
ON ISOPTICS AND ISOCHORDAL-VIEWED CURVES

DAVID ROCHERA

Abstract. In this paper, some results involving isoptic curves and con-
stant φ-width curves are given for any closed curve. The non-convex
case, as well as non-simple shapes with or without cusps are consid-
ered. Relating the construction of isoptics to the construction given in
Holditch’s theorem, a kind of curves is defined: the isochordal-viewed
curves. The explicit expression of these curves is given together with
some examples. Integral formulae on the area of their isoptics are ob-
tained and a Barbier-type theorem is derived. Finally, a characterization
for isochordal-viewed hedgehogs and curves of constant φ-width is given
in terms of an angle function.

1. Introduction

1.1. Definition of isoptic curves. Consider first a regular convex planar
curve α : [0, 2π]→ R2 defined by a support function h ∈ C2. This is,

α(t) = h(t) (cos t, sin t) + h′(t) (− sin t, cos t).

Denote by t and n = Jt the tangent and normal vectors, respectively, of α
at α(t).

Given φ ∈ ]0, π[, the φ-isoptic of α is the locus of points from which the
curve α is seen under a constant angle π − φ (see for instance [4] and [5]).
For each t ∈ [0, 2π], the supporting lines that contain the curve α under this
constant angle π − φ are those that touch the curve at the points α(t) and
α(t + φ) (see Figure 1). Denote by λ1(t, φ) the distance from α(t) to the
φ-isoptic and by λ2(t, φ) the same from α(t+ φ).

Thus, the φ-isoptic of α can be written in two different ways as a curve
αφ : [0, 2π]→ R2 defined by:

αφ(t) = α(t) + λ1(t, φ) t(t)

= α(t+ φ)− λ2(t, φ) t(t+ φ),(1)
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Figure 1. Definition of the φ-isoptic αφ of α.

Isoptic curves have been studied thoroughly for smooth convex curves in
the last decades (see for instance the cited papers [4] and [5], among many
others by the same authors). If α is a strictly convex curve, then for any
point in the outside region determined by α there exists a unique pair of
tangents to α. This is essential to define properly isoptic curves. The angle φ
in the definition of its φ-isoptic can be computed easily as the angle between
these two tangents.

Nevertheless, just a few references on isoptics for non-convex curves are
found in the literature. In the paper [7] a symbolic study on the isoptics
of an astroid was performed. Astroid curves are examples of non-convex
curves with cusps. In this example it was shown that there exist points
where three tangents to the astroid are found. If a pre-definite angle is
considered, namely φ, the third tangent is irrelevant as it is pointed out in
the same paper. Doing a careful study of the astroid example, we can see
that the angle between the tangents does not remain exactly constant. See
Figure 2: at the beginning, the angle between the tangents is indeed φ, but
when one of the tangents passes through one of the cusps, then the angle
between the tangents turns into π−φ. This would go against the definition
of an isoptic which demands the curve to be seen under a constant angle.
In order to avoid this issue for non-convex curves, we take the definition of
an isoptic given in recent papers such as [7] or [8], which can be stated in
the following manner.

Definition 1 (Isoptic curve). Given a planar curve α and an angle φ ∈ ]0, π[,
define the φ-isoptic of α as the curve defined by the locus of points through
which passes a pair of tangents to α making an angle of φ.

Note that this definition allows the angle between the tangents to be φ
or π − φ.

1.2. Sliding a constant length chord seen under a constant angle.
In the non-convex case, the definition of the φ-isoptic with the distance
functions λ1 or λ2 as in (1) must be written carefully, since these two distance
functions may include sign changes. The consideration of these sign changes
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φ

π – φ

Figure 2. The astroid curve
(
cos3 t, sin3 t

)
and its φ-isoptic,

for φ = π/3. The angle between the tangent lines is
piecewise-constant equal to π/3 or 2π/3.

is essential for non-convex curves, because they may happen due to non-
simple shapes or cusps, for example. The sign is dependent on the oriented
angle from one tangent to the other, which may be either φ or π − φ up to
a multiple of π. This will be discussed later in Proposition 1.

In [11], the authors worked with a special kind of convex bodies. Let K be
a strictly convex body in R2 with differentiable boundary and let φ ∈ ]0, π[.
A straight segment connecting two points of this boundary is called a φ-
chord if the tangent lines to K at these two points intersect at an angle φ.
In the cited paper, the authors considered convex bodies with φ-chords of
constant length. Some interesting partial results were given (under some
conditions) towards the Euclidean disc being the only example of this kind
of convex bodies (the general result is still open).

In this paper, we will study precisely the kind of curves given by the
boundary of such sets, but not restricted to the convex case. Recall that
the sliding of a constant length chord around a given curve corresponds to
the famous setting studied by Hamnet Holditch in 1858, [10], and by many
other authors in papers such as [1], [6] or, more recently, in the works [3],
[14] and [17]. In fact, in [3] the reader can find some results on sliding chords
in the construction of isoptics and a new result on areas of ring domains in
a modified Holditch construction.

To sum up, we will give a name to the kind of curves to be considered in
this work.

