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Abstract

In this article we show that the Euler equations, when linearized around a
low frequency perturbation to Couette flow, exhibit norm inflation in Gevrey-type
spaces as time tends to infinity. Thus, echo chains are shown to be a (secondary)
linear instability mechanism. Furthermore, we develop a more precise analysis of
cancellations in the resonance mechanism, which yields a modified exponent in
the high frequency regime. This allows us, in addition, to remove a logarithmic
constraint on the perturbations present in prior works by Bedrossian, Deng and
Masmoudi, and to construct solutions which are initially in a Gevrey class for
which the velocity asymptotically converges in Sobolev regularity but diverges in
Gevrey regularity.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.1. Outline and Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2. Local Wellposedness and Asymptotic Stability . . . . . . . . . . . . . . . . . .
3. Echoes, Paths and Norm Inflation . . . . . . . . . . . . . . . . . . . . . . . . .

3.1. Single Resonance Estimates . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2. Proof of Theorems 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4. An Improved Model Problem . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1. Model Echo Chains and Modified Exponents . . . . . . . . . . . . . . . . .

5. Echo Chains as a Linear Mechanism and Modified Scattering . . . . . . . . . .
5.1. The Three-Mode Model . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.1.1 The Interval I1I1I1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1.2 The Interval I2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1.3 The Interval I3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.2. The Full Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2.1 The Interval I1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2.2 The Interval I2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

http://crossmark.crossref.org/dialog/?doi=10.1007/s00205-021-01697-6&domain=pdf
http://orcid.org/0000-0002-0480-2719


Yu Deng & Christian Zillinger

5.2.3 The Interval I3I3I3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.3. Modified Scattering and Inviscid Damping . . . . . . . . . . . . . . . . . .

6. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A. Special Functions and a Proof of Theorem 4 . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. Introduction

In this article our aim is to develop a further understanding of the long-time
asymptotic behavior of the 2D Euler equations near Couette flow

∂tω + y∂xω + v · ∇ω = 0 (1)

in an infinite channel T × R. As the velocity field is incompressible, all L p norms
of the vorticity ω are conserved and the equation is nonlinearly stable in this sense.
Furthermore, the linearized problem exhibits weak convergence of the vorticity in
L2 and as a consequence in the linear problem v − 〈v〉x converges strongly in L2

as t → ∞. This behavior is known as linear inviscid damping in analogy to the
similar phenomenon of Landau damping in plasma physics. While the linearized
problem possesses an explicit solution and exhibits linear inviscid damping for
any initial data in Hs, s � 0, the question of stability and asymptotic behavior of
more general shear flows or the nonlinear problem have been a very active area of
research in recent years. In particular, we mention the following publications:

– In [3] Bedrossian and Masmoudi established nonlinear inviscid damping for
Gevrey 2 regular perturbations around Couette flow in an infinite periodic chan-
nel. Their method of proof has further been extended to the setting of Landau
damping [4,9].

– These results were recently extended to the case of compactly supportedGevrey
regular perturbations to Taylor–Couette flow in [6].

– In [5] the first author and Masmoudi constructed solutions of the Euler equa-
tions, such that the initial data is Gevrey 2 close to Couette flow, the solution is
well-understood for a finite time and within that finite time the solution exhibits
growth along echo chains consistent with a loss of Gevrey 2 regularity. Here,
we in particular stress that due to the challenging control of nonlinear correc-
tions, these solutions do not capture the full echo chains (the finite time includes
about half of a chain) and hence do not rule out subsequent asymptotic stability.
Furthermore, that work imposes a logarithmic smallness restriction (see Sec-
tion 4 for a further discussion). Removing this restriction is a key challenge in
establishing our modified scattering in Section 5.3.

– Concerning the problem of linear inviscid damping, the case of a finite-periodic
channel was shown to behave qualitatively differently in a work by the second
author [14] in that stability results are limited to (sharp) H3/2− or weighted
H2, [12], Sobolev regularity of the vorticity. While sufficient to establish linear
inviscid damping with the optimal decay rates of the velocity perturbation, this
leaves a large gap compared to the Gevrey regularity requirement of existing
nonlinear results. Indeed, in [7,8] Ionescu and Jia further impose a compact
support assumption to establish linear stability in Gevrey spaces.
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– This gap, together with the physical observation of damping, suggests that
damping of the velocity field might be a more robust mechanism than the
stability of the vorticity. A first modest step in this direction can be found
in [16] where the second author considered special types of forcing of the
2D Euler and Navier-Stokes equations and showed that damping may persist
despite instability of the vorticity.

In this article, we stress the point of view that for the question of nonlinear inviscid
damping in addition to the question of linear stability of shear flows in Sobolev and
Gevrey regularity, one should consider the following two observations:

1. Existing works study the infinite time asymptotic stability of the vorticity in
higher Sobolev regularity or Gevrey regularity, from which (linear) inviscid
damping then follows as a corollary. However, this is a strictly stronger con-
dition than the physically observed phenomenon of inviscid damping, which
is the convergence of the velocity field. Indeed, we show that the linearized
problem exhibits solutions which exhibit norm inflation due to complete echo
chains. Here, the velocity asymptotically converges despite the divergence of
the vorticity as time tends to infinity.

2. In the study of nonlinear inviscid damping, the main challenge is given by cas-
cades of resonances, also known as echo chains. This mechanism is, however,
not present in the linearized problem around shear flows due to the decoupling
structure in Fourier space of these equations. In this article, we identify echo
chains as a secondary linear mechanism, where we linearize around an arbi-
trarily small low-frequency perturbation around Couette flow. More precisely,
we show that in arbitrarily small neighborhoods of Couette flow (with respect
to local norms) there are traveling wave-like solutions of the form

ω(t, x, y) = −1 + c cos(x − t y),

v(t, x, y) = (y, 0) − ∇⊥ 1

1 + t2
c cos(x − t y),

and study (a simplification of) the linearized problem around this wave.
For simplicity of calculations and presentation, in this article we consider a
single mode perturbation by c cos(x) with c small. However, we think that
an extension to more general low-frequency perturbations, while technically
tedious, should follow by similar arguments. We show that this (simplified)
linearized problem exhibits the same echo chains and norm-inflation results
as for the nonlinear problem, globally in time. Thus, echo chains are a linear
mechanism. Furthermore, we identify a critical regularity threshold at which
stability of the vorticity in Gevrey regularity fails, but where damping of the
velocity nevertheless persists.

In order to introduce our model consider the Euler equations near Couette flow (1)
and change to Lagrangian coordinates (with respect to Couette flow) (x + t y, y).
Then our equation is given by

∂tω + ∇⊥Δ−1
t ω · ∇ω = 0,
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where Δt = ∂2x + (∂y − t∂x )2 and ω denotes the perturbation. Let now PN denote
a Littlewood–Payley projection to a large dyadic scale N . Then the projection of
the equation yields

∂t PNω + PN (∇⊥Δ−1
t ω · ∇ω) = 0. (2)

We may then further decompose the nonlinearity by frequency-localizing each
factor:

∑

N1+N2≈N

PN (∇⊥Δ−1
t PN1ω · ∇PN2ω). (3)

Here, we obtain several regimes. If N1 ≈ N2, we may freely integrate by parts and
trade the inverse Laplacian Δ−1

t for time decay. Similarly, if N2 ≈ N , N1 	 N2,
we may use the incompressibility (to obtain cancellations at leading order) and
trade two derivatives for decay ofΔ−1

t to obtain a time-decreasing energy estimate.
The main source of possible growth and instability in the nonlinear problem is

thus given by the interaction of the low-frequency part of the vorticity, N2 	 N ,
and the high-frequency part of the velocity, N1 ≈ N . In our model we now fix
the low frequency part ωlow = c cos(x) with c small and consider the (simplified)
linearized problem for a perturbation, which, with slight abuse of notation, we again
denote by ω:

∂tω + c sin(x)∂yΔ
−1
t ω = 0. (4)

We stress that ωlow is an exact solution of the nonlinear Euler equations (see
Lemma 1), which we call a traveling wave-like solution. We remark thatωlow is not
stationary inEulerian coordinates, but is stationary in coordinates (x+t y, y)moving
withCouette flow (wehence view it as awavemovingwith theflow).Ourmodel thus
corresponds to a secondary linearization around v = (y, 0)+c∇⊥ 1

1+t2
cos(x−t y),

where we neglected the transport by c sin(x)
1+t2

∂y for simplicity.
Our main result is then that this model exhibits the same echo chains as the

full nonlinear Euler equations near Couette flow (in Gevrey regularity, see [2,5]),
but further exhibitsmodified scattering and linear inviscid damping in the sense the
velocity perturbation strongly converges as t → ∞, but that the vorticity diverges
in Hs for any s > −1. The secondary linearization captures the nonlinear resonance
mechanism and, for a critical class of data, exhibits damping and blow-up at the
same time.

Theorem 1. (Summary) Let 0 < c < 0.2, then there exists C > 0 such that for any
s ∈ R there exists solutions of (4) with ω0 ∈ GC, 12

(Gevrey class, see Section 1.1.1)

such thatω(t) converges to a limitω∞ in Hσ , σ � s, but diverges in Hσ , σ > s. In
particular, in the case s � 0 we note that damping, that is asymptotic convergence
of the velocity field, holds, while asymptotic stability in Gevrey regularity fails.

Furthermore, the constant C is (almost) optimal in the sense that there exists
a (larger) constant C0 > 0 such that for any C1 > 2C0 if ω0 ∈ GC1,

1
2
, then

ω(t) ∈ GC1−C0,
1
2
for all times and u(t) converges in GC1−C0,

1
2
.
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As we discuss in the ensuing subsection, a key challenge in this result is that
the (nonlinear) growth mechanism of echo chains stops after a finite time for any
given chain. Hence, in order to obtain non-trivial asymptotic behavior like blow-up
it is necessary to work with countably many echo chains of increasing length. In
particular, one has to allow for arbitrarily long chains, which had been ruled out
by logarithmic smallness constraints in prior works. A key effort of this article
in Sections 4 and 5 is then to remove this constraint and show that solutions be-
have qualitatively differently in that high frequency regime than in the previously
considered low frequency case.

1.1. Outline and Challenges

In their seminal work Bedrossian and Masmoudi [3] established nonlinear
asymptotic stability of Couette flow under sufficiently small Gevrey 2 regular per-
turbations. Furthermore, they showed that the perturbation of the velocity field
decays (at algebraic rates) as time tends to infinity – a phenomenon which is known
as inviscid damping in analogy to Landau damping in plasma physics. Following
this result, there has been much renewed interest in inviscid damping, both linear
and nonlinear, also around other flows. In particular, it turns out that the linearized
problem (also around more general shear flows) is stable already in relatively low
Sobolev regularity and that, unless one assumes compact support of perturbations,
geometries with boundary do not allow for (linear) stability in high Sobolev regu-
larity.

The reason for this large gap in regularity requirements – Gevrey as opposed
to Sobolev – is tied to a physical phenomenon called fluid echoes [13]. As we
recall in Section 3 here two perturbations at frequencies k and l in x (and suitable
frequencies in y) may interact by means of the nonlinearity and introduce an (at
first quadratically small) correction at frequency k + l. This perturbation may then
become resonant at a later time and may thus yield a large contribution to the
velocity field. We say that the perturbations at frequency k and l result in an echo
at frequency k + l at that time. In [3] it is then estimated by means of a toy model
that a chain of such echoes, where frequency k causes an echo at frequency k − 1,
which in turn causes an echo at frequency k − 2, . . . could lead to Gevrey 2 norm
inflation. Indeed in [5] the first author andMasmoudi showed that such a chain may
indeed form in the nonlinear equations (at least from k to k

2 ).
Since the linearized equations around a shear flow (which is independent of x)

decouple with respect to frequency in x , these equations do not include the echo
mechanism and hence echo chains are commonly understood to be a nonlinear
effect. In this article we argue that it might be useful to instead view them as a
secondary linear effect, where one should linearize around traveling wave-like
solutions

ω(t, x, y) = −1 + c cos(x − t y)

instead of around a shear flow. We observe that in coordinates (x − t y, y) moving
with Couette flow such a wave is stationary and concentrated on twomodes+1,−1
(in x and 0 in y). The heuristic of our echo chain construction is then the following:
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– We study the (simplified) linear problem around this wave, where we initially
introduce a perturbation at frequency (k0, η).

– These equations include the echo mechanism in the sense that the underly-
ing wave (at frequencies (±1, 1)) interacts with the perturbation at frequency
(k0, η), which results in echoes at frequencies (k0 + 1, η) and (k0 − 1, η) at
around a resonant time t ≈ η

k0
.

– In turn the contribution at frequency (k0 − 1, η) by the echo can be viewed as
new perturbation at a new initial time.

– The interaction of this perturbation at frequency (k0−1, η)with the underlying
wave results in echoes at frequencies (k0 − 2, η) and (k0, η) at around the
resonant time η

k0−1 .
– We may iterate along this chain until we reach the last resonance at time η

1 ,
which corresponds to the largest norm inflation.

– Furthermore, in Theorem 9 we combine infinitely many such chains to show
that this inflation is sharp in the sense that there exist Gevrey 2 regular initial
data which exhibit infinitely many echo chains and asymptotically blow up in
Hs , but still converge in Hs−ε. Damping of the velocity field persists despite
blow-up of the vorticity. When requiring higher Gevrey 2 regularity, that is with
a larger constant, this growth is hidden by the rapid frequency decay and the
solution remains Gevrey regular for all times and in the limit t → ∞.

In order to make this heuristic rigorous we first, equivalently, formulate our
equation as an infinite ODE system (7) in Section 2, which by the structure of the
underlying wave includes only nearest neighbor interaction and is of the form

∂tω(t, l, η) + a(t, l + 1, η)ω(t, l + 1, η) − a(t, l − 1, η)ω(t, l − 1, η) = 0

for all l (the equation decouples with respect to η). The main aim of this article,
which culminates in Theorem 8 of Section 5.2, is to show that on any time inter-
val I centered around the resonant time η

k (see Section 5) the evolution is largely
determined by just the three modes k + 1, k, k − 1. As an important preliminary
step, we hence study the associated homogeneous problem for these three modes
(that is, neglecting all other modes in the evolution) in Section 5.1. Subsequently, in
Section 5.2 we show by a bootstrap approach that the full problem can be approxi-
mated by (suitable corrections of) the homogeneous problem, where we separately
consider three parts I1, I2, I3 of the time interval I , each in a (sub)subsection.

A main challenge here is given by the fact that already in the homogeneous
problem the evolution of the system is highly non-trivial, since the coefficients are
time-dependent and potentially very large when considering frequencies η which
are very large (compared to k2). We stress that this regime is essential, since any
single echo chain stops after the last resonant time η

1 . In particular, we stress that
previous works [3,5] included a smallness constraint of the form

log(η) � C (5)

(see equation (10) in Section 3). Any size constraint on η, however, means that
one can only deduce norm inflation up to finite time (not asymptotic behavior) and
furthermore for finite frequencies all norms are equivalent. Therefore, under such
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a constraint it is not possible to distinguish between norm inflation with respect to
different norms and there also is no blow-up. A key effort of this article thus lies
in removing this constraint and studying the high frequency regime. We first show
in Section 4 for a simplified model, that this is not only a technical challenge, but
asymptotics indeed qualitatively differ in this regime and hence simpler methods
of proof (such as in Section 3.1) necessarily fail.

We remark that Section 4 is not essential for the proof of our main result,
but unlike the exact model considered in Section 5 allows us to construct explicit
solutions (in terms hypergeometric functions and power laws) and hence to show
in a more transparent way why at high frequencies we obtain a different exponent
in the frequency dependence than might be expected from simpler heuristics. This
model thus serves as an important preliminary step and heuristic, preceding the
analysis of the full model (or the three mode model) in Section 5.2.

The remainder of our article is structured as follows:

– In Section 2 we show that for any c ∈ R the pair

ωlow(t, x, y) = −1 + c cos(x − t y),

vlow(t, x, y) = (y, 0) − ∇⊥ 1

1 + t2
c cos(x − t y),

is a classical solution of the Euler equations (with infinite energy). While not
stationary in Eulerian coordinates, we note thatωlow is stationary in coordinates
(x+ t y, y). We call such a function a traveling wave-like solution. In particular,
we observe that choosing c sufficiently small any small Hs

loc (or even locally
analytic) neighborhood of Couette flow contains traveling wave-like solutions.
Our Theorem1 then argues that the (simplified) linearization around suchwaves
captures much more of the nonlinear dynamics than the linearization around
Couette flow and in particular captures Gevrey norm inflation, “nonlinear”
resonances (called fluid echoes) and blow-up. More precisely, our problem (4)
then corresponds to a simplification of the linearizedEuler equations around this
state, where we drop a term involving sin(x)

1+t2
, which we expect to be negligible.

Section 2 serves to introduce this model, some changes of coordinates and to
establish local and global well-posedness of themodel (with highly sub-optimal
exponential growth bounds).

