 (ng —mn1) (ng — n4>)

[n2| < N

< 1 1 1 1
S <n1>25 <n4>25 ( Z <7’L2 +ng — n4> <7’l2>)
M|<|r‘n<\ <N Ina| < 2N
na| X
- 11 Loy 11
~ 2s 2s _ ~ ﬁ ~ 2s 7
M|<|7‘7,1<| §VN <TL1> <n4> <n1 n4> M<|n1\ <N <n1> M
ng|

where we used (5.14) in the third inequality.

e Case (b), 0 = (4,1,2,3). Note that ny +ny = ny(1) +ng(2) and n3 +ny = ng(3) + g4 reduce
to ny = ny, so we need to evaluate

1
2 (n2 —n1)(ng — ng)(n1)? (ng)?

Ini] < N,i=1,2,3

(5.29)

no#n1,ng
max(|n1l,|n2|),max(|nz|,Ins|)>M

If we restrict the sum also to ng # —ns, we ca can exploit the symmetry ng — —ng to bound

B 1‘ 3 1 11 ( 1 1 ) ‘
n3#—ns 2 nil < Noi=1,2.3 (7?,2 — nl) <n1>25 (n2>25 ng — N9 ns + no
na#n,|nz|#na|
max(|n1l,|nz2]),max(|nz|,|ns|)>M

N

O DI e e
max(|n1l,|n2])>M,max(|nz2|,|n3|)>M

If |n2| > M, using
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we can bound

IR VIR = O ey v [ DO =)

[n2|>M  M<|ng| < N

1
s Y (Y L)
~ 2s _ 2s
Meimat < v 12700 0y (2 =)
< 1 < 71
~Y 2 ~J 2 71 b
M<|ns] < N {ng)?e ™ M2

where we used (5.14) in the third inequality. Otherwise it must be |ns| > M, so

[n2| 1
G)npn, S Y w2 =)
P < =)o)\ 2= Tng ) ()
n2| x
(5.30)
1 1 1
< Z - - < Z <
~ 2 _ 2 25 ™~ 2\ ~ ’
M<|ng] < N <”3 n3)(nz) M<|ng| < N <”3> M

[n2| < N

where we used (5.14) in the second inequality and (5.15) in the third one. When we sum over
nsg = —ng we get instead

1 1 1 1 1
(5.29) < < < _
ng=—na ngg N (ng — n1) (n1)2s (ng)?stl Z (ng)2stl ™~ M?2s
[n1] < Nyni#ns

e Case (c), 0 = (2,3,4,1). Note that n1 +ng = ny(1) +ny(2) and n3 +nyg = ny(3) + Ny (4) reduce
to n1 = ng, so we need to evaluate

’ 3 L (5.31)

mel < Nom1.24 (n2 = n1)(n1 —na)(n1)?*(na)?°
n1#n2,ng
max(|n1l,|n2|),max(|n1|,|na|)>M

that, modulo rename (n1,n4,n2) = (nh,nf,nk), is the (5.29). So we proceed as in the case (b).

e Case (d), 0 = (2,4,1,3). Note that ni +na = n,(1) + ne(2) and n3 +ny4 = ng(3) + Ny (4) reduce
to n1 = ny, so we need to evaluate

’ 3 L (5.32)

4s
Nno — N ny —n n
il < N,i=1,2,3 (n2 = m)(ns = m)(m)
ni1#n2,na
max(|n1l,|n2]),max(|n1|,|ns|)>M
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When we restrict the sum also over ny # —ng, —ng, we can exploit first the map ns <> —ng3 and
then ny <> —n1 to get

1 1
:‘ Z 4s

ne| € N i=1.2.3 (n2 —n1)(ns —n1) (n1)

[n1|#|n2|,[ns|
max(|n1l,|nz2|),max(|n1|,|ns|)>M

niF#—nz,—ng

e TG
[n1|#[n2|,|ns|
max(|n1,|nz2]),max(|n1|,|ns|)>M

1 1 nq
‘ Z (n2 —n1) (n1)** (n3 —n7) ‘
n;] < N,i=1,2,3
|1 |#|nzl,ns|
max(|n1l,|n2|),max(|n1|,|n3|)>M

1 ‘ Z ( ny ny ) 1 1
D R PETn il ey
[n1|#[nz|,|ns|
max(|n1l,|nz2]),max(|n|,|ns|)>M