Definition 2 (Isochordal-viewed curve). Given φ ∈ ]0, π[ and ` > 0, a
planar curve α is said to be (φ, `)-isochordal viewed if the φ-isoptic of α, αφ,
is such that the chord joining the contact points with α of its supporting
lines meeting at αφ has constant length `.
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The obvious example of a curve where a constant length chord can travel
around and which can always be seen under a constant angle is the circle
(and it might be the only convex example, but this is just a conjecture for
now). Nevertheless, in the non-convex case other examples different from
the circle can be given and the definition does not become trivial. In fact,
in Examples 1, 2 we will study two hedgehogs which are isochordal-viewed.
Moreover, a 1-parameter family of examples will be given in Example 3.

The paper is structured as follows. First, in Section 2, the general setting
for isochordal-viewed curves is addressed and the explicit expression for the
φ-isoptic of a given closed curve is obtained (Proposition 1). The proof of
this expression leads to a generalization of the so-called sine-theorem for
isoptics (Remark 1). In Section 3, the definition of curves of constant φ-
width is recalled and some examples of (φ, `)-isochordal-viewed curves and
curves of constant φ-width are constructed. After that, in Section 4 we de-
rive some formulae on the area of the isoptics of isochordal-viewed curves
(Propositions 2 and 3), together with a Barbier-type theorem for isochordal-
viewed curves (Theorem 1). Finally, in Section 5 a characterization of when
a isochordal-viewed hedgehog is a curve of constant φ-width is given (The-
orem 2).

2. General setting for isochordal-viewed curves

Henceforth, let α : I → R2 be a piecewise-regular closed planar curve,
where I is some real interval (and assume that the curve can be extended to
the whole R by periodicity). Recall that the Holditch function f : I → f(I),
see [14], is defined as the homeomorphism that given the rear endpoint α(t)
of the sliding chord produces the front one, α

(
f(t)

)
. Note that the definition

of f depends on the chosen parameterization of α and it assumes that no
retrograde movements are done by the moving chord.

Henceforth, given a curve α : I → R2 and an angle φ ∈ ]0, π[, we will
define f : I → f(I) such that α(t) and α

(
f(t)

)
are the contact points of

α where two tangent lines to α meet at an angle φ. This function will
be called the Holditch function for the parameterization α and the angle φ.
For (φ, `)-isochordal-viewed hedgehogs parameterized by a support function,
this Holditch function is just a translation by the angle φ: f(t) = t+ φ.

Define the distance function d : I → [0,+∞[ as

d(t) :=
∥∥∥α(f(t)

)
− α(t)

∥∥∥.
In the situation we are addressing to, where the constant length is `, we

have the constraint:

(2) d(t) :=
∥∥∥α(f(t)

)
− α(t)

∥∥∥ = `, for all t ∈ I.

We will call this constraint as the isochordal condition.
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Define ν(t) as the oriented angle function from t(t) to α
(
f(t)

)
−α(t) and

µ(t) as the oriented angle function from α
(
f(t)

)
− α(t) to t

(
f(t)

)
. Assume

that the starting angle at inf I is oriented in ]−π, π]. Note that, again, the
angles ν and µ depend on the chosen parameterization α. From now on, ν
and µ will denote these two oriented angle functions according to the chosen
parameterization (see Figure 3 for a visualization of these angle functions).

ν (t)

µ (t)

α(t) (t)t

α(f(t)

t

φ (t)

)

(f(t))

λ (t,φ)1

λ  (t,φ)2d(t)
˜

Figure 3. Definition of the Holditch function f , the angles
ν, µ and φ, and the distance functions d, λ1 and λ2.

By definition of ν, we have:

(3) α
(
f(t)

)
− α(t) = d(t)

(
cos ν(t) t(t) + sin ν(t) n(t)

)
.

Analogously, by definition of µ we can deduce:

(4) α
(
f(t)

)
− α(t) = d(t)

(
cosµ(t) t

(
f(t)

)
− sinµ(t) n

(
f(t)

))
.

Define
φ̃(t) := ν(t) + µ(t).

We have that φ̃ is a piecewise-constant function (either φ or π − φ up to a
multiple of π), which gives an oriented angle from t(t) to t

(
f(t)

)
. Thus,

t
(
f(t)

)
= cos φ̃(t) t(t) + sin φ̃(t) n(t),

n
(
f(t)

)
= − sin φ̃(t) t(t) + cos φ̃(t) n(t),(5)

The relation between φ̃ and φ is the following:

φ =
∣∣φ̃(t) mod π

∣∣, for any t ∈ I.

In the convex case, φ̃(t) = φ for all t ∈ I.

The functions λ1 and λ2 can be computed geometrically by the cosine
rule (see Figure 3). Nevertheless, the computations must be carried out
carefully because of possible angle changes and signs. Instead, we will derive
the expression of the φ-isoptic of α by finding the intersection point between
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the tangent lines at α(t) and α
(
f(t)

)
. We will do it in the general scenario

of any curve, not necessarily verifying the isochordal condition.

