
SUBMITTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

A cheap feature selection approach for the
K-means algorithm

Marco Capó, Aritz Pérez, and Jose A. Lozano

Abstract—The increase in the number of features that need
to be analyzed in a wide variety of areas, such as genome
sequencing, computer vision or sensor networks, represents a
challenge for the K-means algorithm. In this regard, different
dimensionality reduction approaches for the K-means algorithm
have been designed recently, leading to algorithms that have
proved to generate competitive clusterings. Unfortunately, most
of these techniques tend to have fairly high computational costs
and/or might not be easy to parallelize. In this work, we propose
a fully-parellelizable feature selection technique intended for
the K-means algorithm. The proposal is based on a novel
feature relevance measure that is closely related to the K-means
error of a given clustering. Given a disjoint partition of the
features, the technique consists of obtaining a clustering for each
subset of features and selecting the m features with the highest
relevance measure. The computational cost of this approach
is just O(m · max{n · K, logm}) per subset of features. We
additionally provide a theoretical analysis on the quality of the
obtained solution via our proposal, and empirically analyze its
performance with respect to well-known feature selection and
feature extraction techniques. Such an analysis shows that our
proposal consistently obtains results with lower K-means error
than all the considered feature selection techniques: Laplacian
scores, maximum variance, multi-cluster feature selection and
random selection, while also requiring similar or lower compu-
tational times than these approaches. Moreover, when compared
to feature extraction techniques, such as Random Projections,
the proposed approach also shows a noticeable improvement in
both error and computational time.

Index Terms—Dimensionality reduction, K-means clustering,
feature selection, parallelization, unsupervised learning.

I. INTRODUCTION

Cluster analysis is an essential task for analyzing the ever-
growing quantity of high dimensional data from different
areas, such as artificial intelligence and pattern recognition
[1]–[3]. This technique attempts to partition a data set into
disjoint groups called clusters, in such a way that intra-cluster
similarity is high and the inter-cluster similarity is low. Perhaps
the most well-known clustering algorithm is the so-called K-
means algorithm [2], [4]. In fact, it has been identified as one
of the top 10 algorithms in data mining [5].

A. K-means problem

Given a set of n data points (instances), X =
{x1, . . . , xn} ⊆ Rd, and a positive integer K (the number of
clusters), the K-means problem consists of splitting the points

M. Capó, A. Pérez and J.A. Lozano are with the Basque Center of
Applied Mathematics, Bilbao, Spain, 48009.
E-mail: mcapo@bcamath.org , aperez@bcamath.org

J.A. Lozano is also with the Intelligent Systems Group, Department of
Computer Science and Artifitial Intelligence, University of the Basque Country
UPV/EHU, San Sebastián, Spain, 20018.
E-mail: ja.lozano@ehu.es

into K clusters so that the total sum of the squared Euclidean
distances of each point to its nearest cluster centroid (center of
mass) is minimized. In other words, the goal is to determine a
set of K centroids C = {c1, . . . , cK} in Rd so as to minimize
the following quality/error function:

ED(C) =
∑
x∈X
‖x− cx‖2D, (1)

where cx = arg min
c∈C

‖x− c‖2D, for all x = (x1, . . . , xd) ∈ X ,

and ‖x− c‖2S =
∑
i∈S

(xi− ci)2, for any S ⊆ D, where D is the

full set of features of the data set X , i.e., D = {1, . . . , d}.
This minimization problem can be seen as a combinatorial

optimization problem, since it is equivalent to finding the
partition of the n instances in K groups whose associated set
of centers of mass minimizes Eq.1 [6]. Unfortunately, finding
the solution to such an optimization problem for K > 1 is
known to be NP-hard [7], even for instances in the plane
[8]. For this reason, iterative refinement based algorithms are
commonly used to approximate the solution of the K-means
problem [9]. Among these methods, the most popular is the
K-means algorithm [5], [10].

The K-means algorithm is a heuristic that iteratively relo-
cates the data points between clusters until a locally optimal
partition is attained. It consists of two stages: Initialization,
in which we set the starting set of centroids, and an iterative
stage, known as Lloyd’s algorithm.

B. Lloyd’s algorithm

Lloyd’s algorithm (Algorithm 1) [10] is a two-step recursive
heuristic that receives as input an initial set of centroids and
determines a local minima of Eq.1. In its first step, each
instance is assigned to its closest centroid (assignment step),
then the set of centroids is updated as the centers of mass of
the instances assigned to the same centroid in the previous
step (update step). The time needed for the assignment step
is O(n · K · d), while updating the set of centroids requires
O(n·d) computations. Commonly, the process described above
is repeated until the set of centroids remains invariant, in which
case such a set of centroids is a local minima of the K-means
problem [11].

Among the different advantages, such as the easiness of
its implementation, it must be remarked that both phases of
Lloyd’s algorithm (assignment and update steps) can be easily
parallelized [12], which is a major key to meet the scalability
of the algorithm [5]. Additionally, there exists a wide variety
of speed-ups/approximations to the K-means algorithm, such
as different distance prunning approaches [1], [13]–[15], the

SUBMITTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2

Minibatch K-means [16], the Boundary Weighted K-means
[17] and several coreset techniques [18]–[23].

Algorithm 1: Lloyd’s algorithm
Input: Data set X , number of clusters K and set of
centroids C = {c1, . . . , cK}.
Output: Local minima of Eq.1, C∗ and clustering P .
while not Stopping Criterion do
• Assignment step:

- Construct, for all k ∈ {1, . . . ,K}, the subsets
Pk = {x ∈ X : k = arg min

i∈{1,...,K}
‖x− ci‖2D}.

• Update step:
- Take ck = Pk for all k ∈ {1, . . . ,K}.

end
Return C∗ = {c1, . . . , cK}, P = {P1, . . . , PK}.

Regarding the disadvantages of Lloyd’s algorithm, we could
point out its dependence upon the initialization stage in both
quality of the obtained solution and running time [24]. A
poor initialization, for instance, could lead to an exponential
running time in the worst case scenario [25]. A lot of research
has been done on this topic: a detailed review of seeding
strategies can be found in [26], [27]. In particular, and as
widely reported in the literature, at the moment the most
popular seeding strategy is the K-means++ algorithm [28].
This strategy consists of selecting the first centroid uniformly
at random from the data set, then each subsequent initial
centroid is chosen with a probability proportional to the dis-
tance with respect to the previously selected set of centroids.
The key idea behind such a seeding technique is to preserve
the diversity of seeds while being robust to outliers. The K-
means++ algorithm additionally leads to a O(logK) factor
approximation of the optimal error, on average [28].

On the other hand, the high dimensionality of modern
data sets, for instance those related to images, videos, sensor
networks, genome sequencing, computer vision and web [29]–
[31], has provided a considerable challenge to the K-means
algorithm [32], [33]: Not only does the curse of dimensionality
make the K-means algorithm slow and affect the usefulness
of the Euclidean distance, but the existence of many irrelevant
features may not allow the identification of the underlying
structure in the data [32], [34]. These facts motivate the study
of dimensionality reduction applied to the K-means problem.

C. Dimensionality reduction for the K-means problem

In general, dimensionality reduction is a problem that con-
sists of embedding the original features into a lower dimen-
sional space, which, ideally, contains the same information as
the original data set [34]–[36]. In particular, dimensionality
reduction can be divided into two main groups, feature ex-
traction and feature selection. In the following sections, we
elaborate on both approaches.

1) Feature extraction: In feature extraction, the lower di-
mensional space is composed of new artificial features that are
generated, for instance, via linear combinations of the original
features. As can be seen in the literature, both Singular Value
Decomposition (SVD) and Principal Component Analysis

(PCA) have been succesfully used to preprocess the data prior
to executing the K-means algorithm [1], [32], [33], [37]. In
particular, among other results, it can be proved that projecting
the data set into m =

⌈
K
ε

⌉
dimensions via SVD allows the

clustering error to be preserved within a factor of 1 + ε [33].
However, it must be pointed out that the time complexity of
both procedures can be fairly high: O(min{n · d2, n2 · d})
for SVD and O(n · d2 + d3) for PCA [38]. A fairly cheaper
approach consists of applying Random Projections (RP) to
the original data set. This technique is just O(m · d · n)
[39]. However, in this case, m = O(Kε2) [33] dimensions are
required to keep the (1 + ε)-approximation factor. Different
variants of these methods exist, a detailed review of these can
be found in [33], [40].

A different approach that commonly needs much lower
computational requirements than the previous dimensional-
ity reduction methods is feature selection. Additionally, this
technique tends to improve the interpretability of the obtained
clustering when compared to the use of the original set of
features [41]–[43].

2) Feature selection: In feature selection, actual dimensions
of the data set are selected to construct the lower dimensional
space in which the data set is embedded. This approach
has been extensively used for the K-means problem [32],
[44]. In particular, we can highlight procedures such as the
Laplacian scores [45]. This method fundamentally uses a
nearest neighbor graph to model the local geometric structure
of the data and selects those features which are the smoothest
on the graph [45]. Unfortunately, such a construction can
be computationally costly as it requires the computation of
all pairwise distances between instances. Furthermore, no
theoretical guarantees, related to the quality of the obtained
clustering, are provided. In the same line, in [44], the Multi-
Cluster Feature Selection algorithm (MCFS) is proposed. This
method makes use of the eigenvectors of the Laplacian graph,
which is defined by the affinity matrix of the data set, to
select those features that preserve the multi-cluster structure
of the data set the best. Unfortunately, in this case there
are also no theoretical guarantees in terms of the quality
of the obtained solution and its time complexity is fairly
restrictive, O(n2 ·d+K ·m3 +n ·K ·m2 +d · log d). Another
popular unsupervised feature selection consists of selecting
those features with the largest variance [44]. The intuition
behind this approach is that high variance features may contain
more clustering information and, therefore, tend to have a
higher impact on the error function, Eq.1 [45].

Other feature selection approaches consist of selecting fea-
tures via random sampling, such as in [46], [47] (uniformly) or
[32], where a more elaborated SVD-based selection procedure
is proposed. For this last procedure, it can be proved that
selecting m = Θ(

K·log Kε
ε2) dimensions and running any λ-

approximate K-means algorithm1 leads to a (1 + (1 + ε) · λ)-

1Given λ ≥ 1, algorithm A is a λ-approximate K-means algorithm if it
can converge to a set of centroids, C′, satisfying ED(C′) ≤ λ ·ED(Copt),
where Copt = argmin

C⊆Rd,|C|=K

ED(C). For instance, if algorithm A is

taken as the K-means algorithm, then λ = 1. However, we could also
consider algorithm A as any variant of the K-means algorithm, such as those
mentioned in Section I-B.

SUBMITTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 3

approximation of the optimal K-means error, with high prob-
ability. Unfortunately, this technique may not result as being
very practical, as it is O(min{n · d2, n2 · d}).

D. Contribution

In this work, we propose a fully parallelizable feature selec-
tion algorithm for the K-means problem called the Relevance
Based Feature Selection for the K-means algorithm (KMR).
In the first step of KMR, the set of features is partitioned
into multiple subsets and a clustering for the entire data set,
restricted to each set of features, is learnt in parallel. Taking
into consideration each of the obtained clusterings, we quantify
the importance (relevance) of each feature and select those
that seem to have a greater influence when determining the
corresponding clustering. For this purpose, we first define a
measure to compute a feature relevance for a given clustering,
which is presented in Section II and comment on some of
its properties. Afterwards, in Section III, we elaborate on
the KMR algorithm and provide some theoretical guarantees
for the obtained approximation. In Section IV, we analyze
the performance of the proposed algorithm with respect to
different feature selection/extraction techniques in terms of
the clustering quality and the computational time. Finally, in
Section V, we define the next steps and possible improvements
to our current work.

II. A FEATURE RELEVANCE MEASURE FOR THE K-MEANS
CLUSTERING PROBLEM

In this section, we define a measure that allows us to
quantify the importance of a given variable with respect to a
predefined K-means clustering. In particular, given a partition
of the dataset, the proposed measure consists of evaluating the
effect of fixing a variable on the obtained clustering in terms
of the associated K-means error increase.

In order to provide some intuition, in Fig. 1, we show an
example on a 2D mixture of Gaussians and 2 clusters. In Fig.
1(a), in different colors, a clustering, P , and its associated
centers of mass (black dots), C, are presented. Moreover, in
Fig. 1(b) and Fig. 1(c), we can observe the variation on the
clusterings that takes place when the centers of mass, in C,
are fixed to a given value in either dimension. In this case, it
is clear that dimension 2 (y-axis) provides less information
of the obtained clustering structure, since, when fixed, the
clustering remains invariant with respect to the original one.
Therefore, dimension 1 (x-axis) is a better candidate to be
selected. Rather than analyzing the clustering variations, in
practice, we will evaluate the error increase with respect to the
original clustering when a certain feature is removed2. Then,
we will select the subset of features that produce the largest
error increase.

2We say that a feature s ∈ D\S is removed when, for each centroid, we
fix the entry associated to that variable to its corresponding center of mass
on X , X{s}.

0 5 10

(a)

−2

0

2

4

Original clustering, P

0 5 10

(b)

−2

0

2

4

Clustering after fixing
dimension 1 (x-axis)

0 5 10

(c)

−2

0

2

4

Clustering after fixing
dimension 2 (y-axis)

Fig. 1. Illustration of the proposed feature selecion rule.

Next, we introduce the notation used throughout this work.
From now on, the data set X restricted to a subset of features,
S ⊆ D = {1, ..., d}, is denoted by XS . Di:j is the subset
of D containing all the variables from the ith feature to the
jth feature of D. Furthermore, by P = {P1, . . . , PK} we
refer to a given partition/clustering of X into K groups and
by C = {c1, . . . , cK} to the set of centroids associated to it.
That is, ck = (ck,1, . . . , ck,d) = Pk, for k = {1, . . . ,K}.
Finally, given S ⊆ D and C = {c1, . . . , cK}, we denote
by CS = {cS1 , . . . , cSK} to the set of centroids satisfying
cSk,s = ck,s, for s ∈ S, and cSk,s = X{s}, for s ∈ D \ S
and k ∈ {1, . . . ,K}. For instance, C{1} and C{2} are the set
of centroids composed of the black dots in Fig. 1(c) and Fig.
1(b), respectively. Following the intuitions illustrated in Fig.
1, in Definition 1, we provide a relevance measure of a feature
for a given clustering, P:

Definition 1. Given a data set X with features D, a clustering
of X , P , and its associated set of centroids, C, we define the
relevance of a feature s ∈ D, for P , as follows:

r{s} =

K∑
k=1

|Pk| · (ck,s −X{s})2 (2)

One of the main advantages of such a relevance measure is
the fact that it is additively decomposable, i.e., the relevance
of a set of features S ⊆ D, for a clustering P , can be
written as rS =

∑
s∈S

r{s}. This characteristic will allow us

to progressively select those features with the largest impact
on the K-means clustering without evaluating the K-means
error gain for all the possible combinations of variables to
be selected, which would be quite costly (O(

(
d
m

)
· n ·K · d)

time cost). Furthermore, the following result shows that the
relevance can be interpreted in terms of the increment of the
K-means error function when the value of a feature is fixed
to its corresponding center of mass:

Theorem 1. Given a data set X with features D, a clustering
P = {P1, . . . , PK} and its associated set of centroids, C, then,

SUBMITTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 4

for any subset of features S ⊆ D, the following inequality
holds:

ED(CS) ≤ ED(C) + rD\S (3)

The result of Theorem 1 shows that the proposed relevance
measure can be used to upper-bound the increment of the K-
means error function when a subset of dimensions is fixed. It
should be noted that computing the scores of all the variables
s ∈ D can be done in just O(K · |D|) time. Moreover,
since the relevance is additively decomposable, the effect
of the removal of any subset of variables in the K-means
error function is also additive (Eq.2 and Eq.3). Therefore,
by computing the relevance of each feature individually, it is
possible to upper-bound the error increment that is produced
by the removal of each subset of features. This interesting
property allows us to construct a (1 + ε)-approximation of
ED(C) by selecting a subset of features according to the
proposed relevance measure.

Corollary 1. Given a data set X with features D, a clustering
P , its associated set of centroids C, and a subset of features
S ⊆ D, then CS is a (1+ ε)-approximation of ED(C), where

ε ≤ εSD =
rD\S

ED(C)
(4)

Note that εSD ≥ 0 is given in terms of the relevance of the
removed features, D \ S. This result motivates the following
feature selection algorithm (Algorithm 2) which minimizes the
number of features selected such that the obtained clustering,
on those variables, S, is a (1 + ε)-approximation of the K-
means error function evaluated on the full set of features, D.

Algorithm 2: Feature selection based on Corollary 1
Input: Data set X ∈ Rn×d, clustering P and its associa-
ted set of centroids, C.
Output: Set of features S, for which CS a (1 + ε)-
approximation of ED(C), where D = {1, . . . , d}.
- Compute the relevance of each feature s ∈ D, r{s}, for
P .

- Sort D increasingly according to {r{s}}s∈D.
- Determine the largest index k s.t. rD1:k

≤ ε · ED(C)
holds.

Return S = Dk+1:|D|.

It should be noted that, for the output of Algorithm 2, S,
CS is a (1 + εSD)-approximation of C, where εSD ≤ ε3, while
the computational cost of generating such an approximation
is just O(|D| ·max{K, log |D|}). Furthermore, we would like
to point out that, in the following sections, we will refer by
ξmD to the value of ε > 0 obtained when selecting m features
of D via Algorithm 2, i.e., ξmD = εSD, where m = |D| − k.

Algorithm 2 allows us to select a set of features for which
we can preserve a predefined error quality guarantee, however,
for this approach, we can not fix the cardinality of such a set
in advance, as it occurs for the feature selection/extraction

3In Appendix B, we briefly present some additional experimental results
showing the accuracy of the error bound obtained via Algorithm 2.

algorithms. In the following section, we discuss a distributed
feature selection algorithm that allows us to fix the number of
features selected and which is partially related to Algorithm
2.

III. DISTRIBUTED FEATURE SELECTION ALGORITHM FOR
K-MEANS: KMR

One of the main motivations of this work is to improve
the scalability of Lloyd’s algorithm with respect to the dimen-
sionality of the K-means problem. Moreover, in the literature
there are different competitive approximations to the K-
means algorithm, such as [17], [20], [22], [48], that do not
scale well with respect to this factor. The proposed feature
selection algorithm will allow the use of these techniques
to approximate the solution of the clustering problem on a
tractable number of dimensions for them.

In this section, we formally introduce the Relevance Based
Feature Selection for the K-means algorithm (KMR). KMR is
a distributed algorithm that performs feature subset selection
by using the relevance measure given in Definition 1. Ini-
tially, KMR constructs a partition of the dimensions set and
obtains a clustering for each subset of dimensions by using
an approximate algorithm A for the K-means problem, e.g.,
K-means algorithm or the methods proposed in [17], [20],
[22], [48]. Next, it quantifies the relevance of each feature
for its corresponding clustering and selects the most relevant
features. This simple and distributed algorithm has different
theoretical guarantees in terms of the K-means error function
(see Section III-A). The pseudocode of KMR is presented in
Algorithm 3.

Algorithm 3: Relevance Based Feature Selection for the
K-means (KMR)
Input: Data set X ∈ Rn×d, number of clusters K,
number of features to be selected m < d and a heuristic
for the K-means problem, algorithm A.
Output: A subset of features of size m, S.
- Generate a partition of D = {1, . . . , d}, {D1, . . . , Dt}.
for i = 1, . . . , t do

- Obtain a clustering Pi of XDi using algorithm A.
- Compute the relevance of each feature s ∈ Di,
r{s}, for Pi.

end

Return S =
t⋃
i=1

S∗i with |S| = m, where

{S∗1 , . . . , S∗t } = arg min
Si⊆Di for i∈{1,..,t}

max{εS1

D1
, . . . , εStDt} (5)

The first task in KMR (Algorithm 3) is to partition the set
of features D into the smallest number of chunks possible, t,
so that all parties have a similar amount of features, which
are upper-bounded by m. The goal behind this step is to
make sure that algorithm A is applied the lowest number of
times over a number of dimensions that is tractable for it.
Observe that, for the first requirement, the lowest number of
parties needed is given by t =

⌈
d
m

⌉
. Moreover, for the latter

SUBMITTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 5

requirement, it is always possible to find a partition of D,
for which max

i∈{1,...,t}
|Di| − min

i∈{1,...,t}
|Di| ≤ 14. Afterwards,

algorithm A is distributedly applied on each chunk Di, for
i = 1, . . . , t, to determine the clusterings required to compute
the relevance of each feature in Di: If we set algorithm A to be
the standard K-means algorithm [10], K-means++ algorithm
[28] or even the Boundary Weighted K-means algorithm [17],
its computational complexity is bounded by O(n · K · m)
and, computing the relevance of each feature in Di, is just
O(K ·m).

