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Introduction

The work presented in this thesis has been developed during a scholarship
at the Scientific Directorate - Unit of Biostatistics of the Galliera Hospital in
Genoa under the supervision of Dr. Matteo Puntoni. This scholarship was
partially supported by a grant from Ministry of Health, Italy “Bando Ricerca
Finalizzata - Giovani Ricercatori” (Project code: GR-2013-02355479) won by
Dr. Puntoni for conducting a cancer research study. The main objective of
my research was to apply the Joint Model for longitudinal and survival data
to improve the dynamic prediction of cardiovascular diseases in patients un-
dergoing cancer treatment. These patients are usually followed after the start
of the therapy with several visits in the course of which different longitudinal
data are collected. These data are usually collected and interpreted by clin-
icians but not in a systematic way. The innovation of my project consisted
in a more formal use of these data in a statistical model.
The Joint Model is essentially based on the simultaneous modelling of a linear
mixed model for longitudinal data and a survival model for the probability
of an event. The utility of this model is twofold: on one hand it links the
change of a longitudinal measurement to a change in the risk of an event, on
the other hand the prediction of survival probabilities using the Joint Model
can be updated whenever a new measurement is taken.
Unfortunately, the clinical study on cancer therapy for which the project
was thought is still ongoing at this moment and the longitudinal data are
not available. So, we applied the developed methods based on Joint Model
to another dataset with a similar clinical interest. The case of study pre-
sented in the Chapter 6 of this thesis is developed after a meeting between
Dr. Puntoni and me and Dr. Marco Canepa of the Cardiovascular Disease
Unit of the San Martino Hospital in Genoa. The necessity of the last one
was to prove that the longitudinal data collected in patients after a heart
failure could be used to improve the prognostication of death and, more in
general, the patient management and care with a personalized therapy. The
last one could be better calibrated by a dynamic update of the prognosis of
patients related to a better analysis of the longitudinal data provided during
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each follow-up visit.
The Joint Model for longitudinal and survival data solves the problem of the
simultaneous analysis of the biomarkers collected at each follow-up visits and
the dynamic update of the survival probabilities each time a new measure-
ments are collected (see Chapter 4). The next step, developed in the Chapter
5, was to find a statistical index that was simple to understand and practical
for clinicians but also methodologically adequate to assess and prove that
the longitudinal data are advantage in the prognostication of death. To do
this, two different indexes seemed most suitable: the area under the Receiver
Operating Characteristic Curve (AUC-ROC) to assess the prediction capa-
bility of the Joint Model, and the Net Reclassification Improvement (NRI)
to evaluate the improvement in prognostication in comparison with other
approaches commonly used in clinical studies.
In Section 5.3, a new definition of time-dependent AUC-ROC and time-
dependent NRI in the Joint Model context is given. Even if a function to
derive the AUC after a Joint Model was present in literature, we needed to
reformulate it and implement in the statistical software R to make it compara-
ble with the index derived after the use of the common survival models, such
as the Weibull Model. Regarding the NRI, no indexes are present in the lit-
erature. Some methods and functions were developed for binary and survival
context but no one for the Joint Model. A new definition of time-dependent
NRI is presented in Section 5.3.2 and used to compare the common Weibull
survival model and the Joint Model.
This thesis is divided in 6 chapters. Chapters 1 and 2 are preparatory to
the introduction of the Joint Model in Chapter 3. In particular, Chapter 1
is an introduction to the analysis of longitudinal data with the use of Linear
Mixed Models while Chapter 2 presents concepts and models used in the
thesis from survival analysis. In Chapter 3 the elements introduced in the
first two chapters are joined to defined the Joint Model for longitudinal and
survival data following the approach proposed by Rizopoulos[80]. Chapter
4 introduces the main ideas behind dynamic prediction in the Joint Model
context. In Chapter 5 relevant notions of prediction capability are introduced
in relation to the indexes AUC and NRI. Initially, these two indexes are pre-
sented in relation to a binary outcome. Then, it is shown how they change
when the outcome is the time to an event of interest. Ending, the definitions
of time-dependent AUC and NRI are formulated in the Joint Model context.
The case of study is presented in the Chapter 6 along with strength and
limitations related to the use of the Joint Model in clinical studies.
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Chapter 1

Longitudinal Analysis

A set of observations collected repeatedly over time on the same subject
is becoming one of most common dataset with which a biostatistician has
to work. The spread of information technology in various aspects of the
life, including the healthcare and hospital environment, has involved the
possibility to collect a huge amount of data related to the clinical history of
the patients. In this context, the presence of several measurements over time
on the same subject is a very common situation and this is the main feature
that distinguishes longitudinal studies from others. A constant monitoring
of the subjects among a visit process and the subsequent collection of the
data allow a direct assessment of changes in the outcomes of interest in a
clinically relevant time window.
Mainly, a longitudinal model is used to investigate two types of effects:

• cross-sectional effects, i.e. the differences among groups at a given a
specific time point (e.g. the mean difference between male and female,
or between two arms of treatment);

• longitudinal effects, i.e. the effect of the time on the outcome or dif-
ferent time effects among groups of subjects (e.g. the mean trajectory
of the mean blood pressure after starting a therapy, or the difference
between the trajectory observed in males and females).

From a statistical point of view, assuming that data collected at each visit
constitute a record, the main characteristic of the longitudinal study is the
presence of a correlation structure behind the records related to the same
subject. This situation is in contrast with the assumption of independence
among the residuals typical, for example, of the linear model and requires
the use of ad hoc statistical models. The main problem is to avoid an under-
estimation of the variability of each effect which could lead to a more narrow
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confidence intervals and to a rejection of the null hypothesis when this is
true.
A good model for longitudinal data should be able to account for three sources
of variability that characterized this type of data [28]:

• random variability coming from heterogeneity among individual trajec-
tories;

• serial correlation due to residuals close to each other in time are more
similar than residuals further apart;

• measurement error to account for small variability unavoidable even
from an immediate replication of the measurement (noise variability).

Often the homoschedasticity assumption is also violated by longitudinal data,
in fact data collected in different occasions have different variability. More-
over longitudinal data have often an unbalanced number of repeated mea-
surements among subjects and not necessarily taken at fixed time points.
This last problem and the other described previously make longitudinal data
untreatable with standard multivariate regression techniques.

1.1 A two-stage approach

As mentioned above, a longitudinal dataset has a particular structure that
makes it unsuitable to be modeled with classical linear models. A linear
mixed model (LMM), that will be defined below, is a parametric linear model
for longitudinal data (and also for clustered or hierarchical data) that quan-
tifies the relationships between a continuous dependent variable and various
predictor covariates. In this model, the relation between the outcome and
the covariates (continuous or categorical) is defined between two groups of
effects that the latter cause on the former:

• fixed effects, that describe the mean structure model between covariates
and outcome in the whole sample;

• random effects, that are related to random cluster-specific (e.g. sub-
jects, hospitals, . . . ) variations from the overall mean structure.

The second set of effects is also responsible for managing the correlation
among repeated measurements on the same subject. The presence of both
fixed and random effects gives the name to the model.
The two-stage approach proposed by Verbeke [108] will be followed to de-
fine the LMM: the first stage tries to explain the longitudinal response of
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interest for each subject by a vector of a small number of estimated subject-
specific regression coefficients; in the second, another regression model will
relate the estimates obtained in the first stage to known covariates such as
treatment, disease classification, patients’ demographics and baseline char-
acteristics. Finally, the combination of the two stages into one statistical
model will provide the general formulation of the linear mixed model.
Throughout this work, we assume N subjects, each of whom is measured
at ni time points (i = 1, . . . , N), not necessarily ni = nj for i 6= j, with
i, j = 1, . . . , N . The response of interest is modelled by a dependent random
variable indicated with Y , which is assumed continuous (other distributions
are possible in the Generalized LMMs context). The fixed effects are mod-
elled by random vectors with both continuous and categorical components
and all of them are indicated within the matrix X; the random effects, in-
dicated by the matrix Z, are defined as those factors that, in addition to a
fixed effect, can have an effect that varies from subject to subject.

1.1.1 Stage 1

Let Yij be the random variable denoting the outcome of interest for the ith
subject measured at time j, with i = 1, .., N and j = 1, . . . , ni and where N
is the number of subjects while ni is the number of repeated measurements
for the i-th subject. Then Yi = (Yi,1, .., Yi,ni)

T is the vector of continuous
responses for i-th subject. In the first stage we assume that Yi satisfies the
linear regression model:

Yi = Ziγi + εi (1.1)

where Zi is a (ni × q) matrix whose rows give the values of q covariates
over time for subject i. In the context of longitudinal analysis, one of the
q covariates is time, while also other covariates could be functions of time.
In this case, the Equation 1.1 models how the response evolves over time for
the i-th subject. Therefore, in analogy with Generalized Linear Models, γi
is the vector of q subject-specific regression coefficients and εi ∼ Nni(0,Σi)
is the vector of residuals where Σi is the ni-dimensionality covariance matrix
and Nni stands for a multidimensional Gaussian distribution, taken to be
centered in zero.
For the application in the definition and use of the Joint Model (Chapters 3
to 6), time is included as a simple linear relationship and Z has only two
columns: the intercept and time. Any other covariates will be included in
another specific way.
Note that Equation 1.1 could as well be used for multilevel or cluster data. In
these cases, the matrix Z could contain some variables necessary to uniquely
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identify the repeated measurements within the same cluster (e.g. patients
within the same ward).

1.1.2 Stage 2

In the second stage, the goal is to explain the between-subjects variability,
modelling the relationship between the γi = (γ1, . . . , γq) coefficients obtained
in the first stage and a set of known covariates contained in a (q× p) matrix
indicated with Ki. The model is given by:

γi = Kiβ + bi (1.2)

where bi ∼ Nq(0, D) is a q-dimensional residual vector and D its covariance
matrix , β is a p-dimensional vector of unknown regression parameter.
Hence, the core of the model is given by the estimate of the regression pa-
rameters γi that can be obtained by a sequential fitting of the two models
in the two stages. This sequential fitting can be interpreted as the analysis
(second stage) of the summary statistics calculated in the first stage and this
involves at least two problems [108]:

• the estimated vector of effects γ̂i summarizes the information on the
longitudinal response Yi for the subject i, obtained in the first stage,
but it carries with it a loss of information;

• in the second stage, the replacement of γi with their estimates γ̂i is
another source of variability.

The Linear Mixed Model, which will be presented in the next section, is
motivated by the need of addressing these two problems and consists of com-
bining the two stages in a single model with a simultaneous parameter es-
timation process. Despite these two issues, the two-stage estimation is not
computationally expensive and it could be used in practice when convergence
problems are encountered with the Linear Mixed Model.

1.2 The Linear Mixed Model (LMM)

In order to obtain a single model, we can replace γi of the second stage in
the first stage, yielding:

Yi = Ziγi + εi

= Zi(Kiβ + bi) + εi

= ZiKiβ + Zibi + εi

= Xiβ + Zibi + εi
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in which the name of linear mixed model is given by the mixed presence of
fixed effects β and random subject-specific effects bi. Therefore, the longi-
tudinal outcome for each subjects can be seen as a linear regression model
where there are population-specific effects (i.e. common at the whole group
of patients) and subject-specific variations from the mean population. In
summary, using the definition by Laird and Ware [48], LMM is defined as
follow.

Definition 1. A linear mixed-effects model is any model which satisfies the
following relationship for each subject i = 1, . . . , N :

Yi = Xiβ + Zibi + εi

bi ∼ Nq(0, D)

εi ∼ Nni(0,Σi)

b1, .., bq, ε1, .., εniindependent

where Yi is the ni-dimensional response vector for subject i, Xi and Zi are
(ni × p) and (ni × q) dimensional matrices, β is a p-dimensional vector,
bi is a q-dimensional vector and εi is a ni-dimensional vector of residual
components. Finally, D is a (q× q) covariance matrix while the matrix Σi is
a (ni × ni) covariance matrix.

For ease of interpretation, for each i = 1, . . . , N

• Yi is the response vector for subject i,

• Xi and Zi are matrices whose elements are the known values of covari-
ates for subject i,

• β contains the fixed effects,

• bi contains the random effects,

• D models the associations among the random factors in Z,

• Σi is a subject-specific covariance matrix whose dimension depends on
the number of repeated visits done by the i-subject (ni) and represents
the relationship among the residuals for the i-subject.

The LMM allows the researchers to estimate all elements of the covari-
ance matrices for the random effects D and the residuals Σi or to define a
priori a structure for the two matrices.
Starting from the D matrix, the most common approach is set it as a matrix
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with only variance components:

D =


σ2
Z1

0 . . . 0
0 σ2

Z2
. . . 0

0 . . .
. . . 0

0 . . . 0 σ2
Zq


where σ2

Zq
is the variance for the p-th random effect. In this case, the re-

searcher assumes the independence among the random effects. Another com-
mon solution, even if more computationally expensive, is given by the use of
an unstructured covariance matrix where all the element of the half matrix
are estimated from the data:

D =


σ2
Z1

σ2
1,2 . . . σ2

1,q

σ2
1,2 σ2

Z2
σ2

2,q
...

. . .
...

σ2
1,q . . . . . . σ2

Zq


where σ2

a,b is the covariance between the a-th and the b-th random effect,
with a, 6= b and a, b = 1, . . . , q.
Several other matrices can be defined and are available in the most largely
used statistical software.

The considerations done on D can also be done for Σi and several struc-
ture can be defined for this matrix. In general, the same variance structure is
assumed for each i = 1, . . . , N subject. Also in this case, the most common
solution is to define a variance components matrix:

Σi =


σ2 0 . . . 0
0 σ2 . . . 0

0 . . .
. . . 0

0 . . . 0 σ2


where σ2 is the variance of the residuals which is assumed constant over the
ni repeated measurements for each subject i = 1, . . . , N . In the context
of longitudinal analysis a first-order autoregressive covariance matrix is also
used and it assumes the following structure:

Σi =


σ2 ρσ2 . . . ρni−1σ2

ρσ2 σ2 . . .
...

...
. . . ρσ2

ρni−1σ2 . . . ρσ2 σ2
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where the variance σ2 is assumed homogeneous over the repeated measure-
ments but the correlation ρ declines exponentially with distance. In case of
longitudinal data, this means that the variability in the outcome is constant
regardless of when the measure is taken but also that two subsequent mea-
surements are more correlated than other two taken in more distant visits.

1.2.1 LMM in clinical trials

In clinical trials, the LMMs are widely used to model the longitudinal tra-
jectories of the endpoint or the change from the baseline value. Depending
on the outcome that is chosen to analyze - value or change from baseline -
the covariates inserted in the fixed part of the model varies while the random
part is usually composed by the random intercept and the random slope for
the time effect.
In the first case, when the current value of the endpoint is modelled, the
time variable, that can be both a continuous or a discrete variable, starts
from 0 and the other covariates are usually kept constant at their baseline
value. This approach is often used when the patients are random extracted
from the target population and hence no significant differences in the base-
line values are expected among the patients. In this case, the equation 1 can
be rewritten as:

E[Yi] = β0 + Tiβt +Xiβp + b0,i + Tibt,i

where the time Ti is modelled both as fixed and random effect and Xi are
the (ni × p) matrix that contains the other covariates set at their baseline
values. In this case, the interpretation of the coefficients are the following:

• β0 is the intercept that represents the mean value of Y in the whole
sample when the other covariates are set in their reference value (if
categorical variables) or set to zero (if continuous variables);

• βt is the mean time effect in the whole sample;

• βp contains the mean effect of each covariate in Xi;

• b0,i is called random intercept and represents the subject-specific vari-
ation in the outcome at baseline for the i-th subject;

• bt,i is called random slope and represents the subject-specific variation
which must to be added to βt to obtain the mean trajectory of the
outcome for the i-th subject.
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In case of problem of convergence, it is common to remove, in order, the ran-
dom slope and then the covariates from least significant to most significant.
In the second case, used to study the change from baseline at each following
time-points, the time variable starts from the first post baseline assessment
while the baseline value of the outcome and its interaction with time are in-
serted in the model to account for a potential influence of the baseline value
which is assumed to lose effectiveness as time goes on.

1.2.2 The population-averaged model under the LMM

The model described in the Definition 1 is referred to as a subject-specific
model because the random effects are formally used to explain the random
variation from a subject to another, or from a cluster to another in the case
of a multilevel model.
Starting from Definition 1, it is possible to derive a marginal model to anal-
yse the relationship between the fixed factors and the outcome. It does not
explicitly use the random factors in the equation. In this way, it is possible
to derive the marginal effect of a covariate, such as time, on the outcome,
by modelling a mean trajectory over the entire sample ignoring the subject
variations but accounting for them. For this reason, this derived model is
also called population-averaged model because the random subjects-specific
deviations from the mean trajectories are not directly shown. The general
formulation of a population-averaged model is given by the following defini-
tion.

Definition 2. A population-averaged model is any model which satisfied the
following conditions for each subject i = 1, . . . , N :{

Yi = Xiβ + ε∗i
ε∗i ∼ N (0, V ∗i )

where Xi is the design matrix with dimensions (ni × p), β is the vector of
the fixed effects εi represents a vector of marginal residuals errors and V ∗i
ni-dimensional matrix. Furthermore Vi = ZiDZ

T
i + Σi where Σi , Zi and D

are as in Definition 1.

In synthesis, Definition 2 becomes for each subject

Yi ∼ Nni(Xiβ, Vi)

with
Vi = ZiDZ

T
i + Σi
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and in standard vector notation including all subjects it becomes:

Y = Xβ + ε

where ε ∼ N (0, V ) is the vector of residual components and V is a block
matrix which contains in the diagonal the matrices Vi = ZiDZ

T
i + Σi which

explains the relationship among the ni repeated measures on the same subject
i.

1.3 Estimation in LMM

The parameters’ estimate for the linear mixed model is based on the crite-
rion of maximum likelihood (ML) applied on marginal density derived in
Definition 2 for the i-th subject:

Yi ∼ Nni(Xiβ, Vi)

Vi = Vi(α) = ZiDZ
T
i + Σi

where:

• α is the column vector of all parameters of the covariance matrix (vari-

ance components) found in Vi. In α there are at most q(q+1)
2

different
elements of D and in Σi; the actual number of different elements de-
pends on the choice of the shape of the variance-covariance matrices as
explained in Section 1.2.

• ϑ = (βT , αT )T is the column vector of all parameters in the marginal
model for Yi.

According to the classical maximum likelihood approach, under independence
of the Yi’s, the log-likelihood function is

lML(ϑ, y) =
N∑
i=1

log p(yi;ϑ) =
N∑
i=1

log p(yi; β, α)

where y is the matrix of observed responses, whose column yi i(i = 1, . . . , N)
is the observed response vector for the i-th subject. Furthermore,

p(yi; β, α) = (2π)−
ni
2 |Vi(α)|−

1
2 exp

(
−1

2
(yi −Xiβ)TVi

−1(α)(yi −Xiβ)

)
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hence

lML(ϑ, y) =−1

2
log (2π)

N∑
i=1

ni−
1

2

N∑
i=1

log |Vi(α)|

−1

2

N∑
i=1

[
(yi −Xiβ)TVi

−1(α)(yi −Xiβ)
]

Assuming α known, the ML estimate for β is given by

β̂ML(α) =

(
N∑
i=1

XT
i Vi

−1Xi

)−1 N∑
i=1

XT
i Vi

−1yi

with Vi = Vi(α). In this case, even if Vi is not known, but an estimate of
its elements α̂ is available, we can estimate β by replacing α with α̂ and
obtaining V̂i = Vi(α̂). Then, the ML function will be

β̂ML(α̂) =

(
N∑
i=1

XT
i V̂i

−1
Xi

)−1 N∑
i=1

XT
i V̂i

−1
yi

When α is not know, it is possible to estimate it by using a ML estimate
of α. It can be obtained by maximizing lML(ϑ, y) with respect to α, sub-
stituting β with its ML estimate. The drawback of this approach is that it
does not estimate α and β simultaneously but β is previously estimated from
the data. In this way, the ML estimate of α is biased downward because it
does not take into account the loss of degrees of freedom that results from
estimating the fixed-effect parameters in β. However, as known from the the-
ory of the asymptotic properties of ML estimators, under certain conditions
of regularity, the ML estimate of Vi will be asymptotically unbiased1. In a
linear regression model Y = Xβ+ ε, where Y is an N-dimensional vector, X
a (N × p) matrix of known covariates and ε ∼ N(0, σ2), the ML estimate for
σ2 is given by:

σ̂2 =

∑
i(yi − xTi β̂)2

N

1The regularity conditions are the following:

• X1, . . . , XN are independent and identically distributed;

• the support of Xi, i = 1, . . . , N , does not depend on the parameter ϑ;

• the likelihood function is continuous and differentiable.

Under the above mentioned conditions, an ML estimator is consistent, unbiased and
asymptotic normal distributed.
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biased downward by a factor N−p
N

. This bias comes from the fact that β̂ML

is previously estimated on data and it is necessary to correct for (N − p)
remaining degrees of freedom.

Patterson and Thompson [62], Harville [35] [36] et other authors proposed
the use of the REsidual Maximum Likelihood (REML) to remove the bias in
the ML estimates of the covariance parameters. The residual (or restricted,
or reduced) maximum likelihood (REML) approach is a particular form of
maximum likelihood estimation that does not base estimates on a maximum
likelihood fit of all the information, but instead uses a likelihood function
calculated from a transformed set of data, so there is no effect related to
the nuisance parameters. In the case of variance component estimation like
this, the original matrix of data is replaced by a set of contrasts calculated
from the data, and the likelihood function is calculated from the probability
distribution of these contrasts, according to the model for the complete data
set. In other words, the objective the REML is to obtain an estimate for α not
depending on β and an estimate for β that depends on α. Moreover, REML
can produce unbiased estimates of variance and covariance parameters.
Starting from the Definition 2 it is possible to obtain the REML estimator:

Theorem 1. Let Y = Xβ+ε the linear mixed model with Yi ∼ Nni(Xiβ, Vi(α))
for i = 1, . . . , N . Then the REML log-likelihood function for ϑ = (β, α) can
be written as

lREML(β, α; y) = C − 1

2
log

∣∣∣∣∣
N∑
i=1

XT
i Vi

−1Xi

∣∣∣∣∣+ lML(β̂(α), α; y)

where C is a constant not depending on α, Vi = Vi(α), | · | denote the de-
terminant of the matrix inside and lML(β̂(α), α; y) is the ML log-likelihood
function presented previously.

Because
∣∣∣∑N

i=1X
T
i Vi

−1Xi

∣∣∣ does not depend on β, it follows that the

REML estimators for α and β can also be found maximizing the so-called
REML log-likelihood function:

lREML = −1

2
log

∣∣∣∣∣
N∑
i=1

XT
i Vi

−1Xi

∣∣∣∣∣+ lML(β̂(α), α; y)

with respect to all parameters simultaneously (α and β).
If we could find a matrix A such that dim(A) = n − rank(X) = n − p

with columns given by a1, .., an−p linearly independent vectors and such that
ATX = 0 we can use a transformed set of data U = ATy to find the maximum
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likelihood estimate of ϑ. Let PX = X(XTX)−1XT be a projector on the space

generated from X, we can note that (I − PX)X = X − PXX = X −X = 0
and (I − PX)y = y − PXy = y − ŷ is known as error contrast. Because

rank(I − PX) = n − rank(X) = n − p, there exist a set of n − p linearly
independent rows of I−PX that can be used to get the matrix A. The name
“REML” derives from the fact that if we get a subset of (I−PX) as columns
of the matrix A then we’ll use a subset of the elements of residual vector
(I − PX)y = y − ŷ as U . be valid AAT = I − PX and ATA = In−p We will
now state two lemmas and then use them to prove the REML theorem.

Lemma 1. Let A be a matrix defined as previously then

U = ATY ∼ Nn−p(0, A
TV A)

with V = V (α). Thus, the distribution of U depends on α but not β.

Lemma 2. Let A be a matrix defined as previously, and
G = V −1X(XTV −1X)−1, then

(a) |[A,G]|2 =
∣∣XTX

∣∣−1

(b)
∣∣(ATV A)

∣∣ =
∣∣XTV −1X

∣∣ |V | ∣∣XTX
∣∣−1

(c) A(ATV A)−1AT = V −1 − V −1X(XTV −1X)−1XTV −1

where | · | denotes the determinant of matrix inside.

The proofs of the Theorem 1 and related Lemmas 1 and 2 can be found
in the Appendix 1. Because the estimates for α can not be written, in
general, in closed form, a numerical optimization procedures is required. One
usually uses Newton-Raphson algorithms whose implementation for LMM
was thoroughly described in [53].

