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Abstract

The modeling of living systems composed of many interacting enti-

ties is treated in this paper with the aim of describing their collective

behaviors. The mathematical approach is developed within the general

framework of the kinetic theory of active particles. The presentation is

in three parts. Firstly, we derive the mathematical tools, subsequently,

we show how the method can be applied to a number of case studies

related to well de�ned living systems, and �nally, we look ahead to

research perspectives.
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To the memory of Pietro Greco - 20-04-1955 � 18-12-2020

1 Aims and plan of the paper

This paper is devoted to the presentation and critical analysis about a new
class of mathematical tools which claim to describe some important features
of living systems composed of many interacting entities. The presentation
is not limited to theory, but also to applications due to their contribution
to enlighten the bridge between mathematics and real systems. In addition,
a critical analysis is a key feature of each section looking ahead to further
development of the theory.

The main di�culty is that living systems do not relay on a �eld theory to
guide the mathematical approach. This concept is well understood in biology
as critically analyzed by various authors [101, 119, 131]. More in general,
the same reasonings can be addressed to all �elds of sciences devoted to
the study of living systems. A hint is given in Chapter 7 of [23], where
the authors replace the de�nition soft sciences with that of science of living
systems. This vision gives to mathematics an essential role towards a uni�ed
vision of all sciences which goes beyond any classi�cation from soft to hard.
Indeed, it is a �rst step to develop a strategy to take into account that, in
the case of the living matter, the approach is not supported, as mentioned,
by a �eld theory [14, 23].

The strategy consists in replacing the �eld theory by a mathematical
structure (say a mathematical theory) suitable to capture, as far as it is
possible, the complexity features of living systems. This structure de�nes
the conceptual framework for the derivation of models in a broad variety of
�elds, for instance social dynamics, �nancial markets, dynamics of multicel-
lular systems, immune competition, individual and collective learning, and
the modeling of large systems of self-propelled particles such as crowds and
swarms.

The �rst part of our paper is devoted to the derivation of theoretical
tools in view of the aforementioned theory which includes some new ideas,
with respect to those proposed in [23], according to a more general vision of
active particle methods. Subsequently, we present a selection of applications
focused on the modeling of dynamics of living systems which can be modeled
by the theoretical tools presented in the �rst part of the paper. The selection
accounts for di�erent features of models with special attention to the role
of space dynamics by showing how space can have an in�uence over the
collective behavior of the whole system. Finally, we look ahead to research
perspectives also based by a critical (and self-critical) analysis which closes
each section with the aim of enlightening how far the mathematical tools
proposed in our paper succeed in chasing the mythical objective of designing
a mathematical theory of living systems.
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Section 2 is devoted to design a strategy towards the derivation of mathe-
matical tools to model systems composed of many living interacting entities,
where their collective dynamics are generated by interactions among the said
entities and the external environment. The strategy essentially consists in
selecting the key complexity features of living systems to be captured into
a general di�erential structure suitable to potentially describe them. This
structure is further specialized into the class of systems object of the mod-
eling approach.

In Section 3, we transfer the aforementioned strategy into mathematical
structures which are derived within the general framework of the so-called
kinetic theory of active particles, are deemed to take the place of the �eld
theories available to support the derivation of models for physical systems of
the inert matter. These structures provide the conceptual framework for the
derivation of models which are obtained by insertion of the mathematical
description of interactions.

Section 4 presents a review of applications of the mathematical theory pre-
sented in the preceding sections. The survey refers to the following topics:
collective learning, behavioral crowd dynamics, virus pandemics, and evo-
lutionary economics. This section also brie�y reports about the so-called
mathematical theory of behavioral swarms introduced in [33] and applied,
in [114], to modeling the dynamics of prices. This approach derives dynam-
ical systems corresponding to pseudo-Newtonian frameworks. The survey of
applications is limited to very recent years with the aim of enlightening new
ideas on the modeling of interactions as a key step towards the mathematical
description of behavioral systems.

Section 5 reports a critical analysis focused on challenging research perspec-
tives towards as the key strategy to further development of mathematical
tools as well as to modeling complex systems in real life.

2 A strategy towards modeling living systems

This section is devoted to the design of a general strategy towards the mod-
eling of the collective dynamics of large systems of interacting living entities.
The quest towards this challenging objective is in three steps, each of them
treated in the following subsections. Firstly, we present a general conceptual-
philosophical framework, subsequently a strategy is set out in view of math-
ematical formalizations, lastly a critical analysis is proposed, focusing on a
suitable interpretation of the scaling problem, to make operative the strategy
towards an appropriate selection of mathematical tools.
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2.1 Conceptual framework

A conceptual framework is proposed in this subsection with the aim of pro-
viding a support towards the derivation of the modeling strategy. This strat-
egy is also based on some scienti�c works selected according to the authors'
perspective accounting for their contribution that help understanding the
complex interactions between mathematical sciences and the dynamics of
living systems.

• Erwin Schrödinger (1887�1961) looked for a physical theory, where
cells modify their state due to interactions with other cells [137]. Schrödinger's
pioneering ideas chased a systems approach motivated by the study of mu-
tations (some of them also induced by external actions such as radiations).
We can argue that one of his intuitions was that that the dynamics at the
level of cells is driven by the dynamics at the molecular scale. This concept
is nowadays the most important hint of the interactions between mathemat-
ics and biology, where understanding the link between the dynamics at the
molecular scale of genes and the functions expressed at the level of cells is
a key passage to achieve the derivation of a bio-mathematical theory. The
following sentence from [137]:

Living systems have the ability to extract entropy to keep their
own at low levels

identi�es ability of living systems to develop a their own strategy. Hence the
concept of active particles was already introduced.

• Lee Hartwell (born 1938), Nobel Laureate in 2001, �rmly indicates [96]
that the mathematical approach to the description of the dynamics of the
inert matter cannot be straightforwardly applied to living systems:

Biological systems are very di�erent from the physical or chemical
systems of the inanimate matter. In fact, although living systems
obey the laws of physics and chemistry, the notion of function or
purpose di�erentiate biology from other natural sciences. Indeed,
cells are not molecules, but have a living dynamic induced by the
lower scale of genes and is organized into organs.

This statement, in [96], directly looks forward a challenging research perspec-
tive whose �rst step consists in acknowledging that the mathematics used
for the inert matter fails when applied to the living matter.

Between these two milestones, some speci�c models have been proposed
to describe the dynamics of the aforementioned class of dynamical systems
by methods somehow inspired by the mathematical kinetic theory and by
the Boltzmann equation in particular [61]. For instance Prigogine and Her-
mann developed an approach to describe the dynamics of vehicular tra�c
on highways [130]. An important feature of this model is that the car-driver
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subsystem is viewed as an active particle whose ability is heterogeneously
distributed, while the overall state of the system is de�ned by a probabil-
ity distribution over micro-scale state. A deep study of the heterogeneity
properties has been clearly identi�ed by the structures proposed in[128].

Methods from the kinetic theory, have been subsequently developed by
various authors, for instance on the modeling of the social dynamics of fam-
ilies of insects in [105], or of the immune competition between cancer and
immune cells [29]. These pioneering papers have been followed by a vast lit-
erature mainly developed in this century. A review and a critical analysis on
kinetic theory methods is postponed to the next section speci�cally devoted
to transfer the concepts of this section into a mathematical theory. Here
we simply indicate the sharp critical analysis presented in[11] which enlight-
ens the conceptual di�erences between the classical kinetic theory and that
referred to active particles.

living systems are evolutionary in that �rst they are subject to dynamic
change, deriving from both internal and external forces, or interactions, sec-
ond they are subject to some form of selection, weak or strong according to
the con�guration of the system. Notably, selection is not necessarily e�cient
because it might also select on the ground of other attributes distinct from
e�ciency. This pseudo-darwinian feature does not belong, as we shall see, to
biology only, but it characterizes all living systems. These include systems
in economics and sociology, where the dynamic, driven by learning, includes
mutations and selection.

The awareness of Hartwell's legacy motivates a quest towards the search
of a rational to chase the objective of the derivation of a mathematical theory
of living systems by going far beyond the classical methods valid for the inert
matter. A preliminary contribution to this challenging objective is delivered
by the answer to three key questions presented in the following.

• KQ1: What is complexity? Complexity viewed as a barrier. Imagine
a world correctly described in mathematical and logical terms. That would
make realistic the Leibniz dream (free translation from Latin language):

In the future, when an issue is controversial, it will not be neces-
sary to dispute between two philosophers but between two subjects
able in computations. It will su�ce them to keep the abacus into
their hands, sit down, and say each other � in a friendly way �
start making calculations, [118].

Unfortunately (or luckily?), two hard constraints preclude the actual
achievement of a world so entirely known to allow such exciting solutions.

� The so-called chaos in dynamical systems, whose apparently-random
states of disorder and irregularities are often governed by deterministic
laws (that are highly sensitive to initial conditions);
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� The phenomenon of complexity, namely the emergence of entirely new
properties at any new level of aggregation.

Arguably, Leibnitz was not aware of the existence of them. Therefore,
we might pose to ourself the following question: from where to start under-
standing complexity? In Aristotle, complexity seems opposed to simplicity
as a matter of lifestyle. In Latin, the world complexus means what is woven
together.

In the 40s of the last century, von Neumann was working with automata
and their complexity, but: he described his own concept of complexity as
�vague, unscienti�c and imperfect� (from McMullin, 2000).

If we jump to the 60s of the last century, we have the Kolmogorov com-
plexity, de�ned as a measure: given an object, e.g., a piece of text, the
length of the shortest computer program (in a predetermined programming
language) that produces the same object as output.

Beautiful, but again it is not a reply to our search about what complexity
is. The concept was there, but missing a clear interpretation and de�nition,
confused with the a-scienti�c and anti-reductionist holism, i.e., the idea that
we should view many systems (physical, biological, social, our body, etc.) as
wholes, not merely as collections of parts. Sure, but then what? So, neither
holism nor simple reductionism, but with Nobel Laureate Philip Anderson
(born 1923), in 1972 the �More is di�erent� clari�cation [10]:

(p.393) The reductionist hypothesis may still be a topic for contro-
versy among philosophers, but among the great majority of active
scientists I think it is accepted without questions. The workings
of our minds and bodies, and of all the animate or inanimate
matter of which we have any detailed knowledge, are assumed to
be controlled by the same set of fundamental laws (. . . ) The main
fallacy in this kind of thinking is that the reductionist hypothesis
does not by any means imply a �constructionist� one (. . . ) The
constructionist hypothesis breaks down when confronted with the
twin di�culties of scale and complexity. The behavior of large
and complex aggregates of elementary particles, it turns out, is
not to be understood in terms of a simple extrapolation of the
properties of a few particles. Instead, at each level of complexity
entirely new properties appear (. . . ).