The last step of KMR is to select the features set,

S =
t⋃
i=1

S∗i , using the computed relevances in parallel in

Algorithm 3. To do so, we need to compute, in a similar
fashion to Algorithm 2, the list {ξ|Di|Di

, ξ
|Di|−1
Di

, . . . , ξ0Di} for
each chunk of dimensions Di. This step can be done in
just O(|Di| · max{K, log |Di|}) time, for all i ∈ {1, . . . , t}.
Afterwards, {S∗1 , . . . , S∗t } is determined via Eq.5. This last
phase can be done in O(t), as shown in Appendix C.

Following the previous analysis, the computational cost of
KMR is, at most, O(max{m ·max{n ·K, logm}, t}) on each
subset. That is, if the following unrestrictive constraints are
satisfied d ≤ n · K · m2 and m ≤ 2n·K , then the cost of
KMR is dominated by the time complexity of algorithm A,
i.e., O(n ·K ·m). A further interesting remark is that KMR,
in the extreme case K = n, is equivalent to selecting the m
features with the largest variances, which is another commonly
used feature selection strategy [44], [45].

A. Quality guarantees of KMR

Once m features, S ⊆ D, are selected via Algorithm 3, al-
gorithm A can be applied over the data set XS to approximate
the clustering with a reduced number of dimensions. This last
step has O(n · K · m) time complexity. In this section, we
provide different theoretical guarantees for the quality of the
obtained approximation using the features selected via KMR
(Algorithm 3).

We start by analyzing and providing a theoretical quality for
approximations that are obtained via Algorithm 2: instead of
choosing the number of the selected features, m, in advance,
we consider an alternative parameter, ε > 0, that imposes a
threshold to the cumulative relevance of the selected features
normalized by the error of the associated clustering.

Theorem 2. Given a data set X with features D, a constant
ε > 0 and a partition of D, {D1, . . . , Dt}, if Si is the set of
features selected via Algorithm 2 from Di, for ε > 0, then the
output of a λ-approximate K-means algorithm (algorithm A)

on S =
t⋃
i=1

Si, C∗, satisfies

ED(C∗) ≤ ϕ · (1 + ε) · ED(Copt)− δ (6)

4For instance, if we set f = m · t − d, then we can take f −
⌊ f
t

⌋
· t

parties, with m −
⌊ f
t

⌋
− 1 dimensions, and the remaining t − f +

⌊ f
t

⌋
· t

parties, with m−
⌊ f
t

⌋
dimensions.

where Copt = arg min
C⊆Rd,|C|=K

ED(C), ϕ = λ2 · ΘS
t∑
i=1

E
Si
Di

(Ci)

with ΘS = ES({XS}) and δ = λ·(1+c)−t
t · ΘD\S with

c =

t∑
i=1

E
S\Si
Di

(Ci)

t∑
i=1

E
Si
Di

(Ci)

.

We must point out that, in Eq.6, the value of δ is commonly
non-negative 5. For this reason, Theorem 2 shows that applying
algorithm A using the selected features by Algorithm 3 tends
to lead to a O(1 + ε)-approximation of the K-means problem
over the whole data set, X . In other words, performing the
proposed feature selection procedure, which locally controls
the increase of the K-means error in different groups of
dimensions, allows us to preserve the error bounds over the
entire set of dimensions. Unfortunately, the number of selected
features depends on the values of the normalized relevances
of the features and on the value of ε > 0. Often, in practice,
we want to fix the number of selected features. To tackle this
difficulty, we can consider different values ε > 0, for each
party Di in i ∈ {1, . . . , t}, such that the total number of
selected features is |S| = m. In this regard, we can take into
consideration the following corollary.

Corollary 2. If S =
t⋃
i=1

S∗i is the set of m features selected

by Algorithm 3 on a data set X with features D, then the
output of a λ-approximate K-means algorithm (algorithm A)
on S, C∗, satisfies

ED(C∗) ≤ ϕ · (1 + ε∗) · ED(Copt)− δ, (7)

where ε∗ = max
i∈{1,...,t}

ε
S∗i
Di

.

Corollary 2 shows the importance of minimizing the value
ε > 0 used on each chunk of dimensions Di needed to
select exactly m variables overall, which is the last step of
Algorithm 3. Using the arrays generated by Algorithm 2,
{ξ|Di|Di

, ξ
|Di|−1
Di

, . . . , ξ0Di} for all i ∈ {1, . . . , t}, this problem
can be naively solved in O(d · logm) time. Furthermore, since
all these arrays are sorted, the optimization problem in the last
step of Algorithm 3 can be easily solved in O(t) time, see
Appendix C for more details.

IV. EXPERIMENTS

In this section, we perform a series of experiments so as
to analyze the trade-off between the computational time and
the quality of the approximation obtained by the K-means
algorithm after applying it on a wide variety of preprocessed
data sets via different dimensionality reduction techniques.

Given a predefined number of features to be ex-
tracted/selected, we compare the performance of the K-means
Relevance Feature Subset Selection (KMR) with respect to
the K-means algorithm6 applied on m features selected via i)
Laplacian Scores (LS), ii) Maximum variance (MaxVar), iii)
Multi-Cluster Feature Selection (MCFS) and iv) Uniformly at

5See Observation 1 in Appendix A.
6In order to guarantee the obtained clustering to be competitive, we use

K-means algorithm initialized via K-means++ (KM++).

SUBMITTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 6

random (Rand), or extracted via i) Random Projections (RP),
ii) Principal Component Analysis (PCA) and iii) Singular
Value Decomposition (SVD). We analyze the performance of
these methods on a wide variety of well-known real data sets
(see Table I) with different scenarios of the clustering problem.
The number of features to be selected/extracted is fixed as
m ∈ {10, 25, 50, 75, 100}7. Furthermore, due to the random
nature of the experimental setting, each experiment has been
repeated 20 times.

For each experimental setting, we evaluate the relative
K-means error obtained for each method M , ÊM =
EM−EKM++

EKM++
, where EM and EKM++ stand for the K-means

error of method M ∈ { KMR, LS, MaxVar, MCFS, Rand,
PCA, RP, SVD} and the error obtained by KM++ over all the
dimensions of the data set, respectively. To analyze how well
each method preserves the clustering quality when compared
to KM++, we additionally present the Adjusted Rand Index,
ARI [49], [50], of each method M with respect to the
clustering obtained by KM++. In terms of the computational
resources, we show the proportion of the computational time
of each method M , tM , with respect to that of KM++,
t̂M = tM

tKM++
. To start the analysis, in Tables II-III, we

show the average for these factors, over all the data sets and
considered methods.

Table II: Relative error - average over all data sets-.
METHOD m=10 m=25 m=50 m=75 m=100

KMR 4.1× 10−2 1.2× 10−2 6.4× 10−3 4.0× 10−3 2.3× 10−3

LS 2.7× 10−1 9.8× 10−2 7.6× 10−2 4.8× 10−2 5.0× 10−2

MAXVAR 8.6× 10−2 2.5× 10−2 1.3× 10−2 1.0× 10−2 9.0× 10−3

MCFS 1.7× 10−1 1.3× 10−1 1.1× 10−2 8.1× 10−2 6.1× 10−2

RAND 2.9× 10−1 2.0× 10−1 1.6× 10−1 1.2× 10−1 1.2× 10−1

PCA 1.6× 10−3 1.7× 10−3 8.4× 10−6 5.3× 10−5 7.7× 10−5

RP 9.3× 10−2 3.5× 10−2 1.2× 10−2 1.3× 10−2 7.8× 10−3

SVD 4.0× 10−4 5.9× 10−4 7.2× 10−5 8.4× 10−5 7.9× 10−5

Table III: (ARI, Relative computational time) - average over
all data sets-.

METHOD m=10 m=25 m=50 m=75 m=100
KMR (0.69, 0.28) (0.75, 0.34) (0.77, 0.27) (0.80, 0.25) (0.83, 0.20)

LS (0.42, 5.78) (0.60, 5.82) (0.56, 1.56) (0.63, 1.60) (0.60, 1.51)
MAXVAR (0.63, 0.27) (0.72, 0.32) (0.70, 0.25) (0.71, 0.23) (0.68, 0.19)

MCFS (0.34, 2.21) (0.50, 3.16) (0.40, 2.08) (0.39, 2.35) (0.48, 2.85)
RAND (0.23, 0.29) (0.37, 0.33) (0.27, 0.27) (0.45, 0.25) (0.46, 0.20)

PCA (0.93, 0.42) (0.95, 0.54) (0.94, 0.52) (0.95, 0.53) (0.95, 0.55)
RP (0.49, 0.31) (0.63, 0.35) (0.66, 0.29) (0.68, 0.28) (0.74, 0.23)

SVD (0.92, 0.40) (0.94, 0.50) (0.94, 0.50) (0.95, 0.54) (0.96, 0.60)

At first glance, it can be seen that, among the feature se-
lection techniques (LS, MaxVar, MCFS, Rand), KMR obtains

7In order to avoid the performed dimensionality reduction to be negleg-
ible, for those data sets with d ≤ 100, we set m ≤ 3

4
· d, e.g., for mfeat

Fourier (d = 76), we analyze reductions to m ∈ {10, 25, 50} features.

on average both the lowest relative error and largest ARI with
respect to the clusterings achieved by KM++. In particular,
for the different numbers of features to be selected, m, KMR
consistently obtains an average error with a relative error
under 0.05 with respect to KM++. That is, the clustering
obtained after executing K-means++ on the features selected
by KMR usually had an error increment of under 5% of
the lowest error achieved by KM++ over the original data
set. On the other hand, MaxVar also generated competitive
approximations, however, for the largest numbers of features
selected m = {50, 75, 100}, it has 1 order of magnitude
of additional error when compared to KMR, as well as a
significantly smaller ARI (for m = 100, under 0.15 smaller
than KMR). Moreover, LS, MCFS, and Rand obtained the
largest relative errors (for all settings, at least, one order of
magnitued larger than KMR) and the smallest ARI (under
0.15 with respect to KMR, in every case). For the feature
extraction techniques, it can be seen that that SVD and PCA
obtained fairly competitive approximations, preserving the
clustering structure achieved by KM++ almost identically,
while RP generates less accurate approximations, which are
commonly improved by KMR. It is clear that, as we increase
the number features to be extracted/selected, the quality of the
approximations, for the different methods, tends to improve
dramatically. On the other hand, in Table III, we observe that
all the feature selection approaches, except for LS and MCFS,
have similar computational times, which are, on average, under
35% of the time required by KM++. For the feature extraction
methods, we can see that PCA and SVD required, on average,
up to 3 times the computational time needed by KMR when
extracting the largest number of variables.