Proposition 1. Let ` > 0, φ ∈ ]0, π[ and let α : I → R2 be a regular curve.
The φ-isoptic of α can be written as

αφ(t) = α(t) + λ1(t, φ) t(t)

= α
(
f(t)

)
− λ2(t, φ) t

(
f(t)

)
,

where f : I → f(I) is the Holditch function for the parameterization α and
the angle φ,

λ1(t, φ) =
d(t) sinµ(t)

sin φ̃(t)
and λ2(t, φ) =

d(t) sin ν(t)

sin φ̃(t)
,

with d(t) being the distance from α(t) to α
(
f(t)

)
and with φ̃(t) = ν(t)+µ(t).

Proof. By definition,

d(t) :=
∥∥∥α(f(t)

)
− α(t)

∥∥∥.
Let α(t) =

(
x(t), y(t)

)
. The tangent vector of α at α(t) can be written as

t(t) =

(
x′(t)√

x′2(t) + y′2(t)
,

y′(t)√
x′2(t) + y′2(t)

)
.

The condition to find the intersection point between the tangent lines to α
at α(t) and α

(
f(t)

)
, namely

α(t) + λ1(t, φ) t(t) = α
(
f(t)

)
− λ2(t, φ) t

(
f(t)

)
,

produces a system of two equations with unknowns λ1(t, φ) and λ2(t, φ). By
solving it, we find the expression of λ1(t, φ):√

x′2(t) + y′2(t)
(
−
(
y
(
f(t)

)
− y(t)

)
x′
(
f(t)

)
+
(
x
(
f(t)

)
− x(t)

)
y′
(
f(t)

))
x′(t) y′

(
f(t)

)
− y′(t)x′

(
f(t)

) ,

and the same of λ2(t, φ):√
x′2
(
f(t)

)
+ y′2

(
f(t)

) (
−
(
y
(
f(t)

)
− y(t)

)
x′(t) +

(
x
(
f(t)

)
− x(t)

)
y′(t)

)
y′(t)x′

(
f(t)

)
− x′(t) y′

(
f(t)

) .

These two expressions can be simplified. The first one can be written as

λ1(t, φ) =
−
∥∥α′(t)∥∥〈α(f(t)

)
− α(t), Jα′

(
f(t)

)〉
−
〈
α′(t), Jα′

(
f(t)

)〉
=

〈
α
(
f(t)

)
− α(t), n

(
f(t)

)〉〈
t(t), n

(
f(t)

)〉 .
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From Equations (4) and (5), we get〈
α
(
f(t)

)
− α(t), n

(
f(t)

)〉
= −d(t) sinµ(t)

and 〈
t(t), n

(
f(t)

)〉
= − sin φ̃(t).

Therefore, we conclude

λ1(t, φ) =
d(t) sinµ(t)

sin φ̃(t)
.

Similarly, with Equations (3) and (5), we get

λ2(t, φ) =
−
∥∥∥α′(f(t)

)∥∥∥〈α(f(t)
)
− α(t), Jα′(t)

〉
−
〈
α′
(
f(t)

)
, Jα′(t)

〉
=

〈
α
(
f(t)

)
− α(t), n(t)

〉
〈
t
(
f(t)

)
, n(t)

〉 =
d(t) sin ν(t)

sin φ̃(t)
.

That completes the proof. �

Remark 1 (Sine-theorem for isoptics). Notice that the computation of the
distance functions λ1 and λ2 in Proposition 1 constitutes a generalization
to any closed curve of the sine-theorem for convex isoptics given in [4]: it
holds

d(t)

sin φ̃(t)
=
λ1(t, φ)

sinµ(t)
=
λ2(t, φ)

sin ν(t)
.

Moreover, notice that the φ-isoptic of a piecewise-C2 curve is piecewise-C2.

Remark 2. For (φ, `)-isochordal-viewed curves, the conclusion of Proposi-
tion 1 is the same but for a constant length function d(t) = `, i.e.

λ1(t, φ) =
` sinµ(t)

sin φ̃(t)
and λ2(t, φ) =

` sin ν(t)

sin φ̃(t)
,

Remark 3. Since

φ̃(t) =


φ+ k π, k ∈ Z,

or

π − φ+ k π, k ∈ Z,

we can write

sin φ̃(t) = ε(t) sinφ,

where ε is a sign function. The use of this alternative expression for the sine
of φ̃(t) in terms of the sign function ε(t) will be useful later in Section 4.
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3. Curves of constant φ-width and some examples

An oval is defined as a closed convex C2 curve with non-vanishing curva-
ture. In Equation (5.7) of [4] the expression of the curvature of the φ-isoptic
of an oval α was given for a parameterization by a support function. Fol-
lowing the same notation as the authors, this curvature can be written as

(6) κα,φ(t) = sinφκφ(t),

where

κφ(t) =
2
∣∣q(t)∣∣2 − [q(t), q′(t)]∣∣q(t)∣∣3 ,

with q(t) = α(t)− α(t+ φ) and [a+ b i, c+ d i] = a d− b c.