Often, complexity is related to biological systems, however this is a nar-
row vision as complexity is everywhere in our world [19]. In particular, the
focus of our paper goes over various topics including evolutionary economics
referring to the conceptual framework in [78], where it is given evidence of
the role of complexity in economical systems. The following quotation from
Nobel Prize in economy Herbert Simon has been extracted from [138] and
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reported in [78] to enlighten the initial step towards linking economy to the
theory of complexity.

Roughly by a complex system I mean one made up of a large num-
ber of parts that interact in a non-simple way. In such systems,
the whole is more than the sum of the parts, not in an ultimate
metaphysical sense, but in the important pragmatic sense that,
given the properties of the parts and the laws of their interaction,
it is not a trivial matter to infer the properties of the whole.

At this end, as a key milestone towards the development of a mathemat-
ical theory, it is necessary to transfer the aforementioned general concepts to
an assessment of the relevant complexity features by answering to the second
key question.

KQ2: Which are the main complexity features of living system?

A mathematical theory of living system should arguably attempt to capture
the complexity feature of living systems [23, 14]. Therefore, the answer to
this question aims at contributing to the key objective of our paper. Without
naively claiming that our reply can be exhaustive, our proposal for a selection
of �ve key features is as follows:

1. Ability to express an activity: Living entities are capable to develop
speci�c strategies and organization abilities that depend on the state of the
surrounding entities and environment.

2. Heterogeneity: The ability to express a strategy is not the same for all
entities as expression of heterogeneous behaviors is a common feature of a
great part of living systems.

3. Nonlinearity of interactions: Interactions are nonlinearly additive
and nonlocal as they may involve entities that are not immediate neighbors.

4. Learning ability: Living systems receive inputs from the environments
and have the ability to learn from past experience. Accordingly, the strategy
they develop evolves in time.

5. Darwinian mutations and selection: All living systems are evolu-
tionary, as interactions can generate, by birth of aggregations, new entities
that are increasingly �tted to the environment, who in turn generate new
entities again more �tted to the environment.

KQ3: What is the black swan? The expression black swan has been
introduced to denote an unpredictable events which are far away from those
generally observed by repeated empirical evidence. Let us report the de�ni-
tion by Taleb [143]:

A Black Swan is a highly improbable event with three principal
characteristics: It is unpredictable; it carries a massive impact;
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and, after the fact, we concoct an explanation that makes it ap-
pear less random, and more predictable, than it was.

Actually, the concept of the black swan is associated to the concept of
not predictable event or, negatively not predicted event, but we wish stressing
that we want to refer this concept to the ability of mathematical models
to provide all possible scenarios including events which are unlikely to be
anticipated. This vision has a well de�ned implication on the modeling
approach which should not include, in the model, any arti�cial relaxation
term suggested by observed data rather than by interactions. Indeed, this is
a key issue towards the derivation of a mathematical theory of living systems
to be carefully tackled in the following.

2.2 From philosophical thoughts to �gurative fantasy

Let us now leave the various concepts presented until now and give some
space to our fantasy. A free interpretation in[35] suggests that theMetamorphosis-
III by Cornelis Escher:

https : //arthive.com/it/escher/works/200075 Metamorphosis

depicts most of the aforementioned complexity features, for instance the col-
lective strategy by which a village with houses with almost uniform shapes
is gradually transformed into an heterogeneous village which includes archi-
tectures with di�erent shapes.

We can observe that the evolution is selective as shown by the transition
from essential shapes to an organized village, where all available spaces are
exploited to include an increasing population. The presence of a church, that
takes an important part of the space and a somehow key position, indicates
the presence of a cultural evolution. This might even re�ect a multiscale
dynamic. In fact, it results from the interplay between the micro-scale of
individuals and the macro-scale of the village.

In addition, the last part of Metamorphosis-III shows a sudden change
from a peaceful village to a chess plate which represents a battle between
two antagonist armies. If we hide this part, we should admit that it is a
sudden change which is not predicted by early signal. The third key question
speci�cally refers to this topic. We �rstly notice that the village exists in
reality (it is in the Mediterranean coast immediately on the south of the
village of Amal�), then we pose the following question: Does the tower truly
exists?

The answer is that the real village looks at the sea, while the tower cannot
be observed looking at it from right to left by an observer who faces the the
sea from the village, as shown on the upper picture of Figure 1. On the other
hand, an observer placed on the rear of the village can observe a tower on
the cape in the lower picture of Figure 1.
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Figure 1: Di�erent visions of the village Atrani on Amal�-coast

The Metamorphosis represents a �gurative example of the practice of
tessellation primarily used for architecture and decoration. Tessellation has
also been used in mathematical applications since it is a case in which the
gradual movement from one regular geometric form to the subsequent one
can create a cascade e�ect. Indeed regular over-imposed behaviors or pat-
terns, when moving, can create a complex multidimensional artefact, such
us in the Metamorphosis. Complex multi-dimensionality out of regular ge-
ometric structures is common also in biology: take the case of beehives or
Roman cauli�ower.

So far, the Metamorphosis teaches us that di�erent visions of the same
object can be represented into one uni�ed collective representation. Indeed,
this is one of the speci�c features of complex systems. If now we leave some
additional freedom to our fantasy, the tower can be interpreted as an early
signal that an extreme event is going to happen. The various changes in
the picture can be interpreted as predictable emerging behaviors, while the
last one appears as a non-predictable event. Escher has gone through the
experience of two world wars, where peaceful villages transformed into a
battle�eld between the two armies of the chess plate.
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2.3 On a strategy towards modeling living systems

This subsection proposes a modeling strategy that copes with the absence
of a �eld theory when dealing with living matter. This strategy motivates
replacing the de�nition soft sciences by science of living systems. Indeed, the
strategy we propose consists in replacing the �eld theory by a mathematical
structure (say a mathematical theory) suitable to capture, as far as it is
possible, the complexity features of living systems. This structure de�nes
the conceptual framework for the derivation of models which are obtained
by inserting models of interactions into the structure itself. In more details,
the sequential steps of the strategy can be summarized as follows:

1. Understanding the links between the dynamics of living systems and
their complexity features;

2. Subdivision into subsystems: The overall system can be divided into
so-called functional subsystems, in short FSs, which share common
objectives and strategy.

3. Derivation of a general mathematical structure, consistent with the
aforesaid features, with the aim of o�ering the conceptual framework
toward the derivation of speci�c models;

4. Design of speci�c models corresponding to well de�ned classes of sys-
tems by implementing the said structure with suitable models of individual-
based, micro-scale, interactions;

5. Validation of models by quantitative comparison of the dynamics pre-
dicted by them against empirical data. Models are required to repro-
duce qualitatively emerging behaviors.

This strategy, which leads to a modeling rationale, is represented in �g-
ure 2 which indicates, by a �ow-chart, how the observation of the real system
moves to models, which only approximate, physical reality and, consequently,
need to be validated. Some additional remarks contribute to further enlight-
ening the �ow chart.

• Multiscale aspects: Modeling must be multiscale, as the dynamic at the
large scale depends on the dynamics at the low scales. For instance, the
functions expressed by a cell are determined by the dynamics at the molecular
(genetic) level.

• Role of the environment: The environment evolves in time, in several cases
also due to interactions with the internal living system.

• Large deviations: Emerging behaviors may present large deviations. In
this case, small deviations in the input create large deviations in the output.
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Figure 2: Modeling strategy

• Individuals within a certain FS can aggregate into groups of a�nity: Com-
munications and subsequent dynamics can take advantage (or disadvantage)
from the said aggregation by creating a new communication network.

2.4 The scaling problem

The representation and modeling of dynamical systems can be developed at
three representation scales, namely microscopic (individual based), macro-
scopic (hydrodynamical), and at the intermediatemesoscopic (kinetic) scales.
In the kinetic theory approach, the dependent variable is a distribution func-
tion over the microscopic state of the individuals.

Our study refers to the collective dynamics of several heterogeneous in-
teracting individuals. Heterogeneity, which a�ects interactions, motivates
the selection of the kinetic theory approach as the most appropriate towards
modeling. In fact, it can naturally account for heterogeneity and stochastic
interactions [23]. On the other hand, the number of interacting entities is
not, in most cases, large enough to justify continuity assumption of the afore-
mentioned distribution function. This key di�culty cannot be hidden and
has to be carefully treated in the derivation of the mathematical structure,
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bearing in the mind that technical developments of models of the classical
kinetic theory cannot be straightforwardly applied to living systems. For
instance, the celebrated Boltzmann equation is based on the assumption of
a rare�ed �ow where only binary, short range, interactions occur, while in-
teractions in the Vlasov equations are distributed in the whole space which
is not the case of living systems, where the domain of interactions refers
both to sensitivity and visibility of individuals. In addition, interactions of
classical particles preserve mechanical quantities, namely mass, momentum,
and energy, while these properties are often lost in the case of living systems.

The mathematical theory reported in the next section is grounded on
methods of the kinetic theory consistently with the strategy proposed in
this section, but, considering the developments imposed by the complexity
features of living systems. This selection should be critically examined as
none of the scales, standing alone, is su�cient to depict the dynamics of the
class of systems under consideration. Indeed, a multiscale vision is necessary
and it is a key feature of a mathematical theory of living systems. Therefore,
various reasonings on this vision are going to be a constant presence in the
next sections.

The contents of the next sections is mainly focused on the kinetic theory
of active particles, in short the KTAP approach. However, we are aware
that the rationale proposed in the following can be referred to other formal
structures, for instance, Fokker Plank approach [88, 125], agent methods [89],
statistical physics of living particles [99, 100], evolutionary dynamics [124].

