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Abstract

Purpose –The purpose of this paper is to evaluate the performance of a modified EWMA control chart
(γEWMA control chart), which considers data distribution and incorporates its correlation structure,
simulating in-control and out-of-control processes. To select an adequate value for smoothing parameter, with
these conditions.

Design/methodology/approach –This paper is based on a simulation approach using the methodology for
evaluating statistical methods proposed by Morris et al., (2019). Data were generated from a simulation
considering two factors that associated with data : i) quality variable distribution skewness (γ) as an indicator
of quality variable distribution (f); ii) the autocorrelation structure (φ) for type of relationship between the
observations and modeled by AR(1). In addition, one factor associated with the process was considered, i) the
shift in the process mean (δ). In the following step, when the chart control is modeled, the fourth factor
intervenes. This factor is a smoothing parameter, (λ). Finally, three indicators defined from the Run Length
are used to evaluate γEWMA control chart performance with non-normal and non-independent observations,
and their interactions.

Findings – Interaction analysis for four factor evidence that the modeling and selection of parameters is
different for out-of-control and in-control processes therefore the considerations and parameters selected for
each case must be carefully analyzed. For out-of-control processes, it is better to preserve the original features
of the distribution (mean and variance) for the calculation of the control limits. It makes sense that highly
autocorrelated observations require smaller smoothing parameter since the correlation structure enables the
preservation of relevant information in past data.

Originality/value –The γEWMA control chart there has advantages because it gathers, in single chart control:
the process and modelling characteristics, and data structure process. Although there are other proposals for
modified EWMA, none of them simultaneously analyze the four factors nor their interactions. The proposed
γEWMA allows setting the appropriate smoothing parameter when these three factors are considered.

Keywords: Average run length, EWMA control chart, Autoregressive processes, Skewed distributions,
Simulation study.

1. Introduction

Manufacturing processes can be monitored by using statistical process control (SPC) charts. Control charts
are powerful tools that are used to monitor and analyze a quality variable over a period. Industrial processes
perform well if quality variables are maintained within specified limits and under control. If a quality variable
exhibits random behavior, the changes are the result of variability that is inherent in the process (common
causes), in other cases, non-random variations are due to external factors (special causes). In the event of a
special cause, the process is unstable, and it will take time to correct itself before returning to a condition of
balance; this time is known as the process time lag (Hori and Skogestad, 2007; Neubauer, 1997).

In practice, control chart limits are often calculated using parameter estimates from an in-control Phase I
reference sample. Once an in-control reference sample has been established, the parameters of the process are
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estimated from this Phase I sample, and the control limits are estimated for use in Phase II (Human et al.,
2011; Jensen et al., 2006).

Industrial processes as chemical processes or materials casting, in which preparations or mixtures are made,
features such as the statistical distribution of observations and autocorrelation structure data should be
analyzed, because if they are ignored could cause wrong conclusion about control process. These features
must be analyzed through chart control using the smoothing parameter adequate. Furthermore, the control
chart must have ability to identify different levels of shift. Data distribution: The processes that use SPC,
usually assume that the distribution of the data is normal, without considering that the data may have other
distributions. However, it is important to study the effects of non-normality when individual data is
considered.

i) Non-independent data: If the process is influenced by the same causes then autocorrelation can cause
non-random behavior. If it is an inherent part of the common-cause variability and cannot be eliminated,
then it must be considered in the design of the control chart. The autocorrelation structure is a condition
defined by data, and it is modelled by parameter.ϕ

ii) The weight that is assigned for past observations ( ): In industrial processes, often, failures haveλ
manifested themselves previously and, therefore, subtle symptoms appear. Hence, the analysis for past
observations is an important tool to decide whether the process is going to become out-of-control before
this failure occurs. is a parameter that is defined by the analyst and used as chart parameters.λ

iii) Shift in the process mean ( ): The power of a control chart is its performance in identifying variousδ
shifts in the process mean. Therefore, knowledge of the size of the changes that the chart can identify
becomes a useful tool for process monitoring. is a process condition that is unknown, but it isδ
important to analyze chart performance for low, medium, and high shift.

EWMA control charts have optimal properties about control applications because this chart considers the past
observations using a model with memory (MacCarthy and Wasusri, 2002). In the literature, Borror et al.
(1999), Horng Shiau and Ya-Chen (2005), present several advantages of EWMA control charts: i) EWMA
considers the previous and current information of the process; ii) EWMA is robust to nonnormality, iii)
EWMA can detect small shifts in the process mean, and iv) EWMA weights samples in geometrically
decreasing order so that the most recent samples are weighted most highly while the most distant samples
contribute less depending on the smoothing parameter.

The use of EWMA as a tool for monitoring the variability of the process has received attention in the
literature. Nevertheless, studies about the simultaneous occurrence of these four features are few. Likewise,
there are few studies on chart performance for detecting possible changes in the process, when data do not
satisfy the assumptions regarding independence and distribution. According to a review of the literature, at
most three problems are analyzed simultaneously. No simultaneous analysis of the four problems was found.

In this article, we study the performance of a modified EWMA control chart (γ EWMA) when three factor
about data and process are considered. Finally, the smoothing parameter ( ) is suggested to best perform theλ
EWMA. Three performance measures we used to study the performance of the γEWMA. Different scenarios
regarding shift in the process mean are analyzed. The remainder of this paper is organized as follows: In
Section 2, the literature review focus on modified EWMA control charts is presented. In Section 3, the basic
concept of EWMA is introduced. The simulation methodology and the γEWMA control chart are presented in
Section 5. In addition, various cases and the main results are compared in Section 6. The conclusions of this
study are presented in the final section.

2. Literature Review
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As mentioned above, some industrial processes have four characteristics that influence the conclusions about
process control. For this literature review, we considered papers that discussed processes control methods for
one or several of these characteristics. In literature, around of 34 papers was found about modified EWMA
control chart. However, these modifications analyze one of the four characteristics independently.

Most common EWMA control charts assume normality, which is reflected in publications such as Crowder
(1987), Lucas and Saccucci (1990), Jones et al. (2001), Koehle et al. (2001), Khoo et al. (2015), Dawod et al.
(2017), and Supharakonsakun, et al. (2019). A EWMA control charts propriety analyzed the accumulation of
previous and current information then the past is hefted, and history is measured in the hope that it is
predictive. Among the studies, Lucas and Saccucci (1990) stand out: despite its assumption of independent
observations, for this topic, this work plays a pivotal role. The choices of λ and L for the univariate EWMA
control chart are discussed in detail, and this work has been cited 1872 times.