– InSection3we introduce the echo chainmechanism for amodel problemsimilar
to the one considered in [3]. Furthermore, we show that under a smallness
assumption (5) on η and c similar to the one imposed in [3,5], also the full
model exhibits echo chains and norm inflation. We remark that this part of the
article is self-contained and allows for a much shorter and simpler proof than
the general case but crucially relies on the smallness assumption. Since this
condition limits considerations to finite η (where all norms are equivalent and
norm inflation stops after a finite time), a key challenge and improvement of
the this article is hence to remove this restriction in the following sections.

– In Section 4 we build an improved model which also takes into account the
interaction of neighboring modes in the regime where η is much larger than
allowed by the smallness assumption. In particular, we show that the smallness
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restriction was not only a technical constraint, but that that the growth of so-
lutions qualitatively differs in the large frequency regime and is connected to
estimates on the 1D Schrödinger problem with scaling-critical potentials. The
model character of the problem here allows for a more transparent discussion
of the growth and decay properties of solutions on different time intervals and
illustrates how their interaction leads to a modified dependence on the large
frequency parameter.

– In Section 5 we then show that the full problem satisfies the same modified
growth. In particular, we prove that for large frequencies η with respect to y
(compared to c−1) the dependence on η differs from the one in [3,5] (it is
given by a modified power law). Here Section 5.1 introduces the so-called
three mode model, which is a restriction of the full model to the resonant mode
and its neighbors at around the resonant time t ≈ η

k . In Section 5.2 we then
show that these three modes determine the growth of the full model during this
time interval, which is the main part of our proof. In Section 5.3 we combine
the growth on each time interval into a chain to build solutions which exhibit
norm inflation. Furthermore, we construct solutions which are global in time
and exhibit inviscid damping (that is convergence of the velocity) but whose
vorticity asymptotically diverges.

We remark that in the high regularity, small c, η regime the nonlinear problem and
our model problem both asymptotically approach transport dynamics. It remains
a challenging problem to determine how the full nonlinear Euler equations near
Couette flow behave outside this regime and whether they also exhibit modified
asymptotics similar to this linear model.

1.1.1. Notation We use the following notational conventions:

– The spatial Fourier transform of a function ω(t, x, y) ∈ L2(T×R) is denoted
by ω̃(t, k, η) ∈ L2(Z × R).

– The Gevrey class GC, 1s
is defined in terms of the Fourier transform, that is

u ∈ GC, 1s
if exp(C |η|s)ũ ∈ L2. Here, we omit the k dependence in the exponent

since for the functions we consider only the region |k| � |η| is of interest.
– We use a � b to denote that there exists an absolute constant C > 0 such that

|a| � C |b|. In particular, we omit absolute value signs in our notation.
– In our calculations c ∈ (0, 0.2) and η ∈ R can be treated as arbitrary but fixed
parameters.While the low frequency regime allows for rather simple arguments
(see Section 3), in the high frequency regime where |η| is much larger than c−1

much finer control of cancellations is necessary.
– There we use a ≈ b to denote that there exists a constant C1 > 1, such that
C−1
1 a � b � C1a such that |C1 − 1| � 0.01 for the regime of c and η we

are considering (with a possibly even smaller deviation for c smaller and/or η

larger). For example, in the regime of large η it holds that η2−c + η ≈ η2−c.
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2. Local Wellposedness and Asymptotic Stability

Our choice of the low-frequency vorticity ωlow(t, x, y) = −1 + c cos(x +
t y) (including Couette flow and Eulerian coordinates) is motivated by the Fourier
coupling introduced by cos(x) and the fact that ωlow is a solution of the nonlinear
Euler equations, which for small c can be considered as a very small analytic
perturbation of Couette flow.

Lemma 1. Let c ∈ R and define

ωlow(t, x, y) = −1 + c cos(x − t y),

vlow(t, x, y) = (y, 0) − ∇⊥ 1

1 + t2
c cos(x − t y).

Then (ωlow, vlow) is a classical solution of the Euler equations on T × R (with
infinite energy) and ω(t, x + t y, y) does not depend on time.

In analogy to dispersive equations we call ωlow a traveling wave-like solution.

Proof. In the study of stationary solutions to the Euler equations one observes that
the equation

0 = v · ∇ω = ∇⊥(−Δ)−1ω · ∇ω

implies that the gradients of the stream function φ = (−Δ)−1ω and of the vorticity
are parallel. Therefore, they locally share level sets and locally one can expressω as
a function of φ. Conversely, if there exists a smooth function f such thatω = f (φ),
then by the chain rule v · ∇ω = 0 and one obtains a stationary solution (see for
example [1]).

In the following we use the fact that cos(x − t y) is an eigenfunction of the the
Laplacian and adapt thismethod to construct time-dependent solutionsω(t, x, y) =
ω(0, x − t y, y) which move with Couette flow. We observe that for every t ∈ R

the stream function of the perturbation 1
1+t2

c cos(x − t y) = (−Δ)−1c cos(x − t y)
and the perturbation of the vorticity c cos(x − t y) have the same level sets (and are
even colinear). Therefore the gradients are parallel and

∇⊥ 1

1 + t2
c cos(x − t y) · ∇ωlow = 0.

Inserting this fact into the Euler equations it follows that

∂tωlow + vlow · ∇ωlow = ∂tωlow + y∂xωlow = 0,

which concludes the proof. ��
In our equation (4) we now consider the linearization around ωlow, where we

omit the transport by c sin(x)
1+t2

∂y for simplicity. Since our equation (4) involves mul-
tiplication by a sine, it has an explicit characterization in Fourier variables:

∂t ω̃(t, k, η) + cη

(k − 1)2 + (η − (k − 1)t)2
ω̃(t, k − 1, η)

− cη

(k + 1)2 + (η − (k + 1)t)2
ω̃(t, k + 1, η) = 0.
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In particular, we note that this equation decouples with respect to η (while lin-
earizations around shear flows instead decouple with respect to k). Hence, we may
consider η ∈ R to be a given parameter and introduce a new time variable τ :

t = τη. (6)

With respect to this variable (4) can be equivalently expressed as

∂τω(τ, k, η) + c
1

(k − 1)2
1

η−2 + ( 1
k−1 − τ)2

ω(τ, k − 1, η)

− c
1

(k + 1)2
1

η−2 + ( 1
k+1 − τ)2

ω(τ, k + 1, η) = 0.
(7)

In particular, we note that in this formulation all critical times are given by 1
j for

j ∈ N and thus independent of η. Furthermore, there are no critical times after time
τ = 1, which implies that norm inflation or instability results are restricted to the
evolution on small times and that the evolution is asymptotically stable after time
τ = 2.

Proposition 1. Let X be a weighted L2 (or l2) space on the Fourier side (e.g. a frac-
tional Sobolev orGevrey space) such that theweightρ(k, η) satisfies supη

ρ(k±1,η)
ρ(k,η)

�
C1 < ∞. Then there exists a constant C = C(cC1) such that any solutions of (7)
satisfy

‖ω(τ)‖X � C‖ω(2)‖X
for all τ � 2. Furthermore, ω(τ) strongly converges in X to a limit ω∞ ∈ X as
t → ∞.

Proof of Proposition 1. We may estimate the multipliers by

c

l2
1

η−2 + ( 1l − τ)2

� c
1

0 + (2 − 1
l + (τ − 2))2

� c

(1 + (τ − 2))2
,

irrespective of the size of η or of l ∈ Z, l �= 0. We further remark that if lη < 0
no restriction is necessary, since then there cannot be any cancellation. We may
estimate

∂t‖ω‖X � c

1 + (τ − 2)2
(‖ω(k + 1)‖X + ‖ω(k − 1)‖X )

� 2cC1

1 + (τ − 2)2
‖ω‖X .

The result then immediately follows from integrating this inequality with

C := exp

(
2cC1‖ 1

1 + (τ − 2)2
‖L1

)
.

��
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We remark that the admissible class of spaces X includes fractional Sobolev spaces
Hs and Gevrey spaces GC, 1s

, but not the homogeneous fractional Sobolev spaces

due to the quotient |η±1|s
|η|s degenerating for η ↓ 0.

In order to analyze possible norm inflation, in the following we hence focus
on characterizing the evolution on the time interval [0, 2]. Here, as a first easy,
non-optimal estimate, we may roughly control the multiplier by

sup
l �=0

|cη2|
l2

= cη2,

and thus obtain

Theorem 2. Let X be as in Proposition 1. Then if the initial data is localized on
the mode η, it holds that

‖ω(τ)‖X � exp(2C1cη
2 min(2, τ ))‖ω0‖X ,

for all τ � 0. Furthermore, ω(τ) strongly converges in X as τ → ∞.

Proof of Theorem 2. By Proposition 1 it suffices to establish a bound for τ � 2.
Here, we estimate the Fourier multiplier in (7) by cη2 and thus obtain that, for ω0
localized at frequency η, it holds that

‖∂τω‖X �cη2(‖S+1ω‖X + ‖S−1ω‖X )

�2C1cη
2‖ω‖X ,

where S±1 denotes a shift in the k dependence. The result then followsbyGronwall’s
lemma. ��

We stress that these estimates are far from optimal. However, they allow us to
control the evolution until a small positive time τ0 > 0, after which a more detailed
study of resonance chains establishes sharper bounds.

Indeed, in Section 5, we show that this linearizedmodel attains the sameGevrey
2 class norm inflation results as the nonlinear problem around Couette flow consid-
ered in [3,5]. Furthermore, the solutions exist globally in time and exhibit modified
scattering and damping.

In order to introduce ideas, in the following Section 3 we consider the setting
where c is very small compared to η−1. This setting allows for highly simplified
proofs and serves to introduce the resonance mechanism in a clear way. In Section 4
we then introduce an improved “toy model”, which includes further cancellation
mechanisms compared to the one studied in [3] and shows what modifications to
asymptotic convergence should be expected for large η (compared to c−1). The
results of Section 5 then show that the full linear problem exhibits the same kind
of growth as this model and we further discuss implications for scattering and
damping.
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3. Echoes, Paths and Norm Inflation

Theorem 2 of the preceding section proves wellposedness of the evolution
equation for frequency localized initial data, but provides a very rough upper bound
on the possible growth. In this section we study the evolution of equation (7)

∂τω(τ, k, η) + c
1

(k − 1)2
1

η−2 + (τ − 1
k−1 )

2
ω(τ, k − 1, η)

− c
1

(k + 1)2
1

η−2 + (τ − 1
k+1 )

2
ω(τ, k + 1, η) = 0.

(8)

for 0 � τ � 2 in more detail in order to obtain a finer description of the associated
norm-inflation mechanism. More precisely, in this section we consider the setting
where η satisfies a smallness assumption (10) as in [3,5], which allows for a short
and simple proof of norm inflation. We remark that this section is self-contained
and that the low frequency results of this section are not required for our main
results. It is instead intended to provide a simple introduction to the main growth
mechanism and to motivate why removing the smallness assumption is a highly
non-trivial, challenging problem.

In order to develop a heuristic for the growth mechanism, formally consider the
equation with ω(τ, k − 1, η), ω(τ, k + 1, η) frozen in time. Then integrating the
equation we obtain that, for two times τ0 < τ1, it holds that

ω(τ1, k, η) − ω(τ0, k, η)

≈ ω(τ0, k − 1, η)

∫ τ1

τ0

c
1

(k − 1)2
1

η−2 + (τ − 1
k−1 )

2
dτ

− ω(τ0, k + 1, η)

∫ τ1

τ0

c
1

(k + 1)2
1

η−2 + (τ − 1
k+1 )

2
dτ.

In reference to fixed point iterations, we also call this heuristic the first Duhamel
iteration (which inserts the initial datum into the fixed point map. See also Section 3
for higher iterations.). If τ0 and τ1 are suitably chosen the growth factor can thus
be expected to be comparable to

1

(k − 1)2

∫ ∞

−∞
c

η−2 + (τ − 1
k−1 )

2
dτ = cπη

1

(k − 1)2
= cπ

η

(k − 1)2
.

Similarly to the nonlinear equations studied in [3,5], the main norm inflation mech-
anism of (7) is then for mode (k, η) to induce growth of the mode (k − 1, η) at
time τ ≈ 1

k , which in turn induces growth of the mode (k − 2, η) at time τ ≈ 1
k−1 .

Iterating this heuristic along a chain until time τ ≈ 1, this suggests a total growth
factor of

η

k2
η

(k − 1)2
· · · η

12
= ηk

(k!)2 . (9)

This factor achieves its maximum with respect to k for k ≈ √
η, which yields

exp(C
√

η) and thus a norm inflation result consistent with Gevrey 2 regularity.
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While single echoes or small numbers of echoes are well-studied in the physical
andnumerical literature [11,13]we stress here that long chains of echoes correspond
to Gevrey regularity. Indeed, one of the main challenges in the following will be to
construct infinitely many chains of arbitrarily long lengths in such a way that the
evolution can be controlled for all times.

Compared to the nonlinear results of [5], we highlight the following differences
of the present setting:

– Due to the difficulties involved in controlling a nonlinear evolution around
growing perturbations, [5] establishes such a growth chain until time t ≈ 1

2k ≈
1

2
√

η
	 1. Our results established for the linear equation (7) instead capture a

full echo chain as well as the subsequent asymptotic stability as τ → ∞.
– The more explicit structure of the associated Duhamel iteration scheme allows
us to establish more precise upper and lower bounds and in particular quantify
the dependence on the parameter c, i.e. the size of the low-frequency part.
Furthermore, as we discuss in Section 4, the evolution for η much larger than
k2 introduces additional logarithmic corrections, which we show in Section 5
to result in a correction to the asymptotic evolution. In particular, prior works
included a constraint of the form

c log(1 + |η|) � 1,

where a change in exponent by c is then comparable to multiplication by a
constant.

– Identifying the sharp growth behavior and removing this constraint allows us to
construct families of initial data, for which the velocity field convergeswhile the
vorticity diverges (see Section 5)! We view this as an indication that nonlinear
inviscid damping, understood as asymptotic convergence of the velocity field,
might still hold in lower regularity despite norm inflation results for the vorticity.

As a first step, in the following theorems we improve the bounds by exp(Cη2)

to Gevrey 2-type estimates of the above form. Similarly to [2,5] in this section we
impose a logarithmic smallness condition

c � C ln(|η|)−1, (10)

which greatly simplifies this proof. In particular, it allows us to clearly demonstrate
the growth mechanism, obtain explicit (approximate) solutions and point out where
these methods of proof would fail for high frequencies.

We stress that for any fixed c this smallness condition prevents us from consid-
ering (sequences of) arbitrarily large η, which is necessary to establish instability
and modified scattering results. A key effort of this article in Sections 4 and 5.2 is to
remove this constraint. Here, it turns out that large frequencies not only pose tech-
nical challenges, but that for larger η the asymptotics indeed differ. In Section 5.3
we show that taking into account these modified asymptotics our linear system
exhibits norm inflation and echo chains for all η, as well as modified scattering.
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Theorem 3. (Resonance chain) Let η > 1, l ∈ N with η

l2
� 1 and let 0 < c �

min((ln(1 + η2))−1, 1
100 ). Let further τ0 = 1

2 (
1

l+1 + 1
l ) and τ1 = 1.5. Then the

solution ω(τ) of (7) with

ω(τ0, k) = δk,l

satisfies

ω(τ1, k) � cl
(
1 − c

1 − c

)l
ηl

(l!)2 if k ∈ {1, 3},

ω(τ1, k) � cl
(
1 + c

1 − c

)l
ηl

(l!)2 if k ∈ {1, 3},

|ω(τ1, k)| � c|k−l|cl
(
1 + c

1 − c

)l
ηl

(l!)2 if k �∈ {1, 3}.

Furthermore, there exists ω∞(k) such that ω(t, k) → ω∞(k) as τ → ∞ and
‖ω∞‖X � CX‖ω(τ1)‖X . In particular, the associated velocity field converges as
τ → ∞.

We remark that such a result also yields bounds for frequency-localized initial
data globally in time by using Theorem 2 to control the evolution until time τ0.
In order to prove Theorem 3 we use precise description of the evolution operator
around single resonances τ ≈ 1

k for k = l, l − 1, . . . , 1, which we then combine to
establish the over all growth.

3.1. Single Resonance Estimates

We note that in equation (7) modes only directly interact with their nearest
neighbors. Thus, if we prescribe that ω(τ0) = eik0x+iηy , the value of ω̃(τ1, k, η)

involves sequences γ = (k0, k0 − 1, . . . , k), where a mode γi influences a mode
γi+1 by nearest neighbor interaction. Indeed, any finite Duhamel iteration can be
associated with a sum over all such sequences with an upper bound on their length
and integrals of the form

∫∫

τ0�s1�s2�···�τ1

|γ |∏

i=1

1

γ 2
i

c

η−2 + (si − 1
γi

)2
dsi . (11)

In order to simplify discussion, we introduce some notation.