3 Towards a mathematical theory of living systems

We show, in this section, how the strategy proposed in Section 2 can be trans-
ferred into a mathematical theory, where this term is used to refer to mathe-
matical structures suitable to capture, as far as it is possible, the complexity
features of living systems. The study is mainly focused on the kinetic theory
of active particles, where individual entities, called active particles (in short
a-particles), interact across networked populations. The micro-scale state
of a-particles includes, in addition to mechanical variables, also a variable,
called activity, which models the behavioral ability of the individual entities.
According to the authors' perspective, the kinetic theory approach appears
to be the most appropriate to be selected without hiding the key di�culty
consisting in that the number of interacting entities is not large enough to
fully justify the continuity assumption of the distribution function.

As mentioned, there exists a well established literature on this topic which
starts from those we have indicated as pioneering research works [29, 105,
128, 130]. We speci�cally refer to the book [23] and, in addition, we include
some recent developments mainly motivated by speci�c applications. In more
details, the theory is presented in Subsection 3.1, additional reasonings on
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modeling interactions and networks are proposed in Subsection 3.2 referring
also to the key problems posed in [47], while a critical analysis is proposed
in Subsection 3.3 to enlighten how much the theory is consistent with the
conceptual approach of Section 2 and how further research activity should
be developed.

3.1 The mathematical theory of active particles

We focus on the collective dynamics of large systems of a-particles. Living
entities, at each interaction, play a game with an output that depends on
their strategy often related to surviving and adaptation abilities. Interac-
tions are modeled by theoretical tools of stochastic game theory which are
characterized as follows:

� Stochastic game theory deals with entire populations of players, where
strategies with higher payo� might spread over each population by
learning related to individual based and between each individual and
the collectivity interactions.

� The strategy expressed by individuals, i.e. a-particles, is heteroge-
neously distributed over the micro-states of players which include both
mechanical and activity variables.

� Players are modeled as stochastic variables linked to a distribution
function over the micro-state. The payo� is heterogeneously distributed
over players as well, and it might be motivated by �rational� or even
�irrational� strategies.

� The payo� depends on the actions of the co-players as well as on the
frequencies of interactions. Both quantities can depend on the proba-
bility state of the system.

� Interactions are nonlocal and nonlinearly additive in a way that the
dynamics of the whole system is not straightforwardly determined by
the dynamics of a few entities.

A qualitative description of phenomenological examples of interactions is
as follows:

1. Competitive (dissent): One of the interacting a-particles increases its
status by taking advantage of the other which is forced to decrease its
status. Competition brings advantage to only one of them.

2. Cooperative (consensus): The interacting a-particles exchange their
status, i.e. a-particles with higher state decrease it, while the others
with lower state increase it. All a-particles show a trend to share their
micro-state.
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3. Learning: One of the two a-particles modi�es, independently from the
other, the micro-state. It learns by reducing the distance between
them.

4. Hiding-chasing: One of the two attempts to increase the overall dis-
tance from the other, which in turn tries to reduce it.

5. Mixed competitive-cooperative: A-particles do not share the same strat-
egy, but some of them act competitively whereas some others cooper-
atively.

If the dynamics of interaction depends on space, the following geometrical
quantities, and related properties, must be introduced:

� Visibility domain: Ωv which is the domain within which an a-particle
can see the others.

� Sensitivity domain: Ωs which is the domain within which an a-particle
can feel the presence of the other a-particles. If Ωs ⊆ Ωv, then inter-
actions occur within Ωs. If Ωv ⊆ Ωs, then interactions occur within
Ωv. The interaction domain Ω is de�ned as the intersection between
Ωv and Ωs.

� The size of the sensitivity domain Ωs depends on the amount of infor-
mation which can be received by an a-particle, hence Ωs depends on
the distribution function. The theory proposed in [20] suggests that
the size of Ωs depends on a critical density, namely a critical number of
particles. The mathematical formalization in [32] indicates how Ωs is
related to the velocity direction and visibility angle of each a-particle.

The overall system is subdivided into n FSs whose state is de�ned by the
distribution function

fi = fi(t,x,v,u) : [0, T ]× Σ×Dv ×Du −→ R+, i = 1, . . . , n, (1)

where Σ is the domain where a-particles are located, and Du and Dv denote
the domains of the variables u and v, respectively. The following a-particles
are supposed to be involved, for each functional subsystem, in the interac-
tions:

• Test particles of the i-th functional subsystem with microscopic state, at
time t, delivered by the variable (x,v,u), whose distribution function is
fi = fi(t,x,v,u). The test particle is assumed to be representative of the
whole system.

• Field particles of the k-th functional subsystem with microscopic state,
at time t, de�ned by the variable (x∗,v∗,u∗), whose distribution function is
fk = fk(t,x∗,v∗,u∗).
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• Candidate particles, of the h-th functional subsystem, with microscopic
state, at time t, de�ned by the variable (x∗,v∗,u∗), whose distribution func-
tion is fh = fh(t,x∗,v∗,u∗).

Let us now consider short range interactions, when particles interact
within an interaction domain Ω generally small with respect to the domain
Σ containing the whole system; and let us use the term i-particle to denote
a particle in the i�th functional subsystem. Bearing in mind that a precise
de�nition and computing of Ω still needs to be given, the theory states that
the modeling of interactions is delivered by the following quantities:

• Interaction rate for conservative dynamics: ηhk[f ](x,v∗,u∗,x
∗,v∗,u∗),

which models the frequency of the interactions between a candidate h-particle
with state x,v∗,u∗ and a �eld k-particle with state x∗,v∗,u∗. Analogous
expression is used for interactions between test and �eld particles.

• Interaction rate for non-conservative dynamics: µhk[f ](x,v∗,u∗,x
∗,v∗,u∗),

is analogous to ηhk, but corresponding to proliferative and destructive inter-
actions.

• Transition probability density: Cihk[f ](v∗ → v, u∗ → u |x,v∗,u∗,x
∗,v∗,u∗),

which denotes the probability density that a candidate h-particle, with state
x,v∗,u∗, ends up into the state of the test particle of the i-th FS after an
interaction with a �eld k-particle.

• Proliferative term: P i
hk[f ](v∗ → v, u∗ → u |x,v∗,u∗,x

∗,v∗,u∗), which
models the proliferative events for a candidate h-particle, with state x,v∗,u∗,
into the i-th functional subsystem after interaction with a �eld k-particle
with state x∗,v∗,u∗.

• Destructive term: Dik[f ](x,v,u,x∗,v∗,u∗), which models the rate of de-
struction for a test i-particle in its own functional subsystem after an inter-
action with a �eld k-particle with state x∗,v∗,u∗.

These quantities can be viewed in terms of rates by multiplying their
interaction rate with the terms modeling transition, proliferative, and de-
structive events. Hence we have transition rate: ηhk[f ] Cihk[f ], proliferation
rate: µhk[f ]P i

hk[f ], and destruction rate: µik[f ]Dik[f ].
Mathematical structures are obtained by number balance of a-particles

within an elementary volume of the space of microscopic states, mechanics
and activity, of particles

Variation rate of the number of active particles

= Inlet �ux rate by conservative interactions

−Outlet �ux rate by conservative interactions

+Inlet �ux rate by proliferative interactions and mutations

−Outlet �ux rate by destructive interactions and mutations.
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This balance relation corresponds to the following general structure:

(∂t + v · ∂x) fi(t,x,v,u) =
(
Ci − Li + Pi −Di

)
[f ](t,x,v,u), (2)

where the various terms Ci,Li,Pi and Di can be formally expressed, consis-
tently with the de�nition of the interaction terms.

Remark 3.1. A commonly applied assumption is that the terms P i
hk and Dik

depend, in addition to f , only on the activity variables, namely P i
hk[f ](u∗ →

u|u∗,u
∗) and Dik[f ](u,u∗). This assumption is used in the equations below.

In the spatially homogeneous case, the mathematical structure is special-
ized as follows:

∂tfi(t,u) =

(
Ci[f ]− Li[f ] + Pi[f ]−Di[f ]

)
(t,u)

=

n∑
h,k=1

∫
Du×Du

ηhk[f ](u∗,u
∗) Cihk[f ] (u∗ → u|u∗,u

∗) fh(t,u∗)fk(t,u∗) du∗ du
∗

−fi(t,u)
n∑

k=1

∫
Du

ηik[f ](u,u∗) fk(t,u∗) du∗

+
n∑

h,k=1

∫
Du×Du

µhk[f ](u∗,u
∗)P i

hk[f ] (u∗ → u|u∗,u
∗) fh(t,u∗)fk(t,u∗) du∗ du

∗

−fi(t,u)

n∑
k=1

∫
Du

µik[f ](u,u∗)Dik(u,u∗)fk(t,u∗) du∗. (3)

The same calculations, in the spatially inhomogeneous case, correspond
to Eq. (2), where the interaction terms are given by:

Ci =
n∑

h,k=1

∫
Ω×Du×Du×Dv×Dv

ηhk[f ](w∗,w
∗) Cihk[f ](v∗ → v, u∗ → u|w∗,w

∗)

×fh(t,x,v∗,u∗)fk(t,x∗,v∗,u∗) dx∗ dv∗ dv
∗ du∗ du

∗, (4)

Li = fi(t,x,v,u)
n∑

k=1

∫
Ω×Dv×Du

ηik[f ](w,w∗) fk(t,x∗,v∗,u∗) dx∗dv∗ du∗,

(5)

Pi =
n∑

h,k=1

∫
Ω×Du×Du×Dv×Dv

µhk[f ](w∗,w
∗)P i

hk[f ] (u∗ → u|u∗,u
∗)

×fh(t,x,v∗,u∗)fk(t,x∗,v∗,u∗) dx∗ dv∗ dv
∗ du∗ du

∗, (6)

Di = fi(t,x,v,u)

n∑
k=1

∫
Ω×Dv×Du

µik[f ](w,w∗)Dik[f ](u,u∗)

×fk(t,x∗,v∗,u∗) dx∗ dv∗ du∗, (7)
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where w, w∗ and w∗ denote the microscopic states (x,v,u), (x,v∗,u∗) and
(x∗,v∗,u∗), respectively. Detailed calculations, which are not repeated here,
indicate how Ω can be computed when the sensibility area Ωs is given by
an arc of circle, with radius Rs around the velocity direction. Then, if the
visibility arc, symmetric or non-symmetric, is known, Rs is referred to the
critical number of a-particles necessary to provide a su�cient information.

