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Abstract 

Large-offset seismic data processing, imaging, and velocity estimation require an accurate traveltime 
approximation over a wide range of offsets. In layered transversely isotropic media with vertical symmetry 
axis (VTI), the accuracy of traditional traveltime approximations is limited to near offsets. Herein, we 
propose a new traveltime approximation that maintains the accuracy of the classical equations around zero 
offset, and exhibits the correct curvilinear asymptote at infinitely large offsets. Our approximation is based 
on the conventional acoustic assumption. Its equation incorporates six parameters. To define them, we use 
the Taylor series expansion of the exact traveltime around zero offset, and a new asymptotic series for 
infinite offset. Our asymptotic equation shows that the traveltime behavior at infinitely large offsets is 
dominated by the properties of the layer with the maximum horizontal velocity in the sequence. The 
parameters of our approximation depend on: the effective zero offset traveltime, the normal moveout 
velocity, the anellipticity, a new large-offset heterogeneity parameter, and the properties of the layer with 
the maximum horizontal velocity in the sequence. We apply our traveltime approximation: (1) to directly 
calculate traveltime and ray parameter at given offsets, as analytical forward modeling; and (2) to estimate 
the first four of the aforementioned parameters for the layers beneath a known high-velocity layer. Our 
large-offset heterogeneity parameter includes the layering effect on the reflections traveltime. 
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Traveltime in layered media 

INTRODUCTION 

Modern high-dynamic-range acquisition systems that record seismic data over extended geometries have 
enabled high-fold wide-offset studies in exploration seismology (Colombo, 2005). In transversely isotropic 
with vertical symmetry axis (VTI) media, the larger the offset range, the wider the angle coverage and the 
more noticeable the anisotropy effect. This brings the opportunity for a more accurate estimation of the 
anisotropy parameters, but also requires suitable algorithms for accurate data processing and imaging.  

An essential part of many seismic data processing (e.g., Abedi et al., 2019a, 2019b), imaging (e.g., Dai and 
Li, 2001), and velocity and anisotropy estimation (e.g., Alkhalifah, 1997) algorithms is an approximation 
of the traveltime-offset equation. Existing popular traveltime approximations are proposed for basic 
models, such as a homogenous anisotropic (Muir and Dellinger, 1985; Alkhalifah and Tsvankin, 1995; 
Fomel, 2004; Alkhalifah, 2011; Abedi and Stovas, 2019a; Abedi, 2020), or an inhomogeneous isotropic 
model (de Bazelaire, 1988; Causse et al., 2000; Taner et al., 2005). However, real earth models are both 
inhomogeneous and anisotropic. Therefore, we commonly use the Dix-type (Dix, 1955) effective velocity 
and anellipticity (or heterogeneity) parameters suggested by Alkhalifah (1997) in the aforementioned 
approximations. Effective parameters are an average of the properties of the layers, calculated from a 
weighted average of the series expansion of vertical slowness around zero horizontal slowness. Using the 
effective parameters in a traveltime approximation ensures the traveltime accuracy only at near offsets. 

Using one of the aforementioned traditional traveltime approximations to estimate the velocity and 
anellipticity parameters from wide-offset data, the results significantly differ from the theoretical zero offset 
effective parameters. Trying to convert the estimated parameters into the interval counterparts (the 
properties of each layer in layered models) by the Dix-type differentiation process (Alkhalifah and 
Tsvankin, 1995) results in augmented errors. 

Few traveltime approximations are designed for vertically inhomogeneous anisotropic models, such as the 
methods of Ravve and Koren (2017), and Farra and Pšenčík (2020). Both methods عسث one ray at a given 
ray parameter or finite offset. Other traveltime approximations that use properties of one traced ray to 
accurately estimate parameters of their traveltime approximations in layered anisotropic models are the 
generalized moveout approximation (Fomel and Stovas, 2010; Stovas and Fomel, 2017) and its extended 
version (Abedi and Stovas, 2019b). These methods that use ray-tracing or the method of Ibanez-Jacome et 
al. (2014) that use effective isotropic velocities are suitable for forward-modeling but unfit for conventional 
velocity and anisotropy parameter estimation. The Farra and Pšenčík (2020) method is also based on the 
weak anisotropy assumption (that assumes the anisotropy parameters are close to zero, and the phase and 
group velocities are equal), which is less accurate than the acoustic assumption (Alkhalifah, 1998). 