Definition 1. Let k, k0 ∈ Z with sgn(k) = sgn(k0). Then a path γ from k0 to k is
a finite sequence γ = (γi )

n
i=1 with γ1 = k0, γn = k and |γi+1 − γi | = 1. We call

the integral (11) the integral associated to γ , I [γ ] and call n − 1 =: |γ | the length
of γ .
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We remark that equation (7) introduces a post-multiplication by sin(x) and a single
Duhamel iteration hence results in paths (k0, k0 + 1) and (k0, k0 − 1), which we
thus denote as paths of length 1.

Given a time interval 1
l+1 < τ0 < 1

l < τ1 < 1
l−1 , we observe that integrals

tend to be small unless γi = l for some i . Indeed, if γi �= l, then | 1
γi

− 1
l | � c

l2
and

we may estimate each integral with respect to si by

1

l2

∫

|τ− 1
l |� 1

2l(l−1)

c

η−2 + (τ − 1
l )

2
dτ

� 1

l2

∫

s� 1
2l(l−1)

c

τ 2
dτ � 4c,

(12)

uniformly in η and in l.

Definition 2. Let l ∈ N and define T0 := 1
2 (

1
l+1 + 1

l ) < 1
l < 1

2 (
1

l−1 + 1
l ) =: T1.

Let further k, k0 ∈ N and let γ be a path from k0 to k. We call γi resonant if γi = l
and non-resonant else. A path γ is called non-resonant if γi is non-resonant for all
i .

Proposition 2. (Single resonance bound) Let l ∈ N, η > 0 and let

τ0 := 1

2

(
1

l + 1
+ 1

l

)
<

1

l
<

1

2

(
1

l
+ 1

l − 1

)
=: τ1,

and suppose that the constant c > 0 is sufficiently small that 2c � ln(1 + η)−1.

1. Let k0 ∈ N, k0 �= l and let ω(τ, ·) be the solution of (7) with

ω(τ0, k) = δk,k0 .

Then it holds that

|ω(τ1, k) − ω(τ0, k)| � C(c|k−l|+|k0−l| η

l2
+ c|k−k0|)

for all k ∈ N. Here, with slight abuse of notation |k − l| = max(|k − l|, 2)
denotes the length of the shortest path connecting k and l. This agrees with the
absolute value if k �= l, but is 2 if l = k, since the shortest path (k, k ± 1, k)
has length 2.

2. Let ω(τ, ·) be the solution of (7) with
ω(τ0, k) = δk,l .

Then it holds that

ω(τ1, l ± 1) ≈ η

l2
,

|ω(τ1, l) − 1| � Cc2
η

l2
,

|ω(τ1, k)| � C(c|k−l| (1 + η

l2
)
)
else.
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Proof of Proposition 2. We argue by a Duhamel-iteration approach and summing
over all paths starting in k0 and ending in k. Here, we first note that if a path is non-
resonant, we may estimate its contribution by c|γ |. If we then estimate the number
of such paths from above by 2|γ |, the contribution by all non-resonant paths is
bounded by

∑

|γ |�dist

(2c)|γ | = 1

1 − 2c
(2c)dist,

where dist is the length of the shortest (non-resonant) path connecting k and k0.
Our main challenge in the following is thus going to be to control resonances and
in particular the interaction between multiple resonances (that is, γi = l for several
indices i).

Ad 1 Let k0 �= l be given and let k ∈ N. Let further γ be a path starting in
k0 and ending in k and denote j = |γ |. We have already discussed the case of
all non-resonant paths above, so suppose that γi = l for some i and let (iκ)nκ=1
denote all such indices.We note that we first have to reach l starting from k0 and thus
i1 � |k0−l|. Similarly it follows that |in− j | � |k−l|. Furthermore, iκ � iκ+1−2,
since consecutive entries in a path are distinct.

In order to bound I [γ ], first consider two subsequent resonances indices iκ and
iκ+1. Keeping these indices fixed, we first integrate over the intermediate indices
s1, . . . sl and consider

∫

siκ �s1�···�sl�siκ+1

l∏

j=1

1

γ 2
j

c

η−2 +
(
s j − 1

γ j

)2 ds j � (Cc)l |siκ+1 − siκ |,

where we used that by assumption all these γ j �= l are non-resonant and can be
bounded by powers of c and bounded one of the integrals by c(siκ+1 − siκ ).

Repeating this argument for all κ , we only need to consider the integrals with
respect to the resonances:

(cC) j
∫∫

T0�si1�si2�···�sin�T1

1

η−2 + (
sin − 1

l

)2
n−1∏

κ=1

siκ+1 − siκ

η−2 + (
siκ − 1

l

)2 .

Rescaling and shifting all s· as η−1(s− 1
l ), we obtain a factor η

− j from the Jacobian,
a factor η− j+1 from the linear factors, and a factor η2 j from the denominators, and
thus, in total:

(cC) jη

∫∫

η
(
T0− 1

l

)
�si1�si2�···�sin�η

(
T1− 1

l

)
1

1 + s2in

n−1∏

κ=1

siκ+1 − siκ
1 + s2iκ

.

It remains to estimate the integral over this now η dependent region.
Expanding the product in the numerator and looking at each summand sepa-

rately we need to consider monomials in the numerator. If a factor siκ does not
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appear in the numerator we simply bound by
∫

R

1

1 + s2iκ
= π.

If it appears once, we may compute
∫

s

|s|
1 + s2

= 1

2
ln

(
1 + s2

)
+ c.

If it appears twice, we bound

∫

siκ−1�siκ �siκ+1

s2iκ
1 + s2iκ

� siκ+1−siκ−1
,

but in this way iκ does not appear in the integral anymore and we can repeat the
above argument with this resonance removed. Hence, we only need to consider
monomials where each siκ appears either to power 1 or does not appear:

∫∫

η
(
T0− 1

l

)
�si1�si2�···�sin�η

(
T1− 1

l

)
∏

iκ appears

|siκ |
1 + s2iκ

∏

iκ does not

1

1 + s2iκ
.

As discussed above the integrals over the “does not” case can be bounded by π j2 ,
where j2 = j − j1 denotes the number of such cases. The integral over the first
product is bounded by a power of a logarithm:

1

j1!

(
1

2
ln

(
1 +

(
η

(
T1 − 1

l

))2
)

+ 1

2
ln

(
1 +

(
η

(
T0 − 1

l

))2
)) j1

≈ 1

j1!
(
C ln

(
1 + η

l2

)) j1
. (13)

Recalling the additional prefactor c|γ |, summing over all such j1 then leads to a
bound of this contribution by

(
1 + η

l2

)Cc = exp
(
Cc ln

(
1 + η

l2

))
� exp(C̃),

where we used the logarithmic smallness assumption

c ln
(
1 + η

l2

)
	 1.

Hence, this exponential can be treated as a perturbation provided c and thus C̃ is
sufficiently small.

Ad 2 We proceed similarly as in case 1, but note that
∫ τ1

τ0

1

l2
c

η−2 + (
s − 1

l

)2 ≈ c
η

l2
.
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All longer paths starting in l and ending in l − 1 have length at least 3 and hence
the sum over all these paths can again be controlled by

c2

1 − c

cη

l2
.

We hence obtain the claimed comparability with factors 1 ± c2
1−c . For k = l, we

note that the shortest non-trivial path has length 2 and for k �∈ l − 1, l, l + 1 we
argue as before except that all paths start in γ1 = l. ��
Weremark that byusing the linearity of theproblem this further yields a convolution-
type bound for ω(τ0) not being localized on a single mode. In the following we
then combine these mode-wise upper and lower bounds as well as the local well-
posedness of Theorem 2 to construct an explicit example of a function that exhibits
the Gevrey norm inflation up to time τ = 1 and afterwards is asymptotically stable
and hence also exhibits inviscid damping. In Section 5 we show with considerable
technical effort that a similar but distinct result also hold if η does not satisfy a
logarithmic bound.

3.2. Proof of Theorems 3

Using the single-resonance results of Proposition 2 we are now ready to prove
Theorem 3.

We proceed in multiple steps:

1. We use local well-posedness to control the evolution from time τ = 0 up to a
small positive time τ ∗ = τ ∗(c, η) 	 1.

2. We next choose l ∈ N such that 1
l > τ ∗ and l is maximal with this property and

prescribe ω(τ) at the time τ0 = 1
2 (

1
l+1 + 1

l ) < 1
l to be localized at frequencies

(l, η). Proposition 2 then allows us to control the evolution up to time τ1 =
1
2 (

1
l + 1

l−1 ) > 1
l , where we in particular obtain upper and lower bounds on the

modes l ± 1 and upper bounds on all other modes.
3. We then iterate this control another l−1 times and establish upper bounds on all

modes and lower bounds along our chain of resonances (l, l − 1, l − 2, . . . , 1)
until after time τ = 1.

4. By our construction of the coordinate τ , after this time no resonances appear
anymore and we may use Proposition 1 to control the long-time asymptotic
behavior.

Proof of Theorem 3. We note that it suffices to establish upper and lower bounds
on ω until time τ = 1.5, since after that time asymptotic stability and convergence
of the velocity field follow by Proposition 1.

Let thus l ∈ N be given, to be fixed later. By Theorem 2 we may find initial
data such that at time τl := 1

2 (
1

l−1 + 1
l ) it holds that

|ω(τl , l)| � 0.5max |ω(τl)| =: 0.5θ. (14)
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We then apply Proposition 2 using the linearity and a triangle inequality to obtain
a convolution bound. That is, for k �∈ {l − 1, l, l + 1}, we obtain that

|ω(τl+1, k) − ω(τl , k)| � C
(
c|k−l| (1 + η

l2

))
|ω̃(τl , l)|

+
∑

k0 �=l

|ω̃(τl , k0)|C
(
c|k−l|+|k0−l| η

l2
+ c|k−k0|

)

� θC
(
c|k−l| (1 + η

l2

))
+ θCc|k−l| 1

1 − c

η

l2
+ θ

1 − c
.

If k = l, the first term is replaced by

Cc2
η

l2
.

Finally, if k ∈ {l − 1, l + 1}, we obtain that

|ω(τl+1, k) ∓ C±c
η

l2
ω(τl , l) − ω(τl , k)| � θCc|k−l| 1

1 − c

η

l2
+ θ

1 − c
,

where C±1 ≈ 1. Recalling that ω(τl , l) achieves θ within a factor 2 and using that
c η

l2
� 1, if follows that

±c
η

l2
ω(τl , l) ≈ ω(τl+1, l ± 1) � 0.5max |ω(τl+1)|.

also achieves the new maximum within a factor 2 and is larger than the previous
maximum by a factor c η

l2
.

We may thus repeat our application of Proposition 2 iteratively until for k = 1,
we obtain that

ω(τ1, 1) ≈ clηl

(l!)2ω(τl , l)

achieves the full growth along a chain and again is comparable to the supremum at
that time. ��
While this result is quite useful and shows the growth mechanism, the logarithmic
bound

c ln
(
1 + η

l2

)
	 1,

prevents us from considering η arbitrarily large. In particular, reverting the change
of variables t �→ τ , this means that after a final time t = max η there are no more
resonances and the evolution is asymptotically stable. Furthermore, since we can
only consider a finite set in η all norms are equivalent and thus the associated growth
while suggestive of a Gevrey regularity class is consistent with any norm.

We remark that also [3,5] contain a similar constraint. While one might at
first hope that this is a purely technical constraint, in our proof we saw various
logarithmic terms appearing, where in particular the contribution by the path γ =
(l, l−1, l, l−1) is also bounded below. It is hence a large, non-negligible correction,
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which can not be treated perturbatively. Thus, our main goal in the following is to
understand how the dynamics change and to remove this restriction. To this end,
in Section 4 we first introduce an improved model problem and new methods of
proof, which allow us to consider η arbitrarily large. Then in Section 5 we show
that this behavior also holds in the full problem.

4. An Improved Model Problem

In order to better study the effect of resonances and, in particular, the behavior
for large η and/or large c, in the following we consider an abridged model which
considers the evolution for 1

l+1 < τ < 1
l−1 and only considers the resonant mode

l and its neighbor l − 1:

∂τω(τ, l − 1) − c

η−2 + (τ − 1
l )

2

1

l2
ω(τ, l) = 0,

∂τω(τ, l) + c

η−2 + (τ − 1
l−1 )

2

1

(l − 1)2
ω(τ, l − 1) = 0.

As remarked in Section 1.1, this section is not strictly necessary for the proof of our
main result in Section 5. However, its model structure allows us to explain why the
behavior at large frequencies necessarily strongly differs and how growth and decay
on several time intervals connect to each other to yield amodified power lawgrowth.
Indeed in Section 5 we show that also the full model behaves similar to this two-
mode model (or more accurately like the three-mode model involving the modes
l + 1, l, l − 1), where our strategy of proof closely mirrors the one of Proposition 3
of this section (with each step of the proof now corresponding to a subsection).
This section hence serves as an important preliminary step, highlighting the main
challenges and illustrating the effects of large frequencies violating the smallness
constraint.

The present model is very similar to the one considered in [3], except that
our model does not estimate the coefficients by absolute values but rather keeps
the signs, which corresponds to exploiting the real-valuedness of sin(x) (and hence
anti-symmetry of the imaginary parts of the Fourier coefficients).We further remark
that a similar model for a single echo has been studied in [11] both analytically and
numerically, but not for chains and only in the small parameter regime.

As we will see in the following this yields important cancellation properties
and further exposes a connection of this problem to the 1D Schrödinger problem
with scaling critical potential.

As a simplification of calculations, we use that 1
l−1 is non-resonant and approx-

imate τ − 1
l−l ≈ 1

l2
and thus consider the following two-mode system:

∂τu − c

η−2 + τ 2

1

l2
v(τ) = 0,

∂τ v + c

η−2 + l−4

1

l2
u(τ ) = 0.

(15)
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Here we also shifted the time to τ ∈ [−l−2, l−2] for notational convenience.
In order to introduce ideas, we first consider the case where η is not larger than

l2. There, we approximate η−2 + τ 2 ≈ η−2 + l−4 ≈ η−2 and obtain the following
lemma:

Lemma 2. (Small η case) Let η > 0, l ∈ Z and c ∈ R be given and consider the
following approximation to system (15):

∂τ

(
u
v

)
+

(
0 −c η2

l2

c η2

l2
0

) (
u
v

)
= 0, (16)

for τ ∈ (−l−2, l−2). Then, the unique solution is given by

(
u(τ )

v(τ )

)
=

⎛

⎝ cos
(
c η

l2
τ
)

sin
(
c η

l2
τ
)

− sin
(
c η

l2
τ
)

cos
(
c η

l2
τ
)

⎞

⎠
(
u(0)
v(0)

)
. (17)

In particular, it follows that |u(τ )|2 + |v(τ)|2 is a conserved quantity.

Proof. While the solution follows immediately by computation of the matrix ex-
ponential, for later reference we note an alternative proof arguing at the level of
second derivatives. Formally differentiating the equation for u by τ and using the
second equation, we obtain

∂2τ u + c2
η4

l4
u = 0,

which has a general solution

α cos
(
c

η

l2
τ
)

+ β sin
(
c

η

l2
τ
)

for constants α, β ∈ R. The first-order equation

∂τu − c
η

l2
v = 0

then further determines ∂τu and allows us to determine α and β in terms of
u(0), v(0). ��

Having discussed the case of small η, in the following we are interested in
the setting where η � l2 is potentially very large. Here, we may again consider
decoupled second order equations instead of a system of first order equations:

∂2τ u + c2

η−2 + τ 2
u = 0,

∂τ (η
−2 + τ 2)∂τ v + c2v = 0.

(18)

We note that the equation for u is given by a stationary Schrödinger equation with
potential c2

η−2+τ 2
, which is a mollified version of the scaling critical potential c2

τ 2
.
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The equation satisfied by v instead is a degenerate elliptic problem. However,
we note that (15) allows us to determine v in terms of ∂τu. Hence, in the following
it suffices to study the evolution of u.

In Section 3 we showed that a Duhamel iteration converges, with the dominant
terms being given by the nearest neighbor paths (l, l − 1, l, l − 1, l, . . .) of this
section, but had to require that c is sufficiently small to control logarithmic correc-
tions. The aim in what follows is to study the system (15) and show that for large
η better estimates hold and that only an absolute bound on c is required.

We recall that (18) is posed on the interval (−l−2, l−2). We may rescale our
time variable as τ = l−2t , so that t ∈ (−1, 1) and obtain

∂2t u + c2

η−2l4 + t2
u = 0. (19)

We stress that this equation depends only on c and η

l2
, but not on η and l separately.

For simplicity of notation, in what follows we abbreviate

ξ := η

l2
. (20)

Once we have computed u, we may recover v using that by (15)

∂t u = l−2∂τu = c

η−2 + τ 2

1

l4
v. (21)

We remark that for η much larger than l2 at time τ = 1
l4
it holds that c

η−2+l−4 l
−4 ≈

c
l−4 l

−4 = c.We further note that here v is evaluated at time τ = 1
l2
t , but corresponds

to the mode (l − 1, η) of the vorticity. The equation (19) has an explicit solution in
terms of special functions, which we use to establish the following theorem:

Theorem 4. Let ξ = η

l2
∈ R, then the problem (19)

∂2t u + c2

ξ−2 + t2
u = 0

on (−1, 1) has an explicit scattering matrix M = M(c, ξ) (see Proposition 3) such
that

(
u(1)

∂t u(1)

)
= M

(
u(−1)

∂t u(−1)

)
.