A

> : :
2 2 2 2 4s—2 °
ns —nNn ng —n n
Inil < N,i=1,2,3 (n3 ) 3 1) (n1)
max(|ny|,|nz2|),max(|n1|,|n3|)>M

Thus if |n1| > M we have, for all € € (0,1)

63 S S M%( 5 <212>)2 (5.33)

ns —n
In2| < Nonogng 2 1

Ce Ce
< Z <n1>4s—5 5 M4As—1—¢’

where we used the symmetry ny <+ n3 and the inequality (5.17). Otherwise it has to be |ng| > M,
so that

1 1
(532 st mprms S D T ) DI (5.34)

—n
ln2|>M M<|nay| <N V2 |ns| < Nynasng 2 1
[n1] < N
Ce Ce Ce
S Z 2 2 Lo S Z 2 S
(n3 —ni)(n1)*—1=° (n2)> ~ M
M<|n2\<N M<|TL2‘<N
[n1| < N

where we used (5.17) in the second inequality, taking e > 0 sufficiently small, and (5.15) in the
third inequality. It remains to consider the case when the sum (5.32) is taken over ny = —ng or
n1 = —ng3. The contribution of the terms with n; = —ns # —ng is again handled exploiting again
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the map ng <+ —ng, so that we have, for all ¢ € (0,1)

1 1 1 1
:5’ Z ((ng—nl)i(ng—i—nl))’

(5.32) =
ni=—nsF-—ng n1 ], sl < N, ny <n1>

[n|#[ns]
\n1|>1\/[

1 1 1 1 1

- 5’ 2 (n1)% (n2 — n2) ’ S > (n1)%s (n2 —n?)
[ni],ns| < N, 3 1 M<|n| < N 3 1
[y |#|ns] [n3| < N,n3#nq
\n1|>1\/[
Ce Ce
< Z <n1>45+17€ < M457€ )
M<|ni| < N
where we used (5.17) in the last inequality.
By symmetry w.r.t. ny <> n3, using the triangle inequality, we can reduce to consider n; = —ng
We have
1
(5.32) < - (5.35)
ni=ns M<n21|< N <7’L3 — n1><n1>45+1
[ns| < N
1 2/3 1 1/3
S Z ( Z <n >%(4s+1)> ( Z <n3 _ n1>3)
Ing] S N M<|ng| < N \'°L M<|ni| < N
For the contribution of the terms with n; = —ng = —ng3, we have

1 1
S Z (ny)is+2 N MAs+1

ni=—nz2=-—ns
M<|ni| <N

(5.32)

e Case (e), 0 = (4,3,2,1). Note that n1 +na = ng1) + e (2) and nz +ny = ny(3) + ne(a) reduce

to n1 4+ ng = n3 + ng, so we need to evaluate

1
‘ I <§:1 A (ng —n1)(n3 — nz)(n1)*(ng)?s
n1£ng,naF#ng
ni+ne=ng+ns, max;(|n;|)>M
1
) ) 5.36

sl < N,i=1,2,3
max(|n1l,|nz2|,|ns|)>M/3

where we used that the sum was restricted over ngy — n1 = ny — ns3. Since

1 1
E < E <C
—_ 2 2 )

[n3| < N (n2 = ns) [ns] (na)

when |ny| > M/3 we can bound

1 1 1
(536 < Z 2s 2s S’ Z 2s ’S 2s5—1 (537)
I >M/3 s i < N (n1)?*(n2) M/3<|n1| < N {n1) M

[n2] <N

and when |ny| > M /3 we can bound

1 1 1
(5-36) < > TomoaES %S ape (5.38)
na|>M/3 M/3<|mal < N <7’Ll> <7’L2> M/3< ] < N <n2> M
[ni] < N
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If |ng| > M/3 we use (5.14) to bound

1 1
(5-36) <D oD S T
Inal>M/3 = A=y (n1) (n2 —n3)?(na)
[n1| < N

1 1 1
S S T D
~ 2 25 ~ 25 ~ Fr2e—1
M/3<|n3| < N (n1)22(na)2* M/3<|n3| < N (ng)2s ™ M2
[ni| < N

To deal with the cases (f),(g),(h) we will use the decomposition from Lemma 5.1 and the
following elementary fact

. 1
‘na - nb| = mln(‘na|a |nb|) = |na - nb| P imax(|na|7 |nb|) . (5'39)