However, in our literature review we consider studies that include the distributional assumption. Borror et al.
(1999) analyzed the performance of the EWMA control chart while assuming that data are gamma-distributed
under six shifts in the process mean and three smoothing parameters. Via the same approach, Horng Shiau and
Ya-Chen (2005) discussed the effects of non-normality (t and gamma distributions) and nonindependent
(AR(1) process) on EWMA and Shewhart control charts. They show that the EWMA control chart
performance is better if the parameters are well selected. Human et al. (2011) used a simulation study of the
EWMA control chart behavior for nonnormal distributions, namely, they considered the skewness parameter.
They identified a relationship between the distribution and the skewness and studied the effect of the
skewness on the performance of the EWMA control chart. Recently, Zheng and Chakraborti, (2016) evaluate
robustness to non-normality of Adaptive Exponentially Weighted Moving Average (AEWMA) and they show
that AWEMA chart is sensitive to shape assumption and reason why purpose a nonparametric chart called
NPAEWMA. Lin et al., (2017) evaluate performance of EWMA median chart under various distributions
finding that their proposed is more efficient than the EWMA the EWMA average chart in detecting the shift
of the process mean. In addition, Osei-Aning et al (2020) consider normal and non-normal data on bivariate
EWMA.

Other feature that we wanted consider is time-dependence. In the event of a special cause, the process is
unstable, and it will take time to correct itself and to balance itself; this time is known as the process time lag.
The process time lag depends on the ability of a process to continue in a state even after a change has
occurred; this ability is known as inertia. During the time lag, the quality variables depend on the same root
causes, which leads to autocorrelated data. Nevertheless, independent observations are assumed in most of the
procedures that are used in quality control. When this assumption is not satisfied due to biased estimates of
parameters, high false-alarm rates and slow detection of process changes can occur (Reynolds and Lu, 1997).
In the literature, a few authors have studied modified EWMA charts with autocorrelated data, which they have
proposed solutions for analyzing processes that have these characteristics (Crowder, 1987; Wieringa, 1999;
Horng Shiau and Ya-Chen, 2005; Patel and Divecha, 2011; Maroš et al., 2011; Morais et al., Asghari
Torkamani et al., 2014; Herdiani et al., 2018 and, Okhrin and Schmid, 2019). When process observations are
correlated, a methodology used involves fitting an autoregressive model using the time series models. If the
observations are independent, takes the value of zero ( ), and if the observations are non-independent,ϕ ϕ = 0

takes nonzero values ( ). In the literature, the effects of the shift in the process mean and theϕ ϕ ≠ 0
autocorrelation parameter over ARL have been studied via two approaches: i) the use of standard charts for
the residuals of a time-series model that is adjusted over the original data and ii) the use of standard charts
with control limits that are adjusted for non-independent observations. Prajapati and Singh (2016) analyzed
110 papers which presented method for monitoring the autocorrelated process parameters. They presented a
view broadly and compendious summary of the work on the development of the control charts for variables to
monitor processes for autocorrelated data.
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Harris and Ross (1991), Koehle et al. (2001), and Dawod et al. (2017) analyzed the effect of autocorrelation
on ARL by considering a shift in the process mean; however, they did not evaluate the effect of the smoothing
parameter or the effects of the distribution observations. Ulkhaq and Dewanta (2017) and Supharakonsakun et
al. (2019) considered the effect of the smoothing parameter but only for normal observations. Borror et al.
(1999) and Human et al. (2011) analyzed the effects of the distribution on ARL under various shifts in the
process mean and smoothing parameters; however, they did not evaluate the effect of the autocorrelation
observations. Finally, Horng Shiau and Ya-Chen (2005) analyzed the effects of the distribution on ARL under
various shifts and under different smoothing parameters in autocorrelated data, they used Wieringa’s propose
(Wieringa, 1999); however, Horng Shiau and Ya-Chen (2005) did not evaluate the effect of the autocorrelation
observations because they presented one value as an autocorrelation parameter.

In referring to control chart performance, in the literature, it has been evaluated using indicators that were
derived from the Run-Length (RL). These indicators include the Average-Run-Length (ARL), the
Standard-Deviation-Run-Length (SDRL), and the Median-Run-Length (MRL) (B. C. Khoo et al., 2015;
Borror et al., 1999; Dawod et al., 2017; Esparza Albarracin et al., 2018; Human et al., 2011; Jones et al.,
2001). For instance, it is desirable for the ARL to be large if no assignable cause has occurred, and small if
one out-of-control condition has occurred. The effect of parameter estimation on the control chart
performance has been studied in the literature. These studies have concluded that the effects of parameter
estimation on the control chart properties should not be ignored (Crowder and Wiel, 2014; Dawod et al.,
2017; Esparza Albarracin et al., 2018; Jensen et al., 2006; Lucas and Saccucci, 1990; Reynolds and Lu, 1997;
Saleh et al., 2013).

In Figure 1, we present a visualization of a network of 34 publications using the methodology proposed by
Van Eck and Waltman (2009). This methodology is based on terms that are cited in academic research
publications that, for our case, the words are related to the EWMA control chart and the four features for data
that are generated in the monitoring of industrial processes (Van Eck and Waltman, 2009). Publications are
mainly concentrated between 2005 and 2020; however, in the bibliographic analysis, publications prior to this
date were also considered.

Figure 1. Bibliometric map for EWMA control chart

It is essential to conduct a conjoint analysis on the behaviors of these four features, which are of concern in
the industrial field. Therefore, knowledge of the performance of the EWMA control chart that is based on the
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parameters associated with the four described features enables the identification of possible interactions
among these features, thereby enabling the design of more effective control charts.

3. EWMA control chart approach

3.1 EWMA control chart

Assume that are independent and identically distributed (i.i.d.) observations with an in-control𝑌
1
, 𝑌

2
, …, 𝑌

𝑛
 

mean of and a standard deviation of . The EWMA control chart statistic for individual observations areµ
0

σ

defined as

𝑍
𝑡

= λ𝑌
𝑡

+ 1 − λ( )𝑍
𝑡−1

,           (1)

for , where the constant is the smoothing parameter and is the current observation.𝑖 = 1, 2….,  𝑛 0 < λ≤1 𝑌
𝑡

Setting the value of yields a Shewhart control chart. A value of implies that only the mostλ = 1 λ = 1
recent measurement influences the EWMA. Thus, a large value of does not give weight for old data; aλ = 1
small value of gives more weight for old data. The initial value of is the target value or the meanλ 𝑍

𝑡

in-control value; hence, , and the shift in the mean is , with . As the observations are𝑧
0

= µ
0

δσ
𝑌

δ≥0

independents with variance , the variance of isσ2 𝑍
𝑡

σ
𝑍

𝑡

2 = σ2 λ
2−λ( ) 1 − 1 − λ( )2𝑡[ ].           (2)

Therefore, the EWMA control chart is constructed by plotting against the sample number t. The upper𝑍
𝑡

control limit (UCL) and the low control limit (LCL) for the EWMA control chart are as follows:

𝑈𝐶𝐿/𝐿𝐶𝐿 = µ
0
±𝐿σ λ

2−λ( ) 1 − 1 − λ( )2𝑡[ ],

where determines the width of the control limits (Crowder, 1987; Lucas and Saccucci, 1990;𝐿 > 0
Roberts, 1959).