A. Feature Selection

In Fig. 2, we can observe the results obtained in all 16 data
sets for feature selection. As previously mentioned, among
these methods, KMR obtained the most accurate approxima-
tions, reducing, on average, at least one order of relative error
for m ∈ {50, 75, 100} and regularly reaching an ARI w.r.t.
KM++ clustering over 0.05 higher than that achieved by the
other approaches. On the downside, LS, MCFS, and Rand
consistently obtained the least competitive clusterings by far.

In spite of the competitive performance in terms of the
quality of the approximation, KMR required the same order
of computational time as MaxVar and Rand. Such behavior is
expected, as all these three methods have a time complexity
dominated by the K-means run, over the selected variables,
which is linear w.r.t. n, K and m. To observe this in
more detail and, as the data sets presented in Table I have

Table I: Information of the data sets.

Data Set n K d

KC1 Binary 145 2 91
Amazon Mechanical 180 10 500

Micro Mass 571 20 1300
Breast Cancer 604 2 10936
Arcene NIPS 700 2 10000

Data Set n K d

Gene RNA-Seq 801 5 20531
Ova Uterus 1545 2 10936

Madelon NIPS 2000 2 500
mfeat Fourier 2000 10 76

Scene 2407 3 299

Data Set n K d

GINA Agnostic 3468 2 970
Bio Response 3751 2 1776

Spambase 4601 2 57
Waveform Generator 5000 3 40

Satellite Image 6430 6 36
USPS LeCun 7291 10 256

SUBMITTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 7

m: 10 m: 25 m: 50 m: 75 m: 100

K
M
R

L
S

M
a
x
V
a
r

M
C
F
S

R
a
n
d

K
M
R

L
S

M
a
x
V
a
r

M
C
F
S

R
a
n
d

K
M
R

L
S

M
a
x
V
a
r

M
C
F
S

R
a
n
d

K
M
R

L
S

M
a
x
V
a
r

M
C
F
S

R
a
n
d

K
M
R

L
S

M
a
x
V
a
r

M
C
F
S

R
a
n
d

1e−04

1e−03

1e−02

1e−01

1e+00

1e−04

1e−03

1e−02

1e−01

1e+00

1e−04

1e−03

1e−02

1e−01

1e+00

1e−04

1e−03

1e−02

1e−01

1e+00

1e−04

1e−03

1e−02

1e−01

1e+00

Method

E
r
r
o
r

m: 10 m: 25 m: 50 m: 75 m: 100

K
M
R

L
S

M
a
x
V
a
r

M
C
F
S

R
a
n
d

K
M
R

L
S

M
a
x
V
a
r

M
C
F
S

R
a
n
d

K
M
R

L
S

M
a
x
V
a
r

M
C
F
S

R
a
n
d

K
M
R

L
S

M
a
x
V
a
r

M
C
F
S

R
a
n
d

K
M
R

L
S

M
a
x
V
a
r

M
C
F
S

R
a
n
d

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Method

A
R
I

m: 10 m: 25 m: 50 m: 75 m: 100

K
M
R

L
S

M
a
x
V
a
r

M
C
F
S

R
a
n
d

K
M
R

L
S

M
a
x
V
a
r

M
C
F
S

R
a
n
d

K
M
R

L
S

M
a
x
V
a
r

M
C
F
S

R
a
n
d

K
M
R

L
S

M
a
x
V
a
r

M
C
F
S

R
a
n
d

K
M
R

L
S

M
a
x
V
a
r

M
C
F
S

R
a
n
d

0.01

0.10

1.00

10.00

0.01

0.10

1.00

0.01

0.10

1.00

0.01

0.10

1.00

10.00

0.01

0.10

1.00

10.00

Method

C
o
m
p
.

T
i
m
e

Fig. 2. Feature selection output for all data sets -boxplot-.

quite different characteristics, we have divided each factor
(dimensionality, number of instances and classes) into three
regularly-sized groups and computed the relative error, relative
computational time and ARI for all the feature selection
methods, see Tables IV-VI.

Table IV: (Relative error, ARI, Relative computational
time) - average over groups of dimensions-.
METHOD d ≤ 100 100 < d < 10000 d ≥ 10000

KMR (1.1× 10−2 , 0.88, 0.80) (2.1× 10−2 , 0.68, 0.23) (7.0× 10−3 , 0.91, 0.01)
LS (2.6× 10−1 , 0.59, 12.47) (6.8× 10−2 , 0.54, 2.01) (1.2× 10−1 , 0.53, 0.54)

MAXVAR (6.4× 10−2 , 0.81, 0.77) (3.1× 10−2 , 0.52, 0.22) (1.3× 10−2 , 0.84, 0.03)
MCFS (2.9× 10−1 , 0.53, 5.66) (4.3× 10−2 , 0.45, 1.61) (1.1× 10−1 , 0.35, 2.07)
RAND (2.3× 10−1 , 0.57, 0.78) (1.8× 10−1 , 0.31, 0.25) (1.8× 10−1 , 0.33, 0.01)

Table V: (Relative error, ARI, Relative computational time)
- average over groups of number of clusters-.
METHOD K ≤ 3 3 < K < 10 K ≥ 10

KMR (5.1× 10−3 , 0.75, 0.18) (1.6× 10−2 , 0.91, 0.40) (3.0× 10−2 , 0.70, 0.41)
LS (1.3× 10−1 , 0.52, 2.82) (8.3× 10−2 , 0.63, 7.16) (1.1× 10−1 , 0.60, 2.04)

MAXVAR (1.1× 10−2 , 0.65, 0.18) (6.5× 10−2 , 0.84, 0.38) (5.4× 10−2 , 0.66, 0.37)
MCFS (1.6× 10−1 , 0.27, 2.98) (3.8× 10−2 , 0.60, 2.62) (8.3× 10−2 , 0.69, 1.11)
RAND (1.4× 10−1 , 0.28, 0.17) (1.4× 10−1 , 0.56, 0.45) (3.5× 10−1 , 0.44, 0.39)

Table VI: (Relative error, ARI, Relative computational
time) - average over groups of number of instances-.
METHOD n ≤ 750 750 < n < 2500 n ≥ 2500

KMR (1.1× 10−2 , 0.81, 0.28) (5.0× 10−3 , 0.89, 0.24) (3.0× 10−2 , 0.62, 0.31)
LS (1.7× 10−1 , 0.42, 0.66) (8.6× 10−2 , 0.70, 1.75) (1.0× 10−1 , 0.60, 8.79)

MAXVAR (1.8× 10−2 , 0.79, 0.26) (5.1× 10−3 , 0.85, 0.23) (7.7× 10−2 , 0.40, 0.30)
MCFS (1.3× 10−1 , 0.30, 2.17) (9.1× 10−2 , 0.63, 1.98) (1.3× 10−1 , 0.32, 3.56)
RAND (3.0× 10−1 , 0.31, 0.32) (1.4× 10−1 , 0.37, 0.23) (1.0× 10−1 , 0.42, 0.28)

According to Tables IV-VI, it is clear that, regardless of
the clustering scenario, KMR, on average, provides both the
lowest relative error and largest ARI w.r.t. KM++. However,
in spite of the groups selected for each factor (dimensionality,

number of instances and classes), we do not notice a major
variation in terms of the quality of the obtained clusterings. As
shown, in both Tables II-III and Fig. 2, the number of features
selected indeed has a larger effect on the comparison of the
clusterings obtained by the different methods considered w.r.t.
KM++. As previosuly discussed, in terms of the computational
time, for the different configurations considered, KMR, Max-
Var, and Rand have comparable time requirements, however
LS and MCFS perform quite poorly in this regard as well,
especially as the number of instances is increased, e.g., for the
group "n ≥ 2500", LS and MCFS required 28.35 and 11.48
times the computational running time of KMR, on average,
respectively.

B. Feature Extraction
In this section we perform the same analysis as in Section

IV-A, however this time comparing KMR to the different
feature extraction techniques considered: In Fig. 3, we observe
the results obtained for all the data sets w.r.t. the number of
features extracted. Moreover, in Tables VII-IX, we present the
relative error, relative computational time and ARI and for the
different groups of dimensionality, number of instances and
classes.

In this case, the analysis of the results, especially in terms
of the computational time, is more interesting than in Section
IV-A, as the time demands are not neccesarily dominated by
the corresponding K-means run for each method. We can
see in Tables VII-IX that there is no clear improvement/
diminishment, in terms of clustering quality (relative error and
ARI), as we increase any of the three factors. As we show in
Tables II-III and Fig. 3, the quality of the obtained clustering
seems to be largely dominated by the number of features
extracted, regardless of the method, as in Section IV-A. In
any case, despite the considered setting, we must remark that
KMR outperforms the clustering quality of RP, in both ARI
and error.

In terms of the computational time required w.r.t. KM++,
we observe a large effect of the orginal dimensionality of the
data set, d. Unfortunately, as the dimensionality reduction step
via SVD and PCA is supralinear w.r.t. d, this phase is far more
time consuming than running the K-means algorithm on the
extracted/selected variables. For this reason, we can see that
in the group "d ≤ 100", PCA and SVD just need, on average,
1.17 and 1.16 times the computational time of KMR, while,
for "d ≥ 10000", the time demands increase to 29.16 and
30.08 times, respectively. In other words, methods such as
KMR and RP can be more suitable for preprocessing massive
data sets.