In particular, if 0 < c < 1
2 and ξ � c−1, and we further assume that ∂t u(−1) �

0.5|u(−1)|, then it follows that

(
u(1)

∂t u(1)

)
≈ ξγ u(−1)

(
πc2

πc2

)
, (22)

where γ = √
1 − 4c2.
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We thus observe that the logarithmic correction seen in Section 3 here manifests
in a modified exponent. As the explicit solution in terms of hypergeometric func-
tions is technically involved but rather opaque, the proof of Theorem 4 is given in
“Appendix A”.

Inwhat followswe instead discuss the underlyingmechanismby approximating
c2

ξ−2+t2
by c2

t2
and c2ξ2 on sub-intervals of (−1, 1). The interactions between these

regimes then yields a correction to the exponent. We remark that in this section our
splitting corresponds to a more rough approximation in order to introduce ideas. In
Section 5.1 we choose our splitting more carefully and consider also the influence
of other modes.

Let thus ξ ∈ R be given and suppose that ξ � c−1 is large (otherwise we may
consider the system (17)). Then on the intervals (−1, ξ−1) and (ξ−1, 1), it holds
that

1

ξ−2 + t2
≈ 1

t2
,

and we hence consider the second order ODEs

∂2t u + c2

t2
u = 0 (23)

on ξ−1 < |t | < 1 and

∂2t u + c2ξ2u = 0 (24)

on |t | < ξ−1.
In order to understand the mapping properties of Theorem 4 we thus consider

the following scheme:

1. We prescribe initial data (u(−1), ∂t u(−1)) and solve (23) to obtain (u(−ξ−1),

∂t u(−ξ−1)) in Lemma 4
2. We then solve (24) to obtain (u(ξ−1), ∂t u(ξ−1)) in Lemma 3
3. Finally, we solve (23) on (ξ−1, 1) by again using Lemma 4.
4. Combining these three maps, we show in Proposition 3 that the map

(u, ∂t u)|t=−1 �→ (u, ∂t u)|t=1 has singular values of size ξγ withγ = γ (c) < 1.

In the following Section 4.1we then iterate this evolution in l to obtain sharpGevrey
2-type norm inflation results for this model problem.

We remark that (23) is the scaling critical Schrödinger problem, which has a
general solution

c1|t | 12 (1+√
1−4c2) + c2|t | 12 (1−√

1−4c2),

provided 0 < c < 1
2 . We in particular note that the exponents γ1 = 1

2 +
√

1
4 − c2

and γ2 = 1
2 −

√
1
4 − c2 are strictly between 0 and 1 and γ1 + γ2 = 1.
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Lemma 3. Let c �= 0, η > 0, k ∈ Z \ {0}, then the solution u ∈ C2 of

∂2t u + c2ξ2u = 0 (25)

in (−ξ−1, ξ−1) satisfies
(

u(ξ−1)

∂t u(ξ−1)

)
=

(
cos(2c) 1

c ξ
−1 sin(2c)

−cξ sin(2c) cos(2c)

) (
u(−ξ−1)

∂t u(−ξ−1)

)
.

In particular, we observe that for ξ � c−2 the bottom left matrix entry is by far the
largest, while cos(2c) ≈ 1.

Proof of Lemma 3. We observe that a general solution of (25) is given by
c1 sin(cξ t) + c2 cos(cξ t). One may then verify that
(

u(t)
∂t u(t)

)
=

(
cos(cξ(t + ξ−1)) 1

c ξ
−1 sin(cξ(t + ξ−1))

−cξ sin(cξ(t + ξ−1)) cos(cξ(t + ξ−1))

) (
u(−ξ−1)

∂t u(−ξ−1)

)

satisfies the initial conditions. ��
On the exterior intervals we similarly obtain an explicit solution, but with very

different dependence on ξ .

Lemma 4. Let 0 < c < 1
2 and ξ > 1 then the solution of u ∈ C2 of

∂2t u + c2

t2
u = 0 in (−1, 1) \ (−ξ−1, ξ−1) (26)

satisfies

(
u(ξ−1)

∂t u(ξ−1)

)
=

(
ξ−γ1 ξ−γ2

γ1ξ
1−γ1 γ2ξ

1−γ2

) (
1 1
γ1 γ2

)−1 (
u(1)

∂t u(1)

)
,

and
(

u(−ξ−1)

∂t u(−ξ−1)

)
=

(
ξ−γ1 ξ−γ2

−γ1ξ
1−γ1 −γ2ξ

1−γ2

) (
1 1

−γ1 −γ2

)−1 (
u(−1)

∂t u(−1)

)
,

where γ1,2 = 1
2 ±

√
1
4 − c2.

Proof of Lemma 4. We note that a general solution of (26) is given by

c1,±|t |γ1 + c2,±|t |γ2 ,
where c·,± are constant on each connected component of the domain. We may then
again verify that

(
u(t)

∂t u(t)

)
=

( |t |γ1 |t |γ2
sgn(t)γ1|t |γ1−1 sgn(t)γ2|t |γ2−1

) (
1 1

sgn(t)γ1 sgn(t)γ2

)−1 (
u(1)

∂t u(1)

)

satisfies the boundary conditions. ��
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Proposition 3. Let 0 < c < 1
2 and let u ∈ C1 be a solution of (23) and (24). Then

there exists an explicitly computable matrix M = M(c, ξ) such that
(

u(1)
∂t u(1)

)
= M

(
u(−1)

∂t u(−1)

)
. (27)

In particular, if 0 < c < 1
2 and ξ � c−1, and we further assume that |u(−1)| �

2|u′(−1)|, then it follows that
(

u(1)
∂t u(1)

)
≈ ξγ u(−1)

(
8c2

8c2

)
, (28)

where γ = √
1 − 4c2.

Proof of Proposition 3. Combining Lemma 3 and Lemma 4, we obtain that our
data at t = −1 and t = 1 are related by

(
1 1
γ1 γ2

) (
ξ−γ1 ξ−γ2

γ1ξ
1−γ1 γ2ξ

1−γ2

)−1 (
cos(2c) 1

c ξ
−1 sin(2c)

−cξ sin(2c) cos(2c)

)

(
ξ−γ1 ξ−γ2

−γ1ξ
1−γ1 −γ2ξ

1−γ2

)(
1 1

−γ1 −γ2

)−1

.

We now compute
(

ξ−γ1 ξ−γ2

γ1ξ
1−γ1 γ2ξ

1−γ2

)−1

= − 1

γ

(
γ2ξ

1−γ2 −ξ−γ2

−γ1ξ
1−γ1 ξ−γ1

)
,

(
1 1

−γ1 −γ2

)−1

= 1

γ

(−γ2 −1
γ1 1

)
,

where we used γ1 + γ2 = 1 and computed the determinants as

γ1 − γ2 =: γ =
√
1 − 4c2 ≈ 1.

Since ξ � 1, γ1 = 1
2 +

√
1
4 − c2 ≈ 1 − c2/2 ≈ 1, γ2 = 1

2 −
√

1
4 − c2 ≈ c2 	 1

it follows that the largest powers of ξ are dominant. We may thus approximate:
(

u(−ξ−1)

∂t u(−ξ−1)

)
= 1

γ

(
ξ−γ1 ξ−γ2

−γ1ξ
1−γ1 −γ2ξ

1−γ2

) (−γ2 −1
γ1 1

) (
u(−1)
u′(−1)

)

≈
(

ξ−γ1 ξ−γ2

−γ1ξ
1−γ1 −γ2ξ

1−γ2

) (−γ2u(−1) − ∂t u(−1)
u(−1) + ∂t u(−1)

)

≈ u(−1)

(
ξ−γ2

−γ2ξ
1−γ2

)
.

Next, it follows that
(

u(ξ−1)

∂t u(ξ−1)

)
=

(
cos(2c) 1

c ξ
−1 sin(2c)

−cξ sin(2c) cos(2c)

)(
u(−ξ−1)

∂t u(−ξ−1)

)

≈ u(−1)

(
ξ−γ2

−(2c2 + γ2)ξ
1−γ2

)
,
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where we omitted γ2
sin(2c)

c = O(c2) as a small perturbation to 1 and approximated
sin(2c) ≈ 2c. Finally, it follows that

(
u(1)

∂t u(1)

)
= − 1

γ

(
1 1
γ1 γ2

) (
γ2ξ

1−γ2 −ξ−γ2

−γ1ξ
1−γ1 ξ−γ1

) (
u(ξ−1)

u′(ξ−1)

)

≈ −u(−1)

(
1 1
γ1 γ2

)(
(2γ 2 + 2c2)ξ1−2γ2

−1ξ0

)

≈ u(−1)ξ1−2γ2

(
8c2

8c2

)
.

��
We thus see that, while the evolution on the small interval (−ξ−1, ξ−1) yields a

singular value of size ξ1, the conjugation with the power law evolution on |t | > ξ−1

yields a much smaller singular value ξγ 	 ξ1.
Having establish a precise description of the evolution for times close to a single

resonant time τ ≈ 1
l , in the following we consider an iterated model to study the

norm inflation in Gevrey spaces and the associated asymptotic behavior.

4.1. Model Echo Chains and Modified Exponents

In Section 3 we have studied chains of echoes for the linear problem (4) and
have established norm inflation with a factor exp(C

√
η). However, in that case our

proof limited us to considering only η such that c ln(1 + η2) is not too large.
In what follows we instead consider an iterated version of the model of Section

4, which does not possess such an obstruction. In particular, combining the behavior
of infinitely many modes η j with η j → ∞ we construct solutions which exhibit
norm inflation for arbitrarily large times anddonot converge as time tends to infinity.
However, despite the failure of the convergence of the vorticity, the velocity field
is shown to converge.

We briefly recall the approximations made in the preceding sections of this
article. We started with the 2D Euler equations close to Couette flow

∂tω + y∂xω + v · ∇ω = 0,

and focused on perturbations of the form ω = c cos(x + t y) + εω∗. Omitting the
transport by c sin(x+t y)

1+t2
and changing to variables (x + t y, y), we obtain

∂tω + c sin(x)∂yΔ
−1
t ω + ε∇⊥Δ−1

t ω · ∇ω = 0.

In particular, we note that this equation formally conserves ‖c cos(x) + εω‖L2 .
Omitting the nonlinearity by letting ε ↓ 0, we lose this conserved quantity, but
obtain an explicit Fourier problem with nearest-neighbor-interactions:

∂t ω̃(t, k, η) + c
η

(k − 1)2 + (η − (k − 1)t)2
ω̃(t, k − 1, η)

− c
η

(k + 1)2 + (η − (k + 1)t)2
ω̃(t, k + 1, η) = 0.

(29)
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Here with slight abuse of notation we replaced c by c/2 for brevity. This further
highlights resonant times, where η − (k ± 1)t ≈ 0 ⇔ t ≈ η

k±1 . After studying
the system (29) in Sections 2 and 3, in Section 4 we further introduced a model
problem (15) that focuses solely on resonant modes v ((l, η) such that η − lt ≈ 0)
and their neighbors u:

∂τu − c

η−2 + τ 2

1

l2
v(τ) = 0,

∂τ v + c

η−2 + l−4

1

l2
u(τ ) = 0.

(30)

In particular, we showed that v|τ=τ1 is approximately of size c( η

l2
)γ u|τ=τ0 .

Building on the single resonance results of Theorem 4, we construct the fol-
lowing iteration scheme:

– Let k ∈ N, k > 1 and η ∈ R be given and define τk = 1
2 (

1
k−1 + 1

k ). We then
prescribe (u, ∂τu)|τk and use equation (19) to determine (u, ∂t u)|τk−1 .

– Relabeling v of the previous step as u of the case k − 1 and using (21) we
prescribe

(
uk−1

∂t uk−1

)
|τ=τk−1 :=

(
c−1 ∂t uk

cuk

)
|τ=τk−1 .

We then again use equation (19) to determine (u, ∂t u)|τk−2 .
– We iterate this procedure until we reach τ1, where we define τ0 = 1.5.

Recalling the construction of the model problem of Section 4, (u, ∂t u)τ=τk cor-
responds to prescribing (ω̃(t, k, η), ω̃(t, k − 1, η)) at time t = 1

2 (
η

k−1 + η
k ) and

(u, u′)|τ=τ0 corresponds to the value of themodes (1, η) and (0, η) at time t = 1.5η.

Theorem 5. Let k ∈ N and η ∈ R be given and prescribe (u, ∂t u)|τ=τk = (1, 0).
Then, the above iteration scheme yields that

(u, ∂t u)|τ=τ0 ≈ (c, c2)ck−1
(

ηk

(k!)2
)γ

,

where γ = √
1 − 4c2 �= 1. In particular, choosing k maximally for c, η fixed, we

obtain a growth factor

max
k

ck
(

ηk

(k!)2
)γ

∼ e2γ
√

c1/γ η

consistent with a Gevrey regularity class.

Proof. Using the result of Theorem 4 (specifically equation (22)), we observe that

(
uk−1

∂t uk−1

)
|τ=τk−1 ≈ ∂t uk(τk)ξ

γ

(
8c
8c3

)
.
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In particular, we note that uk−1 ≈ c−2∂t uk−1 and we may thus apply Theorem 4
again. We repeat this process another k − 1 times, where ξ = η

k2
changes in each

step, and thus obtain the claimed growth factor

ck
(

ηk

(k!)2
)γ

.

Considering cηγ large and k large, by Stirling’s approximation it holds that

ck
(

ηk

(k!)2
)γ

∼ ck
(

ηk
e2k

2πkk2k

)γ

.

Choosing k as approximately

√
c

1
γ η (roundingupor down),weobtain a cancellation

of ck
(

ηk

k2k

)γ = 1 and thus

e2γ
√

c1/γ η

(
1

2π
√
c1/γ η

)γ

as the maximal growth factor. ��
As a corollary, for this model we can construct initial data in a critical Gevrey

regularity class.

Theorem 6. Consider the chained two mode model with 0 < c < 1
2 and γ =√

1 − 4c2. Then there exists s = s(γ ) and C > 0 such that for every ε > 0 and
every σ0 ∈ R, there exists initial data u0 ∈ GC, 1s

(see Section 1.1.1 for a definition)

such that

‖u0‖G
C, 1s

< ε, (31)

and such that for every C̃ > 0,

lim
t→∞ ‖u(t)‖Gs,C̃

= ∞.

Furthermore, u(t) does converge in Hσ , σ < σ0, but diverges in Hσ , σ > σ0.

In particular, choosing −1 < σ0 < 0, we find initial data, arbitrarily small in the
critical Gevrey regularity class, such that the vorticity does not converge in L2 as
t → ∞, but the velocity field does converge.

Proof. For any given η, let kη be the associated maximizer of the growth factor
obtained in Theorem 5 and let g(η) denote that growth factor.

Let now ψ ∈ ∩σ<σ0H
σ (R) be given and prescribe as initial data

u =
∫

η

1

g(η)
ψ̂(η)eiηy+ikηx .

Since g(η) ≈ exp(C
√

η) for C = C(c), this function is in a Gevrey class.
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Then by construction, the k = 1 mode will asymptotically be given by

∫

η

g(η)
1

g(η)
ψ̂(η)eiηy+i x = ψ(y)eix

��
Building on the insights obtained in this model problem in the next Section we
consider the full problem.

5. Echo Chains as a Linear Mechanism and Modified Scattering

In the previous section we have shown that for large η a linear growth factor
η

l2
cannot be expected to be accurate anymore. Indeed, the logarithmic corrections

in the Duhamel iteration are much larger than the prior “leading term”. Instead we
expect to see a modified exponent, which is less than 1 due to cancellations with
neighboring modes. In what follows we consider the full model (7)

∂τω(τ, k, η) + c
1

(k − 1)2
1

η−2 + ( 1
k−1 − τ)2

ω(τ, k − 1, η)

− c
1

(k + 1)2
1

η−2 + ( 1
k+1 − τ)2

ω(τ, k + 1, η) = 0
(32)

on a time-interval around a single resonance 1
k0
,

( 1
k0+1 + 1

k0

2
,

1
k0

+ 1
k0−1

2

)
.

The main aim of this section, which is achieved in Theorem 8 of Section 5.2,
is then to show that the evolution of this full model is largely determined by the
evolution of the three modes k0 + 1, k0, k0 − 1. To this end, in Section 5.1 we first
introduce a model problem focusing on just these three modes, which should be
seen as a refinement of the two mode model of Section 4. Here, as in Section 4 a
key challenge lies in capturing the asymptotic dependence on ξ = η

k2
for ξ very

large. Subsequently, we employ a bootstrap approach in the (sub)subsections of
Section 5.2 to show that this three mode model indeed captures the full growth
mechanisms and that all other modes can be controlled. Taking these results as
building blocks, in Section 5.3 we combine the resonances to construct echo chains
which exhibit Gevrey 2 growth and furthermore combine countably many echo
chains to construct solutions with critical stability/blow-up behavior.