3.2 Non-normal EWMA Control Chart

Human et al. (2011) assume that are i.i.d. observations with an in-control mean and standard𝑌
1
, 𝑌

2
, …, 𝑌

𝑛
µ

𝑓
0

deviation . The observations come from distributions such as uniform, right-triangular, standard normal,σ
𝑓

0

T-student, gamma, symmetric bimodal, asymmetric bimodal and contaminated normal distributions. Hence,
the values of and vary according to the distribution. The EWMA control chart statistic is definedµ

𝑓
0

σ
𝑓

0

by equation (1). The components to , UCL and LCL for the non-normal EWMA control chart are similar𝑍
𝑡

to normal EWMA Control Chart, the difference is that for , , and the variance to depende of𝑍
𝑡

µ
0

= µ
𝑓

0

𝑍
𝑡

the variance distribution ( ), and is expressed as shown equation (3).σ
𝑓

0

σ
𝑍

𝑡

2 = σ
𝑓

0

2 λ
2−λ( ) 1 − 1 − λ( )2𝑡[ ]          (3)

Authors have used the gamma distribution (Borror et al., 1999; Horng Shiau and Ya-Chen, 2005; Human et
al., 2011), the t distribution (Horng Shiau and Ya-Chen, 2005; Human et al., 2011) and the lognormal
distribution (Horng Shiau and Ya-Chen, 2005) to compare their performances with control charts that are
based on the normal distribution.
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3.3 Modified EWMA control chart with non-independent observations

In the literature is proposed a modified EWMA control chart for non-independent observations (Crowder,
1987; Horng Shiau and Ya-Chen, 2005; Wieringa, 1999). Let be the quality variable that is observed at𝑌

𝑡

time of the process that is described by:𝑡 𝐴𝑅(1)

𝑌
𝑡

− μ = ϕ 𝑌
𝑡−1

− μ( ) + ε
𝑡
,     𝑓𝑜𝑟 𝑡 ε 𝑇         (4)

is the observed value at time , is a constant that satisfies and is a sequence of i.i.d.𝑌
𝑡

𝑡 ϕ ϕ ∈(− 1, 1) {ε
𝑡
}

disturbances with mean zero and constant variance .µ
ε

= 0( ) σ
ε
2

The corresponding EWMA statistic at time is defined by equation (1). The initial value for the statistic is𝑡 𝑧
0

chosen to be the in-control or target the process mean ( ). For determining the control limits of the𝑧
0

= µ
0

= 0

modified EWMA control chart for data, the variance of for large is approximated as𝐴𝑅(1) 𝑍
𝑡

𝑡

σ
𝑍

𝑡

2 ≈
σ

ε
2

1−ϕ2( ) λ
2−λ( ) 1+ϕ 1−λ( )

1−ϕ 1−λ( )( ).           (5)

The UCL and LCL for the modified EWMA control chart are as follows:

𝑈𝐶𝐿
𝐿𝐶𝐿 = µ

ε
±𝐿σ

ε
1

1−ϕ2( ) λ
2−λ( ) 1+ϕ 1−λ( )

1−ϕ 1−λ( )( )
Authors such as Harris and Ross (1991), Koehle et al. (2001), and Dawod et al., (2017) considered the
non-independent observations in their simulation studies.

3.4 Modified EWMA with distributional consideration - γEWMA control chart

Let be the quality variable that is observed with the gamma, lognormal and standard normal distributions at𝑌
𝑡

time of the process that is described by equation (4), where is a sequence of i.i.d. innovations𝑡 𝐴𝑅(1) {ε
𝑡
}

with mean and constant variance . The innovations come from the gamma, lognormal, and standardµ
ε

σ
ε
2

normal distributions. Hence, the values of and vary according to the distribution.µ
ε

σ
ε

The corresponding EWMA statistic at time is defined by equation (1). The initial value for the statistic is𝑡 𝑧
0

chosen to be the in-control or target the process mean ( ). Note, the values of and vary𝑧
0

= µ
0

=
µ

ε

1−ϕ( ) µ
ε

σ
ε

according to the distribution. For determining the control limits of the γEWMA control chart for data,𝐴𝑅(1)
the approximate variance of for large is expressed as equation (5), then we propose UCL and LCL for𝑍

𝑡
𝑡

γEWMA control chart:

𝑈𝐶𝐿/𝐿𝐶𝐿 = µ
0
±𝐿σ

ε
1

1−ϕ2( ) λ
2−λ( ) 1+ϕ 1−λ( )

1−ϕ 1−λ( )( )
4. Performance measures

The performance of a control chart technique is typically evaluated in terms of the Run-Length (RL), which is
defined as the number of observations that are plotted before a signal is observed. Three performance
measures that are based on RL are as follows: i) the Average Run Length (ARL), which measures the number
of points that, on average, will be plotted on a control chart, before an out-of-control condition is indicated. If
in-control process, the ARL indicated a false alarm and if out-of-control process, ARL indicated a real
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condition; ii) the Average Relative Distance (ARD), which compares the ARL performances between skewed
and normal distributions (Horng Shiau and Ya-Chen, 2005), and iii) the Average Reference Ratio (ARR),
which measures the control chart relative capability to identify a condition process (in-control and
out-of-control) (Dawod et al., 2017).

One of the most common measures of control-chart performance is the ARL, which is the expected number of
consecutive samples to be taken until the sample statistic falls outside the control limits. For an in-control
process, a chart should have a large ARL. In contrast, for an out-of-control process, a chart should have a
small ARL, namely, it should detect the out-of-control condition quickly (Jones et al., 2001). The statistical
design of control charts considers the in-control and out-of-control ARLs that result from the sample size and
the control limits that are chosen by the user (Human et al., 2011; Roberts, 1959).

When the process is in-control and there is no change in the quality variable ( ), the ARL is denoted asδ = 0
ARL0. A large ARL0 is desired. Using the normal distribution with independent observations as reference, the
range of reference values are . In contrast, for an out-of-control process with changes in the𝐴𝑅𝐿

0
≥370. 4

quality variable ( ), the ARL is denoted as ARL1. For out-of-control processes, with normal distributionδ > 0
and independent observations, small ARL1 is desired (close to 1).