On the other hand, KMR also outperforms RP time-wise.
However, in this case the time reduction is not that relevant.
This is due to the fact that the computational time of RP also
grows linearly with respect to the different factors, and that its
feature extraction step is independent of the number of classes.
Hence, as we consider larger values of clusters, we expect
a more competitive perfomance in terms of computational
resources for RP, especially when d ≤ K, which is a very
unlikely case as most of the applications considered for this
analysis tend to have massive dimensionalities.

SUBMITTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 8

m: 10 m: 25 m: 50 m: 75 m: 100

K
M
R

P
C
A

R
P

S
V
D

K
M
R

P
C
A

R
P

S
V
D

K
M
R

P
C
A

R
P

S
V
D

K
M
R

P
C
A

R
P

S
V
D

K
M
R

P
C
A

R
P

S
V
D

1e−05

1e−03

1e−01

1e−05

1e−03

1e−01

1e−05

1e−03

1e−01

1e−05

1e−03

1e−01

1e−05

1e−03

1e−01

Method

E
r
r
o
r

m: 10 m: 25 m: 50 m: 75 m: 100

K
M
R

P
C
A

R
P

S
V
D

K
M
R

P
C
A

R
P

S
V
D

K
M
R

P
C
A

R
P

S
V
D

K
M
R

P
C
A

R
P

S
V
D

K
M
R

P
C
A

R
P

S
V
D

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Method

A
R
I

m: 10 m: 25 m: 50 m: 75 m: 100

K
M
R

P
C
A

R
P

S
V
D

K
M
R

P
C
A

R
P

S
V
D

K
M
R

P
C
A

R
P

S
V
D

K
M
R

P
C
A

R
P

S
V
D

K
M
R

P
C
A

R
P

S
V
D

0.01

0.10

1.00

0.01

0.10

1.00

0.01

0.10

1.00

0.01

0.10

1.00

0.01

0.10

1.00

Method

C
o
m
p
.

T
i
m
e

Fig. 3. Feature extraction output for all data sets -boxplot-.

Table VII: (Relative error, ARI, Relative computational
time) - average over groups of dimensions-.
METHOD d ≤ 100 100 < d < 10000 d ≥ 10000

KMR (1.1× 10−2 , 0.88, 0.80) (2.1× 10−2 , 0.68, 0.23) (7.0× 10−3 , 0.91, 0.01)
PCA (4.0× 10−3 , 0.94, 0.90) (3.4× 10−5 , 0.93, 0.49) (2.2× 10−5 , 0.97, 0.35)
RP (5.1× 10−2 , 0.73, 0.79) (3.5× 10−2 , 0.53, 0.27) (3.7× 10−2 , 0.73, 0.04)

SVD (1.4× 10−3 , 0.93, 0.91) (1.1× 10−5 , 0.92, 0.43) (3.0× 10−5 , 0.98, 0.36)

Table VIII: (Relative error, ARI, Relative computational
time) - average over groups of number of clusters-.
METHOD K ≤ 3 3 < K < 10 K ≥ 10

KMR (5.1× 10−3 , 0.75, 0.18) (1.6× 10−2 , 0.91, 0.40) (3.0× 10−2 , 0.70, 0.41)
PCA (1.3× 10−4 , 0.97, 0.46) (1.6× 10−3 , 0.97, 0.72) (1.4× 10−5 , 0.85, 0.47)
RP (1.9× 10−2 , 0.59, 0.20) (4.5× 10−2 , 0.80, 0.49) (8.1× 10−2 , 0.58, 0.41)

SVD (1.0× 10−5 , 0.97, 0.47) (1.8× 10−3 , 0.96, 0.64) (2.0× 10−5 , 0.85, 0.48)

Table IX: (Relative error, ARI, Relative computational
time) - average over groups of number of instances-.
METHOD n ≤ 750 750 < n < 2500 n ≥ 2500

KMR (1.1× 10−2 , 0.81, 0.28) (5.0× 10−3 , 0.89, 0.24) (3.0× 10−2 , 0.62, 0.31)
PCA (2.0× 10−3 , 0.88, 0.62) (1.6× 10−5 , 0.97, 0.43) (9.3× 10−5 , 0.98, 0.48)
RP (3.4× 10−2 , 0.68, 0.33) (5.6× 10−2 , 0.65, 0.25) (4.2× 10−2 , 0.55, 0.33)

SVD (2.7× 10−4 , 0.87, 0.56) (2.2× 10−5 , 0.97, 0.46) (1.7× 10−4 , 0.98, 0.49)

Regardless of the characteristics of the clustering problem, it
can be seen that KMR shows a very competitive performance,
in both quality of the obtained solution and computational
time, when compared to different feature selection techniques,
with particular emphasis on LS. Furthermore, our extensive
experimental analysis also shows that, even when KMR is
a feature selection technique, it is able to outperform, in
both accuracy and computational time, a well-known feature

extraction technique used for the K-means problem, such as
RP, which makes it a very suitable pre-processing alternative
to other approaches that may not scale well on massive data
sets, such as SVD and PCA.

V. CONCLUSIONS

In this work, we propose a fully-parellelizable cheap feature
selection technique intended for the K-means algorithm called
the K-means Relevance Feature Subset Selection algorithm,
or just KMR. It consists of applying any λ-approximate K-
means heuristic on small subsets of dimensions of the original
data set and of using the obtained clustering information
to measure the relevance of each feature. In particular, the
relevance measure is an upper-bound of the increase in the
K-means error that occurs when a certain feature is removed.
Among other benefits, this relevance measure is additive and
therefore the cost of the proposed method, on each subset of
dimensions, is O(m · max{n · K, logm}), where m is the
number of features selected when using Lloyd’s algorithm as
the λ-approximate K-means heuristic.

In practice, on a wide variety of real life data sets, we
compared KMR to different well-known feature selection
and feature extraction techniques, commonly used for the
K-means problem. The obtained results testify that KMR
regularly obtains solutions with lower K-means error than all
the considered feature selection techniques: Laplacian scores,
Multi-Cluster Feature Selection, maximum variance and ran-
dom selection. It also requires similar or lower computational
times than these approaches. Even more interesting, when
compared to feature extraction techniques, such as Random
Projections, KMR also shows a noticeable improvement in
both error and computational time. We additionally provide
different theoretical guarantees in terms of the quality of the
approximations obtained via KMR.

As a future step, since our technique consists of solving
multiple small-dimensional K-means problems, we would like
to analyze the effect of using different coreset techniques, such
as [18]–[23], to further reduce the computational requirements
of our approach. Furthermore, we plan to design a feature
extraction technique of the same nature of KMR. This will
allow us not to fully lose the information of a given feature
when not selected.

APPENDIX

The Appendix is divided into 4 sections. We first present the
proofs of the theorems stated throughout the article, see Ap-
pendix A. Afterwards, we present some additional empirical
results to analyze the accuracy of the feature selection criteria
stated in Algorithm 2, see Appendix B. Moreover, in Appendix
C, we extend on the feature selection step commented in
Section III and, finally, in Appendix D, we present some
additional experiments to further discuss the effect of the
number of clusters on the performance of KMR.

A. Proofs

As commented in Section II, the proposed feature selection
in Algorithm 3-4 is mainly based on the error bound proposed

SUBMITTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 9

in Theorem 1. The definition and theoretical result presented in
Definition 1 and Theorem 1 offer a simple way of quantifying
the importance of a set of features in terms of their impact
on the quality of the obtained clustering. This measurement
consists of fixing the corresponding entry on each center of
mass to the center of mass of the dimension, and estimating
the increase of the error that it implies.

Theorem 1. Given a data set X with features D, a clustering
P = {P1, . . . , PK} and its associated set of centroids, C, then,
for any subset of features S ⊆ D, the following inequality
holds:

ED(CS) ≤ ED(C) + rD\S (3)

Proof. Firstly, we know that the following inequality holds∑
x∈Pl

‖x− cSl ‖2 =
∑
x∈Pl

‖x− cl‖2 + |Pl| · ‖cl − cSl ‖2 (8)

and so, due to possible clustering re-assignments, from Eq.8,
we deduce the following bound

ED(CS) ≤ ED(C) +

K∑
l=1

|Pl| · ‖cl − cSl ‖2

= ED(C) +

K∑
l=1

|Pl| ·
∑

j∈D\S

(cl,j −X{j})2

= ED(C) +
∑

j∈D\S

r{j}

= ED(C) + rD\S (9)

In Corollary 1 and Algorithm 2 in Section II, we describe
a simple feature selection process, based on Theorem 1, that
leads to a (1 + ε)- approximation of EDi(Ci):

Corollary 1. Given a data set X with features D, a clustering
P , its associated set of centroids C, and a subset of features
S ⊆ D, then CS is a (1+ ε)-approximation of ED(C), where

ε ≤ εSD =
rD\S

ED(C)
(4)

Proof. From Theorem 1, we know that the following inequal-
ity holds

ED(CS) ≤ ED(C) + rD\S

= ED(C) +
rD\S

ED(C)
· ED(C)

= (1 + εSD) · ED(C)

Proof. The construction proposed in this result can be directly
verified from Corollary 1: Since D is sorted increasingly with
respect to the relevances {r{j}}j∈D and l is defined as the
largest index for which rD1:l

≤ ε·ED(C) holds, then I = D1:l

is the set of dimensions of maximal cardinality, constructed via
the relevance measure proposed in Theorem 1, for which

ED(CS) ≤ ED(C) +
∑
j∈ I

r{j}

≤ ED(C) + rD1:l

= ED(C) + εSD · ED(C)

≤ (1 + ε) · ED(C), (10)

is satisfied. This is, S = D \ I is the subset of dimensions
of minimal cardinality that we can select, i.e., that we do not
need to fix to a given value to keep a (1 + ε)- approximation
of ED(C).

In Theorem 2, we propose a bound to the clustering quality
of the approximation obtained via Corollary 1. Such a bound
depends on the predefined ε > 0, the approximation ratio λ of
algorithm A (which could be the K-means algorithm or any
coreset-type approach, for instance) and ϕ, which, for each
party of dimensions, measures the ratio between the 1-means
optimal error and sum of the K-means error on the selected
variables.

