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1 Entire minimizers of Allen-Cahn systems

with sub-quadratic potentials

Nicholas D. Alikakos∗, Dimitrios Gazoulis †, Arghir Zarnescu‡§¶

Dedicated to Pavol Brunovsky, a man of brilliance and very high morality

Abstract

We study entire minimizers of the Allen-Cahn systems. The specific feature of our
systems are potentials having a finite number of global minima, with sub-quadratic be-
haviour locally near their minima. The corresponding formal Euler-Lagrange equations
are supplemented with free boundaries.

We do not study regularity issues but focus on qualitative aspects. We show the
existence of entire solutions in an equivariant setting connecting the minima of W at
infinity, thus modeling many coexisting phases, possessing free boundaries and mini-
mizing energy in the symmetry class. We also present a very modest result of existence
of free boundaries under no symmetry hypotheses. The existence of a free boundary
can be related to the existence of a specific sub-quadratic feature, a dead core, whose
size is also quantified.

1 Introduction and Main Results

In this note we consider minimizers in the whole space Rn for the functional

(1.1) J(u) =

∫

1

2
|∇u|2 +W (u)dx
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with u : Rn → Rm.

We take W ≥ 0 and {W = 0} = {a1, ..., aN} := A, for some distinct points a1, ..., aN ∈
Rm that can physically model the phases of a substance that can exist in N ≥ 2 equally
preferred states.

We assume that

(1.2) lim inf
|z|→∞

W (z) > 0

If W is smooth then the first derivatives vanish at the minimum points and the generic
local behaviour near such a minimum, say ai, is locally of quadratic nature, of the type
|u− ai|2. The minimizers satisfy the Euler-Lagrange system

(1.3) ∆u−Wu(u) = 0.

We are interested in the class of solutions that connect in some way the phases or a
subset of them. The scalar case m = 1 has been extensively studied with N = 2 that is the
natural choice. The reader may consult [20], [37], [41] where further references can be found.
A well known conjecture of De Giorgi (1978) and its solution about thirty years later, played
a significant role in the development of a large part of this work.

The vector case m ≥ 2 by comparison has been studied very little. We note that for
coexistence of three or more phases a vector order parameter is necessary and so there is
physical interest for the system.

For m ≥ 2, (1.3) has been mainly studied in the class of equivariant solutions with
respect to reflection groups beginning with [13] and later [27] and significantly extended and
generalized in various ways [6], [3], [24], [4], [7], [11]. We refer to [1] where existence under
symmetry is covered and where more references can be found.

Degenerate, super-quadratic behavior at the minima has also been considered for (1.3),
m = 1, in [12], [21].

The focus of our work will be on going beyond this classical setting and explore the phe-
nomena that are associated having sub-quadratic behaviour at the minima. Specifically, our
potentials are modelled near their minima a ∈ A after |u− a|α, for 0 < α < 2. Furthermore
we will consider also the limiting case α = 0 (that appears in a Γ-limit setting as α → 0).
Formally, the minimizers solve certain free boundary problems:

1. For α ∈ (0, 2):

(1.4)

®

∆u = Wu(u) for {u(x) /∈ A}
|∇u|2 = 0 for ∂{u(x) /∈ A}
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2. For α = 0:

(1.5)

®

∆u = 0 for {u(x) /∈ A}
|∇u|2 = 2 for ∂{u(x) /∈ A}

In Appendix B we give a formal justification of these, that can be made rigorous
with suitable regularity results, [8]. We note that for α = 2, Corollary 3.1 p.92 in
[1] states that if both W (u(x)) = 0 and |∇u(x)|2 = O(W (u(x)) then u ≡ ai. This
latter condition holds in the scalar case, m = 1, by the Modica inequality. Hence for
α = 2, m = 1 we have ∂{u(x) 6∈ A} = ∅. Thus a free boundary may be expected
only in the non smooth case. The reason is rather simple and can be traced back to
the non-uniqueness of the trivial solution of the ODE u′ = 2

2−α
C

α
2 u

α
2 that describes

the behavior of the one-dimensional solutions (connections) near the minimum of W
of (1.4), (1.5).

Thus we focus on the range 0 ≤ α < 2. An important special case of the potentials we
consider is given, for the set of minima A = {a1, . . . , aN} by

(1.6) W α(u) =
N
∏

k=1

|u− ak|αk , α = (α1, ..., αN); 0 < αk < 2, ∀ k ∈ {1, . . . , N}

More generally, motivated by the form of W in (1.6), we assume:

(H1)























0 < α < 2 :W ∈ C(Rm; [0,+∞)) with {W = 0} = {a1, ..., aN} 6= ∅ (N ≥ 2).

For a ∈ {W = 0} the function W is differentiable in a deleted

neighborhood of a and satisfies d
dρ
W (a+ ρξ) ≥ αC∗ρα−1 , ∀ ρ ∈ (0, ρ0] ,

∀ ξ ∈ Rm : |ξ| = 1, for some constants ρ0 > 0, C∗ > 0 independent of α.























α = 0 : {W = 0} = {a1, ..., aN} := A , W (u) :=W 0(u) := χ{u∈SA}

SA := {∑N
i=1 λiai , λi ∈ [0, 1) , ∀ i = 1, ..., N ,

∑N
i=1 λi = 1 , N = m+ 1}

We assume that the simplex SA is nondegenerate, that is the vectors

{a2 − a1, ..., am+1 − a1} are linearly independent and m ≥ 2.

Clearly W α in (1.6) satisfy (H1) (0 < α < 2).
We are primarily interested in bounded minimizers defined on R

n. We note in passing
that the only critical points of JRn , n ≥ 2, with bounded energy are trivial [2]. A mini-
mizer u, by definition minimizes energy subject to its Dirichlet values on any open, bounded
Ω ⊂ Rn. More precisely,
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Definition 1.1. Let O ⊂ Rn open. A map u ∈ W 1,2
loc (O,Rm) ∩ L∞(O;Rm) is called a

minimizer of the energy functional J defined in (1.1) if

(1.7) JΩ(u+ v) ≥ JΩ(u) , for v ∈ W 1,2
0 (Ω,Rm) ∩ L∞(Ω;Rm)

for every open bounded Lipschitz set Ω ⊂ O, with JΩ denoting the value of the integral in
(1.1) when integrating over the domain Ω.

The case, α = 0 for m = 1 was introduced and extensively studied by Caffarelli and
his collaborators, with particular attention to the optimal regularity of the solution and to
the regularity of the free boundary. These are important classical results that can be found
for example in the books [16] or [33]. There is recent interest in the vector case for free
boundary problems. We mention below two papers which relate to our work and where
additional references can be found.

In [17] the authors study minimizers of the functional

(1.8)

∫

Ω

(
1

2
|∇u|2 +Q2(x)χ{|u|>0})dx

with u : Ω ⊂ Rn → Rm , ui ≥ 0 ,Ω bounded and u = g on ∂Ω. This corresponds
to a cooperative system, and is a one-phase Bernoulli-type problem. On the other hand,
our nonlinearity is of the competitive kind and our problem is a two-phase Bernoulli-type
problem.

In [29] the functional that is studied is

(1.9)

m
∑

i=1

∫

Ω

1

2
|∇ui|2 + ΛLn(∪m

i=1{ui 6= 0})dx

with ui = φi on ∂Ω. This is a two-phase type problem and it is quite close to our functional
for α = 0.

The emphasis in these works is on the regularity of the solution and of the free boundary,
while the existence of the free boundary is forced by the Dirichlet condition on ∂Ω, and is
not an issue in that context.

For stating our main results we need some algebraic preliminaries.
A reflection point group G is a finite subgroup of the orthogonal group whose elements g

fix the origin. We will be assuming for simplicity that m = n (the general case is presented
in [1], Chapter 7), and that G acts both on the domain space Rn and the target space
R

m. A map u : Rn → R
n is said to be equivariant with respect to the action of G, simply

equivariant, if

u(gx) = gu(x) , ∀ g ∈ G , x ∈ R
n
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A reflection γ ∈ G is a map γ : Rn → Rn of the form

γx = x− 2(x · nγ)nγ , for x ∈ R
n

for some unit vector nγ ∈ Sn−1 which aside from its orientation is uniquely determined by
γ. The hyperplane

πγ = {x ∈ R
n : x · nγ = 0 }

is the set of the points that are fixed by γ. The open half space S+
γ = {x ∈ Rn : x · nγ > 0}

depends on the orientation of nγ . We let Γ ⊂ G denote the set of all reflections in G. Every
finite subgroup of the orthogonal group O(Rn) has a fundamental region, that is a subset
F ⊂ Rn with the following properties:

1. F is open and convex,
2. F ∩ gF = ∅ for I 6= g ∈ G, where I is the identity,
3. Rn = ∪{gF : g ∈ G}.

The set ∪γ∈Γπγ divides Rn \ ∪γ∈Γπγ in exactly |G| congruent conical regions. Each one
of these regions can be identified with the fundamental region F for the action of G on Rn.
We assume that the orientations of nγ are such that F ⊂ S+

γ and we have

F = ∩γ∈ΓS+
γ

Given a ∈ Rn, the stabilizer of a, denoted by Ga ⊂ G is the subgroup of the elements
g ∈ G that fix a:

Ga = {g ∈ G : ga = a}.