Further developments of the structures (2)�(7) will be outlined in the
next two subsections referring to a critical analysis on the limits and possi-
ble extensions of these structures. Here, we just anticipate some technical
remarks that can contribute to enlighten the properties of these mathemat-
ical structures in view of derivation of models:

� The use of distribution functions, rather than probability densities, as
dependent variables accounts for a dynamics with a variable number
of a-particles due to birth and loss processes.

� Mutations can be modeled by birth processes which can generate enti-
ties (gain) more �tted to the environment, who in turn might generate
new entities again more �tted to the outer environment. Selection can
be modeled by death (loss) of entities less �tted to the environment.

� Two types of interactions are taken into account: micro-micro ormicro-
macro, where the term macro corresponds to macroscopic quantities
obtained by weighted averaging of the distribution function.

Some explicative �gures can enlighten the role of interactions by distin-
guishing the di�erences between the case of space homogeneity and that of
space dynamics. In more details:

� Figure 3 represents two a-particles moving with velocity v that de�ne the
visibility domain, while the sensitivity domain depend on the local density.
The �gure "A" on the left shows the case of a visibility domain (blue con-
tour) greater than the sensitivity domain (red contour), so that visibility is
su�cient to allow to acquire the full necessary information. The �gure "B"
on the left shows the opposite case, namely a visibility domain (blue contour)
smaller than the sensitivity domain (red contour), so that lack of visibility
reduces the necessary information.

� Figure 4 shows various models of interaction dynamics related to a scalar
activity variable. It is shown how the activity variable can be modi�ed by
interaction with an other a-particle cooperative and competitive interactions
are considered, while in the chasing-hiding dynamics both a-particles modify
their state toward the same direction by attempting to keep the distance.

Remark 3.2. Dimensionless variables are used, where the cartesian compo-
nents of the position x are referred to a characteristic length ` of the system,
while vi has been referred to the limit velocity vM which can be reached by
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Figure 3: Sensitivity and interaction domains

Figure 4: Cooperation, dissent, hiding chasing, learning
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the fastest particle. In particular, if the system is localized in a bounded do-
main Σ, the positive constant ` is the diameter of the circle containing Σ,
while if the system moves in an unbounded domain, ` is simply referred to
the domain Σ0 containing the particles at t = 0.

Remark 3.3. Simulations need the statement of mathematical problems by
de�ning initial and boundary conditions to be properly referred to the general
structure (2), specialized into speci�c models. The mathematical structure
includes �rst order derivative with respect to both time and space. Therefore,
the initial conditions are de�ned by fi at t = 0 and x ∈ Σ, namely fi(t =
0,x ∈ Σ,v ∈ Dv,u ∈ Du), while boundary conditions might be de�ned by
a model suitable to describe how a-particle leave the wall ∂Σ after having
reached it. In addition, the presence of the wall modi�es the trajectories of
the a-particles as these try to avoid the wall, see the study of human crowds
in [15].

3.2 On the modeling of interactions and dynamical networks

The mathematical formalization of the interaction terms which appear in
Eqs.(3.1)�(3.7) is the key passage to derive models of real world applica-
tions. Hence, it is worth developing further reasonings on the rationale to
be followed in their modeling. In doing so, we will also refer to the contents
of the book [47], where the authors propose, in the closing section, six key
problems which are brought to the attention of scientists, as challenging re-
search perspectives. We will quote three of them referring to some aspects
of the modeling of interactions and networks.

BL1: We know that people are a�ected by their positions in net-
works, but we do not have a variety of models of how people create
their networks. We also do not have good models for network's
change and evolution.

BL2: There are lots of models that show how groups arrive at
consensus but no generally accepted model of how groups become
polarized or how two groups can become more and more di�erent
and possibly hostile.

BL3: Regarding networks and homophily, birds of a feather �ock
together, but people are in�uenced by those they like. Both these
processes result in the same outcome (similar people together in
groups), but there is no standard accepted way of separating these
two processes.

We do claim that the mathematical tools reviewed in this section pro-
vide a de�nite answer to these key problems which also refer also to the
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modeling of social interactions and to the dynamics of endogenous networks.
Therefore, some indications are given in the following, that may be properly
developed within a speci�c future research program.

• The key problem by BL1 focuses on endogenous, dynamical, net-
works [120, 141]. Exogenous, time independent, networks have been studied
in [112, 113] within the framework of the KTAP theory by a modeling ap-
proach that includes migration dynamics across nodes. Interactions consider
not only the dynamics within each node, but also between active particles
in the nodes and the network viewed as a whole. A di�erent approach is
required to develop the dynamics of model aggregation in endogenous net-
works, where nodes are created by a�nity features. Some perspective ideas
in [14] suggest that, in the case of space homogeneity, the dynamics is driven
by the distance between the interacting entities for both micro-micro and
micro-macro interactions. Some reasonings are here proposed focusing on
space dependent systems.

Let us consider interactions within the same FS, and let us call dpq the
metric distance between a p-particle and a q-particle and ϕpq the correspond-
ing social distance, where the notations p and q correspond, respectively, to
state p and q, respectively. The metric distance can be taken as a weighted
sum of all speci�c distances, namely mechanical ||xp − xq|| and ||vp − vq||,
activity ||up − uq||, and probability state ||fp − fq||, where || · || denotes
a selected norm in a linear space. Then, we can introduce the concept of
social state as a weighted sum of the norm of all components of the state
of a-particles. This calculation is meaningful if all components of the state
variable are in a dimensionless form with values in a �nite range.

The technical problem consists in modeling, �rstly dpq and subsequently
the decay rule of ϕpq. A simple way of modeling dhkpq is that suggested in [14],
namely by a weighted sum of all metric distance of the components of the
micro-state and of the metric distance between the distribution functions of
the interacting pairs, while a simple way of referring ϕ to d is as follows:

ϕpq = ϕ0

(
− exp(−σ dpq)

)
, σ > 0,

as the link between the two distances is that ϕ decays as d increases. Inter-
actions are signi�cant if the q-particle is placed in the sensitivity domain of
the p-particle, while ϕ = 0 if the position of the q-particle does not belong
to this sensitivity domain.

A conjecture worth to be studied is that the overall FS creates an endoge-
nous network nodes obtained by discrete values of the aforementioned social
distance. Then each node of the endogenous network acts as a functional
subsystem.

• Focusing on the key problems BL2 and BL3, the remark in [47] that a
great part of the literature is devoted to modeling consensus dynamics [47],
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however heterogeneous [6]. On the other hand, di�erent types of interac-
tions should be considered, is de�nitely correct. This problem was already
considered in [7]. Therein, it is suggested that both consensus and dissent
are present in an heterogeneous population depending on a social distance
between interacting a-particles. More in general, we can argue that di�erent
types of coexistence should be investigated as an additional heterogeneity
feature of behavioral systems. The key problem also refers to the behavioral
way by which individuals interact.

Some models to describe social dynamics in populations have been de-
veloped under the assumption that either consensus or opposition take place
depending on the social distance [34, 70, 71]. This dynamics explains how
radicalization phenomena mentioned in BL2 show up. Further, it is a fea-
ture to be taken into account in crowd dynamics, where rational (leaders)
and irrational behaviors might be contextually present. However, a system-
atic study has not yet been carried out. A more general approach might
be developed by assuming that the interaction term Cihk[f ] in (3.4) is not
modeled by only one of the qualitative interactions reported in Fig. 4, but
by a convex combination of two di�erent types of interactions, for instance
consensus and dissent,

Cihk[fh, fk] = ψ[fh, fk]Ai
hk[fh, fk] +

(
1− ψ[fh, fk]

)
Bihk[fh, fk]. (8)

Indeed, further study would be necessary towards the modeling of the term
ψ which separates the two di�erent of dynamic.

3.3 Critical analysis

The structures de�ned in (3.2)�(3.7) permit one to derive mathematical mod-
els once the various interaction terms η, µ, C,P,D are modeled on the basis
of a phenomenological-theoretical interpretation of each speci�c system ob-
ject of the study. However, a detailed analysis of the qualitative properties of
these structures is necessary to verify their ability to capture the complexity
features identi�ed by answering to the key question KQ2, posed in Section
2, within the modeling framework depicted in the �ow chart of Figure 1.

Bearing all above in the mind, let us focus on each of the selected key
features, and discuss to what extend the mathematical theory can account
for them. The study of this problem refers also to speci�c applications.

• Ability to express a strategy: This ability is modeled by the activity vari-
able, which is a behavioral variable. If the activity is a vector, then all com-
ponents may a�ect each other. When the model includes both behavioral
and mechanical variables, a commonly shared opinion is that the mechanical
dynamic is in�uenced by individual behaviors. An example of the �rst case
is given by the dynamic of idiosyncratic learning which a�ects the skill in
market sharing [28], while an example of the second case appears in crowd
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dynamics [31] as the strategy by which walkers move and select trajecto-
ries depends on their emotional state. The motion of cells follows analogous
rules, namely the motion is often a function of biological, in some case het-
erogeneous, properties [140].

• Heterogeneity: The use of the distribution function over the activity, that
is the dependent variable of the model, naturally accounts for the hetero-
geneous behavior of a-particles within each FS. Subdivision into di�erent
FSs can also be referred to certain types of heterogeneity as in the case of
endogenous frameworks.

• Nonlinear interactions: The output of interactions is generally nonlinearly
additive with respect to the inputs. In addition, it can also depend on
the distribution functions of the interacting a-particles. As an example,
models of opinion formation include the sensitivity of a-particles not only to
individual a-particles, but also to �rst order moments. This type of dynamic
characterizes, for instance, aggregation into political opinions as individual
attitudes are modi�ed not only by individual based interactions, but also by
groups [7].

• Learning ability: Individual entities learn from past experience [54, 55,
56]. As a consequence, the rules by which a-particles interact is modi�ed
by the level of learning heterogeneously acquired by each individual. The
applications treated in the next Section 4 include this type of interactions.

• Darwinian mutations and selection: All living systems are evolutionary, as
birth processes can generate entities more �tted to the environment. These,
in turn, may generate new entities again more �tted to the outer environ-
ment. An immediate application appears in the immune competition in
cancer dynamics, where several mutations generate cancer cells [93, 95, 150],
while the immune system evolves by learning to produce selection [122].