The second performance measure is the ARD. Given the values of , and , as in Horng Shiau andϕ,  λ γ, δ 𝑓
Ya-Chen (2005), we define the ARD between the ARL value of the chart for the distribution under study and
that of the standard normal distribution by

𝐴𝑅𝐷 δ|ϕ, λ, γ, 𝑓( ) =
𝐴𝑅𝐿

𝑁𝑜𝑛𝑁𝑜𝑟𝑚𝑎𝑙
δ|ϕ,λ,γ,𝑓( )−𝐴𝑅𝐿

𝑁𝑜𝑟𝑚𝑎𝑙
δ|ϕ,λ,γ,𝑓( )

𝐴𝑅𝐿
𝑁𝑜𝑟𝑚𝑎𝑙

δ|ϕ,λ,γ,𝑓( )

If the process is under control, namely, , we denote the ARD as . If , theδ = 0 𝐴𝑅𝐷
0

− 1 < 𝐴𝑅𝐷
0

< 0

normal distribution outperforms the skewed distributions (gamma and lognormal) because its exceeds𝐴𝑅𝐿
0

those of the other studied distributions. If , the skewed and the normal distributions have similar𝐴𝑅𝐷
0
→0

values. Then, if , the skewed distributions outperform the normal distribution because the𝐴𝑅𝐿
0

𝐴𝑅𝐷
0

> 1

is larger than the of the normal distribution. If the process is out-of-control, namely, , we𝐴𝑅𝐿
0

𝐴𝑅𝐿
0

δ > 0

denote the ARD as . Since for out-of-control processes a small is desirable, exhibits𝐴𝑅𝐷
1

𝐴𝑅𝐿
1

𝐴𝑅𝐷
1

opposite behavior to . If , the skewed distributions outperform the normal𝐴𝑅𝐷
0

− 1 < 𝐴𝑅𝐷
1

< 0

distribution. If , the skewed and the normal distributions have similar values. Then, if𝐴𝑅𝐷
1
→0 𝐴𝑅𝐿

1

, the normal distribution outperforms the skewed distributions.𝐴𝑅𝐷
1

> 0

The third measure is the ARR. Given the values of , and , we modified the ratio that is defined inϕ,  λ γ, δ 𝑓
Dawod et al. (2017) by considering the relative distance

𝐴𝑅𝑅 = 𝐴𝑅𝐿( δ|λ,γ,ϕ)
𝐴𝑅𝐿(ϕ=0, δ, γ=0|λ)

Note that the reference case is the normal distribution with uncorrelated observations. If the process is
in-control, namely, , we denote the ARR as . If and the observation have knownδ = 0 𝐴𝑅𝑅

0
𝐴𝑅𝑅

0
< 1

features , then the chart control will have lower capacity to identify in-control condition than the(λ, γ, ϕ)
reference case. If the process is out-of-control, namely, , we denote the ARR as . If ,δ > 0 𝐴𝑅𝑅

1
𝐴𝑅𝑅

1
> 1

and the observation have known features , then the chart control will have low capacity to identify(λ, γ, ϕ)
out-of-control condition than the reference case. Table 1 lists the performance measures and their features.

7



Table 1. Performance measures, supports, reference cases and acceptable values

5. Methodology

The simulation study that we will describe is based on the methodology for evaluating statistical methods
(Morris et al., 2019). The objective of this study is to evaluate the performance of the γEWMA control chart
with non-normal and non-independent observations and their interactions through the RL.

Data were generated from a simulation in which five factors were considered the quality variable distribution
(f ), quality variable distribution skewness (γ), the shift in the process mean (δ), the autocorrelation structure
(φ) for type of relationship between the observations and modeled by AR(1), and the weight for past
observations which modeled through smoothing parameter, (λ). The parameters are defined by data,γ 𝑎𝑛𝑑 ϕ

is a parameter that is defined by the analyst and used as chart parameter, and is a process condition that isλ δ
unknown and we analyze chart performance for shift low, medium, and high.

In the simulation, the quality variable distribution and autocorrelation structure were considered. In each
replication, we generated a random sample of the quality variable from an process that was𝑌 𝐴𝑅(1)
described by equation (4), with the gamma, lognormal and normal distributions. The probability density
functions (p.d.f.s) that we used and expressions for their means and variances are presented in Table 2.𝑓 𝑥; θ( )

The distributions that are used in our study are described as follows:

1. The gamma distribution is positively skewed and is bounded below zero. This distribution may occur
when monitoring a quality variable such as the time until failure (Mahmoodian, 2016), the waiting times
for life events (Aksoy, 2000) and waiting times in call centers (Avramidis et al., 2004).

2. The lognormal distribution is a continuous probability distribution of a random variable of which the
logarithm is normally distributed. The distribution is positively skewed and can be used as a distribution
of quality variables in semiconductor processes (Ross (2018)), cutting tool wear processes (Ghosh, 2018)
and accelerated life tests (Zhang et al., 2015).

3. The normal distribution is a continuous probability distribution that is used in the pharmaceutical industry
(Gershon, 1991), chemical industry (Morud, 1996), health care industry (Tsacle and Aly, 1996), software
industry (Mahanti and Evans, 2012), and food industry (Lim et al., 2014).
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Table 2. Control limit L for attaining approximately the incontrol ARL of 370.4 under various values of f and
λ for γEWMA control chart

Other factor that was considered in the simulation was the quality variable distribution skewness . We(γ)
considered positive skewness due to the features of quality variables such as the time until failure, the waiting
times for life events and waiting times in call centers. Like Horng Shiau and Ya-Chen (2005), we used three
values of skewness to analyze the performance of the modified chart in terms of the symmetry degree. Table 3
presents the values of skewness of the distributions under study. For the gamma distribution, the skewness
increases as the value of decreases, namely, as the scale parameter increases. For the lognormal distribution,µ
the skewness increases as the value of increases, e.g., as the standard deviation of a random variable’sσ
natural logarithm increases.

Table 3. Probability density functions of random variables.

The fourth factor that was considered in the simulation study was (δ), the autocorrelation structure (φ) for the
type of relationship between the observations and modeled by AR(1). We consider only positive values,
namely, = 0.0, 0.1, 0.3, 0.5, 0.7 and 0.9, due to the inertial effect process.ϕ

The first factor considered was the weight that was given for past data . Therefore, in this study, we(λ)
consider a wide range of values of and 1.0 aiming select adequate value of thatλ = 0. 1,  0. 2,  0. 3,  0. 4 λ
present the best performance according to the performance measures. Additionally, the value of L was
selected for various combinations of two parameters ( and ), as presented in Table 4. The code of theλ ϕ
algorithm for calculating the combinations of and L is in a github repositoryλ
(https://github.com/ousuga/gEWMA-Paper). It was developed in this study. The Table 4 presents the control
limit for attaining approximately the in-control ARL of 370.4 for the γEWMA control chart, with the𝐿
specified values of and . A special case of the combination of and is and = 0.0, whichλ ϕ λ ϕ λ = 1. 0 ϕ
yields a value of L=3.00, which is a typical value in the Shewhart control chart parameters.

Table 4. Values of skewness of gamma, lognormal and normal distributions.