In this setting, Mozgawa gave in [16] a generalized notion of constant
width based on the definition of a curve of constant angle (the reader can
see [9] and [13]). Given an oval α and a φ-isoptic of α, with 0 < φ < π, the
function κφ above is called the sine-curvature of the φ-isoptic of α. An oval
α is called of constant φ-width if κφ is constant.

Note that this definition implies the following: an oval α is of constant φ-
width if and only if its φ-isoptic is a circle. This holds true even for the case
φ = π, which corresponds to the classical constant width curves (see [16] for
more details). The characterization above motivates the next definition for
any closed curve, convex or not.

Definition 3 (Curve of constant φ-width). A closed curve is called a curve
of constant φ-width if its φ-isoptic is a circle.

Green showed in [9] that there are examples, different from the circle, of
curves of constant angle. But what happens if instead of imposing κφ being
constant, we set the isochordal condition (2)? In the next examples we show
that there are examples different from the circle too.

Example 1. Consider the hedgehog α : [0, π]→ R2 defined by the support
function h(t) = cos(3 t) and let φ = π/2. Since π − φ = φ, the angle φ can
be recovered easily as the angle between the tangents t(t) and t(t + φ) for
all t ∈ I.

We have that the isochordal condition is satisfied: the chord joining α(t)
and α(t+ φ) for each t ∈ [0, π] has constant length ` = 4, i.e.

` =
∥∥α(t+ φ)− α(t)

∥∥ = 4.

Hence, α is a (φ, `)-isochordal-viewed curve. Nevertheless, α is different
from a circle (see Figure 4).



ON ISOPTICS AND ISOCHORDAL-VIEWED CURVES 9

Notice that in this case the curve α is negatively (clockwise) oriented.
The oriented angle functions ν and µ can be computed explicitly:

µ(t) = arccos

(
−

cot(t)
(
cot2(t)− 3

)√
sin2(3 t)

3 cot2(t)− 1

)
− π,

ν(t) = arccos

(
−

tan(t)
(
tan2(t)− 3

)√
cos2(3 t)

3 tan2(t)− 1

)
− π.

The angle function µ is increasing while ν is decreasing and they are both
piecewise-linear functions. We have that

φ̃(t) =

−
3π
2 , if t ≤ π

6 or π
3 < t ≤ π

2 or 2π
3 < t ≤ 5π

6 ,

−π
2 , if π

6 < t ≤ π
3 or π

2 < t ≤ 2π
3 or t > 5π

6 .

In this case, α exhibits three cusps in [0, π], namely, at t = π/6, t = π/2
and t = 5π/6. This makes a change of orientation in the tangent vector of
α when crossing each cusp. In addition, at t = π/3, t = 2π/3 and t = π, the
other tangent goes trough each cusp and there, the first tangent crosses on
the other side of the tangent line defined by the second one (see Figure 4).
That produces a change of sign in the definition of the φ-isoptic of α which
is contained in the definition of φ̃. By Proposition 1, the φ-isoptic of α can
be written as

αφ(t) = α(t) +
` sinµ(t)

sin φ̃(t)
t(t).

α

αφ

(t)t

(t + φ)t

α(t)

α(t + φ) αφ(t)

�

α(t + φ) (t + φ)t

α(t)(t)t

αφα
αφ(t) �

(t + φ)t

α(t + φ)

α

αφ

�

αφ(t)
(t)t

α(t)

Figure 4. The curve α is (π/2, 4)-isochordal viewed and it
is different from a circle. The pointing of the tangent vectors
of α change when crossing each cusp and it produces a change
of sign in the definition of the π/2-isoptic απ/2 of α, which
turns out to be a circle of radius 1.

In this case, the φ-isoptic of α turns out to be a circle (counterclockwise
oriented and double traced), so that α is also a curve of constant φ-width.
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Moreover, its isoptic coincides with the Holditch curve generated by the
midpoint of the moving chord (see Figure 5). The midpoint Holditch curve
can be written as

Hα(t) =
1

2

(
α(t) + α(t+ φ)

)
.

In this example, the relation between the parametric curves Hα and αφ is
the following:

Hα

(
t−
(
−2 arctan

(
1−
√

2
))

+
π

2

)
= αφ(t).

αφ

Hα

α

Figure 5. The φ-isoptic of α, αφ, coincides with the
Holditch curve of α, Hα. The relation between both pa-
rameterizations is just a translation.

Example 2. Consider the hedgehog α : [0, π] → R2 defined by the sup-
port function h(t) = cos(5 t) and let φ = π/3. The curve α is negatively
(clockwise) oriented.

The isochordal condition is satisfied:

` =
∥∥α(t+ φ)− α(t)

∥∥ = 3
√

3.

Hence, α is a (φ, `)-isochordal-viewed, which is a curve different from a circle
too (see Figure 6).

The φ-isoptic of α can be computed, by Proposition 1, as

αφ(t) = α(t) +
` sinµ(t)

sin φ̃(t)
t(t).

The oriented angle functions ν and µ are again piecewise-linear and can be
computed explicitly. Thus, computing the angle function φ̃(t) = ν(t) +µ(t),
we can see that it is equal to either π

3 or 2π
3 up to a multiple of π. The curve

αφ turns out to be a circle (counterclockwise and triple traced), so that α is
a curve of constant π/3-width.