By symmetry w.r.t. a <> b, this is a consequence of

. n
= ol > min(fnal. Ina]) = o — | > 2
This is immediate if |ng| > |"“‘, since then min(|ng|, |[np|) = el Otherwise one has ny| < [nal
2 2 2
and by triangle inequality
n n
10 = 0] > gl — ol > | — el = [l
2 2
e Case (f), 0 = (3,4,2,1). We decompose
Fyn — Fuyl? <2IFS — F5? +2|Fy —F7 | 5.40
[Fn = Pl o=(3,4,2,1) FN = Fuil o=(3,4,2,1) IFN i | o=(3,4,2,1) (5-40)

and we will bound these term separately. We will write (5.40)< and (5.40) © to denote the first
and second term of the sum. Noting that ny + ny = ng1) + nez) and nz + Ny = Ng3) + No)
reduce to ny + ngy = n3 + ng, we get

(5.40)> =2 3 |3
mal € Nael,.d (n3 = n1)(ng — n2)(n1)?* (n2)?*(n4)*°
0#|n1—n3| > min(|ni|,|ns|)
0#|n2—ng| = min(|nz|,[ns|)
ni+ns=nz+ng, max;(|n;|)>M

Since we are summing over
In1 = ns| = min(|n|, [ns]),  |n2 —ns| = min(|ne|, ns|),

by (5.39) we can use
1 ’ 1 < 1 .
Ing —na| " [ng —na| ™ (ns)

Thus

> 1 1
s il <%:i1,2,4 (n1)?%(n2)?% (ng)?* s M?2s=1°
max(|ni|,|nzl,|na|)>M/3
To handle (5.40)° we introduce
ANy = Il [mil < N, 0 < [ng — ma| < min(jnal, [mal),
Ng + Np = Mg + My, max(|mel, |msl, [na|, |ns|) > M},
so that Lemma 5.1 gives

k-1
)k mp—n sl s _ _
|Fy — Frapl = Q‘Re ( E —(k)l E (= m)™ ml;) [ma|*|na] u(nl)u(ng)u(ml)u(mg))‘.
B2l AR,
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and squaring
|F5 (w) = Fyp(u)l?

_ k—1 _ h—1 4
.y Z |: Z k'h' m1 nl) (ng m3) |m1|s|n1|s|n3|8|m3|5} ];[117, m

k h
Attty B s ¥l

We now taking the expected value w.r.t. s, using again formula (5.13) with ¢ = 4, and we restrict
the sum to the contribution of a single permuation o, so that we get

IF5 = Fyill7=

()|,
4
()(8)n (m1 = n1)* " (ng —mg)~t mwﬂo( )
=4 > [ > A [na[®|ms | fmaf?InalIns mal” ] H J
AR x AN, kRl j=1
— _ 4
(S)k(s)h (ng(l) B nl)k 1(713 B n0(3))h ! s s s s 1
=+ ¥ [ X e nacl s s Inoge) ] TT 75
1,2 3,4 kh>1 foe |TL1| |n0(3)‘ i1 <nj>
o(AN M XAN ) P2 J
011" 1 (3)|* no )y °|ns°
S Z 1 %8 ) (5.41)
a(AN%, XAL;’\/4I\/I) Hj=1<nj>
o that el ool o Flns)
< T @)1 o) | Rl
(5.40) SJ (Al 2ZA : H?71<nj>28 0=(3,4,2,1)
N.m X NM -

which implies

1
(5.40)< < > -
+1 s+1 2s
il < Naet,.a (T2 TH (ng)
7l1+7l2 nztng
0<|ng—ng|<min(|nz|,|ns|)
0<|ni—ng|<min(|ni]|,|ns])
max; (|n;|)>M

S > e S T
In1],Inal,lna < N (na)o+H{ng) =+ (ng)2e ™ M2e-
max(|nal,|nz)snal) > M/3

e Case (g), 0 = (3,4,1,2). Proceeding as in the case (f), we decompose
Fx — Fu? <2/FN — Fipl? 2Fy — Fy7 5.42
|Fn M| 0=(3,4,2,1) ‘ N M| 0=(3,4,2,1) | N M | ( )

o=(3,4,2,1)
and we will bound these term separately. We will write (5.42)< and (5.42) © to denote the first

and second term of the sum. Note that n1 +na = ng(1) +ny(2) and ng +ny = ng(3) +ny(4) reduce
to ny + no :n3+n4, SO