In this study, we first analyze reflections traveltime at infinitely large offsets by calculating the asymptotic 
series of traveltime squared in layered acoustic VTI media –at infinity–  and obtaining a new effective 
parameter that is related to heterogeneity. Next, we propose a new traveltime approximation for these media 
that satisfies several terms of the Taylor series of traveltime squared at zero offset and the new asymptotic 
series at infinite offsets. We apply our approximation to explicitly calculate the traveltimes and ray 
parameters of reflections at given offsets (the forward problem), and estimate model parameters from 
reflections beneath a known high-velocity layer (the inverse problem).  

 

THEORY 

In multilayer VTI media, traveltime approximations conventionally use effective velocity and anellipticity 
(or heterogeneity) parameters (Alkhalifah, 1997). The effective parameters arise from different orders of 
traveltime derivatives at zero offset. These derivatives appear in different terms of the Taylor-series 
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expansion of traveltime squared as (Hake et al., 1984; Tsvankin and Thomsen, 1994; Ursin and Stovas, 
2006), 
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where T is traveltime, X is offset, 0 ,T ,nV and 2S are the effective zero offset traveltime, normal moveout 
(NMO) velocity, and second-order heterogeneity parameter, which is related to the effective anellipticity 
parameter  2 1 8e S    (Ursin and Stovas, 2006). Over a stack of k VTI layers, these quantities are 
defined as (Alkhalifah 1997; Ursin and Stovas, 2006): 
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where 0,t ,nv and   are zero offset traveltime, NMO velocity, and anellipticity parameter of each layer. 
We use small letters for parameters of each layer and capital letters for effective parameters. We have 

0 02 ,Pt z v  0 1 2n Pv v   , and    1 2 ,      where 0Pv is the vertical P-wave velocity, 
  and   are the Thomsen (1986) anisotropy parameters, and z is the thickness of each layer. The effective 
parameters in equation 2 are defined at zero offset.  

For large-offset data, we calculate the asymptotic series of traveltime squared around infinite offset. We 
use the parametric equations of traveltime and offset as a function of ray parameter (equation A-1) and use 
the ray that directs to infinite offset. The parametric equation of offset tends to infinity when the ray 
parameter approaches the inverse of maximum horizontal velocity in the sequence of layers. We calculate 
the new asymptotic series following the method presented in Appendix A to obtain: 
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where hv  is the horizontal velocity  ( 1 2h nv v   ), and the subscript M denotes the properties of the 

layer with the maximum horizontal velocity in the sequence ( 0 ,Mt ,hMv M ). Following Appendix A, the 

term S is a part of the calculated series at infinity. It is a cumulative parameter over a stack of k VTI layers 
and depends on the properties of all layers,  
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Traveltime in layered media 

The parameter S is dimensionless, zero in a homogeneous medium (since there is only one layer with 

(1)hM hv v ), and positive in layered media; therefore, it can be introduced as a large-offset heterogeneity 
parameter.   

The first three terms of the series in equation 3 form the curvilinear asymptote of traveltime-squared at 
infinitely large offsets, which is a shifted hyperbola. In equation 3, the coefficients define the curvature, 
shift, and intercept of the shifted hyperbolic asymptote, respectively.  

Figure 1 shows the square root of the series expansions in equations 1 and 3 in a layered VTI model. This 
figure shows the accuracy effect of adding each term into the series 

 

Traveltime approximation 

The generalized moveout approximation (Fomel and Stovas, 2010) and its extended version (Abedi and 
Stovas, 2019b) are flexible equations that produce highly accurate traveltime approximations in different 
media. These traveltime approximations have explicit parameter definition based on model properties for a 
homogeneous VTI media, certain vertically heterogeneous isotropic media, and homogenous models with 
a curved reflector (in the original papers). However, in layered models, they are unable to accurately 
reproduce the asymptotic traveltime behavior at infinitely large offsets (see Appendix B). Here, we modify 
the extended generalized moveout approximation (Abedi and Stovas, 2019b) functional form so that its 
odd-order derivatives do not vanish, and its asymptotic series at infinity has the same powers of offset as 
the exact series (Appendix B). The proposed approximation is given by 
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Equation 5 has six parameters ( 0, ,nT V A, B, C, D); in the following, we define them by matching the series 
expansion of equation 5 to the exact series around zero (matching equations 1 and B-3) and infinite offsets 
(matching equations 3 and B-10). At zero offset, we define 0T and nV  as in equation 2, and  