1.4 Model selection

The choice of the “best” model is hard for researchers who are faced with
several competing models and must take into account research objectives,
sample size, study design, known predictors and source of confounding or
bias. Moreover the best model should be a model that is parsimonious in
terms of the number of covariates. The selection of the model that best
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fits the longitudinal data is an iterative process that requires to fit several
models: at each step, different elements (e.g. the structure for the fixed
effects the population average model, the choice of the random effects and
the form for the variance/covariance matrices) will be tested and chosen or
discarded in order to obtain the best model. At the end of this process it
will be necessary to reduce the number of parameters in the model in order
to simplify according to the criterion of parsimony to avoid over-fitting. Two
strategies are proposed in the literature to guide the model selection process,
however there is no single strategy that applies in every situation.

The Top-Down strategy

This strategy of model selection was proposed by Verbeke [108] starting with
a model that includes the maximum number of fixed effects arriving at a
reduced model:

(a) Definition of the mean structure for the model. In this step, each
potential effect is inserted in the model.

(b) Definition of the random-effect structure that can be tested by per-
forming REML-based likelihood ratio test for the associated covariance
parameters.

(c) Choice of the covariance structure for the residuals in the model to
study the remaining variation in the observed response after the correct
definition of the fixed and random effects.

(d) Semplification of the model testing whether some fixed effects can be
deleted from the model.

The Step-Up strategy

An alternative to the previous one is given by Snijder and Bosker [94] and
Raudenbush and Bryk [76].

(a) The initial model is formed by only the intercept expressing the mean
structure, this step also includes random effects associated with the
Level 2 units (cluster of longitudinal measurements) that allows the
assessment of the variation in the outcome across longitudinal data set
without adjusting for the effects of any covariates.

(b) Choice of the covariates and definition of their associated fixed effects
for the single measurement (Level 1). In this step we can also include
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adding random effects for Level 2 that can improving the fitting of the
Level 1.

(c) Eventually iterative steps for the definition of fixed and random effects
to the Levels after the Level 2.

1.5 Inference for the marginal model

The goal of the most part of the statistical analysis is to get from a sample
an estimate of the effects that can be generalized to the entire population.
Therefore most of the tests suggested below are aimed at the best choices for
the marginal model and the study of the effects on the population averaged
model.

1.5.1 Inference on the fixed effects

As shown in Section 1.4, the two strategies pass through a different definition
of the population average model.
The fixed effects vector is defined as:

β̂(α) =
(
ΣN
i=1X

T
i V

−1
i Xi)

)−1
ΣN
i=1X

T
i V

−1
i yi

where Vi = Vi(α) = ZiDZ
T
i + Σi is substituted by its REML estimate.

Under the marginal model Yi ∼ Nni(Xiβ, Vi(α)), and conditionally on α,

β̂(α) follows a multivariate normal distribution with mean vector β and with
covariance matrix given by:

V[β̂] =
(
ΣN
i=1X

T
i V

−1
i Xi

)−1 (
ΣN
i=1X

T
i V

−1
i V[Yi]V

−1
i Xi

) (
ΣN
i=1X

T
i V

−1
i Xi

)−1

=
(
ΣN
i=1X

T
i V

−1
i Xi

)−1

where the second equality holds if and only if the covariance matrix Vi is
correctly specified and Vi = V[Yi]. The first two tests presented below are on
the parameters β and are given by an approximate version of the Wald Test,
t-Test and F-Test seen for the Generalized Linear Model. The last test for
the fixed effects is for the comparison between two nested models and it is
given by the likelihood ratio test.

Approximate test for β

In general, for any matrix L, we can perform a test with hypotheses:{
H0 : Lβ = 0

H1 : Lβ 6= 0
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using three possible test.

• Approximate Wald Test An approximate Wald test (also called Z-
Test) for each parameter of vector β is given by approximating the

distribution of Z = β̂−β
se(β)

with a standard univariate normal distribu-
tion. Given a test of hypothesis and matrix L as previous defined, we
have:

W = Z2 = (β̂−β)TLT

L( N∑
i=1

XT
i V

−1
i Xi

)−1

LT

L(β̂−β) ∼ χrank(L)

• Approximate t-Test and F-Test The estimates of the standard er-
rors in the approximate Wald test underestimate the true variability in
β because they do not take into account the variability introduced by
estimating V (α).
A possible way around this is given by an approximate t− or F− Test.

In general, under H0 the distribution of
β̂j−βj
se(β)j

does not follow an exact t

distribution, in fact the number of degrees of freedom of the test statis-
tic is not equal to N − p (where p is equal to the number of fixed-effect
parameters in the model) but must be calculated using an appropriate
approximation method. Analogously in the case of F statistic given by:

F =

(β̂ − β)T ∗ LT
[
L
(∑N

i=1 X
T
i V

−1
i Xi

)−1

LT
]−1

L(β̂ − β)

rank(L)

where the numerator degrees of freedom is equal to rank(L) but the
denominator degrees of freedom needs to be approximated with specific
methods. Several methods are implemented to estimate the number of
degrees of freedom taking into account the presence of random effect
and correlations among the residuals such as the Satterthwaite method
[85]. Neverthless, for large sample, different estimation methods do not
lead to severe differences in the resulting p−values.

If we can preserve the validity of inference on β from possible misspecification
of the covariance structure for the model, we can use the so-called sandwich
estimator for V[β̂] [51] obtained by replacing V[Yi] by (yi−Xiβ̂)(yi−Xiβ̂)T .
The resulting estimator, also called robust or empirical variance estimator, is
proven to be consistent, as long as the mean structure is correctly specified for
the model. Thus, if the interest is in providing good inferential conclusions on
the mean longitudinal response then it is worth devoting efforts and paying
attention to modelling the covariance structure.
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Likelihood Ratio Test

The likelihood ratio test is based on comparing the likelihood functions of
two nested model, where a model A is nested in a full model B. LRT requires
that both the nested model (under the null hypothesis of some parameters
ϑ = ϑ0 ) and full model corresponding to a specified hypothesis are fitted to
the same subset of the data. The LRT statistic is calculated as shown above:

−2ln

[
lML(ϑ̂0)

lML(ϑ̂)

]
∼ χ2

df

where lML denote the maximum likelihood function and ϑ̂0 and ϑ̂ the ML es-
timates obtained from maximizing lML under H0 and Ha respectively. Under
certain regularity conditions, follows asymptotically under H0, a chi-squared
distribution with df equal to the difference in number of parameters between
the two models.
However this result is not valid if the models are fitted using REML rather
than ML estimation ([59], [69], [108]) because both nested and full models
must be fitted on the same subset of the data but in this case the mean
structure Xiβ under H0 is not the same of the full model and this leads to
different error contrast U = A′Y . The strategy used to avoid this issue is to
do a step in which we fit the marginal model under ML estimation to choose
the best set of covariates. Then, the model with selected covariates is again
fitted under REML estimation [111].

1.5.2 Inference for the Variance Components

From a practical point of view, although in most cases the focus is on the
model for the average, an appropriate modeling for the variance/covariance
matrix components is useful for interpreting the subject-specific random vari-
ation and essential to obtain a valid inference on the parameters of the model
for the mean population effects. However, on the one hand, an excessive
parametrization of the variance / covariance structure would lead to ineffi-
cient estimates and a potentially poor evaluation of the standard errors for
the estimates of the fixed effects; on the other hand, an excessively restricted
parametrization would risk invalidating the inference. A likelihood ratio test
can help as detailed next.

Likelihood Ratio Test

As seen in the previous section, the maximum likelihood ratio test can be
used to compare nested models, with different variance-covariance structures.
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Unlike the hypothesis test on fixed effects, the likelihood ratio test for the α
components of the variance/covariance matrix is valid both when using both
ML and REML. It is true because the two compared models have the same
model for the mean which leads to the same contrasts U = ATY that are
necessary in order to obtain two structurally comparable REML functions.
However, the distribution of the test statistic under H0 depends on whether
the null hypothesis values for the covariance parameters lie on the boundary
of the parameter space for the covariance parameters or not.
An other way is given by the possibility of using the Wald test in analogy to
what we have seen for the inference on β.

1.5.3 Tests based on the Information Criteria

All the tests seen so far were concerned with the comparison of nested models,
i.e. the model under H0 could be seen as a particular alternative model or a
reduced model compared to the one under H1. Next, the comparison of two
non-nested models is taken into account.
The information criteria provide a way to assess the fit of a model based
on its optimum log-likelihood value l(ϑ̂), after applying a penalty for the
number of parameters that are estimated in the model. In general, AIC
(Akaike Information Criteria) and BIC (Bayes InformationCriteria) are the
most used Information Criteria and are given by:

AIC = −2l(ϑ̂) + 2p

BIC = −2l(ϑ̂) + p logN

The BIC applies a greater penalty for the models with more parameters than
does the AIC, because it multiplies the number of parameters fitting with
the natural logarithm of the number of total observations used. The choice
of the model follows the rule “smaller is better”.
Since the indexes based on the Information Criteria are based on the ML
or REML estimates, the limitations set in the case of the Likelihood Ratio
Test are valid and can therefore be used to make inference on the average
model when using the ML method to estimate the parameters, while if we
use REML we can apply them only when the compared models have the
same structure for the model of the means and different structure relative to
the variance/covariance matrix.

1.5.4 Inference for the need of a LMM

To ask whether it makes sense to use a linear mixed model (intercept and/or
slopes) instead of a classical linear model where each single record (each



23

line of the dataset) is assumed independent of each other, is equivalent to
doing a test on the nullity of the random effects. This is possible with a
LRT that compares a model with random effects and a linear model without
random effects, while holding constant the model for the means. In this case,
testing the hypothesis that the variability of random effects is zero leads us
to work on the boundary of the α parameters and this makes it necessary to
make small changes to the asymptotic distribution of the LRT. In general,
the asymptotic null distribution for the likelihood ratio test for nonstandard
testing situations is often a weighted mixtures of chi-squared distributions
rather than the single chi-squared distribution ([90], [97], [98]).

1.6 Prediction of random effects

In the Sections 1.5 we have seen that in many applications inference is fo-
cused on fixed effects (i.e. the overall change of the response over time) and
on the variance components. However, we can also estimate the subject-
specific deviation bi from the mean trajectories over time and we will see
from Chapter 3 that this is necessary in order to develop a Joint Model.
This estimates are known as Empirical Bayes predictions (EB) [108].
From Section 1.2 we can observe that :

Yi|bi ∼ Nni(Xiβ + Zibi,Σi)

with
bi ∼ Nq(0, D).

In a Bayesian approach the distribution of bi is called the prior distributions
since it does not depend on the data Yi. Instead, the distribution of bi|Yi = yi,
where yi is the observed response for the i-th subject, is called posterior
distribution of bi. Merging these considerations we have that:

f(bi|Yi = yi) =
f(yi|bi)f(bi)

f(yi)
=

f(yi|bi)f(bi)∫
f(yi|bi)f(bi)dbi

.

Using the theory on general Bayesian linear models ([52], [93]), it can be
shown that the previous result is the density of a multivariate normal distri-
bution. Very often, bi is estimated by the mean of this posterior distribution,
called the posterior mean of bi. This estimate is then given by:

b̂i(ϑ) = E[bi|Yi = yi]

=

∫
bif(bi|yi)dbi

= DZT
i V
−1
i (α)(yi −Xiβ)
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and the covariance matrix of the corresponding estimator equals:

V[b̂i(ϑ)] = DZT
i

V −1
i − V −1

i Xi

(
N∑
i=1

XT
i V

−1
i Xi

)−1

XT
i V

−1
i

ZiD

where the unknown parameters β and α are replaced by their ML or REML
estimates.
Note that V[b̂i(ϑ)] underestimates the variability in b̂i(ϑ)]−bi since it ignores
the variation of bi. Therefore, inference for bi is usually based on

V[b̂i(ϑ)− bi] = D − V[b̂i(ϑ)]

as an estimator for the variation in b̂i(ϑ) [48].
The resulting estimates for the random effects are called Empirical Bayes
(EB) estimates, which we will denote as b̂i. The variability is underesti-
mated in the obtained estimates since they do not take into account the
variability introduced by replacing the unknown parameter ϑ by its ML or
REML estimate.
Also in this case, inference is based on some test like approximate t-, F- or
Wald tests with similar procedures for the estimation of the denominator
degrees of freedom as seen in the Section 1.5.
After the estimation process, usually histograms or normal quantile plot of
residuals are used to check the normality of the b̂i and in order to detect
potential outliers, i.e. subjects that seem to assume values for the outcome
and have a longitudinal trajectory very different from the most part of the
other subjects in the data. Observing the linear prediction Ŷi we can see

that:

Ŷi = Xiβ̂ + Zib̂i

= Xiβ̂ + ZiDZ
T
i V
−1
i (α)(yi −Xiβ)

= (Ini − ZiDZT
i V
−1
i )Xiβ̂ + ZiDZ

T
i V
−1
i yi

= (Ini − (Vi − Σi)V
−1
i )Xiβ̂ + (Vi − Σi)V

−1
i yi

= ΣiV
−1
i Xiβ̂ + (Ini − ΣiV

−1
i )yi

Interestingly, the predicted response trajectory for the i-th individual is a
weighted combination of estimated population averaged mean response pro-
file and the observed response profile for each subject. Since weight of the
population averaged mean response profile is given by the relationship be-
tween the residual covariance matrix Σi and the overall covariance matrix Vi,
then much weight will be given to the overall average profile (i.e. Xiβ̂) if the



25

residual variability is large in comparison to the between-subject variability
(modelled by the random effects). Whereas more weight will be given to the
observed data (i.e. yi) if the opposite is true. The shrinkage factor is desir-
able because it only affects individuals that provide little information (small
number of repeated measures), borrowing strengths from other clusters.

1.6.1 The Mixed models, a midway between a frequen-
tist and a Bayesian approach

The estimation of the random effects presented in Section 1.6. is based on
the posterior distribution of the bi’s. This is necessary to include in the
model a latent source of variability imputed to each patient which is intrin-
sically hidden and hard to understand what to measure. In this way, we
are not assuming that the subject variable is a possible confounder in the
relationship among the covariates and the response variable. In this way, the
Mixed Model can be seen as lying midway between a completely frequentist
approach (Linear Model) and a completely Bayesian one.
In the first case, the insertion of the subject IDs as a categorical covariate
in the model would have two effects on the estimation of the other param-
eters related to the covariates of interest: a desired effect is to capture the
correlation between repeated measurements on the same subject over time,
an another possible effect is to use this variable as a control of confounding,
imputing to the subject a fixed effect even if it is not clear the clinical mean-
ing of this effect. Moreover, a big limit of this approach is the presence of a
huge number of levels in the ID variable that can be difficult to manage in
the implementation of the model itself.
In the second case, if we use a completely Bayesian approach, we should pro-
vide a prior distribution for each effect inserted in the model, not only for the
subject component, but also for each covariate inserted in the fixed part of
the model. I do not dwell on the theoretical implications. I just recall that,
in the clinical research, the use of the Bayesian model is largely debated be-
cause there is a high risk of introducing subjective elements in the definition
of the prior distribution. This could lead to a too random scenario not as
solid, robust and clear as the one based only on observed data provided by
the selected sample of subjects.

1.7 Diagnostic

The Joint Model that will be presented from Chapter 3 will be made from 2
different sub-models. One of them, regarding the longitudinal data, will be
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manage with the LMM both for estimation and diagnostic. So it becomes
necessary to explain which is the most common methods to assess the good-
ness of the model use to manage the longitudinal trajectories.
In contrast with the diagnostic methods for the standard linear models which
are well established in the literature, the diagnostic for the Linear Mixed
Model is more difficult to carry out and interpret due to the complexity of
the model itself that contains also the random effects and several covariance
structures. There are different approaches to test the model chosen, more
or less heuristic. In particular, we can split the the diagnostic procedures in
three parts regarding residuals, influence and random effects respectively. In
the following sessions a hint of diagnostic techniques is presented, however,
for a more in-depth view refer to the main textbooks on the matter (see [108]
and [111]).

1.7.1 Residual Diagnostic

Among the informal techniques, the residual diagnostic is commonly used to
check whether or not a specific pattern exists in the residuals. In the context
of the standard linear model, plotting residuals against fitted values is used
to verify model assumption (e.g. normality, constant variance) and to detect
outliers and potentially influential observations.
In the context of the Linear Mixed Model this diagnostic it carry out referring
to the marginal residuals and conditional residuals. A marginal residuals εim
is the difference between the observed data and the estimated (marginal)
mean:

εim = yi −Xiβ̂.

The conditional residuals are given by the difference between the observed
values and the predicted values of the outcome variables for each observation:

εi = yi − (Xiβ̂ + Zib̂i)

where the name conditional residuals stems from the fact that the quantity
Xiβ̂ + Zib̂i is the conditional mean of the vector yi. Residuals in the form
of εim or εi are defined as raw residuals and they are usually not used for
the diagnostic purpose because even if the true model errors are uncorrelated
and have equal variance, conditional residuals will tend to be correlated and
their variances may be different for different subgroups of individuals. More
often, various standardizations (by scaling for the standard deviation) are
applied to overcome this problem. As happens for the linear model, one type
of residuals is given by the studentized residuals where the unknown standard
deviation is replaced by an its estimate. If this estimate is independent from
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the i−th observation, the process is termed external studentization. This is
usually accomplished by excluding the i−th observation when computing the
estimate of its standard error. If the observation contributes to the standard
error computation, the residual is said to be internally studentized. So, the
marginal studentized residuals are given by

εstudim =
εim√
V̂[εim ]

while the studentized conditional residuals are given by:

εstudi =
εi√
V̂[εi]

.

Other possible scaling choices are possible but they are not relevant to the
aim of this context.

1.7.2 Influence Diagnostic

The influence diagnostic regards several formal techniques that allow one to
identify unusual observations that may heavily influence the ML estimates of
the parameters. The idea of influence diagnostic for a given observation (or
subset of observations) is to quantify the effect of omission of those records
from the data on the results of the analysis of the entire data set. This di-
agnostic may be used to investigate various aspects of the model fit: some
examples are given by the fixed effects, covariance parameters, precision and
predicted values. Usually, a sensitivity analysis is done to assess if there are
significant changes in the estimation of the parameters when some observa-
tions are excluded from the analysis. More details on influence diagnostic
can be found in [108].

1.7.3 Random-effect Diagnostic

The empirical Bayes predictors seen in the paragraph 1.6 is the natural choice
to do the diagnostic on the random effects. Tools to diagnose these estimates
are usually given by diagnostic plots like histograms, Q-Q plots and scatter-
plots in order to investigate for potential outliers. Conversely to the diagnosis
on the fixed effects, checking for normality is of little importance, because
the distribution of the random effects does not necessarily reflect the true
distribution of the random effects.



28

1.8 The problem of Missing Data

The problem of missing data is a major challenge for the analysis of the
longitudinal trajectories [26]. Clinical studies are designed to collect data of
the patients at specified follow-up visits, however subjects miss some of their
planned measurements for several reasons. This involves at least two issues:

• in a clinical trials, where the sample size is defined a priori by setting a
threshold for the first type error and the power, the missing data could
compromise the study because the reduction in the number of repeated
measures would result in a loss of statistical power;

• more generally, the missing data could produce biased estimates requir-
ing a greater caution in interpreting the results themselves.

It becomes necessary to understand why some data is missing. This problem
is less relevant when the missingness is at random but it is crucial when there
are some unexplained factors which make some subjects more likely to skip a
visit. Joint Models are used to model the relationship between a longitudinal
evolution of a marker and the time to an event of particular interest. They
also can be used to address problems related to the presence of missing values
in the longitudinal data. In the next pages, different patterns of missingness
are presented to provide a better overview while in the Chapter 3 it will
shown how the use of the Joint Models could help with missing data.

Let the following table be an extraction from a dataset containing the
longitudinal values collected across 5 subsequent visits:

Subject ID Follow-up visits
1 2 3 4 5

1 x x x x x
2 x x x ? ?
3 ? x x x x
4 x ? x ? x

Not all subjects have values for all 5 visits but different types of missingness
can be noticed. The first difference is between monotone and non-monotone
missingness. In the case of patients 2 and 3 we talk of monotone pattern of
missingness, in particular the patient 2 is dropout (i.e. he is withdrawn from
the study before it is finished) while patient 3 is a case of late entry (i.e. the
subject does not provide the first measurement). In all other cases we talk
about non-monotone missingness, also called intermittent as in the case of
patient 4. The missingness involves three problems:
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• loss of efficiency: we collect less data than originally planned and there-
fore the changes in the average longitudinal trajectory are less precisely
estimated. This fact involves the sample size also, because we need to
enroll more patients to achieve the same levels of power.

• unbalanced dataset: not all subjects have the same number of repeated
measurements and this creates complications for methods of analysis
that require balanced data (it is not the case of the linear mixed mod-
els);

• potential bias: missing data may depend on outcome of interest and
introduce bias and thereby lead to misleading inferences.

In general, we assume that the study is designed so that measurements of
patient i are collected ni times. For i = 1, . . . , n and j = 1, . . . , ni we define
the missing data indicator rij as

rij =

{
1 if yij is observed

0 otherwise.

Defining the response vector yi = (yi1, . . . , yini)
T , we now obtain a partition of

the complete response vector into two subvectors: yoi containing the observed
data, i.e. the observed values yij for which rij = 1, and ymi corresponding to
the missing data, i.e. that yij which are set equal to a conventional values,
e.g. NA, whenever rij = 0. For the remaining of this work, we will focus on
dropout, in this case the missing data indicator for the i-th subject is of the
form (1, . . . , 1, 0, . . . , 0) and therefore can be simplified and replaced by

rdi = 1 +

ni∑
j=1

rij

if time is on a discrete scale. To describe the probabilistic relation between
the measurement and missingness processes, Rubin [84] has introduced three
mechanism thinking the missing data mechanism as a probability model
based on the conditional density of the missingness process ri given the com-
plete response vector yi = (yoi , y

m
i ):

p(ri|yoi , ymi ;ϑr)

where ϑr = (βr, αr) denotes the corresponding full parameter vector (see
Theorem 1). Below are presented briefly the three types of mechanisms.
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MCAR - Missing Completely At Random

The probability that responses are missing is unrelated to both yoi and ymi :

p(ri|yoi , ymi ;ϑr) = p(ri;ϑr).

An example of MCAR is encountered when subjects leave the study after at
least a pre-determined number of measurements has been taken or when the
measurements are lost due to a problem. In this case the observed data yoi can
be considered a random sample of the complete data yi. Under MCAR we
can obtain valid inferences using any valid statistical procedure for complete
data, while ignoring the process that has generate the missing values.

MAR - Missing At Random

The probability that responses are missing is related to yoi , but is unrelated
to ymi :

p(ri|yoi , ymi ;ϑr) = p(ri|yoi ;ϑr).

In other words the probability of missingness depends on the observed values,
but is unrelated to the outcomes that should have been obtained. An exam-
ple of MAR occurs when study protocol requires that patients be removed
from the study when response value exceeds a prespecified threshold. In this
case the missingness process is under the control of the investigator and is re-
lated to the observed values yoi only and for this the observed data cannot be
considered a random sample from the target population because the distribu-
tion of yoi does not coincide with the distribution of yi. The most important
consequence of this fact is that the sample moments are not unbiased esti-
mates of the same moments in the target population, thus statistics based on
these moments without accounting for MAR may be misleading (e.g. sam-
ple marginal evolution instead of sample subject-specific evolutions). On the
other hand, under MAR, likelihood based inference continues to be correct
ignoring the contributions of ri because the likelihood contribution of the
complete data (yoi , y

m
i , ri) for the i-th subject is factorized as follows:

Li(ϑ) = Li(ϑy)× Li(ϑr)

where ϑy and ϑr are disjoint and inference for ϑy can be based on the marginal
observed data density p(yoi ;ϑy) ignoring the likelihood of the missingness
process. This property is also known as ignorability. Moreover, mixed models
with misspecified correlation structure or marginal residuals are not valid
under MAR, while a correct specification of the correlation structure for the
mixed model or subject-specific residuals are valid.
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MNAR - Missing Not At Random

The probability that responses are missing is related to ymi , and possibly also
to yoi :

p(ri|ymi ;ϑr) or p(ri|yoi , ymi ;ϑr).