(5.42) > = 2‘ 3 [na]**
Ini| < Nyi=1,...,4 (s =) m ) )™
0#[n1—ns| > min(|ny,na|)
ni+ng=nz+ng, max;(|n;|)>M

(5.43)

by (5.39) we can use
1 < 1 7
[ng —na| ™ (ns)
1 1
(5.42) 2 < 3 <

|ni| < N,i=1,2,4 (n1)25(ng)?s(nyg)?s ~ M?2s—1 :
K 1<
max(\n1| |n2\ |nal)>M/3

so that

24
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To handle (5.42) we use again (see case (f))

(5.42)< < Z |”1|S_1|na(3)|5_1|na(1)|5|n3|s (5.44)
~ [T5, (n;)% o=(3.4,1,2)
O'(A}\},Z]MXA?\}%IM) J=1\
which implies
1
(5.40)< <
ns] g;_l A (n1)2(n2)?(n4)*
ni+n2:ns+n4
0<|n1—ng|<min(|n1|,|ns])
max; (|ni])>
1 1
< < )
N n1|7n2;|”4 . (n1)2(n2)2s (ng)2s ~ M2s—1
max(|n1l,[nzl,[nal) > M/3
e Case (h), 0 = (4,3,1,2). Proceeding as in the case (f), we decompose
Fy — Fyl? <2/Fy — Figl? AFY — Fy7 |? 5.45
|FN = Ful o=(4,3,1,2) FN = Ful o=(4,3,1,2) +2Fy i | o=(4,3,1,2) (5.45)

and we will bound these term separately. We will write (5.45)< and (5.45) © to denote the first
and second term of the sum.

Note that ny + na = n,(1) + ng(2) and n3 + ng = ng(3) + ny(4) reduce to ny + na = nz + ng, s0
we need to evaluate

1
5.45)% < ‘ 5.46
0 D 2B vy crer v B
0#|n1—n4| > min(|n1|,|na)
0#|n1—ns| > min(|n1|,|ns])
ni+ns=nz+ng, max;(|n;|)>M

1
< > (n4)(na — ng)(n1)?s(ng)?2s

In;| < Nyi=1,....4
max(|nal,|nz2|,|na))>M/3

where we used (5.39), so that

1 S 1
Ing —ni| ~ (n4)

and the fact that the sum were restricted to ng —ny; = ng —ng If |ny| > M/3 we can estimate

. S — —
(5.45) |n1|>M/3§ Z (n1)2 (na) Z (ng)?s(

ng — ny)
M/3<|ni1| < N, In2| < N
[nal < N
1 1 1
< - @ @000< <
~ 2 : ()25 (ng)2 ~ 2 : (nq)2s ~ M2s—1°
M/3<|n1| < N, M/3<|n1| < N
[nal < N

where in the second inequality we used (5.14). If |n4| > M/3 we estimate similarly

e S
(5.45) \n4|>M/3§ Z (n1)2* (ng) Z (na)2s(

no —7’L4>
M/3<|n4| < N, [n2| < N
[n1] < N

1 1 1
< - < < -
S R T I S b

[n1] < N
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If |ng| > M/3 we use that by Cauchy—Schwartz

1/2 1/2
1 1 1
> - > > ;
i< (na){n2 — na) i< (1) i< i (2 14
2
< (> . 5| <C,
o na)

so that

S 1 1
(5.45) \"2|>M/35 Z [ENETEmER Z T (5.47)

M/T)<|‘ni|]§ N, Inal < N
ni| x
1 1 1
s D DR I
~ 2s 2s ~ 2s 2s—1 "
Mya<im <, PS4 2 T M
lnil < N lni] <N
To handle (5.42)< we use again (see case (f))
=< |n1|s_1|”a(3)|s_1|na(1)|s|n3|s
G <Y (5.48)
v , [15_.(n;)2 o=(4:3.12) '
‘T(A}\},ZMXA?\}41\4) J=1V
which implies
1
(5.45)< <
] <§_1 o (n1)2(n2)?* (n3)* (na)?
+na=nz+
0< s —riz] Smin (s . [ms )
0<|n1—n4|<min(|ni],|n4l)
max; (|n;|)>M
To handle this we use the following elementary fact
[ne — | < min(|ngl, [ne]) = |nal = |76, (5.49)

By symmetry w.r.t. n, <> nyp it suffices to show
Ina| < 2[npl,
which follows by triangle inequality
[nal < ol +[na —np| < 2l

where we used the assumption in (5.49) in the second inequality. Using (5.49) we see that the sum
above is in fact restricted to

Ini| = |n3| = |n4|,

which with the restrictions

ny +ng = ng +ng, max(|ng|) > M,

1
also forces
Ini| > [ns| = |na| 2 M.

