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Abstract 10 

Floating structures for single offshore renewable energy devices, i.e. wave energy converters, tend to be 11 

significantly smaller than those of the traditional offshore industry and the interaction between floater motions 12 

and mooring line dynamics become important. Installation sites are generally subject to powerful waves and 13 

currents experiencing more dynamically excited motions. Water depths are also lower, ranging generally from 14 

50m to 200m and mooring systems are to be designed to assure the station keeping of them while not 15 

interfering with the power conversion. However, floater motions may induce large dynamic tensions on 16 

mooring lines, making quasistatic analyses inaccurate in terms of design tension while non-linear time domain 17 

simulations too time consuming. This paper introduces a numerical model of lumped mass for mooring lines 18 

and rigid body motions for the floating structure coupled by means of kinematic relations, and its subsequent 19 

linearization, which is solved in the frequency domain. The linearized model is applied to a two-body floating 20 

spar type oscillating water column, subject to the 36 most occurrent sea states at the BIMEP site. Its accuracy 21 

is verified through a comparison with the equivalent time domain simulation and a review of the results and 22 

its limitations are also pointed out. 23 
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1 Introduction 27 

Mooring systems are very nonlinear mechanical systems and have traditionally been simulated with nonlinear 28 

time domain (TD) numerical models, based on either the lumped mass or the finite element method (FEM). 29 

Non linearities present in such models arise mainly from the nonlinear geometric stiffness and lines’ drag and 30 

inertia forces. Both methods are widely used in the offshore industry since initially introduced by [1], and 31 

have been applied within the offshore renewable energy sector by [2] and [3], among others, showing accurate 32 

results and highlighting the poor tension estimation of the quasistatic (QS) approach. Nevertheless, the 33 



  

required computation time of the lumped mass method tends to be significant compared with the frequency 34 

domain (FD) analysis. Several models have been proposed to account for the mooring influence on the floating 35 

structure in the offshore industry in general and in the wave energy conversion sector. An initial approach can 36 

be the linearization of the nonlinear geometric stiffness at the mean horizontal position of the structure as 37 

suggested in [4]. Through this procedure main horizontal motions are acceptably reproduced whilst just the 38 

order of magnitude of line tensions can be estimated, as pointed out in [5] for a wave energy converter (WEC). 39 

Other authors, e.g. [6] and [7], added an equivalent impedance to the floater linear hydrodynamics to include 40 

the influence of mooring lines and assess the impact on wave energy extraction. Larsen and Sandvik [8] 41 

proposed two models, one based on the catenary equations and an estimate of the line drag resistance and a 42 

second one based on a model of a single degree of freedom (dof) per line. The additional dof of the latter 43 

model consisted of a mode with the shape of the static line with the top end moving in the tangential direction, 44 

deriving a transfer function that relates the top end motion with the line tension. They found good agreement 45 

with the second model for a wide range of mooring configurations. A method to estimate both floater and 46 

lines’ dynamic tensions in both FD and TD was introduced in [9] for structures moored in ultradeep waters. It 47 

consists in building up the mass, stiffness and damping matrices to represent lines structural properties, 48 

coupled with the floater motions and linearizing for the viscous drag term. Lines’ motion results are 49 

postprocessed so that the line tensions can be derived. In addition, the same authors suggested a hybrid TD 50 

and FD methods [10] for intermediate water depths, i.e. 200m, as the geometric non-linear stiffness is more 51 

relevant in lower water depths, showing accurate results. A frequency domain solution compared to the 52 

corresponding time domain solution of an spar floating platform was also presented in [11]. It was applied to 53 

a large spar platform compared with a WEC in deep waters (760m). Good results were obtained, pointing out 54 

that most differences may have been produced by the viscous drag force linearization. 55 

The present paper extends the method in the FD introduced by [9], complementing it with a linearized stiffness 56 

matrix, to account for the geometric stiffness influence also on mooring lines. The extended methodology for 57 

coupled response analysis in the FD is introduced in the first section of the paper, which can be applied to any 58 

moored floating structure. Its accuracy is illustrated by comparing its results with the equivalent TD non-linear 59 

model of a two-body spar type oscillating water column (OWC) WEC, in operational conditions. Most WECs 60 

extract power from incoming waves as the floater is excited and moves, mostly in heave or pitch, in or near 61 

resonance with respect to the surface water level (SWL). There are currently some relevant WEC 62 

developments close to the precommercial phase such as the Ocean Energy buoy [12], the MARMOK OWC 63 

[13] or the CorPower heaving buoy [14], all based on the energy captured in their oscillating motions. 64 

Specifically, OWCs consist of a structure, either floating or seabed mounted, and an internal water column, 65 

connected with the sea water at the bottom and with an air chamber at the top. The power is extracted from 66 

the pressure of the air chamber, induced by relative motion of the structure with respect to the internal water 67 

surface. The compressed and expanded air is made to pass through a self-rectifying air turbine allocated on 68 

the deck of the floating structure. Its hydrodynamic properties for power production assessment can be 69 



  

modelled, among other methods, through two oscillating bodies, one representing the floater and a second 70 

one, consisting of a massless surface on the internal SWL, representing the free surface water of the internal 71 

water column. The case study considered here is a floating spar type OWC, which extracts wave power from 72 

the heaving relative motions between the floater and the internal water column, intensively studied in [15], 73 

[16]. It has been assumed a catenary spread mooring system made up of three lines is used for the station 74 

keeping of the floating WEC. It is a very commonly used mooring system, in which the above-mentioned 75 

nonlinearities play a key role in its performance, i.e. the geometric stiffness, drag and inertia forces and the 76 

interaction with the seabed. 77 

Floater motions  are calculated with  hydrodynamic coefficients, obtained with a commercial code [17] based 78 

on the linear potential flow theory, and including additional viscous drag forces and second order wave drift 79 

forces. Mooring line motions are based on the non-linear lumped mass method and are coupled to the floater 80 

by kinematic relations. The non-linear floater and mooring system coupled model has been validated with 81 

tank test results, and introduced in [18]. In the present work all non-linear effects, such as drag force on the 82 

floater and line sections as well as the geometric stiffness, have been linearized through statistical linearization 83 

for random waves. In addition, non-linear kinematic relations have been linearized at the mean position, 84 

enabling the resolution of the coupled mechanical system in the FD.  85 

The motions and line tensions obtained with the linearized system are presented and compared  with the 86 

equivalent non-linear TD model for the most occurrent sea states at BiMEP site, described in [19].The 87 

accuracy of line tension results along mooring lines, from the fairlead to the anchor have also been compared 88 

obtaining good agreement, especially in the fairleads. Finally, some limitations of the current approach have 89 

been explained, supported by the modal analysis of the coupled system. 90 

2 Numerical models 91 

2.1 Time domain numerical model 92 

The floater and mooring coupled non-linear TD numerical model, used as the reference model in this work, 93 

has been introduced and validated in [18]. Motions of several diffracting bodies can be included to represent 94 

WECs, mostly made up of more than one diffracting body. The wave structure interaction numerical model 95 

of the floater is based on the linear potential flow theory and Boundary Integral Element Method (BIEM). The 96 

applied commercial code [17] provides linear hydrodynamic coefficients, assuming small wave amplitudes 97 

compared to the wavelength. This assumption leads to linearized kinematic and dynamic free surface boundary 98 

conditions [20]. The mooring model is based on the lumped mass method, which accounts for the non-linear 99 

geometric stiffness as well as the drag and inertia forces on mooring lines, relevant effects in line tension 100 

estimates. The model makes use of Lagrange multipliers through the penalty method [21] to account for all 101 

kinematic relations. On the one hand kinematic constraints can be set between the diffracting bodies, e.g. the 102 

floating structure and the internal water surface, that, along with the power take off (PTO) force, represent the 103 



  

floating WEC. On the other hand, the fairlead and anchor points of the mooring lines are imposed to be 104 

attached to the fairleads in the floating structure and fixed on the seabed respectively. The complete numerical 105 

model is represented in the TD, in equation (1), accounting for both radiation, hydrostatic, wave, inertia and 106 

anchoring forces, in which the main non-linearities arise from the seabed, viscous drag and catenary geometric 107 

stiffness forces. Therefore, in equation (1) the first set of degrees of freedom represent the floating structure 108 

(‘str’) along with its kinematic relations (‘dkin’), in case of a floater made up of multiple diffracting bodies. 109 

The last set of degrees of freedom represent the nodes of all mooring lines (‘moor’) describing the lumped 110 

mass method. 111 

[
(𝑀 + 𝐴)𝑠𝑡𝑟 +𝑀𝑑𝑘𝑖𝑛 𝑀𝑓/𝑎

𝑀𝑓/𝑎 𝑀𝑚𝑜𝑜𝑟
] · {

𝛿̈𝑠𝑡𝑟(𝑡)