In this case, the φ-isoptic of α does not coincide with any Holditch curve
of α (see an example in Figure 7-left). If we consider the same example
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(t)t

t(t + φ)

α(f(t)) – α(t)

α

αφ
α

αφ

(t)t

t(t + φ)

α(f(t)) – α(t)

Figure 6. The curve α is (π/3, 3
√

3)-isochordal viewed and
it is different from a circle. When crossing each cusp, the
angle between the tangent vectors varies between either φ or
π − φ.

α
αφ

Hα

α

αφ

Hα

Figure 7. The curve α, its φ-isoptic αφ and its midpoint
Holditch curve Hα. On the left for φ = π/3 and on the right
for φ = π/2.

but for φ = π/2, then the computations are quite easy and it can be shown
that α is (π/2, 4)-isochordal viewed. In such a case, its φ-isoptic is again a
circle (clockwise and double traced), so that α is also a curve of constant
π/2-width. The midpoint Holditch curve is a clockwise and double-traced
circle but of a greater radius (see Figure 7-right).
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Example 3. Following the idea of the two examples above, we are going
to give now a 1-parameter family of hedgehogs which are isochordal-viewed.
Let n ∈ N, φ ∈ ]0, π[ and consider the family of hedgehogs

αn(t) = h(t)
(
cos t, sin t) + h′(t) (− sin t, cos t)

defined by the support function h(t) = cos(n t).

It is straightforward to compute the squared distance function by

d2(t) =
∥∥α(t+ φ)− α(t)

∥∥2.
Its derivative can be simplified and written as

d′2(t) = 2n
(
n2 − 1

) (
cos(nφ)− cosφ

)
sin
(
n (2 t+ φ)

)
.

If we take φ = π/2, then

cos(nφ)− cosφ = cos
(π n

2

)
.

This equals zero if n = 2k + 1 for any k ∈ Z.

Therefore, the family of hedgehogs given by φ = π/2 and n = 2 k+ 1, for
all k ∈ Z, are examples of isochordal-viewed curves. Moreover, they are also
curves of constant φ-width. Indeed, it can be seen (see Equation 14 below)
that the curvature of the φ-isoptic is constant. In particular (with the same
notation as Equation 14 below), we have that

A(t) = 2− 2 (−1)k (1 + 2 k).

A similar discussion can be done for other angles, for instance φ = π/3,
where n = 5, n = 7, n = 11, n = 13, etc. also give examples of isochordal-
viewed curves.

4. Integral formulae and areas of isoptics

Given a curve α, generate from α(t) another one at a distance p(t) fol-
lowing directions given by an oriented angle function w(t) with t(t) (see
Figure 8).

Some properties of this generated curve from α, say γ, have been given
both in the plane (see [18]) and in constant curvature surfaces (see [19] and
[15]) when the involved curves are closed and simple. Notice that if α is
closed and γ is wanted to be closed, then the functions p and w must be
able to be extended continuously by periodicity.

Although it is common to assume simple closed curves to define areas,
the notion of area can be extended to any non-simple closed curve as well.
Given a closed curve α (not necessarily simple), the algebraic area of α is
refereed as the area enclosed by α counted by sign and multiplicity. More
specifically, the algebraic area of α is defined by

(7) A(α) =

∫∫
R2

Wind
(
(x, y), α

)
d(x, y),
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α

γ

α(t)

γ(t)

w(t)

p(t)

(t)t

Figure 8. Example of a curve γ generated from α according
to an angle function w(t) and a distance function p(t).

where Wind
(
(x, y), α

)
is the winding number of α around the point (x, y) ∈

R2. Of course, if α is simple and counterclockwise oriented, we have

A(α) =

∫∫
D

d(x, y),

where D is the region of R2 enclosed by α. Thus, in this case the algebraic
area coincides with the geometric area (positive value).

In addition to Equation (7), thanks to the homological version of Green’s
theorem (see Theorem 6.8 of [2]), the algebraic area can also be computed
with the usual expression:

A(α) =

∫
α
x dy.

Let’s write now the general formula given in [18] for the area of a gener-
ated curve γ in the plane but extended to any closed curve (not necessarily
simple). We need this extension since, as seen in the examples above, the
isochordal-viewed curves may not be simple. The proof is essentially the
same but using the definition of an algebraic area.

Lemma 1. Let α : I → R2 be a piecewise-regular closed curve parameterized
by arc-length. Suppose γ to be the generated curve from α (where it can be
defined) with a length function p and directions given by a function β : I →
R2 defined by

β(s) = cosw(s) t(s) + sinw(s) n(s).

Suppose that p and β can be continuously extended by periodicity (γ is
closed). Then

A(γ) = A(α)−
∫
I
p(s) sinw(s) ds+

1

2

∫
I
p2(s)

(
w′(s) + κ(s)

)
ds,

where w(s) is the oriented angle function from t(s) to β(s) and κ(s) the
curvature function of α.
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Notice that φ-isoptics are a particular case of generated curves, where

w(t) = 0 and p(t) = λ1(t, φ) =
d(t) sinµ(t)

sin φ̃(t)
.