The last factor that was considered was the shift in the process mean . If the process is in an in-control(δ)
state, the shift takes the value of zero and if the process is in an out-of-control state, the shift takesδ = 0( ),
non-zero values . In this study, we consider a wide range of shift values: 0, 0.10, 0.15, 0.20, 0.25,(δ > 0)
0.30, 0.50, 0.75, 1.00 and 2.00.
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The study was conducted based on Monte Carlo simulations in R Core Team (2019). The codes are in the
github repository (https://github.com/ousuga/gEWMA-Paper). All simulations were based on N=1000000
replications and the number of subgroups that were considered on each simulated control chart was n=5000 to
avoid truncation of the RL at a value of the number of subgroups. The following algorithm was used in the
simulation study to estimate the RL values:

1. Input the values of and the parameters of distribution .𝑓,  ϕ,  λ,  𝐿( ),  𝑎𝑛𝑑 δ 𝑓

2. Calculate .µ
𝑍

=
µ

𝑓

1−ϕ( )

3. Calculate and .σ2 = σ
𝑓
2,   σ

𝑌
= σ2/ 1 − ϕ2( ) σ

𝑍
=

σ
𝑓
2

1−ϕ2( ) λ
2−λ( ) 1+ϕ 1−λ( )

1−ϕ 1−λ( )( )
4. Calculate .𝐶𝐿 = µ

𝑍
+ 𝐿 * σ

𝑍

5. Calculate .δ
𝑆

= δ * σ
𝑌

6. Set the number of samples to .𝑛 = 5000
7. Generate from the model according to the distribution , the parameters of the𝑌

𝑡
,   𝑡 = 1, …, 𝑛, 𝐴𝑅(1) 𝑓

distribution and the values of and .𝑓 ϕ 𝑛
8. Calculate .𝑌

𝑡
+  δ

𝑆

9. Set and .𝑧
0

= µ
𝑍
,  𝑖 = 0 𝑡 = 𝑖 + 1

10. Calculate the EWMA statistic .𝑍
𝑡

= λ𝑌
𝑡

+ 1 − λ( )𝑍
𝑡−1

11. If , return a run length of ; otherwise, set and return to Step 9.𝑍
𝑡| | > 𝐶𝐿 𝑅𝐿 = 𝑡 𝑡 = 𝑖 + 1

12. Repeat Steps 9-11 N times to obtain N RLs.
13. Estimate the summary measures of the N RLs, such as the minimum, the maximum, the average, the

standard deviation, and percentiles 1, 25, 50, 75, and 99.

6. Results

Three performance measures ARL, ARD and ARR were used to assess the performance of the EWMA
control chart according to the parameters and . The definitions and interpretations were presentedλ,  𝑓,  γ, ϕ δ
in Section 3. To carry out the objective of the simulation study, the results were analyzed through plots. In the
figures, the behavior of studied factors can be seen simultaneously, which facilitates the analysis of the
relationships between them. The tables representing the figures are in the supplementary material
(https://github.com/ousuga/gEWMA-Paper). We used plots of each factor vs. the performance measure
(univariate effects plot) and bivariate interaction plots vs. the performance measure. The univariate effect
plots were produced by averaging the performance measure at each level of each simulation factor and
plotting these averages along a vertical line. Then, the larger the distance between the factor levels, the larger
the effect of the factor on the average value of the performance measure. The bivariate interaction plots were
produced by averaging the performance measure for each level of one of the two factors on each level of the
second factor, plotting these averages versus the second factor, and obtaining curves by joining the points for
each level of the first factor. Then, the less parallel the curves are, the more interaction occurs between the
two factors. Additionally, we used boxplots to explain the relationships among data distribution ( ), the𝑓
skewness ( ), and the redefinition of the shift in the process mean levels. The analysis of the figures areγ (δ)
discussed according to the simulation results and the acceptable values for the reference case are shown in
Table 1.

The results are organized as follows. First, we justify the use of the skewness parameter ( ) instead of theγ
distribution ( ). Later, we analyze the results for the in-control state and both the univariate effects and the𝑓
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bivariate interaction effects on the performance measure (the results are similar if the and𝐴𝑅𝐿
0

𝐴𝑅𝐷
0

𝐴𝑅𝑅
0

are analyzed, we use the case as illustration). In this case, we only analyze the parameters and𝐴𝑅𝐿
0

λ,  γ ϕ

since the mean shift is zero ( ). Finally, we present the results for the out-of-control state for the threeδ = 0
performance measures, where we follow the same structure as in the previous case but including the shift in
the process mean ( factor. As discussed in Section 4, is a parameter that is defined by the analyst, whereasδ)  λ

and are defined by the data, and is a process condition that is unknown. Therefore, the bivariateγ ϕ δ
interaction analysis will be addressed by this last factor.

In the following analysis, we used the skewness factor ( ) instead of the distributions ( ). As presented inγ 𝑓
Table 3, the parameters of the distributions were chosen such that a skewness value ( ) was obtained. Figure 2γ
shows that distributions with equal skewness behave similarly for both the in-control and out-of-control
states. The colors in the top row match the colors in the bottom row. For the in-control state, distributions with
larger skewness (Gamma(1,1) and Lognormal(0,0.55), for which ) present low , namely, theγ = 2 𝐴𝑅𝐿

0

false-alarm rate increases as the skewness decreases. A similar pattern is observed for the out-of-control state.
In addition, the results for the normal distribution, for which the skewness is 0, demonstrate that the
coefficient of variance for the is almost 0.0% and that for the is approximately 72.2%. As we have𝐴𝑅𝐿

0
𝐴𝑅𝐿

1

discussed, the effect of the skewness seems to be more important than the distribution. From here onwards,
we will analyze scenarios with the skewness parameter ( ). As the results are similar among all threeγ
performance measures, we consider the case for illustration.𝐴𝑅𝐿

Figure 2. Effects of the distribution and skewness on the ARL performance: (a) distribution on the ; (b)𝐴𝑅𝐿
0

distribution ; (c) skewness and (d) skewness on the .𝐴𝑅𝐿
1

𝐴𝑅𝐿
0

𝐴𝑅𝐿
1

6.1 Results for in-control procesess (δ = 0)
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Univariate effects for the in-control state are presented in Figure 3. Since the magnitude of the effect for is λ
almost the same as that for , this figure shows that the is equally affected by the autocorrelation amongϕ 𝐴𝑅𝐿

0

observations ( ) and by the selection of the value of the parameter . The is more influenced by theseϕ λ 𝐴𝑅𝐿
0

two factors than by the skewness of the distribution. When the analysis was conducted for each simulation
factor separately, we found that the smaller the skewness and , and the larger the autocorrelation amongλ
observations, the higher the .𝐴𝑅𝐿

0

Figure 3. Univariate effects for the in-control process.

Figure 4 presents the results for the bivariate interaction effects of vs. λ for the conditioned on theϕ 𝐴𝑅𝐿
0

γ

parameter: i) there is no important interaction between and λ while conditioning on the skewness of theϕ
distribution, ii) the

Figure 4. Bivariate interaction effects of vs. λ for the in-control process. (a) γ = 0; (b) γ = 1; (c) γ = 1.5; (d)ϕ
γ = 2.