𝛿̈𝑚𝑜𝑜𝑟(𝑡)
} + [

𝐶𝑝𝑡𝑜 + 𝐶𝑑𝑘𝑖𝑛 𝐶𝑓/𝑎
𝐶𝑓/𝑎 𝐶𝑚𝑜𝑜𝑟

] · {
𝛿̇𝑠𝑡𝑟(𝑡)

𝛿̇𝑚𝑜𝑜𝑟(𝑡)
} + [

𝐻𝑠𝑡𝑟 + 𝐾𝑝𝑡𝑜 + 𝐾𝑑𝑘𝑖𝑛 𝐾𝑓/𝑎
𝐾𝑓/𝑎 𝐾𝑚𝑜𝑜𝑟

] · {
𝛿𝑠𝑡𝑟(𝑡)

𝛿𝑚𝑜𝑜𝑟(𝑡)
}

= {
𝐹𝑤(𝑡) + 𝐹𝑠𝑣(𝑡) + 𝐹𝑑𝑟𝑎𝑔(𝑡) − 𝐹𝑟𝑎𝑑(𝑡) − 𝐹𝑓/𝑎

𝑞𝑠 (𝑡)

𝐹𝑧(𝑡) + 𝐹𝑓(𝑡) + 𝐹𝑔 + 𝐹𝑏 + 𝐹𝑚𝑜𝑟𝑖𝑠𝑜𝑛(𝑡) + 𝐹𝑓/𝑎
𝑞𝑠 (𝑡)

} 

(1)   

In equation (1) the subscript ‘str’ denotes floating structure, ‘moor’ denotes mooring, ‘pto’ denotes power 112 

take off, ‘dkin’ denotes kinematic relations between diffracting bodies and ‘f/a’ denotes fairlead and anchor 113 

forces. In addition, the intervening variables are: 114 

- M, C, K: Mass, damping and stiffness matrices of the corresponding ‘subsystem’ 115 

- A, H: Infinite-frequency added mass and hydrostatic matrices 116 

- 𝐹𝑤, 𝐹𝑠𝑣, 𝐹𝑑𝑟𝑎𝑔, 𝐹𝑟𝑎𝑑 , 𝐹𝑓/𝑎
𝑞𝑠

: Froude-Krilov and diffraction, slowly varying second order drift, viscous 117 

drag, radiation and fairlead forces on the floater 118 

- 𝐹𝑧 , 𝐹𝑓 , 𝐹𝑔, 𝐹𝑏 , 𝐹𝑚𝑜𝑟𝑖𝑠𝑜𝑛, 𝐹𝑓/𝑎
𝑞𝑠

: Seabed vertical reaction, seabed horizontal friction, gravity, buoyancy, 119 

Morison and fairlead-anchor forces on mooring lines 120 

- 𝛿(𝑡), 𝛿̇(𝑡), 𝛿̈(𝑡) : Floating structure rigid body and mooring lumped masses position, velocity and 121 

acceleration. Six dof per floating structure and multiple dof-s for mooring lines, based on the lumped 122 

mass model  123 

It should be noted that the force to impose mooring lines upper ends to follow the fairleads in the floating 124 

structure is composed of two main terms. The variable forces arisen from 𝑀𝑓/𝑎, , 𝐶𝑓/𝑎 and 𝐾𝑓/𝑎 and the 125 

quasistatic forces 𝐹𝑓/𝑎
𝑞𝑠

. The former make the fairleads to move with the centre of gravity of the floating 126 

structure while the latter, 𝐹𝑓/𝑎
𝑞𝑠

, stands for the forces to maintain fairleads at a constant position from the centre 127 

of gravity of the floating structure, as well as keeping anchors fixed in the corresponding seabed positions.  128 

The magnitude of 𝐹𝑓/𝑎
𝑞𝑠

 depends on the positions of the fairlead and anchor points with respect to the centre of 129 

gravity of the floater at each time step, 𝛿𝑥,𝑦,𝑧−𝑓𝑎𝑖𝑟 and 𝛿𝑥,𝑦,𝑧−𝑎𝑛𝑐ℎ𝑜𝑟 respectively in equation (12). Whilst 130 

𝛿𝑥,𝑦,𝑧−𝑓𝑎𝑖𝑟 is time invariant in the floater-fixed coordinate system, 𝛿𝑥,𝑦,𝑧−𝑎𝑛𝑐ℎ𝑜𝑟 changes along the time as the 131 

floater moves, and the corresponding force, built up as a constant force in (13) with the restrictions set in (12), 132 

needs to be updated every time step. Fairleads and anchors quasistatic force component, 𝐹𝑓/𝑎
𝑞𝑠

, on the floating 133 

structure corresponds to the forces of all lines attached to the floating structure and with opposite sign with 134 



  

respect to the 𝐹𝑓/𝑎
𝑞𝑠

 on the corresponding attachment nodes on mooring lines. However, as the force is not 135 

proportional to any dof, it does not intervene in the linearized system introduced in equation (15). All 136 

kinematic restrictions on mooring line ends (blue triangles) are represented in Figure 1. 137 

 138 

Figure 1. Mooring line schematic representation. Last four nodes and the fairlead with local and global coordinates (top) and first five nodes and 139 

the anchor (bottom). The kinematic constraints to maintain the anchor and fairleads are represented with blue triangles, each node is 140 

represented as a concentrated mass linked to adjacent nodes by spring and dampers, representing the lines axial properties. The seabed is 141 

also represented by stiffness and dampers and the node numbering is increased from the anchor to the fairlead. 142 

The lumped mass method consists in discretizing mooring lines in a set of point masses, with a mass equivalent 143 

to the sum of half the mass of its adjacent segments. Each point mass is linked to its adjacent point masses 144 

through linear and, if bending is considered, rotational spring and dampers of equivalent properties to the 145 

actual line to be modelled. These elements have been represented in Figure 1 along with the global and local 146 

coordinate systems. The global coordinate system (G) is assumed to be on the sea SWL, with the positive ‘ZG’ 147 

axis pointing upwards. In addition to the internal forces, the external forces, such as hydrodynamic Morison 148 

force, seabed, buoyancy and gravity forces are also included. The change in the line shape with small motions 149 

of the floater makes it a significantly non-linear system, being necessary to update the internal forces every 150 

time step. 151 

The dynamic system described in equation (1) is composed of three main parts, the floater, mooring lines and 152 

the lines fairleads and anchor. All of them have been included in the numerical model through sets of stiffness, 153 

damping and mass matrices or as time varying forces. Floater motions are linear since its wave structure 154 

interaction have been computed with a linear potential code and, hence, its matrices are time invariant. The 155 

PTO force has been modelled as a set of linear stiffness and damping matrices, acting between the heaving 156 

motions of the internal SWL and the floater. It represents the air turbine influence in the case study of the 157 

OWC here introduced, which can be modelled as a linear force in case a Wells turbine is used [22]. The 158 

radiation force 𝐹𝑟𝑎𝑑 in the TD is computed by a convolution of the radiation impulse response function and 159 

the velocity of the corresponding degree of freedom. There are several methods proposed to perform it, most 160 

of them based in state space models and used in several codes presented in [23], however, in this work the 161 

radiation force has been computed through direct integration of the convolution of the retardation function 162 

and the corresponding velocity history at each time step. 163 
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In the non-linear TD model represented in equation (1) several non-linear terms are found. One of the  major 164 

sources of nonlinearities in offshore structures is the viscous force, represented by the last term in the right 165 

hand side (RHS) of equation (2), which also applies to the mooring lines. 166 

 𝐹𝑚𝑜𝑟𝑖𝑠𝑜𝑛(𝑡) = (1 + 𝐶𝑎) · 𝜌𝑤 · 𝑉 · 𝑢̇(𝑡) − 𝐶𝑎 · 𝜌𝑤 · 𝑉 · 𝛿̈(𝑡) + 0,5 · 𝜌𝑤 · 𝐶𝑑 · 𝐷 · 𝐿 · |𝑢(𝑡) − 𝛿̇(𝑡)| · (𝑢(𝑡) − 𝛿̇(𝑡)) (2)    

Where:  167 

- 𝐶𝑎 𝑎𝑛𝑑 𝐶𝑑: Added mass and drag coefficients respectively 168 

- 𝜌𝑤: Water density 169 

- 𝑉,𝐷 𝑎𝑛𝑑 L: Volume of the equivalent line length, line equivalent diameter and the line length 170 

associated to the corresponding point 171 

- u(t): water particle velocities  172 

The slowly varying (SV) wave drift forces are also non-linear forces [24]. These forces are computed for each 173 

pair of frequencies and the product of the corresponding amplitudes over a double summation, as shown in 174 

(3). 175 

𝐹𝑠𝑣
𝑖(𝑡) =∑∑𝐴𝑗 · 𝐴𝑘 · [𝑇𝑗𝑘

𝑖𝑐 · 𝑐𝑜𝑠{(𝜔𝑘 − 𝜔𝑗) · 𝑡 + (𝜑𝑘 − 𝜑𝑗)} + 𝑇𝑗𝑘
𝑖𝑠 · 𝑠𝑖𝑛{(𝜔𝑘 − 𝜔𝑗) · 𝑡 + (𝜑𝑘 −𝜑𝑗)}]