The general structure of all interaction terms can potentially model all
features that have been reported above. However, although we have veri�ed
that the mathematical structures derived by the kinetic theory of active
particles can capture the complexity features of living systems, additional
key problems have to be considered to validate the mathematical theory.
Some of the said key problems may be suggested by the applications treated
in Section 4. Here, we simply mention some topics which deserved further
reasonings, for instance:

Collective behaviors may present large deviations that might lead to non-
predictable events i.e. to the so-called black swan. A critical issue consists
in understanding how large deviations can be considered a black swan or
simply a consequence of the fragility of the system [13].

Individual entities often show a trend to aggregate into groups of a�nity
which generate endogenous networks modifying the rules of interaction and,
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consequently, the interactions' outcome.

The assumption of continuity of the distribution function is justi�ed only by
the involvement of a very large number of a-particles. Discrete distributions
can be used as shown in [23], but also pseudo Newtonian frameworks can be
developed as shown in Section 4.

Di�erent types of dynamics can be captured by the activity variable. A mod-
eling approach might search for a hierarchy as in the case of crowd dynamics,
where pedestrians �rstly exchange their emotional state and subsequently
develop a walking strategy [15].

Non-symmetric interactions and lack of information: Figure 3 shows that
visibility domain can reduce the sensitivity domain, whenever Ωv ⊂ Ωv. In
this case, the a-particles receives a limited, in some cases even asymmetric
information. As a consequence the strategy by which the a-particle expresses
one's activity might not be su�cient to achieve rationality.

Various other key problems are suggested by the applications reported
in Section 4, where the cornerstone of all application is the search for a
multiscale vision which is the key passage towards a mathematical theory of
living systems.

4 Applications looking ahead to modeling perspec-

tives

This section presents a review and critical analysis of the mathematical the-
ory proposed in Section 3, with special emphasis on applications. In that
section, it has been shown how mathematical models can be derived by in-
serting speci�c models of micro-scale interactions into di�erential structures
speci�cally selected for each system under consideration.

This paper goes beyond [35] as in these recent years important devel-
opments of the theory have been proposed spurred by applications. We
select �ve topics which, according to the authors' perspective, present fea-
tures that deserve attention in view of future extensions of the theory. In
more details, the presentation consider the following applications: collective
learning, human crowds, immune competition and diseases spreading, evolu-
tionary economics, and behavioral swarms. The presentation includes some
sample simulations.

As we shall see, the survey of applications already includes some reason-
ings on possible modeling perspectives which are not simply technical devel-
opments, but need to be viewed as motivations and hints towards furthers
steps in the quest towards a mathematics for living systems. Accordingly,
this section motivates the contents of the last section which looks forward to
further steps along the complex path proposed in our paper.
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4.1 Collective learning dynamics

The de�nition collective learning is used to denote the dynamics by which
an individual learns a well de�ned knowledge, or even a well de�ned skill,
from a population of interacting individuals. In more details, the following
de�nition can guide the modeling approach [58]:

Collective learning is a social process of cumulative knowledge,
based on a set of shared rules and procedures which allow individ-
uals to coordinate their actions in search for problem solutions.

Within this framework we stress that collective learning is an interactive
process, where the transfer of knowledge is induced by interactions which
occur in the individual's mind as a social and participatory process and that
increases his mental knowledge [129, 148].

In addition, collective learning is lastly cumulative, as it accumulates
over time. A speci�c example is the social learning, originated with the
development of psychology sciences, which occurs when the individual learns
new behaviors (as speci�c skills) and concepts from others [21, 136], see
also [116].

The collective learning process, that takes place within a system of in-
teracting individuals, is characterized by the following sequential steps:

1. Perception: Each individual possesses a perception domain de�ned
in the space of the microscopic states. It is the domain within which
the presence of other individuals is perceived with a di�erent intensity
that can depend, for instance, on a social distance, namely the dis-
tance between the activity variables of the test and �eld a-particles.
Accordingly, the modeling approach should �rst de�ne the interaction
domain and, subsequently, a metrics to estimate the said distance.

2. Interactions and learning: Individuals may increase, by interac-
tions, the level of their knowledge, that is a positive de�ned quantity.
Both binary and multiple interactions should be considered. Networks,
both exogenous and endogenous, can enhance the learning dynamics.
Also in this respect a suitable metric should be chosen in order to
quantify the amount of learning acquired over time.

3. From learning to behavioral dynamics: Learning can act as a
preparatory step preceding and conditioning other dynamics [53]. For
instance, collective learning followed by a speci�c social dynamic. In
this case, the activity variable is a vector de�ned by two components:
w = {u, v}, where u is the component that characterizes the level of
learning and v is the social component whose dynamic is also induced
by u.
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Methods of the kinetic theory of active particles have been proposed
in [54, 56] with application to modeling scholar learning [48]. Further de-
velopments have been treated in [53], where the modeling of the interaction
between learning and di�erent dynamics were investigated. An interesting
modeling perspective refers to the dynamics of heritages [45].

In more details, the application treated in [54] refers to learning dynamics
in the spatially homogeneous case, speci�cally to collective learning in a
classroom. In more details, three di�erent cases are considered:

Case (a) corresponds to the traditional teaching approach, which assumes
that students only attend lectures of the teacher.

Case (b) in which students are engaged in collaborative work forming groups
of two individuals. The groups are homogeneous and the members of each
group are selected among students having similar initial achievements.

Case (c), where the students are organized in groups as in case (b), but the
groups are heterogeneous and the members are chosen at random.

As for the transition probability densities we must distinguish two types
of dynamics:

• For the student-teacher interaction the probability for a student to learn
is proportional to the level of knowledge of the teacher. The subsequent
increase of knowledge is a uniform random variable given by a fraction of
what he/she does not know.

• For the student-student interaction the probability for a student to learn is
proportional to the product of his level of ignorance and the level of knowl-
edge of the interaction partner. The subsequent increase of knowledge is a
uniform random variable given by a fraction of what he does not know. The
probability for a student to keep his level of knowledge is proportional to the
level of knowledge itself.

The application shows that the level of knowledge of a student not only
increases, but also can decrease, which is not unexpected. Indeed, inap-
propriate teaching material, lack of attention of the students, disordered
discussions, misunderstandings and so on, may result in unlearning. Fur-
thermore, the performance of low level students may be enhanced when they
form groups with better students, although this improvement is obtained at
the expense of the achievements of their colleagues.

The kinetic theory modeling o�ers deeper insights into system dynamics
by naturally providing the time evolution of the density distribution func-
tions of each group of students, while the subdivision into functional subsys-
tems allows to investigate how the di�erent types of students interact.

Let's conclude this subsection by some remarks, selected according to the
authors' perspective, looking ahead to research perspectives: :

1. Nonlinear interactions: Nonlinearity of interactions at the micro-scale
means that the output of interactions could depend not only on the
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microscopic state of the interacting entities, but also on the probabil-
ity distribution functions of the functional subsystems to which they
belong.

2. Mutations and selection: Post-Darwinian dynamics consisting in muta-
tions followed by selection plays an important role in biology. An anal-
ogous dynamic appears in social systems, where new groups may be
generated, for instance, by the aggregation of di�erent groups. These,
subsequently, may either expand or disappear due a competition some-
how mediated by the external environment.

3. From learning to behavioral dynamics: Collective learning is almost
always followed by a subsequent dynamic, where individual behaviors
depend on the level of learning which is heterogeneously achieved in a
population.

We mention two case studies, treated in the next subsections, where
learning dynamic precede a subsequent dynamic.

In crowd dynamics in the presence of epidemics, the awareness of the risk of
contagion can pervade crowds moving in venues of a territory. This feeling,
which is learned by interactions with other individuals, modi�es individual
trajectories in the search of paths through low density areas, but paying the
price of increasing, with respect to the trajectories in absence of such aware-
ness, to reach a target. This topic has been introduced in [111], within the
framework of models of behavioral-social crowd dynamics [31, 110], account-
ing for recent studies on the pandemic by virus COVID-19 [25].

analogous phenomena appear in the modeling of the motion of cells, where
interactions �rstly de�ne the biological function expressed by various cell
populations and subsequently express a motion strategy [140].

In the analysis of technological learning and industrial dynamics, learning
might be represented as the process of accumulation of knowledge of het-
erogeneous �rms, competing to increase their market shares. Knowledge is
idiosyncratic but its level and distribution in�uence the overall collective
population dynamics of �rms.

4.2 Vehicular tra�c and human crowds

The modeling and simulation of vehicular tra�c and human crowds by the
kinetic theory approach is a very active research area involving challenging
analytical problems and potentially leading to novel applications [23].

The kinetic theory modeling of vehicular tra�c trace back to the pio-
neering works [130, 128], and a review of the most recent contributions on
this research area, including human crowds, is given in [8]. The modeling of
interactions by density dependent rules have been �rstly introduced in [68]
and in [64]. In both works it has been assumed that the speed of vehicles
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can only take a �nite number of velocities, but the grid of discrete velocities
is di�erent in the two cases, namely it is a �xed grid in [68] whereas it de-
pends on the density in [64]. Further developments of this pivotal idea have
been given in [84, 85], while a qualitative analysis and numerical study of
the initial value problem has been carried out in [37].

The modeling of human crowds accounting for nonlinear interactions be-
tween pedestrians has been started in [24] and further extended by various
authors as reported in [8]. See also [80, 81, 110, 111, 109]. In [110], the
kinetic model presented in [30] is further developed to study the dynamics
in bounded domains with obstacles. In [111], such model is coupled to a dis-
ease contagion model inspired from the work on emotional contagion in [44],
while in [109] it is further extended to account for the propagation of stress
conditions in time and space.

The control of crowds is studied in [9] by means of the social in�uence
of leaders, namely trained personnel that may guide pedestrians to egress
from complex environment whose connectivity is not known or modi�ed by
incidents. Beside its theoretical interest, this topic is of practical impor-
tance as it may signi�cantly contribute to crowd management in emergency
situations where overcrowding may cause fatal accidents.

More recently, focus has been put on accounting for human psychology
in the modeling of the social dynamic in crowds [31, 44] as the literature on
safety problems clearly indicates that crisis management can take advantage
of models that account for human behaviors [132, 133, 134, 135, 151]. In
these studies, interacting pedestrians modify their psychological status and,
in turn, the walking strategy. The emotional states signi�cantly a�ects the
overall crowd dynamics in extreme real-life situations such as a peaceful
demonstration that turns violent and the spreading of panic in emergency
evacuations.