An example of MNAR occurs in a study of drug addicts where people who
return to drugs are less likely than others to report their status. Also in
this case the observed data cannot be considered a random sample from the
target population. The predictive distribution of ymi conditional on yoi is
not the same ad in the target population, but rather depends on both yoi
and on p(ri|yi). For this fact, only procedures that explicit model the joint
distribution {yoi , ymi , ri} provide valid inference. Note that the type of the
missingness mechanism may depend on covariates: if missingness is related to
a covariate but not to yi (i.e. missingness mechanism is MCAR), and in our
analysis of the longitudinal trajectories we do not condition on this covariate,
then MCAR can no longer be considered valid. We cannot tell from the data
at hand whether the missing data mechanism is MAR or MNAR, however
we can distinguish between MCAR and MAR.

1.9 Summary of chapter

This chapter presents a review on the use of the Linear Mixed Models to
analyse longitudinal data. It constitutes one of the two fundamental parts of
the Joint Model. Particular attention is given to practical aspects such as the
interpretation of the coefficients and the procedures used to select the best
model. An overview of the problems related to the presence of non-random
missing data is given in order to better understand how the use of the Joint
Models may solve it.
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Chapter 2

Survival Analysis

In follow-up studies different types of outcomes are often collected, among
them there are the multiple longitudinal responses, that we have seen in the
previous chapter, and time-to-event(s) of particular interest (e.g. death, re-
lapse, hospitalization, . . . ) that will be the focus of this chapter.
Survival analysis includes techniques and models for the study of the time
between a clinically relevant starting point, called baseline, and the occur-
rence of an event of interest. In this contest the outcome is usually defined
as failure time, survival time or event time.

2.1 Distribution of the failure times

When it comes to the statistical analysis of failure times, usually denoted
with T (continuous or discrete), the first feature that must be taken into
account is the shape of their distribution. Event times must be positive and
they very often have skewed shapes of distribution. Thus, statistical methods
that rely on normality are not directly applicable, and, if used for survival
data, may produce invalid results. This often could be easily overcome using
a suitable transformation of the event times, such as the logarithm or the
square root. We introduce the following basic definitions.

Definition 3. Let T be a continuous r.v. defined for t ∈ [0,+∞) with cu-
mulative distribution function F (·) and probability function f(·). Its survival
function is defined as

S(t) = 1− F (t) = P[T > t] =

∫ +∞

t

f(u)du

Note that f(t) ≥ 0 and
∫ +∞

0
f(t)dt = 1 and it gives the density of prob-
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ability at time t and for an very small epsilon > 0 we have

f(t)ε ≈ P[t ≤ T < t+ ε] = F (t+ ε)− F (t)

Theoretically, as t ranges from 0 up to infinity, the survival function can be
graphed as a smooth curve. The survival function is non-increasing, at the
start of the study (i.e. t = 0) S(0) = 1 and when time tends to infinity and
the event of interest is dead, the survival tends to 0.
Another important function necessary to derive the probability density func-
tion is the hazard function.

Definition 4. Let T be a continuous r.v. defined for t ∈ [0,+∞) with cu-
mulative distribution function F (·) and probability function f(·). The hazard
function is defined as

h(t) = lim
ε→0+

P[t ≤ T < t+ ε|T ≥ t]

ε

if the limit exists, ε is a very small positive quantity.

The hazard function gives the instantaneous potential risk per unit time
for the event to occur in the time interval [t, t+ ε) given that the individual
has survived up to time t.
From the Definition 4 it follows that

h(t) = lim
ε→0+

F (t+ ε)− F (t)

ε (1− F (t))
=
f(t)

S(t)

In particular, the hazard function is always non-negative and it has no upper
bound.
The survival function S(·) is more used for analysis than h(·) because it
directly describes the survival experience of a study sample. However, the
hazard function is also of interest and it may be used to identify a specific
parametric model form, such as an exponential, a Weibull, or a log-normal
curve. Anyway, the two function can be linked as following. By observing
that dS(t)/dt = −f(t), the hazard function can also be also rewritten as

h(t) =
f(t)

S(t)
= −dS(t)/dt

S(t)
= − d

dt
[logS(t)]

If the above equation is integrated from t = 0 to t and assuming the boundary
condition for which S(0) = 1 (since the event is sure not to have occurred at
the baseline), we obtain

S(t) = exp[−
∫ t

0

h(u) du]
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obtaining a formula for the probability of surviving up to t as a function of
the hazard at all durations up to t.
Furthermore, the integral in brackets can be interpreted as the sum of the
risks you face going from time 0 to a time t in the future. Formally, it is
defined as cumulative hazard function.

Definition 5. Let be h(·) an hazard function and t > 0

H(t) =

∫ t

0

h(u) du

is defined cumulative hazard function.

Finally, the probability density function f(·) can be obtained by using
the Definition 4 and 5, as

f(t) = h(t) exp[−H(t)].

2.2 Estimating the survival function

In the previous section, the general formulation for the survival, hazard and
cumulative hazard functions was provided related to a random variable T
that models the failure times. No considerations were done about the rea-
son for which a patient experiences an event that interrupts the observation
period. It becomes necessary to introduce the concept of censoring that is
the main characteristic that distinguishes survival analysis. Censoring oc-
curs whenever one of the following conditions happens and the event time of
interest is not fully observed on all subjects under study:

• the study ends, but some patients still have not had the event yet
(administrative censoring);

• some individuals drop out or get lost during the study, and all we know
about them is the last time they were still free of the event;

• some individuals develop competing events.

In all these cases we talk about right censoring. When a subject withdraws
from the study for reasons directly related to the expected failure time, for
example, because of a worsening of her prognosis, the censoring mechanism
is called informative and, unfortunately, very few things can be done to com-
plete his follow-up.
When a subject withdraws from the study for reasons not related to her
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prognosis, but for example depending on covariates, the censoring is called
non-informative or random and it is in this case that the theory following
explained is developed (see Definition 6).
The main implications of censoring are that the standard tools, such as the
sample average, the t-test, and linear regression cannot be used, moreover
inferences may be sensitive to misspecification of the distribution of the event
times.
When censoring occurs, the outcome can be thought of as comprising two
dimensions: an event indicator and a time at risk. With a little variation
from the previous section, for each subject i = 1, . . . , N let T ∗i (and not Ti)
denote the random variable of the failure times under study and let Ci be a
non-negative variable which models the censoring times, then only the ran-
dom variable Ti = min{T ∗i , Ci} is observed due to censoring. In addition to
observing Ti we also get to see the event indicator δi = I(T ∗i ≤ Ci). Further-
more, note that under non informative censoring T ∗i and Ci are independent
for each i, furthermore T ∗1 , . . . , T

∗
n are independent and identically distributed

(iid), and also C1, . . . , Cn are assumed to be iid. In general, in survival anal-
ysis, we are interested in estimating characteristics of the distribution of T ∗

using only the available information Ti and δi for each i = 1, . . . , N .
The survival function can be estimated in two ways:

• by developing an empirical estimate of the survival function, i.e. a
non-parametric estimation;

• by specifying a parametric model for λ(t) on a particular density func-
tion f(t).

If no censoring occurs, an empirical estimator of the survival function is

Ŝ(t) =
ΣN
i=1I(Ti > t)

N
=

# individuals with T > t

total sample size

Under the assumption of independent identically distributed sample, it holds

n Ŝ(t) ∼ Binomial(n, S(t))

and for large sample sizes, by the central limit theorem

Ŝ(t) ' N
(
S(t),

S(t)(1− S(t))

n

)
where ∼ means that the random variable on the left side follows the distribu-
tion in the right side, and simeq that the distribution of the random variable
on the left is approximated by the distribution on the right. Otherwise, if
there are censored observations, Ŝ(t) is not a good estimate of the true S(t)
and other non-parametric methods must be used to account for censoring
process, the most used is described in the Section 2.2.1.
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2.2.1 Non-parametric estimation

The most well-known estimator of S(t) when censoring occurs has been pro-
posed by Kaplan and Meier [45] and it is also called the product limit estima-
tor. This is a non-parametric estimator that does not make any assumptions
on the underlying distribution of the failure times. This estimator is based
on the cumulative distribution function F (·) calculated on the observed data:

F̂ (t) =
# of individuals who experienced the event up t

total sample size

This function, that assumes the name of empirical distribution function is a
useful and simply way to summarize and display survival data. Its plot versus
the time t provides full information on the percentiles and the dispersion of
T (or of the data which we assume independent instances of T ), moreover it
is an aid in studying the shape of the distribution necessary in constructing
formal tests of hypotheses.
Another way is given by its complementary survival function Ŝ(t) also called
empirical survivor function:

Ŝ(t) = 1− F̂ (t).

Both F̂ and Ŝ do non take into account censoring. The Kaplan and Meier
estimator can account for censoring. As stated in the previous Section, the
main problem in using these functions is related to the presence of censoring.

The method proposed by Kaplan and Meier [45] is based on the condi-
tional probability. Suppose:

• t0 ≤ t1 ≤ . . . ≤ tj ≤ . . . ≤ tk ≤ t < tk+1 are different failure times in a
sample size of N individuals and tk+1 = +∞

• dj is the number of subjects who experience the event at time tj, j =
0, . . . , k

• mj is the number of censored subjects in the interval [tj, tj+1)

• rj = (dj + mj) + . . . + (dk + mk) is the number of subject at risk at a
time just prior to tj

The probability of failure at tj given that you are at risk before tj is

P[T ∗ = tj|T ∗ > tj−1] = F (tj)− F (t−j ) =
dj
rj
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and the Kaplan-Meier estimator of the survival probability beyond t is given
by

ŜKM(tk) = P(T ∗ > tk)

= P(T ∗ > tk ∩ T ∗ > tk−1 ∩ ... ∩ T ∗ > t1 ∩ T ∗ > t0)

= P(T ∗ > t1) ·
k∏
j=2

P(T ∗ > tj|T ∗ > tj−1)

=
k∏
j=1

[1− P(T ∗ = tj|T ∗ > tj−1)]

=
k∏
j=1

(
1− dj

rj

)
.

It has been proven that the Kaplan-Meier estimator, also in presence of
censoring, is consistent and asymptotically normal [13], and it is normally
distributed when no censoring occurs with distribution

SKM(t) ∼ N
(
S(t),

S(t)(1− S(t))

N

)
.

Moreover, it is shown that the KM estimator is also a non-paramteric maxi-
mum likelihood estimator [23].
Regardin the variance of ŜKM(t), it can be calculated using Greenwood’s
formula ([33], [44]). To obtain the large sample variance of the KM estima-
tor, we apply the delta method twice and use the logarithm of the survivor
function. The KM estimator can be rewritten as:

ŜKM(t) =
∏
tj<t

(1− λj)

where λj = dj/rj. Since λj is just a binomial proportions given the number
of subjects at risk rj, we can observe that

V[λj] ≈
λj(1− λj)

rj

Since ŜKM(t) is a function of λj, an estimator of its variance can be found
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using the Delta method twice on the logarithm of the ŜKM(t):

V̂[log(ŜKM(t))] =
∑
j:tj≤t

V[log(1− λj)]

=
∑
j:tj≤t

(
1

1− λj

)2

V[λj]

=
∑
j:tj≤t

(
1

1− λj

)2
λj(1− λj)

rj

=
∑
j:tj≤t

λj
(1− λj)rj

=
∑
j:tj≤t

dj
(rj − dj)rj

Now, considering ŜKM(t) = exp(log(ŜKM(t) and using the delta method
again, we obtain (see [33]):

V̂[ŜKM(t)] = [ŜKM(t)]2 · V̂[log(ŜKM(t))]

= [ŜKM(t)]2 ·
∑
j:tj≤t

dj
(rj − dj)rj

.

2.2.2 Parametric estimation

We consider the estimation of the survival data when one is willing to assume
a parametric form for the distribution of survival time T ∗. We can draft into
service distributions such that for Y ∈ R by considering T ∗ = eY , so that
Y = log T ∗ represents the log failure time. The exponential and the Weibull
distributions are used largely but other distributions can be used.

Exponential distribution

The Exponential distribution is used when the hazard function h(t) is con-
stant at h > 0. The instantaneous failure rate is independent of t, so that
the conditional chance of failure in a time interval of specified length is the
same regardless of how long the individual has been on study; this is referred
to as the memoryless property of the exponential distribution. It holds:

• the density f(t) = he−ht;

• the survivor function is S(t) =
∫ +∞
t

f(u)du = e−ht;

• the cumulative hazard function is given by H(t) =
∫ t

0
h(u)du = ht.
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Weibull distribution

The Weibull distribution is a two-parameter distribution and it is an impor-
tant generalization of the exponential distribution because allows for a power
dependence of the hazard on time. The hazard function is given by:

h(t) = hγ(ht)γ−1

for λ, γ > 0. This function is decreasing for γ < 1, increasing for γ > 1 and
reduces to the constant hazard (i.e. the Exponential distribution) if γ = 1.

• the density is f(t) = − d
dy
S(t) = γhtγ−1e−ht

γ
;

• the survivor function is S(t) = e−ht
γ
;

• the cumulative hazard is given by H(t) = htγ.

h is the scale parameter while γ is the shape parameter. The different hazard
shapes make the Weibull distribution more convenient.

2.3 Likelihood function for censored data

When the survival function S(·) is assumed to be of a specific parametric
form, estimation of the parameters of interest is often based on the maxi-
mum likelihood method.
Let T ∗ be a continuous random variable on [0,+∞) with cumulative distri-
bution function F (·). Assume that F (·) depends on a parameter ϑ belonging
to some sample space. Let C be a censoring random variable with cumulative
distribution function G(·). Furthermore, for i = 1, . . . , N , assume:

• T ∗1 , . . . , T
∗
N independent copies of T ∗, so that F (t) = P[T ∗i ≤ t]

• C1, . . . , CN independent copies of C

• Ti = min{T ∗i , Ci}

• δi = I(T ∗i ≤Ci)

Definition 6. A censoring mechanism is said to be non-informative or ran-
dom if

P(T ∗i > t|Ci = t) = P(T ∗i > t)

for each t > 0 and i = 1, . . . , N .
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Now, consider a patient i with complete observation at time ti,

{Ti = ti, δi = 1} = {T ∗i = ti, Ci > ti}

his contribution to the likelihood is given by:

lim
h→0

P(ti ≤ T ∗i < ti + h,Ci > ti)

h

= lim
h→0

P(ti ≤ T ∗i < ti + h)P(Ci > ti)

h
=f(ti)(1−Gi(ti)).

Similarly, if the patient i is censored at ti, his contribution to the likelihood
function is

g(ti)(1− Fi(ti)).

The contribution of the patient i to the likelihood is given by:

Li(ϑ) = [f(ti)(1−Gi(ti))]
δi [g(ti)(1− Fi(ti))]1−δi .

The overall likelihood is:

L(ϑ) =
n∏
i=1

Li(ϑ)

=
n∏
i=1

f(ti)
δi(1−Gi(ti))

δig(ti)
1−δi(1− Fi(ti))1−δi

=
n∏
i=1

f(ti)
δi(1− Fi(ti))1−δi × k

=
n∏
i=1

f(ti)
δiS(ti)

1−δi × k

where k is a multiplicative constant that can be ignored because depends on
G which does not depend on the parameter θ of interest.
Using the relation between S(·) and h(·) in the log-scale we have that the
log-likelihood for the censored data is given by:

logL(ϑ) =
n∑
i=1

(
δi log hi(ti;ϑ)−

∫ ti

0

hi(s;ϑ) ds

)
.

All subjects contribute to the log-likelihood through the cumulative hazard
function evaluated at the corresponding observed event time ti. The subjects
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who experienced the event additionally contribute an amount equal to the log
hazard function evaluated at ti. Once the log-likelihood has been formulated,
iterative optimization procedures (e.g. Newton-Raphson algorithm) can be
utilized to give the maximum likelihood estimates ϑ̂. Inference then proceeds
under the classical asymptotic maximum likelihood theory paradigm.

2.4 Failure Time Models

We have seen several survival distributions for modelling the survival experi-
ence of a population. However, the interest is usually on evaluating whether
and how failure time may depend on different explanatory variables. It there-
fore becomes of interest generalizing models to take into account information
on the patients. Considering a failure time T > 0 and supposing that a set
of covariates X is available for each patients, at baseline (t = 0) or relatively
little time before (qualitative and/or quantitative variables, e.g information
on treatment, biomarkers, age, and so on), we want to model the failure time
depending on X. The first aim is to evaluate the effect of some covariates
on T , but we include also covariates to account for heterogeneity among the
individuals.

2.4.1 Parametric regression model

The Exponential distribution can be generalized to obtain a regression model
where the failure rate is a function of a set of covariates X. If the failure
rate is assumed to be constant over time and depending on the covariates X,
then the hazard function at time t for an individual with covariate X can be
written as

h(t|X) = h0(X).

The h(·) function may be modelled through a linear combination β′X:

h(t|X) = h0c(β
′X)

where the vector β is the set of regression parameters that quantifies the effect
of each on the hazard, h0 here is a constant and c is a specified functional
form. There are different specific forms for c, and the most used is the form
c(s) = exp(s) for which the hazard function assumes the form:

h(t|X) = h0 exp(β′X)

and the conditional density function of T given X = x becomes:

f(t|x) = h exp(β′x) exp[−ht exp(β′x)].
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Analogously, hypothesizing a Weibull distribution for the hazard function,
we have that the conditional hazard given X:

h(t|X) = γ(h0t)
γ−1 exp(β′X)

and the conditional density is:

f(t|X) = h0γ(h0t)
γ−1 exp(β′X) exp[−(h0t)

γ exp(β′X)].

The forms of the previous regression models suggest two distinct general-
izations. First, the effect of the covariates is multiplicatively on the hazard
function and this relationship suggests a more general model called the Rel-
ative Risk Model or Cox Model. Second, both of these models are log-linear
models because the covariates have an addictive effect on Y = log(T ) and
we can obtain a more general class of log-linear models called the Accelerated
Failure Time Models (AFT). Next we describe briefly the Cox model to be
used in Chapter 3 and following, while the AFT, which is typically used when
it is assumed that the effect of the covariates is to accelerate or decelerate
the life course of the disease, is not further considered in this thesis.

2.4.2 Relative risk or Cox Model

Let h(t|X) represent the hazard function at time t for an individual with
covariates X collected at baseline (i.e. at t = 0). The relative risk model
[21] assumes that covariates have a multiplicative effect on the hazard for an
event, and it is defined as:

h(t|X) = lim
dt→0

P(t ≤ T ∗ < t+ ∆t|T ∗ ≥ t,X)

∆t

= h0(t) exp(β′X)

where h0(t) is an arbitrary unspecified baseline hazard function and corre-
sponds to the hazard function for a subject for whom β′X = 0. It’s obvious
that if h0(t) = h0 the model reduces to the exponential regression model,
while if h0(t) = h0γ(h0t)

γ−1 then the model is a Weibull model. The condi-
tional density function of T given X becomes:

f(t|X) = h0(t) exp(β′X) exp

[
− exp(β′X)

∫ t

0

h0(u)du

]
.

The estimation of all parameters in the model, that are the regression co-
efficients β and the parameters in the specification of the h0(t), proceeds



43

by maximizing the corresponding log-likelihood function. However, Cox [21]
showed that the estimation of the regression coefficients β can be based on
the partial log-likelihood function

pl =
n∑
i=1

δi

β′Xi − log

∑
Tj≥Ti

exp(β′Xj)


that does not require specification of h0(·), that is, without having to specify
the distribution of T ∗i . The relative risk model obtained without a specific
baseline function is a semi-parametric model because it does not make any
assumption for the distribution of the event times, but assumes that the
covariates have a multiplicative effect on the hazard rate. The maximum
partial likelihood estimators are found by solving the partial log-likelihood
score equations:

∂pl (β)

∂β
=

n∑
i=1

δi

(
Xi −

∑
Tj≥Ti Xj exp(β′Xj)∑
Tj≥Ti exp(β′Xj)

)
= 0.

The solution β̂ is consistent and asymptotically normally distributed with
mean β0 (i.e. the true values for the parameters in the vector) and variance
[E[I(β0)]]−1 (i.e. the inverse of the expected information matrix). Due to the
fact that the computation of the expectation requires knowledge of the cen-
soring distribution, standard error are typically estimated using the observed
information [I(β̂)]−1, where

I(β̂) = −
n∑
i=1

∂2pli(β)

∂β′∂β

∣∣∣∣
β=β̂

.

Extended model

The Cox model is very flexible for the fact that h0(·) is arbitrary and there are
two important generalizations. First, the baseline hazard function h0(t) can
be allowed to vary in specific subset of the data. Suppose that the population
is divided into r strata and that the hazard is not proportional among strata,
we can consider different hazard function for each stratum j = 1, . . . , r. For
each stratum j, the Cox model can be written as

hj(t|X) = h0 exp(β′Xj)
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where the baseline hazard function h0j can vary for each j = 1, . . . , r. It
is useful in case that some explanatory variable does not appear to have
multiplicative effect on the hazard. In fact, we can divide the range of such
variable into strata with only the remaining regression covariates contributing
to the exponential factor in the model.
The second generalization, treated in the next section, involves the time-
dependent covariates.

2.5 Survival analysis with time-varying co-

variates

So far we assumed that the hazard function h(·) depends only on covariates
measured at baseline and we assume that their values are constant during
the follow-up, however in many clinical studies the interest is to investi-
gate whether the change of the covariates (e.g. biomarkers) are related with
the hazard. These covariates, that can change over time, are called time-
dependent covariates and could be either external (also called exogenous) or
internal (also called endogenous) covariates. We need to set up some nota-
tions: let yi(t) denote the covariate vector at time t for the i-th subject, and
Yi(t) = {yi(s), 0 ≤ s < t} denotes the covariate history up to to time t for
subject i.

Definition 7. A covariate is called exogenous if the future path of the co-
variate up to any time t > s is not affected by the occurrence of an event at
time point s, more formally if

P(s ≤ T ∗i < s|T ∗i ≥ s,Yi(s)) = P(s ≤ T ∗i < s+ ds|T ∗i ≥ s,Yi(t)).

Examples of exogenous covariates are the time of the day or the season
of the year, rather than stochastic processes that are external to the subjects
under study. In general, an exogenous covariate is a predictable process,
meaning that its value at any time t is known infinitesimally before t. The
survival function conditional on the covariate path is given by:

Si(t|Yi(t)) = P(T ∗i > t|Yi(t))

= exp

(
−
∫ t

0

hi(s|Yi(s))ds
)
.

On the other hand, the endogenous covariates are the ones that do not satisfy
the definition 7, in particular, their existence is directly related to failure
status, they are measured with error and the complete history is not available
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(e.g. biomarkers, clinical parameters, ...). The first important feature of an
endogenous covariate is that it typically require the survival of the subject
for its existence: thus, if the failure event is death, the trajectory of the
biomarker carries direct information about the failure time. In particular,
provided that yi(t− ds) with ds→ 0 exists, the survival function satisfies

Si(t|Yi(t)) = P(T ∗i > t|Yi(t)) = 1

that is, clearly it is the certain event and failure of the subject at time s
involves the non-existence of the covariate at time t ≥ s. Moreover, a direct
consequence is that, contrary to exogenous covariates, the hazard function is
not directly related to a survival function (for more details, see [44], Section
6.3).
The second feature stays in the measurement error that primarily refers to
the biological variation induced by the patient, in fact we do not expect to
observe exactly the same value for an endogenous covariate if we measure the
patient twice in the same day. Finally, we can observed only measurements
that patient provides when he is visited, and not between these visit times.
An extension of the Cox Model (also known as the Andersen-Gill model, [5]),
allows to handle exogenous time-dependent covariates but is not suitable for
endogenous covariates.

hj(t|X) = h0j exp[β′X + αyi(t)]

As we can seen in the previous model, the time-dependent covariate yi(·) is
assumed to change value at each follow-up visits while it remains constant
in the time interval from this visit and the next. This approach deals the
longitudinal trajectory of the time-dependent covariate as a step-function
and postulates that the hazard for an event, at any time point t, is asso-
ciates with the extrapolated value of the covariate at the same time point.
This approach is obviously unrealistic for a endogenous covariate such as a
biomarker because this approach carries forward the last value, ignoring the
previous history. Moreover, the parameter estimates and their standard er-
rors can be severely biased [71]. Anyway, this approach remains one of the
most commonly used in clinical practice when the interest lies in the rela-
tionship between the longitudinal change of a covariate and the onset of an
event of interest.

2.6 Diagnostic

For failure time models, a multitude of diagnostics is available for model mis-
specification, outliers, influential points or others. In particular, two aspects
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must be investigated: the first regards the proportional hazard assumption
while the second regard the residual diagnostic as usually for regression mod-
els. As in the section on the Linear Mixed Model diagnostic in Chapter 1, in
the following sections there is a brief presentation of the techniques used to
assess the goodness-of-fit of the survival regression model.