𝑁

𝑘=1

𝑁

𝑗=1

 (3)    

In (3) each frequency is denoted through ‘j’ and ‘k’ respectively, wave amplitudes through A, frequencies 176 

with ω, phases with φ and degrees of freedom with ‘i’. The variable ‘T’ indicates the quadratic transfer 177 

function (QTF), computed here with the Newman approximation [24]. The main diagonal of the QTF has been 178 

obtained with a linear potential flow code [17]. Only the horizontal 𝐹𝑠𝑣
1
(𝑡) has been considered in both models. 179 

The first order wave excitation forces have been computed with the linear Froude-Krylov and diffraction force 180 

per unit amplitude (𝐹̂𝑤−𝑅.𝐴.𝑂.(𝜔)), obtained with the linear potential flow solver [17]. Such excitation forces 181 

have been computed in the TD through the ifft of the corresponding force amplitude,  182 

𝐹𝑤(𝑡) = ∑ 𝐹̂𝑤−𝑅.𝐴.𝑂.(𝜔𝑘) · 𝐴𝑘(𝜔𝑘) · 𝑒
𝑖·(𝜔𝑘·𝑡+𝜑𝑘)𝑁

𝑘=1 . The term 𝜑𝑘 denotes the wave phase, taken as uniformly 183 

distributed random numbers in the range 0 < 𝜑𝑘 < 2 · 𝜋. 184 

The mooring system is fully non-linear since its stiffness and damping matrices are time variant to account 185 

for the geometric changes. Its interaction with the seabed, is also non-linear as it just acts vertically upwards 186 

in the case of the vertical reaction, whilst the horizontal friction force is limited in magnitude to the absolute 187 

friction force. The gravity force on mooring lines is the responsible for the geometric non-linear stiffness as 188 

its influence on the lifted sections from the seabed provides the non-linear geometric restoring force to the 189 

floating structure in all degrees of freedom. 190 

Line attachments to the floating structure and the seabed have also been modelled through a set of stiffness 191 

(𝐾𝑓/𝑎), mass (𝑀𝑓/𝑎), damping (𝐶𝑓/𝑎) and quasistatic (𝐹𝑓/𝑎
𝑞𝑠) forces which also depend on the structure 192 

position, making the relations non-linear. This set of matrices arise from the kinematic constraints imposed 193 

on the fairleads and anchors, introduced in the subsequent section in order to show its linearized version. 194 



  

2.2 System linearization 195 

In order to solve the system (1) in the FD, forces on both the floating structure, the mooring system and line 196 

attachments must be linearized. The floating structure and the mooring system are influenced by viscous drag 197 

forces which are commonly linearized through harmonic or statistical linearization [9]. Whilst wave 198 

interaction forces of the floating structure are modelled through linear potential hydrodynamic coefficients, 199 

complemented with a viscous force term, hydrodynamic loads on mooring lines are added through the Morison 200 

force, as shown in equation (2). Viscous forces on the floating structure have been included accounting for 201 

motions of the buoy, whereas hydrodynamic Morison forces on mooring lines account for the relative motions 202 

between water particles and line sections.  203 

On the one hand, the inertial term of the RHS in equation (2) is linear and consists of an excitation force, 204 

called effective buoyancy term and proportional to water particles acceleration, and the added mass term, 205 

proportional to the acceleration of the corresponding dof of mooring line nodes. On the other hand, the viscous 206 

force term in the RHS of equation (2) can be rearranged as an excitation force and a damping force, both 207 

functions of the relative velocity of the fluid with respect to the corresponding degree of freedom 208 

(𝑢(𝑡) − 𝛿̇(𝑡)), as shown in equations (4) and (5). It has been assumed that the current velocity does not 209 

significantly contribute on the varying hydrodynamic forces as the floating structure is subject to operational 210 

states with a relatively low current. Therefore, assuming that wave particle velocities dominate, the linearized 211 

coefficient is introduced in (5) [25]. It makes the viscous drag force non-linear and an iterative procedure is 212 

needed to solve the complete FD system. 213 

𝐹𝑑𝑟𝑎𝑔(𝑡) = 𝛾 (𝑢(𝑡) − 𝛿̇(𝑡)) · 𝑢(𝑡) − 𝛾 (𝑢(𝑡) − 𝛿̇(𝑡)) · 𝛿̇(𝑡) (4)    

𝛾 (𝑢(𝑡) − 𝛿̇(𝑡)) =

{
 
 

 
 
8

3𝜋
· 𝑓𝑣 · 𝑚𝑎𝑥 (𝑢 − 𝛿̇(𝑡))  →   𝑅𝑒𝑔𝑢𝑙𝑎𝑟 𝑤𝑎𝑣𝑒𝑠

√
8

𝜋
· 𝑓𝑣 · 𝜎𝑢−𝛿̇(𝑡) →   𝐼𝑟𝑟𝑒𝑔𝑢𝑙𝑎𝑟 𝑤𝑎𝑣𝑒𝑠

 (5)    

In equation (5) 𝑓𝑣 = 0,5 · 𝜌𝑤 · 𝐶𝑑 · 𝐷 · 𝐿 and 𝜎𝑢−𝛿̇(𝑡) represents the standard deviation of the relative fluid 214 

velocity with respect to the corresponding dof. The linearization of the Morison viscous drag term ends up in 215 

a set of two linearized forces, proportional to the fluid and to the corresponding dof velocities respectively. 216 

The damping matrix and the velocity force depend on all dof motions, implying the FD solution to be solved 217 

through a fixed-point iterative process. This iterative method consists in setting an initial value of 𝛾, e.g. 0, 218 

that will provide an initial solution and an updated 𝛾. The same computation is carried out until either 219 

𝑚𝑎𝑥 (𝑢 − 𝛿̇(𝑡)) or 𝜎𝑢−𝛿̇(𝑡), for regular and irregular waves respectively, show a low error with respect to the 220 

previous solution, 0.1% has been assumed low enough in this work. Following the same procedure, the inertial 221 

forces in equation (2), proportional to the acceleration of the fluid and the corresponding dof, are shown in 222 

equation (6). In this case it represents two linear forces that are directly included in the complete FD model, 223 

shown in equation (15). 224 



  

𝐹𝑚𝑎𝑠𝑠(𝑡) = (1 + 𝐶𝑎) · 𝜌𝑤 · 𝑉 · 𝑢̇(𝑡) − 𝐶𝑎 · 𝜌𝑤 · 𝑉 · 𝛿̈(𝑡) (6)    

In contrast with the non-linear time domain model, the linearized FD model provides only the time-varying 225 

part of the solution. The structural damping, as already introduced in [18], is valid for velocities referred either 226 

to the absolute reference centre or to the mean position. However, the stiffness matrix needs to be redefined 227 

to work with the time varying motions, referenced to the mean position. Consequently, it implies adapting the 228 

structural stiffness matrix of the mooring system as represented in equation (7). 229 

[𝐾𝐺 ]𝑛
𝑛+1 = [

[𝑅]𝑛
𝑛+1

0

0 −[𝑅]𝑛
𝑛+1] [

[𝐾𝐿]𝑛
𝑛+1

0

0 −[𝐾𝐿]𝑛
𝑛+1] · [

[𝑅]𝑡𝑛
𝑛+1

0

0 −[𝑅]𝑡𝑛
𝑛+1] (7)     

[𝐾𝐿]𝑛
𝑛+1

= [

𝐸 · 𝐴

𝐿0 𝑛
𝑛+1 0 0

0 0 0
0 0 0

] 

(8)    

In equation (7) ‘n’ denotes specific nodes of mooring lines where subscripts and superscripts denote nodes 230 

connecting each line section. The subscript ‘L’ indicates local coordinates of each node with the positive ‘x’ 231 

direction aligned with a line connecting both nodes, pointing at the node ‘n+1’, as represented in Figure 1. 232 

The subscript ‘G’ indicates global coordinates to which the whole system described by equation (1) is referred, 233 

with the ‘xy’ plane on the undisturbed SWL and the positive ‘z’ axis pointing upwards as showed in Figure 1. 234 

‘R’ is the rotation matrix relating local and global coordinates for each line section, computed with the floater 235 

at the mean position, and  K𝐿 is the structural stiffness matrix of each line section referred to its local 236 

coordinates. The local structural stiffness matrix accounts only for axial stiffness, and, following the sign 237 

convention adopted for local coordinates, it is represented in the first position of the matrix, as shown in 238 

equation (8). The structural damping has been defined as a Rayleigh damping matrix. Following the same 239 

procedure as in equations (7) and (8) for the stiffness matrix, the structural damping matrix is straightforward 240 

defined as [𝐶𝐺 ]𝑛
𝑛+1

=𝛽 · [𝐾𝐺 ]𝑛
𝑛+1

, where 𝛽 is the stiffness proportional Rayleigh damping coefficient. 241 

The non-linear geometric stiffness contributes significantly on the system performance, especially in cases 242 

with significant mooring pretensions and in the low frequency (LF) range. Its influence on the floater has been 243 

here computed as the secant stiffness force on the floating structure. It is computed after each iteration of the 244 