Theorem 2. Given a data set X with features D, a constant
ε > 0 and a partition of D, {D1, . . . , Dt}, if Si is the set of
features selected via Algorithm 2 from Di, for ε > 0, then the
output of a λ-approximate K-means algorithm (algorithm A)

on S =
t⋃
i=1

Si, C∗, satisfies

ED(C∗) ≤ ϕ · (1 + ε) · ED(Copt)− δ (6)

where Copt = arg min
C⊆Rd,|C|=K

ED(C), ϕ = λ2 · ΘS
t∑
i=1

E
Si
Di

(Ci)

with ΘS = ES({XS}) and δ = λ·(1+c)−t
t · ΘD\S with

c =

t∑
i=1

E
S\Si
Di

(Ci)

t∑
i=1

E
Si
Di

(Ci)

.

Proof. Before proceeding with the proof, we introduce the
following notation: given two subsets of dimensions D̃, ˜̃D ⊆
D, we define ED̃˜̃

D
(X) =

∑
x∈X
‖x − cx‖2D̃, where cx =

arg min
c∈C

‖x − c‖2˜̃
D

. Observe that, for any subset ˜̃D ⊆ D,

ED̃(X) = ED̃
D̃

(X) ≤ ED̃˜̃
D

(X).
We first apply algorithm A on each Di, which generates a

set of centroids, Ci, satisfying

EDi(CSii) ≤ (1 + ε) · EDi(Ci) ≤ λ · (1 + ε) · EDi(Copt)
≤ λ · (1 + ε) · EDiD (Copt) ∀ i ∈ {1, . . . , t} (11)

and so, if we add all the elements in Eq.11, we get
t∑
i=1

EDi(CSii) ≤ λ · (1 + ε) · ED(Copt). (12)

Furthermore, observe that
t∑
i=1

EDi(CSii) =

t∑
i=1

ESiDi(C
Si
i)︸ ︷︷ ︸

Non-fixed error

+ ΘD\S︸ ︷︷ ︸
Fixed error

(13)

SUBMITTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 10

From now on, we focus on bounding the "Non-fixed error"

(T). We first apply algorithm A on S =
t⋃
i=1

Si and obtain a

set of K centroids, C∗:

ES(C∗) ≤ λ · ES(CSii) ≤ λ · ESDi(C
Si
i)

= λ · [ESiDi(C
Si
i) + E

S\Si
Di

(CSii)] ∀ i ∈ {1, . . . , t},
and so,

ES(C∗) ≤ λ

t
· [T +

t∑
i=1

E
S\Si
Di

(CSii)]. (14)

If we denote S =
t∑
i=1

E
S\Si
Di

(CSii), we would like to

determine an upper bound to c such that S = c · T . This
bound is of relevance since, considering Eq.12 and Eq.14, we
know that

ED(C∗) ≤ λ2

t
· (1 + ε) · (1 + c) · ED(Copt)

− λ · (1 + c)− t
t

·ΘD\S (15)

We now focus on the factor c =

t∑
i=1

E
S\Si
Di

(C
Si
i)

t∑
i=1

E
Si
Di

(C
Si
i)

=

t∑
i=1

∑
j 6=i

E
Sj
Di

(Ci)

t∑
i=1

E
Si
Di

(Ci)

≤ (t−1)·ΘS
t∑
i=1

E
Si
Di

(Ci)

. Furthermore,

(
t∑
i=1

ESiDi(Ci)) + (t− 1) ·ΘS
t∑
i=1

ESiDi(Ci)

≤ t ·ΘS
t∑
i=1

ESiDi(Ci)

(16)

Hence, using Eq.16, we can bound Eq.15 using information
that we know in advance, as follows

ED(C∗) ≤ λ2 · (1 + ε) · ΘS
t∑
i=1

ESiDi(Ci)

· ED(Copt)− δ

= λ2 · (1 + ε) · ΘS
t∑
i=1

ESiDi(Ci)

· ED(Copt)− δ

= ϕ · (1 + ε) · ED(Copt)− δ

Observation 1. The value of δ in Eq.6 (Theorem 2) is
commonly non-negative.

Proof. To observe this, we could, for instance, impose the
condition ESiDi(Ci) ≤ E

Si
Dj

(Cj), for all j 6= i. If this condition
is not satisfied, we have the following chain of inequalities

EDi(CSij) ≤ EDiDj (C
Si
j) = ESiDj (Cj) +ΘDi\Si

≤ ESiDi(Ci) +ΘDi\Si = EDi(CSii)

≤ (1 + ε) · EDi(Cj) (17)

This is, CSij provides a (1 + ε)-approximation of Ci on the
set of dimensions Di, even when it is obtained on the subset
of dimensions Dj . When this condition is satisifed, we have

c =

t∑
i=1

E
S\Si
Di

(Ci)

t∑
i=1

ESiDi(Ci)

=

t∑
i=1

∑
j 6=i

E
Sj
Di

(Ci)

t∑
i=1

ESiDi(Ci)

=

t−1∑
j=1

[(
t∑

i=j+1

ESiDj (Cj)) + (
j∑
i=1

ESiDj+1
(Cj+1))]

t∑
i=1

ESiDi(Ci)

≥

t−1∑
j=1

t∑
i=1

ESiDi(Ci)

t∑
i=1

ESiDi(Ci)

≥ t− 1 (18)

Therefore, δ ≥ (λ− 1) ·ΘD\S ≥ 0.

The following result is a corollary of Theorem 2 and it is
used in Algorithm 4 as as criterion for selecting the variables.

Corollary 2. If S =
t⋃
i=1

S∗i is the set of m features selected

by Algorithm 3 on a data set X with features D, then the
output of a λ-approximate K-means algorithm (algorithm A)
on S, C∗, satisfies

ED(C∗) ≤ ϕ · (1 + ε∗) · ED(Copt)− δ, (7)

where ε∗ = max
i∈{1,...,t}

ε
S∗i
Di

.

Proof. From Algorithm 2, the following inequality chain holds
for all i ∈ {1, . . . , t}

EDi(CSii) ≤ (1 + εSiDi) · E
Di(Ci) ≤ (1 + max

j∈{1,...,t}
ε
Sj
Dj

) · EDi(Ci)

The rest of the proof is analogous to that of Theorem 2.

B. Some experimental results using Algorithm 2

In this section, we provide some additional experimental
results using the feature selection strategy proposed in Algo-
rithm 2. In particular, we consider all 16 data sets used in
Section IV and apply the feature selection approach discussed
in Algorithm 2 to obtain a (1+ε)-approximation of the solution
obtained via KM++, for ε ∈ {0.01, 0.05, 0.10, 0.50, 1.01}.

As commented in Section III, Algorithm 2 is primarily
based on the variable importance score proposed in Theorem
1. Such a score is a bound to the error increase that would take
place if all the centers of mass obtained by algorithm A are
fixed on a predefined subset of dimensions. This bound does
not take into consideration possible reassignements of clusters
which notoriously fasten the selection procedure, as there is
no need to compute an additional cluster reassignment step,
which would be O(n·K ·m), and, more importantly, the effect
of each variable is additive, meaning that the corresponding

SUBMITTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 11

error increase of each dimension is independent of the subset
of fixed dimensions considered, i.e., we do not need to evaluate
all the possible combinations of fixed dimensions separately.

In Fig. 4, we show the obtained epsilon (which must be
≤ ε) obtained by Algorithm 2. Afterwards, we present the
error (difference) between the epsilon predicted by Algorithm
2 and the epsilon obtained for the same features selected
by Algorithm 2, computing all clustering reassignements, see
Fig. 5. Finally, in Fig. 6, we observe the number of features
discarded (fixed) to reach the (1 + ε)-approximation.

Table X: Average, over all data sets, for the results presented
in Fig. 4-6.

ε ALGORITHM 2 EPSILON ERROR DISCARDED VARIABLES

0.01 8.03× 10−3 1.76× 10−4 0.70
0.05 4.09× 10−2 8.85× 10−4 0.79
0.10 8.26× 10−2 3.18× 10−3 0.83
0.50 3.02× 10−1 1.53× 10−2 0.93
1.01 5.13× 10−1 5.33× 10−2 0.96

Eps: 0.5 Eps: 1.01

Eps: 0.01 Eps: 0.05 Eps: 0.1

A
l
g
.
2

A
l
g
.
2

A
l
g
.
2

A
l
g
.
2

A
l
g
.
2

0.025

0.050

0.100

0.025

0.050

0.025

0.050

0.100

0.250

0.500

1.000

0.001

0.005

0.010

0.025

0.050

0.100

0.250

0.500

Method

A
l
g
.
2

E
p
s
i
l
o
n

Fig. 4. Epsilon obtained after applying Algorithm 2.

Eps: 0.5 Eps: 1.01

Eps: 0.01 Eps: 0.05 Eps: 0.1

A
l
g
.
2

A
l
g
.
2

A
l
g
.
2

A
l
g
.
2

A
l
g
.
2

0.00001

0.00010

0.00100

0.00500
0.01000
0.02500

1e−05

1e−04

1e−03

5e−03

0.001

0.005
0.010
0.025
0.050
0.100
0.250

1e−07
1e−06
1e−05
1e−04
1e−03

0.0001

0.0010

0.0050
0.0100
0.0250
0.0500
0.1000

Method

E
r
r
o
r

Fig. 5. Error obtained after selecting the last variable for which
Algorithm 2 achieves the (1 + ε)-approximation.

Eps: 0.5 Eps: 1.01

Eps: 0.01 Eps: 0.05 Eps: 0.1

A
l
g
.
2

A
l
g
.
2

A
l
g
.
2

A
l
g
.
2

A
l
g
.
2

0.10

0.25
0.50
0.75
1.00

0.50

0.75

1.00

0.50

0.75

1.00

0.25

0.50

0.75
1.00

0.25

0.50

0.75
1.00

Method

#

d
i
s
c
a
r
d
e
d

v
a
r
s
.

Fig. 6. Proportion of variables discarded by Algorithm 2 for
reaching the (1 + ε)-approximation.

According to Fig. 4, we observe that, as the value of ε
decreases, the epsilon obtained by Algorithm 2 is closer to
it. This observation is partially related to the fact that, as
we increase ε, and, therefore, discard more variables, we
are mostly left with those variables with the highest error
increments, reason for which adding an extra variable to
those features that are already discarded may easily exceed
the (1 + ε)- bound. In this scenario (largest values of ε),
we observe that the error of the approximation provided by
Theorem 1 loses more accuracy, as in this case we are fixing
more variables and, therefore, adding more error to the bound.
However, we must point out that the error obtained is still
negligible with respect to the ε chosen: In Fig. 5 and Tab.X,
we observe that, in large majority of the cases, such an error
is under 5% of the actual value of ε.