We now introduce two more hypotheses:

(H2)(symmetry) The potential W is invariant under a reflection (point) group G acting on
Rn, that is

W (gu) = W (u) for all g ∈ G and u ∈ R
n.

Moreover we assume (1.2).

(H3)(Location and number of global minima) Let F ⊂ Rn be a fundamental region of G.
We assume that F contains a single global minimum of W say a1 6= 0, and let Ga1 be the
stabilizer of a1. Setting D := Int(∪g∈Ga1

gF ) , a1 is also the unique global minimum of W
in the region D.
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Notice that, by the invariance ofW , Hypothesis (H3) implies that the number of minima
of W is

N =
|G|
|Ga1 |

,

where | · | stands for the number of elements.
We can now state our first main result.

Theorem 1. (0 < α < 2) Under hypothesis (H1)-(H3), there exists an equivariant mini-
mizer u of J , u : Rn → Rn, such that
1. |u(x)− a1| = 0 for x ∈ D and d(x, ∂D) ≥ d0 , where d0 a positive constant depending on
||u||L∞(Rn,Rn) , C

∗ and α (d0 → +∞ as α→ 2).
2. u(F ) ⊂ F , u(D) ⊂ D (positivity).

Hence by equivariance the statements above hold for all ai , i = 1, ..., N , in the respective
copy of D.

Remark 1.2. In [8] it is shown that u ∈ C2,α−1
loc for α ∈ (1, 2) , u ∈ C1,γ

loc for any γ ∈ (0, 1)
and u ∈ C1, α

1−α for α ∈ (0, 1). The regularity for α ∈ (0, 1) is optimal. In Lemma 2.1 we
establish the (suboptimal) estimate |u|Cβ < ∞ (any β ∈ (0, 1)) that holds for all α ∈ [0, 2)
which is sufficient for our purposes. We revisit this point also later.

The analog of Theorem 1 for α = 2 , W ∈ C2 was established in a series of papers by
the first author and G.Fusco. It can be found in [1] (Theorem 6.1) where detailed references
are given. The main difference with Theorem 1 above is that the condition |u(x)− a1| = 0
for x ∈ D , d(x,D) ≥ d0, is replaced by |u(x)− a1| ≤ Ke−kd(x,∂D) , x ∈ D, where k , K are
positive constants. In that context the minimizer u is a classical solution of (1.3) while in the
present context u is a weak W 1,2

loc solution of (1.3) in the complement of the free boundary
∂{u(x) /∈ A}. The theorem in the smooth case is utilized in our proof of Theorem 1 where
we are constructing a minimizer with the positivity property via a C2 regularization of the
potential. We thus bypass the gradient flow argument used in the proof of the α = 2 case
in [1] that would be problematic in the present setting. The role of positivity can be seen in
the following proposition, which does not presuppose symmetry.

Proposition 1. (0 < α < 2) (i) Assume that W as in (H1) above, and u a bounded
minimizer of J , u : Rn → Rm , ||u||L∞(Rn,Rm) < ∞. Moreover, let O ⊂ Rn open, assume
that

(1.10) d(u(O), {W = 0} \ {a}) ≥ k > 0
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d the Euclidean distance, k constant.
Then given q ∈ (0, ||u||L∞(Rn,Rm)) , ∃ rq > 0 such that

(1.11) Brq(x0) ⊂ O ⇒ |u(x0)− a| < q

(ii) Let further 0 < 2q ≤ ρ0 (cfr (H1)). Then there exists an explicit constant Ĉ = Ĉ(α, n) >
0 (see (3.18) , limα→2 Ĉ(α, n) = ∞ , limα→0 Ĉ(α, n) = ∞ ), such that

(1.12) BĈq−α(x0)
⊂ O ⇒ u(x) ≡ a , in B Ĉ

2
q−α(x0)

Remark 1.3. Part (i) of Proposition 1 holds for α = 2, and is a result obtained in [23]. It
can be found also in [1] Theorem 5.3. Note that positivity allows the application of this with
O = D, since the solution in D stays away from all the minima except one. This reveals the
nature of (H3).
Part (ii) is utilizing a “Dead Core” estimate (Lemma 2.5 below) which shows that for a
function v ∈ W 1,2(BR(x0))

(1.13)

®

∆v ≥ c2v
α
2 , weakly in W 1,2(BR(x0))

0 ≤ v ≤ δ , δ > 0 sufficiently small depending on c

Then if

(1.14)







dist(y0, ∂BR(x0)) > R0 ⇒
v(y0) = 0 for R > R0 =

√
n(n+2)

(1−α
2
)c
δ

2−α
4 , α ∈ (0, 2)

“Dead Core” regions are sets where the solution is constant.
The first appearance of such a situation was in [16], [34], followed by more in depth study

in [39].

Proposition 2. (α = 0) Let

(1.15) J(u) =

∫

(
1

2
|∇u|2 + χAc(u))dx

where A := {W = 0} = {a1, ..., aN} ⊂ Rm (N ≥ 2), Ac = Rm \ A. Let u be a nonconstant
minimizer, u : Rn → R

m , ||u||L∞(Rn,Rm) <∞. Suppose that for some ai ∈ A we have

(1.16) d(u(BR(x0)), {W = 0} \ ai) > 0

Then

(1.17) Ln({u = ai} ∩ BR(x0)) ≥ cRn , R ≥ R0

for some constant c > 0 independent of R.
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What about existence of minimizer defined on Rn possessing a free boundary and without
any symmetry assumptions? This is a difficult open problem for the coexistence of three or
more phases. We have the following simple result in this direction.

Proposition 3. (α = 0) Consider the functional

(1.18) J(u) =

∫

(
1

2
|∇u|2 + χAc(u))dx

where A = {a1, ..., aN} distinct points in Rm , Ac = Rm \ A.
Let u : Rn → Rm be a nonconstant minimizer with ||u||L∞(Rn,Rm) <∞ and x0 ∈ Rn, arbitrary
and fixed. Then there exist an R0 > 0 and at least two distinct points ai 6= aj in A, such
that the following estimates hold:

(1.19) Ln(BR(x0) ∩ {u(x) = ak}) ≥ ckR
n , R ≥ R0 , k = i, j

(1.20) ||∂{u(x) = ak}||(BR(x0)) ≥ ĉkR
n−1 , R ≥ R0 , k = i, j

where ck , ĉk are positive constants, independent of x0 and R (but depending on u). ||∂E||
stands for the perimeter measure of the set E and ||∂E||(BR(x0)) denotes the perimeter of
E in BR(x0) (see for instance [22]).

Remark 1.4. Proposition 3 holds for the whole range of potentials 0 < α < 2 defined in
(H1) but with a significantly harder proof [8].

The natural way of constructing entire solutions u to (1.3) without symmetry require-
ments is by minimizing over balls BR with appropriate boundary conditions forcing the
phases on BR:

min JBR
(v) , v = gR , on ∂BR,

and taking the limit along subsequences of minimizers uR

u = lim
R→∞

uR

Remark 1.5. The result from Proposition 3 holds for the symmetric case as in Theorem 1
for α = 0, and provides some quantitative information on the Dead Core. We have not been
able to establish the exact analog of Theorem 1 for α = 0.

Proposition 4. (α = 0) Under the hypothesis (H1)-(H3) and N = m + 1, there exist a
nontrivial equivariant minimizer of J(u) =

∫

(1
2
|∇u|2+χ{u∈SA})dx , u : Rn → Rn, such that

1. u(F ) ⊂ F , u(D) ⊂ D (positivity).
2. Ln(DR ∩ {u = a1}) ≥ cRn , R ≥ R0, where DR = D ∩BR(0) (D from (H3)).
3. Ln(DR ∩ {u 6= a1}) ≤ CRn−1 , R ≥ R0.
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A convenient hypothesis guaranteeing ||u||L∞ <∞ is 1

(1.21)

®

Wu(u) · u ≥ 0 , for |u| ≥M , some M

|gR| ≤M

The existence of one-dimensional minimizers (u : R → R
n , i.e. connections) for

α ∈ (0, 2), can be obtained by Theorem 2.1, p.34 in [1]. For the α = 0 case, where W is a
characteristic function, one-dimensional minimizers are affine maps connecting the phases.
More precisely,

(1.22) u(x) =











a1 , x < −L
a2 , x > L
a2−a1
2L

x+ a1+a2
2

, x ∈ [−L, L]

and by minimality one can see that L = |a2−a1|
2
√
2
, which is formally what we expect from the

free boundary condition |∇u|2 = 2 (see (1.5)).
The basic question of course is whether a nontrivial minimizer u connecting the phases

can be constructed. We know from the work on the De Giorgi referred above conjecture that
for m = 1, and in low dimensions, any such minimizer will depend on a single variable, and
so in a sense is trivial. For the system we expect otherwise, and indeed this was shown to
be the case in the equivariant setting and for smooth potentials, in the book [1].

There are a few tools that we utilize in the sequel that because of their independent
interest we mention explicitly.

The Basic Estimate
For minimizers, 0 ≤ α < 2 satisfying |u(x)| ≤ M , x ∈ Rn we have that there exists r0 > 0
such that for any x0 ∈ Rn

(1.23) JBr(x0)(u) ≤ C0r
n−1 , r ≥ r0 > 0 ,

C0 > 0 constant, independent of u, but depending on M .