FD, assuming oscillation amplitudes equal to two standard deviations of each degree of freedom of the floater 245 

about the mean position, obtaining the floater linearized geometric stiffness matrix, [𝐾𝑔
𝑓
]. In addition, the 246 

same force differences have also been computed on the mooring line nodes, as a consequence of the same 247 

floating structure motion amplitudes, with an analytic subroutine of a catenary mooring system, as described 248 

in [26], obtaining [𝐾𝑔
𝑚]. These matrices provide the corresponding geometric stiffness effect on both the 249 

floater and lines, as represented in equations (9) and (10). 250 

[𝐾𝑔] = [
[𝐾𝑔

𝑓
] [𝐾𝑔

𝑚]
𝑇

[𝐾𝑔
𝑚] [0]

] (9)    



  

[𝐾𝑔
𝑓
] =

[
 
 
 
 
∆𝐹1
∆𝛿1

⋯
∆𝐹1
∆𝛿6

⋮ ⋱ ⋮
∆𝐹6
∆𝛿1

⋯
∆𝐹6
∆𝛿6]

 
 
 
 

     𝑎𝑛𝑑     [𝐾𝑔
𝑚] =

[
 
 
 
 
∆𝐹𝑑𝑜𝑓_𝑓+1

∆𝛿1
⋯

∆𝐹𝑑𝑜𝑓_𝑓+1

∆𝛿6
⋮ ⋱ ⋮

∆𝐹𝑑𝑜𝑓_𝑡

∆𝛿1
⋯

∆𝐹𝑑𝑜𝑓_𝑡

∆𝛿6 ]
 
 
 
 

 (10)    

In equations (9) and (10) 𝐾𝑔 indicates the linearized geometric stiffness matrix based on the mentioned 251 

amplitude assumption. The superscripts m and f denote mooring and floater and dof stands for degrees of 252 

freedom, assuming that the ‘total’ degrees of freedom of the coupled system is denoted by dof_t. Summarizing, 253 

the stiffness matrix is the static mooring force tensor, considering the influence of motions in all degrees of 254 

freedom of the floating structure on all degrees of freedom of the coupled system, both the structure itself and 255 

mooring lines.  256 

The kinematic relations, modeling relations between fairlead and anchor points with the floater and the seabed 257 

respectively, are defined by means of Lagrange multipliers through the penalty method [21]. It consists in 258 

adding a force vector, {𝐹𝑘𝑖𝑛(𝑡)}, that makes the system fulfill the kinematic relations avoiding adding 259 

additional equations to be solved. 260 

{𝐹𝑘𝑖𝑛(𝑡)} = 𝛼𝑘𝑖𝑛 · [𝛷𝛿
𝑇(𝑡)] · ([𝛷𝛿(𝑡)] · {𝛿̈(𝑡)} + [𝛷̇𝛿(𝑡)] · {𝛿̇(𝑡)} + 2𝜉𝑘𝑖𝑛𝜔𝑘𝑖𝑛[𝛷𝛿(𝑡)] · {𝛿̇(𝑡)} + 𝜔𝑘𝑖𝑛

2{𝛷(𝑡)}) (11)   

In equation (11) the term 𝛷 indicates the kinematic restrictions imposed to the mechanical system, the 261 

subscript δ indicates its tensor with respect to each degree of freedom intervening in the restriction, and the 262 

dot indicates the time derivative. In the case of mooring lines, these restrictions make the fairleads to keep 263 

attached to the corresponding points in the floating structure and the anchors to stay in place at the defined 264 

point on the seabed. In the case of diffracting bodies, such as for the floater and the internal SWL, since both 265 

have been modelled as six dof rigid bodies, the kinematic relations impose the internal SWL to rigidly move 266 

with the floater in surge and sway. Since the internal SWL does not have mass nor stiffness in yaw, it has also 267 

been set to rigidly move in yaw with the floater as defined in equation (12) (right) to avoid numerical issues. 268 

The numbering of the degrees of freedom of the diffracting bodies has been taken assuming that the ‘first’ 269 

body is the moored body, the floating structure here (dofs 1 to 6), and the second body is the internal SWL 270 

(dofs 7 to 12). 271 

{𝛷𝑓/𝑎(𝑡)} =

{
  
 

  
 
𝑥𝑠𝑢𝑟𝑔𝑒 + 𝑥𝑟𝑜𝑙𝑙 + 𝑥𝑦𝑎𝑤 + 𝛿𝑥−𝑓𝑎𝑖𝑟 − 𝑥𝑛
𝑦𝑠𝑤𝑎𝑦 + 𝑦𝑝𝑖𝑡𝑐ℎ + 𝑦𝑦𝑎𝑤 + 𝛿𝑦−𝑓𝑎𝑖𝑟 − 𝑦𝑛
𝑧ℎ𝑒𝑎𝑣𝑒 + 𝑧𝑟𝑜𝑙𝑙 + 𝑧𝑝𝑖𝑡𝑐ℎ + 𝛿𝑧−𝑓𝑎𝑖𝑟 − 𝑧𝑛

𝛿𝑥−𝑎𝑛𝑐ℎ𝑜𝑟 − 𝑥1
𝛿𝑦−𝑎𝑛𝑐ℎ𝑜𝑟 − 𝑦1
𝛿𝑧−𝑎𝑛𝑐ℎ𝑜𝑟 − 𝑧1 }

  
 

  
 

        {𝛷𝑑𝑘𝑖𝑛(𝑡)} = {

𝛿1(𝑡) − 𝛿7(𝑡)

𝛿2(𝑡) − 𝛿8(𝑡)

𝛿6(𝑡) − 𝛿12(𝑡)
} (12)    

Assuming each line of the mooring system is defined by its lumped masses, starting in the anchor (node 1) 272 

and ending at the fairlead (node n) (see Figure 1), equation (12) (left) defines all restrictions imposed to it. 273 

Each node of a mooring line is defined through its three translational degrees of freedom in the space (x, y, z) 274 

and the nodes at the fairleads, nodes ‘n’, must follow the influence of the six degrees of freedom of the (rigid) 275 

floating structure on the fairlead position. It is defined through the first three restrictions in equation (12) (left), 276 

imposed to the x, y and z positions of the nodes ‘n’. In equation (12) 𝛿𝑥,𝑦,𝑧,−𝑓𝑎𝑖𝑟 denote the position of the 277 



  

fairlead with respect to the centre of gravity (CoG) of the floating structure as well as 𝑥𝑠𝑢𝑟𝑔𝑒,𝑟𝑜𝑙𝑙,𝑦𝑎𝑤, 278 

𝑦𝑠𝑤𝑎𝑦,𝑝𝑖𝑡𝑐ℎ,𝑦𝑎𝑤 and 𝑧ℎ𝑒𝑎𝑣𝑒,𝑟𝑜𝑙𝑙,𝑝𝑖𝑡𝑐ℎ denote the motions of the fairleads in the global ‘x’, ‘y’ and ‘z’ axis due 279 

to the corresponding motions of the floating structure. The anchor points are to be kept fixed on the seabed 280 

and to do so the position with respect to the CoG of the floating structure 𝛿𝑥,𝑦,𝑧−𝑎𝑛𝑐ℎ𝑜𝑟 are to be updated along 281 

the time. 282 

The simulation in the FD requires all forces to be linear either with respect to the wave amplitude or to the 283 

motion of the system. The restrictions in equation (12) can be broken down into two different forces, those 284 

depending on system motions and quasistatic force components. Quasistatic forces, specified in (1) through 285 

Ff/a
𝑞𝑠

, are not introduced in the FD model since it is already assumed to be in equilibrium, and consequently 286 

δx,y,z−fairlead and δx,y,z−anchor are not considered. Therefore, the restriction vectors (12) can be considered 287 

linear at the mean position as {Φ𝑓/𝑎(t)} = [Φ𝑓/𝑎] · {δ(t)} and {Φ𝑑𝑘𝑖𝑛(t)} = [Φ𝑑𝑘𝑖𝑛] · {δ(t)}. As long as all 288 

restrictions are defined linearly with respect to different combinations of the floater’s degrees of freedom the 289 

equation (11) becomes equation (13), expressed for the restrictions on mooring line ends ′𝑓/𝑎′ and on 290 

diffracting bodies ′𝑑𝑘𝑖𝑛′. 291 

{𝐹𝑓/𝑎(𝑡)} = 𝛼𝑓/𝑎 · [𝛷𝑓/𝑎 𝛿
𝑇 ] · ([𝛷𝑓/𝑎 𝛿] · {𝛿̈(𝑡)} + [[𝛷̇𝑓/𝑎 𝛿] + 2 · 𝜉𝑓/𝑎 · 𝜔𝑓/𝑎 · [𝛷𝑓/𝑎 𝛿]] · {𝛿̇(𝑡)} + 𝜔𝑓/𝑎