 21 2 4 eA S     .         (6) 

At infinite offset, if  2 2 0,hM nv VA  we obtain,  
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Therefore, equation 5 fits the exact traveltime in layered VTI media, via three constraints at zero offset and 
three constraints at infinite offset (the shifted hyperbolic asymptote). 
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Comments 

1. We obtain equation 7 under the condition  2 2 0.hM nv VA   This condition arises from equating the 
first term of equation 3 to the first term of equation B-10 and solving for C. This condition is always 
satisfied if   values in all layers above the reflector have the same sign. To ensure this condition is 
satisfied for all models, we propose the following definition for A, 
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where is the absolute value operator. Equation 8 ensures the fitting constraints at infinity, but relaxes 
the third fitting condition at zero offset in models that the above mentioned condition is not met. 

2. If at any offset 
4 4

0
22

T CXB
X


  , we replace it with 0B  . This eliminates the third constraint at 

infinity but keeps the approximated traveltime being real valued. 
 
 

NUMERICAL ANALYSIS 

We assess the accuracy of the proposed traveltime approximation in different multilayer VTI models. First, 
we use the fourth reflection in the earth model described in Table 1. For comparison, we use the 
approximation of Ravve and Koren (2017; represented in equation B-2). To compare with a traditional 
approximation, we use the Alkhalifah and Tsvankin (1995) approximation (originally proposed for a 
homogeneous VTI layer), with the conventional effective velocity and anellipticity (Alkhalifah, 1997) as 
its parameters. In Appendix B, we also modify the parameter definition for the Tsvankin and Thomsen 
(1994), to have one fitting constraint at infinity (equation B-11). Figure 2 shows the relative error (RE) of 
each traveltime approximation as, 

100 ,approx im ate ex act
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T T
R E

T


          (9) 

where exactT  is obtained from the parametric equation A-1. Within the layers above the reflector, we identify 

the layer with maximum horizontal velocity and mark its properties as 0 ,Mt ,hMv M , calculate the 
parameters that depend on the properties of all layers (equations 2 and 4), then calculate the parameters of 
each approximation.  

All the studied approximations have three fitting constraints at zero offset; the three-parameter 
approximation of Alkhalifah and Tsvankin (1995) has no fitting constraint at infinity; the modified four-
parameter approximation of Tsvankin and Thomsen (1994) has one fitting constraint at infinity, and our 
six-parameter approximation has three fitting constraints at infinity (Figure 2). Ravve and Koren (2017) 
use a different approach to obtain their equation parameters, which involves tracing one ray in lower 
velocity layers (explained in appendix A of Ravve and Koren, 2017). In equation B-14, we also provide a 
modified simpler parameter definition for their equation that results in two fitting constraints at infinity. As 
Figure 2 shows, our modified version of Ravve and Koren (2017) is more accurate than the original one. 
The value of our calculated LB (a parameter of Ravve and Koren (2017) equation) is different from the 
one obtained by Ravve and Koren (2017), which implies their method does not produce the second term of 
the exact asymptote accurately. With six –symmetrically distributed– fitting constraints at the two ends of 
a reflection traveltime, our proposed traveltime approximation is more accurate than the other 
approximations (Figure 2). 



Traveltime in layered media 

Next, we consider a variety of layered VTI models. The models set consist of 1000 randomly generated 
models containing 2 to 14 VTI layers. The layer properties are selected within the predefined range 

 0 2,5Pv  km/s,  0,0.5 ,   0.1,0.1 ,     0.1, 0.25z  km. Figure 3 compares the maximum 
value of relative traveltime errors in the aforementioned set of models from zero to infinite offsets. In 99% 
of the models, the maximum error of our traveltime approximation (equation 5) is below 1%. In this 
experiment, we could not find any specific model characteristic that results in errors above 1% in our 
approximation. 