2.6.1 Checking for Proportional Hazard assumption

As previous seen, the main assumption for the Cox models is that each covari-
ate has a multiplicative effect on the hazard function. Under this assumption
the survival or hazard curve under different levels of the same variable are
parallel i.e. that the proportional hazard assumption (PH) is verified.
There are several options for checking the assumption of proportional haz-
ards, mainly grouped into two categories. The first category includes different
graphical methods, the second one includes more formal goodness of fit tests.
For categorical variables, the methods are used to test the proportionality
among each level of the covariate of interest, in case of continuous variable to
check the proportional hazards assumption we need to categorize the variable
(e.g. using percentiles).

Graphical methods

Among the graphical methods, usually the following are adopted:

• plots of survival estimates for each level to check whether if the esti-
mated survival curves are fairly separated or converge or cross;

• plots of log[− log(Ŝ(t)] for each level against the log(t);

• plots of Schoenfeld residuals against time to check the absence of a
trend.

The first plot is basic and it is very exploratory while the second is one of
the most used and it is described below.
Considering a Cox model with a categorical covariate X we have:

h(t|X) = h0(t) exp(β′X)

then
S(t|X) = S0(t)exp(β′X)

By applying the logarithm to the previous equation, we obtain

log[S(t|X)] = log[S0(t)] · exp(β′X)
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that is a negative quantities. Then, applying the logarithm again to the
negative of the previous one, we obtain

log[− log[S(t|X)]] = log[− log[S0(t)]] + β′X

where we can see that the quantity β′X translates the survival curve up or
down for each level of X. Thus, to assess if the hazard at different time are
actually proportional to each other over time we can calculate the survival
curve for each level of X, compute the log[− log[Ŝ(t;X)]] and plot against
the logarithm of the time to see if they are parallel over the time. In case
of the multiple failure model we can fit several multiple model adjusting for
other covariates, one for each level of the variable for which we want to test
the PH assumption.
To assess the PH assumption is important because if the truth is non-PH
and we fit a PH model we must pay attention in the interpretation of the
results, in fact we are in some fashion estimating an average logarithm of the
hazard ratio. In case of PH assumption is not satisfied, possible solutions
could be the transformation of the covariate, doing a stratified analysis or
trying other models.

2.6.2 Residual diagnostic

In the survival context , residuals are somewhat different than for other types
of models, manly due to the censoring. In general we can identify three types
of residuals:

• generalized (Cox-Snell) [20];

• Schoenfeld [88];

• martingale.

Before defining the different types of residuals, it is necessary to recall the
cumulative hazard function H(·) seen in the section 2.1.
Let be Ti the survival time for the i-th individual and Si(·) the relative
survival function, then the transformed random variable Si(Ti) should have
a Uniform distribution on [0, 1], and hence

Hi(Ti) = − log[Si(Ti)] ∼ Exp(1)

In the next paragraphs we dwell on the Cox-Snell and martingale residuals.
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Generalized (Cox-Snell) Residuals

The implication of the last result is that if the model is correct, the esti-
mated cumulative hazard for each individual at the time of their death or
censoring, Ĥi(Ti), for i = 1, ..., n should be like a censored sample from a unit
Exponential distribution. Given the cumulative hazard function Ĥi(Ti|Xi),
the quantity

ri = Ĥi(Ti|Xi) = Ĥ0(Ti) exp(β′Xi), i = 1, ..., n

is called generalized or Cox-Snell residual for the i-th individual [20]. To
assess whether Cox-Snell residuals come from a unit Exponential distribution,
we plot the log[Ĥi(ri)] against log(ri) to obtain a straight line through the
origin with slope of 1. This type of residuals are mainly used to assess the
overall goodness-of-fit of the model.

Martingale Residuals

Martingale residuals are defined for the i-th individual as:

Mi = δi − Ĥi(Ti) = δi − Ĥ0(Ti) exp(β′Xi).

The residuals Mi can be viewed as the difference between the observed num-
ber of deaths (0 or 1) for each subject between time 0 and Ti and the expected
numbers based on the fitted model. Differently from the Cox-Snell residu-
als, martingale residuals are used to check the best functional form f(X)
of the covariates in the model. To find the best transformation of X, we
need to plot the martingale residual against the covariate for which we want
to assess the functional form and overlay this with a smoothed curve (e.g.
LOWESS): this curve should suggest the transformation of X. In this way, if
the plot is linear we do not transform the covariate, if there is a threshold we
can discretize the variable, if it assumes other forms we can try with other
transformations.

2.7 Summary of chapter

In this chapter there is a brief review of the most widely used techniques to
analyse time-to-event data. This chapter, like the previous one, introduces
basic concepts necessary for the definition of the Joint Model. In particular,
parametric models and the Cox proportional hazards model are described for
the analysis of survival data.



49

Chapter 3

Joint Modelling

Personalized medicine has gained more interest in the last years; however
tools that help clinicians to monitor the history of patient are still not
widespread and used. Repeated measures of clinical and lab exams are al-
ways collected in hospital database but rarely are used in order to improve
prediction of patients’ prognosis. The main goal of this research is to show
how the longitudinal variation of some biomarkers (e.g. systolic blood pres-
sure, haemoglobin, heart rate, . . . ) that are endogenous variables, could be
informative to predict the event of interest (e.g. death) while the most pop-
ular Cox model in Chapter 2 uses only the measurements at the baseline or
fixed at some time point (see also its generalization in Section 2.5 which in-
cludes time varying biomarkers, even if it is affected by the bias in presence of
endogenous time-varying covariates). The Joint Model (JM) for longitudinal
and time-to-event data allows the study of the association structure between
several measured biomarkers collected over a series of visits and time until an
event of interest occurs. We are interested in deriving a dynamic individual-
ized prediction of the either longitudinal and survival process based on JMs.
This section starts with a naive approach upon which we want to improve a
naive approach to the problem.

3.1 A naive two-stage model

In the survival analysis with a time-varying covariate, seen in the Chapter 2,
we are assuming that the longitudinal covariate is observed error-free and
its value changes only at each observation time point. When we model the
longitudinal trajectory of a biomarker using a linear mixed model, we are
creating a model for the response at each follow-up visit. In a JM instead of
using the observed biomarker values, in the first stage we fit a linear mixed
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model and use it in order to obtain subject-specific predictions of the true
and unobserved values to be used in the second stage as if they were the the
longitudinal response at the observation times. In practice, for each subject
i = 1, ..., N we define a linear mixed model for the longitudinal response as
follows

Yi(t) = mi(t) + εi(t)

with εi(t) ∼ N (0, σ2) and

mi(t) = β′Xi(t) + b′iZi(t)

in the notation of Chapter 1. We obtain the subject-specific predictions m̂i(t)
and use these in the second stage as time-varying covariate in the next model:

hi(t|X) = h0 exp[γ′Wi + αm̂i(t)].

As in the case of survival analysis with time-varying covariates, also in this
case we are still assuming the longitudinal values, collected at each subse-
quent visit, do not change between measurement time-points. This remains
always unrealistic. Moreover the uncertainty in the estimates from the first
stage is not carried through to the second stage.
Certainly this approach is good in term of computational efficiency and quite
simple to use, moreover reduces the bias of the association parameters α in
comparison with a time-varying Cox model. However, it is not as optimal as
modelling both the longitudinal and survival process simultaneously. There
are at least two issues: firstly, the uncertainty in the estimates from the first
stage is not carry through to the second stage [99]; secondly, we do not keep
into account the change of value of the longitudinal outcome between each
visit.

3.2 The Joint Model formulation

Let N be the number of subjects and let DN = {Ti, δi,Yi(t); i = 1, . . . , N}
denote a sample from the target population, where Ti = min(T ∗i , Ci) is the
observed event time for the i-th subject, with T ∗i being the random variable
of the failure times and Ci a non-negative censoring variable. In addition
to observing Ti we also get to see the event indicator δi = I(T ∗i ≤ Ci). We
focus on the endogenous time-dependent covariate Yi = {yi(s), 0 ≤ s ≤
t} where Yi(t) is the vector of ni observed repeated measurements yi of
a biomarker collected up time t for the i-th subject. As in the previous
section and in the application in Chapter 5 and 6, we assume that Yi(t)
is univariate, while the generalisation to the multivariate case is treated in



51

Section 3.6. In particular, we note that for the subject i the number of
observations ni could not be set a priori, and neither the time points tij,
j = 1, . . . , ni. Furthermore, we might not observe yi(s) at each predefined
time point 0 ≤ s ≤ tni but only in which occasion when the measurement
was taken. Thus, for the i-th subject, the observed longitudinal trajectory
consists of the measurements Yij = {yi(tij), j = 1, . . . , ni}. The Joint Model
formulation can be decomposed in a two sub-models to be estimated jointly.

3.2.1 Survival sub-model

Firstly, we define a relative risk model in order to assess the relationship
between a set of covariates, including the longitudinal marker, and the risk
of an event of interest. In particular we define a set of covariates as made
of both the Wi design matrix of baseline covariates and the value mi(t) that
denotes the true and unobserved value of the longitudinal marker at time (t).
Let’s define a relative risk model for subject i

hi(t|Mi(t),Wi) = lim
∆t→0

P(t ≤ T ∗i < t+ δt|T ∗i ≥ t,Mi(t),Wi)

δt

= h0(t) exp(γ′Wi + αmi(t))

(3.1)

where Mi = {mi(s), 0 ≤ s < t} is the whole longitudinal and unobserved
trajectory, while mi(t) is a time-varying covariate. Finally, γ is a vector of
regression coefficients for each covariate in Wi (i.e. it contains the log-hazard
ratios for one unit increase in the relative covariate) while parameter α quan-
tifies the effect of the underlying longitudinal response to the risk for an event
and it should be interpreted as relative increase in the risk for an event at
time t that results from one unit increase in mi(t) at the same time point.
In the model 3.1 we can observe that the risk for an event at time t depends
only on the current value of the time-dependent marker mi(t). Only observ-
ing the survival function we can note that the whole history of longitudinal
response influences the survival function:

Si(t|Mi(t),Wi) = P(T ∗i > t|Mi(t),Wi)

= exp

(
−
∫ t

0

h0(s)exp{γWi + αmi(s)}ds
)
.

This fact is very important in the phase of the estimation of the joint model
because the survival function is a part of the likelihood of the model in anal-
ogy to what we saw in Chapter 2. Unlike the Cox model, in the joint model
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formulation the baseline hazard function h0(t) needs to be explicit in order
to avoid underestimation of the standard errors of the parameter estimates
([40]. Usually, a way is given by the use of a risk function corresponding to
a known parametric distribution (e.g. Weibull, log-normal or Gamma). We
can choose a parametric but flexible specification of the baseline risk function
using a piecewise-constant or regression splines approaches (for more details
see [80]).

3.2.2 Longitudinal sub-model

We have seen that in the survival sub-model there is a time-dependent co-
variate mi(t) denoting the true and unobserved value of the longitudinal
response at time point t. Because the longitudinal information is collected
intermittently at specific occasions tij and moreover it is collected with a
measurement error, we need to estimate mi(t) and successfully reconstruct
the complete longitudinal history Mi(t) for each subject. To accomplish this
we define a mixed-effects model in order to describe not so much the average
longitudinal profile for the sample but the subject-specific trajectory for the
response of interest. The following mixed model is developed for a normally
distributed longitudinal outcomes, but generalizations to other model are
possible [57]. Using a similar notation as in Chapter 1, we have:

Yi(t) = mi(t) + εi(t)

mi(t) = β′Xi(t) + b′iZi(t)

εi(t) ∼ Nni(0,Σi)

bi ∼ Nq(0, D)

b1, .., bq, ε1, .., εni independent

(3.2)

where Yi is the vector of ni observed repeated measurements for subject i, Xi

and Zi are (ni×p) and (ni×q) dimensional matrices of known covariates, β is
a p-dimensional vector containing the fixed (i.e. population-specific) effects,
bi is the q-dimensional vector containing the random (i.e. subject-specific)
effects and εi is a ni-dimensional vector of residual components. Finally, D
and Σi are the covariance matrices. In our case, for each subject i, Xi con-
tains the fixed intercept and time while Zi the random intercept and time.
No other covariates are included in the model 3.2 even if it may be possible.
The mixed model accounts for the measurement error (see Section 2.5) pos-
tulating that the observed level of the longitudinal outcome Yi(t) equals the
true level mi(t) plus a random error term, moreover using the random inter-
cept and slope for the time effect we can reconstruct the complete path of
the time-dependent process Mi(t).
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As already seen, the survival function depends on the whole history of the
true marker levels Mi(t), and therefore, for an accurate estimation of Si(t) it is
important to obtain a good estimate of the longitudinal trajectory. Therefore,
it becomes very important to develop an elaborate specification of the time
structure both in the fixed part Xi(t) and subject-specific part Zi(t). Several
structures have been developed for this aim: for example, in applications in
which subjects show highly non-linear longitudinal trajectories, it is advisable
to consider flexible representations for the time variable using polynomials
structures or splines [24].

3.3 ML estimation of fixed effects

Two methods were manly proposed in order to estimate the parameters of
the joint model: the first approach, treated in this section, consists of a
semi-parametric maximum likelihood [40][38][113], the second method in-
volves Bayesian techniques with MCMC [18][14][112][114]. A further third
approach is implemented by Tsiatis and Davidian [102] that proposed a con-
ditional score approach in which the random effects are treated as nuisance
parameters. In the next sections the first two approaches are explored, in
particular the maximum likelihood estimation when we are interested in a
single longitudinal trajectory while the Bayesian approach when we have two
or more longitudinal response.

3.3.1 Semi-parametric ML estimation

Maximum likelihood estimation for joint models is based on the maximization
of the log-likelihood corresponding to the joint distribution of the time-to-
event {Ti, δi} and longitudinal outcomes {Yi} in 3.2. We assume that the
vector of time-independent random effects bi is underlying both the longi-
tudinal and survival processes. In other words, the random effects enclose
the association between the longitudinal response and event of interest, in
addition to the correlation between the repeated measurements on the same
subject in the longitudinal process (conditional independence) as seen with
the Linear Mixed Model.
Following we use the standard notation for which p(A) and p(A|B) is the
probability density function of a random variable A and of A given B re-
specively.
Combining the two models 3.1 and 3.2, we can define a model for their joint
distribution as follows.
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Theorem 2. Let bi the random variable for the random effects of a linear
mixed model for the longitudinal data Yi, and let Ti and δi be two random
variables which define the survival time for the subject i = 1, . . . , N . The
joint distribution of Ti, δi and Yi, given bi is

p(Ti, δi, Yi|bi;ϑ) = p(Ti, δi|bi;ϑ)p(Yi|bi;ϑ)

where:
p(Ti, δi|bi;ϑ) = p(Ti)

δi S(Ti)
1−δi

p(Yi|bi;ϑ) =

ni∏
j

p(yi(tij)|bi;ϑ)

and ϑ = (ϑTt , ϑ
T
y , ϑ

T
b ) denotes the whole parameter vector made of the compo-

nents parameters for the time-to-event, longitudinal and random-effects co-
variance matrix respectively, while ni is the number of repeated measurements
for the i-th subject.

This situation in which the vector of subject-specific random effects bi
explains all interdependencies is referred to as full conditional independence.
In fact, given bi the longitudinal outcome is independent of the time-to-event
outcome and also the repeated measurements in the longitudinal outcome
are independent of each other.
Other two assumptions regard the censoring and visiting processes that are
assumed non-informative. In other words, decisions to withdraw from the
study or to turn up for the next visit may depend on observed past history up
to time t but there is no additional dependence on underlying, latent subject
characteristics associated with prognosis. When either of the two processes
depends on the random effect bi we have a violations of these assumptions,
however evaluating the non-informativeness of the two processes requires
external information on the study sector, because the data do not contain
enough information on this.
Under these assumptions, we can define the log-likelihood contribution for

the i-th subject by integrating out the random effect as follows :

lML(ϑ;Ti, δi, Yi) = log p(Ti, δi, Yi;ϑ)

= log

∫
p(Ti, δi, Yi, bi;ϑ) dbi

= log

∫
p(Ti, δi|bi;ϑt, β)p(Yi|bi;ϑy)p(bi;ϑb) dbi
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The first factor under the integral sign regards the conditional density of the
survival time defined by the random variables Ti and δi. It depends on the
whole longitudinal history and takes the following form:

p(Ti, δi|bi;ϑt, β) =hi(Ti|Mi(Ti);ϑt, β)δi · Si(Ti|Mi(Ti);ϑt, β)1−δi

= [h0(Ti) exp(γ′Wi + αmi(Ti))]
δi ·

· exp

(
−
∫ Ti

0

h0(s) exp(γTWi + αmi(s)) ds

)
where h0(·) can be any positive function of time as seen in Chapter 2. Be-
cause the true unobserved value of the longitudinal response mi(·) is also
estimated from the longitudinal sub-model (represented by β), particular
attention must be paid to the definition of the mixed model. A model mis-
specification may determine a biased estimate of the association parameter
α (see [80] for further details).
The joint density for the longitudinal response together with the random
effects is given by:

p(Yi|bi;ϑy)p(bi;ϑb) =
∏
j

p(yi(tij)|bi;ϑy)p(bi;ϑb)

=(2πσ2)−
ni
2 exp

(
−(Yi −Xiβ − Zibi)T (Yi −Xiβ − Zibi)

2σ2

)
·

· (2π)−
qb
2 |D|−

1
2 exp

(
−b

T
i D
−1bi

2

)
where qb denotes the dimensionality of the random-effects vector (see Sec-

tion 1.6). p(·) is a density function and S(·) is a survival function.

Maximization of the log-likelihood function with respect to ϑ is a com-
putationally challenging task. This is mainly because both the integral
with respect to the random effects, and the integral in the definition of the
survival function do not have an analytical solution, except in rare cases.
Standard numerical integration techniques such as Gaussian quadrature and
Monte Carlo have been successfully applied in the joint modelling frame-
work [95][38][113]. Furthermore, Rizopoulos, Verbeke, and Lesaffre [77] have
recently discussed the use of Laplace approximations for joint models, that
can be especially useful in high-dimensional random effects settings (e.g.,
when splines are used in the random effects design matrix). For the maxi-
mization of the approximated log-likelihood the Expectation-Maximization
(EM) algorithm has been traditionally used in which the random effects are
treated as ‘missing data’. The main motivation for using this algorithm is the
closed-form M-step updates for certain parameters of the joint model. How-
ever, a serious drawback of the EM algorithm is its linear convergence rate
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that results in slow convergence especially near the maximum. Nonetheless,
Rizopoulos et al. [77] have noted that a direct maximization of the observed
data log-likelihood, using for instance, a quasi-Newton algorithm [50], re-
quires very similar computations to the EM algorithm. Therefore hybrid
optimization approaches that start with EM and then continue with direct
maximization can be easily employed.

The score function assumes the following form:

Uϑ =
∑
i

∂

∂ϑT
log

∫
p(Ti, δi|bi;ϑ)p(Yi|bi;ϑ)p(bi;ϑ) dbi

=
∑
i

1

p(Ti, δi, Yi;ϑ)

∂

∂ϑT

∫
p(Ti, δi|bi;ϑ)p(Yi|bi;ϑ)p(bi;ϑ) dbi

=
∑
i

1

p(Ti, δi, Yi;ϑ)

∫
∂

∂ϑT
[p(Ti, δi|bi;ϑ)p(Yi|bi;ϑ)p(bi;ϑ)] dbi

=
∑
i

1

p(Ti, δi, Yi;ϑ)

∫
∂

∂ϑT
A(ϑ) dbi

=
∑
i

1

p(Ti, δi, Yi;ϑ)

∫ [
∂

∂ϑT
logA(ϑ)

]
A(ϑ) dbi

=
∑
i

∫ [
∂

∂ϑT
logA(ϑ)

]
A(ϑ)

p(Ti, δi, Yi;ϑ)
dbi

=
∑
i

∫ [
∂

∂ϑT
log p(Ti, δi|bi;ϑ)p(Yi|bi;ϑ)p(bi;ϑ)

]
p(Ti, δi|bi;ϑ)p(Yi|bi;ϑ)p(bi;ϑ)

p(Ti, δi, Yi;ϑ)
dbi

=
∑
i

∫ [
∂

∂ϑT
log p(Ti, δi|bi;ϑ)p(Yi|bi;ϑ)p(bi;ϑ)

]
p(bi|Ti, δi, Yi;ϑ) dbi

=
∑
i

∫
C(ϑ, bi)p(bi|Ti, δi, Yi;ϑ) dbi

where

C(ϑ, bi) =
∂

∂ϑT
log p(Ti, δi|bi;ϑ)p(Yi|bi;ϑ)p(bi;ϑ)

=
∂

∂ϑT
log p(Ti, δi, Yi, bi;ϑ)

is the complete score function. Hence, the observed score function Uϑ is ex-
pressed as the expected value of the complete score function with respect to
the posterior distribution of the random effects p(bi|Ti, δi, Yi;ϑ).
If the score equation is solved with respect to ϑ, with p(bi|Ti, δi, Yi;ϑ) fixed
at the ϑ value of the previous iteration, then this corresponds to an EM
algorithm, whereas if the score equation is solved with respect to ϑ and con-
sidering p(bi|Ti, δi, Yi;ϑ) also a function of ϑ, then this corresponds to a direct
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maximization of the log-likelihood log p(Ti, δi, Yi;ϑ). More details regarding
the specification of the steps of the EM algorithm for joint models are given
in Rizopoulos [80] Appendix B.
This last fact also facilitates a straightforward calculation of the standard er-
rors for the parameter estimates. In particular, even if we have estimated the
joint model using the EM algorithm, we can easily make use of the observed
score function to calculate the Hessian matrix and subsequently standard
errors using the observed information matrix. Using similar computations as
seen above in the derivation of the Uϑ, we can rewrite the Hessian matrix in
the following form:

∂Ui(ϑ)

∂ϑ
=

∂

∂ϑ

∫
C(ϑ, bi)p(bi|Ti, δi, Yi;ϑ) dbi

=

∫
∂C(ϑ, bi)

∂ϑ
p(bi|Ti, δi, Yi;ϑ) + C(ϑ, bi)

∂p(bi|Ti, δi, Yi;ϑ)

∂ϑ
dbi

=

∫
∂C(ϑ, bi)

∂ϑ
p(bi|Ti, δi, Yi;ϑ) dbi +

∫
C(ϑ, bi)

∂p(bi|Ti, δi, Yi;ϑ)

∂ϑ
dbi

The asymptotic MLE for the variance of the parameter estimates is given
below. It is based on the estimated observed information matrix, not on the
expected, due to the drop-out caused by the occurrence of the events:

ˆV(ϑ) = I(ϑ̂)
−1

=

(
−

n∑
i=1

∂Ui(ϑ)

∂ϑ

∣∣∣∣∣
ϑ=ϑ̂

)−1

=

(
−

n∑
i=1

∂2 log p(Ti, δi, Yi;ϑ)

∂ϑT∂ϑ

∣∣∣∣∣
ϑ=ϑ̂

)−1

.

In general, this is valid unless the baseline risk function for the survival part
is unspecified. While in the Cox model the standard errors and inference for
the regression coefficients enjoy nice asymptotic properties similar to those
of asymptotic maximum likelihood theory, even not having specified an ap-
propriate baseline risk function [5], under the joint modelling framework this
feature can not carry over [80]. The main problem is relative to the high
dimension of the parameter vector ϑ and the need for techniques as Boot-
strapping [29] that require an high computational effort.
A feasible alternative is to postulate a flexible but parametric model for
the baseline hazard function h0(t), with particular reference to splines or
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a piecewise-constant model. This approach leads at least two advantages:
first, these models can be made arbitrarily flexible by increasing the num-
ber of knots, and thus capture various shapes of baseline hazard function,
and second, under such models, estimation of standard errors directly follows
from asymptotic maximum likelihood theory [22].

3.3.2 Asymptotic inference

Having fitted the joint model under a maximum likelihood framework, the
standard asymptotic likelihood inference tests are directly available. In gen-
eral, if we are interested in testing the null hypothesis{

H0 : ϑ = ϑ0

Ha : ϑ 6= ϑ0

we could use a:

• Likelihood Ratio Test.

LRT = −2ln

[
LML(ϑ̂0)

LML(ϑ̂)

]
−→ χ2

df

where LML(ϑ̂0) is the maximum likelihood function evaluated under
the null (ϑ̂0) and alternative hypothesis (ϑ̂) respectively.

• Score Test.

U = Uϑ(ϑ̂0)T I(ϑ̂0)
−1
Uϑ(ϑ̂0) −→ χ2

df

• Wald Test.