2 · [𝛷𝑓/𝑎] · {𝛿(𝑡)}) 

{𝐹𝑑𝑘𝑖𝑛(𝑡)} = 𝛼𝑑𝑘𝑖𝑛 · [𝛷𝑑𝑘𝑖𝑛 𝛿
𝑇 ] · ([𝛷𝑑𝑘𝑖𝑛 𝛿] · {𝛿̈(𝑡)} + [[𝛷̇𝑑𝑘𝑖𝑛 𝛿] + 2 · 𝜉𝑑𝑘𝑖𝑛 · 𝜔𝑑𝑘𝑖𝑛 · [𝛷𝑑𝑘𝑖𝑛 𝛿]] · {𝛿̇(𝑡)} + 𝜔𝑑𝑘𝑖𝑛

2 · [𝛷𝑑𝑘𝑖𝑛] · {𝛿(𝑡)}) 

(13)    

The form in which equation (13) is expressed denotes a linear system, which can be included in the FD system 292 

(15) straightforward through a set of mass, damping and stiffness matrices 293 

(𝑀𝑓/𝑎;  𝐶𝑓/𝑎;  𝐾𝑓/𝑎;𝑀𝑑𝑘𝑖𝑛;  𝐶𝑑𝑘𝑖𝑛;  𝐾𝑑𝑘𝑖𝑛). It should be noted that this formulation can also be used to set 294 

restrictions between several floating structures, as it has been done here for the diffracting bodies (the structure 295 

and the internal SWL), through additional restrictions to those set in equation (12) (right). Unlike the mooring 296 

system, restrictions imposed on the diffracting bodies are proportional to the body motions and no constant 297 

forces have been needed in the TD model.  298 

The slowly varying second order wave drift forces have been included in the linearized model through the 299 

spectrum proposed in [27]. It has also been introduced here in equation (14), where Sη and SSV denote the 300 

spectra of the wave elevation and of the slowly varying wave drift force respectively. 301 

𝑆𝑆𝑉(𝜇) = 8 · ∫ 𝑆𝜂(𝜔 + 𝜇) · 𝑆𝜂(𝜔) · |𝑇(𝜔 + 𝜇,𝜔)|
2

∞

0

· 𝑑𝜔 (14)    

The Froude-Krylov and diffraction force (𝐹𝑤) and the radiation force (𝐹𝑟𝑎𝑑) have been computed as linear 302 

forces in the TD model introduced in section 2.1. Consequently, the same forces, expressed in the FD have 303 

been used in equation (15). The former is computed with the wave force per unit amplitude, obtained with the 304 

potential flow commercial software [17] as 𝐹𝑤 = 𝐹̂𝑤−𝑅.𝐴.𝑂.(𝜔) · 𝜂̂(𝜔) and, for the latter, the radiation force 305 

coefficients in the FD are used, as detailed in equation (15), through the added-mass 𝐴(𝜔) and radiation 306 



  

damping 𝐵(𝜔) coefficients, with the clear advantage of avoiding the computation of the convolution force, 307 

required by the radiation force in the TD. 308 

The seabed vertical reaction force is modelled in the FD through stiffness and damping matrices on the nodes 309 

in contact with the seabed, with values providing a natural frequency of the vertical motion equal to 10[rad/s] 310 

and critically damped. The horizontal friction force has been modelled through a damping matrix acting on 311 

the horizontal degrees of freedom of the corresponding nodes of each mooring line, with the same damping 312 

coefficient obtained for the vertical reaction, assuming the same properties of the seabed in all directions. 313 

These matrices have been included in the mooring stiffness and mass matrices. 314 

The resulting coupled mechanical system can be expressed as in (15), where it has been added a subscript to 315 

the linearized damping 𝛾 values to distinguish viscous damping on floating structure and on mooring nodes. 316 

(−𝜔2 · [
(𝑀 + 𝐴(𝜔))

𝑠𝑡𝑟
+𝑀𝑑𝑘𝑖𝑛 𝑀𝑓/𝑎

𝑀𝑓/𝑎 𝑀𝑚𝑜𝑜𝑟 + 𝜌𝑤 · 𝑉
] + 𝑖𝜔 · [

𝛾𝑠𝑡𝑟 (𝑢(𝑡) − 𝛿̇(𝑡)) + 𝐵(𝜔) + 𝐶𝑝𝑡𝑜 + 𝐶𝑑𝑘𝑖𝑛 𝐶𝑓/𝑎

𝐶𝑓/𝑎 𝐶𝑚𝑜𝑜𝑟 + 𝛾𝑚𝑜𝑜𝑟 (𝑢(𝑡) − 𝛿̇(𝑡))
]

+ [
𝐻𝑠𝑡𝑟 +𝐾𝑔

𝑓(𝛿) + 𝐾𝑝𝑡𝑜 +𝐾𝑑𝑘𝑖𝑛 𝐾𝑔
𝑚𝑇(𝛿) + 𝐾𝑓/𝑎

𝐾𝑔
𝑚(𝛿) + 𝐾𝑓/𝑎 𝐾𝑚𝑜𝑜𝑟

]) · {
𝛿̂𝑠𝑡𝑟(𝜔)

𝛿̂𝑚𝑜𝑜𝑟(𝜔)
}

= {
𝐹̂𝑤−𝑅.𝐴.𝑂.(𝜔) · 𝜂̂(𝜔) + 𝐹̂𝑠𝑣(𝜔)

(−𝜔2(1 + 𝐶𝑎) · 𝜌𝑤 · 𝑉 + 𝑖𝜔 · 𝛾𝑚𝑜𝑜𝑟 (𝑢(𝑡) − 𝛿̇(𝑡))) · 𝜂̂(𝜔)
} 

(15)    

Since equation (15) contains both damping and stiffness terms dependent on the solution, the whole system is 317 

solved iteratively, through the fixed point iteration procedure as detailed above in this section. Therefore, the 318 

resulting solution yields constant values of the mentioned solution dependent terms. 319 

3 Floating Wave Energy Converter numerical model 320 

The model described above has been applied to a floating WEC which consists of a two-body floating spar 321 

type OWC, assumed to be a rigid structure. It is a cylindrical structure with an internal water column which 322 

communicates the sea water with an air chamber at the top. Waves’ motions excite the floating structure in 323 

heave as well as its internal water column, the air in the air chamber at the top of the water column is 324 

compressed and forced to be passed through an air turbine. The energy yielded in the air turbine, is transformed 325 

into electrical power that can be exported onshore.  326 

3.1 Linear Potential Model 327 

The hydrodynamic coefficients of the floating WEC  have been obtained with the commercial BIEM code 328 

[17], as it is carried out in the equivalent non-linear TD model. Two diffracting bodies have been modelled, 329 

the first body (dofs 1 to 6) represents the geometry of the spar, shown in Figure 2. The outer diameter specified 330 

in Figure 2 refers to the larger diameter of the floater both at the top and at the bottom, the OWC diameter 331 

indicates the diameter of the internal water column, all dimensions are defined in [15], model ‘K’ and also 332 

used as a case study in [5]. The second body in the numerical model (dofs 7 to 12) is a massless surface at the 333 

internal water surface to model its motions. 334 



  

 

Structure Main Properties 

Total mass [kg] 2.4432·106 

CoG [m] -31.97 

Draft [m] 40.81 

Mass Moment of Inertia [kg·m2] 190.93·106 

Outer Diameter [m] 16 

OWC diameter [m] 5.89 

 

Figure 2. Floating Spar type oscillating water column. Geometry specified in [15], model ‘K’ (left) and main physical properties of the floating 335 

structure (right) 336 

In order to model the internal water surface horizontal motions, in surge, sway and yaw, rigidly with the spar 337 

structure, three kinematic restrictions have been imposed to both bodies as described by equation (12) (right). 338 

Additionally, they have been left to move independently in heave, roll and pitch. The PTO has been assumed 339 

to be linear and acting on the relative heave motions between the floating structure and the internal SWL in 340 

both the TD and the FD models. The PTO represents a real system that any WEC needs in order to transform 341 

the mechanical power in the buoy motion into electrical power to be delivered into the grid. Such power 342 

transformation needs to be performed through an opposing force that will significantly influence WEC’s 343 

motions. In principle, the PTO force needs to be purely resistive so that there is no power backflow from the 344 