A closely related problem is that of epidemics spread. An hybrid ap-
proach, that couples a kinetic model of crowd dynamics with one of conta-
gion spreading, has been proposed in [111]. In spite of the similarity between
models that deal with evacuation and virus transmission a remarkable dif-
ference must be pointed out. In the former the key social state is the level
of stress whereas in the latter is the level of awareness. The resultant pedes-
trians' behavior is completely di�erent in the two cases. The level of stress
promotes aggregation of walkers and leads to the herd behavior under panic
conditions [117]. By contrast, the level of awareness pushes pedestrians to
follow social distancing guidelines.

The research program on these challenging topics has just started, and
many contributions are still to come due to the many complex aspects of
human psychology as well as the inherent system heterogeneity. A mul-
tiscale framework, like the one proposed in [15] for the modeling of human
crowds, needs to be formulated because, for practical applications, the crowd
must be describe at all the three possible modeling scales (i.e. microscopic,
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mesoscopic, macroscopic) by a consistent approach, namely models must be
derived at each scale using the same principles and similar parameters.

It is foreseeable that the main objective of the future computational
modeling of human crowds is the development of a simulation platform in
support to urban planners and/or crisis managers [26]. This platform may
consider to simulate a mixed tra�c consisting of cars, trams, and pedestrians,
and lead to optimize the �ow of vehicles over networks of roads in cities by
de�ning optimal transportation policies, improve the management of safety
problems, such as emergency evacuation, and/or the design of buildings.

Furthermore, such a platform can be used in training crisis managers as
it allows to explore scenarios triggered by di�erent courses of action. This
�what-if� analysis is crucial for elaborating optimal procedures, especially
for dealing with emergency conditions. Note that the platform can also be
designed to create virtual and augmented-reality applications that further
enhance the training capability. A major issue in developing this kind of
platform is the modeling of interactions between heterogeneous agents and
the capability to fully capture the geometrical complexity of the network
where the dynamic is studied. In this respect, the platform needs to be
developed within a system approach to crowd dynamics that also includes
the modeling of how the crowd behavior modi�es in extreme situations.

4.3 From the immune competition to modeling virus pan-

demics

Modeling the immune competition between cancer and immune cells ended
up with the �rst class of models derived within a mathematical theory of
active particles [39]. This research line has been further developed in [38] to
account for mutations and selection of tumor cells as well as for the learning
ability of the immune system, while the modeling of the role of macrophages
has been developed in [79]. The book [122] is a useful reference to under-
stand the complex dynamics in immunology, while the book [150] provides a
precious description of cancer biology. The pioneering paper [66], devoted to
the modeling of virus mutations followed by a learning dynamics, provides
some ideas which can be developed towards a modeling approach to depict
the complex mutation-learning dynamics speci�cally referred to COVID-19.

The modeling of the dynamics of the corona-virus requires, as shown
in [25], a multiscale approach beyond deterministic population dynamics,
as contagion occurs at the high scale of individuals depending on the vi-
ral charge inside each individual whose dynamics is at smaller scales deter-
mined by the competition between virus particles and the immune system.
In addition, spatial dynamics and interactions are important features to
be considered, as the dynamics are generated by nonlocal interactions and
transportation devices. In the following, some reasonings about a number of
research perspectives are presented.
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Heterogeneity: Most epidemiological models are based on averaged large pop-
ulation behaviors over a given calendar time. In particular, compartmental
models (starting from the celebrated model by Kermack and McKendrick
[108]) use mean-�eld approximations. However, these models involve com-
plex parameters that depend on many factors, which makes it di�cult to
predict how a change of a single environmental, demographic or epidemio-
logical condition will a�ect the whole population. Moreover, these models
are not valid if the population size is small-to-medium, as happens in some
spatial domains (neighborhoods, stations, schools, etc.) that are very rel-
evant in the dynamics around the development of an epidemic. Including
heterogeneity, in the formulation of epidemiological models, improves their
predictive and explanatory power and applicability. For instance, [102, 103]
are valuable references that consider heterogeneity in populations described
by compartmental models.

Some infections need modeling heterogeneity. For instance, during the
COVID-19 crisis, the number of tested positive cases has shown to be a
very widespread variable. However, its real usefulness is limited since it is
highly dependent on testing capacity. Accordingly, [2, 3] propose to include
the presence of di�erent heterogeneous sub-populations, like hospitalizations,
ICU admissions and deceased in order to have a better overview of the situa-
tion, obtaining very good forecasts through the so-called SHARUCD model.
Kinetic models are also useful to deal with heterogeneity. The multiscale
kinetic theory approach developed in [25] accounts for individual reactions
to the infection and pandemic events heterogeneously distributed over the
population. In addition, kinetic models let the population be divided into
social, age, immune and/or gender groups, what may give speci�c answers to
several questions arising in public health. Interactions between a pandemic
with production systems [94] and with human psychological fragility [86] are
problems of great general interest.

Spatial dynamics and propagation of infectious diseases: When it comes to
assessing particular responses to speci�c outbreaks, studying how the prox-
imity of people plays a role in the di�usion of a disease and what can be
done in crowded areas and mass gatherings is crucial to give targeted re-
sponses. Crowd and epidemiological modeling have so far been treated as
separated �elds of research, with a very few attempts to link them together
[50, 106, 111].

In order to study the propagation of an epidemic through the develop-
ment of mathematical models of crowd dynamics, a deep understanding of
how risk awareness spreads and how it triggers a di�usion of coping strate-
gies is needed [1]. Moreover, an accurate representation of the spread over
larger territories, like an entire city, leads to consider multi-scale, multi-layer
networks [82, 127].

Di�erent approaches can be used to model and simulate the spatial propa-
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gation of contagion within a set of active particles. From a continuous kinetic
approach coupling the ideas presented in Section 5.2 with contagion dynam-
ics [50, 109, 111], to Agent-Based modeling (see e.g. [144] for an interactive
tool to study contagion dynamics, or [62] for an agent-based simulation of
vaccination policies), without losing sight of contagion over graphs or net-
works [115, 147]. The approach shall be carefully selected, based on the
system under study and on the objectives of each speci�c research.

Within host dynamics: The discussion above deals so far with disease trans-
mission at the scale of an epidemic. However, it is also useful to describe
disease processes at the microscopic scale, namely the spread of a viral or bac-
terial infection among a population of target cells, resulting in the so-called
in-host models. Some recommended readings on this topic are [39, 122, 123],
together with the review [63] and references therein, which introduce essen-
tials on cell biology and immunology.

For respiratory diseases that cause damage to the lungs, like COVID-19,
models should describe the dynamics of the viral load which might lead to
di�erent asymptotic trends between full recovery and death by overload and
even material corruption of the lung. A description of the dynamics of the
lung in order to detect those areas which are more susceptible to stretch
overload in the pulmonary parenchyma is provided in [59]. Recent contribu-
tions in this topic are given in [104], which presents an interactive COVID-19
tissue simulator of viral dynamics of SARS-CoV-2 in a layer of epithelium
and several sub-models (such as single-cell response, pyroptosis death model,
tissue-damage model, lymph-node model and immune response), and [149]
which develops a community-driven SARS-CoV-2 tissue simulator.

Multiscale aspects: It is plain that modeling ought to be developed within a
multiscale approach, as the contagion dynamics should be treated at the scale
of individuals, while the state of each single individual (healthy, infectious,
etc.) depends on the dynamics at the micro-scale of cells related by the
within-host competition between pathogens (e.g., viral particles or bacteria)
and the immune system. Both scales constantly interact and that is probably
one of the key features of the model presented in [25]. This coupling, as
well as heterogeneity of populations, lead to variety of research perspectives
accounting for immunization and vaccination programs, see [60, 87].

4.4 From behavioral to evolutionary economics

The very �rst application to modeling social dynamics by the kinetic theory
methods arguably belongs to the pioneering paper [105], while the kinetic
theory of active particles was applied in [40, 41, 42, 43] to opinion forma-
tion and wealth policy, by using scalar discrete activity variables. Further
studies have followed in the �eld of behavioral and political economy, as ex-
amples [69, 70, 71, 73, 72]. This research activity refers to the stream of
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behavioral economics [145, 146].
Recent advancements moved from behavioral and collective population

dynamics to model the footprints of evolutionary processes in economic
dynamics by means of the kinetic theory of active particles, in short the
KTAP approach, which includes both continuous and discrete distribution
in the space of micro-states. In order to address the modeling of evolv-
ing economies, the capitalist system has to be understood as characterized
by processes of endogenous self-sustained growth, punctuated by small and
big crises. The following statement, from page 83 of [139], enlightens the
underlying modeling scope:

Industrial mutation � if I may use the biological term � that in-
cessantly revolutionizes the economic structure from within, in-
cessantly destroying the old one, incessantly creating a new one.
This process of Creative Destruction is the essential fact about
capitalism.

In modern capitalism, business �rms are a central locus of the e�orts
to advance technologies, develop new products and operate new production
processes [74]. In this respect the application of the KTAP approach to
evolutionary dynamics as started with the modeling of �rm-level behaviors.
The key patterns meant to capture �rm-level attributes and their interaction
(see [28, 78, 76]) include:

� Persistently heterogeneity in �rm characteristics nested in competitive en-
vironments that shape their individual economic fate and, collectively, the
evolution of the forms of industrial organization.

� The process through which heterogeneous �rms compete, let us call it
Schumpeterian competition, on the basis of the products and services they
o�er and obviously their prices, and get selected - with some �rms growing,
some declining, some going out of business, some new ones always entering.

� Such processes of competition and selection are continuously fueled by the
activities of innovation, adaptation, imitation by incumbent �rms and by
entrants.

More speci�cally, the approach developed in [28] restricts to the following
dynamics:

1. Learning or empirically the within e�ect capturing idiosyncratic inno-
vation, imitation, changes in technique of production;

2. Selection or empirically the between e�ect capturing market interac-
tions where more competitive �rms gain at the expense of less compet-
itive ones.

In addition, the approach in [28] considers two functional subsystems
which are nested into a hierarchical structure:
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1. Subsystem 1: Evolutionary landscape: It represents the dynam-
ics of learning to which �rms are subject to. It is meant to capture the
arrival of new technologies, new ideas, new organizational practices. It
evolves independently from �rm interactions, and it follows a continu-
ous growth process. In economic terms, it represents the evolution of
the technological frontier.