W = (ϑ̂− ϑ0)T I(ϑ̂0)
−1

(ϑ̂− ϑ0) −→ χ2
df

that, under H0, all tests follow asymptotically a chi-squared distribution with
df equal to the difference in number of parameters between two models. If
only one parameter is tested, the Wald test has the following form:

W =
ϑ̂j − ϑ0j

ˆse(ϑj)
−→ N (0, 1)

These test statistics are asymptotically equivalent. However, when we are
dealing with finite samples, they usually differ. In this case, the likelihood
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ratio test is generally considered the most reliable and the Wald test the
least reliable. The score and Wald test require fitting the model only under
the null and alternative hypotheses, respectively, whereas the likelihood ratio
test is a bit more computationally expensive because requires to fit the joint
model under both hypothesis. If there are missing data in the variable we
are interested to test for, then the score test will be more efficient since it
requires fitting the model only under the null and therefore, avoids a case-
wise deletion of missing values (i.e., excluding subjects who have a missing
value in the variable of interest).
As seen in Section 1.5.1, a problem with the Wald test for testing the fixed

effects in the linear mixed sub-model is that it is based on standard errors
which underestimate the true variability in β̂ because they do not take into
account the variability introduced by estimating the covariance matrix for the
random effects [27]. For this reason, typically an approximate F distribution
with appropriate degrees of freedom (see Section 1.5.1). In joint models this
problem could be exacerbated because we do not only ignore the fact that
we estimate the variance components, but also that we need to estimate
the survival process. Asymptotically, we expect that the Wald statistic will
follow the claimed chi-squared distribution, but in finite samples there has not
been much work in the joint modelling literature to investigate its properties.
Therefore, it is generally advisable to prefer likelihood ratio tests even though
they are more computationally expensive.
All three tests are only appropriate for the comparison of two nested models.

When interest lies in comparing non-nested models, information criteria are
typically used. The main idea behind these criteria is to compare two models
based on their maximized log-likelihood value, but to penalize for the use of
too many parameters. The two most commonly used information criteria are
the Akaike’s Information Criterion (AIC) [2] and the Bayesian Information
Criterion (BIC) [89]. As already seen in Section 1.5.3, the two indices are
the following:

AIC = −2l(ϑ̂) + 2p

BIC = −2l(ϑ̂) + p logN

where p denotes the number of the parameters in the model. The BIC ap-
plies a greater penalty for the models with more parameters than does the
AIC, because it multiplies the number of parameters fitting with the natural
logarithm of the number of total observation used. In general, the choice
of the model follows the rule “smaller is better”, however they do not al-
ways agree. AIC tends to select more elaborate models than BIC due to the
fact that the latter penalizes much more heavily for the complexity of the
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model. An additional important issue arises when we are interested in testing
whether an extra random effect should be included in the joint model. This
in fact corresponds to increasing the dimensionality of the random effects
design matrix D with extra variance components. In this case the model
under the null hypothesis is obtained by setting some of the elements of D
to zero in the full model. At least one of these elements is always an element
in the diagonal of D (i.e., a variance parameter), meaning that under the
null some parameters are set to a value on the boundary of their parameter
space. The problem under this setting is that the classical maximum likeli-
hood asymptotic arguments do not apply to boundary cases. In particular,
some work on this topic in the linear mixed models framework by Stram and
Lee [97] following the results of Self and Liang [90], and later by Verbeke
and Molenberghs [109] and [58] has shown that all three tests statistics we
have seen above do not follow the claimed χ2

p distribution under the null. As
an alternative, it has been suggested to use mixtures of chi-squared distribu-
tions with appropriately chosen degrees of freedom. However, Greven et al.
[34] have demonstrated that even this choice could be rather conservative in
some settings, and they have instead proposed a simulation based approach
to approximate the distribution of the likelihood ratio test statistic under the
null. Within the joint modelling framework there has not been much work
about this issue. As a practical guideline we would suggest using a higher
type I error rate, e.g., 10% to 15%, to guarantee that we do not oversimplify
the random-effects structure of the posited joint model.

3.4 Estimation of the random effects

In the context of precision medicine, the interest lies in deriving patient-
specific predictions for one or both longitudinal and survival outcomes. To
derive such predictions, an estimate of the random effects vector bi is re-
quired. In the Linear Mixed Model we have assumed random effects bi follow
a normal distribution N (0, D) and their estimation has a close-form solu-
tion. However, in joint model the distribution of random effects plays a more
prominent role because the random effects explain all interdependencies, in
fact its expresses the correlation among repeated measurements on the same
subject and the association between the longitudinal process and the survival
outcome. Random effects are estimated using the Bayesian paradigm.

Proposition 1. In particular, assuming that p(bi;ϑ) is the prior distribu-
tion, and that p(Ti, δi|bi;ϑ)p(Yi|bi;ϑ) is the conditional likelihood part, we
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can derive the corresponding posterior distribution:

p(bi|Ti, δi, Yi;ϑ) =
p(Ti, δi|bi;ϑ)p(Yi|bi;ϑ)p(bi;ϑ)

p(Ti, δi, Yi;ϑ)

∝ p(Ti, δi|bi;ϑ)p(Yi|bi;ϑ)p(bi;ϑ)

In joint models it does not have a closed-form solution and it has to be
numerically computed. However, as the number of longitudinal measure-
ments ni increases, this distribution converges to a normal distribution as
happened with the linear mixed models. To describe this posterior distribu-
tion an empirical Bayes approach is employed and requires replacing ϑ with
its estimate ϑ̂. Derived indexes of location are the posterior mean

b̄i =

∫
bip(bi|Ti, δi, Yi;ϑ) dbi

and the posterior mode

b̂i = argmax
b

[log p(bi|Ti, δi, Yi;ϑ)]

while its dispersion is defined in term of posterior variance

V(bi) =

∫
(bi − b̄i)2p(bi|Ti, δi, Yi;ϑ) dbi

or inverse Hessian matrix

Hi =

(
−∂

2 log p(b|Ti, δi, Yi;ϑ)

∂bT∂b

∣∣∣∣
b=b̂i

)−1

3.5 Bayesian Joint Model estimation

The maximum likelihood (ML) approach has been described in the sec-
tion 3.3.1. Another approach to estimate the parameters of Joint Model
is using Bayesian techniques. In this case, the estimation of the joint model’s
parameters proceeds using Markov chain Monte Carlo (MCMC) algorithms.
As in the ML approach, the expression for the posterior distribution of the
model parameters is derived under the assumptions of full conditional in-
dependence of the longitudinal and survival parts given the random effects
(see Section 3.3.1), both the longitudinal and event time process are assumed
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independent, and the longitudinal responses of each subject are assumed in-
dependent. As previous defined, the likelihood function for the i-th subject
is given by:

p(Ti, δi, Yi|bi,Θ) = p(Ti, δi|bi,Θ)

ni∏
j

p(yij|bi,Θ)

where Θ is a random variable that denotes the full parameter vector, and
p(·) is an appropriate probability density function (see Section 3.3.1). Under
this assumptions, the posterior distribution is given by:

p(Θ, b) ∝
n∏
i

p(Ti, δi|bi,Θ)

ni∏
j

p(yij|bi,Θ)p(bi|Θ)p(Θ)

For Θ, we usually take standard prior distributions. In particular, for the
fixed effects of longitudinal submodel, for the regression parameters of the
survival sub-model and for the association parameter between longitudinal
and survival parts α, we use independent univariate normal priors. This point
derives from the fact that subjects are assumed to be independent of each
other. However, even if it is not the case of this thesis, it could happen that
there are some clusters where the subjects are much more related than oth-
ers. For example, in case the subjects are enrolled from different hospital, or
different departments within the same hospital, the subjects within the same
cluster could be more similar than subjects coming from two different groups
for treatment, severity or other clinical aspects. In these cases, it could be
better to assume different priors for each center or, as more commonly done,
to manage the interdependencies by including the cluster variable among the
fixed effects in the model.
As for the model under the maximum likelihood approach, particular atten-
tion must be paid to the specification of the models for the longitudinal and
survival submodels which can produce biased estimates of the coefficients.
The bayesian approach meets less problem of convergence of ML estimation,
even if it is computationally more expensive, because involves many itera-
tion of the MCMC algorithms. However, when interest lies in considering
several longitudinal trajectories simultaneously, we need a multivariate joint
model that works under bayesian approach as we will briefly see in the next
section 3.6.

3.6 Multivariate Joint Model

In clinical research, and in particular in precision medicine, the interest lies
in developing an algorithm that adapts to the characteristics of each pa-
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tient. In this way, an obviously extension of the Joint Model is given by
the possibility to follow the patients by studying more than one longitudi-
nal outcome. Moreover, it is not excluded that these can be modelled by
distributions other than the Gaussian (Binomial, Poisson, . . . ) by using an
appropriate generalized linear mixed model. Extending to a multivariate case
with K longitudinal trajectories is mathematically straightforward. Formally
we have: {

gk(E[Yki|bki]) = ηki(t) = XT
ki(t)βk + ZT

ki(t)bki

hi(t) = h0(t) exp
(
γTWi +

∑K
k=1 αkηki(t)

)
where the first row gives a multivariate generalized linear model, gk(·) de-
notes a known one-to-one monotonic link function, and the second row is a
survival model with K association parameters α1, ..., αk that link each lon-
gitudinal outcome with the survival process. However, with the increase of
longitudinal outcomes, the number of random effects bki to estimate grows
considerably and standard methods of estimation become computationally
prohibitive both under Maximum Likelihood and under Bayesian context.
A two-stage approach is been proposed to overcome these problems (see [56]).
Joint Models with Multiple Longitudinal Outcomes and a Time-to-Event
Outcome): in the first stage we fit the longitudinal outcomes using a multi-
variate mixed model and the output of this model is used to fit a survival sub-
model in the second stage. However, as seen in the Section 3.1 some papers
have shown that this approach returns in biased estimates [103] [80] [115].
In a paper of 2019 presented below, Rizopoulos proposes a bayesian adapta-
tion of the two-stage approach using a correction factor based on importance
sampling theory [72] to remove the bias and reduce the computational time.
In fact, importance sampling allows the use of a sample generated from a
different distribution than the distribution of interest and adjust it through
weights to look like a sample from the distribution of interest.

3.6.1 Corrected two-stage approach

The two-stage approach is an intuitive and the most often use solution to
overcome the too expensive computational cost of fitting the full multivariate
joint model. It moves on a Bayesian framework, following Rizopoulos [56] we
describe the two-stage as follows.

Stage I

We fit a multivariate mixed model for the longitudinal outcomes using either
MCMC or HMC, and we obtain a sample {ϑ(m)

y , b(m);m = 1, ...,M} of size
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M from the posterior,

p(ϑy, b|Y ) ∝
n∏
i=1

K∏
k=1

nki∏
j=1

p(Ykj|bki, ϑ) p(bki|ϑ) p(ϑy)

where ϑy denotes the subset of the parameters that are included in the def-
inition of the longitudinal sub-models (including the parameters in the dis-
tribution of the random effects).

Stage II

Using the sample from Stage I, we obtain a sample for the parameters of the
survival sub-model {ϑ(m)

t ;m = 1, ...,M} from the corresponding posterior
distribution,

p(ϑt|T, δ, ϑ(m)
y , b(m)) ∝

n∏
i=1

p(Ti, δi|ϑt, b(m)
i , ϑ(m)

y ) p(ϑt)

where ϑt denotes the subset of the parameters that are included in the defi-
nition of the survival sub-model.

Even if this two stage procedure entails the same number of iterations as the
full Bayesian estimation of the multivariate joint model, the computational
benefits derive from the fact that we do not need to numerically integrate
the survival sub-model density function in Stage I. However, as already men-
tioned, this approach results in biased estimates and requires a correction
factor.

Importance sampling correction

To handle this problem, Rizopoulos [56] propose the correction of the es-
timates obtained from the two-stage approach using importance sampling
weights [72].

The realizations {ϑ(m)
t , ϑ

(m)
y , b(m);m = 1, ...,M} obtained with the two-stage

approach can be considered a weighted sample from the full posterior distri-
bution of the multivariate joint model with weights given by:

w(m) =
p(ϑ

(m)
t |T, δ, ϑ

(m)
y , b(m)) p(ϑ

(m)
y , b(m)|Y, T, δ)

p(ϑ
(m)
t |T, δ, ϑ

(m)
y , b(m)) p(ϑ

(m)
y , b(m)|Y )

where the numerator is given by the posterior distribution of the multivariate
joint model, while the denominator is the product of the posterior distribu-
tions from each of the two stages.
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We can observe that the difference between fitting the full joint model versus
the two-stage approach comes from the second term in the numerator and
denominator. By expanding these two terms we obtain:

w(m) =
p(ϑ

(m)
y , b(m)|Y, T, δ)
p(ϑ

(m)
y , b(m)|Y )

∝
∏

i p(Yi|b
(m)
i , ϑ

(m)
y ) p(Ti, δi|b(m)

i , ϑ
(m)
y ) p(b

(m)
i |ϑ

(m)
y ) p(ϑ

(m)
y )∏

i p(Yi|b
(m)
i , ϑ

(m)
y ) p(b

(m)
i |ϑ

(m)
y ) p(ϑ

(m)
y )

=
∏
i

p(Ti, δi|b(m)
i , ϑ(m)

y )

=
∏
i

∫
p(Ti, δi|b(m)

i , ϑ(m)
y , ϑt) dϑt = $(m)

To calculate $(m) we need to resolve the integral by using a Laplace approx-
imation:

$(m) =
∏
i

∫
p(Ti, δi|b(m)

i , ϑ(m)
y , ϑt) dϑt

≈ p(Ti, δi|b(m)
i , ϑ

(m)
y , ϑ̂

(m)
t )

(2π)−
q
2 |Σ̂(m)| 12

where q denotes the dimensionality of the ϑt vector,

ϑ̂
(m)
t = argmax

ϑt

[log(p(Ti, δi|b(m)
i , ϑ(m)

y , ϑt))]

and

|Σ̂(m)| =

∣∣∣∣∣−∂2 log(p(Ti, δi|b(m)
i , ϑ

(m)
y , ϑt))

∂ϑTt ∂ϑt

∣∣∣∣∣
ϑt=ϑ̂

(m)
t

∣∣∣∣∣∣
is the determinant of the Hessian matrix for the ϑt parameters.
Then, the self-normalized weights are given by

w̃(m) =
$(m)∑M
m=1$

(m)
.

To evaluate the performance of this approach, Rizopoulos [56] performs a
proof-of-concept simulation study and he concludes that

• despite the extra burden performing the Laplace approximation, the
two-stage approach with importance sampling correction has mini-
mal computational cost in comparison with the full multivariate joint
model;



66

• the estimate for the parameters of the longitudinal sub-models are sim-
ilar between multivariate joint model and two-stage approach with im-
portance sampling correction;

• the estimates for the parameters of the survival sub-model are consid-
erably biased in comparison with the full multivariate joint model, even
if it was less strong that the simple two-stage approach when we use
the importance sampling correction.

The corrected two-stage model produces unbiased estimate for both fixed ef-
fects and the variance components of the longitudinal sub-models. However,
there is a considerable difference between this approach and the multivariate
joint model with regards to the posterior of the random effects. This obser-
vation suggests that the weights obtained in the corrected two-stage model
could be further improved by updating (in the second stage) not only the
parameters of the survival sub-model ϑt but also the random effects b.

Modified Stage II

A sample for the parameters of the survival sub-model {ϑ(m)
t , b(m);m =

1, ...,M} could be obtained from the corresponding joint posterior distri-
bution:

p(ϑt, b|T, δ, Y, ϑ(m)
y ) ∝

n∏
i=1

K∏
k=1

nki∏
j=1

p(Ykj |bki, ϑ(m)
y ) p(bki|ϑ(m)

y ) p(Ti, δi|ϑt, bi, ϑ(m)
Y ) p(ϑt).

Admittedly, simulating from [ϑt, b|T, δ, Y, ϑ(m)
y ] is more computationally ex-

pensive than simulating [ϑt|T, δ, ϑ(m)
y , b(m)] because we now also need to cal-

culate the densities of the mixed-effect models for the K longitudinal trajec-
tories. Nonetheless, the computational time remains significantly lower than
fitting the full joint model. Under this modified second stage the importance
sampling weights now take the form:

w(m) =
p(ϑ

(m)
t , b(m)|T, δ, ϑ(m)

y ) p(ϑ
(m)
y |Y, T, δ)

p(ϑ
(m)
t , b(m)|T, δ, Y, ϑ(m)

y ) p(ϑ
(m)
y , b(m)|Y )

where the difference lies in the second term in both numerator and denomi-
nator. By doing an expansion of these two terms similar to that used in the
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previous section, we obtain:

w(m) =
p(ϑ

(m)
y |Y, T, δ)

p(ϑ
(m)
y , b(m)|Y )

∝
∏

i p(Yi, Ti, δi|ϑ
(m)
y ) p(ϑ

(m)
y )∏

i p(Yi|b
(m)
i , ϑ

(m)
y ) p(b

(m)
i |ϑ

(m)
y ) p(ϑ

(m)
y )

=

∏
i

∫ ∫
p(Yi|bi, ϑ(m)

y ) p(Ti, δi|bi, ϑ(m)
y , ϑt) p(bi|ϑ(m)

y ) p(ϑt) dbi dϑt∏
i p(Yi|b

(m)
i , ϑ

(m)
y ) p(b

(m)
i |ϑ

(m)
y )

= $(m)

and the self normalized weights are given by:

w̃(m) =
$(m)∑M
m=1$

(m)
.

As seen previously, the integrals in $(m) are once again approximated using
the Laplace method. Let

{ϑ̂Tt , b̂Ti } = argmax
ϑt,bi

∑
j

log p(Yi|bi, ϑ
(m)
y ) + log p(Ti, δi|bi, ϑ

(m)
y , ϑt) + log p(bi|ϑ

(m)
y ) + log p(ϑt)


and let

Σbi = −
∂2

∂bT ∂b

[
log p(Yi|bi, ϑ

(m)
y ) + log p(Ti, δi|bi, ϑ

(m)
y , ϑ̂t) + log p(bi|ϑ

(m)
y )

]
b=b̂i

denote the Hessian matrix for the random effects, and analogously

Σϑt = − ∂2

∂bT∂b

[
log p(Ti, δi|b̂i, ϑ(m)

y , ϑt) + log p(ϑt)
]
ϑt=ϑ̂t

denote the Hessian matrix for the ϑt parameters. Then, we approximate the
inner integral by

p(Yi, Ti, δi|ϑ(m)
y , ϑt) ≈

p(Yi|b̂i, ϑ(m)
y ) p(Ti, δi|b̂i, ϑ(m)

y , ϑ̂t) p(b̂i|ϑ(m)
y )

(2π)−
k
2 |Σ̂(m)

bi
| 12

where k denotes the number of random effects for each subject i. Analogously,
the outer integral is approximated as

p(Yi, Ti, δi|ϑ(m)
y ) ≈ p(Yi, Ti, δi|ϑ(m)

y , ϑ̂t)

(2π)−
q
2 |Σ̂(m)

ϑt
| 12

.

Also the performance of this modified approach was assessed by using simu-
lation. Rizopoulos [56] concludes:
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• given the requirement for a double Laplace approximation, and the
fact that the denominator does not simplify, the calculation of the $(m)

weights is more expensive than seen in the unmodified Stage II, however
these approach requires a computational cost long less expensive and
more faster that fitting the full joint model;

• the estimate for the parameters of the longitudinal sub-models are simi-
lar among multivariate joint model, two-stage approach with and with-
out correction updating the random effects;

• the bias in the estimation of the parameters of the survival sub-model
is eliminated.

3.7 Diagnostic

When it comes to use these models in practice, a prerequisite step is to
validate the model's assumptions. The standard tools to assess these are by
using the residual plots. How to obtain these plots and their characteristics
have been described in the Chapters 1 and 2 when longitudinal and survival
outcomes are separately modelled. The techniques used when they are jointly
modelled are an adjustment of those seen in Chapters 1 and 2. A new aspect
to investigate is instead related to the implications of the non-random drop-
out caused by the occurrence of events.

3.7.1 Residuals for the Longitudinal part

When we analyse longitudinal data using a Linear Mixed Model, there exist
the conditional (or subject-specific) residuals and the marginal (or population-
averaged) residuals (see Section 1.7.1).

Conditional residuals

The conditional (subject-specific) residuals aim to validate the assumptions
of the hierarchical version of the model

Yi = βTXi + bTi Zi + εi

εi ∼ Nni(0,Σi)

bi ∼ Nq(0, D)

and are defined as
εi = yi − (β̂Txi + b̂Ti zi)
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with corresponding standardize (studentized) version

εstudi =
yi − (β̂Txi + b̂Ti zi)

Σ̂
1/2
i

where β̂ and Σ̂ denote the MLEs while b̂i are the empirical Bayes estimates.
These conditional residuals can be used for checking the homoschedasticity
and normality assumptions.

Marginal residuals

The marginal residuals focus on the marginal model for Yi implied by the
hierarchical representation {

Yi = βTXi + εi

εi ∼ Nni(0, Vi)

and are defined as
εi = yi − β̂Txi

with corresponding studentized version

εstudi =
yi − β̂Txi
V̂

1/2
i

where Vi = ZiDZ
T
i + σ2Ini denotes the marginal covariance matrix of Yi.

These residuals can be used to investigate the misspecification of the mean
structure βTXi as well as to validate the assumptions for the within-subjects
covariance structure Vi.

Residual and drop-out process

The onset of the event of interest or another that could prevent the continu-
ation of the study could correspond to a discontinuation of the collection of
the longitudinal information and either the follow-up measurements can no
longer be collected or their distribution change significantly after the onset
of the event. This type of drop-out is obviously not at random like in the
case of missed visit. Thus the observed data up to the drop-out time do
not constitute a random sample of the target population [110] [31]. This in
turn implies that residual plots based on the observed data alone can be mis-
leading because these residuals should not be expected to exhibit standard
properties, such as zero mean and independence. In particular, it is difficult
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to discern if a systematic trend could be attributable to a misspecification of
the design matrix X of the fixed effects or apparent and due to the nonran-
dom nature of missingness.
To overcome the problems caused by the nonrandom dropout and produce
residuals for the longitudinal process that can be readily used in diagnostic
plots, Rizopoulos [78] proposed to augment the observed data with randomly
imputed longitudinal responses under the complete data model, correspond-
ing to the longitudinal outcomes that would have been observed had the
patients not dropped out.
We should note, however, that in some clinical studies in which the termi-
nating event is death, it may not be conceptually reasonable to consider
potential values of the longitudinal outcome after the event time. Nonethe-
less, the multiple-imputed residuals are merely used as a mechanism to help
us investigate the fit of the model, and we are not actually interested in in-
ferences after the event time.
An analytic view on multiple imputation approach is not relevant for our
purpose but it is available on Rizopoulos [80].

3.7.2 Residuals for the Survival part

A useful tool to check the assumptions for the survival part is based on the
martingale residuals (see Section 2.6.2). The martingale process can be seen
as the equivalent of the residual term in the generalized linear model and
can be viewed as the difference between the observed number of events for
the i-th subject by time t and the expected number of events by the same
time based on the fitted model. Martingale residuals are mainly used for
two aims. Firstly, they are used for a direct identification of excess of events
in case of subjects that are poorly fit by the model, then for evaluating the
appropriate functional form for covariates inserted in the model fit. In the
Joint Model context, a martingale residual for the i-th subject is defined as

Mi = δi(t)−
∫ t

0

Ri(s)hi(s|M̂i(s); ϑ̂) ds

= δi(t)−
∫ t

0

Ri(s)ĥ0 exp(γ̂TWi + α̂m̂i(s)) ds

where δi represent the onset of event for the subject i at time t, Ri(t) is the
left continuous at risk process with Ri(t) = 1 if the subject i is still at risk at
time t and Ri(t) = 0 otherwise, m̂i(t) = XT

i (t)β̂ + ZT
i (t)b̂i is the estimated

value of the longitudinal response at time t and ĥ0(·) is the estimated baseline
hazard function.
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Another type of residuals for survival part is given by the Cox-Snell residuals
based on the estimated cumulative risk function evaluated at the observed
event time Ti, as presented in Chapter 2. With appropriate adjustments due
to the JM, a Cox-Snell residual for the subject i is given by

ri =

∫ Ti

0

hi(s|M̂i(s); ϑ̂) ds

=

∫ t

0

ĥ0 exp(γ̂TWi + α̂m̂i(s)) ds

When the chosen model fits the data well, we expect that the probability of
failure after time t, i.e. S(t) = P(T ∗i > t) will have a standard uniform dis-
tribution, and therefore the cumulative hazard, defined as H (t) = − logS(t)
will have a unit exponential distribution.