Thus we can estimate

1 1 1

(545)° < 75 > S )

[n1],|n2]sns| < N,
1], |ns|>M

that concludes the proof. O
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6. PROOF OF PROPOSITION 3.1

Let us recall once more

d
Fy = %H%PNUHHS

o=

By Lemma 5.5 there is C' > 0 such that for any M > N € N

C /11
IFN = Fullz2y,) < N s* := min (2,3— 2) . (6.1)

Note s* > 0 for s > % Recalling that Fiy can be written as in (5.12), we immediately see that
(6.1) implies by hypercontractivity that for all p > 2 there is C' > 0 (possibly different from above)
for which

Cp?
Ns* -~
Then we can immediately establish the following concentration inequality for Fy around its limit.

Proposition 6.1. Let s > 1/2 and N € N. There are C,c > 0 such that

||FN _FM||LP('yS) < (6.2)

s (|Fy — F| > 1) < Ce=VINT | (6.3)

Proof. Having bounded all the moments as in (6.2) we can bound also the fractional exponential

moment
E, [exp (c\/|FN—FM|Ns*)} < 00, (6.4)

for a suitable constant ¢ > 0 (see e.g. [32, Proposition 4.5]). From (6.4) we obtain (6.3) in the
standard way using Markov inequality. O

These bounds (notably independent on R) are however not optimal and we need to improve on
them. We shall show that {Fy } yen are in fact sub-exponential random variables uniformly in N,
whereby Proposition 3.1 will follow as a simple corollary. We split the bulk and the tail of the
distribution of F' as follows:

Proposition 6.2. Let s > 1/2 and R* := max (Rﬁ,RQ(%*l)). Then There exist ¢,C > 0
independent on N for which

t .
s, N(|[Fn| > t) < Cexp (—;*> , t<N° . (6.5)

Proposition 6.3. Let s > 1/2 and R* := max (R%,RQ(QS*U), There exist ¢,C > 0 indepen-
dent on N for which

t “
Ys.n(|Fn| = t) < Cexp <;> , t=N° . (6.6)

To bound the tail of the distribution of F' we need some work and therefore that will be addressed
first. Recall that for j € N the Littlewood-Paley projector is denoted by A; := Py — Pyj—1; we
write |n| ~ 27 to shorten 2971 < |n| < 27 for j € N, while for j = 0 |n| ~ 1 shortens |n| < 1.

Let us now shorten

Xj,N = 2](8*%)||AJPNU||L2 5 XN = Z Xj,N (67)
j=20
Vi = D |(Pyu)m)l, Ywi=) Yin. (6.8)
[re[~27 iz0

Then we obtain the following crucial lemma, whose proof can be found at the end of this section.

Lemma 6.4. We have
|Fy| < XZYR (6.9)
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Lemma 6.4 allows us to bound
1

Fon (IFw] = 1) < Fa N (XNYn 2 VE) < Fun (X 2 17737) + 5, v (Y > £57), (6.10)
so that we can treat the two contributes separately.
Lemma 6.5. There are C,c > 0 and | > 1 such that
t s
Fen(Xn = 1371) < exp <— < ) , Vit > (logy N)z1t, (6.11)
Rz-1
Proof. Let
. | tas
= |log, —5—
Jt &2 R252—1
and split

Xn= Y Xjn+> Xjn. (6.12)

0<J <t J>Jt

Since by definition of 4, x we have ||Pyullz2z < R on a set of full 4, v measure, the following
bound

Yo Xn< Y PO DA Pyl < R2CTE) <o
0<7<Je 0<J<Je
holds ¥, n-a.s., therefore
%,N( Y Xjnz t%—%s) —0. (6.13)
0<Jj<Je

Now we analyse the second summand of (6.12). Let ¢y > 0 small enough so that
oj=coj . Y oy <1 (6.14)
JEN

For any j € N we have

1

Fov (Xjw > 0327 8) = 3o v (DA Pyl e > 05277,
By Bernstein inequality (1.14)

~ _ -877 2; 1
Fon (27C DA Pyul| 2 > 0jt27 %) o (|8 Pyul22 > 2720679022557

< Cexp (—c2j min (Uft%,aft%;l )) . (6.15)

Therefore for any fixed j we have

2s—1 .
Fen (276 2)HA Pyul|pz > ajt%_i) < Ce it = 27
provided
tz 7
Therefore the estimate extends to all j < [logy, N for

t > (logy N)==1'.