PTO to the buoy. However, some PTO systems may introduce an additional stiffness term that makes it to 345 

introduce power into WEC’s motions during short periods of time. In order to model these two properties it is 346 

usually introduced a set of stiffness and damping matrices (𝐾𝑝𝑡𝑜 , 𝐶𝑝𝑡𝑜), as represented, in the time and FDs, 347 

in equation (16). 348 

𝐹𝑝𝑡𝑜(𝑡) = 𝐾𝑝𝑡𝑜 · (𝛿3(𝑡) − 𝛿9(𝑡)) + 𝐶𝑝𝑡𝑜 · (𝛿̇3(𝑡) − 𝛿̇9(𝑡))  →   𝐹𝑝𝑡𝑜(𝜔) = (𝐾𝑝𝑡𝑜 + 𝑖𝜔 · 𝐶𝑝𝑡𝑜) · (𝛿̂3
𝑓
(𝜔) − 𝛿̂3

𝑆𝑊𝐿
(𝜔)) (16)    

The PTO in an OWC system consists generally of a self-rectifying air turbine, such as the Wells turbine or 349 

Impulse turbines as introduced in [28], [29], that just introduces a damping term in the relative motion. In 350 

addition, the air chamber compressibility adds a non-linear stiffness term in the relative motion. In this work 351 

it has been considered just a damping term for simplicity, assuming the chamber not to introduce any stiffness 352 

in the system, which can be acceptable for the mooring induced loads but has a non-negligible influence in 353 

the produced power [30]. The optimal PTO damping to maximise the extracted energy has been computed 354 

with the FD model, accounting only for the body motions in heave, with the corresponding linearized drag 355 

coefficients, and without the mooring system. The PTO damping has been found through a numerical 356 



  

maximisation of the power in each of the simulated sea states showed in Figure 7, the obtained values are 357 

represented in Figure 3. 358 

 359 

Figure 3. Optimal PTO damping per sea state computed with the OWC type WEC represented in Figure 2 360 

The total mass of the floating structure is 2.4432·106[kg] and the Centre of Gravity (CoG) is placed 31.97[m] 361 

below the surface water level, assuming to be similar to the geometry introduced in [16]. The mass moment 362 

of inertia in pitch and roll has been assumed to be 190.93·106[kg·m2] derived from assuming a radius of 363 

gyration equal to half the length of the section from the CoG to the keel, 8.84[m]. 364 

The motions of the floating structure are influenced by viscous drag forces as specified in equation (4), the 365 

corresponding factors are described in Table 1 along with the natural frequencies in each degree of freedom, 366 

computed through the modal analysis introduced in section 4.1, considering the mooring system. Viscous drag 367 

force factors have been computed as indicated for equation (5), assuming a drag coefficient of each circular 368 

section of the WEC in all directions of 𝐶𝑑 = 0.8. It implies a wake amplification factor with respect to the 369 

steady current drag coefficient selected in section 3.3 equal to 1.23, within the recommendations in [31]. 370 

Table 1 Viscous drag force factors considered for each degree of freedom of the floating structure 371 

Degree of 

 freedom 

 

Viscous Drag 

 Factors fv  

[N·s/m] // [N·m·s] 

Natural  

frequencies 

 [rad/s] 

Surge  1.188·105 0.064 

Sway  1.188·105 0.065 

Heave  4.469·104 0.6651 

Roll  3.532·109 0.3757 

Pitch  3.532·109 0.3757 

Yaw  0 - 

Heave SWL  0 0.5063 



  

Roll SWL 0 2.524 

Pitch SWL  0 2.524 

 372 

3.2 Catenary Mooring System 373 

The mooring system for the model verification has been assumed to be made up of three catenary lines as 374 

specified in Table 2 and represented in Figure 4, in a water depth of 172m, 140m below the fairleads. The 375 

corresponding lines are made up of a single chain section with the properties specified in Table 3 and also 376 

assumed in the tank test validation introduced in [18]. The corresponding non-dimensional pretension of the 377 

lines is 1.43[-] as defined in [26]. 378 

 379 

Figure 4. Floating WEC with the three-line mooring system. The wave and current propagation direction are represented with a blue arrow along 380 

the positive ‘x’ axis. 381 

 382 

Table 2 Mooring line lengths, fairleads and anchor points 383 

Property Line 1 Line 2 Line 3 

x_fairlead [m] -1.5 -1.5 2.9 

y_fairlead [m] -2.6 2.6 0.0 

z_fairlead [m] -32.0 -32.0 -32.0 

x_anchor [m] -277.0 -277.0 554.0 

y_anchor [m] -479.8 479.8 0.0 

z_anchor [m] -172.0 -172.0 -172.0 

Length [m] 590.0 590.0 590.0 

 384 

Table 3 Mooring line properties 385 

Property Value 

Equiv. Young Modulus [Pa] 3.35·1010 

Equiv. A [m2] 1.78·10-2 

Linear mass density [kg/m] 140 

Rayleigh Damp Coeff [-] 0.001 



  

Seabed friction coeff [-] 0.5 

Ca [-] (axial) 0.5 

Ca [-] (radial) 1 

Cd [-] (axial) 0.6389 

Cd [-] (radial) 1.33 

Hydrodynamic Diameter [m] 0.151 

In order to select the appropriate number of line sections and the integration time step, a sensitivity study has 386 

been carried out. The resulting time series with increasing number of sections are showed in Figure 5 for 387 

fairlead tensions of lines 1 and 3 and surge.  The relative error of the corresponding standard deviations with 388 

increasing number of line elements are plotted in Figure 6. Lines discretization with 15 elements show relative 389 

errors below 5% both in lines tension and in surge motion. Therefore, it was decided to consider mooring lines 390 

made up of 15 sections, as a trade-off between computational time and accuracy, totalling a second order 391 

coupled system of ordinary differential equations of 156 degrees of freedom (48 per line and 6 per diffracting 392 

body). 393 

 

a)  

 

b)  



  

 

c)  
Figure 5. Resulting time series of the sensitivity analysis to the number of sections used to discretize each mooring line. Time series of line 1 a), 394 

line 3 b) and surge c) 395 

 

a)  

 

b)  

 396 

Figure 6. Relative errors found in standard deviations of the sensitivity analysis to the number of line sections. Relative errors of the standard 397 

deviations of lines 1 and 3 a) and surge b) 398 

In addition, a simulation with 15 sections and half the time step, 0.01s, has been performed. The relative error 399 

of the standard deviation of the simulation with the original time step with respect to the simulation with a 400 

time step of 0.01s has been checked for the surge motion and tensions of lines 1 and 3. The error in surge was 401 

found to be of 7.3·10-3% while in line tensions of lines 1 and 3 were 7.6·10-2% and 3.7·10-2% respectively. 402 

Therefore, it has been decided to maintain the time step in 0.02s for all the verification cases. Even though 403 

stiffness and damping of the seabed interaction model also influence line tensions, it has been verified in [18] 404 

that the results are acceptably accurate with the assumed values, specified in section 2.2. 405 

3.3 Environmental conditions 406 

The WEC here analyzed has been subject to the most occurrent (>1% annual time) sea states at the BiMEP 407 

test site [19], which are pointed out Figure 7. It covers 63% of the annual time with a reduced number of 408 

simulation cases, 36 sea states, which also cover a wide range of Hs and Tp values, considered enough for 409 

verification in operational conditions. In the performed simulations the current and wave propagation 410 



  

directions have been assumed aligned with the global ‘x’ axis, in the positive direction, as specified in Figure 411 

4.  412 

 413 

Figure 7. Sea State Occurrence probability at BIMEP test site [19] and a total of 36 Sea States with more than 1% occurrence probability (red 414 

stars), selected for TD and FD simulation comparison 415 

The spectral shape considered has been a JONSWAP with a gamma factor of 3.3 in all sea states. The current 416 

force has been considered as a steady force, modelled as in the third term of the RHS in equation (2), induced 417 

by the mean current speed, assumed constant with the draft of the WEC as it is relatively lower than the water 418 

depth. A representative current speed in operational conditions of 0.5m/s has been assumed. The frontal area 419 

of the submerged part of the WEC in the current direction is 290[m2] and a common drag coefficient for 420 

smooth cylinders of 0.65 has been assumed. 421 

4 Results 422 

The results of simulations in the FD with the model introduced in (15) have been compared with the 423 

corresponding simulation in the TD of the non-linear coupled model described by equation (1). Results in 424 

terms of motions and line tension power spectral densities (PSDs) are compared and differences have been 425 

quantified through the relative error of standard deviations of the FD model with respect to the non-linear TD 426 

model. WEC and mooring performance have been obtained with 12 one-hour TD simulations, assumed to be 427 

large enough to represent some hundreds of LF cycles to provide good PSDs. An additional initialization 428 

period of 500s has been simulated in each realization that has been disregarded for the PSD computations. 429 

The PSDs of the time series have been computed through the ‘pwelch’ subroutine within the Matlab software 430 

[32], using the 12 simulations. Since the FD model has been linearized, an eigenvalue and eigenvector analysis 431 

has been carried out and is subsequently presented. It allows a deeper analysis and understanding of the extent 432 

of the applicability of the linearized model. 433 



  

4.1 Modal Analysis 434 

Even though the natural frequencies related with surge and sway change with the mean position of the floating 435 

structure, a relevant sea state has been selected to analyse the modes of motion of the coupled system, Hs=1.5m 436 

and Tp=8.5s, which corresponds with the most occurrent sea state at the selected site. 437 