3.7.3 Random-effect diagnostic

Also the random effects b have distributional assumption to verify. In gen-
eral, in the context of the mixed models, the choice is to assume that the
random effects are normally distributed with mean zero and covariance ma-
trix D. However, because the random effects are latent quantities do not lend
themselves to a straightforward construction of residuals. Nonetheless, it has
been shown that linear mixed-effects models are relatively robust to misspec-
ification of the random effects [107]. In the Joint Model context, there are
mainly two issues for which a misspecification in random effects may influ-
ence the inference on the model's parameters. Firstly, random effects have
a more prominent role in joint models than in mixed models because they
are used to build the association between the longitudinal and event time
processes besides capturing the correlations between the repeated measure-
ments. Secondly, the nonrandom dropout caused by the occurrence of events
complicates matters because in the missing data literature it is known that
inferences in nonrandom dropout settings can be highly sensitive to mod-
elling assumptions.
Nevertheless, simulation studies have been done to investigate these issues
and the findings presented in literature suggests that parameter estimates
and standard errors were rather robust to misspecification [102]. Moreover,
it has been shown [41] that, as the number of repeated measurements ni per
subject increases, the misspecification of the random-effects distribution has
a minimal effect in parameter estimations and their standard errors.
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3.8 Summary of chapter

A review of the Joint Model for longitudinal and survival outcome, with its
basic formulation, is shown in this chapter. In particular, the two stage for-
mulation is presented to better understand the mechanism by which the lon-
gitudinal and the survival parts are joined. An introduction to the Bayesian
formulation and the Multivariate Joint model is also shown. The next two
chapters will describe how the predicted survival probabilities under the Joint
Model are used to evaluate the improvement in prediction due to the dynamic
updating of the survival curve as new longitudinal values are collected.
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Chapter 4

Dynamic prediction

One of the main characteristics of the Joint model is that it allows to update
the dynamic prediction of survival probabilities whenever new longitudinal
data are collected on the patients. This fact give the possibility to better
calibrate the prognostication and the therapy of the patients. It is obviously
done in clinical practice by the experience of the physicians, but the use of
results coming from a statistical model could provide a more formal way to
support the clinical activity.

4.1 Survival probability

To provide the patient with an accurate diagnosis of his state of health (mea-
sured by a clinically relevant endpoint) at a certain moment in the future is
of paramount importance in clinical research. Usually this is done through
risk scores. Several risk scores currently used in clinical practice are based on
the survival probabilities estimated at a specific time point u in the future.
These scores are usually based on a multivariate survival model (e.g. Cox-PH
model, Weibull Model, . . . ) to predict the mean survival probability in the
population under study [15] [68]. This gives a comprehensive risk score where
several risk factors are combined into one as a sum of the covariates consid-
ered clinically associated to the event weighted by the coefficients estimated
by the model. The comprehensive risk score is applied to a baseline survival
function estimated on the observed data of a patient in order to derive the
survival probability (or hazard) at a specific time point for that patient.
The above is unsatisfactory for various reasons. First it is model based and
models might be a rough simplification of the reality in which not all potential
risk factors are known and also not all those which are known are included in
the model. Second, and more significant, is that the most common approach
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is based on using only the baseline information only (i.e. data collected at
the first visit, diagnosis of disease, start of the treatment, . . . ) even when
the first visit is followed by others with the relative set of measurements.
Some improvements adopted in clinical practice is given by the fact that the
estimate is updated using in the algorithm the last available biomarker mea-
surement at a time t, with t < u. For example, it is possible to assume of
following a patient for one-month treatment with a weekly visit, and then
the interest lies in estimating the probability of being free from an event of
interest in the next month. Also this improvement is unsatisfactory because
it involves several approximations, in particular:

• a lot of useful information collected between baseline and the last visit
(i.e. at one month) would be ignored and only the first and the last
data would be used;

• how data change from baseline to last visit would be ignored;

• the last value of the predictor would be held constant up to the time
of event or to the last date free from the event.

Another approach, discussed by Rizopoulos in [83], is landmarking predic-
tion. It is somehow similar to the previous one. A survival model is imple-
mented by fitting data relative to patients at risk at a specific time point t
after the baseline. In this approach, the model at time t is estimated not
on the observed value of the longitudinal biomarker of interest at time t but
by replacing these values with the their estimations obtained from a linear
mixed model applied on the previous longitudinal history up to time t. In this
context, the Joint Model provides a more precise estimate of the the survival
probabilities if there is no model misspecification. The survival probabilities
are continuously updated because the individual trajectories, and thus their
association with the risk of the event, are updated every time the new mea-
surements are collected on the patients.
In this sense the author talks about dynamic prediction of the survival prob-
abilities. An improvement to this could be given by understanding what
factors significantly improve the prognosis and how long it is necessary to
follow a patient to provide a more precise diagnosis.
In our paper (see Chapter 6) we briefly come back to this by observing how
well the Joint Model improves its prediction capability using longitudinal
information coming from different time windows.
In this section, following Rizopoulos [79], we detail the theory of estimation
of the survival probability at a specific time point in the context of Joint
Model which will be used in Chapter 6. Indeed JM allows the simultaneous
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derivation of both survival probabilities and longitudinal values for a specific
time point of interest in the future.

4.1.1 Estimation of the survival probability

Let N be the number of subjects and let DN = {Ti, δi,Yi(t); i = 1, . . . , N}
denote a sample from the target population, where Ti = min(T ∗i , Ci) is the
observed event time for the i-th subject, with T ∗i being the random variable
of the failure times and Ci a non-negative censoring variable. In addition
to observing Ti we also get to see the event indicator δi = I(T ∗i ≤ Ci). We
focus on the endogenous time-dependent covariate Yi = {yi(s), 0 ≤ s ≤
t} where Yi(t) is the vector of ni observed repeated measurements yi of a
biomarker collected up time t for the i-th subject. A Joint Model to study
the relationship between the longitudinal process Yi(t) on the time-to-event
Ti is estimated on Dn. Let ϑ be the parameters in the estimated JM.
Let i be new subject coming from the same target population of Dn with
a set of longitudinal measurements Yi(t) collected from a baseline up to a
time point t and δi = 0 (i.e. the new patient is providing new longitudinal
measurements and is therefore still alive or free of the event of interest at
time t). The interest lies in estimating the survival probability for a time
point u > t by merging the new information of the subject i with the set of
data on which we run the JM. The fact that the longitudinal biomarker is
collected up to t implies that the subject i is free from the event of interest
up to this time point, so the focus is to derive the conditional subject-specific
survival probability at time u, given that he survived until t. In particular,
for any time u > t the interest is the probability that this new subject will
survive (i.e. he will be free from the event of interest) at least up to u:

πi(u|t) = P(T ∗i ≥ u|T ∗i > t,Yj,Dn;ϑ)

The time-dynamic nature of πi(u|t) is due to the fact the for any new infor-
mation t′ recorded on the subject j between t and u is possible to update of
the survival probabilities πi(u|t′) by running the model with the new longi-
tudinal measurement.
The assumption of full conditional independence of {Ti, δi} and {Yi} given
the random effects {bi} (see Section 3.3.1) on which is based the Joint Model,
is necessary to estimate the subject-specific conditional survival probability.
So the probability πj(u|t) can be rewritten integrating out the random effect
as:
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P(T ∗i ≥ u|T ∗i > t,Yi(t);ϑ) =

=

∫
P(T ∗i ≥ u|T ∗i > t,Yi, bi;ϑ) · p(bi|T ∗i > t,Yi(t);ϑ) dbi

conditional independence → =

∫
P(T ∗i ≥ u|T ∗i > t, bi;ϑ) · p(bi|T ∗i > t,Yi(t);ϑ) dbi

=

∫
Si(u|Mi(u, bi, ϑ);ϑ)

Sj(t|Mi(t, bi, ϑ);ϑ)
· p(bi|T ∗i > t, Yi(t);ϑ) dbi

where Dn and any other baseline covariates are omitted, Si(·) is given by
the formula seen in Section 3.2.1, Mi(·) is the approximation obtained by
the linear mixed effects model and it is a function of both the random effects
and the parameters.
The first-order estimate of π̃j(u|t) can be obtained by using the empirical
Bayes estimate for bi, that is:

π̃i(u|t) =
Si(u|Mi(u, b̂i, ϑ̂); ϑ̂)

Si(t|Mi(u, b̂i, ϑ̂); ϑ̂)
+O(n−1

i )

where ϑ̂ denotes the maximum likelihood estimates for the fixed effects in the
model, b̂i is the posterior mode (see Section 3.4) of the conditional distribu-
tion p(bi|T ∗i > t,Yi(t); ϑ̂), and ni is the number of longitudinal observations
collected up t on the subject i. Rizopoulos [79] showed that this estimator
works relatively well; however, deriving the standard error, and hence the
confidence interval) for πj(u|t) is difficult due to the fact that it is necessary
to account for the variability of both the maximum likelihood and empirical
Bayes estimates.
The use of a Monte Carlo simulation schemes was proposed by Rizopoulos
[79] and Proust-Lima and Taylor [73] and it is supported by the asymptotic
Bayesian formulation of the joint model seen in the Section 3.5. In this
context, the survival probability can be derived as follow:

πi(u|t) = P(T ∗i ≥ u|T ∗i > t,Yi,Dn;ϑ)

=

∫
P(T ∗i ≥ u|T ∗i > t,Yi(t);ϑ) · p(ϑ|Dn) dϑ

The first part of the integrand is given by the previous derivation. The second
part is the posterior distribution of the parameters ϑ given the observed data
Dn. Let assume that the sample size n is sufficiently large and that it holds

{ϑ|Dn} ∼ N (ϑ̂, v̂ar(ϑ̂))
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then, using the previous two derivations, the following simulation scheme can
be used to derive the Monte Carlo estimation of the survival probability:

S1 : Drawnϑ(l) ∼ N (ϑ̂, v̂ar(ϑ̂))

S2 : Drawn b
(l)
i ∼ {bi|T ∗i > t,Yi(t), ϑ(l)} ∼ t4

S3 : Computeπ
(l)
i (u|t) =

Si(u|Mi(u, b
(l)
i , ϑ

(l));ϑ(l))

Si(t|Mi(t, b
(l)
i , ϑ

(l));ϑ(l))

S4 : Repeat Steps 1-3 for each subject i, l = 1, . . . , L

times, where L denotes the number of Monte Carlo samples.

The second step is based on a Metropolis-Hastings algorithm with indepen-
dent proposal from a multivariate t-distribution with:

• four degrees of freedom,

• centered at the empirical Bayes estimate b̂i,

• scale matrix v̂ar(b̂i) = {− ∂2

∂bT ∂b
[log p(T ∗i > t,Yi(t), b; ϑ̂)]b=b̂i}

−1.

A justification of this approach can be found in Booth and Hobert (1999)
and in Rizopoulos et al. (2008). Conversely to the derivation with the first-
order estimator, the maximum likelihood estimate ϑ̂ and the empirical Bayes
estimate b̂i are replaced by ϑ(l) and b

(l)
i .

The realizations of {π(l)
i (u|t), l = 1, . . . , L} can be used to derive estimates

of the survival probabilities for example median or mean:

π̂i(u|t) = median{π(l)
i (u|t), l = 1, . . . , L}

or

π̂i(u|t) =
1

L

L∑
l=1

π
(l)
i (u|t).

In the same manner, the standard error can be derived using the sample
variance {π(l)

i (u|t), l = 1, . . . , L} while the 95% confidence intervals can be
replaced by the using the 2.5% and the 97.5% percentiles of the same sample
(or by using the other percentiles related to other credible threshold).
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4.2 Longitudinal outcome

The main advantage of using the Joint Model is given by the possibility to
modelling simultaneously the survival function with respect to an event of
interest and the longitudinal evolution of a marker accounting for the possible
confounding effect related to the event of interest. For example, if an increase
of a marker is related to the event, the researcher could underestimate the
longitudinal increasing trend due to the fact that the highest values for that
marker could be not collected due to the onset of the event itself (e.g. death).
Due to the dual nature of the Joint Model, a dynamic prediction for the
longitudinal marker is also allowed by using an approach similar to that
presented for the survival probabilities in the previous sections.

4.2.1 Estimation of the longitudinal outcome

By using the approach proposed by Rizopoulos (2011), Let N be the number
of subjects and let DN = {Ti, δi,Yi(t); i = 1, . . . , N} denote a sample from
the target population, where Ti = min(T ∗i , Ci) is the observed event time
for the i-th subject, with T ∗i being the random variable of the failure times
and Ci a non-negative censoring variable. In addition to observing Ti we also
get to see the event indicator δi = I(T ∗i ≤ Ci). We focus on the endogenous
time-dependent covariate Yi = {yi(s), 0 ≤ s ≤ t} where Yi(t) is the vector
of ni observed repeated measurements yi of a biomarker collected up time
t for the i-th subject. A Joint Model to study the relationship between the
longitudinal process Yi(t) on the time-to-event Ti is estimated on Dn. Let ϑ
be the parameters in the estimated JM.
Let i be new subject coming from the same target population of Dn with
a set of longitudinal measurements Yi(t) collected from a baseline up to a
time point t and δi = 0 (i.e. the new patient is providing new longitudinal
measurements and is therefore still alive or free of the event of interest at
time t).
For a specific subject i who is still free from the event at follow-up time t,
the interest lies in the expected value of his longitudinal trajectory from t up
to a time u > t accounting for the random process modelling the observed
trajectory Yi from baseline to t. The expected value of the marker at time
u > t is given by:

ωi(u|t) = E[yi(u)|T ∗i > t,Yi,Dn;ϑ∗], u > t

As for the survival probability, also this prediction could be updated by
collecting new values for the marker at any visits t′ in the interval (t, u).
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In order to account for the fact that the true parameter values ϑ∗ are not
know, the asymptotic Bayesian formulation of the joint model are used to cal-
culate the expected value of ωi(u|t) with respect to the posterior distribution
of the parameters {ϑ|Dn} as

E[yi(u)|T ∗i > t, Yi(t),Dn] =

∫
E[yi(u)|T ∗i > t, Yi(t);ϑ]p(ϑ|Dn) dϑ

The first part of the integrand can be simplified by exploiting the conditional
independence assumptions as follows:

E[yi(u)|T ∗i > t,Yi(t);ϑ] =

=

∫
E[yi(u)|T ∗i > t,Yi(t), bi;ϑ] p(bi|T ∗i > t, Yi(t);ϑ) dbi

=

∫
E[yi(u)|bi] p(bi|T ∗i > t,Yi(t);ϑ) dbi

=

∫
(xTi (u)β + zTi (u)bi) p(bi|T ∗i > t,Yi(t);ϑ) dbi

= xTi (u)β + zTi (u)b
(t)

i

where

b
(t)

i =

∫
bi · p(bi|T ∗i > t,Yi(t);ϑ) dbi.

Under these derivations a straightforward estimator of ωi(u|t) is obtained
by replacing ϑ with its maximum likelihood estimate ϑ̂ and calculating the
mean of the posterior distribution p(bi|T ∗i > t,Yi(t); ϑ̂). A similar estimator
could be derived using the mode of the posterior distribution defined as

b̂i(t) = argmax
b

[log p(bi|T ∗i > t,Yi(t); ϑ̂)]

and obtaining

ω̃i(u|t) = xTi (u)β + zTi (u)b̂
(t)
i +O(ni(t)

−1)

using the relationship b
(t)

i = b̂
(t)
i + O(ni(t)

−1) [101] that holds under suffi-

cient smoothness of the distribution of log p(bi|T ∗i > t,Yi(t); ϑ̂) and in which
ni(t) denotes the number of longitudinal measurements for the i-th subject
by time t.
It has been proved that the mode and the mean of the posterior distribution
of the random effects are typically very close to each other. In fact, the
density of the longitudinal model (that is well approximated by a normal



80

distribution) is the leading distribution of the random effects in the joint
model context (see Rizopoulos, 2012) [80]. However, the use of the mode is
preferable because it is usually a better location measure than mean, espe-
cially when the posterior distribution is skewed.
As seen for the prediction of the survival probability, obtaining the standard

error of the estimate ωi(t) is very difficult because b
(t)

i and b̂
(t)
i are non-linear

function of ϑ̂ that cannot be written in closed form. To overcome this prob-
lem and obtain confidence intervals for the predicted longitudinal marker,
the Monte Carlo approach was proposed as for the survival probability in
Section 4.1.1.
Assuming that the sample size is sufficiently large so that {ϑ|Dn} can be
well approximated by a normal distribution with mean the MLEs ϑ̂ and
the variance-covariance matrix given by {I(ϑ̂)}−1, the following simulation
scheme can be obtained:

S1 : Drawnϑ(l) ∼ N (ϑ̂, v̂ar(ϑ̂))

S2 : Drawn b
(l)
i ∼ {bi|T ∗i > t,Yi(t), ϑ(l)} ∼ t4

S3 : Computeω
(l)
i (u|t) = xTi (u)β(l) + zTi (u)b

(l)
i

where the first two steps are equal to those seen for the prediction of the sur-
vival probabilities in Section 4.1.1. These values are then used in the Step 3
to derive the longitudinal outcome. As done for the survival probability, also
in this case the 95% confidence intervals can be obtained as credible interval
by using the 2.5th and 97.5th percentiles of {ω(l)

i (u|t), l = 1, . . . , L}. The

posterior mean or median of {ω(l)
i (u|t)} will be used as predicted value for

the longitudinal outcome even if it was proved that the resulting estimates
are almost indistinguishable.

4.3 Summary of chapter

This chapter introduces the concept of dynamic prediction that will be used
in the next one and in the application in Chapter 6 to evaluate the goodness
of the model in its clinical application. The quantities introduced in this
chapter are used in the next chapter to evaluate the prediction capability of
a score derived by using a Joint Model to study how a longitudinal update
of a predictor could improve the prediction of the survival probability.
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Chapter 5

Prediction capability

The aim of my thesis is to provide the clinician with an easy-to-interpret
tool that can help him/her make decisions for patient care. Several mea-
sures were developed to assess how well a model can discriminate between
patients who will experience the event in a specific time frame from patients
who will experience it in a later time. In particular, some of them are more
accurate or useful from a mathematical point of view whereas other are more
intuitive [49]. For example, the proportion of variation explained by the co-
variates or other indexes based on the likelihood (e.g. AIC, BIC) are useful
for a statistician, other indexes such as the area under the Receive Operating
Characteristics (AUC-ROC) curves or the Net Reclassification Improvement
are more accessible and understandable by most people involved in clini-
cal research. These methods are usually applied in a diagnostic setting to
evaluate the performance of a new test (given by an instrument, tool, clas-
sification algorithm, predictive score and so on...) in predicting a clinical
event of interest (AUC-ROC) or to compare two different tools (NRI). These
two measures were primarily designed for binary outcomes. However, with
little generalisations they can be used also with time-to-event data and in
this work extended to the joint model.
In the next section, an overview of these two indexes is presented and linked
to Joint Model. In general, it refers about the predictive capability of a score
even if the same approach can be applied to several types of measurements
coming from a diagnostic test.

5.1 Discrimination based on the ROC curve

In clinical practice, several diagnostic instrument or scores are used to clas-
sified a patients in different risk categories for an event of interest. Even if
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a continuous measurements could be a more appropriate index to link and
model the change of a score to an associated change in the risk of an event,
the categorization in two or more three levels of risk allows the researcher
to define the patient’s clinical picture in a more direct and intuitive way.
This implies a better management. To say that a unit increase of a score
involves an increase of the risk of 10% or to say that a patient with a score
lower than a specific threshold have an expected survival free from an event
are two methods of answering to the same question but the second is more
intuitive and almost free from misunderstandings. In general, the work is
done on a continuous measurements coming from statistical models, but the
conclusions and the operative guidelines are then expressed in terms of levels
of risk.
In a predictive setting, the capability of a score to predict a future event is
firstly assessed through measures of discrimination. Among them, sensitiv-
ity, specificity, positive and negative predictive values are the most common
and widely used. Starting from a continuous potential predictive score, the
receiver operating characteristic (ROC) curve and the area under the ROC
curve (AUC) are used to assess its predictive performance. Let di denote
the event status indicator for subject i (equal to 1 or 0 in case the patient
experienced the event or not), Zi a score measured at baseline that is be-
lieved to be strongly associated with the onset of the event and to be used
to identify the patients that have greater chance of having the event. After
verifying the association between the score and the event with an appropriate
statistical model, a prediction rule is set to classify the i-th subject as at risk
of the event when his/her observed score exceeds a specific threshold c. For
each potential value of c, it is possible to define the discrimination measure-
ments previously mentioned. In particular, the sensitivity, is defined as the
true positive rate, i.e. the probability that the marker correctly classifies a
subject that will experience the event:

SENS(c) = P(Zi > c | di = 1)

whereas the specificity is defined as the probability that the marker correctly
classifies an healthy subject:

SPEC(c) = P(Zi ≤ c | di = 0)

The quantity one minus specificity is called false positive rate. Sensitivity and
specificity are related to the predictive score and are obtained conditioning
on the observed event status, i.e. when the score is under construction and
the whole clinical history of a patient is observed. In clinical practice, to
measure the probability that a subject will experience the event given that
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the score exceeds the chosen threshold, the positive and negative predictive
values are used. The positive predictive value is defined as

PPV(c) = P(di = 1 |Zi > c)

while the negative predictive value as

NPV(c) = P(di = 0 |Zi ≤ c)

The focus of this section is obviously related to the first two indices which
are used to calculate the ROC curve.
The ROC curve displays the sensitivity against the the false positive rate,
defined as one minus the specificity, for the whole range of the thresholds of
the score values, i.e. for each c ∈ RZ , where RZ is the space of the marker
Z. Formally, the ROC curve is defined as

ROC(p) = SENS{(1− SPEC)−1(p)}

where p is in [0, 1] and (1−SPEC)−1 = infc{c : (1−SPEC(c) ≤ p}. The higher
the ROC curve is in the unit quadrant, the more accurate the prediction rules
are. In this way, the best threshold could be defined as the value of the score
that maximize the ROC curve.
The AUC, also known as c-statistic, is a summary measure of the sensitivity
and specificity over the whole range of the thresholds. It is defined as

AUC =

∫ 1

0

ROC(p) dp

and it can be interpreted as the probability that a random diseased patient
will have a greater value for a score than a random healthy patients. Given
i the diseased and j the healthy subject respectively, the AUC is defined as

AUC = P(Zi > Zj | di = 1, dj = 0)

The AUC is scale free and ranges between 0.5 and 1, the lowest value stays
for a discrimination capability equal to flipping a coin while the highest rep-
resents an almost perfect capability of the score Z to discriminate between
subjects who experience the event and those who don’t. This makes the AUC
an intuitive index to compare different scores, regardless of their measure-
ment scale, in contrast to the odds ratio or other measure of efficacy.
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5.1.1 Sensitivity and specificity with time-to-event end-
point

The approach described above is related to binary endpoints, some general-
isations are necessary when the outcome is given by the combination of the
status at a specific time-point in the future and the time to that time-point
and the time-dependent ROC and AUC are used [37] [49] [10]. The event
time is seen as a time-dependent binary outcome, taking the value 0 for all
the time points prior to the event and the value 1 afterwards. In this way,
each subject could be both healthy and diseased during the follow up and
this depends only on the time-point at which the discriminative capability of
the score is being evaluated. Moreover, it becomes necessary to account for
the right censoring that makes the true outcome usually not observed over
the whole duration of the study for every patient. At least three different
couple of definitions for sensitivity and specificity proposed by Heagerty and
Zheng [37] are commonly used. They depend on the manner subjects are
classified as either healthy or diseased at any particular time point t.

• Cumulative Sensitivity and Dynamic Specificity: at any fixed time t
each patient is classified as either healthy or diseased on the basis of
his status at time t. Each subject plays the role of a healthy patient at
times t < T ∗ but of a diseased patient at later times t ≥ T ∗.

SENSC
t (c) = P(Zi > c |T ∗i ≤ t)

SPECD
t (c) = P(Zi ≤ c |T ∗i > t)

• Incident Sensitivity and Static Specificity: each subject does not change
the status and is classified as either a event or a non-event. Events are
stratified according to the time the event occurs, non-events are defined
as those subjects who are free through a fixed (static) follow-up time
frame (0, t̃).

SENSI
t(c) = P(Zi > c |T ∗i = t)

SPECS
t (c) = P(Zi ≤ c |T ∗i > t̃)

• Incident Sensitivity and Dynamic Specificity: each subject is a non-
event for all t < T ∗i , but then plays the role of a event when t = T ∗i .
Sensitivity measures the expected proportion of patients with a score
level that exceeds the threshold c among the sub-sample of patients
who have the event at time t, while specificity measures the proportion
of subjects with a score level less or equal to c among those who survive
beyond time t.