2. Subsystem 2: Evolutionary landscape and endogenous system

of interactions: It comprises two distinct levels of interactions: one
which determines the advancement of knowledge of each individual �rm
through the action of the �rst Subsystem, the second which entails the
competition in the market arena among heterogeneous �rms in terms
of knowledge level.

Starting from the results in [28], the following lines of research might be
pursued:

• Imitation, entry, exit: A �rst line of advancement with respect to the
application of the KTAP to evolutionary economics entails the modeling of
imitation, entry and exit dynamics applied to �rms [75]. Imitation across
�rms represents the possibility to include forms of knowledge transmission
occurring between pairs, say similar �rms in the innovation space, which
might acquire competencies and capabilities from other �rms, and not simply
from the exogenous innovation dynamics lead by Subsystem 1. Including
imitation patterns might allow also to consider mutation, say from being a
bad toward being a good �rm in terms of the overall activity rate. With
reference to selection, currently the modeling approach has stuck with a
constant number of �rms, however selection occurs also at the fringe and it
is a�ected by exit, say mortality of �rms. Additionally, entry of new types
of �rms, and particularly their attributes in terms of learning capacity is
crucially important to shape the overall selection dynamics. Finally, entry
of new �rms might occur in the same sector or even in other sectors of
activity.

• From single sector to multi-sector dynamics: Firms producing similar prod-
ucts are said to belong to the same sector of activity. Sectors are in general
de�ned in terms of the produced output, say automotive versus food ver-
sus pharmaceutical sectors. Indeed, a big chunk of the evolution of modern
capitalism has occurred by means of the arrival of new sectors of activity
introducing long-term e�ects of structural change with some sectors gain-
ing product and labor shares and some others declining [142]. A further
evolution of the KTAP modeling approach toward evolutionary economics
entails the introduction of multi-sector spaces of competitions, by means of
parallel hierarchical Subsystems 1, as outlined above, each of one charac-
terized by its internal knowledge evolution, but competing among them in
terms of Subsystem 2 not only in terms of their internal e�ciency but also
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of desirability of the produced product. The introduction of a multi-sector
perspective would entail the speci�cation of consumption dynamics shaping
the overall evolution of each sector.

• Network structure: Neither �rms nor sectors of activity are monads: in
order to operate production activity, �rms require to buy intermediate pro-
duction goods from their peers that might be other �rms in the same sector
of activity or even in di�erent ones. In economics, the phenomenon is la-
beled under the notion of value chain or vertical integrated structure [126],
implying that each producer relies on a chain of suppliers of goods, and itself
is the supplier of other �rms. The integration of the KTAP with a network
structure of �rms, whose links represent the �ows of knowledge or goods will
allow to model one of the most important feature of contemporary capital-
ism and to allow to study how structures of relations among peers along the
chain di�erently a�ect the selection process. Underlying conditions leading
to virtuous or vicious chains might be studied.

• Exploiting the multi-scale approach: from �rms to sectors to the macro-
economy: Together with �exibility and heterogeneity, the other fundamen-
tal attribute of the KTAP approach is being multi-scale. The multi-scale
structure brings enormous bene�ts to study economic processes which in
general are strati�ed and are not isomorphic to di�erent levels of aggrega-
tion [77]. A future modeling advancement would be to insert, on top of a
multi-product structure, a third upper subsystem represented by the overall
macro-economy, including all sectors and being endowed by its own activity
functions. The macroeconomic Subsystems would be particularly relevant
to study policy e�ects which are conducted at the macro-level.

4.5 Behavioral swarms

The assumption of the continuity of the distribution functions, that is the
dependent variable of the mathematical structures derived in Section 3, has
been critically analyzed in that section. This hypothesis breaks down if the
number of interacting a-particles is not su�ciently high, in some sense still
to be de�ned, to justify it. This conceptual di�culty motivates the search
of alternative approaches suitable to tackle this key problem.

A simple approach consists in substituting the continuous distribution
over the micro-state by a discrete one so that each node of the discrete
micro-scale variable represents the number of particles in a certain domain
of the space of the microscopic states. This approach has been applied in a
variety of real world applications, for instance vehicular tra�c [37, 64, 84],
social dynamics [41] and evolutionary economics [28]. However, the problem
of selecting the discrete nodes, which may depend on the local density [64],
is still open.

Alternative frameworks can be found in the literature, examples include
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agent methods with application to sociophysics [89], lattice Boltzmann with
application to pattern formation in biology [67], and behavioral swarms [33].
The third approach has been recently proposed based on the idea that the
classical theory of swarms can be developed to account for a behavioral
dynamics by inserting in the micro-state of the interacting individuals the
activity variable [33]. The authors have used the de�nition behavioral swarms
to identify this speci�c feature of their mathematical approach.

A classical reference for the swarm dynamics is the pioneering paper by
Cucker and Smale [65], where the collective behaviors of interacting mechan-
ical self-propelled particles is studied within a pseudo-Newtonian framework.
This paper has motivated a huge literature on the modeling, qualitative anal-
ysis, and computational applications of the mathematical theory of swarms
e.g. [97, 98]. Interactions produce accelerations, where inertia is hidden in
the interaction parameters rather than being explicitly taken into account.
The mathematical literature in the �eld has been reviewed and critically
analyzed in Sections 5 and 6 of [8], see also [83].

The original model [65] describes the temporal evolution of the mechani-
cal variables (positions and momentum) of the individual entities, but unlike
in the modeling of the collective dynamics of biological and social complex
systems, one needs to take into account internal variables such as temper-
ature, spin and excitation, to list a few [91, 92]. These pioneering papers
have motivated the overall contents of [33], where mathematical structures
have been derived to model the dynamics of both social and mechanical
variables according to a hierarchy by which individuals �rstly modify their
activity variable and subsequently develop their movement in space by me-
chanical rules driven by the activity. Hence, individual entities are viewed
as a-particles. The examples treated in [33] show how each individual �rstly
learn, from the surrounding a-particles in their sensitivity area, how the ve-
locity directions can be selected and subsequently develop their movement
strategy. Selection refers to a �xed number of a-particles according to the
conjecture proposed in [20].

The theory proposed in [33] is somehow inspired by some applications of
the theory to social and economical problems [4, 17, 18, 27]. As mentioned,
it consists in the derivation of di�erential structures which, consistently with
the paradigms proposed in Section 2, describe the interactive dynamics of
the activity and mechanical variables. These structures have been applied
to the modeling of price dynamics in open markets where sellers and buyers
undergo non-symmetric interactions [27, 114] and in the behavioral dynamics
of swarms [33], where it is shown how the modeling of collective learning in
real swarms modi�es the collective behavior with respect to that in absence
of learning.

The approach of behavioral swarms is a very recent proposal and we
cannot yet state that a complete theory is presently available, as important
topics should still be developed. For instance, we refer to the dynamics across
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functional subsystems and the modeling of mutations followed by selections.
This speci�c dynamics is important not only in the modeling of biological
systems, for instance multicellular systems in cancer phenomena [150] and
the immune competition[122], but also in social-economical systems, where
pseudo-Darwinian dynamics are observed in various cases, where active par-
ticles mutate and can be selected with some analogy with biological systems.

4.6 Additional reasonings

The review of applications presented in this section is essentially descriptive,
however each application has been followed by simulations suitable to pro-
vide a quantitative description of the predictive ability of models. A brief
description with focus on emerging behaviors is given below looking ahead to
validation of models which are required to reproduce all emerging behaviors
that are observed in real systems.

1. Models of collective learning[54, 56] were applied to learning in a class-
room and, in addition, as a preliminary dynamic in all following ap-
plications. Emerging behaviors show the di�erence between collective
and individual learning.

2. Propagation of virus infection were shown in crowd dynamics [111],
while the role of stress induced by perception of danger has been shown
in[31].

3. Modeling of virus pandemics has shown the in-host immune competi-
tion between virus and immune cells can enhance the collective spread
of the epidemics[25]. An interesting behavior is shown in the model-
ing of virus' variations, where new variants progressively replace the
original less aggressive virus[36].

4. Simulations developed in [28] show how idiosyncratic learning of tech-
nological progress can lead to a monopole of a limited number of en-
terprizes followed by disappearance of the others.

5. The mathematical theory of behavioral swarms was followed quantita-
tive results on a dynamics where individual in a swarm perceive the
movement of the neighborhood individual and develop an individual
strategy that modi�es the collective dynamics [33].

The aim of simulations is not limited to provide quantitative results, as
it can also investigate emerging collective behaviors that is the �rst step
towards the validation of models. Indeed, the collective dynamics of liv-
ing systems often shows emerging behaviors which preserve the qualitative
behavior for di�erent initial conditions although quantitatively sensitive to
small variation of parameters.
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It is worth noticing that a common feature of all applications is that
the collective dynamics is an output of the interaction between di�erent
dynamics. In this case, the activity variable is a vector, while the interaction
follows a certain hierarchy of dynamics. For instance in the case of the
interaction between �rms and markets, �rms �rstly develop an idiosyncratic
learning of technological growth, while market sharing is a consequence. This
dynamics has been studied in the case of space homogeneity, while in crowd
dynamics the interactions involves, �rstly, social interactions, while walking
dynamics follows being in�uenced by the social awareness acquired by each
individual by means of a collective learning within the crowd.

Additional common features characterized all examples proposed in this
section. Some of them are selected in the following and are referred to the
speci�c models treated in the applications proposed in this section. Specif-
ically: Action of the external environment ; Competition among a-particles;
and Mutation and selection. The interested reader can be rapidly recognize
the above �ve features in the various class if models treated in this section.
The next section. which is devoted to research perspectives, will add further
reasonings on modeling and developments of the mathematical structures.

5 Perspectives towards a mathematical theory of

living systems

In this paper, we have, proposed and critically analyzed a mathematical the-
ory which aims at describing, by a di�erential system, the complex dynamics
of systems composed by many interacting living entities. The rationale to
achieve this objective were presented in Section 2, the mathematical struc-
tures and tools was developed in Section 3, while various applications were
reviewed in Section 4.

As already stressed, further developments of the mathematical theory
are needed to pursue the challenging objective posed in this paper, namely
providing an answer to the key question posed in the title, namely What is
life? posed within the framework of mathematical sciences.