Regardless of the value selected for ε, Algorithm 2 is
always able to discard a large amount of the variables, while
generating a 1+ ε-approximation of the best solution obtained
via KM++. In particular, for ε = 0.01, Algorithm 2 eliminated,
on average, 70% of the variables to reach the expected quality
and, for ε = 0.50, over 90% of the variables are already fixed
and the error bound is satisfied.

C. Feature Selection of KMR

As commented in Section III, in Algorithm 3, after com-
puting the relevances of each feature on each chunk Di, the
features are sorted increasingly and all the partial sums of the
associated relevances are computed, {ξ|Di|Di

, ξ
|Di|−1
Di

, . . . , ξ0Di}
for all i ∈ {1, . . . , t}, where ξjDi stands for the epsilon
associated to the error increase that occurs when only selecting
the j most relevant variables in Di.

The feature selection problem, Eq.5, could be easily solved
by selecting the m largest entries among the t lists. However,
all these lists have been previously sorted in Algorithm 2,
hence we take advantage of this feature to propose a simple
O(t) time per iteration heuristic to solve Eq.5:

The heuristic proposed in Algorithm 4 is fairly simple as
it just needs to update the maximum of {ξd1D1

, ξd2D2
, . . . , ξdtDt}

SUBMITTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 12

Algorithm 4: Feature Selection

Input: {ξ|Di|Di
, ξ
|Di|−1
Di

, . . . , ξ0Di} for all i ∈ {1, . . . , t}.
Output: Set of m features selected, S ⊆ {1, . . . , d}.

- Take a set of non-negative integers {d1, . . . , dt},
satisfying

t∑
i=1

di = m and set ξ−1Di →∞, for all

i ∈ {1, . . . , t}.
while max

i∈{1,...,t}
ξdiDi > min

i∈{1,...,t}
ξdi−1Di

do

- Set dj = dj + 1 , where j = arg max
i∈{1,...,t}

ξidi .

- Set dl = dl − 1, where l = arg min
i∈{1,...,t}

ξidi−1.

end
- For all i ∈ {1, . . . , t}, set Si as the most relevant di

features in Di.

Return S =
t⋃
i=1

Si.

and the minimum of {ξd1−1D1
, ξd2−1D2

, . . . , ξdt−1Dt
} , which

implies, at most, a O(t) time cost. Since the arrays
{ξ|Di|Di

, ξ
|Di|−1
Di

, . . . , ξ0Di} are all sorted for i ∈ {1, . . . , t},
then when the condition max

i∈{1,...,t}
ξdiDi ≤ min

i∈{1,...,t}
ξdi−1Di

, is

satisfied, max
i∈{1,...,t}

ξdiDi is minimized.

D. Additional experiments: The effect of the number of clus-
ters

In this section, we comment on some complimentary exper-
imental results to those presented in Section IV. Our goal is
to observe the effect of the number of clusters on the perfor-
mance of KMR with respect to the feature selection/extraction
methods used in Section IV. In particular, we will analyze
the performance of these algorithms on a variety of real
data sets, see Table XII, and a multiple number of clusters,
K ∈ {2, 3, 5, 10, 25, 50, 100}, for each case. Furthermore, we
have fixed the number of variables to be selected/extracted to

m = 10. Due to the random nature of the experimental setting,
each experiment has been repeated 20 times.

Table XII: Information of the data sets.

Data Set n d

Handwritten Numerals 2000 216
Parkinson 5875 22

Cambridge First Order 6118 58
WiFi Fingerprint 19937 529
Superconductivity 21263 82

Buzz Social Media 28179 97

In Table XI, we show the averages of the relative K-means
error, the ARI with respect to the clustering obtained via
KM++ and the relative computational time for the considered
methods over all data sets. Furthermore, due to lack of space,
in the supplementary figures shown in https://github.com/
MarcoVCapo/KMR_AppendixD, we present the boxplots of
all these factors divided between feature selection and feature
extraction algorithms.

Similarly to the results presented in Section IV, we can ob-
serve that KMR is consistently the feature selection approach
that leads to the most competitive approximations (lowest
relative error and highest ARI with respect to KM++) to the
corresponding K-means problem regardless of the number of
clusters considered. Moreover, it should also be remarked that
LS generated, on average, approximations with the same order
of magnitude of relative error as KMR, however it required a
much longer computational time than KMR: For instance, for
K = 2, it required, on average, 650.55 times more compu-
tational time than that required by KMR. Furthermore, both
MCFS and Rand failed to generate competitive approximations
regardless of the number of clusters considered.

In terms of the feature extraction methods, we observe again
that KMR is able to outperform RP in both computational time
and quality of the approximation. However, as the number of
clusters is increased, both PCA and SVD tend to converge
faster than KMR as their time complexities are independent
of this factor. Also, in terms of the quality of the obtained
solution, KMR, for a large number of clusters, might not be

Table XI: (Relative error, ARI, Relative computational time) - average over groups of number of clusters-.

METHOD K = 2 K = 3 K = 5 K = 10

KMR (4.8× 10−3 , 0.93, 0.36) (1.9× 10−2 , 0.85, 0.38) (4.4× 10−2 , 0.79, 0.39) (6.3× 10−2 , 0.76, 0.44)
LS (5.9× 10−3 , 0.91, 234.20) (3.2× 10−2 , 0.79, 149.43) (4.6× 10−2 , 0.77, 79.01) (1.1× 10−2 , 0.72, 36.92)

MAXVAR (2.7× 10−2 , 0.77, 0.36) (5.1× 10−2 , 0.73, 0.39) (8.0× 10−2 , 0.76, 0.38) (9.4× 10−2 , 0.76, 0.42)
MCFS (1.4× 100 , 0.23, 30.61) (1.0× 101 , 0.31, 20.42) (2.9× 103 , 0.31, 12.0) (1.2× 104 , 0.35, 6.6)
RAND (1.2× 100 , 0.38, 0.39) (9.3× 100 , 0.42, 0.36) (2.8× 103 , 0.34, 0.36) (1.2× 104 , 0.39, 0.40)

PCA (3.5× 10−6 , 0.99, 0.56) (1.7× 10−8 , 0.95, 0.51) (2.3× 10−5 , 0.93, 0.48) (4.9× 10−6 , 0.87, 0.45)
RP (2.8× 10−2 , 0.78, 0.38) (3.6× 10−2 , 0.77, 0.39) (6.2× 10−2 , 0.75, 0.44) (1.0× 10−1 , 0.72, 0.55)

SVD (3.1× 10−6 , 0.99, 0.55) (7.1× 10−9 , 0.94, 0.49) (8.6× 10−7 , 0.92, 0.46) (4.8× 10−7 , 0.88, 0.46)

METHOD K = 25 K = 50 K = 100

KMR (1.5× 10−1 , 0.65, 0.48) (2.2× 10−1 , 0.60, 0.52) (3.3× 10−1 , 0.56, 0.54)
LS (2.6× 10−1 , 0.62, 16.12) (4.1× 10−1 , 0.56, 9.04) (6.1× 10−1 , 0.51, 4.63)

MAXVAR (2.0× 10−1 , 0.62, 0.46) (2.8× 10−1 , 0.58, 0.48) (3.9× 10−1 , 0.53, 0.49)
MCFS (6.3× 104 , 0.34, 3.33) (9.5× 104 , 0.34, 2.11) (1.3× 105 , 0.31, 1.42)
RAND (6.7× 104 , 0.33, 0.46) (9.4× 104 , 0.27, 0.49) (1.2× 105 , 0.27, 0.52)

PCA (3.9× 10−3 , 0.76, 0.45) (1.5× 10−2 , 0.69, 0.51) (2.8× 10−2 , 0.65, 0.49)
RP (1.7× 10−1 , 0.62, 0.55) (2.2× 10−1 , 0.57, 0.54) (2.5× 10−1 , 0.57, 0.53)

SVD (5.2× 10−3 , 0.74, 0.46) (1.8× 10−2 , 0.69, 0.49) (3.0× 10−2 , 0.64, 0.49)

https://github.com/MarcoVCapo/KMR_AppendixD
https://github.com/MarcoVCapo/KMR_AppendixD

SUBMITTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 13

as competitive as the feature extraction methods considered,
which is expected as shown in both Theorem 2 and Corollary
2, where the accuracy constant ϕ increases as the number of
clusters is also higher. In this sense, it is clear that, when com-
pared to the feature extraction algorithms, the optimal setting
for KMR occurs when the number of clusters considered is
not high.

ACKNOWLEDGMENT

Marco Capó and Aritz Pérez are partially supported by the
Basque Government through the BERC 2014-2017 program
and the ELKARTEK program, and by the Spanish Ministry
of Economy and Competitiveness MINECO: BCAM Severo
Ochoa excelence accreditation SVP-2014-068574 and SEV-
2017-0718, and through the project TIN2017-82626-R funded
by (AEI/FEDER, UE). Jose A. Lozano is partially supported
by the Basque Government (IT1244-19), and Spanish Ministry
of Economy and Competitiveness MINECO (BCAM Severo
Ochoa excellence accreditation SEV-2017-0718 and TIN2016-
78365-R).

REFERENCES

[1] C. Ding and X. He, “K-means clustering via principal component
analysis,” in Proceedings of the twenty-first international conference on
Machine learning. ACM, 2004, p. 29.

[2] A. K. Jain, “Data clustering: 50 years beyond k-means,” Pattern Recog-
nition Letters, vol. 31, no. 8, pp. 651–666, 2010.

[3] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman,
and A. Y. Wu, “An efficient k-means clustering algorithm: Analysis and
implementation,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 24, no. 7, pp. 881–892, 2002.

[4] P. Berkhin, “A survey of clustering data mining techniques,” in Grouping
multidimensional data. Springer, 2006, pp. 25–71.

[5] X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J.
McLachlan, A. Ng, B. Liu, S. Y. Philip et al., “Top 10 algorithms in
data mining,” Knowledge and Information Systems, vol. 14, no. 1, pp.
1–37, 2008.

[6] S. Äyrämö and T. Kärkkäinen, “Introduction to partitioning-based clus-
tering methods with a robust example,” Reports of the Department of
Mathematical Information Technology. Series C, Software engineering
and computational intelligence 1/2006, 2006.