6.2 Results for out-of-control procesess (δ ≠ 0)

The univariate effects for the out-of-control process are presented in Figure 5. Figure 5(a) presents the results
for the (for which lower values are better): i) the shift in the process mean ( ) is the simulation factor𝐴𝑅𝐿

1
δ
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with the strongest effect on the since the difference among its levels is the largest; for this measure𝐴𝑅𝐿
1

performance, it is important to consider the value of the shift in the process mean since the value of the shift
significantly affects the speed at which the chart control detects an out-of-control state; the second highest
effect for this performance measure is the autocorrelation among observations ( ), followed by the skewnessϕ
of the distributions ( ), and the is the factor with the lowest effect, and ii) when the analysis is done for eachγ λ
factor separately, we found that the larger the , and , and the smaller the , the lower the . Figureγ λ δ ϕ 𝐴𝑅𝐿

1

5(b) presents the results for the , where the reference case involves departures from the normal𝐴𝑅𝐷
1

distribution assumption and changes in the shift: i) the shift in the process mean ( ) and are the factors thatδ λ
have the strongest effects on the , followed by and . ii) when the analysis is done for each factor𝐴𝑅𝐷

1
γ ϕ

separately, we found that the larger the , and , and the smaller the and , the lower the , and iii)γ λ ϕ δ 𝐴𝑅𝐷
1

although the smallest values are achieved when , they fail to exceed the of the reference𝐴𝑅𝐿
1

δ = 2 𝐴𝑅𝐿
1

case by far; improvements in the detection have a greater impact at lower shift values. Figure 5(c) shows the
results for the , where the reference case involves departures from the normal distribution and𝐴𝑅𝑅

1

independence assumptions, and changes in the shift: i) the autocorrelation between the observations is the
factor that has the strongest effect on the , followed by and , and ending with ; therefore, when data𝐴𝑅𝑅

1
δ λ γ

have an autocorrelation structure, it is important to model that structure, and ii) the direction of the effects is
the same than for the , but the shift presents a nonlinearity effect for the three last levels.𝐴𝑅𝐷

1

Figure 5. Univariate effects for the out-of-control process. (a) Average . ( b) Average . (c) Average𝐴𝑅𝐿
1

𝐴𝑅𝐷
1

.𝐴𝑅𝑅
1

The shift in mean is a process condition that has been frequently reported in the literature. Analyzing its
impact on the performance of the chart is very important. In order to keep the analysis easy to read, we
decided to redefine its levels. As is observed in the three plots of Figure 6, this parameter can be clustered in
three groups: , where , , where , and , where . A justification of thisδ

𝐿𝑜𝑤
δ≤0. 3 δ

𝑀𝑖𝑑𝑑𝑙𝑒
δ = 0. 5 δ

𝐻𝑖𝑔ℎ
δ≥0. 75

redefinition can be seen in Figure 6 as well.
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Figure 6. Redefinition of the δ levels. (a) Effects of the original δ levels on the , and . (b)𝐴𝑅𝐿
1

𝐴𝑅𝐷
1

𝐴𝑅𝑅
1

Effects of the new δ levels on the , and .𝐴𝑅𝐿
1

𝐴𝑅𝐷
1

𝐴𝑅𝑅
1

Figure 7, Figure 8, and Figure 9 present the results for the peer interaction ( , ) for the average ,λ ϕ 𝐴𝑅𝐿
1

𝐴𝑅𝐷
1

and at the three levels of ( , , ). If the of these three plots are compared, the𝐴𝑅𝑅
1

δ δ
𝐿𝑜𝑤

δ
𝑀𝑖𝑑𝑑𝑙𝑒

δ
𝐻𝑖𝑔ℎ

𝐴𝑅𝐿
1

average improves at higher levels of This means that the speed of out-of-control status detection𝐴𝑅𝐿
1

δ.

increases when the shifts in the mean that the user wants to detect become larger.

According to Figure 7 ( and interaction for ), if the average is analyzed, the normal distributionλ ϕ δ
𝐿𝑜𝑤

𝐴𝑅𝐿
1

and skewed distribution behave in opposite ways; while for the normal distribution (γ = 0), a value of
is recommended at any value of (although for , seem to produce similarλ = 0. 1 ϕ ϕ = 0. 9 λ = 0. 1,..., 1

values of ), for the skewed distributions (γ = 1, 1.5, 2), a value of is more appropriate at any value𝐴𝑅𝐿
1

λ = 1

of . When the average is analyzed, the skewed distributions outperform the normal distribution (i.e.,ϕ 𝐴𝑅𝐷
1

) for all cases except when autocorrelation is high ( ) and the value of the weight for past𝐴𝑅𝐷
1

> 0 ϕ > 0. 7

observations, , is low. Finally, when the average is analyzed (remember that the reference case is that inλ 𝐴𝑅𝑅
1

which the distribution is normal and the observations are independent), the normal distribution (γ = 0)
behaves less well when the value of the autocorrelation is higher and the value of is smaller; the skewedλ
distributions outperform the normal distribution with independent observations (i.e., ) when the𝐴𝑅𝑅

1
< 1

value of is higher.λ
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Figure 7. and interaction for the average , and for .λ ϕ 𝐴𝑅𝐿
1

𝐴𝑅𝐷
1

𝐴𝑅𝑅
1

δ
𝐿𝑜𝑤

Figure 8 depicts the and interaction for . In contrast with the results of (Figure 7) for theλ ϕ δ
𝑀𝑖𝑑𝑑𝑙𝑒

δ
𝐿𝑜𝑤

average , the interaction between , and γ is important for the analysis of the data. The𝐴𝑅𝐿
1

λ ϕ

recommendations for the normal case remain the same as for . Nevertheless, for the skewed distributionsδ
𝐿𝑜𝑤

(γ >0) the conclusions change: i) when γ = 1, a value of is more appropriate if , forλ = 0. 1 ϕ < 0. 5
observations with higher autocorrelation, a value of is preferable, ii) when γ = 1.5, a value ofλ = 1 λ = 0. 1
is more appropriate if , for observations with higher autocorrelation, a value of is preferable,ϕ < 0. 1 λ = 1
and iii) when γ = 2 and any value of do not produce significant differences in the average ,ϕ < 0. 1 λ 𝐴𝑅𝐿

1

for observations with higher autocorrelation, a value of is preferable. When the average isλ = 1 𝐴𝑅𝐷
1

analyzed, the skewed distributions outperform the normal distribution (i.e., ) for all cases except𝐴𝑅𝐷
1

> 0

when autocorrelation and the value of the weight for past observations are low. Finally, when the average
is analyzed the skewed distributions outperform the normal distribution with independent observations𝐴𝑅𝑅

1

(i.e., ) when ; observe that the performance of the γEWMA control chart improves at lower𝐴𝑅𝑅
1

< 1 λ = 1

values of .ϕ
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Figure 8. and interaction for the average , and for .λ ϕ 𝐴𝑅𝐿
1