For α ∈ [1, 2) elliptic theory applied to (1.3) implies ||∇u||L∞ < ∞, and (1.23) follows
easily (cfr. [1] Lemma 5.1). For α ∈ [0, 1), and m = 1, it is already mentioned in [14]. We
prove it in Lemma 2.2. The estimate (1.23) is utilized in the proof of Proposition 3, and also
in the proof of Proposition 1 on which Part 1 of Theorem 1 is based. Finally (1.23) is also

1For Ω ⊂ R
n open, by linear elliptic theory u ∈ C

2(Ω;Rm). Set v = |u|2, then ∆v = 2Wu(u)·u+2|∇u|2 >
0, for u > M . Hence max |u|2 ≤ M if v attains its max in the interior of Ω.
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utilized in the proof of the Density Estimate that we discuss below.

The Density Estimate
For minimizers u of the functional J in (1.1), 0 ≤ α < 2 satisfying |u(x)| ≤ M , we have

(1.24)

®

Ln(Br0(x0) ∩ {|u− a| > λ}) ≥ µ0 > 0 ⇒
Ln(Br(x0) ∩ {|u− a| > λ}) ≥ Crn , r ≥ r0

C = C(µ0, λ).

This is an important estimate of Caffarelli and Cordoba [14] established in the scalar
case m = 1, and extended to the vector case by the first author and G.Fusco. We refer
to [1] Theorem 5.2, where detailed references can be found. The proof in [1] has a gap for
0 ≤ α < 1 since it is utilizing (1.23) that was taken for granted then but proved in the
present paper.

The Hölder Estimate
For minimizers u of the functional J in (1.1), 0 ≤ α < 2, satisfying |u(x)| < M , x ∈ Rn, we
have the estimate

(1.25) |u(x)− u(y)| ≤ C|x− y| ln(|x− y|−1) , ∀ x, y , |x− y| ≤ 1

2

which implies u ∈ Cβ(Rn,Rm) , ∀β ∈ (0, 1) , C = C(M), that has already be mentioned.

This is established in [10] for m = 1 and α = 0. We give a detailed proof in Lemma
2.1. It is utilized in several places. For example in establishing Proposition 1 (i) we proceed
by a contradiction argument that invokes the Density Estimate. Here uniform continuity is
essential, and is provided by (1.25). It is also instrumental for the derivation of the Basic
Estimate (1.23).

The Hölder continuity is also needed in the proof of the Containment result presented in
Appendix A, that we now describe.

The Containment
This states that for the special potentials

(1.26) W (u) =

®

W α(u) :=
∏m+1

k=1 |u− ak|αk , α = (a1, ..., am+1) , 0 < ak < 2

W 0(u) := χAc(u) , A = {a1, ..., am+1}

where the vectors {a2 − a1, ..., am+1 − a1} are linearly independent in Rm, critical points of
J(u) =

∫

(1
2
|∇u|2 + W (u))dx , u : Rn → Rn , |u(x)| < M , map Rn inside the closure
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of the convex hull of A , co(A). This result was obtained jointly by the first author and
P.Smyrnelis, in unpublished work. Its proof requires uniform continuity, and so for α ∈ (0, 1)
we need to restrict ourselves to minimizers for which (1.25) holds.

This result shows that J0 is in some natural way the limit of Jα, as α→ 0, and actually
we establish a Γ-limit type relationship in Lemma 2.9.

This paper is structured as follows.
In section 2 we state and prove various Lemmas already mentioned in the introduction.
In section 3 we give the proofs of Theorem 1, Propositions 1, 2 and 3.
In Appendix A we state and prove the containment result, and in Appendix B we give a
formal argument, taken essentially from [1], that explains the free boundary conditions in
(1.4) and (1.5).
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2 Basic Lemmas

2.1 Regularity of u

We will prove a logarithmic estimate for bounded minimizers, following closely the proof of
Theorem 2.1 in [10] (see also Lemma 2 in [17]). We have:

Lemma 2.1. (0 ≤ α < 2, Hölder Continuity)
Let u : Rn → Rm a minimizer of J , |u(x)| < M , W satisfying (H1) for 0 < α < 2 and
W = χAc(u) for α = 0. Then there exists constant C = C(M), such that

(2.1) |u(x)− u(y)| ≤ C|x− y|ln(|x− y|−1) , ∀ x, y , |x− y| ≤ 1

2

In paricular, u ∈ Cβ(Rn;Rm) , ∀ β ∈ (0, 1).

Proof. We restrict ourselves to 0 ≤ α < 1, since the result follows immediately for α ∈ [1, 2]
by linear elliptic theory. We begin with the case 0 < α < 1.

For an arbitrary Br(x0) let vr be the harmonic function equal to u on ∂Br. Then by
the maximum principle vr is also bounded and taking into account the specific form of the
potential (1.6) we have that there exists an M such that:

(2.2) |u(x)|, |vr(x)|, |W α(u(x))|, |W α(vr(x))| ≤M , ∀x ∈ Br(x0), α ∈ [0, 1]

Then using the minimality of u and the non-negativity of the potentials W α together with
(2.2) we have:

∫

Br

|∇u(x)|2 dx ≤
∫

Br

|∇u(x)|2 +W α(u(x)) dx ≤
∫

Br

|∇vr(x)|2 +W α(vr(x)) dx

≤M |Br|+
∫

Br

|∇vr(x)|2 dx(2.3)

hence

(2.4)

∫

Br

|∇u(x)|2 − |∇vr(x)|2 dx ≤ Crn

On the other hand we have:

12



∫

Br

|∇u(x)|2 − |∇vr(x)|2 dx =

∫

Br

(∇u(x) +∇vr(x),∇u(x)−∇vr(x)) dx

=

∫

Br

|∇(u(x)− vr(x))|2 dx+ 2

∫

Br

(∇u−∇vr)∇vr dx

=

∫

Br

|∇(u(x)− vr(x))|2 dx(2.5)

where for the last inequality we used that vr is harmonic and equal to u on ∂Br.
Thus we get:

(2.6)

∫

Br

|∇(u(x)− vr(x))|2 dx ≤ Crn

From the previous estimate, it suffices to show that

(2.7)

∫

Bs

|∇u|2 ≤ Csn[ ln2(r/s) + 1]

This would imply (2.1).
To prove (2.7), we proceed as follows:

∫

Bs

|∇u|2 ≤
∫

Bs

|∇v2s|2 +
∫

Bs

|∇(u− v2s)||∇(u+ v2s)|

The first integral on the right side is estimated using the subharmonicity of |∇v2s|2, and
then the minimality of v2s. So,

1

|Bs|

∫

Bs

|∇v2s|2 ≤
1

|B2s|

∫

B2s

|∇v2s|2 ≤
1

|B2s|

∫

B2s

|∇u|2

by (2.5).
The second integral is estimated by enlarging the domain to B2s, then Cauchy-Schwartz,

the established bound and the minimality of v2s

1

|Bs|

∫

Bs

|∇(u− v2s)||∇(u+ v2s)| ≤

|B2s|
|Bs|

(
1

|B2s|

∫

B2s

|∇(u− v2s)|2)
1

2 (
2

|B2s|

∫

B2s

|∇u|2 + |∇v2s|2)
1

2 ≤ C(
1

|B2s|

∫

B2s

|∇u|2) 1

2

by (2.5), (2.6).
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So if we set

xk =
1

|B2−k |

∫

B
2−k

|∇u|2

then

xk+1 ≤ xk + Cx
1/2
k

Induction gives

xk+1 ≤ C ′k2

from which you have (2.7).

Estimate (2.1) then follows from the proof of Morrey’s embedding. Indeed, suppose x
and y are given, of distance 2s apart. Let z be the midpoint. Then, by mean value theorem,

1

|Bs|

∫

Bs

|u(x)− u(p)|dp ≤ Cs
1

|Bs|

∫

Bs

∫ 1

0

|∇u(p+ t(x− p))|dtdp

Thus, interchanging the order of integration and using (2.7), we get

1

|Bs|

∫

Bs

|u(x)− u(p)|dp ≤ Cs[ln(1/s) + 1]

The estimate for |u(x)− u(y)| then follows from triangle inequality.

The proof for the case α = 0 is similar, the only difference being that instead of the
bound in (2.2) |W 0(u(x))|, |W 0(vr(x))| ≤ 1 is used.

2.2 The Basic Estimate:

Lemma 2.2. Let u : Rn → Rm minimizer of J , |u(x)| < M , W satisfying (H1) for
0 < α < 2 and W =W 0 for α = 0. Then there is a constant C0 = C0(W,M) independent of
x0 and such that

JBr(x0)(u) ≤ C0r
n−1 , r > r0
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Proof.
1. For α ∈ [1, 2), utilizing elliptic estimates we obtain |∇u(x)| < C(M) , x ∈ Rn. The
estimate then follows by constructing a competitor v(x) on a ball via

v(x) =











a , |x− x0| ≤ r − 1

(r − |x− x0|)a+ (|x− x0| − r + 1)u(x) , r − 1 < |x− x0|
u(x) , |x− x0| > r

and utilizing the minimality of u (cfr Lemma 5.1 [1]). Here we can take r0 = 0.

2. For α ∈ (0, 1), we aim to prove the estimate:

Lemma 2.3. Let u : Rn → Rm be a bounded local minimizer for the energy functional J in
(1.1) with the potential Wα as in (H1). Then there exists constant C,R0 > 0 independent
of u such that:

(2.8) J(u;A(R)) ≤ CRn−1, ∀R ≥ R0

where C is independent of R ≥ R0 and A(R) := BR(x0) \BR−1(x0).