 

APPLICATIONS 

Forward modeling 

For modeling reflection events over a layered VTI model, we calculate the traveltime and amplitude of each 
reflection at the given source-to-receiver offsets. Equation 5 approximates the traveltimes as a function of 
offset, given a stratified earth model. There also exist equations for reflection and transmission coefficients 
at each interface (Graebner, 1992; Stovas and Ursin, 2003), but as a function of ray parameter p. Therefore, 
for direct analytical calculation of reflection amplitudes at given offsets, we need an equation of ray 
parameter as a function of offset. Taking the derivative of equation 5 with respect to offset, we obtain, 
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where T(X) is the traveltime approximation in equation 5, 4
1

42
0 2R T BX CX  and 

4 2
2 0 .R T DX  Equation 10 approximates the ray parameter of each reflected ray traveling from a 

source to a receiver separated by offset X. 

Figure 4a shows the earth model in Table 1 with reflected rays, traced for a large-offset common midpoint 
(CMP) acquisition pattern. Figure 4b shows the relative errors of the approximated traveltime and ray 
parameters using equations 5 and 10, respectively. The ray parameter errors are generally higher than the 
traveltime errors due to the derivative effect in equation 10.  

Figure 5a shows the generated synthetic data based on exact ray tracing, and Figure 5b shows the data based 
on our approximate forward modeling that calculates traveltimes with equation 5, and amplitudes by 
inserting equation 10 into the Graebner (1992) equations. Despite the approximate nature, it is a fast 
analytical forward modeling approach. Figure 5c shows the difference between the exact and approximated 
data. The maximum difference in Figure 5c (around x=0.5 km) is the result of an overlap of the higher 
errors of the approximated p and the critical reflection angle that results in a sharp change of reflection 
coefficient.  

    

Parameter estimation beneath a high-velocity layer 

Equation 5 is a six-parameter traveltime approximation. The higher the number of unknowns in model 
parameter estimations, the higher the uncertainty in inversion. To reduce the number of unknowns estimated 
from a reflection traveltime, we assume that the properties of the layer with maximum horizontal velocity 
in the sequence are known. An earth model with a shallow high-velocity layer overlaying deeper lower 
velocity layers is a case where we may obtain the properties of the high-velocity layer from conventional 
methods. When this known high-velocity layer has the maximum horizontal velocity in the sequence, we 
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use equation 5 to estimate the four effective parameters  0 ,T ,nV  2 ,S and S from reflections beneath it. 
Figure 6a shows a large-offset model with a high-velocity layer as the shallowest layer. Properties of each 
layer are presented in Figure 6 and 7. We find the best fit of equation 5 to the ray-traced traveltimes (using 
trust-region-reflective nonlinear least-squares curve fitting). For comparison, we use the four-parameter 
traveltime approximation of Tsvankin and Thomsen (1994), so that in the curve-fitting process both 
equations have four unknowns (degrees of freedom). Figure 6b shows the maximum relative errors of the 
best fit of the equations. Notice the high errors exhibited by the Tsvankin and Thomsen (1994) 
approximation in the reflections immediately after the high-velocity layer, and the improved accuracy in 
our approximation.  

Figure 6c-6e shows the estimated parameters alongside their analytical values calculated from the model 
parameters using equations 2 and 4. Figure 6c shows the estimated ,nV which is analytically associated 
with the second-order derivative of traveltime at zero offset; our new approach has estimated it with high 
accuracy.  Figure 6d shows the conventional heterogeneity parameter 2 ,S which is analytically associated 
with the fourth-order derivative of traveltime at zero offset; our result is more accurate than that of Tsvankin 
and Thomsen (1994), although both equations have failed to estimate this parameter with high accuracy. 
Figure 6e shows our new heterogeneity parameter Sestimated with great accuracy by equation 5. 

Comparing the values of 2S  and S, our new S parameter presents a better indicator of the layering effect 
on traveltime because it strictly increases with the increase in the number of layers. 