Therefore, from Lemma 1, an integral formula relating the area of a (φ, `)-
isochordal-viewed curve α and the area of its φ-isoptic αφ can be deduced.

Proposition 2. Let φ ∈ ]0, π[ and let α be a piecewise-regular and closed
(φ, `)-isochordal-viewed curve parameterized by arc length. If αφ denotes the
φ-isoptic of α, then

A(αφ) = A(α) +
`2

2 sin2 φ

∫
I

sin2 µ(s)κ(s) ds,

where κ is the curvature function of α.

Proof. It is just an application of Lemma 1 for the functions

w(s) = 0 and p(s) = λ1(s, φ) =
` sinµ(s)

sin φ̃(s)
= ε(s)

` sinµ(s)

sinφ
,

where ε is a sign function (see Remark 3). Of course, ε2(s) = 1. �

In the next lemma, we show the relationship between κ and κ ◦ f .

Lemma 2. Let φ ∈ ]0, π[, let α : I → R2 be a piecewise-regular curve and
let f be the Holditch function for the parameterization α and the angle φ.
Then

κ(t)
∥∥α′(t)∥∥ = κ

(
f(t)

) ∥∥α′(f(t)
)∥∥ f ′(t),

for all t ∈ I such that α is regular at α(t). In particular, if α is arc-length
parameterized where it is regular, then

κ(s) = κ
(
f(s)

)
f ′(s),

for all s ∈ I such that α is regular at α(s).

Proof. Let σ : I → R be the oriented angle function from the positive OX
axis to the tangent t(t) of the curve α at α(t). By definition (see Section 2),

(8) φ̃(t) = σ
(
f(t)

)
− σ(t)

for all t ∈ I such that α is regular at α(t). The function φ̃(t) is piecewise-
constant, it is equal to φ or π − φ up to a multiple of π. Recall that
σ′(t) =

∥∥α′(t)∥∥κ(t). Thus, differentiating the expression (8), we get

0 = κ
(
f(t)

) ∥∥α′(f(t)
)∥∥ f ′(t)− κ(t)

∥∥α′(t)∥∥. �

A similar integral formula to the one given in Proposition 2 can be derived
but generating the φ-isoptic of α from the parameterization α◦f of the curve
α.
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Proposition 3. Let φ ∈ ]0, π[ and let α be a piecewise-regular and closed
(φ, `)-isochordal-viewed curve parameterized by arc length. If αφ denotes the
φ-isoptic of α, then

A(αφ) = A(α) +
`2

2 sin2 φ

∫
I

sin2 ν(s)κ(s) ds,

where κ is the curvature function of α.

Proof. Let f be the Holditch function for the parameterization α and the
angle φ. Let s be the arc-length parameter of α. Generate from (α ◦ f)(s)
the φ-isoptic of α with the angle w(s) = π and the distance function
p(s) = λ2(s, φ). Notice that κα◦f (s) = κ

(
f(s)

)
and that the new arc-length

parameter of α ◦ f is

sα◦f (s) =

∫ s

s0

f ′(u) du.

Hence, dsα◦f = f ′(s) ds. Thus, from Lemma 1, we find

A(αφ) = A(α) +
`2

2 sin2 φ

∫
I

sin2 ν(s)κ
(
f(s)

)
f ′(s) ds.

Finally, use Lemma 2 to write it as in the statement. �

As a consequence of Propositions 2 and 3 we can find an integral formula
involving the angle functions ν and µ and the curvature κ of the curve.

Corollary 1. Let φ ∈ ]0, π[. If α is a piecewise-regular and closed (φ, `)-
isochordal-viewed curve parameterized by arc length, then∫

I

(
sin2 ν(s)− sin2 µ(s)

)
κ(s) ds = 0.

Next, we will give the explicit value for the total sine of the angle function
ν of a isochordal-viewed curve. Define the chord revolutions as the num-
ber of positive (counterclockwise) revolutions minus the number of negative
(clockwise) revolutions done by the moving chord (seen as an indicatrix). If
the chord comes back to its former position without making any full revo-
lution, the chord revolutions are zero.

Theorem 1. Let α be a piecewise-regular and closed (φ, `)-isochordal-viewed
curve. Then

(9)

∫
I

sin ν(s) ds = π ` n,

where n is the number of chord revolutions.

Proof. Suppose that α is arc-length parameterized in its regular parts. We
will use Lemma 1 when the generated curve γ is the parameterization α ◦ f ,
with f being the Holditch function for the parameterization α and the angle
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φ. Thus, with the notation of Lemma 1, we have A(α) = A(α ◦ f), p(s) = `
and w(s) = ν(s). Therefore,

(10) `

∫
I

sin ν(s) ds− `2

2

∫
I

(
ν ′(s) + κ(s)

)
ds = 0.