Proof. We first claim that there exists a constant C̃ > 0 such that for any x0 ∈ Rn we have,
for u a bounded local minimizer:

(2.9)

∫

B1(x0)

|∇u(x)|2dx ≤ C̃

To this end we consider the function v ∈ W 1,2(B1(x0)) with v = u on ∂B1(x0) and ∆v = 0
in B1(x0). Since u is bounded, by the maximum principle we have that v is also bounded
and taking into account the hypothesis (H1) for the potential Wα we have that there exists
M > 0 such that:

(2.10) |u(x)|, |v(x)|,Wα(u(x)),Wα(v(x)) ≤ M, ∀x ∈ R
n, α ∈ [0, 1]

We then have:
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∫

B1(x0)

|∇u(x)|2 dx ≤
∫

B1(x0)

|∇u(x)|2 +Wα(u(x)) dx ≤
∫

B1(x0)

|∇v(x)|2 +Wα(v(x)) dx

≤M |B1|+
∫

B1(x0)

|∇v(x)|2 dx =M |B1|+
∫

∂B1(x0)

∂v

∂ν
v dσ

≤M |B1|+ ‖∂v
∂ν

‖
H−

1
2 (∂B1(x0))

‖v‖
H

1
2 (∂B1(x0))

≤M |B1|+ C‖∇v‖L2(B1(x0))‖v‖H 1
2 (∂B1(x0))

≤M |B1|+
1

2
‖∇v‖2L2(B1(x0))

+ C‖v‖2
H

1
2 (∂B1(x0))

=M |B1|+
1

2
‖∇v‖2L2(B1(x0))

+ C‖u‖2
H

1
2 (∂B1(x0))

(2.11)

where for the first inequality we used the non-negativity of Wα, for the second the local
minimality of u, and for the third the estimates (2.10). For the first equality we used the
fact that v is a harmonic function and an integration by parts, while for the last equality
we used that u = v on ∂B1(x0). For the penultimate inequality we used the continuity of
the normal part of trace operator on the space L2

div = {f ∈ L2; div f ∈ L2} (see for instance
Prop. 3.47, (ii) in [18]).

We obtain thus:

(2.12)

∫

B1(x0)

|∇u(x)|2 dx ≤ M |B1|+ C‖u‖2
H

1
2 (∂B1(x0))

On the other hand we have (see for instance [31]):

(2.13) ‖u‖2
H

1
2 (∂B1(x0))

=

∫

∂B1(x0)

∫

∂B1(x0)

|u(x)− u(y)|2
|x− y|n−1+1

dx dy ≤ C

where for the last inequality we used the logarithmic estimate (2.1).
Combining the last two estimates we obtain the claimed uniform estimate (2.9). On the

other hand, thanks to estimate (2.10) we have

(2.14)

∫

A(R)

Wα(u(x)) dx ≤ CRn−1

which combined with the fact that one can cover A(R) with CRn−1 balls of radius 1 and
estimate (2.9) provides the desired estimate (2.8).
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Note: Lemma 2.3 implies Lemma 2.2 (α ∈ (0, 1)) by considering the comparison function
v(x) as in α ∈ [1, 2) case.

2.3 The “Dead Core” estimate:

Now, we proceed with a useful calculation. From the hypothesis (H1) for W we have
that for |u− a| << 1 , it holds that Wu(u) · (u− a) ≥ c2|u− a|α with c2 = αC∗ , α ∈ (0, 2).
Set v(x) = |u− a|2.

Then

(2.15)
∆v =

n
∑

i=1

2((u(x)− a)uxi
)xi

= 2|∇u|2 + 2(u(x)− a)∆u =

2|∇u|2 + 2Wu(u) · (u(x)− a) ≥ 2|∇u|2 + 2c2|u− a|α

Therefore,

(2.16) ∆v ≥ c2|u− a|α = c2v
α
2 , where c2 = 2αC∗.

Definition 2.4. Let Ω ⊂ Rn open and v ∈ W 1,2
loc (Ω,R), a region Ω0 ⊂ Ω is called a dead core

if v ≡ 0 in Ω0.

For the convenience of the reader, let us now state some results from [39].

The article [39] is concerned with the problem

(2.17)

®

∆u = c2up in Ω ⊂ Rn

u = 1 on ∂Ω

with p ∈ (0, 1). We call that a “dead core” Ω0 develops in Ω, i.e. a region where u ≡ 0.
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Let X(s) be a solution of

®

X ′′(s) = c2Xp(s) in (0, s0)

X ′(0) = 0 , X(s0) = 1
(2.18)

As a first choice of a linear problem consider the “torsion problem” , i.e.

®

∆ψ + 1 = 0 in Ω

ψ = 0 on ∂Ω
(2.19)

One then constructs a supersolution u(x) to (2.17) having the same level lines as the
torsion function by setting

(2.20) u(x) = X(s(x)) , x ∈ Ω

where

(2.21) s(x) =
»

2(ψm − ψ(x)) , ψm = max
Ω

ψ

In problem (2.18) we choose s0 =
√
2ψm.

Theorem 2. ([39]) Assume that the mean curvature of ∂Ω is nonnegative everywhere. Then

(2.22)

u(x) = X(s(x)) is a supersolution, i.e.

∆u ≤ c2up in Ω

u = 1 on ∂Ω

One of the corollaries of this Theorem is the information on the location and the size of
the “dead core” Ω0, which may be stated as

Corollary 1. ([39]) The dead core Ω0 contains the set

{x ∈ Ω|ψ(x) ≥ d(p, c)[
√

2ψm − 1

2
d(p, c)]} ,

where d(p, c) :=

√

2(p+ 1)

(1− p)c
.
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We will now utilize the above for the proof of the following Lemmas.

Lemma 2.5. Let Ω = BR(x0) ⊂ Rn and v ∈ C2(Ω;R+) satisfy the following assumptions:

∆v(x) ≥ c2v
α
2 (x) , x ∈ Ω

v(x) ≤ δ , x ∈ ∂Ω
(2.23)

α ∈ (0, 2) ⇔ α
2
= p ∈ (0, 1).

Then if y0 ∈ Ω is such that dist(y0, ∂Ω) > R0 ⇒ v(y0) = 0.

where R0 :=

®√
nd(p, ĉ) , R ≥ √

nd(p, ĉ)

2R−√
nd(p, ĉ) , 1

2

√
nd(p, ĉ) < R <

√
nd(p, ĉ)

.

and d(p, ĉ) :=

√

2(p+ 1)

(1− p)ĉ
, ĉ =

c

δ
1−p

2

.

Proof. From the maximum principle we have that v(x) ≤ δ in Ω

Define v̂ :=
v

δ
and ĉ :=

c

δ
1−p

2

, then we have:

®

∆v̂(x) ≥ ĉ2v̂
α
2 (x) , x ∈ Ω.

v̂(x) ≤ 1 , x ∈ ∂Ω

For Ω = BR(x0) we have that

(2.24) ψ(x) =
R2

2n
− 1

2n
|x− x0|2 , ψm =

R2

2n

is a solution to the problem:

®

∆ψ(x) + 1 = 0, x ∈ Ω

ψ(x) = 0 , x ∈ ∂Ω
(2.25)

Also, we have that if:

(2.26)











∆u ≤ c2up, x ∈ Ω

∆v ≥ c2vp, x ∈ Ω

v ≤ u , x ∈ ∂Ω

then v ≤ u , in Ω. So since u, v ≥ 0, if u(x1) = 0 ⇒ v(x1) = 0.
Such u is defined in [39] via ψ in Theorem 2 (supersolution with u = 1 ≥ v̂ on the boundary).
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Then by Corollary 1 in [39], the dead core of u contains the set {x ∈ Ω|ψ(x) ≥ C0 :=
d(p, ĉ)[ R√

n
− 1

2
d(p, ĉ)]}, that is if

y0 ∈ {ψ(x) ≥ C0} ⇒ u(y0) = 0 and thus v̂(y0) = v(y0) = 0.
Since ψ has the form (2.24) we can see that

{x ∈ Ω|ψ(x) ≥ C0} = {dist(x, ∂Ω) ≥ R0}

as follows:

ψ(x) ≥ C0 ⇔
R2

2n
− 1

2n
|x− x0|2 ≥ C0 ⇔

√

R2 − 2nC0 ≥ |x− x0|

⇔ R− |x− x0| ≥ R −
√

R2 − 2nC0 = R−
»

R2 − 2
√
nd(p, ĉ)R + n(d(p, ĉ))2 =

= R− |R−
√
nd(p, ĉ)| = R0

and notice that: dist(x, ∂Ω) = dist(x, ∂BR(x0)) = R− dist(x, x0)

Notes: (1) ĉ depends on δ and tends to infinity as δ tends to zero.
(2) d(p, ĉ) tends to zero as δ tends to zero, and so does C0.

Remark 2.6. If we take Ω̃ open set, such that BR(x0) ⊂ Ω̃ and
®

∆ψ̃(x) + 1 = 0, x ∈ Ω̃

ψ̃(x) = 0 , x ∈ ∂Ω̃

then, we have: ψ ≤ ψ̃ ⇒ {ψ(x) ≥ C0} ⊂ {ψ̃(x) ≥ C0} ⇒ {x ∈ BR(x0) : dist(∂BR(x0), x) ≥
R0} ⊂ {ψ̃(x) ≥ C0}.
Thus, the above theorem holds for more general open sets that contain a ball BR(x0).