Then
11 - 1_1
%N(E X;, iz 4) < E %,N(Xj,N>th2 45)
J>7t J>Jt
< 7210215252;1 _ t
< E e i <Cexp|—c—
— R2s-1
J>Jt

for some absolute constants C, ¢ > 0. O
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Lemma 6.6. There is ¢ > 0 such that

~ L ct
’VS’N(YN > t4s) < exp (_}22(251)) . (616)

. tas
Jt = 10g2ﬁ .

Since ||Pyul/z2 < R on a set of full 4, y measure, the simple inequality

Proof. We set now

Yjn < 22| A; Pyl e

implies the following bound to hold 75 n-a.s.
Y ovin< Y 23APyuls < R2¥

0<Jj<Je 0<y<Je

I
o~
S

(6.17)

Thus
(D Yinzt¥) =0, (6.18)

0<y <t
To estimate the contribution for j > j, we consider again the o; > 0 defined in (6.14) and bound
- 1 . 1
Gon (3 Vi 2 ) < 3 e (Yiw = opt¥). (6.19)
J>Je J>Jt

We have the following estimate for Y; y from Hoeffding inequality

ct?
’3/371\[ Y',N > Tf) < Cexp = o (620
. S 1) !

for suitable constants C, ¢ > 0. Therefore
- 1 eo22i(2s=1) g5
Vs, N (YJN > Uﬂ‘*s) <e % for some ¢ > 0. (6.21)

Thus, noting

j(2s—1), 4 _ 1t
z iz = R2(25-1)
there is some C, ¢ > 0 such that we can bound
eo29(2s=1) g5 ct
rhs. of (6.19) < Z e~ < Clexp <_Rz<281)> , (6.22)
J>7t
that concludes the proof. d

Combining (6.10) with Lemma 6.5 and Lemma 6.6 we prove Proposition 6.3. Finally the bulk
of the distribution of F' is easier to bound.

Proof of Proposition 6.2. Let us set T := Lts%J Notice that since we restrict to t < N* we have
N > T. We use the union bound
Vs N([Fn| 2 1) <ys(lFnv — Fr| > t/2) + 3§ (| Fr| 2 1/2) . (6.23)
By Proposition 6.1 we have
Yo(|Fy — Fr| > t) < Ce™ V% < Cet . (6.24)

On the other hand since ¢ > T the estimate (6.6) applies to the second summand of (6.23). This
concludes the proof. O



QUASI-INVARIANCE OF GAUSSIAN MEASURES 30

Proof of Lemma 6.4. The first step is to revisit the decomposition of Lemma 5.1. We set

FZ = > Im / (A, Pyit) ) (Ag, Pyu) (A Z[Pyul) | (6.25)
j1,41€N
J > min(j1,41)
F5 = Im / i Pni) ) (Ag, Pyu) (A Z[Pyul) . (6.26)
]17516N
J<min(j1,01)
Of course it is
Fy=Fy +Fx5. (6.27)

With a slight abuse of notation we denote these two quantities by the same symbols as the ones of
the decomposition of Lemma 5.1. This will lighten the exposition and anyway the analogy between
the two representations is clear. We will also need

AsI[Pyul=i Y Y et Hm)ulng) (6.28)

21 €N |na|,lma| < N M2 M2
\n2|22j2, \m2|2222
O7é|n2—m2|:2‘]
Using (6.28) we bound
FZ< |m1|28
IFy |2 > > p—— nlu(ml) u(ma)u(ni)u(nz)| . (6.29)

J1,J2,€1,€2€N |nq|,|na], \mll |m2| < N
J > min(¢1,51) |mq |~2°1 ) |ny |~271

|ng|~292 | |m2‘~21’2
O;ﬁ\nl—ml ‘22‘]
ni+na=mi+ma

The constraints
J j ¢
[ng —mq| =27, |ng| =2, |my|~2%
in the inner sum enforces one of the following possibilities:

(A) ny~my and J </t =3,
(B) J = £1 > jl, (6'30)
(C) J = jl > éla

However (A) is excluded by the condition J > min(¢y, j;) in the outer sum.