  438 

Figure 8. Floating structure and internal surface water level motion amplitudes (left), lines tension amplitudes at the fairleads (right) and 439 

eigenvalues within the showed frequency range (vertical lines). Response amplitudes subject to a sea state of Hs=1.5m and Tp=8.5s  440 

Figure 8 has been here introduced in order to visualize the relation between the dofs of the WEC and the 441 

induced line tension amplitudes, subject to a representative sea state. Since the wave propagation direction 442 

does not excite sway, roll and yaw motions, these have been omitted in the figure. The most relevant 443 

eigenvalues have been considered to be those influencing most the motions and tension amplitudes, all showed 444 

in Figure 8, with the vertical axis in logarithmic scale in order to visualize the correlation between motions, 445 

line tensions and eigenvalues.  446 

It is clearly appreciated that the first peak in all motion and tension responses has two related eigenvalues. 447 

More precisely, the two modes of motion around this frequency, 0.065rad/s as represented in Figure 9. 448 



  

449 

 450 

Figure 9. Modes of the coupled system mainly related with surge (top) and sway (bottom) 451 

The modes represented in Figure 9 are mainly related with surge and sway motions of the WEC. However, 452 

with the wave direction aligned in the positive ‘x’ axis, the mode related with the surge motion is mostly 453 

excited and, therefore, the one producing the tension peak around the corresponding frequency. It should be 454 

noted that, even though the mean position of the floating structure subject to specific environmental conditions 455 

provides different stiffness in surge and sway, both natural frequencies have been found very close to each 456 

other. Nevertheless, whilst the mode related with surge excites the three lines, the one related with sway excites 457 

only the two front lines. This statement should also be verified with small bending stiffness in the mooring 458 

lines. These modes of motion induce significant motions of lines’ nodes which may be overdamped due to 459 

drag force linearization in the FD model when subject to specific sea states. 460 

A group of other 4 frequencies are found around 0.5rad/s shown in Figure 8, related with heave of the floating 461 

structure, heave of the internal SWL, pitch and roll motions, as represented in Figure 10 and Figure 11 462 

respectively. It should be noted that the heave of the internal surface water level corresponds with the piston 463 



  

mode in absolute coordinates, and the power is generated from the relative heave motion between the structure 464 

and the internal SWL.  465 

 466 

 467 

Figure 10. Modes of the coupled system mainly associated with pitch (top) and roll (bottom) 468 

Modes related with pitch and roll motions, as stated for surge and sway, induce significant line motions. These 469 

modes can induce differences in the mooring induced damping due to the linearization of drag forces on lines. 470 

However, it is not clearly shown in FD computed motion responses nor in line tensions, very likely as a 471 

consequence of being overdamped by the linearized viscous damping of the floating structure. 472 

 473 



  

 474 

 475 

Figure 11. Modes of the coupled system mainly associated with heave of the floating structure (top) and pitch of the surface water level (bottom) 476 

The modes related with floating structure and SWL heaving motions are represented in Figure 11 (top) which, 477 

unlike surge and sway, do not excite significantly lines motions. On the other hand, the floating structure is 478 

significantly excited by waves and, consequently, large tension amplitudes can be observed in line tensions in 479 

Figure 8 (right). The modes related with the internal SWL pitching, influence line tensions as they are coupled 480 

with the floating structure pitch and surge. It is clearly shown that all modes experience some excitation at 481 

such frequency in Figure 8. However, this frequency should be related with the corresponding sloshing mode 482 

in a more realistic numerical model. It has been found at a relatively large frequency and its influence on line 483 

tensions can be assumed not to be relevant. 484 

 485 



  

 486 

 487 

Figure 12. Modes of the coupled system associated with line motions in the plane of the catenary of the windward lines (top) and the leeward 488 

line (bottom) 489 

The modes represented in Figure 12 are related with in-plane lines motions with no significant motion of the 490 

floating structure. Both modes have been found to be in similar frequencies as the mean position of the floating 491 

structure has been relatively small, of 0.8372m, and the shape of the three lines is similar at that position. A 492 

third mode has been found at 1.32rad/s, omitted here, which shows a combination of both modes showed in 493 

Figure 12 in opposing phase. These three modes are related with some differences between FD and TD models 494 

here compared, as can be observed in line tension PSDs in Figure 19 in the corresponding frequency range. 495 

The modes of motion showed in Figure 12 correspond with an axial mode, stretching the whole line. Although 496 

with the FD model lines tension PSDs show a smooth decrease as the frequency is increased over these natural 497 

frequencies, the TD model show a steep decrease in the same range, especially in low energy sea states. This 498 



  

discrepancy can be attributed to non-linearities not appropriately caught in the linearized FD model, such as 499 

the interaction with the seabed or lifting line sections from the seabed. Moreover, it can cause overestimations 500 

in line tension standard deviation values of around 20% with low incoming energy, as shown in Figure 19. On 501 

the other hand, the explained discrepancy is balanced by the increasing line tension induced by the heaving 502 

motions as the Hs is increased. Therefore, it is relevant under low Hs sea states. 503 

4.2 Floater Motions 504 

Surge, heave and pitch motions of both the floater and the internal SWL have been compared between both 505 

models in terms of their PSDs and the percentage difference of their standard deviations. 506 

 507 

Figure 13. Surge motion PSDs of the floater. Wave frequency magnified with a factor of 100 to enable plotting the whole PSD in a single figure. 508 

Dash-dotted vertical lines indicate the relevant modes identified in section 4.1 509 

 510 

Figure 14. Heave motion PSDs of the floater (solid lines) and the internal SWL (dashed lines). Dash-dotted vertical lines indicate the relevant 511 

modes identified in section 4.1 512 



  

 513 

Figure 15. Pitch motion PSDs of the floater (solid lines) and the internal SWL (dashed lines). Dash-dotted vertical lines indicate the relevant 514 

modes identified in section 4.1 515 

Looking at the natural frequencies related with each degree of freedom of the floating structure and the internal 516 

SWL in Table 1, the peaks of the motions can be associated to each natural frequency. The peaks of the 517 

response in surge and pitch at frequencies of 0.065[rad/s] correspond with the natural frequency in surge, 518 

which indicates that both modes are coupled. As the peak period of the sea state showed in Figure 13 to Figure 519 

15 is 9 seconds both heaving natural frequencies are significantly excited, this is shown in Figure 14 as the 520 

internal SWL is most amplified in frequencies close to 0.5[rad/s] and the floating structure heaving at 521 

frequencies close to 0.66[rad/s]. The pitching motion of the floating structure is not clearly shown in Figure 522 

15 as there is no significant excitation around this frequency. In contrast, the pitching motion of the internal 523 

SWL, which corresponds to a sloshing mode, is clearly shown around its natural frequency of 2.524[rad/s], 524 

mostly due to not having introduced any viscous force in it.  525 

The natural frequency in surge show good agreement between both models in Figure 13. It indicates that the 526 

linearized stiffness matrix introduced by the analytic mooring system represents well the mooring influence 527 

on the floating structure. The kinematic relations are well fulfilled as both models show negligible differences 528 

in surge, what can be observed in Figure 8, and consequently the surge of the water column has been omitted 529 

in Figure 13. However, the uncertainties in surge can be mostly attributed to the magnitude of motion in its 530 

natural frequency, consequence of differences on the mooring induced damping.  531 

It is shown in Figure 15 that the pitching of the floater in the linearized model is overestimated in the LF range, 532 

balanced by the underestimation in the wave frequency (WF) range. While the former is due to overestimates 533 

in surge, the latter can be attributed to the linearization of the viscous force term, which tends to overdamp 534 

the response. In addition, it is shown in Figure 16 that the pitch motion of the floater is underestimated when 535 

subject to more energetic sea states, amplifying the differences in pitch within the WF range. 536 



  

Pitch of the internal SWL shows very good agreement as it is not directly influenced by the most relevant non-537 

linearities, however, it corresponds with a sloshing mode of the surface and it may be largely influenced by 538 

the air chamber pressure, which has not been considered here. 539 

 

a)  

 

b)  

 

c)  

 

d)  

 

e)  
Figure 16. Percentage differences of the standard deviation of motions of the linearized FD model with respect to (wrt) the non-linear TD model. 540 

Contour lines represent zero levels, showing both limits of the selected simulation sea states and limits between under and overestimations 541 

of the FD model. a) Surge; b) Heave of the floating structure; c) Heave of the internal surface water level; d) Pitch of the floating structure; 542 

e) Pitch of the internal surface water level 543 



  