Considering that

1

k0 ± 1
− 1

k0
= 1

k0(k0 ± 1)
� 2

k20
,
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and the central role of τ = 1
k0
, compared to Section 4 we again change variables as

t = k20

(
τ − 1

k0

)
∈

(
− k0
2(k0 + 1)

,
k0

2(k0 − 1)

)
=: (t0, t1). (33)

Then ∂τ = k20∂t and hence (7) reads as

∂tω(t, k, η) + a(k − 1)ω(t, k − 1, η) − a(k + 1)ω(t, k + 1, η) = 0, (34)

where

a(k0) = c
(

η

k20

)−2

+ t2
, (35)

and we abbreviate

ξ := η

k20
, (36)

and for k �= k0,

a(k) = 1

k2k20

c

η−2 + ( 1k − 1
k0

− k−2
0 t)2

(37)

= c

η−2k20k
2 + (k0 − k − k

k0
t)2

. (38)

In particular, we note that since we only consider the resonant interval around k0
and are thus far from other resonant times |a(k)| � 4c for any k �= k0. In contrast,
a(k0) at time t = 0 is of size cξ2 � 1.

We remark that in Section 4 we made several simplifications compared to the
full model:

1. We approximated a(k0 ± 1) ≈ ±c, which allowed us to compute explicit
solutions. In the following we need to show that this is a valid approximation,
that is the evolution of the full problem can be estimated above and below by
the approximate evolution.

2. In Section 4 we considered a two-mode model involving just k0 and k0 − 1.
Instead we show that the precise behavior is more accurately captured by the
three-mode model involving k0 − 1, k0, k0 + 1, which yields a change of the
exponent γ (involving 2c2 in place of c2).

3. In view of the sizes of a(k) in the following Section 5.1 we at first again
neglect all except the three modes k0 − 1, k0, k0 + 1. We call this the three-
mode model. In contrast to the two-mode model of Section 4 we here do not
approximate the coefficient functions. In Section 5.2 we then discuss the full
problem incorporating all modes and prove that indeed all other modes can
treated as perturbations in a bootstrap approach.
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5.1. The Three-Mode Model

In this section we introduce the solution operator of the homogeneous three-
mode model:

∂t u(k) + a(k + 1)u(k + 1) − a(k − 1)u(k − 1) = 0, (39)

a(k) =

⎧
⎪⎪⎨

⎪⎪⎩

a(k0 ± 1) = c
ξ−2(

k0±1
k0

)2+(1± k0±1
k0

t)2
,

a(k0) = c
ξ−2+t2

,

0.

(40)

That is, we consider only the modes k0 − 1, k0, k0 + 1 and neglect all other modes
as “inhomogeneities”. This allows for a clearer discussion of the growth and decay
mechanisms and serves to introduce the techniques of proof used in the different
regimes. It is also an important preliminary step before studying the behavior of the
full problem inTheorem8ofSection 5.2.More precisely,wewill (with considerable
technical effort) consider the full problem as a perturbation by an inhomogeneity,
which we control by means of a bootstrap approach.

We recall that, by the results of Section 4, the heuristic of the approximatemodel
a(k0 ± 1) ≈ c suggests a power law behavior of solutions. As for the present case
of exact coefficients an explicit solution is not feasible anymore, so we establish a
comparison estimate. We argue in multiple steps:

– By symmetry it holds that u(k0 + 1) + u(k0 − 1) = const.. We hence to some
extent reduce to a two-mode model. However, as a(k0 + 1) �= a(k0 − 1) in this
model the problem does not completely decouple.

– We first establish a rough power law upper bound on the growth of solutions
on (−t0,−t) as t ↓ 0. This is achieved by concatenating multiple small time
estimates.

– Subsequently, we iteratively improve this bound to tγ2−1, γ2 = 1
2 −

√
1
4 − 2c2

upper and lower bounds similar as in Section 4 (here in the formula for γ2 the
c2 is replaced by 2c2 due to the third mode). This step relies on reformulations
of the ODE system as second order ODEs and integrating these.

– We then show that the resonant mode is decreasing as tγ2 while the neighboring
modes grow like tγ2−1both with an upper and lower bound.

– Combining these results, we construct solution operators on the intervals I1 =
(t0,− d

ξ
), I3 = ( d

ξ
, t1) with d = c−1. On the resonant interval I2 = (− d

ξ
, d

ξ
)

we instead use a Duhamel iteration argument to construct the solution operator.
– Concatenating the solution operators we obtain the solution operator from time
t0 to t1 and show that it exhibits analogous (

η

k20
)γ growth behavior to the model

problem of Section 4. In Section 5.2 we then show that this behavior persists
in the full problem.

The main results of this section are summarized in the following theorem:

Theorem 7. (The full solution, homogeneous case) Let ξ = η

k20
� 1 and 0 < c <

0.2 be given and let t0 = − 1
2

k0
k0+1 and t1 = 1

2
k0

k0−1 . We consider the ODE system
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(39) for u1 = u(k0+1)−u(k0−1)
2 , u2 = u(k0), u3 = u(k0+1)+u(k0−1)

2 :
∂t u + M(t)u = 0, (41)

where

M(t) =
⎛

⎝
0 a(k0) a(k0 + 1) − a(k0 − 1)

−(a(k0 + 1) − a(k0 − 1)) 0 −a(k0 + 1) + a(k0 − 1)
0 0 0

⎞

⎠

on the interval (t0, t1).
Suppose that at time t0 = − 1

2
k0

k0+1 it holds that u(k0) � 0.5max(u). Then at

time t1 = 1
2

k0
k0−1 it holds that

u1(t1) ≈ c2−2γ2ξγ u2(t0),

u2(t1) ≈ c4−2γ2ξγ u2(t0),

u3(t1) = u3(t0),

where γ2 = 1
2 −

√
1
4 − 2c2 and γ = 1 − 2γ2 = √

1 − 4c2.

We note, in particular, that the exponent here is different from 1 (which was not
visible in prior works due to the logarithmic constraints) and that at time t1 our
solution u satisfies the assumptions of this theorem with k0 replaced by k0 − 1.
Thus, we may iteratively apply this theorem until we reach the frequency 1 and
obtain the following corollary (in Section 5.3 we return to this echo chain behavior
in the context of the full problem and also discuss (modified) asymptotic behavior
as t → ∞):

Corollary 1. (Echo chain, homogeneous case) Let η � 1 and k0 	 η be given.
We then consider the iterated system where initially set ξ = η

k20
and solve (41) with

u(t0) =
⎛

⎝
0
1
0

⎞

⎠

In the next step, we then decrease k0 �→ k0 −1 and set ξ = η

(k0−1)2
and again solve

(41) with new initial data being given by
⎛

⎝
u1(t0)
u2(t0)
u3(t0)

⎞

⎠

new

=
⎛

⎝
0

u1(t1)
0

⎞

⎠

old

We iterate this procedure another k0 − 2 times until we have reached k = 1. At this
time it then holds that

u1(1) ≈ (c2−2γ2)k0
(

ηk0

(k0!)2
)γ

.

In particular, choosing k0maximally for givenηweobtain that u1(1) ≈ C1 exp(C2
√

η)

attains a Gevrey 2 norm inflation factor.
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We remark that the precise choice of u1, u3 in the update step here does not change
the result as long as u2(t0) is (comparable to) the largest entry and thus Theorem 7
can be applied.

Proof of Corollary 1. Let k0 be given and let t0[k0] = 1
2 (

1
k0+1 − 1

k0
), t1[k0] =

1
2 (

1
k0−1 − 1

k0
). Then at time t0[k0] it holds that u2 � 0.5max(u) and we may thus

apply Theorem 7 to conclude that at time t1[k0],
u1(t1[k0]) ≈ c2−2γ2ξγ u2(t0[k0]) � 0.5max(u(t1[k0])).

We then decrease k0 by 1 and obtain that, at the new initial time t0[k0−1] = t1[k0],
by relabeling the above,

u2(t0[k0 − 1]) = u1(t1[k0]) � 0.5max(u)

again satisfies the assumptions of Theorem 7. Iterating this procedure until we reach
k0 = 1 then yields the result. ��

Our proof proceeds by considering the three intervals I1 = (t0,− d
ξ
), I2 =

(− d
ξ
, d

ξ
), I3 = ( d

ξ
, t1), where d = c−1. The right boundary datum of each interval

then serves as the left boundary datum of the next. We thus follow a similar strategy
as in the proof of Theorem 4. In the Section 5.1.1 we derive upper and lower bounds
for the evolution on the intervals I1 and I3, which we expect to be similar to the
ones derived for the two mode model in Lemma 4. That is, we expect to derive
asymptotics in terms of ξ−γ1 , ξ−γ2 and ξ1−γ1, ξ1−γ2 . In Section 5.1.2 we study the
evolution on the inner interval I2, wherewe expect an evolution similar to Lemma 4,
and thus to encounter powers ξ+1 and ξ−1. Combining these asymptotics as in
Proposition 3, we then obtain a combined exponent γ , which concludes our proof
of Theorem 7.

5.1.1. The Interval I1I1I1 As a first step in our proof of Theorem 7 we consider the
evolution of the evolution of the homogeneous problem (39) on the interval

I1 =
(
t0,−d

ξ

)
.

Similarly to the results of Lemma 3 of Section 4 we here aim to show that for
given initial data (u1, u2, u3)|t=t0 at the right end of the interval u1 has grown and
u2 has decreased by an appropriate power of ξ . Our results are summarized in the
following proposition:

Proposition 4. (Left interval, homogeneous case) Let ξ = η
k � 1 and 0 < c < 0.2

be given.
We consider the problem (39) on the interval I1 = (t0,− d

ξ
)with d = c−1. Then

the unique solution u(t) satisfies

u3(t) = u3(t0).
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Furthermore, it holds that

|u1(t)| � Ctγ2−1 max(u(t0)),

|u2(t)| � Ctγ2 max(u(t0)).

where γ1 = 1
2 +

√
1
4 − 2c2, γ2 = 1

2 −
√

1
4 − 2c2.

If in addition |u2(t0)| � 4c|u(t0)|, then at time t = − d
ξ
it holds that

u1

(
−d

ξ

)
≈

(
d

ξ

)γ2−1 c

γ2 − γ1
u2(t0),

u2

(
−d

ξ

)
≈

(
d

ξ

)γ2 γ1

γ2 − γ1
u2(t0).

For later reference we note that u1(− d
ξ
) � u2(− d

ξ
) and that u1(− d

ξ
)( d

ξ
) ≈

c u2(− d
ξ
).

We may write the homogeneous three-mode model (39) as

∂t

⎛

⎝
u(k0 − 1)
u(k0)

u(k0 + 1)

⎞

⎠ +
⎛

⎝
0 a 0

−b1 0 b2
0 −a 0

⎞

⎠

⎛

⎝
u(k0 − 1)
u(k0)

u(k0 + 1)

⎞

⎠ = 0, (42)

where a = c
ξ−2+t2

, b1 �= b2 ≈ c. For this structure it is apparent that u3 :=
1
2 (u(k0 − 1) + u(k0 + 1)) is conserved. However, compared to the two mode
model studied in Lemma 3 here u3 serves as an inhomogeneity for the remaining
modes, as shown in the following lemma. This inhomogeneity then leads to a
particular solution constructed inLemma7.Furthermore, unlike in themodel setting
of Section 4 the resulting problem does not allow for explicit solutions. Instead we
show by successive improvement in Lemma 6 that the solutions can be bounded
by an appropriate power law.

Lemma 5. (Reduction 1) Consider the problem (42), then it holds that

u(k − 1) + u(k + 1) = const..

We hence introduce the change of unknowns and notation

u1 = 1

2
(u(k0 − 1) − u(k0 + 1)),

u2 = u(k0),

u3 = 1

2
(u(k0 − 1) + u(k0 + 1)),

where u3 is invariant under the evolution and (u1, u2) solve

∂t

(
u1
u2

)
+

(
0 a

−b 0

)(
u1
u2

)
=

(
(b1 + b2)u3
(b1 − b2)u3.

)
, (43)

where b = b1 + b2.
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Proof of Lemma 5. We observe that

∂t (u(k0 + 1) + u(k0 − 1)) = −au(k0) + au(k0) = 0

and hence u3 is conserved. The equation satisfied by u1, u2 is then just a reformu-
lation of equation (42). ��

In order to solve (43) we first focus on the special case u3 = 0,

∂t

(
u1
u2

)
+

(
0 a

−b 0

) (
u1
u2

)
= 0. (44)

That is, we study the homogeneous solutions of (43). In Lemma 7we then construct
a particular solution for the case u3 �= 0.

As a first heuristic, note that on I1 = (t0,− d
ξ
) it seems reasonable to approxi-

mate

a(t) = c

ξ−2 + t2
≈ c

t2
, (45)

b(t) ≈ 2c. (46)

This approximated problem can be explicitly solved and suggests that

(
u1
u2

)
≈

( γ1
c |t |γ1−1 γ2

c |t |γ2−1

|t |γ1 |t |γ2
) (

α

β

)
, (47)

for suitable constants α, β and γ1 = 1
2 + 1

2

√
1 − 8c2, γ2 = 1

2 + 1
2

√
1 − 8c2. In

the following we will show that this heuristic is indeed valid in the sense that the
actual solution operator has the same asymptotic power law behavior as |t | becomes
small.

In order to establish these asymptoticswemakeuse of a self-improving estimate.
That is we will assume for the moment that there exists some σ < ∞ such that

|u1(t)| � C |t |−σ |u(t0)|, (48)

and show that then u1 and u2 necessarily also satisfy the upper lower bounds given
in Proposition 4. This a priori assumption is established at the end of this Section
in Lemma 8.

Lemma 6. (Improvement)Consider the problem (44) on the interval I1 = (t0,− d
ξ
)

and suppose that u1 satisfies the upper bound (48).
Then there exists a constant C > 0 (independent of ξ, ε, possibly dependent on

c), such that

|u1(t)| � C |t |γ2−1|u(t0)|, (49)

|u2(t)| � C |t |γ2 |u(t0)|, (50)

where γ2 = 1
2 − 1

2

√
1 − 8c2.
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Furthermore, if |u2(t0)| � 0.5|u(t0)|, then at time t = − d
ξ
it holds that

|u1(t)| � C/2

(
d

ξ

)γ2−1

|u2(t0)|,

|u2(t)| � C/2

(
d

ξ

)γ2

|u2(t0)|.
(51)

An analogous result holds on the interval I3 = ( d
ξ
, t1).

Proof of Lemma 6. We note that |b(t) − 2c| � 10ct by Taylor’s formula and
hence treat it as a perturbation.

A toy model In order to introduce our method of proof let us first consider the
approximated problem where we replace a(t) by exactly c

t2
. Then our problem can

be written as

∂t u +
(

0 c
t2−2c 0

)
u =

(
0

O(c|t |)u1
)

,

where by assumption (48)it holds that O(c|t |)u1 = cO(|t |1−σ ). We then consider
a variation of constants ansatz:

u(t) =
( γ1

c |t |γ1−1 γ2
c |t |γ2−1

|t |γ1 |t |γ2
) (

α

β

)
.

Plugging this in, we get that
( γ1

c |t |γ1−1 γ2
c |t |γ2−1

|t |γ1 |t |γ2
)

∂t

(
α

β

)
=

(
0

O(ct)u1(t)

)

⇔ ∂t

(
α

β

)
= c

γ

( |t |γ2 − γ2
c |t |γ2−1

−|t |γ1 γ1
c |t |γ1−1

)(
0

O(ct)u1(t)

)
.

Now using that O(ct)|u1| � Cc|t |1−σ , we get that

|∂tα| � Cc|t |γ2−1|t |1−σ = Cc|t |γ2−σ ,

|∂tβ| � Cc|t |γ1−σ .

Integrating, we obtain that

|α| � C + C |t |1+γ2−σ ,

|β| � C + C |t |1+γ1−σ .

Plugging this into our ansatz it follows that

|u1(t)| � |t |γ1−1(C + |t |1+γ2−σ ) + |t |γ2−1(C + |t |1+γ1−σ )

� C |t |γ2−1 + C |t |1−σ ,

|u2(t)| � |t |γ1(C + |t |1+γ2−σ ) + |t |γ2(C + |t |1+γ1−σ )

� C |t |γ1 + C |t |2−σ + C |t |2−σ .
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Here, we used that γ1 + γ2 = 1, but may also more roughly estimate γ1 + γ2 �
2γ2 > 0.

In particular, we observe that

|u1(t)| � C |t |γ2−1 + C |t |2γ2−σ � C |t |−σ

is a strict improvement over (48) if σ > 1 − γ2 initially. We may then repeat our
argument with (48) with this smaller σ and successively improve until σ = 1−γ2.

With this improved upper bound at hand, we now can establish the lower bounds
(51). For this we observe that

(
α(t0)
β(t0)

)
= S(t0)

−1
(
u1(t0)
u2(t0)

)

≈ c√
1 − 8c2

(
γ1/ct

γ2−1
0 −tγ20

−γ2/ct
γ1−1
0 tγ10

)(
u1(t0)
u2(t0)

)
.