Accordingly, this last section is devoted to select a number of research
perspectives which can contribute to the design of a mathematics of living
systems. In more details, the following topics have been selected on the basis
of the authors' past experience and present vision:

1. Modeling pseudo-Darwinian dynamics.

2. Multiscale vision, representation, and dynamics.

3. Reasonings on agent methods referred to the KTAP theory.

These topics are treated in the following subsections, while the closure
focuses on the mythical, however worth to be chased, objective indicated in
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the title of our paper. For each topic, �rstly, we provide a qualitative de-
scription. Subsequently, we verify how far the approach of the mathematical
theory can capture the speci�c dynamics under consideration. Finally, possi-
ble developments of the aforementioned mathematical theory are considered.

5.1 Pseudo-Darwinian mutations and selection

All living systems evolve in time and generate, from a certain genotype, a
sequence of phenotypes that are modi�cation of the original one. According
to the general framework proposed in our paper, the description of an evo-
lutionary system starts with a number of FSs which, due to mutations and
selection, changes in time to include new FSs generated by mutations, while
other FSs, less �tted to the environment, disappear by selection.

This dynamics is well known in biology, as it often corresponds to the
onset of phenotypes that generate genetic diseases, for instance cancer [150].
However, we can observe the presence of pseudo-Darwinian mutations and
selection in a broad variety, if not all, living systems. As an example, the need
of including this type of dynamics in the modeling of systems in evolutionary
and behavioral economics is motivated in [12] from the very �rst chapters.

In more details, this topic is treated in [75, 78], consistently with the
interpretation of the interaction between �rms and open markets mediated
by the ability of �rms to learn new skills in the design and production of
goods. The dynamics, as shown in [28], may lead to the selection of �rms
which may even aggregate, while other �rms may disappear due to their loss
to capture the market.

The mathematical structures (3.2)�(3.7) show how this dynamics can be
described, at formal level, by the terms Ci

hk and P i
hk which model, respec-

tively, conservative and proliferative dynamics, while selection is described
by the destructive term Di

hk. All di�erent types of dynamics account for the
interaction with the external environment that can promote both mutations
and selection. Alternative approaches have been developed by nonlinear
dynamical systems with mutations and selection [57].

The key problem of KTAP methods consists in the modeling of these
terms accounting for both internal features and interaction with the ex-
ternal environment and/or speci�c actions. The mathematical structures
(3.2)�(3.7) have been derived at the microscopic scale by a statistical rep-
resentation consistent with the system's heterogeneity. A conjecture, worth
to be studied, is that the rules by which a-particles interact may be induced
by the dynamics of interaction at a submicroscopic scale. As an example,
in biology the functions expressed by a cell are determined by the dynam-
ics at the molecular (genetic) level, while in the case of �rms the internal
sta� organization determines the dynamics of each �rm. Various examples
of evolutionary systems can be found also in social systems, as an example,
the dynamics of cultural evolution [45].
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As an additional example concerns the dynamics of a virus pandemic
in a complex interconnected world [25] which shows how the contagion can
di�use in a crowd, where the awareness of the contagion is heterogeneously
distributed. Subsequently, a within host competition between virus and
immune systems develops inside the lung of infected individuals. The study
of this interaction depicts useful scenarios of hospitalization, recovery and
death, by a multiscale approach, where the dynamics of individuals depends
on the dynamics at smaller scales inside each individual.

An interesting research perspective, de�nitely worth to be studied, con-
sists in understanding the interplay between the dynamics at the two scales.
A reasonable assumption is that, similar mathematical tools can be used for
both scales albeit if referred to di�erent variables and interactions. Then,
the coupling should explain how the output from the lower scale a�ects the
higher scale.

5.2 On a multiscale vision

The modeling of complex systems always needs a multiscale approach, where
the dynamics at the large scale must be properly related to the dynamics at
the low scales. This features appears also in the interactions as some of the
models reviewed in Section 4 include not only micro-scale interactions, but
also micro-macro interactions that occur between particles and FSs viewed
as a whole being represented by their mean value.

All systems are multiscale, where we can identify the micro-scale (in-
dividual based) and macro-scale (hydrodynamics). Kinetic theory methods
provide a statistical representation of micro-scale entities when the overall
system is constituted of a large number of interacting entities, in our case
a-particles. A general vision of multiscale methods consists �rstly, in mod-
eling individual based interactions, which are used to derive models at the
micro-scale; subsequently, these models are used to derive kinetic type mod-
els, namely at the mesoscopic scale. The third step consists in developing
asymptotic or averaging methods which lead to macro-scale models by letting
this parameter to zero under reasonable physical assumptions.

This micro-macro derivation corresponds to the sixth problem posed by
David Hilbert for classical particles in physics. Possible generalizations to
a-particles systems are treated in [51, 52]. Speci�c applications have been de-
veloped referring to crowd dynamics [22] and biology as reviewed in [52]. The
key di�culty, well de�ned in [11], is the fact that living systems leave far from
equilibrium which makes highly di�cult the search for pseudo-Maxwellian
distribution as in the case of the classical kinetic theory.

An additional vision, which has been applied in the derivation of crowd
dynamics models within a multiscale framework [15], consists in deriving
models at all three scales, independently. The derivation should be based
on the same physical principles and should use analogous parameters corre-
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sponding to the same principles. Indeed, this modeling rationale provides a
necessary framework to Hilbert-type derivations. In all cases, the concept of
scaling and representation should be precisely referred to the speci�c class
of systems under consideration.

5.3 Perspective ideas on agents methods

Modeling and simulations of systems, somehow of the type reviewed in Sec-
tion 4, can be developed by the so-called agent-based models [46]. It is
crucial understanding the conceptual di�erences between this method and
KTAP and, subsequently, investigate if each method can learn skills and
tools reciprocally across them.

An ABM, sometimes called MAS (Multi-Agent System) on the basis
of di�erences that we will not explore here, is missing a de�nite general
framework. Following Axtell and Epstein in [16], an agent-based computa-
tional model contains a population of data structures representing individual
agents, acting and interacting. Systematic regularities emerge at the macro-
level from the local behavior of the agents. We have no equations governing
the overall social structures, thus avoiding any aggregation or misspeci�ca-
tion bias. The only equations present�if any�are those used by individual
agents for decision-making. Di�erent agents may have di�erent decision
rules and additional information; the agents are simple, and we look for the
emergence of the complexity from their interaction. Agent models are built
from the bottom up, describing individual behaviors and �tting them, even
heterogeneously, into the agents. We observe the individual (micro) and
aggregate (macro) e�ects that emerge from their activities and interactions.

The main di�erences between ABM method and KTAP refer both mod-
eling aspects of the individual entities constituting the overall system and
on the development of simulations. In more details:

• Agent-based models (ABMs) live in computer environments as data struc-
tures, where agents are modeled by a set of variables and interaction rules
stated consistently with the programming language used for the simulations.
These rules are heuristically designed (invented) by the modeler with the
aim of obtain realistic computer simulations of the collective behavior of
each speci�c system under consideration.

• In the kinetic theory of active particles, a-particles are entities carrier,
in probability, of mechanical and behavioral variables, their interactions are
modeled accounting for their micro-state and FS as well as for the distri-
bution functions over the micro-sate. The collective dynamics is described
by di�erential frameworks which capture the complexity feature of living
systems.

• The common feature of the two approaches is that both of them need a
detailed description of interactions at the microscopic scale while the di�er-
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ence consists in the way of implementing it. If we look at the contents of the
preceding subsection we do reach the idea that improving the modeling at
the micro-scale would bring advantage both approaches, however in view of
a mathematical theory suitable to unify the two methods within a unitary
framework.

According to this brief description, it appears that ABMs fully relay on
heuristic interpretations of real world, the KTAP theory on a rationale con-
sistent with the frameworks and tools o�ered by mathematical sciences. The
lack of analytic equations in ABMs is simply a technical, but not concep-
tual, di�erence as the two methods would meet if the modeling of agents
would follow well de�ned rules such as those in the modeling of a-particles
in the KTAP theory. Conversely, the kinetic theory approach would enrich
its ability to describe real world phenomena by enriching the the modeling
of a-particles by exploiting the �exibility of the ABMs approach. Flexibility
is very useful in modeling real world situations [120] in a complexity [12]
framework.

The main advantage of the ABMs, i.e., their easiness in adapting to any
detail of the agent behavior, can also dangerously con�ict with the need of
generalization and abstraction. To avoid that kind of error we have to keep
in mind the paradoxical situation that Borges pictures in [49], where

the Colleges of Cartographers set up a Map of the Empire which
had the size of the Empire itself and coincided with it point by
point.

producing completely useless object.
These reasonings naturally lead to propose the research perspective also

to the interaction between the theory of behavioral swarms and the ABMs ap-
proach. This objective pursued only when the behavioral swarms theory wll
be made complete by including non-conservative interactions, correspond-
ing to proliferative and/or destructive events, as well as interactions that
lead to mutations by moving across functional subsystems, while Darwinian
selection would follow.

5.4 Closure

Let us �nally return to the main objective of our paper, namely, let us try
to understand how far the contents of our paper has moved along the quest
towards a mathematical theory of living systems. As mentioned, the theory
proposed in our paper is based on the idea of referring the derivation of
models to the mathematical structures that have the ability to capture a
selected number of the complexity features of living systems. Mathematical
models can be derived by inserting in these structures speci�c models of
interactions at the micro-scale.

40



This approach justify the use of the term mathematical models as these
refer to a well de�ned mathematical theory which can be further developed
and improved by considering all hints given in Subsections 5.1�5.3. Hence,
this paper is not exhaustive. In addition, further steps towards the derivation
of models consist in improving the description of interactions consistently to
the theoretical inputs which can be delivered by the science of the research
�eld where the speci�c system object of modeling can be referred to. In this
case, we can use terms such as biological-mathematical theory, economical
mathematical theory, and so on focusing on each speci�c scienti�c �eld.

Finally, we stress once more that the aforementioned challenging objec-
tive needs the interdisciplinary way of thinking whose presence has pervaded
the whole paper. We do believe that the interdisciplinary vision of science is
not simply an approach, but a necessary way of developing research activity
devoted to life. Indeed, it is a new science. This concept is precisely the
message in [90]
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