Lemma 2.7. Let D open, convex ⊂ Rn and for some d0 > 0,
Ω := {x ∈ D : dist(x, ∂D) ≥ d0} and let v ∈ C2(D;R+) satisfying:

∆v(x) ≥ c2v
α
2 (x) , x ∈ Ω

v(x) ≤ δ , x ∈ Ω
(2.27)

α ∈ (0, 2) ⇔ α
2
= p ∈ (0, 1).

Then if x0 ∈ D such that dist(x0, ∂D) ≥ d0 + 2

√
2n(p+1)

(1−p)ĉ
⇒ v(x0) = 0.
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Proof. We have that:

{x ∈ D : dist(x, ∂D) ≥ d0 + 2

√

2n(p+ 1)

(1− p)ĉ
} = {x ∈ Ω : dist(x, ∂Ω) ≥ 2

√

2n(p+ 1)

(1− p)ĉ
}

and Ω is convex (parallel sets have at the same side of supporting planes).

Let x0 ∈ D such that dist(x0, ∂D) ≥ d0+2

√
2n(p+1)

(1−p)ĉ
. Since dist(∂D, ∂Ω) = d0 ⇒ dist(x0, ∂Ω) ≥

2

√
2n(p+1)

(1−p)ĉ
and since Ω is convex there exist a ball BR(x0) ⊂ Ω for R = 2

√
2n(p+1)

(1−p)ĉ
=

2
√
nd(p, ĉ) > R0 =

√
nd(p, ĉ) , d(p, ĉ) as defined above.

Therefore we can apply Lemma 2.5 in the ball BR(x0) and we have that v(x) = 0 , ∀x ∈
BR0

(x0) = {x ∈ BR(x0) : dist(∂BR(x0), x) ≥ R0} ⇒ v(x0) = 0.

The results of Lemma 2.5 and Lemma 2.7 above were proved for the case 1 < α < 2,
since u ∈ C2,α−1 by elliptic regularity. However, they also hold for the case where 0 < α ≤ 1.
The only difference in proving this, is that the differential inequality (2.16) holds weakly and
we utilize it together with the weak maximum principle for the comparison argument as in
the proof of lemma 2.5. So in order to extend the results of the lemmas above for the case
where 0 < α ≤ 1, it suffices to prove the following claim.

Lemma 2.8.

∆v ≥ c2v
α
2 weakly in W 1,2(BR(x0)).

Proof.

Let v ∈ W 1,2(BR(x0)) , v continuous (v = |u− a|2, by Lemma 2.1) and v ≥ 0.
We define vε := max{v, ε} , 0 < ε < δ (where δ as in the above Lemmas). The set {v = ε}
is smooth by Sard’s theorem, since v is smooth away from zero.

Let φ ∈ C1
0(BR(x0)) , B

ε
R(x0) = {v > ε} ∩BR(x0), we have
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−
∫

BR(x0)

∇v∇φdx = lim
ε→0

∫

Bε
R
(x0)

−∇vε∇φdx = lim inf
ε→0

[−
∫

Bε
R
(x0)

∇v∇φdx]

≥ lim inf
ε→0

[

∫

Bε
R
(x0)

∆vφdx−
∫

∂Bε
R
(x0)

∂v

∂ν
φdS] ≥ lim inf

ε→0
[

∫

Bε
R
(x0)

∆vφdx]

≥ lim inf
ε→0

[

∫

Bε
R
(x0)

c2v
α
2 φdx] = lim

ε→0
[

∫

Bε
R
(x0)

c2v
α
2 φdx] =

≥ lim
ε→0

[

∫

BR(x0)

c2v
α
2

ε φdx− c2ε
α
2

∫

BR\Bε
R

φdx] =

∫

BR(x0)

c2v
α
2 φdx.

2.4 On the definition of W 0

In what follows we establish essentially that limα→0 J
α = J0 in the Γ− convergence sense.

The containment result in Appendix A is essential here.

Jα(Ω, u) =

∫

Ω

(
1

2
|∇u|2 +W α(u))dx(2.28)

with

W α(u) :=

N
∏

i=1

|u− ai|α , i ∈ {1, ..., N} 0 < α < 2.(2.29)

We further denote:

W0(u) := χ{u∈SA}(2.30)

where
A := {a1, . . . , aN}

and

22



SA :=

{

N
∑

i=1

λiai, where

N
∑

i=1

λi = 1, λi ∈ [0, 1), i ∈ {1, . . . , N}
}

(2.31)

(i.e. SA is the convex hull of the points in A except the point themselves). Then

S̄A = SA ∪A

We have the following:

Lemma 2.9. Let (uαk)k∈N be a sequence of functions such that αk → 0 as k → ∞ and for
any k ∈ N the function uαk : Rn → Rm is an energy minimizer of Jαk as defined in (2.28).

We assume that

uαk(x) ∈ S̄A, ∀x ∈ R
n, k ∈ N(2.32)

Then there exists a subsequence relabelled for simplicity as the initial sequence such that:

uαk ⇀ ũ, in W 1,2(Rn;Rm), as k → ∞(2.33)

with ũ a local energy minimizer of the functional J0 defined as:

J0(Ω, u) :=

∫

Ω

1

2
|∇u|2 +W 0(u(x)) dx(2.34)

(with W 0 from (2.30)).

Proof. We have

(P )

®

W αk(u) →W 0(u) in S̄A as k → ∞
W αk ≥ 0, ∀αk > 0

Arguing along the lines of Lemma 2.3, (while taking into account the properties (P ) and
the definition (2.29) of W αks) we get:

Jαk(Br, u
αk) ≤ Crn−1(2.35)
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for all r ≥ 1, where C depends only on the points a1, . . . , aN through the assumed inclusion
(2.32) (and is independent of αk, k ∈ N).

Out of this uniform bound we claim that there exists ũ ∈ W 1,2(Rn;Rm) such that:
(1) uαk ⇀ ũ in W 1,2(Rn;Rm) as k → ∞ on a subsequence
(2) ũ is a local minimizer of J0.

By the bound (2.35) , W ε ≥ 0 and by the Rellich- Kondrachov theorem, we can obtain,
along a subsequence

uαk ⇀ ũ on W 1,2(Rn;Rm)

and

uαk → ũ on Lp
loc(R

n;Rm)

These provide claim (1).
In order to show claim (2) we note first we have:

J0(ũ,Ω) ≤ lim inf
αk→0

Jαk(uαk ,Ω)(2.36)

Indeed, we have by lower semicontinuity

∫

Ω

|∇ũ|2 dx ≤ lim inf
k→∞

∫

Ω

|∇uαk |2 dx(2.37)

We have that ũ ∈ S̄A and we denote Aũ := {x ∈ Rn : ũ(x) ∈ SA}. Taking into account
the specific form (2.29) of the potential W α we have, for αk → 0 as k → ∞:

∫

Aũ∩Ω
χ{ũ∈SA} dx =

∫

Aũ∩Ω
dx = lim

k→∞

∫

Aũ∩Ω
Wαk

(uαk(x)) dx(2.38)

Furthermore, since W α ≥ 0 we have:
∫

Ω\Aũ

χ{ũ∈SA} dx = 0 ≤ lim
k→∞

∫

Ω\Aũ

W αk(uαk(x)) dx(2.39)

The last three estimates provide the claimed relation (2.36). One can then trivially see
that:

inf J0(·,Ω) ≤ J0(ũ,Ω) ≤ lim inf
αk→0

inf Jαk(·,Ω)(2.40)
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We claim now that for an arbitrary u ∈ W 1,2
loc (R

n;Rm) with u(x) ∈ S̄A for almost all
x ∈ Rn we have:

lim
αk→0

Jαk(u,Ω) = J0(u,Ω)(2.41)

Indeed we have:
∫

Au∩Ω
χ{u∈SA} dx =

∫

Au∩Ω
dx = lim

k→∞

∫

Au∩Ω
W αk(u(x)) dx(2.42)

∫

Ω\Au

χ{u∈SA} dx = 0 = lim
k→∞

∫

Ω\Au

W αk(u(x)) dx(2.43)

so

∫

Ω

|∇u|2 + χ{u∈SA} dx = lim
k→∞

∫

Ω

|∇u|2 +W αk(u(x)) dx,

as claimed.

We note now that (2.41) implies:

J0(u,Ω) = lim
αk→0

Jαk(u,Ω) = lim sup
αk→0

Jαk(u,Ω) ≥ lim sup
αk→0

inf Jαk(·,Ω)

and since this holds for u arbitrary we get:

inf J0(·,Ω) ≥ lim sup
αk→0

inf Jαk(·,Ω)(2.44)

The last inequality, together with (2.40) provide the claimed local minimality of ũ.