SENSI
t(c) = P(Zi > c |T ∗i = t)
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SPECD
t (c) = P(Zi ≤ c |T ∗i > t)

After selecting a definition for the time-dependent sensitivity and specificity
and choosing a relevant time-point t, ROC(t) curves and the related AUC(t)
can be computed and interpreted in the same manner as in the binary con-
text. These measures will obviously be time-varying and reflect how the
accuracy of the marker evolves during follow-up. Even if the later couple of
sensitivity and specificity is said to have the better properties from a math-
ematical point of view and it is used to derive other indexes that could be
time-independent under specific assumptions, it is the less clinically relevant
and intuitive while the couple cumulative sensitivity - dynamic specificity is
the most commonly used in clinical practice.
Lambert and Chevret [49] remark that if on the one hand the choice of a
time-point in the follow-up period could be arbitrary and not able to sum-
marize the entire discrimination capability of the score, on the other hand
the cumulative-dynamic indexes (SENS, SPEC, ROC and AUC) could pro-
vide better information when used to identify time ranges in which the score
performs well or when the choice of the time point is driven by a scientific
interest.
The cumulative sensitivity and dynamic specificity definition will be used
along to the associated time-dependent AUCC,D(t) that quantifies how well a
score Z can discriminate subjects who have the event by a given time t (i.e.
T ∗ ≤ t) from subjects who could have the event after the given time (i.e.
T ∗ > t). More formally, given two different subjects i and j, the resulting
AUC is defined as

AUCC,D(t) = P(Zi > Zj|T ∗i ≤ t, T ∗j > t), i 6= j.

Several methods were proposed to assess the discriminative power in the
survival context with extension to account for censoring, competing risks or
marker-dependent censoring. Blanche et al. [10] did a review and comparison
of the most widely used. In particular, one of the more common approaches,
implemented in several statistical softwares, is based on the inverse proba-
bility of censoring weighting. It uses the probability of censoring (usually
estimated by the Kaplan-Meier method) to weight the contribution of each
uncensored observation by the inverse probability of remaining uncensored.
In this way the uncensored observations that are very likely to have been
censored are more highly weighted, and thus account for the censored values
(for further details, see [10] and [104]).
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5.2 The Net Reclassification Improvement

The indexes presented in the previous sections are useful to explain how well
a score can classify healthy and diseased subjects. Moreover, a classification
of the AUC was proposed to help the physician in the interpretation of the
numeric result [39]. However, several scores, adding of element to the existing
ones or new models are continuously tested to improve the prediction capa-
bility. This implies the coexistence of several methods, apparently equally
good to predict the same event. Usually, the insertion of a new predictor in
a fair to good model (i.e. with AUC > 70%) results in a strongly statistical
significant association (with a low p-value) and in a slight difference in the
AUC (of about +1% or +2%). This makes difficult to choose between consid-
ering and ignoring this new factor, especially when its collection is expensive
in term of time, money or feasibility. To make matters worse, for a clinicians
it is hard distinguish between a statistical and clinical significance, where the
first could be driven by the use of a big sample of patients. Even if this issue
can be addressed by a well design of the study, it is necessary to provide
researchers with a useful tool to assess and quantify the improvement in risk
prediction offered by a new score in addition to the AUC.
Even if their application is debated by the experts [46] [67] that suggest to
be careful in the interpretation of the results, two indexes were proposed by
Pencina et al. [63] to address this problem. They are the net reclassification
improvement (NRI) and the integrated discrimination improvement (IDI).
Due to the fact that for the NRI a practical classification was proposed [32]
[63] [66], only this index will be briefly presented below and used in the anal-
ysis in Chapter 6.
Differently from the AUC which measures the discriminatory capacity of
a model, the NRI index compares two different scores (divided into cate-
gories of increasing risk) in order to assess the improvement in prediction.
It is based on the reclassification tables that are constructed separately for
patients who experience (and for those who don’t experience) the event of
interest in order to quantify the correct movement in categories - upwards
for events and downwards for non events - when shifting from the oldest to
the newest score. An extension to a category-free NRI was also presented
[64]. An example of reclassification table is shown below in Table 5.1.
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Figure 5.1: Example of reclassification table where the old and new risk scores are divided
into three ordered risk categories.

In the method proposed by Pencina et al. [63], the reclassification of pa-
tients who develop and who not develop the event are considered separately.
Any “upward” movement (grey cells) to an higher category for events im-
plies an improvement in the classification while any “downward” movement
(dashed cells) to a lower risk category indicates worse reclassification. The in-
terpretation is opposite for subjects without the event. So, the improvement
in reclassification can be quantified as a sum of differences in proportions
of individuals moving up minus the proportion moving down for subjects
with the event and the proportion of the individuals moving down minus the
proportion moving up for non-events. This sum, weighted for the number of
events and non-events, is called net reclassification improvement (NRI).
Consider a situation in which the predicted probabilities of the event of in-
terest are estimated using two models that share the set of covariates, except
for one new predictor. In case of two different scores, they can be standard-
ized by using the same model (e.g. logistic model) to obtained the predicted
probabilities and then these quantities can be used in the comparison. Let us
categorize the predicted probabilities into a set of clinically meaningful ordi-
nal categories of absolute risk and the cross-tabulate these two classifications.
Each upward movement (up) will reflect a change into a higher category (i.e.
an increase of the risk) while each downward movement (down) will reflect
a change into a lower category (i.e. a reduction of the risk). Assuming that
D is the event indicator, NRI is defined as

NRI = (P[up|D = 1]− P[down|D = 1])− (P[up|D = 0]− P[down|D = 0])
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where the four probabilities are defined as follow:

P[up|D = 1] = pup,events =
#events moving up

#events

P[down|D = 1] = pdown,events =
#events moving down

#events

P[up|D = 0] = pup,non-events =
#non-events moving up

#non-events

P[down|D = 0] = pdown,non-events =
#non-events moving down

#non-events
.

As stated in the introduction of Section 5.2, the use of the NRI to declare
a significant improvement in prediction performance is largely debated in
biostatistics. We can identify at least two main drawbacks related to this
index.
The first one is the problem of overfitting of the regression model used to test
the association between a set of markers and an event. By using simulation it
has been proved that the NRI does not provide the correct conclusion about
the significance of a new marker in the model even when a large training set
is used. The second issue is related to the interpretation of the index itself,
both when used in categories and not. Some authors suggest to use not
only the overall index that comes from the merging of events and non-events
but to show both indexes. Moreover, it is commonly accepted to use the
NRI, as done in this thesis, as long as the conclusions about the significant
improvement in prediction performance of a new marker are also supported
by the use of other methods such as the tests for the regression parameters,
the change in the AUC and a clear clinical relevance of the new marker.

5.2.1 NRI for survival data

The NRI, as well as the ROC curve and the relative AUC, was born for
binary outcome but it can also be applied to time-to-event outcomes. A first
solution was proposed by Cook and Ridker [19] who suggested to select only
subjects with a complete follow-up at a certain time point of clinical interest.
The problem with this approach is that some patients will be excluded from
the analysis. Another approach was developed by Steyerberg and Pencina
[96]. They suggested to use the Kaplan-Meier estimator to calculate the
expected number of events and non-events. Their method is proposed below.
Starting from the formula used to calculate the NRI seen in the previous
section and applying the Bayes theorem, it can be rewritten in an equivalent
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form:

NRI =
P[event|up] · P[up]− P[event|down] · P[down]

P[event]
+

+
(1− P[event|down]) · P[down]− (1− P[event|up]) · P[up]

1− P[event]

In the survival analysis context, the quantities P[event], P[event|up] and
P[event|down] are estimated using the Kaplan-Meier method while the pro-
portions of people who move up and down are always available. So, the
formulation of NRI is given by:

NRI =
P[event|up] · nU − P[event|down] · nD

n · P[event]
+

+
(1− P[event|down]) · nD − (1− P[event|up]) · nU

n · (1− P[event])

where n, nU and nD is the total number of subjects, the number of subject
reclassified upwards and downwards respectively. The quantities in first nu-
merator represent the expected numbers of events reclassified upwards and
downwards while the expected number of non-events reclassified downwards
and upwards are put in the second numerator. The two denominators rep-
resent the total expected events and non-events respectively. Moreover, the
formula does not depend on the number or even the existence of predefined
risk categories as it assumes probabilities of event among those reclassified
upwards or downwards would be obtained pooling all subjects with the same
reclassification.
This fact solved the issue related to the presence of the categories that in-
volve an arbitrary element and a possible source of bias. Despite the use of
clinically relevant categories may be useful from a clinical point of view it
should be avoid and use only in presence of a categorization of the new and
old risk scores that leads to the exact same interpretation. Even in this case,
some authors [65] proposed and suggested the use of a category-free version
of the NRI defined as NRI(>0).
Using the definition proposed by Pencina et al. [64], denote Rnew and Rold

the cumulative incidences (i.e. one minus the survival probabilities) obtained
from the newest and oldest survival model respectively, and assume that Rnew

and Rold follow a continuous distribution where any movement is considered
meaningful (implying that every subject has to move either up or down, even
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if slightly), for the i-th subject we obtain:

P[Rnew,i > Rold,i|i = event] + P[Rnew,i < Rold,i|i = event] = 1

More in general:
P[up|event] + P[down|event] = 1

that implies

P[up|event]− P[down|event] = 2 · P[up|event]− 1

Using the same approach for the non-events we obtain:

P[down|non-event]− P[up|non-event] = 1− 2 · P[up|non-event]

From the previous derivations, the category-free NRI (NRI(>0)) can be de-
rived as:

NRI(> 0) = P[up|event]− P[down|event] + P[down|non-event]− P[up|non-event]

= 2 · P[up|event]− 1 + 1− 2 · P[up|non-event]

= 2 · (P[up|event]− P[up|non-event])

5.3 AUC and NRI in the Joint Model context

In this Section, we develop a method to assess the prediction capability of a
Joint Model by using the indexes AUC and NRI described in Section 5.1.1
and 5.2.1. Both indexes are based on the evaluation on how well a score can
predict an event of interest in a given time in the future. In the case of the
Joint Model, this score is given by the dynamic prediction survival probabil-
ities πi(u|t) with u > t introduced in the Section 4.1.1. These probabilities
include the contribution of following a patient from the baseline to another
follow-up visit in the future. This allow the update of the model and the
prediction of a patient’s score whenever a new assessment of his/her marker
(or markers) are available.
Rizopoulos, in Joint Model for Longitudinal and Survival Data [80] presented
a derivation of the AUC in the Joint model context and an R package to cal-
culate this quantity in practice. In particular, the function rocJM() [80]
allows the derivation of the dynamic ROC and AUC indexes based on the
incidence sensitivity and dynamic specificity seen in Section 5.1.1. This func-
tion assesses how well the Joint Model can distinguish between a patient who
will experience the event of interest in a specific time window ∆t having fol-
lowed the longitudinal trajectory of his/her biomarker up to time t (i.e. the
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subject is free from the event at time t).
However, from the point of view of this thesis, this method showed at some
drawbacks which are explained briefly.

• Our interest is into the comparison of two different approaches to esti-
mating the survival probabilities at a specific time point in the future
based on two different models. We want to compare the survival proba-
bilities estimated by using the standard approach based on the Weibull
Model, with only baseline covariates, and the ones obtained from a
Joint Model that used the longitudinal information collected in a spe-
cific time frame following the baseline. To assess the contribution due
to the use of longitudinal data , we have to assure that the discrimi-
nation indexes are derived in the same manner under the two models
except for the use of longitudinal data. Hence, the impossibility to use
the method proposed by Rizopoulos that can be applied to the Joint
Model but not to Weibull Model. A possible way forward could be
to use a fake Joint Model where the patients contributed only with
baseline data but the rocJM() function did not work in this way and,
anyway, it was not clear if this use of the Joint Model is equivalent to
the Weibull Model in practice.

• The function rocJM() proposed by Rizopoulos seems to be based on the
incidence/dynamic definitions of sensitivity and specificity, respectively
(see [80], Section 7.4.4, page 201) while we prefer to use the cumulative
sensitivity and dynamic specificity as explained in Section 5.1.1.

• Even if the theory is well explained in [80], it was not clear how the
function rocJM() works in practice.

• The application of the function rocJM() was not very functional in
practice as the software presented various computational problems dur-
ing its running and was not always able to provide results when the
model changed. In particular, it has not yet been to be used with all
the different parametrizations of the Joint Model (and the multivariate
Joint Model) available in the R package JM itself.

Moreover, we need to assess the improvement due to the use of longitudinal
date in deriving the survival probabilities also using the NRI. There seem to
be no methods proposed in the literature.
For these reasons, we developed a new approach to compare how well the
Weibull Model and the Joint Model were able to distinguish between patients
who will experience an event of interest in the future and those who do not.
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Following the idea underlying the approach used by Rizopoulos [80], we de-
rived the AUC and NRI based on the predicted survival probabilities using
the information collected at baseline (for the Weibull Model) and the infor-
mation collected in a specific time-frame of interest following the baseline.
Their derivations are presented next.

5.3.1 AUC and Joint Model

The derivation of the AUC in the Joint Model framework follows the method
outlined in Section 5.1.1. It starts from the definition of a time-dependent
version of cumulative sensitivity and dynamic specificity.
Let πi(u|t) be the dynamic survival probability for the subject i = 1, . . . , N
as defined in Section 4.1.1. The probability ϕi(u|t) = 1 − πi(u|t) is called
dynamic cumulative incidence. For any time u > t, the dynamic cumulative
incidence is the probability that the subject i = 1, . . . , N will experience the
event of interest before time u given that he/her is free from the event at time
t and that we collected his/her longitudinal data Yi = {yi(s), 0 ≤ s ≤ t} up
to t. Let ϕ̂i(u|t) the estimated cumulative incidence fot the i-th subject.

Definition 8. The time-dependent cumulative sensitivity, having collected
the longitudinal data up to t < u, is defined as

SENSC
u|t(c) = P(ϕ̂i(u|t) > c |T ∗i ≤ u).

while the time-dependent dynamic specificity is defined as

SPECD
u|t(c) = P(ϕ̂i(u|t) ≤ c |T ∗i > u)

In practice, at any fixed time point u, each patient is classified as either
healthy or diseased on the basis of his/her status at time u. For our scope,
we define a potential time t up to which we follow the patients regardless of
whether they have all measured values in all visits up to t (i.e. missing data
are possible) and whether they are actually alive at t. In this sense, even if
a patient experiences the event before t the estimated dynamic cumulative
incidence ϕ̂i(u|t) at time u > t should be higher than the one for a subject
free from event up to t if the model fits well.

Definition 9. Let i and j be two different subject, ϕ·(u|t) the dynamic cumu-
lative incidence and T ∗· the random variable which models the time to event
where · stands for i or j. The resulting time-dependent AUC is defined as

AUCC,D(u|t) = P(ϕ̂i(u|t) > ϕ̂j(u|t) |T ∗i ≤ t, T ∗j > t), i 6= j.
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The same definition can be obtained by replacing the time-dependent
cumulative sensitivity and dynamic specificity of the Definition 8 in the more
general formulation seen in Section 5.1. In this way, the time-dependent ROC
curve is defined as:

ROCu|t(p) = SENSC
u|t{(1− SPECD

u|t)
−1(p)}

where p is in [0, 1] and (1 − SPECD
u|t)
−1 = infc{c : (1 − SPECD

u|t(c) ≤ p}.
With this formulation, the time-dependent AUC is given by:

AUCC,D(u|t) =

∫ 1

0

ROCu|t(p) dp.

As seen in Section 5.1, this quantity can be weighted by using the inverse
probability of censoring to weight the contribution of each uncensored ob-
servation by the inverse probability of remaining uncensored. The weighted
AUC is derived by using a modified version of the definition of sensitivity.
The weights are the probabilities of being uncensored when calculating the
time-dependent cumulative sensitivity as follows:

SENSC
u|t(c) =

∑N
i=1 I(ϕ̂(u|t)>c) I(T ∗i ≤u) ωi(t)∑N

i=1 I(T ∗i ≤u) ωi(t)

where the weight ωi is given by

ωi =
1

P(Ci > t)

where C is the random variable which models the censoring as defined in
Section 2.2 (for further details, see [10]).

5.3.2 NRI and Joint Model

As done in Section 5.3.1, the derivation of a time-dependent NRI is based
on the use of the dynamic survival probabilities πi(u|t) seen in Section 4.1.1.
From these quantities, for each subject i = 1, . . . , N it is possible to derive
the dynamic cumulative incidence ϕi(u|t) = 1 − πi(u|t) and to use it in the
derivation of the category-free NRI as shown in Section 5.2.1.

Definition 10. Let ϕ̂(u|t)JM be the N-dimensional vectors of the estimated
cumulative incidences at time u > t derived from a Joint Model, where the
subjects contribute with their longitudinal history in the time frame [0, t].
Let ϕ̂(u|0)WEIBULL be the N-dimensional vectors of the estimated cumulative



94

incidences at time u > t derived from a Weibull Model, where the subjects
contribute with their baseline values only. Let T ∗· be the random variable
which models the time to event. The resulting category-free time-dependent
NRI is defined as

NRI(u|t) =

∑N
i=1(ϕ̂i(u|t)JM − ϕ̂i(u|0)COX) I(Ti∗≤u)∑N

i=1 I(Ti∗≤u)

−
∑N

i=1(ϕ̂i(u|t)JM − ϕ̂i(u|0)WEIBULL) I(Ti∗>u)∑N
i=1 I(Ti∗ u)

.

Note that the NRI can be used not only with the Weibull Model but with
each survival model seen in Chapter 2.

5.3.3 Application in R

The applications in R in Chapter 6, are based on the use of functions com-
ing from several statistical packages. In the application, our interest is into
assess how the prediction of death at 48 months after the baseline may be
improved by including the longitudinal values of several biomarkers (such
as the systolic blood pressure) in a time window which spans from baseline
to 6 months later. In particular, we compared a Weibull Model where only
baseline values of the biomarker are inserted as covariates with a Joint Model
which used all the measurements taken up to 6 months. A brief explanation
of the use of each function is presented below.

The Weibull Model

For simplicity, we assume that only age, sex and systolic blood pressure (SBP)
are collected. The Weibull model which explains the relationship between
age, sex and SPB at baseline and the time to death can be fitted as follows

weibull_baseline<-survreg(Surv(time, death) ~ SBP + age + sex,

data=base)

where the time-to event variable is given by Surv(time, death) and the
dataset contains only the baseline information (data=base). The cumulative
incidence of death for each subject at a specific time-point (e.g. 48 months)
in the future is computed with the function get.risk.survreg() applied to
the object weibull baseline

base$risk_baseline <- get.risk.survreg(weibull_baseline, t0=48)
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where the option t0=48 sets the time point at which we want to calculate
the cumulative incidence. The time-dependent AUC is obtained by using the
function timeROC as follows:

auc_baseline <- timeROC(T=base$time,delta=base$death,

weighting="marginal",

marker=base$risk_baseline,cause=1,

times=c(48), iid=T)

summary(auc_baseline)

auc_baseline$AUC

confint(auc_baseline)

The Joint Model

Again for sake of example, we assume that age and sex are kept constant
at their baseline value while systolic blood pressure (SPB) are collected at
baseline (i.e. time=0) and at 1, 3 and 6, 12, 18, 24, 36, 48 and 60 months
later (SBP). The dataset data=long has a long shape where each subject
has a row for each visit from 0 to 60 months after baseline.

id SBP months

1 1 120 0

2 1 130 1

3 2 110 0

4 2 145 1

5 2 130 3

6 2 150 12

7 2 130 24

8 2 140 36

9 2 90 48

10 2 130 60

11 3 130 0

12 3 120 1

13 3 125 3

14 3 130 12

...

The function jointModel() is used to derive the Joint Model which explains
the relationship between age, sex. The longitudinal trajectory of the SPB is
at baseline. The longitudinal and survival submodels should be defined as
two different objects.
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The longitudinal submodel is defined as a linear mixed model with intercept
and time both as fixed and random effects. No variance-covariance matrix
for the residuals and among the random effects is specified. The function is
lme().

lmefit_sbp <- lme(SBP ~ times,

random = ~ time | id ,

data=long)

where the id option explains that there are repeated measurements for each
patients identified by the id variable.
The survival submodel is fitted by using the function coxph() with the base-
line fixed covariates (i.e. age and sex) while the longitudinal covariate must
not be included. Despite the name, if no other options are specified, the
function fits a Weibull Model.

coxfit_sbp <- coxph(Surv(time, death) ~ age + sex,

data=base, x=TRUE)

Finally, the two submodels are joined in the function jointModel() where
they are fitted again to derive the association between the longitudinal tra-
jectory and time to death.

jmfit_sbp <- jointModel(lmefit_sbp, coxfit_sbp, timeVar="times")

Note that time and times are two different variables where the first one
contains the time to event (or censoring) and the second one the time at
which the longitudinal marker is collected. From the model contained in
jmfit sbp it is possible to derive the prediction of the dynamic survival
probabilities by using the function survfitJM(). Before, we need to create
a subset of long with only the data collected in the time window of interest
(e.g. from baseline to month 6).

surv_6 <- c(rep(NA, nrow(base)))

dataset <- long[long$timess<=6,]

id<-dataset[dataset$timess==0,]$id

j <- 1

for(i in id)

{

surv_6[j]<-unlist(survfitJM(jmfit_sbp,

newdata = dataset[dataset$id==i,],

survTimes = c(48), simulate=F)$summaries)[2]

print(j)
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j <- j + 1

}

base$risk_6 <- 1-surv_6

In the option of the function survfitJM() we specified that we are interested
in the estimation of the survival probabilities at 48 months after the baseline
for each subject using only the data collected up to 6 months. Then we can
derive the cumulative incidence as one minus the survival probabilities.

Time dependent AUC and NRI

The function timeROC() used to calculate the AUC under the Weibull model
with the baseline covariate, is now used to derive the AUC by using the
dynamic cumulative incidence calculated by using the Joint Model.

auc_6month <- timeROC(T=base$time,delta=base$death,

weighting="marginal",

marker=base$risk_6,cause=1,

times=c(48), iid=T)

and the function compare() is used to compare the two AUC and test the
difference as follows

compare(auc_baseline, auc_6month)

The function nricens() is used to obtain the time-dependent NRI by
comparing the cumulative incidence of death at 48 months under the Weibull
(base$risk baseline) and the Joint model (base$risk 6).

nricens(time=base$time, event=base$death,

p.std=base$risk_baseline, p.new=base$risk_6,

t0=48, updown = "diff", cut=0, alpha=0.05,

set.seed(1234))

This is repeated for each marker of interest.
Moreover, a multivariate Joint Model (mvJointModelBayes()) is also used
to modelling all the markers of interest simultaneously. Some changes are
required to the code, in particular in the definition of longitudinal submodel.
The function mvglmer() allows to run a multivariate mixed model. For
example, we want to model the trajectories of the systolic blood pressure
(SBP) and the creatinine (CREAT). The longitudinal submodel is defined as
follows:
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lmefit_mv <- mvglmer(list

(SBP ~ months + (months | id),

CREAT ~ months + (months | id)),

data = long,

families = list(gaussian, gaussian))

where the option families allows to define which distribution each variable
follows. The survival submodel is defined as in the univariate case:

coxfit_mv <- coxph(Surv(month, death) ~ age + sex,

data=base, model=TRUE)

and the multivariate Joint Model is derived by the function mvJointModelBayes()

that combines the previous two submodels:

jmfit_mv <- mvJointModelBayes(lmefit_mv, coxfit_mv,

timeVar="months")

Also in this case, the AUC and the NRI are obtained using the predicted
survival probabilities estimated by using the function survfitJM() applied
to an object of the class mvJointModelBayes().