All degrees of freedom show in Figure 16 differences lower than 6% in standard deviation with respect to the 544 

non-linear TD model except surge. Surge, unlike other degrees of freedom, is very influenced by non-linear 545 

effects such as slowly varying wave drift forces and the geometric stiffness, what explains its larger 546 

differences. Additionally, the modes of motion related to surge and sway imply significant lines motions, as 547 

showed through modal analysis in Figure 9, and the inherent error made in the linearization of viscous forces 548 

on lines may vary the induced damping on floating structure motions. Mentioned effects makes surge to be 549 

overestimated in most sea states, as a consequence of overestimations in the LF range and its high relevance 550 

on the standard deviation with respect to WF motions.  551 

Heave motions although slightly underestimated in intermediate wave heights are in general in very good 552 

agreement, both of the floating structure and the SWL. Observed differences can be mostly attributed to being 553 

overdamped by the linearized viscous drag.  554 

4.3 Line Tension 555 

Line tension PSDs can be derived from nodes’ motions both in the LF and in the WF range. The geometric 556 

stiffness linearization allows catching the induced line tensions in the LF range. As stated for pitch motions, 557 

line tensions are overestimated by the FD models in sea states with lower energy content. Similarly, the 558 

deviations in the WF range drives the total standard deviation percentage difference as the incoming wave 559 

energy increases, as represented in Figure 18 and Figure 19. 560 

Heaving motions are significantly excited, and a more non-linear behaviour of lines can be expected. Line 561 

tension amplitudes obtained in frequencies (0.5-0.7rad/s) corresponding to heave natural frequencies are 562 

acceptably well represented by the linearized model in Figure 19, specially for the windward lines, while the 563 

leeward ‘line 3’ shows larger differences, more influenced by WF motions. 564 

 565 

Figure 17. Line tension standard deviation (vertical lines at each node) with both models with respect to the mean line tension along the whole 566 

line 1 (left) and line 3 (right) 567 

An estimation of line tensions PSD along the whole line is also provided by the FD model. Figure 17 shows 568 

the standard deviation (vertical lines) with respect to the mean tension computed with the analytic catenary 569 

equations, along the line. The mean tension difference between both models has been observed to be lower 570 

than 1%. In Figure 17 standard deviation differences have been found to be of 1.9% in the fairlead increased 571 



  

up to 27% in the anchor for lines 1 and 2 and of 8% in the fairlead up to 22% in the anchor for the line 3. 572 

Therefore, the FD solution tends to improve line tension estimates as the analysed section is closer to the 573 

fairlead with the selected sea state.  574 

 575 

Figure 18. Difference percentage of the linearized FD model with respect to the non-linear TD model in terms of line tensions standard deviation 576 

at the fairlead. Contour lines represent zero levels, showing both limits of the selected simulation sea states and limits between under and 577 

overestimations of the FD model. Line1: left, Line 3: right. 578 

There is however a remarkable difference between lines tensions obtained with both models in frequencies 579 

within 1.3-1.7rad/s, mostly notable in low Hs. The frequency range is coincident with the modes described in 580 

Figure 12, as analysed in section 4.1 through the modal analysis. When the device is subject to low Hs sea 581 

states, line tension standard deviation values are overestimated with the FD model as shown in Figure 18, as 582 

a consequence of the WF range, observed in the PSDs in Figure 19 (top). Good agreement has been obtained 583 

for all lines with the device subject to intermediate Hs, especially for the windward lines in the WF range, 584 

whilst slightly underestimated in LF for all lines, see Figure 19 c) and d). When analysed in moderate sea 585 

states, the windward lines results are improved with respect to lower Hs with some underestimation in the LF 586 

range. Nevertheless, Line 3, the leeward line, shows higher differences under moderate Hs, with lines tension 587 

standard deviation underestimated up to a 20%, mostly due to the WF range, see Figure 19 f). 588 
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b)  



  

 

c)  

 

d)  

 

e)  

 

f)  
Figure 19. Line tension PSD comparison between the FD and TD models for low Hs, line 1: a) and line 3: b); intermediate Hs, line 1: c) and line 589 

3: d); moderate Hs, line 1: e) and line 3: f). Dash-dotted vertical lines indicate the relevant modes identified in section 4.1 590 

4.4 Discussion 591 

The solution of the linearized FD model has been compared with the non-linear TD in terms of device motions 592 

and line tensions. It has been observed that floater dynamics compare significantly well between both models, 593 

especially in heave and pitch of both the floating structure and the internal surface water level showing 594 

difference percentages lower than 6%. Even though surge also shows good agreement, its results show larger 595 

differences, underestimated in up to 20% in standard deviation in sea states with low significant wave heights 596 

and low peak periods. These differences can be attributed mainly to deviations on the mooring induced 597 

damping. 598 

Resulting line tensions have also been compared between models. The differences have been found to be of 599 

the order of those showed by the surge motion, and following similar tendencies, what could be expected as 600 

the mooring system is the only source of stiffness in surge. In addition, the linearized model has been found 601 

to overestimate line tension PSDs in the frequency range 1.3-1.7[rad/s], coincident with a mode of motion that 602 

induces mooring lines’ stretching. It is more significant when subject to low Hs sea states and, on the other 603 

hand, tensions in the WF range are underestimated when subject to moderate Hs sea states for the leeward 604 

line. The underestimation related with the modes of motion showed in Figure 12 can be mostly attributed to 605 

non-linear effects caught in the TD model, such as seabed interaction or line sections lifting from the seabed 606 



  

that the FD model cannot appropriately represent. This effect is limited to low Hs sea states as with higher Hs 607 

the excitation induced by the heave motion is more significant and is concentrated in slightly lower 608 

frequencies. The differences have also been analysed along the whole lines of the mooring system in one sea 609 

state and better agreement has been found as the analysed section approaches the fairlead, whose differences 610 

varies from 27% in the anchor decreased up to 1.9% in the fairlead for lines 1 and 2 and of 22% in the anchor 611 

up to 8% in the fairlead for the line 3. 612 

The modal analysis, in addition to being able to reproduce non-linear effects only to a certain extent, 613 

demonstrates how floating structure motions excite line dynamics. Specially surge and sway have shown to 614 

excite line dynamics which induces larger line motions and tensions, which has also been pointed out as 615 

another source of difference in surge. Also, it has been showed that the modes within 1.3-1.7[rad/s] are excited 616 

in both models and produce significant line tensions. The ability of the FD model to identify such modes 617 

provide invaluable information to the mooring designer in order to shift the corresponding natural frequencies 618 

away from the natural frequencies in heave. 619 

Even though some differences have been found between both models, it must be noted that the linearized 620 

geometric stiffness, introduced in equation (9), accounting for its effect on both the floating structure and 621 

mooring line sections, enables the FD model to catch most of the effects and to reproduce power spectral 622 

densities of all motions and line tensions. 623 

5 Conclusions 624 

In this paper a numerical method to analyse in the frequency domain floating structures moored by means of 625 

catenary mooring systems has been introduced and verified. It is based on a numerical method, already 626 

validated, in the TD that couples floating structures modelled through linear potential theory and a lumped 627 

mass model, integrating both models into a single one by means of kinematic restrictions based on Lagrange 628 

multipliers. The frequency domain model has therefore been made up after linearization of all non-linear terms 629 

present in the TD model, mostly related with viscous forces, seabed interaction, lines’ fairleads and anchors 630 

as well as the geometric stiffness of the catenary lines. 631 

A floating wave energy converter based on OWC technology has been considered as a case study to verify the 632 

linearized model with the corresponding non-linear TD model, subject to the most occurrent sea states in 633 

BIMEP and with a representative mean current of 0.5m/s. The power take off system has been modelled 634 

through a linear damping coefficient acting between the relative heaving motions of the floating structure and 635 

the internal surface water level. Damping values of the PTO have been previously optimised to produce the 636 

largest mean power per sea state considering both heaving motions. The mooring system has been assumed to 637 

be made up of three catenary lines with a significant line pretension to obtain a significant influence of the 638 

geometric stiffness. The non-linear TD model has been subject to a sensitivity analysis and in order to 639 

reproduce LF response, 12 1-hour TD simulations have been carried out for each of the 36 environmental 640 

conditions. 641 



  

The comparison shows that both floating structure and internal surface water level shows very good 642 

agreement, below 6% difference percentages have been found in relative standard deviations except in surge. 643 

Surge motion is underestimated with the FD model by up to 20% specially in very low Hs sea states, and 644 

mostly due to deviations in the mooring induced damping, whilst with higher Hs the differences have been 645 

found to be lower, about 10%. 646 

Line tensions’ PSDs show that the influence of all degrees of freedom of the floating structure is well caught. 647 

In addition, differences in standard deviations have been found to be of the order of the surge motion. Modal 648 

analysis shows how the influence of a mode of motion related with axial stretching of all lines has significant 649 

influence in lines tension and is well matched by the FD model. Some differences have been found mostly 650 

due to non-linearities not accurately enough reproduced in the FD model. Nevertheless, the linearization 651 

carried out in the herein introduced FD model has demonstrated, with a very dynamic floating structure and a 652 

mooring with a large pretension, that it can be used to predict both body motions and line tensions within the 653 

operational range. 654 
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