𝐴𝑅𝐷
1

𝐴𝑅𝑅
1

δ
𝑀𝑖𝑑𝑑𝑙𝑒

Figure 9 depicts the and interaction for . In this case, the selection of the parameter seems to be lessλ ϕ δ
𝐻𝑖𝑔ℎ

λ

important (due to small significant differences in the average at different values of ) when the the𝐴𝑅𝐿
1

λ

average is analyzed. Nevertheless, the average shows that a value of =1 would be a good choice𝐴𝑅𝐿
1

𝐴𝑅𝐷
1

λ

if the normal distribution needs to be outperformed. In a similar way the analysis of the shows that a𝐴𝑅𝑅
1

value of =1 for skewed distributions outperforms the normal distribution with independent observations,λ
although when autocorrelation increases the performance could be improved.
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Figure 9. and interaction for the average , and for .λ ϕ 𝐴𝑅𝐿
1

𝐴𝑅𝐷
1

𝐴𝑅𝑅
1

δ
𝐻𝑖𝑔ℎ

7. Conclusions

We used three performance measures based on Run Length to evaluate the detecting ability a point outside the
control limits of a control chart when the statistical distribution of the observations, the autocorrelation
structure, and the shift in the process mean is considered in the modeling because we proposed γEWMA
control chart. Our findings are in line with the results in (i) Human et al. (2011), who studied the
non-normality assumption (they used sixteen different distributions), and (ii) Horng Shiau and Ya-Chen
(2005), who studied the effects of non-normality (t and Gamma with different parameters) and
non-independent data ( ) under different shifts ( between 0 and 3, each 0.25) and smoothingϕ = 0. 6 δ
parameters ( = 0.05, 0.1, 1). We show that the impact of the simulation factors are different for eachλ
performance measure and shift in the process mean is very important to analyze its impact on the sensitivity
of the chart. Besides, the analysis of the interaction between the simulation factors provides more insights for
the analysis of the control chart.

For the in-control process, three performance measures showed similar results, it concludes that, there is no
important interaction between and , and the normal distribution ( ) behaves differently than theϕ λ γ = 0
skewed distributions. For the out-of-control process ( ), the performance of the γEWMA control chart isδ≠0
measured based on the smoothing parameter selection and jointly analyzes three process or data conditions.
This paper shows that when observations consider process characteristics the γEWMA control chart is far
more useful than the EWMA control chart in detecting small, middle and high shifts when the data
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distribution is symmetric; for middle and high shifts and non-symmetric data distribution, the γEWMA
control chart behaves better as the autocorrelation diminishes. The γEWMA control chart requires less time to
detect small shifts in the process mean as the level of autocorrelation decreases.

The analysis of and interactions for the three performance measures in the γEWMA control showed itλ ϕ
makes sense that highly autocorrelated observations require smaller λ for in-control processes; this is not true
for the out-of-control scenario. The correlation structure enables the preservation of relevant information in
past observations. Also, the analysis of , and interaction, for the in-control scenario, showed a goodγ ϕ λ
performance of the EWMA control chart when data follow a skewed distribution and the parameter isγ λ
properly chosen, under this scenario.

For out-of-control processes, it is better to preserve the original features of the distributions, mean and
variance, for the calculation of the control limits. The analysis of , and interaction showed that theγ ϕ λ
performance of the EWMA control chart for skewed data with and outperforms in mostγ γ = 1. 0,  1. 5 2. 0
cases the performance of the EWMA control chart for the symmetric data with . The larger theγ γ = 0. 0
skewness and the shift in mean, the better its performance. The selection of the parameter, conditioned inλ
the data and process characteristics, is determinant for the performance of the chart.

References

Aksoy, H. (2000), “Use of gamma distribution in hydrological analysis”, Turkish Journal of Engineering and
Environmental Sciences, Vol. 24 No. 6, pp. 419-428.

Asghari Torkamani, E., Niaki, S.T.A., Aminnayeri, M. and Davoodi, M. (2014), “Estimating the change point
of correlated poisson count processes”, Quality Engineering, Vol. 26 No. 2, pp. 182–195.

Avramidis, A.N., Deslauriers, A. and L’Ecuyer, P. (2004), “Modeling daily arrivals to a telephone call center”,
Management Science, Vol. 50 No. 7, pp. 896-908.

Borror, C.M., Montgomery, D.C. and Runger, G.C. (1999), “Robustness of the EWMA control chart to
non-normality”, Journal of Quality Technology, Vol. 31 No. 3, pp. 309–316.

Crowder, S. V. (1987), “A simple method for studying run – length distributions of exponentially weighted
moving average charts”, Technometrics, Vol. 29 No. 4, pp. 401–407.

Crowder, S. V. and Wiel, S.A. (2014), “Exponentially Weighted Moving Average (EWMA) Control Chart”,
Wiley StatsRef: Statistics Reference Online, pp. 1–8.

Dawod, A.B.A., Riaz, M. and Abbasi, S.A. (2017), “On Model Selection for Autocorrelated Processes in
Statistical Process Control”, Quality and Reliability Engineering International, Vol. 33 No. 4, pp.
867–882.

Esparza Albarracin, O.Y., Alencar, A.P. and Ho, L.L. (2018), “Effect of neglecting autocorrelation in
regression EWMA charts for monitoring count time series”, Quality and Reliability Engineering
International, Vol. 34 No. 8, pp. 1752–1762.

Evans, J.R. and Mahanti, R. (2012), “Critical success factors for implementing statistical process control in
the software industry”, Benchmarking, Vol. 19 No. 3, pp. 374-394.

Gershon, M. (1991), “Statistical process control for the pharmaceutical industry”, Journal of Parenteral
Science and Technology, Vol. 45, pp. 41-50.

Ghosh, S., Kumar Naskar, S. and Kumar Mandal, N. (2018), “Estimation of residual life of a cutting tool used
in a machining process”, MATEC Web of Conferences, Vol. 192, doi:
10.1051/matecconf/201819201017.

Harris, T.J. and Ross, W.H. (1991), “Statistical process control procedures for correlated observations”, The
Canadian Journal of Chemical Engineering, Vol. 69 No. 1, pp. 48–57.

Herdiani, E.T., Fandrilla, G. and Sunusi, N. (2018), “Modified Exponential Weighted Moving Average
(EWMA) Control Chart on Autocorrelation Data”, Journal of Physics: Conference Series, Vol. 979 No.
1, available at:https://doi.org/10.1088/1742-6596/979/1/012097.

18



Hori, E.S. and Skogestad, S. (2007), “Controlled Variables”, Vol. 2 No. 2003, pp. 129–134.
Horng Shiau, J.-J. and Ya-Chen, H. (2005), “Robustness of the EWMA Control Chart to Non-normality for

Autocorrelated Processes”, Quality Technology & Quantitative Management, Vol. 2 No. 2, pp.
125–146.

Human, S.W., Kritzinger, P. and Chakraborti, S. (2011), “Robustness of the EWMA control chart for
individual observations”, Journal of Applied Statistics, Vol. 38 No. 10, pp. 2071–2087.