[7] D. Aloise, A. Deshpande, P. Hansen, and P. Popat, “Np-hardness of
Euclidean sum-of-squares clustering,” Machine Learning, vol. 75, no. 2,
pp. 245–248, 2009.

[8] M. Mahajan, P. Nimbhorkar, and K. Varadarajan, “The planar k-means
problem is np-hard,” in International Workshop on Algorithms and
Computation, 2009, pp. 274–285.

[9] L. Kaufman and P. Rousseeuw, Clustering by means of medoids. North-
Holland, 1987.

[10] S. Lloyd, “Least squares quantization in pcm,” IEEE Transactions on
Information Theory, vol. 28, no. 2, pp. 129–137, 1982.

[11] L. Bottou and Y. Bengio, “Convergence properties of the k-means
algorithms,” in Advances in Neural Information Processing Systems,
1995, pp. 585–592.

[12] W. Zhao, H. Ma, and Q. He, “Parallel k-means clustering based on
mapreduce,” in IEEE International Conference on Cloud Computing,
2009, pp. 674–679.

[13] J. Drake and G. Hamerly, “Accelerated k-means with adaptive distance
bounds,” in 5th NIPS Workshop on Optimization for Machine Learning,
2012, pp. 42–53.

[14] C. Elkan, “Using the triangle inequality to accelerate k-means,” in
Proceedings of the 20th International Conference on Machine Learning,
2003, pp. 147–153.

[15] G. Hamerly, “Making k-means even faster,” in Proceedings of the 2010
SIAM International Conference on Data Mining, 2010, pp. 130–140.

[16] D. Sculley, “Web-scale k-means clustering,” in Proceedings of the 19th
International conference on World Wide Web, 2010, pp. 1177–1178.

[17] M. Capó, A. Pérez, and J. A. Lozano, “An efficient k-means clustering
algorithm for tall data,” Data Mining and Knowledge Discovery, pp.
1–36, 2020.

[18] O. Bachem, M. Lucic, and A. Krause, “Scalable and distributed cluster-
ing via lightweight coresets,” arXiv preprint arXiv:1702.08248, 2017.

[19] M.-F. F. Balcan, S. Ehrlich, and Y. Liang, “Distributed k-means and
k-median clustering on general topologies,” in Advances in Neural
Information Processing Systems, 2013, pp. 1995–2003.

[20] M. Capó, A. Pérez, and J. A. Lozano, “An efficient approximation to
the k-means clustering for massive data,” Knowledge-Based Systems,
vol. 117, pp. 56–69, 2017.

[21] D. Feldman, M. Monemizadeh, and C. Sohler, “A ptas for k-means
clustering based on weak coresets,” in Proceedings of the twenty-third
annual symposium on Computational geometry, 2007, pp. 11–18.

[22] S. Har-Peled and S. Mazumdar, “On coresets for k-means and k-median
clustering,” in Proceedings of the 36th ACM Symposium on Theory of
Computing, 2004, pp. 291–300.

[23] A. Kumar, Y. Sabharwal, and S. Sen, “A simple linear time (1 + ε)-
approximation algorithm for k-means clustering in any dimensions,” in
Proceedings of the 45th Annual IEEE Symposium on Foundations of
Computer Science, 2004, pp. 454–462.

[24] J. M. Peña, J. A. Lozano, and P. Larranaga, “An empirical comparison
of four initialization methods for the k-means algorithm,” Pattern
Recognition Letters, vol. 20, no. 10, pp. 1027–1040, 1999.

[25] A. Vattani, “K-means requires exponentially many iterations even in the
plane,” Discrete & Computational Geometry, vol. 45, no. 4, pp. 596–
616, 2011.

[26] S. J. Redmond and C. Heneghan, “A method for initialising the k-means
clustering algorithm using kd-trees,” Pattern Recognition Letters, vol. 28,
no. 8, pp. 965–973, 2007.

[27] D. Steinley and M. J. Brusco, “Initializing k-means batch clustering:
A critical evaluation of several techniques,” Journal of Classification,
vol. 24, no. 1, pp. 99–121, 2007.

[28] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful
seeding,” in Proceedings of the 18th annual ACM-SIAM Symposium on
Discrete Algorithms, 2007, pp. 1027–1035.

[29] J. Fan, R. Samworth, and Y. Wu, “Ultrahigh dimensional feature selec-
tion: beyond the linear model,” Journal of machine learning research,
vol. 10, no. Sep, pp. 2013–2038, 2009.

[30] S. Greenhill and S. Venkatesh, “Distributed query processing for mobile
surveillance,” in Proceedings of the 15th ACM international conference
on Multimedia. ACM, 2007, pp. 413–422.

[31] S. Mitra, M. Agrawal, A. Yadav, N. Carlsson, D. Eager, and A. Mahanti,
“Characterizing web-based video sharing workloads,” ACM Transactions
on the Web (TWEB), vol. 5, no. 2, p. 8, 2011.

[32] C. Boutsidis, P. Drineas, and M. W. Mahoney, “Unsupervised feature
selection for the k-means clustering problem,” in Advances in Neural
Information Processing Systems, 2009, pp. 153–161.

[33] M. B. Cohen, S. Elder, C. Musco, C. Musco, and M. Persu, “Dimen-
sionality reduction for k-means clustering and low rank approximation,”
in Proceedings of the forty-seventh annual ACM symposium on Theory
of computing. ACM, 2015, pp. 163–172.

[34] I. Guyon, S. Gunn, A. Ben-Hur, and G. Dror, “Result analysis of the nips
2003 feature selection challenge,” in Advances in neural information
processing systems, 2005, pp. 545–552.

[35] K. Mugunthadevi, S. Punitha, M. Punithavalli, and K. Mugunthadevi,
“Survey on feature selection in document clustering,” International
Journal on Computer Science and Engineering, vol. 3, no. 3, pp. 1240–
1244, 2011.

[36] D. M. Witten and R. Tibshirani, “A framework for feature selection in
clustering,” Journal of the American Statistical Association, vol. 105,
no. 490, pp. 713–726, 2010.

[37] Y. Liang, M.-F. Balcan, and V. Kanchanapally, “Distributed pca and k-
means clustering,” in The Big Learning Workshop at NIPS, vol. 2013.
Citeseer, 2013.

[38] M. Holmes, A. Gray, and C. Isbell, “Fast svd for large-scale matrices,”
in Workshop on Efficient Machine Learning at NIPS, vol. 58, 2007, pp.
249–252.

[39] E. Bingham and H. Mannila, “Random projection in dimensionality
reduction: applications to image and text data,” in Proceedings of
the seventh ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 2001, pp. 245–250.

[40] C. Boutsidis, A. Zouzias, and P. Drineas, “Random projections for
k-means clustering,” in Advances in Neural Information Processing
Systems, 2010, pp. 298–306.

[41] G. James, D. Witten, T. Hastie, and R. Tibshirani, An introduction to
statistical learning. Springer, 2013, vol. 112.

SUBMITTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 14

[42] H. Liu and H. Motoda, Feature selection for knowledge discovery and
data mining. Springer Science & Business Media, 2012, vol. 454.

[43] S. Alelyani, J. Tang, and H. Liu, “Feature selection for clustering: A
review,” in Data Clustering. Chapman and Hall/CRC, 2018, pp. 29–
60.

[44] D. Cai, C. Zhang, and X. He, “Unsupervised feature selection for multi-
cluster data,” in Proceedings of the 16th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 2010, pp.
333–342.

[45] X. He, D. Cai, and P. Niyogi, “Laplacian score for feature selection,” in
Advances in neural information processing systems, 2006, pp. 507–514.

[46] T. Ho, “The random subspace method for constructing decision forests,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 20, no. 8, pp. 832–844, 1998.

[47] G. Louppe and P. Geurts, “Ensembles on random patches,” in Joint
European Conference on Machine Learning and Knowledge Discovery
in Databases. Springer, 2012, pp. 346–361.

[48] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman,
and A. Y. Wu, “A local search approximation algorithm for k-means
clustering,” in Proceedings of the 18th annual Symposium on Computa-
tional Geometry, 2002, pp. 10–18.

[49] L. Hubert and P. Arabie, “Comparing partitions,” Journal of classifica-
tion, vol. 2, no. 1, pp. 193–218, 1985.

[50] W. M. Rand, “Objective criteria for the evaluation of clustering meth-
ods,” Journal of the American Statistical association, vol. 66, no. 336,
pp. 846–850, 1971.

Marco Capó received his Ph.D. degree in 2019 from
the University of the Basque Country and, in 2015,
the MS.c. degree in Mathematical Modeling Engi-
neering from Universität Hamburg. He is currently
a postdoctoral researcher at the Basque Center for
Applied Mathematics. His research interests are in
machine learning and optimization, with a particular
focus on unsupervised learning problems.

Aritz Pérez received his Ph.D. degree in 2010
from the University of Basque Country, department
of Computer Science and Artificial Intelligence.
Currently, he is a postdoctoral researcher at the
Basque Center for Applied Mathematics. His current
scientific interests include supervised, unsupervised
and weak classification, probabilistic graphical mod-
els, model selection and evaluation, time series and
crowd learning.

Jose A. Lozano received his Ph.D. degree in 1998
from the University of the Basque Country. He be-
came a full professor at the Department of Computer
Science and Artificial Intelligence in 2008. Since
2005 he has led the Intelligent Systems Group (ISG)
based in the Computer Science School. His research
areas are evolutionary computation, machine learn-
ing and probabilistic graphical models. He has pub-
lished 4 books, more than 100 scientific ISI journal
articles and about 150 contributions to national and
international conferences. These publications have

received more than 12,400 citations. Prof. Lozano is an associate editor
of IEEE Trans. on Evolutionary Computation and IEEE Trans. on Neural
Network and Learning Systems among other prestigious journals.

	Introduction
	K-means problem
	Lloyd's algorithm
	Dimensionality reduction for the K-means problem
	Feature extraction
	Feature selection

	Contribution

	A feature relevance measure for the K-means clustering problem
	Distributed feature selection algorithm for K-means: KMR
	Quality guarantees of KMR

	Experiments
	Feature Selection
	Feature Extraction

	Conclusions
	Appendix
	Proofs
	Some experimental results using Algorithm 2
	Feature Selection of KMR
	Additional experiments: The effect of the number of clusters

	References
	Biographies
	Marco Capó
	Aritz Pérez
	Jose A. Lozano