Under the assumption of the lower bound on u2(t0) it thus follows that β(t0) is
bounded below and of comparable size to u2(t0). It thus only remains to show that
(α(t), β(t)) do not deviate too much from this. Here, we use the above developed
bounds on ∂tα and ∂tβ to get

|∂tβ| � c

γ

γ1

c
|tγ1 ||u1(t)||t |Cc,

� |β(t) − β(t0)| = O(c),

|∂tα| � c

γ

γ2

c
|t |γ2−1Cc|t ||u1(t)|

� |α(t) − α(t0)| = O(c3),

where we used that γ2 = 1
2 −

√
1
4 − 2c2 = O(c2). Since c is small, α(t), β(t)

hence indeed do not deviate too much and the result follows.
Proof in the actual model This proof is analogous with the only difference being

that the solution matrix is now not anymore given by power laws but rather by
explicit hypergeometric/Legendre functions, which are bounded above and below
by such power laws.

We note that the problem

∂tψ +
(

0 c
ξ−2+t2

−2c 0

)
ψ = 0,

can be decoupled into two second order equations and that ψ1 solves

∂t (ξ
−2 + t2)∂tψ1 + 2c2ψ1 = 0.

After some changes of coordinates one sees that this is a Legendre type equation

(1 − t2)y′′(t) − 2t y′(t) + ν(ν + 1)y(t) = 0
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for imaginary t , which has the general solution

ψ1(t) = C1P

(
−1

2
+ 1

2

√
1 − 8c2, i tξ

)
+ C2Q

(
−1

2
+ 1

2

√
1 − 8c2, i tξ

)
,

where P is the Legendre function of the first kind and Q is the Legendre function
of the second kind (see the NIST Digital Library of Mathematical Functions [10]
https://dlmf.nist.gov/14). We here write P(ν, z) = Pν(z) = P0

ν (z)). Most impor-
tantly, we are interested in the interval of t where tξ ∈ (c−1, ξ) is very large and
thus can use the asymptotics (https://dlmf.nist.gov/14.8)

P(ν, z) ∼ c1z
ν,

Q(ν, z) ∼ c2z
−ν−1,

which for our purposes becomes tγ1−1, tγ2−1.Here, c1,2 are explicit (if complicated)
coefficients in terms of ν.

The corresponding values of ψ2 can then be obtained from

ψ2 = −ξ−2 + t2

c
∂tψ1,

and the recurrence relation (see https://dlmf.nist.gov/14.10)

(1 − x2)
d

dx
P(ν, x) = νP(ν − 1)(x) − νx Pν(x).

Note that here ν ∼ −γ1,−γ2 was negative. Thus, for our purposes, these functions
asymptotically behave as linear combinations of (ξ t)γ1, (ξ t)γ2 .

Given these homogeneous solutions, we may thus again make the ansatz that

u(t) = S(t)

(
α(t)
β(t)

)
,

where all entries of S(t) are comparable to the power laws obtained above and
det(S(t)) = det(S(t0)) is bounded away fromzero.We remark that the conservation
of the determinant follows from

∂t S + MS = 0,

and note that the trace of M vanishes. ��
Given the solution operator of problem (44), we return to problem (43) and

introduce a particular solution to account for u3.

Lemma 7. (Particular Solution) Consider the problem (43) with initial conditions

u1(t0) = u2(t0) = 0.

https://dlmf.nist.gov/14
https://dlmf.nist.gov/14.8
https://dlmf.nist.gov/14.10
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Then in the notation of Lemma 6 it holds that

|u1
(

−d

ξ

)
| � c|u3(t0)|C

(
d

ξ

)γ2−1

,

|u2
(

−d

ξ

)
| � c|u3(t0)|C

(
d

ξ

)γ2

.

An analogous result holds on I3 = ( d
ξ
, t1).

Proof of Lemma 7. Similarly to the proof of Lemma 6 we consider a variation of
constants ansatz but this time using the solution operator S(t) of the exact problem
(that is, not approximating b). Here, we introduce

f =
(

(b1 + b2)u3
(b1 − b2)u3

)

in order to simplify notation. In particular recall that u3 is conserved and hence
| f (t)| � 2c|u3(t0)| for all times.

We hence consider the ansatz

u(t) = S(t)

(
α(t)
β(t)

)
,

where α(t0) = β(t0) = 0 and S(t) satisfies the power law bounds discussed in
the proof of Lemma 6. In particular, |S−1(t)| � C |t |γ2−1 is integrable in time (by
using the conserved determinant and Cramer’s rule).

Thus, it follows that

S(t)∂t

(
α(t)
β(t)

)
= f,

⇔ ∂t

(
α(t)
β(t)

)
= S(t)−1 f,

and hence,

(α(t), β(t)) =
∫ t

t0
∂s(α(s), β(s)) ds

is bounded by Cc|u3(t0)|. ��
Finally, we return to the proof of the a priori bound by a power law (48).

Lemma 8. Consider the problem (44) on the interval (t0,−δ) with ξ−1 	 δ 	 1,
then there exists a constant C > 0 and σ > 0 such that

|u1(t)| � C |t |−σ ‖(u1, u2)(t0)‖
for all t ∈ (t0,−δ). Here, C and σ may depend on c but are uniform in ξ and δ.

Analogously, for the interval (δ, t1) it holds that

|u1(t)| � C |t |−α‖(u1, u2)(t1)‖.
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Proof of Lemma 8. Our proof is based on concatenating estimates on a large num-
ber of very small intervals, where we can use perturbative arguments.

Thus, consider an interval I = (t0, t0 + ν) ⊂ (−1, δ) with t0 given and ν to be
specified later. Then on this interval it holds that

|b(t) − b(t0)| � 4cν.

We thus write our system as

∂t

(
u1
u2

)
+

(
0 a

−b(t0) 0

)(
u1
u2

)
=

(
0 0

b(t) − b(t0) 0

) (
u1
u2

)
.

Considering the right-hand-side as a perturbation, we make the ansatz
(
u1
u2

)
= S(t)

(
α(t)
β(t)

)
, (52)

where S(t) is the solution operator to the problem with b replaced by b(t0). Then
by Lemma 6 we know that component-wise

S(t) ∼
(− γ1

b(t0)
|t |γ1−1 − γ2

b(t0)
|t |γ2−1

|t |γ1 |t |γ2
)

,

where γ1,2 solve γi (γi − 1) = cb(t0).
We further recall that det(S(t)) is conserved due the vanishing trace in equation

(44) and with the above comparison of the following size:

det(S) ∼ γ2 − γ1

b(t0)
.

Hence, we may easily invert this matrix using Cramer’s rule.
Plugging in this ansatz, we obtain that

∂t

(
α(t)
β(t)

)
= S(t)−1

(
0 0

b(t) − b(t0) 0

)
S(t)

(
α(t)
β(t)

)
.

We now consider the associated Duhamel integral and show that for ν sufficiently
small it yields a small perturbation to the identity. That is, we estimate

∫ t0+ν

t0

∥∥∥∥∥S(t)−1

(
0 0

b(t) − b(t0) 0

)
S(t)

∥∥∥∥∥
op

dt

� b0
γ1 − γ2

4cν
∫ t0+ν

t0

∥∥∥∥∥

( |t |γ2 γ2
b(t0)

|t |γ2−1

−|t |γ1 − γ1
b(t0)

|t |γ1−1

)(
0 0
1 0

)(
− γ1

b(t0)
|t |γ1−1 − γ2

b(t0)
|t |γ2−1

|t |γ1 |t |γ2

)∥∥∥∥∥
op

= b0
γ1 − γ2

4cν
∫ t0+ν

t0

∥∥∥∥∥

(
0 γ2

b(t0)
|t |γ2−1

0 − γ1
b(t0)

|t |γ1−1

) (
0 0
1 0

)(
− γ1

b(t0)
|t |γ1−1 − γ2

b(t0)
|t |γ2−1

0 0

)∥∥∥∥∥
op

.

As |t | < 1, we obtain an upper bound of the integrand by

1

b(t0)2

(
γ 2
2 |t |2γ2−2 + 2γ1γ2|t |−1 + γ 2

1 |t |2γ1−2
)

� 4c2|t |−2 + 4|t |−1 + 4c−2|t |2γ2−1,
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where we used that c � b(t0) � 4c, γ1 + γ2 = 1, γ2 ≈ 4c2 (by Taylor’s approxi-
mation). Here, the last term is integrable in time, the middle term yields a logarithm
and the first term is estimated rather roughly.

We may hence control
∫ t0+ν

t0

∥∥∥∥S(t)−1
(

0 0
b(t) − b(t0) 0

)
S(t)

∥∥∥∥
op

(53)

� b0
γ1 − γ2

4cν

(
c2

t0 + ν
+ ln

(
t0 + ν

t0

)
+ 1

)
. (54)

Here we used that t0 < t0 + ν < 0 to bound the first integral by the larger term.
The case 0 < t0 < t0 + ν is switched accordingly. We hence note that we cannot
choose t0 + ν arbitrarily small, but rather need to require that t0+ν

t0
(respectively its

reciprocal) is not too large. Choosing ν such that

t0 + ν = 1

2
t0, (55)

we thus obtain that (53) is bounded by 4c 	 1, and hence the map
(

α(t0)
β(t0)

)
�→

(
α(t0 + ν)

β(t0 + ν)

)

is comparable to the identity within a factor 2, provided ν satisfies (55). It thus
follows that |u(t)| also only grows by a constant factor bounded by 100 on the
interval (t0, t0 + ν) = (t0, t0/2). In order to establish the desired bound on all of
I1 = (t0, δ), we partition our interval as

(t0, t0/2), (t0/2, t0/4), . . . , (2δ, δ).

In order to reach a given t ∈ I1, we then concatenate | ln(t/t0)|/ ln(2) intervals and
thus obtain that

‖(u1(t), u2(t))‖ � 100| ln(t/t0)/ ln(2)|‖(u1, u2)(t0)‖ = |t/t0|− ln(100)/ ln(2)‖(u1, u2)(t0)‖.
This concludes the proof of our rough upper bound with σ = ln(100)/ ln(2). ��
5.1.2. The Interval I2 In order to study the evolution of (39) on the middle
interval I2 we use a different approach based on the convergent limit of iterated
Duhamel integration. This method of proof also readily extends to the full (inho-
mogeneous) problem, which is discussed in more detail in Proposition 6. We again
expect the behavior to be similar to the solution derived in Lemma 3 for the two
mode model and thus exhibit growth and decay by powers ξ+1, ξ−1, as formulated
in the following lemma:

Lemma 9. (Middle interval, homogeneous case) In the homogeneous case on the
middle interval I2 = (− d

ξ
, d

ξ
), u3 is again conserved and

⎛

⎝u1
(
d
ξ

)

u2
(
d
ξ

)

⎞

⎠ ≈
(

1 Ccξ
2cd
ξ

1

)⎛

⎝ u1
(
− d

ξ

)

u2
(
− d

ξ

)
,

⎞

⎠
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where C = arctan(ξ t)|
d
ξ

− d
ξ

= 2 arctan(d).

In particular, at time t2 = + d
ξ
it holds that

u1(t2) ≈ Ccξu2(t1) ≈ 2Cc1−γ2ξ1−γ2
γ1

γ2 − γ1
u2(t0),

u2(t2) ≈ u2(t1) ≈ 2c−γ2ξ−γ2
γ1

γ2 − γ1
u2(t0).

Proof. An explicit solution can be given in terms of hypergeometric functions, as
we explore in the “Appendix A”. A more useful and shorter proof for our purposes
considers an expansion in terms of the Duhamel iteration. Here, it turns out that
the first Duhamel iteration is dominant and all higher order Duhamel iterations
can be estimated in a geometric series. Since the statement of the inhomogeneous
case includes this result as a special case, in order to avoid duplication, we refer to
the proof of Proposition 6 for details. Concerning the asymptotics, we recall from
Proposition 4 that

u1(t1) ≈ c2−γ2ξ1−γ2u2(t0),

u2(t1) ≈ c−γ2ξ−γ2u2(t0).

Hence, it follows that
(

1 Ccξ
2cd
ξ

1

) (
u1(t1)
u2(t1),

)

≈ u2(t0)

(
1 cCξ
2
ξ

1

) (
c2−γ2ξ1−γ2

2c−γ2

)

≈ u2(t0)

(
2Cc1−γ2ξ1−γ2

2c−γ2ξ−γ2

)
.

��

5.1.3. The Interval I3 It remains to discuss the evolution on the interval I3 =
( d

ξ
, t1). Since this interval roughly corresponds to a mirror image of I1, we follow

a similar method of proof as in Section 5.1.1, except that the time direction is in a
sense reversed. For this reason, we additionally have to consider the inverse of the
solution matrix.

Lemma 10. (Right interval, homogeneous case) Let ξ � 1 and 0 < c < 0.2 be
given. We consider the problem (39) on the interval I3 = ( d

ξ
, t1) Then under the

assumptions of Theorem 7 it holds that

u1(t1) ≈ c−1−γ2ξ−γ2u1

(
d

ξ

)
− c1−γ2ξ1−γ2u2

(
d

ξ

)
≈ ξγ c1−2γ2ξγ u2(t0)

u2(t1) ≈ 2c1−γ2ξ−γ2u1

(
d

ξ

)
− 2c2−γ2ξ1−γ2u2

(
d

ξ

)
≈ ξγ c2−2γ2u2(t0),

u3(t1) = u3(t0).
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We note that u1( dξ ) is multiplied by a negative power of ξ while u2( dξ ) is multiplied
with a positive power of ξ .

Proof of Lemma 10. This proof is largely analogous to the one of Proposition 4
in the sense that the inverse solution operator u(t1) �→ u( d

ξ
) satisfies the same

(asymptotic) estimates.
As a first heuristic let us again consider the approximated two-mode model,

where
⎛

⎝u1
(
d
ξ

)

u2
(
d
ξ

)

⎞

⎠ ≈
⎛

⎝
(
d
ξ

)γ1−1 (
d
ξ

)γ2−1

γ2
c

(
d
ξ

)γ1 γ1
c

(
d
ξ

)γ2

⎞

⎠ S(t1)
−1

(
u1(t1)
u2(t1)

)

⇔
(
u1(t1)
u2(t1)

)
= S(t1)

⎛

⎝
(
d
ξ

)γ1−1 (
d
ξ

)γ2−1

γ2
c

(
d
ξ

)γ1 γ1
c

(
d
ξ

)γ2

⎞

⎠
−1 ⎛

⎝u1
(
d
ξ

)

u2
(
d
ξ

)

⎞

⎠ .

Now note that
⎛

⎝
(
d
ξ

)γ1−1 (
d
ξ

)γ2−1

γ2
c

(
d
ξ

)γ1 γ1
c

(
d
ξ

)γ2

⎞

⎠
−1

= c

γ1 − γ2

⎛

⎜⎝
γ1
c

(
d
ξ

)γ2 −
(
d
ξ

)γ2−1

− γ2
c

(
d
ξ

)γ1
(
d
ξ

)γ1−1

⎞

⎟⎠ .

Thus, in this model, we may compute that

(
u1(t1)
u2(t1)

)
=

(
tγ11 tγ21

γ2
c t

γ1−1
1

γ1
c t

γ2−1
1

)
⎛

⎜⎝
γ1
c

(
d
ξ

)γ2 −
(
d
ξ

)γ2−1

− γ2
c

(
d
ξ

)γ1
(
d
ξ

)γ1−1

⎞

⎟⎠

⎛

⎝u1
(
d
ξ

)

u2
(
d
ξ

)

⎞

⎠

≈
⎛

⎜⎝
γ1
c

(
d
ξ

)γ2 −
(
d
ξ

)γ2−1

2c
(
d
ξ

)γ2 − γ2
c

(
d
ξ

)γ2−1

⎞

⎟⎠

⎛

⎝u1
(
d
ξ

)

u2
(
d
ξ

)

⎞

⎠

=
( γ1

c d
γ2 −dγ2−1

2c dγ2 − γ2
c d

γ2−1

) ⎛

⎝ ξ−γ2u1
(
d
ξ

)

ξ1−γ2u2
(
d
ξ

)

⎞

⎠

≈
( γ1

c d
γ2 −dγ2−1

2c dγ2 − γ2
c d

γ2−1

) (
2Cc1−γ2 γ1

γ2−γ1

2c−γ2 γ1
γ2−γ1

)
ξγ u2(t0),

where we considered smaller powers of ξ as errors and denoted γ = 1 − 2γ2 =
2
√

1
4 − 2c2 = √

1 − 8c2. Choosing d = c−1 and recalling that γ2 ≈ 2c2 by
Taylor’s approximation, γ1 ≈ γ ≈ 1, and we may further approximate to get

( γ1
c d

γ2 −dγ2−1

2c dγ2 − γ2
c d

γ2−1

)(
2Cc1−γ2 γ1

γ2−γ1

2c−γ2 γ1
γ2−γ1

)

≈
(
c−1−γ2 −c1−γ2

2c1−γ2 −2c2−γ2

)(
2Cc1−γ2

2c−γ2

)

=
(

Cc2γ2 − 2c1−2γ2

2Cc2−2γ2 − 4c2−2γ2

)
≈

(−2c1−2γ2

C̃c2−2γ2

)
.
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In particular, we stress that u1(t1) � c−1u2(t1) is much bigger provided that c is
sufficiently small.