Notice that ∫
I
ν ′(s) ds = 2πm, and

∫
I
κ(s) ds = 2π I,

where m is the number of revolutions of the moving chord with respect to
the tangent vector of α and I is the rotation index of the regular parts of
α (without taking into account the jump angles at the cusps). Thus, from
Equation (10) we find ∫

I
sin ν(s) ds = π ` (m+ I).

Finally, notice that n = m+ I is the number of chord revolutions. �

Theorem 1 is a kind of Barbier-type theorem for isochordal-viewed curves.
Note that the classical Barbier theorem for constant width curves can be
deduced from Lemma 1 when w(s) = π/2 and p(s) = ` in the same way as
in the proof above. The fact is that for isochordal-viewed curves, the angle
function ν may not be constant and, thus, the left-hand side of Equation (9)
must be written in an integral form.

Example 4. Let’s continue with the Example 1 to check the integral for-
mulae given above. The curvature function of α is

κ(t) =

〈
α′′(t), Jα′(t)

〉∥∥α′(t)∥∥3 =
1

8
√

cos2(3 t)
.

In this example recall that φ = π/2 and ` = 4. Moreover, we have that

A(α) = −2π, and A(αφ) = 2π.

The formulae of Propositions 2 and 3 can be easily checked, since it can be
seen explicitly that the integrals

A(α) +
`2

2 sin2 φ

∫ π

0
sin2 µ(t)κ(t)

∥∥α′(t)∥∥ dt

and

A(α) +
`2

2 sin2 φ

∫ π

0
sin2 ν(t)κ(t)

∥∥α′(t)∥∥ dt

are both equal to 2π, the area of the φ-isoptic of α.

The moving chord makes in [0, π] a full clockwise revolution. This means
that the chord revolutions here are n = −1. This number can be computed,
as seen in the proof of Theorem 1 as the sum of the number of revolutions of
the moving chord vector α(t+π)−α(t) with respect to t(t) and the number
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I, which is the rotation index of the regular parts of α. The first number
can be computed as

m =
1

2π

∫ π

0
ν ′(t) dt = −3

2
,

and the second one as

I =
1

2π

∫ π

0
κ(t)

∥∥α′(t)∥∥ dt =
1

2
.

Therefore, on the one hand, n = m+ I = −3
2 + 1

2 = −1 and the right-hand
side of Equation (9) is π ` n = −4π. On the other hand, its left-hand side
can be computed explicitly:∫ π

0
sin ν(t)

∥∥α′(t)∥∥ dt = −4π,

so that Theorem 1 is checked in this example.

A similar discussion can be done for the curve of Example 2.

5. Characterization for curves of constant φ-width

In the previous sections we have seen some examples of (φ, `)-isochordal-
viewed curves constructed as hedgehogs by a support function h. It hap-
pened that all of them were examples of curves of constant φ-width too.
In this section we will prove a characterization on that fact in terms of the
angle function ν.

Let α : [0, 2π]→ R2 be a regular hedgehog defined by a support function
h ∈ C2:

α(t) = h(t) (cos t, sin t) + h′(t) (− sin t, cos t).

Recall that h(t) is the signed distance from the origin to the supporting line
of α with exterior normal vector (cos t, sin t). The reader can see the works
of Mart́ınez-Maura on hedgehogs for a detailed discussion, e.g. [12].

In general, α is not a convex curve. We have that the radius R of curvature
verifies

R(t) =
∥∥α′(t)∥∥ =

∣∣h(t) + h′′(t)
∣∣.

A singularity-free hedgehog is a convex curve. Thus, α is convex if and only
if

h(t) + h′′(t) > 0, for all t ∈ [0, 2π].

To prove the characterization said above, we will need two lemmas.

Lemma 3. Let α : I → R2 be a curve satisfying the isochordal condition
(2) for a Holditch function f and a length ` > 0. Then∥∥α′(t)∥∥ cos ν(t) = f ′(t)

∥∥α′(f(t)
)∥∥ cosµ(t).
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Proof. The isochordal condition can be written as∥∥α(f(t)
)
− α(t)

∥∥2 = `2.

Differentiating this equation, we get

f ′(t)
〈
α′
(
f(t)

)
, α
(
f(t)

)
− α(t)

〉
=
〈
α′(t), α

(
f(t)

)
− α(t)

〉
.

Thus,

f ′(t)
∥∥α′(f(t)

)∥∥ ` cosµ(t) =
∥∥α′(t)∥∥ ` cos ν(t).

Since ` 6= 0, we deduce the expression of the statement. �

Lemma 4. Let φ ∈ ]0, π[ and let α : I → R2 be a piecewise-C2 (φ, `)-
isochordal-viewed hedgehog parameterized by a support function h ∈ C3.
Then

`
(
ν ′(t) + 1

)
cosµ(t) =

∥∥α′(t)∥∥ sin φ̃(t)

for all t ∈ I such that α is regular at t.

Proof. From the definition of ν, we have:〈
α(t+ φ)− α(t), t(t)

〉
= ` cos ν(t).

Differentiating this expression and using〈
α(t+ φ)− α(t), n(t)

〉
= ` sin ν(t),

we get∥∥α′(t+ φ)
∥∥ cos φ̃(t)−

∥∥α′(t)∥∥+ κ(t)
∥∥α′(t)∥∥ ` sin ν(t) = −` sin ν(t) ν ′(t).