The estimated parameters can theoretically be converted to interval parameters of each layer (Dix, 1955; 
Tsvankin and Thomsen, 1994). Using a Dix-type differentiation, we calculate interval hv  in each layer 

beneath the high velocity layer. From the difference between two subsequent estimations of S at the top 
and bottom boundaries of the layer, we have: 
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where j is the reflector number, ( )jS is the summation in equation 4 over j layers, and ( ),h jv 0( )jt  and ( )n jv  
are the properties of the j-th layer, which is the layer immediately above the reflector. Since in this 
application the layer with the maximum horizontal velocity is known, we can obtain hv of a layer beneath 
it by solving equation 11: 
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Figure 7 shows the calculated interval parameters from the estimated effective parameters by our traveltime 
approximation that are presented in Figure 6. Here, the estimated interval properties match the model 
parameters appropriately. Nonetheless, this process inherently augments the errors in the estimated 
effective parameters because it involves differentiation.  

 

 

 



Traveltime in layered media 

DISCUSSION 

The calculated series in equation 3 provides insights into the traveltime behavior at infinitely large offsets 
in horizontally layered VTI media: it is dominated by the properties of the layer with the highest horizontal 
velocity (marked by subscript M). The leading term of the asymptotic series solely depends on hMv . 
Calculating the relative traveltime error at infinity by inserting our calculated asymptote into equation 9, an 
a percent error in hMv  results in a  100 100a a  percent error in the traveltime at infinity. The effect 

of other layers, including the difference between their horizontal velocities and hMv , appears in the series 

in a cumulative term that we separated as S. In practice, a refraction study can help estimate the horizontal 
velocities.  

An important aspect of a traveltime approximation is the number of independent parameters it employs. 
These parameters are generally associated with different orders of derivatives of traveltime at specific 
offsets. The equations of Tsvankin and Thomsen (1994), Fomel and Stovas (2010), and Abedi and Stovas 
(2019) use four, five, and six parameters, respectively; but in layered media only one of their parameters 
can be found from a constraint at infinity (Appendix B). The Ravve and Koren (2017) approximation has 
five parameters; we found two of them from constraints at infinity (equation B-14), improving the Ravve 
and Koren (2017) original method that does not reproduce the second term of the asymptote. Our proposed 
approximation has six parameters symmetrically found from constraints at zero and infinite offsets.  

A limitation of the proposed traveltime approximation is that in specific models in which some layers have 
negative anellipticity, some of its constraints at infinity will be lost. Although equation 8 mitigates this 
problem, it is not suitable for the estimation of model parameters based on a coherency measurement. 

 

CONCLUSIONS 

In layered VTI media, the traditional traveltime approximations that are based on Taylor-series expansion 
at zero offset become inaccurate at larger offsets. To address this issue, we first calculated the asymptotic 
series of the exact traveltime around infinite offset. Then, we constructed a new traveltime approximation 
that is accurate at both near and far offsets. Using the calculated series in the definition of our traveltime 
approximation parameters, our developed equation is explicitly defined from model properties without ray 
tracing. Numerical results show the superior accuracy of the proposed approximation compared to existing 
ones. In 99% of the studied models, the maximum error of our approximation is below 1%. The proposed 
equation approximates reflection traveltimes, given the earth model properties. Therefore, it can be used 
for direct analytical forward modeling, as illustrated. The parameters of the proposed equation are the 
conventional effective zero offset traveltime, NMO velocity, and anellipticity, in addition to a new 
heterogeneity parameter and the properties of the layer with maximum horizontal velocity in the sequence. 
We showed how we can estimate the first four parameters from reflections beneath a known high-velocity 
layer. The new large-offset heterogeneity parameter strictly increases with increasing the number of layers, 
therefore, it also indicates the layering effect. 

 

ACKNOWLEDGEMENTS 

We are grateful to the journal reviewers A. Stovas, and two anonymous reviewers, and to the associate 
editor T. Alkhalifah and the editor in chief J. Shragge for their insightful comments and suggestions. This 
work is funded by the European Union's Horizon 2020 research and innovation program grant agreement 
No 777778 (MATHROCKS); the European Regional Development Fund (ERDF) through the Interreg V-



Abedi & Pardo 

9 
 

A Spain-France-Andorra program POCTEFA 2014-2020 Project PIXIL (EFA362/19); the Spanish 
Ministry of Science and Innovation with references PID2019-108111RB-I00 (FEDER/AEI) and the 
“BCAM Severo Ochoa” accreditation of excellence (SEV-2017-0718); and the Basque Government 
through the BERC 2018-2021 program, the two Elkartek projects 3KIA (KK-2020/00049) and MATHEO 
(KK-2019-00085), the grant "Artificial Intelligence in BCAM number EXP. 2019/00432", and the 
Consolidated Research Group MATHMODE (IT1294-19) given by the Department of Education.  