Note: The above Lemma also holds for the class of local minimizers of the energy.
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3 Proofs

3.1 Proof of Proposition 1

Proof. (i) (cfr [1] p.161). Let

(3.1) |u(x)− a| < M , ||u||Cβ < Ĉ = Ĉ(M) , x ∈ O

where for the Hölder bound we utilized Lemma 2.1. Given q ∈ (0,M), assume that

(3.2) |u(x0)− a| ≥ q

Then the Hölder continuity of u implies that the hypothesis of the Density Estimate (1.24)
is satisfied for

(3.3) λ =
q

2
, r0 = (

q/2

Ĉ
)

1

β , µ0 = Ln(Br0(x0))

Therefore

(3.4) Ln(Br(x0) ∩ {|u− a| > q

2
}) ≥ Crn , Br(x0) ⊂ O , r ≥ r0

Let

(3.5) 0 < w q

2

:= min
Σ
W (z) , Σ = {|z − a| > q

2
} ∩ {d(z, {W = 0} \ a) ≥ k}

From this and the Basic Estimate Lemma 2.2 we obtain

(3.6) w q

2

C1r
n ≤ JBr(x0)(u) ≤ C0r

n−1

which is impossible for

(3.7) r >
C0

w q

2

C1

Therefore if we set

(3.8) rq =
2C0

w q

2

C1

then Brq(x0) ⊂ O is incompatible with (3.2).
The proof of (i) is complete.
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(ii) Consider the ball BR(x0) , R to be selected.
Let ξ ∈ BR(x0)

x0

BR(x0)

rq

(3.9) d(ξ, ∂BR(x0)) = rq , 0 < 2q < ρ0

where rq as in (i) above. Note that by (H1)

(3.10) w q

2

≥ C∗(
q

2
)α , rq =

2C0

w q

2

C1
≤ 2C0

C1C∗ (
q

2
)−α

and by (i) above

(3.11) |u(ξ)− a| < q

Therefore by [1], Theorem 4.1 originally derived in [5]

(3.12) |u(x)− a| < q , x ∈ BR−rq(x0)

By (2.16) v(x) := |u(x)− a|2 satisfies

(3.13)

®

∆v ≥ c2v
α
2 weakly inW 1,2(BR−rq(x0))

v ≤ δ on ∂BR−rq (x0)

and therefore by Lemma 2.5

(3.14) d(y0, ∂BR−rq (x0)) > R0 ⇒ v(y0) = 0

where

(3.15) R0 =

√

n(α + 2)

(1− α
2
)c

q1−
α
2 , 0 < α < 2 , c2 = 2αC∗
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Therefore

(3.16) u(x) = a in BR−rq−R0
(x0)

To conclude set R = Cq−α and impose the requirement that

(3.17)
C

2
q−α ≤ Cq−α − rq −R0

which is satisfied if

(3.18) C ≥ 2α+2C0

C1C∗ + 2

√

n(α + 2)

(1− α
2
)
√
2αC∗

(
ρ0
2
)1+

α
2 =: Ĉ(α, n)

The proof of Proposition 1 is complete.

3.2 Proof of Theorem 1

Proof. Step 1 (Existence of a positive minimizer)

We will be establishing the existence of a map uR ∈ W 1,2(BR,R
n) that is equivariant,

positive and also a minimizer in the equivariant class of

(3.19) JBR
(u) =

∫

BR

(
1

2
|∇u|2 +W (u))dx , BR = {|x| < R} ⊂ R

n,

that satisfies the Basic Estimate

(3.20) JBr
(uR) ≤ Crn−1 , r0 < r < R , R ≥ R0

C independent of R , r.

We introduce the regularized energy functional

(3.21) Jε
BR

(u) =

∫

BR

(
1

2
|∇u|2 +W ε(u))dx

where W ε is obtained from W by regularizing only at the minima as in Figure below.
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W

W ε

with

(3.22) (⋆)























W ε → W (u) , uniformly on compacts

W ε ∈ C2 , ||W ε||Cα < C , for W satisfying (H1) ,

W ε ≥ 0 , {W ε = 0} = {W = 0}
W ε(gu) = W ε(u) , for all g ∈ G and u ∈ Rn.

We can assume that

(3.23) W ε(u) =W (u) for |u| ≥M > 0

some M > 0, and that the minimizer of Jε
BR

in the equivariant class satisfies the bound

(3.24) |uεR| ≤ M , x ∈ BR

with M independent of ε and R and that moreover uεR is positive. Here we are utilizing [1]
Lemma 6.1.

We begin by establishing the Hölder Estimate (1.25), for uεR, with constant C independent
of ε , R. Recall that uεR is a minimizer in the equivariant class, while (1.25) was derived under
the stronger hypothesis of being a minimizer under arbitrary perturbations. We point out
only the necessary modifications of the proof of the Lemma 2.1.

We will derive

(3.25) |uεR(x)− uεR(y)| ≤ C|x− y| ln|x− y|−1 , ∀ x, y ∈ BR(0) \B1(0)

with |x− y| ≤ 1
2
, R ≥ 2.

Notice that we can cover FR ∩ (BR(0) \ B1(0)) =: FR,D where FR = F ∩ BR(0) by two
types of balls B 1

4

(x0) :

(a) Balls entirely contained in FR,D , B 1

4

⊂ FR,D ,

(b) balls B 1

4

(x0) having their center in the wall of FR which is made up of reflection planes
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in Ga.
Notice that both types can be equivariantly extended over BR(0) \B1(0) as sets.

Fix now Br(x0) , r <
1
4
as in the proof of (2.1). Due to the equivariant extension of vr

there, and the minimality of uεR in the equivariant class, we see that uεR has the minimizing
property on Br(x0) and so (2.3) applies as before. The rest of the argument is unchanged.

Thus (3.25) is established.

B1(0)

FR

Fig :TypicalB 1

4

(x0)
′s covering the fundamental region

and extensible equivariantly onBR(0) \B1(0).

Now we will proceed to establish (3.20),

(3.26) JBr(0)(u
ε
R) ≤ Crn−1 , ∀ r ∈ (2, R− 1)

with C constant independent of ε and R , C = C(M).
We follow [1] Proposition 6.1, and for 2 < r < R− 1 we define

(3.27) uaff (x) =

®

d(x, ∂D)a1 , for x ∈ DR and d(x, ∂D) ≤ 1

a1 , for x ∈ DR and d(x, ∂D) ≥ 1

whereDR = D∩BR and extend equivariantly in BR. Since uaff vanishes on ∂D, the extended
map is also continuous. As it is well known, the distance is 1-Lipschitz and therefore in
W 1,∞(BR). Fix now a number h ∈ (0, 1) and for r ∈ (2, R− 1) define

(3.28) ûεR(x) = ϕ(1− |x| − (r − h)

h
)uaff(x) + φ(

|x| − (r − h)

h
)uR(x)

where φ : R → [0, 1] is a fixed C1 function such that φ(s) = 0, for s ≤ 0 and φ(s) = 1, for
s ≥ 1. Note that ûεR ∈ W 1,2

E (BR(0);R
n) (equivariant), and most importantly ûεR = uεR on
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∂Br(0). Moreover ûR = uaff in Br−h(0) and ûεR = uεR on BR(0) \ B1(0) and uaff = a1 if
d(x, ∂D) ≥ 1. By the minimality of uεR we have

(3.29)

JBr(0)(u
ε
R) ≤ JBr(0)(û

ε
R)

=

∫

Br−h∩{d(x,∂D)≤1}
(
1

2
|∇ûεR|2 +W (ûεR))dx+

∫

Br\Br−h

(
1

2
|∇ûεR|2 +W (ûεR))dx

≤ C1(r − h)n−1 + C2r
n−1

where for the estimate of the 2nd term we used the Hölder estimate above and the analogous
(2.12), (2.13).

Hence (3.26) is established.

Thus for any R > 0 there exists CR > 0, independent of ε > 0, such that

(3.30)

∫

BR

(
1

2
|∇uεR|2 +W ε(uεR))dx < CR

Out of the above uniform bounds we claim that there exists uR ∈ W 1,2(BR;R
m) such that

(1) uεR ⇀ uR weakly in W 1,2(BR;R
m) as ε → 0 on a subsequence,

(2) uR is a minimizer of

JBR
(u) =

∫

BR

(
1

2
|∇u|2 +W (u))dx ,

(3) JBr
(uR) ≤ Crn−1 with C independent of ε and R ,

(4) uR is equivariant and positive.

By (3.30) and W ε ≥ 0 and the Rellich-Kondrachov theorem, we can obtain, for a subse-
quence

uεR ⇀ uR on W 1,2(BR;R
m)

and

uεR → uR on Lp(BR;R
m)

These establish claims (1) and (4).
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In order to show claim (2) we take φ ∈ C∞
c (Rn) , suppφ ⊂ K ⊂ BR. Then by minimality

we have:

Jε
BR

(uεR + φ)− Jε
BR

(uεR) ≥ 0

⇔
∫

BR

(∇uεR∇φ+
1

2
|∇φ|2 +W ε(uεR + φ)−W ε(uεR))dx ≥ 0

Let Iε1 :=
∫

BR
∇uεR∇φdx and Iε2 :=

∫

BR
(W ε(uεR + φ)−W ε(uεR))dx.

Thanks to (1) before we have Iε1 → I1 =
∫

BR
∇uR∇φdx

we split:

I2 =

∫

BR

(W ε(uεR + φ)−W (uεR + φ))dx+

∫

BR

(W (uεR + φ)−W ε(uεR))dx

Let Iε21 :=
∫

BR
(W ε(uεR+φ)−W (uεR+φ))dx and I

ε
22 :=

∫

BR
(W (uεR+φ)−W ε(uεR))dx , Iε21 → 0

as ε → 0 because of the uniform bound |uεR(x)| ≤ M the uniform convergence on compacts
of W ε to W and the dominated convergence theorem.
Also Iε22 → I22 =

∫

BR
(W (uR + φ) −W (uR))dx because of the Lp convergence of uεR to uR,

dominated convergence and continuity of W.