Jensen, W.A., Jones-Farmer, L.A., Champ, C.W. and Woodall, W.H. (2006), “Effects of parameter estimation
on control chart properties: A literature review”, Journal of Quality Technology, October.

Jones, L.A., Champ, C.W. and Rigdon, S.E. (2001), “The performance of exponentially weighted moving
average charts with estimated parameters”, Technometrics, Vol. 43 No. 2, pp. 156–167.

Khoo, M.B.C., Teh, S.Y., Chew, X.Y. and Teoh, W.L. (2015), “Standard deviation of the run length (SDRL)
and average run length (ARL) performances of EWMA and synthetic charts”, International Journal of
Engineering and Technology, Vol. 7 No. 6, pp. 513-517.

Koehle, A.B., Marks, N.B. and O’Connell, R.T. (2001), “EWMA control charts for autoregressive processes”,
Journal of the Operational Research Society, Vol. 52 No. 6, pp. 699–707.

Lim, S.A.H., Antony, J. and Albliwi, S. (2014), “Statistical Process Control (SPC) in the food industry -A
systematic review and future research agenda”, Trends in Food Science and Technology, Vol. 37 No. 2,
pp. 137-151.

Lin, Y.C., Chou, C.Y. and Chen, C.H. (2017), “Robustness of the EWMA median control chart to
non-normality”, International Journal of Industrial and Systems Engineering, Vol. 25 No. 1, pp. 35–58.

Lucas, J.M. and Saccucci, M.S. (1990), “Exponentially Moving Weighted Schemes : Control Average and
Enhancements Properties”, Technometrics, Vol. 32 No. 1, pp. 1–12.

MacCarthy, B.L. and Wasusri, T. (2002), “A review of non-standard applications of statistical process control
(SPC) charts”, International Journal of Quality and Reliability Management, Vol. 19 No. 3, pp.
295–320.

Mahmoodian, M. and Alani, A. (2016), “Sensitivity analysis for failure assessment of concrete pipes
subjected to sulphide corrosion”, Urban Water Journal, Vol. 13 No. 6, doi:
10.1080/1573062X.2015.1012085.

Maroš, T., Vladimír, B. and Caner, T.M. (2011), “Monitoring chenille yarn defects using image processing
with control charts”, Textile Research Journal, Vol. 81 No. 13, pp. 1344–1353.

Morais, M.C., Ferreira Ramos, P., Pacheco, A. and Schmid, W. (2014), “On the impact of falsely assuming
I.I.D. output in the probability of misleading signals”, Revstat Statistical Journal, Vol. 12 No. 3, pp.
221–245.

Morris, T.P., White, I.R. and Crowther, M.J. (2019), “Using simulation studies to evaluate statistical
methods”, Statistics in Medicine, Vol. 38 No. 11, pp. 2074–2102.

Morud, T.E. (1996), “Multivariate statistical process control; example from the chemical process industry”,
Journal of Chemometrics, Vol. 10 Nos 5-6, pp. 669-675.

Neubauer, A.S. (1997), “The EWMA control chart: Properties and comparison with other quality- control
procedures by computer simulation”, Clinical Chemistry, Vol. 43 No. 4, pp. 594–601.

Okhrin, Y. and Schmid, W. (2019), “Stochastic inequalities for the run length of the ewma chart for
long-memory processes”, Revstat Statistical Journal, Vol. 17 No. 1, pp. 67–90.

Osei-Aning, R., Abbasi, S.A. and Riaz, M. (2017), “Mixed EWMA-CUSUM and mixed CUSUM-EWMA
modified control charts for monitoring first order autoregressive processes”, Quality Technology and
Quantitative Management, Vol. 14 No. 4, available at:https://doi.org/10.1080/16843703.2017.1304038.

Patel, A.K. and Divecha, J. (2011), “Modified exponentially weighted moving average (EWMA) control chart
for an analytical process data”, Journal of Chemical Engineering and Materials Science, Vol. 2 No. 1.

Prajapati, D.R. and Singh, S. (2016), “Determination of level of correlation for products of pharmaceutical
industry by using modified X-bar chart”, International Journal of Quality and Reliability Management,
Vol. 33 No. 6, pp. 724-746.

19



Reynolds, M.R. and Lu, C.W. (1997), “Control charts for monitoring processes with autocorrelated data”,
Nonlinear Analysis, Theory, Methods and Applications, Vol. 30 No. 7, pp. 4059–4067.

Roberts, S.W. (1959), “Control Chart Tests Based on Geometric Moving Averages”, Technometrics, Vol. 1
No. 3, pp. 239–250.

​​Ross, R. (2018), “Semiconductor performance in terms of distributions, bath tub curves and similarity index”,
in 2018 15th China International Forum on Solid State Lighting: International Forum on Wide Bandgap
Semiconductors China (SSLChina: IFWS), pp. 1-5, IEEE.

Saleh, N.A., Mahmoud, M.A. and Abdel-Salam, A.S.G. (2013), “The performance of the adaptive
exponentially weighted moving average control chart with estimated parameters”, Quality and
Reliability Engineering International, Vol. 29 No. 4, pp. 595–606.

Supharakonsakun, Y., Areepong, Y. and Sukparungsee, S. (2019), “Numerical approximation of ARL on
modified EWMA control chart for Ma(1) process”, Lecture Notes in Engineering and Computer
Science, Vol. 2239 No. 1, pp. 272–275.

Tsacle, E.G. and Aly, N.A. (1996), “An expert system model for implementing statistical process control in
the health care industry”, Computers and Industrial Engineering, Vol. 31 Nos 1-2, pp. 447-450.

Ulkhaq, M.M. and Dewanta, F. (2017), “Original observations-based control charts for monitoring the mean
of auto-correlated processes: A comparison among modified Shewhart, modified EWMA, and
ARMAST charts”, AIP Conference Proceedings, Vol. 1902, available
at:https://doi.org/10.1063/1.5010656.

Van Eck, N.J. and Waltman, L. (2009), “VOSviewer: a computer program for bibliometric mapping”,12th
International Conference on Scientometrics and Informetrics, 2009, ISSI, pp. 886-897.

Wieringa, J.E.J.. (1999), Statistical Process Control for Serially Correlated Data, edited by Ridderprint, R.,
Labyrint Publication, Groningen.

Zhang, J., Liu, F., Liu, Y., Wu, H., Wu, W. and Zhou, A. (2012), “A study of accelerated life test of white
OLED based on maximum likelihood estimation using lognormal distribution”, IEEE Transactions on
Electron Devices, Vol. 59 No. 12 pp. 3401-3404, doi: 10.1109/TED.2012.2215864.

Zheng, R. and Chakraborti, S. (2016), “A Phase II nonparametric adaptive exponentially weighted moving
average control chart”, Quality Engineering, Vol. 28 No. 4, available
at:https://doi.org/10.1080/08982112.2016.1183255.

20