It remains to discuss the extension to the full problem. We note that under
the transformation (u1(t), u2(t), u3(t)) �→ (−u1(−t), u2(−t), u3(−)) we obtain
an analogous problem as the one considered on I1 in Section 5.1.1 except that t0
is replaced by −t1 and b(t) is replaced by b(−t). By the same arguments as in
Section 5.1.1 it hence follows that the solution operator u(t) := S(t)u(t1) is of the
form

S =
⎛

⎝ S′ b
c

0 0 1

⎞

⎠ ,

where S′ is asymptotically well-approximated by our two-mode model heuristic.
We may then explicitly compute the inverse of S as

S(t)−1 =
⎛

⎝ S′−1 b̃
c̃

0 0 1

⎞

⎠ ,

(
b̃
c̃

)
= −S′−1

(
b
c

)
,

where we can use Cramer’s rule for inverting S. As we know that S( d
ξ
) is well-

approximated by the power laws the result for the full model hence follows by the
exact same argument as we discussed for the approximate model above. ��

In the following section we use multiple bootstrap arguments to show that this
behavior persists in the full problem.

5.2. The Full Model

Building on the results for the three-mode model of Section 5.1 we show in the
following that the full dynamics have the same asymptotic behavior. In particular,
this shows that if the logarithmic constraint imposed in prior works is removed
this imposes not only technical challenges but results in different asymptotics.
In Section 5.3 we crucially rely on this improvement to construct solutions with
initial data inGevrey regularitywhich exhibit infinitelymany cascades of arbitrarily
long length. Furthermore, they diverge in (any) Sobolev regularity but their force
field nevertheless converges. Damping persists despite the failure of scattering. The
estimates for a single resonance in the full problem are summarized in the following
theorem:

Theorem 8. (Summary) Let c ∈ R with 0 < |c| < 0.1 and let ξ � 1. Let u be the
solution of the full model (34):

∂t u(k) + a(k + 1)u(k + 1) − a(k − 1)u(k − 1) = 0,
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on (t0, t1). Suppose that at time t0 it holds that u(k0) � 0.5max |u| =: 0.5θ and
define γ = √

1 − 8c2. Then there exists a constant C > 0 such that it holds that,
at time t = t1,

|u(k)| � Cξγ θ

for all k and

|u(k0 − 1)| � C

2
ξγ θ.

In particular, u at time t1 satisfies the assumptions imposed at time t0. We may
therefore apply this theorem again on the next time interval.

As in Section 5.1 we split our proof into considering the three intervals I1, I2, I3
and then combining the respective estimates to establishTheorem8.On the intervals
I1 and I3 we employ a bootstrap approach and a variation of constants ansatz to
control the effect of non-resonant modes. In the center interval I2 we instead are
able to explicitly construct a solution operator by Duhamel iteration. We stress that
if the logarithmic smallness condition is imposed this approach can be used on
the full interval (see Section 3) but that this cannot work without this constraint.
Indeed, higher order Duhamel iterations are much larger (by powers of logarithms)
than the first iteration and their cancellations yield the modified exponent.

5.2.1. The Interval I1 As in Section 5.1.1, our main aim of this section is to
show that on the interval I1 now for the full solution the mode u(k0 ± 1) increases
with a power law ξ1−γ2 , while u(k0) decreases with a power law ξ−γ2 , with γ2 as
in Theorem 8. Compared to Proposition 4 a main challenge here is given by the
coupling to other modes than k0−1, k0, k0+1, which appear as a right-hand-side in
the inhomogeneous problem and themselves evolve. Our strategy in the following
is thus to assume that we can control all modes in an appropriate way at least for
some small positive time, which is quantified in the bootstrap ansatz (59) to (63).
Using the equations we then show that all controls improve on that time interval
and hence must remain valid on the whole interval I1. We summarize our results
in the following proposition:

Proposition 5. (Left interval, inhomogeneous case) Let c ∈ R with 0 < |c| < 0.1
and let ξ � 1. Let u be as in Theorem 8. Then at − d

ξ
= − 1

cξ it holds that

u(k0) ≈ θ c

(
d

ξ

)γ2

, (56)

u(k0 ± 1) ≈ θ c

(
d

ξ

)γ2−1

, (57)

u(k) � Cθ, (58)

where C = (ec − 1)
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Proof. By linearity without loss of generality we may set θ = 1.
Then at least for small positive time it holds that

u(k0) ≈ cu2(t0)|t |γ2 , (59)

(u(k0 + 1) − u(k0 − 1)) ≈ cu2(t0)|t |γ2−1, (60)
(
u(k0 + 1) + u(k0 − 1)

2

)t

t0

� e4.1c(t−t0) − 1 + (tγ2 − tγ20 ), (61)

u(k) � e2.1c(t+1) − 1 + C(tγ2 − tγ20 ) else, (62)

‖u 1|k−k0|�2‖l2(t) � e4.1c(t−t0)‖u 1|k−k0|�2‖l2(t0). (63)

Here 1|k−k0|�2(k) ∈ {0, 1} denotes the characteristic function and we denoted
u2(t0) = u(k0)|t=t0 in analogy to the notation of the homogeneous model of Sec-
tion 5.1.

In what follows we argue by bootstrap that the maximal time satisfying these
estimates is given by T = 1

cξ .

Indeed, suppose there were T < 1
cξ maximal with these properties. We then

show that all conditions (59) to (62) do not achieve equality at time T and that
hence T could be chosen larger by continuity, which contradicts the maximality.

Ad (61) In a fashion similar as to Lemma 5, we may use the symmetry of the
problem to compute that

∂t (u(k0 + 1) + u(k0 − 1)) = −a(k0 + 2)u(k0 + 2) + a(k0 − 2)u(k0 − 2))

⇒ |u(k0 + 1) + u(k0 − 1)||tt0 � c
∫ T

t0
(|u(k0 + 2)|

+ |u(k0 − 2)|)

� 2c
∫ T

t0
e4.1c(t−t0) + (

tγ2 − tγ20
)
.

We may then roughly control |tγ2 − tγ20 | � 1 � e4.1c(t−t0) and thus control the
integral by

4

4.1

(
e2.1c(T−t0) − 1

)
<

(
e4.1c(T−t0) − 1

)
.

Thus, equality in (61) is not attained at time T .
Ad (62) First suppose in addition that k �= k0 + 2, k0 − 2. Then it holds that

u(k)|Tt0 =
∫ T

t0
−a(k + 1)u(k + 1) + a(k − 1)u(k − 1) � 4c

∫ T

t0
e4.1c(t−t0) dt

= 4

4.1

(
e2c(T−t0) − 1

)
< e2c(T−t0) − 1,

where we again estimated |tγ2 − tγ20 | � 1 � e4.1c(t−t0) and used that |a(k)| � c
unless k = k0.
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If k = k0 ± 2,
∫ T
t0

∂t u(k) additionally involves
∫ T

t0
a(k0 ± 1)u(k0 ± 1) dt � ctγ1,2 |Tt0 ,

which is controlled by tγ1,2 − t
γ1,2
0 .

Ad (63) Taking a time-derivative of the energy, that is the left-hand-side, we get
that

∂t E(t) � 4cE(t) + c|u(k0 + 2)||u(k0 + 1)| � 4cE(t) + c(e4.1ct + 2)(tγ2 − tγ20 ).

The estimate hence follows by Gronwall’s lemma or by multiplying with e−4ct and
then integrating.

The main part of the proof is thus given by the proof of the estimates for u(k0)
and u(k0 + 1) − u(k0 − 1).

Ad (59) and (60) Following a similar argument as in the proof of Proposition 4,
we study the inhomogeneous problem for (

u(k0+1)−u(k0−1)
2 , u(k0)) =: (u1, u2):

∂t

(
u1
u2

)
+

(
0 a
b 0

) (
u1
u2

)
= −

(
a(k0 + 2)u(k0 + 2)/2 − a(k0 − 2)u(k0 − 2)/2

(a(k0 + 1) − a(k0 − 1))(u(k0 + 1) + u(k0 − 1))/2

)

=: f.

As in Lemma 6 we make a variation of constants ansatz, where for simplicity
of notation write our calculations in terms of the power law solutions of the ap-
proximate model. By the estimates of Section 5.1, the solution operator S(t) of the
full model is comparable, and hence the exact same proof immediately applies:

(
u1
u2

)
= S(t)

(
α(t)
β(t)

)
≈ α(t)

(
tγ1−1

tγ1 γ2
c

)
+ β(t)

(
tγ2−1

tγ2 γ1
c

)
.

Solving at time t0, we obtain(
α(t0)
β(t0)

)
= S(t0)

−1
(
u1(t0)
u2(t0)

)

≈ 1√
1 − 8c2

(
γ1t

γ2−1
0 −ctγ20

−γ2t
γ1−1
0 ctγ10

) (
u1(t0)
u2(t0)

)
.

Here, in the proof of Proposition 4 we concluded by noting that only β(t1) =
β(t1) ≈ cu2(t0) is relevant at t1 (due to the smaller powers ξ for α). In order to
establish the desired bounds in this inhomogeneous case, we hence need to show
that α, β do not deviate from this too much. We compute

∂t

(
α

β

)
= −c

(
tγ1−1 tγ2−1

tγ1 γ2
c tγ2 γ1

c

)−1

f

= − c2√
1 − 8c2

(
tγ2 γ1

c −tγ2−1

−tγ1 γ2
c tγ1−1

)
f.

By estimates (62) and (61) we note that | f | � c and we further note that the
integrals of tγ1, tγ1−1 are uniformly bounded, while

∫
tγ2−1 � 1

γ2
� c−2, where

we used that γ2 ≈ 2c2. Hence, in total it follows that (α, β)|tt0 � C(c, c3) for all
times and therefore (α(t), β(t)) ≈ (α(t0), β(t0)), which implies the result. ��
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5.2.2. The Interval I2 As in Section 5.1.2, we next study the evolution, now of
the full solution, on the middle interval I2 = (− d

ξ
, d

ξ
). Here again our main aim is

to quantify the growth and decay of the three modes k0 + 1, k0, k0 − 1 and control
all other modes. In particular, we again are focused on the power law dependence
in terms ξ for ξ large, which arises from the evolution on I2 and the one on I1
studied in the previous section.

Since the interval I2 is shorter the larger ξ is, in what follows we rely on a
characterization of the solution in terms of a Duhamel series (see also Section 3
for the associated notion of paths). We then first study the evolution for initial data
concentrated on the resonant mode k0 in Lemma 11, which includes with a power
law ξ1. If the initial data is instead concentrated on a non-resonant mode as in
Lemma 12 the contribution is small. Combining both cases and using the linearity
of the solution operator in the initial data, we obtain the following main proposition
of this subsection:

Proposition 6. (Middle interval, inhomogeneous case) Let u be as in Theorem 8.
Then at time d

ξ
it holds that

u(k0 ± 1)|d/ξ
−d/ξ ≈ Ccξu(k0, t1) ≈ θ Cc1−γ2ξ1−γ2 ,

u(k0)|d/ξ
−d/ξ ≈ c

ξ
u(k0 ± 1, t1) ≈ θ c−γ2ξ−γ2 ,

u(k)|d/ξ
−d/ξ � cd

ξ
u(k0 ± 1, t1) � θ c1−γ2ξ1−γ2 ,

where C = 2 arctan(d) ≈ π .

We here use the Duhamel iteration, which we phrase as properties of the solution
map for singlemode initial data. Arbitrary initial data can then be realized as a linear
combination. We emphasize that on this short time interval the action k0 �→ k0 ± 1
is large (of size Ccξ ), while all other actions are small perturbations of the identity.

Lemma 11. Suppose that at time − d
ξ
it holds that u(k) = δkk0 . Then at time d

ξ
, u

satisfies

1. |u(k0) − 1| � 1
1−c1

c2
1−c2

,

2. |u(k0 ± 1) ∓ 2cξ arctan(ξ t)|d/ξ
−d/ξ | � 2c

1−4c2d
2cξ arctan(ξ t)|t1t0 ,

3. |u(k)| � | c
ξ
||k−k0|−1 1

1−c else,

where c1 = 4cd
ξ

= 4
ξ
and c2 = 8c2d arctan(ξ t)t2t1 = 8c arctan(d) ≈ 4πc.

Proof. Ad (i) Let γ = (k0, . . . , k0) be a path starting and ending in k0, then we
may roughly estimate

∫∫

t0�τ1�···�t1

∏

i

a(γi , τi )sgn(γi+1 − γi ) dτi
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by

∏
‖a(γi , τi )‖L1([−d/ξ,d/ξ ]) =

(
2cd

ξ

) j1 (
cξ arctan(ξ t)|d/ξ

−d/ξ

) j2
,

where j1 corresponds to the number of non-resonance and j2 to the number of
resonances γi = k0 (recall that the last entry of γ does not appear in the integral).
Then in order to start end in k0 it needs to hold that j1 � j2, since we have to come
back to k0 before leaving it again. Thus, the contribution of the path γ is controlled
by

(
2cd

ξ

) j1− j2 (
2c2d arctan(ξ t)|d/ξ

−d/ξ

) j2
.

Estimating the number of paths of given length j1 + j2 by 2 j1+ j2 the sum over the
integrals of all such paths can be controlled by

1

1 − 4cd
ξ

8c2d arctan(ξ t)|d/ξ
−d/ξ

1 − 8c2d arctan(ξ t)|d/ξ
−d/ξ

,

where we used that j2 � 1.
Ad (ii) Let us first consider the special paths γ = (k0, k0 ± 1), which yield an

integral

∓
∫ d/ξ

−d/ξ

a(k0) dτ = ∓cξ arctan(ξ t)|d/ξ
−d/ξ � 1.

For any other paths γ starting in k0 and ending in k0 ± 1, we may again roughly
bound the integral by

(
2cd

ξ

) j1 (
cξ arctan(ξ t)|d/ξ

−d/ξ

) j2
,

where now j1 � j2 − 1 � 0 and we already treated j2 = 1, j1 = 0 separately. We
may thus express this bound as

(
2cd

ξ

) ĵ1 (
2c2d arctan(ξ t)|d/ξ

−d/ξ

) ĵ2 (
cξ arctan(ξ t)|d/ξ

−d/ξ

)
,

where ( ĵ1, ĵ2) = (0, 0) is excluded. Again estimating the number of such paths

from above by 2 ĵ1+ ĵ2+1 and summing the geometric series, we obtain the desired
result.

Ad (iii) Let k �∈ {k0 − 1, k0, k0 + 1}. Then given a path γ = (k0, . . . , k) there is
a last time where γi = k0, after which the remainder path is non-resonant at least
|k − k0| times. Grouping all paths with the same remainder, we first estimate the
contribution by the segments up to the last resonance as in (i) by

1

1 − 4cd
ξ

8c2d arctan(ξ t)|d/ξ
−d/ξ

1 − 8c2d arctan(ξ t)|d/ξ
−d/ξ
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and then estimate the sum over all possible remainders by

∑

j�|k−k0|

(
4cd

ξ

) j

= 1

1 − 4cd
ξ

(
4cd

ξ

)|k−k0|
,

where we again introduced a factor 2 j to account for the number of all remainders
of a given length. ��
Lemma 12. Let l �= k0 and suppose that at time − d

ξ
it holds that u(k) = δkl . Then

u satisfies

u(k)|d/ξ
−d/ξ �

(
4cd

ξ

)|k−l|
+

(
4cd

ξ

)|k−k0|+|l−k0|−1 (
8c2d arctan(tξ)|d/ξ

−d/ξ

)

× 1

(1 − 4cd
ξ

)2

1

1 − 8c2d arctan(tξ)|d/ξ
−d/ξ

.

Here, with slight abuse of notation |a−b| denotes the minimal path length between
a and b, i.e. |a − a| = 2.

Proof. Let k ∈ Z be given. Consider first the case of a purely non-resonant path
γ , which can be estimated by

(
2cd

ξ

)|γ |
.

Any such path has length at least |k − l| (with |l − l| = 2). The first summand in
the above estimate is hence obtained by a geometric series.

Next consider a pathwith at least one resonance.Wegroup all paths that share the
segment from first to last resonance and observe that at least |l−k0| non-resonances
are needed to reach k0 for the first time and at least |k − k0| − 1 non-resonances to
reach k from k0. We then may again control the sum over all path segments from k0
to k0 as in the previous lemma and control the first and last segment by a geometric
series. ��

Using the result of the preceding lemmas, we can now prove Proposition 6.

Proof of Proposition 6. By linearity we may decompose our initial data u(t1) as

u(t1) = u(t1)|k=k0 + u(t1)|k∈{k0−1,k0+1} + ur (t1).