Thus we establish the claimed relation (2).
In order to get the claimed relation (3) we recall

Jε
Br
(uεR) =

∫

Br

(
1

2
|∇uεR|2 +W ε(uεR))dx ≤ Crn−1

with C depending only on M , but not on R nor on ε.
As uεR ⇀ uR in W 1,2 ⇒

∫

BR
|∇uR|2dx ≤ lim inf

∫

BR

1
2
|∇uεR|2dx and we have

∫

BR

W ε(uεR)dx→
∫

BR

W (uR)dx

arguing as in the treatment of the I2 before.

Claim: There exists u ∈ W 1,2
loc (R

n;Rm) nontrivial equivariant, positive and minimizer of

(3.31) JΩ(u) =

∫

Ω

(
1

2
|∇u|2 +W (u))dx

In addition, u satisfies the estimate

(3.32) JBr
(u) ≤ crn−1
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Proof.
We have that out of the uniform bound JBr

(uR) ≤ crn−1, we get as before, in the proof
of the claims (1)-(4) that uR ⇀ u in W 1,2

loc (R
n;Rm) and that u is equivariant and positive.

We can argue similarly as in the proof of (2) above to get that u is a minimizer of JΩ defined
in (3.31), (3.32) follows from (3).

Step 2. (Existence of a free boundary)

We utilize that D contains a unique zero a1 ofW and that by equivariance we can restrict
u in D and note that

d(u(D), {W = 0} \ a1) ≥ k > 0

For implementing Proposition 1 we need a couple of observarions. Firstly u is minimizing
in the class of equivariant positive maps. We recall that in the proof of Proposition 1 the
density estimate (1.24) is utilized. We note that in the proof of the density estimate the en-
ergy comparison maps are obtained by reducing the modulus of the map qu(x) = |u(x)− a1|
and leaving the angular part νu(x) unchanged, u(x) = a1 + qu(x)νu(x) , σ(x) = a1 +
qσ(x)νu(x) , 0 ≤ qσ(x) ≤ qu(x).

F

u(x)

σ(x)

a1

Therefore by the convexity of F the comparison map σ(x) is also positive, σ(F ) ⊂ F ,
and it can be extended equivariantly from F to Rn since BR(x0) ⊂ F or BR(x0) ⊂ D with
x0 ∈ ∂F , in the boundary of F , which consists of reflection planes in Ga1 .

Thus Proposition 1 (ii) can be applied for a fixed q, with 2q ≤ ρ, to produce the estimate

(3.33) BCq−α(x0) ⊂ D ⇒ u(x) ≡ a1 in BC
2
q−α(x0)
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for C ≥ Ĉ(α, n).

By taking a sequence of C ′s tending to infinity via a covering argument we see that

(3.34) u(x) ≡ a1 if d(x, ∂D) ≥ Ĉ(α, n)q−α

D

Ĉq−α

The proof of Theorem 1 is complete.

3.3 Proof of Proposition 2

Proof. From the assumption (1.16) and the Basic Estimate we have
∫

BR(x0)

χ{u 6=ai}dx =

∫

BR(x0)

χAc(u)dx ≤ CRn−1

But
∫

BR(x0)

χ{u 6=ai}dx = Ln({|u− ai| > 0} ∩ BR(x0))

Hence

Ln({u = ai} ∩ BR(x0)) ≥ |BR(x0)| − cRn−1 ≥ CRn , R > R0.
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3.4 Proof of Proposition 3

Proof. Let

0 < θ < d0 := min{|ai − aj| : i 6= j , i, j ∈ {1, ..., N}}

θ arbitrary otherwise.

1. We claim that there exist at least two distinct points ai 6= aj in A such that

Ln(BR(x0) ∩ {|u− ak| ≤ θ}) ≥ CkR
n , R ≥ R0 , k = i, j

Ck = Ck(θ).

Proof of the Claim. Since u is a nonconstant minimizer, there is x1 such that u(x1) 6= a1

⇒ Ln(BR̃0
(x1) ∩ {|u− a1| > λ}) ≥ µ0 (by continuity, for some R̃0 , µ0 > 0 and λ > 0 small)

and therefore by the Density Estimate (1.24) we have:

(3.35) Ln(BR(x1) ∩ {|u− a1| > λ}) ≥ cRn , R ≥ R̃0.

Notice that by (3.35), there is R1(x0) > 0 such that

(3.36) Ln(BR(x0) ∩ {|u− a1| > λ}) ≥ c1R
n , R ≥ R1(x0).

Similarly, since u 6= ak there is xk such that u(xk) 6= ak and we can repeat the arguments
above with xk in the place of x1 to obtain

(3.37) Ln(BR(x0) ∩ {|u− ak| > λ}) ≥ ckR
n , R ≥ Rk , k = 2, ..., N

for some small λ > 0.
By Remark 5.4 in [1], ∀ λ1, ..., λN ∈ (0, d0) we have

(3.38) Ln(BR(x0) ∩ {|u− ak| > λk}) ≥ ckR
n , R ≥ R0 , (R0 = max

k∈{1,...,N}
Rk).

So, if λ < d0 − θ and |u− a1| ≤ θ < d0 ≤ |a1 − a2|

⇒ |u− a2| ≥ |a1 − a2| − θ > λ > 0 ⇒ {|u− a1| ≤ θ} ⊂ {|u− a2| > λ}.

35



Thus

A2 :=
N
⋃

k=1 , k 6=2

{|u− ak| ≤ θ} ⊂ {|u− a2| > λ}(3.39)

(3.40)

⇒ A2 ∪ [{|u− a2| > λ} ∩ Ac
2] = {|u− a2| > λ}

⇔ A2 ∪ [{|u− a2| > λ} ∩ (
N
⋂

k=1 , k 6=2

{|u− ak| > θ})] = {|u− a2| > λ}

and from the Basic Estimate (1.23) and the hypothesis (H1) on W we have

Ln(BR(x0) ∩ {|u− a2| > λ} ∩ (

N
⋂

k=1 , k 6=2

{|u− ak| > θ})) ≤ cRn−1

Hence, by (3.38) and (3.40) it holds

Ln(BR(x0) ∩A2) ≥ c2R
n ⇔ Ln(BR(x0) ∩ (

N
⋃

k=1 , k 6=2

{|u− ak| ≤ θ})) ≥ c2R
n

and similarly, if Al :=
⋃N

k=1 , k 6=l{|u− ak| ≤ θ} , l = 1, 2, ..., N , we have

Ln(BR(x0) ∩ (
⋃

k 6=l

{|u− ak| ≤ θ})) ≥ clR
n , R ≥ R0

for all l = 1, 2, ..., N.
Therefore there exist at least two i, j ∈ {1, ..., N} such that

Ln(BR(x0) ∩ {|u− ak| ≤ θ}) ≥ ckR
n , R ≥ R0 , k = i, j,

and the claim is proved.

�

2. We now proceed to conclude the proof of Proposition 3.
Let AR

k := BR(x0) ∩ {|u− ak| ≤ θ} , k = i, j

(3.41)

∫

AR
i

χ{u 6=ai}(x)dx = Ln({|u− ai| > 0} ∩ AR
i )

= Ln(

N
⋂

k=1

{|u− ak| > 0} ∩ AR
i ) (by (3.39))

=

∫

AR
i

W 0(u)dx ≤ cRn−1 (by the Basic Estimate (1.23))
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(3.42)

Ln({u = ai} ∩ AR
i ) = Ln(AR

i )− Ln({u 6= ai} ∩ AR
i )

≥ ciR
n − Ln({u 6= ai} ∩ AR

i ) (by Step 1.)

≥ ciR
n − cRn−1 ≥ CiR

n , R ≥ R0 (by (3.41))

Similarly for {u = aj}.

Now, for obtaining (1.20), we utilize the isoperimetric inequality (see for example [22])

(3.43) min{Ln(BR(x0) ∩ Ei) , Ln(BR(x0) \ Ei)}1−
1

n ≤ 2ĉ ||∂Ei||(BR(x0))

with Ei = {u(x) = ai} (Ej = {u(x) = aj}). Utilizing (1.19), we have

Ln(BR(x0) ∩ Ei) ≥ ciR
n

On the other hand

BR(x0) \ Ei ⊃ BR(x0) ∩ Ej

and once more by (1.19)

Ln(BR(x0) ∩ Ej) ≥ cjR
n

Thus the lower bound (1.20) follows.
The proof of Proposition 3 is complete.

3.5 Proof of Proposition 4

Proof. 1. Here we require N = m+1 and invoke Lemma 2.9, and thus produce an equivariant,
positive minimizer for α = 0 satisfying the Basic Estimate (3.32). We note that from
equivariance and (3.32) it follows that u 6= constant (if u ≡ constant, from equivariance we
would have that u ≡ (0, ..., 0) which contradicts the Basic Estimate (3.32) since (0, ..., 0) /∈
{W = 0}).
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2. By Proposition 3 we have that there exist R0 > 0 and at least two distinct ai 6= aj (i, j ∈
{1, ..., N + 1}) such that

(3.44) Ln(BR(0) ∩ {u = ak}) ≥ ckR
n , R ≥ R0 , k = i, j.