e Case (B). Noting that in this case we have

|m1|2s < 2(23—1)21 )

~J
mp —n

Since the sum is restricted over ny +no = my +mo we can assume that at leas one between ns, mo
is comparable to m;. To fix the notations we will assume this index to be no, so that

201 ~ || ~ 272 ~ [na| 2 nql, |mal .
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We have

©29)] 5 > 20 > ()| [u(ma) () u(no)|
J1,J2,41,£2€N [n1l,|nzl,|mil,|mz| < N

6> [mq |21, |ny |~271
|n2|22j2 ,|WZ2"22£2
ni+nz=mi+msz

D DA > [u(ma)|fu(ms)[u(n)]u(ns)]

J1,J2.41,£2€N [nil,Inz],|mal,|me| < N
‘M1|22£1, \n1|2271
|ng|~292 |my|~2¢2

nit+ne=mi+ms

(6.31)
Now for fixed n1, mo we have, by Cauchy-Schwarz and Plancherel inequality
20(-Raie=h S Ju(m)[Ju(na)| < 294C78) | A, Pru 227278 Ay, a2
[n2|,/m1| < N
[y |~2°1 | |ng|~272
ni+nz=mi+mz
Plugging this into the r.h.s. of (6.31) we get
(6.29)) < (Z 2fl<s—é>|AzlPNullL2> S 226=) | Ay, Pyul| 2 (6.32)
(B £,EN j2€N
x > > [u(ma)l[u(na)]
Ju2€N naf,|lme| < N
|n1|§2j1 ,|m2|§2£2
SXX D D )| (Do D lu(ma)l | = XFYR
J1EN |n | 271 £2EN [my|~2f2
e Case (C). Since ¢; < j; we have
9(2s—1)tr 9(s—3)19(s— )i
thus
(629 S Y 2lmhalmon > fu(m)u(ma)[[u(na)[u(nz)|
© 1ot b2 €N Inal,nsl,lmal,mal < N
[ma |21 |ng |~291
|TL2|22J2 ,|m2\22£2
ni+ns=mi+mso
(6.33)

and proceed as in the case (B), switching ny <> no.
It remains to bound

2s
m
<| _ | 1| _ _
IFS| = ’Im ( 3 3 L ima a(ma)u(nJu(no) ) |
. 1 — 7]
J1,J2,01,£2€N [ny],|nz],lm1|,|m2| < N
J<min(41,j1) |my |21 |ng |~271
\n2|z2j2 ,\m2|:222
0#|ny —my|~27
ni+nz=mi+msz
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Since J < min(¢y,j1) we are summing over ny # 0. Using the fractional binomial identity (recall
ng—mgzml—nl)

[mal**_ [maf*|ny 4 ny — mal® (6.34)
mi —ng mi —ng '
S
_ |ma|®|nq|? (1 + LWIW‘”) _ () [mal*|n|*(my — ny)F—1
mip — Ny k>0 k' |n1|k

and the cancellation already exploited in Lemma 5.1 (see formula (5.11))

I lma|*|nal® _
m Z Z ﬁu(ml)u(mg)u(nl)u(ng) =0, (6.35)
91,92,01,02€N [ny | [na] | fma < N
J<min(£1,j1) |m1\22£1,|n1|:2'71
|n2\:2j2 ,lTYLQ‘ZQZQ
Oyé\nl—ml\g?]
ni+ns=mi+ma

we arrive to
(8)k Ima|®na |*(my — ng)*=1 _
A (Y ¥ 08 o)
E>1 J1,32:81,82EN |nq|,|nz|,|mi|,|m2| < N
J<min(1,51) g =24 |ng |~291
|ng|ne272 ||mg|~2f2

0#|n1 —mq|~27
ni+ns=mi+msz

Since J < min(¢y, j1) implies |nqy — mq| < %\nl\ and that n; and m; are comparable, bringing the
modulus inside and summing over k we arrive to

1 —1ys
FRIS Y, 20m2)hgbma)i > [u(ma)[|u(me)l|u(ny)|lu(nz)|  (6.36)
J1,52,01,€2€EN [nil,Inzl,Imal,lmz| < N
[y |~2°1 ) [ng|~291
|n2\:2j2 ,lTT’LQ‘ZQ[Q

ni+nz=mi+ma

and we proceed as in the case (B). O
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