This can be rewritten as

(11) ` sin ν(t)
(
ν ′(t) + 1

)
=
∥∥α′(t)∥∥− ∥∥α′(t+ φ)

∥∥ cos φ̃(t),

where it has been used the fact:

κ(t)
∥∥α′(t)∥∥ = 1.

Now, following the same procedure but for the equation〈
α(t+ φ)− α(t), t(t+ φ)

〉
= ` cosµ(t),

we arrive to

(12) ` sinµ(t)
(
µ′(t)− 1

)
=
∥∥α′(t)∥∥ cos φ̃(t)−

∥∥α′(t+ φ)
∥∥.

Subtracting to (11) Equation (12) multiplied by cos φ̃(t), we get

` sin ν(t)
(
ν ′(t) + 1

)
− ` sinµ(t) cos φ̃(t)

(
µ′(t)− 1

)
=
∥∥α′(t)∥∥ sin2 φ̃(t).

Now, since φ̃ is piecewise-constant, 0 = φ̃′(t) = ν ′(t) + µ′(t), so that µ′(t) =
−ν ′(t). Using this in the equation above, we get

`
(
ν ′(t) + 1

) (
sin ν(t) + sinµ(t) cos φ̃(t)

)
=
∥∥α′(t)∥∥ sin2 φ̃(t).

Equivalently,

(13) `
(
ν ′(t) + 1

)
cosµ(t) sin φ̃(t) =

∥∥α′(t)∥∥ sin2 φ̃(t).
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Finally, since φ ∈ ]0, π[, by definition of φ̃ we have that sin φ̃(t) 6= 0 for all

t ∈ I. Thus, by dividing (13) by sin φ̃(t), the expression of the statement is
found. �

Proposition 4. Let α be a piecewise-C2 (φ, `)-isochordal-viewed hedgehog
parameterized by a support function h ∈ C3. Then the curvature of the
φ-isoptic of α is

κα,φ(t) =
sin φ̃(t)

`

(
1− ν ′(t)

)
,

for all t ∈ I such that α is regular at t.

Proof. Since φ̃′(t) = 0, the expression (6) for the curvature of the φ-isoptic
of a curve α still works for non-convex curves. This curvature can be written
as

(14) κα,φ(t) =
sin φ̃(t)

`3
(
2 `2 −A(t)

)
,

where

A(t) =
〈
α(t+ φ)− α(t), Jα′(t)− Jα′(t+ φ)

〉
= `

∥∥α′(t)∥∥ sin ν(t) + `
∥∥α′(t+ φ)

∥∥ sinµ(t).

By Lemma 3:

(15)
∥∥α′(t)∥∥ cos ν(t) =

∥∥α′(t+ φ)
∥∥ cosµ(t).

This implies that if cosµ(t0) = 0 for some t0 ∈ I, then
∥∥α′(t0)∥∥ = 0 (because

cos ν(t0) 6= 0, otherwise φ = 0 or π). Therefore, if we are at a regular point
t0 of α (not at a cusp), then cosµ(t0) 6= 0.

Thus, if t ∈ I is such that α is regular at t, from Equation (15):∥∥α′(t+ φ)
∥∥ =

∥∥α′(t)∥∥ cos ν(t)

cosµ(t)
.

Substituting this in the expression of A(t) an simplifying, it is deduced

A(t) = `
∥∥α′(t)∥∥ sin φ̃(t)

cosµ(t)
.

Now, use Lemma 4 to get

A(t) = `2
(
1 + ν ′(t)

)
.

Therefore, Equation (14) takes the form

κα,φ(t) =
sin φ̃(t)

`3
(
2 `2 − `2 − `2 ν ′(t)

)
=

sin φ̃(t)

`

(
1− ν ′(t)

)
,

as in the statement. �
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Immediately from Proposition 4, we have the following result, which shows
when an isochordal-viewed hedgehog is a curve of constant φ-width.

Theorem 2. Let α be a piecewise-C2 (φ, `)-isochordal-viewed hedgehog pa-
rameterized by a support function h ∈ C3. The curve α is of constant φ-width
if and only if ν ′(t) is constant for all t ∈ I.

For the curves of Examples 1 and 2, the angle function ν is piecewise-
linear, namely, of the kind ν(t) = a t+ b, with the same slope where it can
be defined. This implies that ν ′(t) = a is constant, so that by Theorem 2,
they are curves of constant φ-width.

Note that since ν ′(t) = −µ′(t), the conclusion of Theorem 2 could be also
written in terms of the angle function µ(t).

Remark 4 (Open problems). The author has not found any explicit exam-
ple of a (φ, `)-isochordal-viewed hedgehog which is not a curve of constant
φ-width. In fact, no example of isochordal-viewed curve which is not an hed-
hehog has been found. It would be interesting to find such examples if they
exist or to see if a statement like “any piecewise-C2 (φ, `)-isochordal-viewed
curve (or hedgehog) is a curve of constant φ-width” is true.
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