Then by Lemma 12 and the bound on ur (t1) established in Proposition 5, we may
estimate its contribution to u(t2) by

((
4

ξ

)|·|
∗ ur (t1)

)
(l) + Cc

(
4

ξ

)|l−k0| ((
4

ξ

)|·−k0|−1

∗ ur (t1)

)
(l),

where C = 16 arctan(d)

(1− 4
ξ
)2(1−16c arctan(d))

. This contribution is thus very smooth and small

and can be considered a perturbation.
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Concerning the contributions by k0 and k0 ±1, we note that Lemmas 11 and 12
combined with the bounds on u(t1) established in Proposition 5 control u(k) for
k ∈ {k0 − 1, k0, k0 + 1} in the desired way and show that

( u(k0+1)−u(k0−1)
2

u(k0)

)
|t=t2 ≈

(
1 2Ccξ
1
ξ

1

)( u(k0+1)−u(k0−1)
2

u(k0)

)
|t=t1 .

We thus conclude as in the proof of Lemma 9. ��

5.2.3. The Interval I3I3I3 It remains to control the evolution of the full equation
on the right interval I3, where we are gain focused on the power law dependence
in terms of ξ . Combining the growth and decay behavior on this interval with
the descriptions derived in the previous subsections, we can then conclude our
proof of Theorem 8 and thus obtain a description of the growth of our solution on
the full resonant interval I1 ∪ I2 ∪ I3. Subsequently, in Section 5.3, we combine
several of these intervals (for different k) to construct chains of resonance and
associated solutions exhibiting norm inflation. Furthermore, we combine countably
many chains to construct solutions with non-trivial asymptotic behavior.

Similarly to Section 5.1.3 we observe that the right interval is basically a mirror
image of the left interval I1 and can hence be treated in a similar way as in Sec-
tion 5.2.1 except that the time direction is in a sense reversed. Thus, we additionally
have to control inverses of the solution operator.

Proposition 7. (Right interval, inhomogeneous case) Let u be as in Theorem 8.
Then it holds that at time t1, all modes satisfy

u � Cξγ ,

and u(k0 ± 1) is bounded below by C
2 ξγ .

Proof. We again make a bootstrap ansatz similar to the one in Proposition 5, but
now take into account the different powers of ξ on different modes:

u(k0 + 1) − u(k0 − 1) ≈ 2θcξγ t1−γ2 (64)

u(k0) ≈ θ |ξ |γ tγ1, (65)

u(k0 + 1) + u(k0 − 1)|td/ξ � ξγ (e4.1c(t−d/ξ) − 1 + tγ1 − d/ξγ1), (66)

u(k) � ξγ (e4.1c(t−d/ξ) − 1 + tγ1 − d/ξγ1) else. (67)

Ad (67) and (66): Here, we again use that u(k), u(k0+1)+u(k0−1)
2 � ξγ at time

d/ξ and thus estimate

∫ t

d/ξ

∂t u � 2cξγ e4.1c(t+1) < ξγ (e4.1c(t+1) − 1),

where we roughly estimate tγ1 − d/ξγ1 � 1 � e4.1c(t−d/ξ) again.
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Ad (64) and (65): We make the same variation of constants ansatz as in the
proof of Proposition 5 and again for simplicity of notation write the power law
approximate solutions instead. Thus consider

(
u1
u2

)
= S(t)

(
α(t)
β(t)

)
≈ α(t)

(
tγ1−1

tγ1 γ2
c

)
+ β(t)

(
tγ2−1

tγ2 γ1
c

)
.

Here, as in the proof of 6 in the following we present our argument in terms the
approximate coefficients for simplicity of notation.

We first compute α, β|d/ξ by solving
(

α

β

)
|t= d

ξ
=

(
tγ2 γ1

c −tγ2−1

−tγ1 γ2
c tγ1−1

)
|t= d

ξ

(
u1
u2

)
|t= d

ξ
.

Plugging in the relations between ξ−γ2u1(t2) and ξ1−γ2u2(t2), we see that this
contribution satisfies the claimed estimates.

It hence remains again to study the perturbations due to the inhomogeneity. As
in the proof of Proposition 5 we compute

∂t

(
α

β

)
= −c

(
tγ1−1 tγ2−1

−tγ1 γ2
c tγ2 γ1

c

)−1

f.

Plugging in our bounds (66) and (67) by Cξγ into f and integrating it follows that
∣∣∣∣

(
α

β

)
|t
t= d

ξ

∣∣∣∣ 	 cξγ .

Thus, the value of (α, β) at time d
ξ
is dominant and satisfies the estimates. ��

This concludes the proof of Theorem 8, which established growth of certain
modes of our solution around the time η

k with a rate proportional to (
ξ

k2
)γ . As

sketched in Section 3 in the following sectionwe connect this growth on subsequent
time intervals (for k, k − 1, k − 2, . . .) to form an echo chain, which exhibits norm
inflation. Furthermore, since we do not require any smallness condition on η unlike
prior works we can can consider ξ arbitrarily large. Furthermore, using the linearity
of the equation and considering families of frequency which are well separated, we
can construct solutions which exhibit infinitely many echo chains of increasing
lengths. In particular, these solutions do not become trivial after a final resonant
time and can hence exhibit non-trivial asymptotic behavior like blow-up.

5.3. Modified Scattering and Inviscid Damping

In the preceding sections we have shown that the linearized Euler equations
(7) exhibit resonances due to the Orr mechanism. In particular, we showed that
the logarithmic smallness constraint imposed in prior works is not only a technical
restriction but that for large frequencies the asymptotics differ greatly, which man-
ifests in a modified exponent. Furthermore, removing this constraint allows us to
consider initial data which is not compactly supported in Fourier space.
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As our main result we thus show that the linearized Euler equations not only
exhibit full echo chains and the associated Gevrey norm inflation but that for data
in a critical Gevrey regularity class we obtain blow-up and damping at the same
time. That is, we construct smooth initial data ω0 ∈ GC, 12

which exhibits infinitely
many resonance chains of arbitrarily long length. For this solution any Sobolev
norm ‖ω(t)‖Hs , s � 0 diverges to infinity as time tends to infinity but despite this
the associated velocity perturbation converges. Linear inviscid damping persists
despite the failure of scattering and nearby traveling wave-like solutions are the
underlying cause of Gevrey blow-up! We stress that one of the main challenges we
had to overcome in this work is that one has to be able to consider infinitely many
echo chains of increasing length. In particular, one has to allow for arbitrarily large
frequencies, while prior works had imposed a logarithmic smallness constraint.

Theorem 9. (Modified Scattering) Let 0 < c < 0.2 be given. Then there exists
C0 = C0(c) such that if ω0 ∈ GC, 12

with C > C0 then ω(t) ∈ GC−C0,
1
2
globally in

time and u(t) converges in GC−C0,
1
2
as t → ∞.

On the other hand, for every C < C0/2 and every s ∈ R, there existsω0 ∈ GC, 12

such that supt∈[0,∞) ‖ω(t)‖Hσ = ∞ for any σ � s but such that ω(t) converges
in Hs− as t → ∞.

Furthermore, for s � 0 the corresponding velocity field converges strongly in
L2 to a shear flow as t → ∞. Linear inviscid damping holds despite the divergence
of ω(t) in higher regularity.

Proof. We proceed similarly as in the case of Theorem 6. Consider a frequency
η � 1 and let 1 	 k � √

η to be fixed later. Then by the local well-posedness

established in Section 2 we may prescribe smooth initial data ω
η,k
0 such that at the

time t = η
k , ω is given by eiηy+ikx . Then, we iteratively apply Theorem 8 to obtain

that after time t = 2η, the mode eiηy+i x is the largest (within a factor) and of size

Ck
(

ηk

(k!)2
)γ

,

where we used that ξ = η

k2
changes in each step. We may choose k = kη to

maximize this product, which leads to factor exp(C̃γ
√

η) =: g(η). Furthermore,
by Proposition 1 after this time t = 2η, the evolution is asymptotically stable and
a small perturbation of the identity.

Let now ψ ∈ Hs(R) be given and consider the initial datum:

ω0 =
∫

η

1

g(η)
ψ̃(η)ω

η,kη

0 .

Then by the definition of g(η) and the properties of the evolution, ω(t)will asymp-
totically to leading order be given by

ω∞ = eix
∫

η

ψ̃(η)eiηy dη = eixψ(y).
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We can thus prescribe final data. We further observe that 1
g(η)

� exp(−C
√

η)

and thus ω0 ∈ GC, 12
. Our proof thus concludes by choosing ψ ∈ Hs \ Hσ

appropriately. ��

6. Discussion

In view of applications to the nonlinear dynamics we note that we have several
competing (de)stabilizing effects, whose interaction makes this a very challenging
problem:

– On the one hand the norm inflation mechanism of Section 5 and similarly
discussed in [5] shows that the vorticity may exhibit instability unless it is
initially small in a sufficiently strong Gevrey class.

– On the other hand resonant times are well-separated and for any given η there
are no resonances after time η. In particular, in the present problem fixing any
finite radius R as a frequency cut-offF−1χBRFω and its corresponding velocity
field do converge irrespective of the regularity of the initial data.

– Any instability will thus have to sustain a sequence of infinitely many separate
echo chains for a sequence of times tending to infinity to ensure that the flow
is not asymptotically stable after all (see Sections 2 and 5.3).

– While such a sequence of echo chains can be constructed in our model due
to its decoupling structure (see Section 5.3), in the full nonlinear problem the
conservation of enstrophy limits the possible relative growth. That is the con-
servation law imposes a hard ceiling for instability in that the L2 energy remains
bounded uniformly. Hence, it might be that the linear(!) instability mechanism
of echoes is only applicable for finite times, after which the enstrophy limits
further growth and the asymptotic stability of Section 2 takes over.
Here the modified scattering results of Section 5.3 and [16] provide a first
indication that this may result in non-trivial but asymptotically stable behavior.

We further stress that, while stability of the linearized problem in Sobolev [12,14,
15] andGevrey spaces [8] is fundamental to attack the nonlinear problem, this article
shows that it is further essential to understand the linearization around non-shear
low frequency perturbations, which appear naturally in the nonlinear problem.

In the present work we have, for simplicity of calculation and presentation,
considered a single-mode perturbation c cos(x).We expect analogous results to also
hold formore general finite sumsof small frequencyperturbations, though involving
quite involved calculations. Our choice cos(x) is motivated by its simplicity and
the fact that, as an eigenfunction of the Laplacian, it is a stationary solution of the
Euler equations in Lagrangian coordinates with respect to Couette flow.
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A. Special Functions and a Proof of Theorem 4

As mentioned in Section 4, the problem

∂2t u + c2

ξ−2 + t2
u = 0, t ∈ (−1, 1)

allows for an explicit solution in terms of special functions,whichwediscuss in the following.
Since these explicit solutions are not available for perturbed coefficients or stable under
further perturbation, in Sections 4 and 5 we have instead opted to study (and control) the
evolution on three intervals I1, I2, I3 and, in particular, establish the growth and decay of
u and ∂t u on each interval. The interaction of these growths and decays then results in the
same power law growth as we observe in the following for the special functions:

Proof of Theorem 4. Denoting ξ = k2
η for simplicity of notation, one may obtain the

following explicit solution for boundary conditions u(−1) = 1, ∂t u(−1) = 0 (e.g. using
Mathematica)

( − 3c2t 2F1

(
3

4
− 1

4

√
1 − 4c2,

1

4

√
1 − 4c2 + 3

4
; 3
2
; − 1

ξ2

)

2F1

(
1

4
− 1

4

√
1 − 4c2,

1

4

√
1 − 4c2 + 1

4
; 3
2
; − t2

ξ2

)

− c2 2F1

(
5

4
− 1

4

√
1 − 4c2,

1

4

√
1 − 4c2 + 5

4
; 5
2
; − 1

ξ2

)

2F1

(
−1

4

√
1 − 4c2 − 1

4
,
1

4

√
1 − 4c2 − 1

4
; 1
2
; − t2

ξ2

)

+ 3ξ2 2F1

(
1

4
− 1

4

√
1 − 4c2,

1

4

√
1 − 4c2 + 1

4
; 3
2
; − 1

ξ2

)

2F1

(
−1

4

√
1 − 4c2 − 1

4
,
1

4

√
1 − 4c2 − 1

4
; 1
2
; − t2

ξ2

)
)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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/
(
3c2 2F1

(
1

4
− 1

4

√
1 − 4c2,

1

4

√
1 − 4c2 + 1

4
; 3
2
; − 1

ξ2

)

2F1

(
3

4
− 1

4

√
1 − 4c2,

1

4

√
1 − 4c2 + 3

4
; 3
2
; − 1

ξ2

)

− c2 2F1

(
−1

4

√
1 − 4c2 − 1

4
,
1

4

√
1 − 4c2 − 1

4
; 1
2
; − 1

ξ2

)

2F1

(
5

4
− 1

4

√
1 − 4c2,

1

4

√
1 − 4c2 + 5

4
; 5
2
; − 1

ξ2

)

+ 3ξ2 2F1

(
−1

4

√
1 − 4c2 − 1

4
,
1

4

√
1 − 4c2 − 1

4
; 1
2
; − 1

ξ2

)

2F1

(
1

4
− 1

4

√
1 − 4c2,

1

4

√
1 − 4c2 + 1

4
; 3
2
; − 1

ξ2

) )
(68)

Here 2F1 denotes a hypergeometric function. We may then evaluate this formula at t = 1
and use the series expansion of 2F1(a, b, c, x) at x = ∞:

x−a−b
(
xb

(
(−1)−aΓ (b − a)Γ (c)

Γ (b)Γ (c − a)
+ (−1)−aa(a − c + 1)Γ (b − a)Γ (c)

(a − b + 1)Γ (b)Γ (c − a)x
+ O

((
1

x

)2
))

(69)

+ xa
(

(−1)−bΓ (a − b)Γ (c)

Γ (a)Γ (c − b)
+ (−1)−bb(b − c + 1)Γ (a − b)Γ (c)

(−a + b + 1)Γ (a)Γ (c − b)x
+ O

((
1

x

)2
)) )

.

(70)

This then, for example, yields that, for u(−1) = 1, u′(−1) = 0,

u(1) = ( − 3c2 2F1

(
1

4
− 1

4

√
1 − 4c2,

1

4

√
1 − 4c2 + 1

4
; 3
2
; − 1

r2

)

2F1

(
3

4
− 1

4

√
1 − 4c2,

1

4

√
1 − 4c2 + 3

4
; 3
2
;− 1

r2

)

− c2 2F1

(
−1

4

√
1 − 4c2 − 1

4
,
1

4

√
1 − 4c2 − 1

4
; 1
2
; − 1

r2

)

2F1

(
5

4
− 1

4

√
1 − 4c2,

1

4

√
1 − 4c2 + 5

4
; 5
2
; − 1

r2

)

+ 3r2 2F1

(
−1

4

√
1 − 4c2 − 1

4
,
1

4

√
1 − 4c2 − 1

4
; 1
2
;− 1

r2

)

2F1

(
1

4
− 1

4

√
1 − 4c2,

1

4

√
1 − 4c2 + 1

4
; 3
2
; − 1

r2

) )

/
(
3c2 2F1

(
1

4
− 1

4

√
1 − 4c2,

1

4

√
1 − 4c2 + 1

4
; 3
2
; − 1

r2

)

2F1

(
3

4
− 1

4

√
1 − 4c2,

1

4

√
1 − 4c2 + 3

4
; 3
2
; − 1

r2

)

− c2 2F1

(
−1

4

√
1 − 4c2 − 1

4
,
1

4

√
1 − 4c2 − 1

4
; 1
2
; − 1

r2

)

2F1

(
5

4
− 1

4

√
1 − 4c2,

1

4

√
1 − 4c2 + 5

4
; 5
2
; − 1

r2

)
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+ 3r2 2F1

(
−1

4

√
1 − 4c2 − 1

4
,
1

4

√
1 − 4c2 − 1

4
; 1
2
;− 1

r2

)

2F1

(
1

4
− 1

4

√
1 − 4c2,

1

4

√
1 − 4c2 + 1

4
; 3
2
; − 1

r2

) )

can be approximated as

r−√
1−4c2r2

⎛

⎝−
3

(
2
√

1−4c2−2c2
(√

1−4c2+1
)
Γ

(
1
2

√
1−4c2

)2)

Γ
(
1
2

(√
1−4c2+3

))2

⎞

⎠ + o

3r2 + o
,

where we denoted r = ξ−1 	 1 and o refers to terms decaying to higher order in
r . We note in particular that the powers r2 cancel. Approximating the value of the
Γ functions by their value in c = 0, we thus obtain

ξγ πc2.

Similar calculations for ∂t u and other initial data lead to the following coefficient
matrix:

(
u(1)

∂t u(1)

)
≈ ξγ

(
πc2 −πc2

πc2 −πc2

) (
u(−1)

∂t u(−1)

)

��
While the above calculations and asymptotics are explicit, they are also rather opaque. The
splitting of the evolution into intervals I1, I2, I3 studied in Lemmas 3, 4 and Proposition 3
instead provides a much clearer view of the underlying mechanism and yields the same
leading asymptotics in terms of ξ .
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