 

APPENDIX A 

DERIVATION OF THE ASYMPTOTIC SERIES AT INFINITY 

Equations of exact traveltime (T) and offset (X) over a k-layer acoustic VTI model exists as a function of 
ray parameter (p) in a parametric form (rewritten from Fomel and Grechka, 2001), 
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The maximum possible horizontal slowness for a reflection in layered models is the inverse of hMv , where 

hMv  is the highest horizontal velocity in the sequence, and M  is the index of this layer. When 1 hMp v
, the term  Mw  tends to infinity, therefore, the limits of equations A-1 also approach infinity: 
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In each of the above limits, the second term is finite (because  1 h ip v ). Calculating the above limit for 
2T , and neglecting the finite terms, we obtain: 
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 From equation A-4, the leading term in the asymptotic approximation of traveltime squared is obtained as, 

2 2
2 ,T c X            (A-5) 

where, 
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To obtain the second term of the asymptotic series, we repeat the aforementioned process for traveltime 
squared minus the first term: 

 
               

               

2 2

2

21 1

2

2
2

2

2

2

lim

2

2

lim .
hM hM

t M M t i i t M M t i i

x M M x i i x M M x i

i M i M

p v p v

i M i
i

M

u w u w u w u w

u w u w u w u w

T c X

c

 

 

 

      
   

       
  

 
 
 

   


 


  
 

 

 
  (A-7) 

In a homogeneous model, the summations in equation A-7 become empty. Therefore, equation A-7 
becomes finite, 
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Otherwise, when equation A-7 is infinite, neglecting the finite terms in it, 
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  (A-9) 

From the above equation, we add the second term in the asymptotic approximation of traveltime squared 
as, 

2 2
2 1 ,T c X c X            (A-10) 

where, 
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To continue with the third term of the asymptotic series, we repeat a similar process for traveltime squared 
minus the already calculated terms: 
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If we neglect the finite terms in equation A-12, it will equal zero, therefore, the third term is finite. Adding 
the third term, the asymptotic approximation of traveltime squared reads, 
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where, 
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is obtained after removing the part of equation A-12 that tends to zero. We repeat this recursive process to 
obtain more terms of the asymptotic series. The terms of the series have the form m

mc X  with coefficients, 
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where 2m  and includes negative integers. The calculated asymptotic series in equation A-15 with 
simplified coefficients is presented in equation 3. In equations A-11 and A-14, we find a common term, 
which forms our Safter normalization by 0Mt :  
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In a homogeneous medium, the summations in the above equation equal zero (because i M is nil), 
resulting in 0S  . 

 

 

APPENDIX B 

PARAMETER DEFINITION FOR TRAVELTIME APPROXIMATIONS 

To define the parameters of a traveltime approximation as a function of the model properties, we equate the 
terms of the series of the approximate equation to the corresponding terms of the series of the exact 
traveltime. This appendix shows this process for several traveltime approximations. The traveltime 
approximation by Abedi and Stovas (2019b) reads, 
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 

    (B-1) 

Equation B-1 is reduced to the Fomel and Stovas (2010) equation when setting ,D B  and to Tsvankin 

and Thomsen (1994) equation when setting 2,C B and D B . The Ravve and Koren (2017; equation 
57) approximation reads, 
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In the aforementioned traveltime approximations, 0 ,T ,nV ,A  are defined at zero offset, and B, C, D or 

HB  and LB  are parameters that we try to find for each approximation at infinity. 

At zero offset, the Taylor-series expansion of the Fomel and Stovas (2010), Abedi and Stovas (2019b), and 
our approximation in equation 5 are identical up to the third term, 

2 4
2 2

0 2 2 4
0

( 0) ...
2n n
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V T V

      .       (B-3) 

The Taylor-series expansions of the Tsvankin and Thomsen (1994) and Ravve and Koren (2017) 
approximations are also similar to the series in equation B-3, but without the factor of 2 in the third term.  