We partition Rn in D1, ..., DN+1 (see (H3)) where in each Di there is a unique global
minimum of W (i.e. ai , and D

1 is denoted as D). Thus u 6= aj in the region Di (i 6= j), so
from (3.44) we have

(3.45) Ln(BR(0) ∩ {u = ai}) = Ln(Di
R ∩ {u = ai}) ≥ ciR

n , R ≥ R0 , D
i
R = Di ∩BR(0)

and from the equivariance of u we obtain

(3.46) Ln(Dk
R ∩ {u = ak}) ≥ ckR

n , R ≥ R0 , k = 1, ..., N + 1.

3. Finally, from the Basic Estimate (3.32), we have

(3.47) Ln(BR(0) ∩ (
N+1
⋂

i=1

{u 6= ai}) =
∫

BR(0)

W 0(u)dx ≤ CRn−1

and therefore

(3.48) Ln(D1
R ∩ {u 6= a1}) = Ln(D1

R ∩ (
N+1
⋂

i=1

{u 6= ai}) ≤ CRn−1.

The proof of Proposition 4 is complete.

Appendix

A The Containment

The following result was established by the first author and P. Smyrnelis in unpublished
work [9]. We reproduce it here for the convenience of the reader. For related applications of
the method of proof we refer to [38].
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Proposition 5. ([9])
Let u : Rn → Rm be a bounded (|u(x)| < M) critical point of the functional

J(u) =

∫

(
1

2
|∇u|2 +W (u))dx

in the sense that ∀Ω ⊂ R
n, open, bounded,

d

dε
|ε=0JΩ(u+ εφ) = 0 , ∀ φ ∈ C1

0(Ω)

where

W (u) =

®

W α(u) :=
∏m+1

k=1 |u− ak|αk , α = (α1, ..., αm+1) , 0 < αk ≤ 2

W 0(u) := χ{u∈SA}
(A.1)

and SA defined as the interior of the simplex with vertices a1, ..., am, am+1,

SA := {
m+1
∑

i=1

λiai ; λi ∈ [0, 1) , ∀i = 1, ..., m+ 1 ,

m+1
∑

i=1

λi = 1}(A.2)

Then

u(x) ∈ SA , x ∈ R
n(A.3)

For αk ∈ [0, 1) we require that u in addition is a minimizer in the sense of (1.3), so that
(A.5) is available.

Proof. Following an idea from [15] we introduce the set
1. αk ∈ (0, 1) , k = 1, .., m.

FM := {u : Rn → R
m , u minimizer of J , |u(x)| ≤ M}(A.4)

By Lemma 2.1 we have the uniform Hölder estimate

|u|Cβ(Rn;Rm) ≤ C(M) , u ∈ FM(A.5)

Let Π be the face of the simplex SA defined by a2, ..., am+1, oppposite to a1 and let e ⊥ Π.
Set

P (u; x) = 〈u(x)− a2, e〉(A.6)
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where 〈·, ·〉 is the inner product in Rm and the orientation of e is such that 〈a2 − a1, e〉 > 0.
Set

PM := sup{P (u; x) : u(·) ∈ FM , x ∈ R
n}

Claim: PM ≤ 0
Clearly the proposition follows from this claim. We proceed by contradiction. Suppose
PM > 0. Thus there is {uk} ∈ FM , {xk} ⊂ R

n, such that

PM − 1

k
≤ P (uk, xk) ≤ PM .(A.7)

Set

vk(x) := uk(x+ xk),(A.8)

and note that vk ∈ FM and

PM − 1

k
≤ P (vk, 0) ≤ PM(A.9)

By (A.5),

|vk|Cβ(Rn;Rm) ≤ C(M)

hence by Arzela- Ascoli for a subsequence

vk
Cβ

−→ v , on compacts(A.10)

We have

P (v; x) ≤ PM = P (v; 0) > 0 , x ∈ R
n(A.11)

By the continuity of v there is R > 0 such that

PM

2
≤ P (v; x) ≤ PM , x ∈ B(0;R)(A.12)

P (vk; x) = 〈vk(x)− a2, e〉 ≥
PM

4
, on B(0;R)(A.13)

for k large.
Thus vk(x) uniformly away from a1, ..., am, am+1, we have

∆vk −Wu(vk) = 0 , in B(0;R)(A.14)
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classically, since Wu(u) ∈ C1 away from a1, ..., am, am+1 and x 7→ Wu(vk(x)) Holder by
(A.10), thus u ∈ C2+β(B(0;R)).

We now calculate:

∆P = 〈∆v, e〉 = 〈Wu(u), e〉

∂

∂vj
W (v) =

∂

∂vj
(
∏m+1

ν=1
|v − aν |αν ) =

m+1
∑

i=1

∂

∂vj
(|v − ai|αi)

∏

ν 6=i
|v − aν |αν

Notice that

∂

∂vj
(|v − ai|2)

αi
2 = αi|v − ai|αi−2 · (vj − aji )

where ai = (a1i , ..., a
m
i )

Hence

Wv(v) = ∇vW (v) =

m+1
∑

i=1

ai(|v − ai|αi−2)(v − ai)
∏

ν 6=i

|v − aν |αν =

= α2|v − a2|α2−2(v − a2)
∏

ν 6=2

|v − aν |αν +
∑

i 6=2

αi|v − ai|αi−2(v − ai)
∏

ν 6=i

|v − aν |αν .

Therefore

∆P = α2|v − a2|α2−2
∏

ν 6=2

|v − aν |αν 〈v − a2, e〉

+
∑

i 6=2

αi|v − ai|αi−2〈v − ai, e〉
∏

ν 6=i

|v − aν |αν

Note that by the contradiction hypothesis, 〈v(x)− ai, e〉 > 0 (think of a2 as the origin).
Hence ∆P > 0 on B(0;R) contradicting that P (v; x) takes its maximum at x = 0.

2. α = 0
For W (u) = W 0(u) := χ{u∈SA}, the proof proceeds similarly. The difference here is that
∆P = 0, in B(0;R) which also leads to a contradiction by the maximum principle since
P (v; x) takes its maximum at x = 0.

3. αk ∈ [1, 2], k = 1, ..., m.
In this case we define

FM := {u : Rn → R
m , ∆u−Wu(u) = 0 , |u(x)| ≤ M}
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u a weak W 1,2 solution. By linear elliptic theory we have the estimate (A.5). The rest of
the argument is as before.
The proof of the proposition is complete.

B The free boundary

We follow closely the formal derivation from [1] p.140. We imbed the minimizer in a class
of variations, u(τ) := u(·, τ), with u(0) corresponding to the minimizer, u(τ) = u(0) outside
a ball B centered at some x0 and quite arbitrary otherwise.

Let

(B.1) U(τ) := {|u(·, τ)− a| > 0}

for

a ∈ {W = 0}, u(τ) = a on ∂U(τ)

Set

(B.2) λ(τ) :=
1

2

∫

U(τ)

|∇u(τ)|2 dx , µ(τ) :=
∫

U(τ)

W (u(τ)) dx

We denote V := ∂X
∂τ

where X(s, τ) is a parametrisation of ∂U(τ), s ∈ Ω ⊂ Rn−1.
Then we have:

λ̇(τ) =

∫

U(τ)

∇u(τ)∇uτ (τ) dx+
1

2

∫

∂U(τ)

|∇u(τ)|2V · νdS

=

∫

U(τ)

−∆u(τ)uτ (τ) dx+

∫

∂U(τ)

∂u

∂ν
· uτ dS +

1

2

∫

∂U(τ)

|∇u(τ)|2V · ν dS(B.3)

where ν is the unit outward normal to ∂U(τ) (pointing outside U(τ)).
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Now from u(X(s, τ), τ) = a we obtain:

0 =
∂

∂τ
[u(X(s, τ), τ)] =

∂u

∂τ
+
∂u

∂ν

∂X

∂τ
· ν

=uτ +
∂u

∂ν
V · ν(B.4)

Hence

(B.5) uτ ·
∂u

∂ν
= −|∂u

∂ν
|2V · ν

Then from (B.3) and (B.5) and the equation ∆u = Wu(u) we get:

(B.6) λ̇(0) =

∫

U(0)

−Wu(u(0))uτ(0) dx−
1

2

∫

∂U(0)

|∇u(0)|2V · νdS.

On the other hand

(B.7) µ̇(τ) =

∫

∂U(τ)

W (u(τ))V · νdS +

∫

U(τ)

Wu(u(τ))uτ(τ) dx

Here for 0 < α < 2 utilizing that W (u(0)) = 0 on ∂U(0) we get:

0 =µ̇(0) + λ̇(0)

=− 1

2

∫

∂U(0)

|∇u(0)|2V · ν dS(B.8)

and since V is arbitrary

(B.9) |∇u(0)| = 0 on ∂U(0) for α ∈ (0, 2).

(we note that u ∈ C1,β−1,β = 2
2−α

by [8]).
Now, for α = 0 we have W (u(0)) = 1 on ∂U(0) and

0 =µ̇(0) + λ̇(0)

=

∫

∂U(0)

V · ν dS − 1

2

∫

∂U(0)

|∇u(0)|2V · ν dS(B.10)

hence 1
2
|∇+u(0)|2 = 1 (u is only Lipschitz, ∇+ is the one-sided gradient).
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