At infinite offsets, we calculate the asymptotic series of each equation, using a similar method to that in 
Appendix A. The asymptote has the form 

 2 2
2 1 0 ...,T X d X d X d            (B-4) 

with coefficients, 
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         (B-5) 

Note that the traveltime approximations are explicit functions of X. 

At infinite offset, we calculate the asymptotic series of the approximations from Tsvankin and Thomsen 
(1994), 
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Fomel and Stovas (2010), 
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Abedi and Stovas (2019b), 

 
 
 

2 2 2
022

( ) 1 ...
n

A B CA D CT X X T
D C V C C D

             

,     (B-8) 



Abedi & Pardo 

13 
 

Ravve and Koren (2017; equation 57), 
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 and our approximation in equation 5, 
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We equate different terms of the above series to the corresponding terms of the series of exact traveltime 
(equation 3) to find the parameters of each equation in layered VTI media. Equations B-6 - B-8 do not 
include the odd terms of X, therefore, only the first term of their asymptote at infinity can be matched to 
equation 3. From equation B-6 we obtain, 
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and from equations B-7 and B-8, we obtain, 
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respectively, but we cannot find the parameters B (and D) of the Fomel and Stovas (2010) and Abedi and 
Stovas (2019b) from the asymptotic fit at infinite offsets in layered media. B (and D) in these 
approximations may be found by employing more fitting constraints at zero offset, but the asymptotic 
accuracy of Fomel and Stovas (2010), Abedi and Stovas (2019b), and Tsvankin and Thomsen (1994) will 
be the same. From equation B-9, we obtain, 
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       (B-14) 

The definition of HB is the same as the original definition by Ravve and Koren (2017), but the definition 

of LB in equation B-14 is a modified explicit definition of this parameter for the Ravve and Koren (2017) 
approximation in equation B-2.  

Only the series of our approximation (equation B-10) can be matched to the three terms of the exact series 
in equation 3 because it has the correct powers of X and three degrees of freedom in their coefficients ( 0 ,T

,nV and A are already defined at zero offset). The result is in equation 7. 
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Table 1. Properties of the synthetic Model 1 used in generating Figures 1, 2, 4, and 5. 

Layer number 1 2 3 4 5 6 7 8 

0Pv (km/s) 2.7 3.0 2.0 2.9 2.0 3.8 3.0 3.5 

nv (km/s) 2.73 3.07 2.07 3.04 2.12 4.07 3.25 3.83 
  0.09 0.49 0.27 0.16 0.29 0.18 0.44 0.07 
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Figure 1. The exact traveltime in a layered VTI model (the fourth reflection in Table 1) and a) the series 
expansion around zero offset, b) the series expansion at infinity offsets. The horizontal axis is linear in 
phase angle.  

 

 

 
Figure 2. The absolute value of the relative error of the new traveltime approximation (equation 5) in a 
layered VTI model (the fourth reflection in Table 1), compared with other approximations. At infinity, the 
modified Tsvankin and Thomsen (1994) approximation has one fitting constraint (equation B-11), the 
modified Ravve and Koren (2017) has two fitting constraints (equation B-14), and our new approximation 
has three fitting constraints. 

a) b) 
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Figure 3. The maximum value of relative traveltime error of different approximations in a variety of 
randomly generated multilayer VTI models (up to infinite offset). The model numbers are sorted by the 
error values of the new approximation. 
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Figure 4. a) A large-offset model with representative traced rays in a CMP pattern. b) Relative errors of 
reflections traveltimes approximated with equation 5, c) relative errors of ray parameters approximated 
with equation 10. 

b) c) 

a) 
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Figure 5. Synthetic data generated based on (a) the exact ray-tracing, and (b) the approximate traveltime 
and ray parameters in Figure 4. c) The difference between (a) and (b). 

a) b) 

c) 
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Figure 6. a) A large-offset model with a known high-velocity layer as the first layer. b) Relative errors of 
the best fit of traveltime approximations to the ray-traced traveltimes. c) Estimated effective NMO velocity, 
d) conventional heterogeneity, and e) the new large-offset heterogeneity parameter of equation 5. Analytical 
values, calculated based on the model parameters, are also shown.  
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Figure 7. Interval NMO velocity (a), and horizontal velocity (b) of each layer, calculated from the estimated 
effective parameters in Figure 6, using equation 11.  
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