5.4 Summary of chapter

This chapter presents an in-depth deep review of the methods to assess the
prediction capability in a survival context. Section 5.1 and 5.2 are an intro-
duction of the AUC and NRI indexes in the binary case, while Section 5.1.1
and 5.2.1 regard their formulation with survival data. Moreover, for the
first time the use of the NRI was proposed and applied to a dynamic risk
prediction score obtained by using the Joint Model in order to evaluate the
gain related to the update of the longitudinal trajectory of a marker (see
Section 5.3). Strengths and limitations of these two approaches are shown.
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Chapter 6

A case study in prognostication
of death in heart failure
patients

In this chapter, an application of the Joint Model and the derivations of the
dynamic risk prediction is used to assess if the use of longitudinal data is as-
sociated to an improvement in the prognostication of death in patients with
reduced heart function. In particular, a comparison with the most widely
used method (Weibull model for survival analysis with baseline covariates)
and the Joint Model is proposed to prove how is important to include the
use of longitudinal data in the calculation of the risk. From a clinical point
of view, monitoring, and therefore analysing patient data in the 6 months
following heart failure, can help to improve the prognosis in terms of sur-
vival probability at 48 months. Several scores have been developed over the
years [15], but none of them modelled the longitudinal data directly. Usu-
ally, they are based on multivariate models with baseline covariates only.
The Joint Model could be a good way to model the longitudinal trajectory
of the biomarkers that are collected during the follow-up visits. The aim of
this case of study is therefore twofold: on one hand, the purpose was to prove
that the longitudinal data are relevant and useful in the prediction of death,
on the other hand it was necessary to find an index that could directly assess
how much the prediction of death could improve. To reach our objectives,
we came to the decision to use the Joint Model to include the longitudinal
trajectories of the biomarkers and to use two indexes common in the clinical
practice, i.e. the AUC and the NRI, to assess the improvement due to this
statistical model. In our study, the AUCs calculated using the Weibull and
Joint model respectively are used to assess the discrimination capability of
both of them while the NRI is used to quantify the gain related to the dy-
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namic update of the risk prediction.
The content of this chapter is published in Testing longitudinal data for prog-
nostication in ambulatory heart failure patients with reduced ejection fraction.
A proof of principle from the GISSI-HF database [17].

6.1 Motivation

Several therapeutic decisions in heart failure patients with reduced ejection
fraction (HFrEF) are based on life expectancy [70]. Both clinicians and pa-
tients need reliable estimates to consciously decide whether to proceed with
further advanced interventions.
However, there is a significant lack of adequate prognostic tools for this spe-
cific population. Recent works have highlighted the limited accuracy of avail-
able prognostic models [15], which were generated from a wider range of heart
failure patients, regardless of their left ventricular systolic function (i.e. re-
duced vs preserved), clinical setting (i.e. acute vs. chronic) and medical
therapy (i.e. with or without implanted cardiac device) ([15], [30], [74]).
In addition, most of them were created to predict all cause mortality, but
the contribution of cardiovascular causes is known to be significantly greater
in HFrEF than in heart failure with preserved ejection fraction (HFpEF)
patients [105]. Cardiovascular parameters are therefore expected to have a
greater prognostic impact in HFrEF than in HFpEF, in which the burden of
comorbidities appear as the most important determinant of death [3].
Several cardiovascular parameters used to estimate prognosis in HFrEF vary
considerably with time, even within few days or months of follow-up. This
variation, which may be physiological, due to treatment effects and/or simply
measurement error, may contribute to reduce the accuracy of prediction mod-
els. In particular, low systolic blood pressure (SBP) is an important marker
of low cardiac output in HFrEF, and it has been indicated as one of the
most powerful predictors of worse prognosis readily available at the patient’s
examination [7,8]. However, continuous titration of heart failure medications
and variations in cardiac output may determine significant modifications in
SBP values between visits. Thus, the use of a longitudinal collection of SBP
values should better capture the “real” SBP value and potentially increase
the accuracy of prognostication, particularly in those with an initially low
SBP [87]-[9].
Based on the above considerations, in the attempt to design a more reliable
prognostic tool for HFrEF patients who may be candidate to advanced heart
failure therapeutics, we hypothesized that the use of longitudinal values of
parameters with prognostic value, and particularly SBP, would determine
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an increase in the accuracy of prognostic estimations in HFrEF patients.
To test this hypothesis, we used longitudinal data from the Gruppo Ital-
iano per lo Studio della Sopravvivenza nell’Insufficienza Cardiacaâ€“Heart
Failure (GISSI-HF) study, a pragmatic trial of mainly HFrEF patients.

6.2 Methods

6.2.1 Study design, setting and participants

The GISSI-HF trial was a randomized placebo-controlled pragmatic nested
trial, which was designed to investigate the effects of n-3 polyunsaturated
fatty acids and rosuvastatin on mortality and morbidity in patients with
clinical evidence of stable chronic heart failure [100]. Patients were enrolled
between 2002 and 2005, with mandatory follow-up visits with clinical exam-
ination and blood testing at 1, 3, 6 months, and every 6 months thereafter,
up to a maximum of 60 months.Median follow-up was indeed 4 years (51
months, IQR = 44-56) and last follow-up visit was completed on March 31,
2008. Patients were included irrespective of heart failure , left ventricular
ejection fraction (LVEF), and age. Outcomes were adjudicated by an ad-hoc
committee. All patients gave their written informed consent to the partici-
pation in the study, which was approved by the institutional review board of
each participating center.

6.2.2 Sample selection

We took advantage of data being collected at 1, 3, 6-month follow-up visits,
considering a 6-month time window as a clinically reasonable watchful wait-
ing time to evaluate potential significant longitudinal changes in parameters
of interest, and to allow taking decisions on whether to candidate a patient to
further interventions, if needed. We started from a list of variables previously
demonstrated as independent prognostic markers of all-cause mortality in the
GISSI-HF population [7] (i.e. age, sex, body mass index, NYHA, diabetes
mellitus, chronic obstructive pulmonary disease, SBP, HR, LVEF, creatinine,
hemoglobin, uric acid). Among them, we subsequently choose five continuous
candidate variables of interest, based on their widespread clinical availabil-
ity, easy measurement repeatability and ample variability within few months.
These parameters included SBP, HR, hemoglobin, creatinine and uric acid.
From the initial 6975 patients with 66980 study visits, we therefore excluded
330 patients with 27783 visits missing at least one of these five parameters of
interest. Additional 1176 patients with 6991 visits were excluded because of
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baseline LVEF ≥ 40%, according to the aims of our study focused on HFrEF
patients, leaving a final sample of 5469 patients with 32206 repeated visits
(Figure 6.1).

Figure 6.1: Flow chart for patient selection.

Baseline comparison between included and excluded patients revealed
significant differences, mainly driven by the exclusion from our analysis of
patients with a LVEF ≥ 40%. Excluded patients had indeed a more preserved
LVEF, a lower mortality at follow-up and were more frequently older female
patients, with more comorbidities, a higher SBP, a less frequent ischemic
etiology and were less likely to receive beta-blockers and anti-aldosterone
therapy, thus reflecting the usual characteristics of an HFpEF population.

6.3 Statistical analysis

Descriptive statistics were presented as mean and standard deviation, abso-
lute and relative frequencies. T-test and Fisher’s exact test were performed
to compare the characteristics of patients alive or dead at follow-up. The
coefficient of variation (i.e. SD/mean× 100) was calculated for each param-
eter of interest (see Figure 6.2), confirming their ample variability during
6-month follow-up.
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Figure 6.2: Coefficient of variations of the five parameters of interest during 6-month
follow-up. For some subjects, the CV is equal to zero because the biomarker has the same
value at each time point over time. This could be due to an approximation of the physician
in the data entry.

6.3.1 Classical approach

After the descriptive analyses, necessary to present the composition of the
sample, the statistical analysis can be divided into two steps.
In the first step, the researcher explores the variation of the longitudinal
biomarkers of interest according to the survival status at the end of the
follow-up. To do this, several linear mixed models (see Chapter 1) with
random intercept and slope [108] were fitted for each biomarker of interest
(i.e. systolic blood pressure, heart rate, haemoglobin, creatinine, uric acid).
The objective was to show that their values changed significantly during the
first 6 months after baseline and differently for patients who for patients who
would have survived or died within 60 months. So, to ignore this change
by using only the baseline value in a survival model would have involved
a fairly significant loss of information because patients could have had the
same biomarker value at baseline but different after 6 months. The main
structure of each model for the i-th patient (with i = 1, ..., 5469) has the
following formulation:

BIOMARKERi =β0 + β1TIMEi + β2DEATHi + β3TIMEi ×DEATHi+

+ b0,i + b1,iTIMEi + ψXi

where

• TIME is a discrete variables that assumes values in 0,1,3 and 6 months,
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• DEATH is a dichotomous variable that explains the status at the end
of the follow-up (i.e. 60 months) and it is equal to 0 if patient is still
alive or 1 if the patient dies during the follow-up,

• X is a matrix that contains the other covariates of clinical interest: age,
sex, BMI, NYHA, diabetes, COPD, LVEF and systolic blood pressure,
heart rate, haemoglobin, creatinine, uric acid at baseline when they
were not the biomarker studied longitudinally,

• β0, . . . , β3, ψ are the fixed effects associated at each covariate,

• b0,i is the random intercept who explains the subject specific variation
around the mean intercept β0 for the whole sample,

• b1,i is the random slope who explains the subject specific variation
around the mean effect of TIME estimated on the whole sample.

An example of the coefficients obtained with the statistical software STATA
is shown in Figure 6.3.



105

Figure 6.3: STATA’s output with the coefficients for the fixed effects of a Mixed Model
to study the longitudinal evolution of the Systolic Blood Pressure (SPB). In this example,
it is possible to observe that the patients who die in the first 6 months after the baseline
have a mean SBP of 2.76 points less than live patients (95%CI = −3.78,−1.74; p < 0.001)
at baseline. The alive patients have a significant increase of 0.62 points at 1 month and
an increase of 1.48 point at 6 months in comparison with the baseline value. For example,
the increase at 6 months in patient who die during the first 6 months can be derived as
1.47 − 1.30 = 0.17, i.e. in the death patients the SBP does not change in mean during
the first 6 months. Observing a continuous variable such as age, we can observe that 1
increase on the age involves an increase of the SBP of 0.36 points. All the values are to
be considered correct (i.e. to be kept constant) for the other covariates in the model.

So defined, the model is a linear mixed model with random intercept
and slope. A first-order autoregressive covariance matrix was set to model
the correlation between the subsequent visits, while a matrix with only the
variance components was set to model the relationship among the random
effects (see Section 1.2 for more details). From these model, our interest
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is in two different elements: the coefficient of the interaction term and the
marginal trajectory of the marker according to the survival status. The first
one is necessary to support our hypothesis that ignoring the longitudinal
evolution involves a loss of information related to the change from the baseline
value of the markers. The second one is clinically relevant because it allows
the researcher to study the relationship between the biomarkers and survival.
To facilitate the interpretation, a spaghetti plot with the marginal means
(with 95% confidence intervals) adjusted to baseline values were calculated
at each time point for patients alive and dead at follow-up (see Figure 6.5).
The second step regards the definition of the survival models to assess how the
value (or the change) of each biomarker was associated to a clinical worsening
and death in a time frame of 60 months after the baseline. To do this, two
different approaches were used and compared: a “traditional” approch and
a “newer” one. The “traditional” approach consists of a survival model
estimated using a Weibull proportional hazards model (see Section 2.2.2 and
Section 2.4.1) with each biomarker of interest and covariates measured only
at baseline. The choice of the parametric Weibull will be explained in the
Section 6.5.4. The formulation of the Weibull Model for the i-th subject was
the following:

hi(t|X) =γ(h0t)
γ−1 exp(β0 + β1SBPi + β2HEART-RATEi + β3HAEMOGLOBINi+

+ β4CREATININEi + β5URIC-ACIDi + ψX

where

• the first part γ(h0t)
γ−1 defines the baseline hazard function as defined

in Section 2.4.1,

• β0 is the intercept,

• β1, . . . , β5 are the coefficient that explain the effect of each biomarker
on the hazard,

• X is a matrix that contains the other covariates of clinical interest, nec-
essary to avoid confounding: age, sex, BMI, NYHA, diabetes, COPD,
LVEF,

• ψ is the vector that contains the coefficients for the other covariates.

6.3.2 Proposed approach

The newer approach aimed at investigating the association between the lon-
gitudinal trajectory of each biomarker of interest and time to death, using
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the Joint Model (JM) for longitudinal and time-to-event data [80][82], as
recently performed elsewhere [116] and as define in Chapter 3. Briefly, the
advanced potential of this approach is to derive an individual prediction of
the survival curve from joining baseline and longitudinal information col-
lected over time (Figure 6.4). Joint modelling combines linear mixed effect
models for temporal evolution of the repeated measurements with Weibull
survival models for the time-to-event data. By applying joint modelling, all
biomarker candidate values were inherently corrected for different follow-up
durations between patients [79][12].

Figure 6.4: Change in prediction of 4-year survival using baseline value only vs joining
baseline and longitudinal values up to 6-month follow-up. The plots depict the change in
prediction of 4-year survival (right Y axis) using baseline value of systolic blood pressure
only (A, left Y axis) vs joining baseline and longitudinal systolic blood pressure values up
to 6-month follow-up (B, left Y axis). The increase in systolic blood pressure observed
during the first 6 months of follow-up (with 3 additional values at 1, 3 and 6-month visit)
determines a change in the prediction of 4-year survival (red stars), which in the example
increases from 63% to 70%.

Following the definitions seen in Section 3.2, for each biomarker, the joint
model is based on two different submodels: the longitudinal and the survival
submodel. The longitudinal submodel for the i-th patient is defined by the
following equation:

BIOMARKERi = mi = β0 + β1TIME + b0,i + b1,iTIME

where the outcome variables contains all available measurements of the
marker between baseline an month 60. Not only the information related to



108

the first 6 months are included in this step because we have the necessity to
train the model on the larger amount of data available.
The survival submodel is given by:

hi(t|Mi(t),Wi) = h0(t) exp(γ′Wi + αmi(t))

where

• W is a matrix that contains the following covariates kept fixed in their
baseline value: age, sex, BMI, NYHA, diabetes, COPD, LVEF and
systolic blood pressure, heart rate, haemoglobin, creatinine, uric acid
when they are not the biomarker studied longitudinally,

• γ is a vector that contains the coefficient that explains the effect of
each covariates on the log-hazard,

• mi(t) is the value of the longitudinal biomarker at time t derived from
the longitudinal submodel,

• α is the association parameter, it is the log-hazard ratio which explains
the effect of a unit increase of the marker on the hazard of death.

Both the “traditional” and the “newer’ model are fitted on the overall
sample to obtain the respective hazard ratios. Then, the 48-month survival
probabilities were calculated for each patients by using the baseline informa-
tion under the traditional model and by using information collected up 1, 3
and 6 months respectively under the JM. The predicted survival probabili-
ties at 48 months and the respective cumulative incidences are derived using
the definition seen in Section 4.1.1. These estimates were used to assess the
prediction accuracy of mortality at 48 months in terms of time-dependent
area under the curve (AUC) (see Definition 9) and net reclassification im-
provement (NRI) (see Definition 10).
All the continuous variables inserted in the models are not centered to the
mean value. Even if this fact could have helped in the interpretation of the
intercept and the coefficient, it was not considered necessary. No variable of
power greater than 1 was inserted in any model to justify the centering in
order to avoid a correlation between the variable of grade one and the sqaure
or the cube of the same.
Two-tailed probabilities were reported and a P-value of 0.05 was used to
define nominal statistical significance. All analyses were conducted using
STATA software (version 14.2, 2015, StataCorp, College Station, TX, USA)
and R (version 3.5.2, 2018, R Core Team, R Foundation for Statistical Com-
puting, Vienna, Austria).
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6.4 Results

6.4.1 Sample characteristics

The study sample included 5469 patients with baseline LVEF < 40% and
32206 repeated visits with the same amount of SBP, HR, hemoglobin, creati-
nine and uric acid measurements. A total of 1588 died during the study (37
by one month, 110 by 3 months, 221 by 6 months, 1452 by 48 months, with
an incidence rate of 8.3% per 1 year). Tables 6.1 and 6.2 shows a comparison
of patients alive and dead at follow up, confirming the univariate association
between each parameter of interest and mortality [7].
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Table 6.1: Descriptive statistics at baseline according to survival status at follow-up.
NYHA=NewYork Heart Association functional class; COPD=chronic obstructive pul-
monary disease; ICD=internal-cardioverter defibrillator; LVEF=left ventricular ejection
fraction; SBP = systolic blood pressure; ACE = angiotensin-converting enzyme inhibitor;
ARB = angiotensin receptor blocker; MRA = mineralocorticoid receptor antagonist.
Please, it should be noted that the p-values should be considered with caution because
their high significance can be due to the big sample size on which the tests are applied.
A clinical interpretation of the differences between patients alive and dead should be pre-
ferred.
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Table 6.2: Descriptive statistics at baseline according to survival status at follow-up.
NYHA=NewYork Heart Association functional class; COPD=chronic obstructive pul-
monary disease; ICD=internal-cardioverter defibrillator; LVEF=left ventricular ejection
fraction; SBP = systolic blood pressure; ACE = angiotensin-converting enzyme inhibitor;
ARB = angiotensin receptor blocker; MRA = mineralocorticoid receptor antagonist.
Please, it should be noted that the p-values should be considered with caution because
their high significance can be due to the big sample size on which the tests are applied.
A clinical interpretation of the differences between patients alive and dead should be pre-
ferred.

6.4.2 Association between 6-month changes in param-
eters of interest and mortality

Patients alive vs dead at follow-up started off with significantly better values
of each parameter of interest, but also displayed a favorable trend of each
one of these parameters over the first 6 months of follow-up (Figure 6.5, i.e.
SBP increased, HR and uric acid decreased to a greater extent, hemoglobin
and creatinine respectively decreased and increased to a lesser extent in alive
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than in dead patients).

Figure 6.5: Temporal trend in five parameters of interest during the first 6 months of
follow-up by survival status at last follow-up visit. Each parameter showed a favorable
trend over the first 6 months of follow-up in patients alive vs. dead at 4-year follow-up.
Marginal means (with 95% confidence intervals) adjusted to baseline values were calculated
at each time point using linear mixed models and confirmed a significant difference in the
first 6-month change of each one of these parameters between those alive and dead at
4-year follow-up, with a p-value for time by mortality interaction ≤ 0.01. See Table 6.3
for further details.



113

After adjustments for confounders, the 6-month time effect for each pa-
rameter was confirmed statistically significant both in the alive and dead
group, with only SBP remaining substantially unchanged in the dead group
(Table 6.3).More importantly, all five parameters showed a significant inter-
action between time and mortality, indicating that there was a significant
difference in the 6-month change of each one of these parameters between
those alive and dead at the end of follow-up (Figure 6.5 and Table 6.3).

Table 6.3: Linear mixed models for longitudinal analysis of parameters of interest by
patient status at follow-up. Each model was adjusted for age, sex, BMI, NYHA, diabetes,
COPD, LVEF, heart rate, haemoglobin, creatinine, uric acid at baseline when they were
not studied longitudinally
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6.4.3 Accuracy of prognostication using baseline only
vs first 6-month longitudinal data

Each parameter of interest was significantly associated with increased (or
reduced) mortality, both using the traditional and the longitudinal survival
model, with stronger hazard ratios for the latter one (Table 6.4).
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Table 6.4: Multivariate survival analysis. Comparison between the Traditional Model (i.e.
Weibull survival model) with each biomarker of interest and covariates measured only at
baseline and the Longitudinal Model (i.e. Joint Models) with each biomarker of interest
collected over time. Joint models were adjusted for age, sex, BMI, NYHA, diabetes,
COPD, LVEF, SBP, heart rate, hemoglobin, creatinine, uric acid at baseline when they
were not studied longitudinally. Ref= reference. See Table 6.1 for abbreviations. (*) p <
0.05; (**) p < 0.01; (***) p < 0.001.
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The comparison of the predicted survival probabilities at 48 months re-
vealed a significant moderate increase of prediction accuracy both in term of
AUC (from 75.5% with the traditional model up to 77.1%, p < 0.001) and
NRI (0.35, p < 0.001) when using longitudinal values of all parameters of
interest up to 6 months (Table 6.5).

Table 6.5: Multivariate survival analysis. Comparison between the Traditional Model (i.e.
survival model) with each biomarker of interest and covariates measured only at baseline
and the Multivariate Joint Models with each biomarker of interest collected over time and
simultaneously modelled. Joint models were adjusted for age, sex, BMI, NYHA, diabetes,
COPD, LVEF. Ref= reference. See Table 6.1 for abbreviations. (*) p < 0.05; (**) p <
0.01; (***) p < 0.001.

When 6-month longitudinal values of each parameter of interest were
studied in separate JMs, holding constant values of the remaining biomarkers
at baseline, a significant increase in both AUC and NRI was noticed compared
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to traditional model including baseline values only (Table 6.4), particularly
for SBP.

6.4.4 The case of systolic blood pressure

In order to compare the outcome of patients with similar baseline SBP value
but different SBP trajectories during the first 6 months of follow-up, we
performed a sub-analysis by four SBP groups (i.e. SBP ≤ 110, 110 < SBP ≤
120, 120 < SBP ≤ 140 and SBP > 140 mmHg). Indeed, the univariate
association between baseline SBP and mortality were not significant within
these SBP groups (Table 6.2, grey background). Nonetheless, joining the
baseline and longitudinal SBP values recorded during the first 6 months of
follow-up showed different trajectories of SBP in patients alive and dead
at follow-up, with a greater SBP increase in patients with baseline SBP ≤
110 and 110 < SBP ≤ 120 who survived at follow-up, and a greater SBP
decrease in patients with baseline 120 < SBP ≤ 140 who died at follow-up
(Figure 6.6), which were confirmed after multivariate adjustments (Table 6.3,
grey background). There was no significant interaction between time and
mortality in patients with baseline SBP > 140 (Figure 6.6 and Table 6.3,
grey background).
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Figure 6.6: Temporal trend in systolic blood pressure during the first 6 months of follow-up
by survival status at last follow-up visit. Patients were divided into 4 groups according to
their SBP at baseline: SBP ≤ 110, 110 < SBP ≤ 120, 120 < SBP ≤ 140 and SBP > 140
mmHg. Each parameter showed a favorable trend over the first 6 months of follow-up in
patients alive vs. dead at 4-year follow-up. Marginal means (with 95% confidence intervals)
adjusted to baseline values were calculated at each time point using linear mixed models
and confirmed a significant difference in the first 6-month change of each one of these
parameters between those alive and dead at 4-year follow-up, with a p-value for time by
mortality interaction ≤ 0.01. See Table 6.3 for further details.

Prediction accuracy of baseline SBP decreased from its greatest (i.e.
75.8%) in the group of patients with SBP ≤ 110 to its least (i.e. 66.2%) in the
group of patients with SBP > 140 (Table 6.3, grey background). Nonethe-
less, even in the former group, the joining of 6-month SBP values determined
a significant 2.9% increase in prediction accuracy; smaller but significant in-
creases in AUC were found also in 110 < SBP ≤ 120 and 120 < SBP ≤ 140
patients, whereas no increase was noticed in SBP > 140 patients. Similarly,
the NRI showed a significant moderate improvement in predictive accuracy in
all groups except SBP > 140, confirming the greater discrimination obtained
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when using a longitudinal prognostic model (Table 6.3, grey background).

6.5 Discussion

With the availability of more advanced therapeutic interventions for HFrEF
patients, prognostication is becoming increasingly relevant. Concomitantly,
limitations of available prognostic tools have been brought to light [15][16],
and a “reboot” of prognostic modelling in heart failure advocated [26]. It has
also been suggested that dynamic models using repeated measures over time
would give better prediction than “one-off” measurements would give [92].
We herein took advantage of longitudinal data collected in the GISSI-HF
trial to demonstrate that the use of 6-month repeated measurements of five
parameters of interest (i.e. SBP, HR, hemoglobin, creatinine and uric acid)
was able to improve the accuracy of 4-year all-cause mortality prediction over
the use of a single measurement obtained at study enrolment.

6.5.1 Longitudinal trajectories of parameters of inter-
est

These five parameters were chosen because of their validated independent
prognostic impact, wide availability in daily clinical practice and high vari-
ability within a short period of time. Their 6-month coefficients of variation
approached 10% or higher, and for SBP and HR were similar to those found
in the HFrEF population of the Systolic Heart Failure Treatment with the
If inhibitor ivabradine Trial (SHIFT) [11]. Acknowledging these important
variations in the measurement of parameters with prognostic capability in
HFrEF is of great importance. In addition, in a transversal enrolment, such
as that usually undertaken in current heart failure registries and trials, the
nature of the disease casually finds the patients in a fluctuating state of
stability or instability within their chronic progressing condition. These as-
pects may contribute to the inaccuracy of available transversal prognostic
models [15], and explain the existence of several “prognostic outliers” [16],
who could have been erroneously judged based on a single transitory value of
these parameters. Importantly, within this variability we found that 6-month
trajectories of these parameters were significantly different in patients alive
vs dead at final follow-up (i.e. each parameter demonstrated a significant
interaction between time and mortality), supporting the rationale for the use
of longitudinal data to improve accuracy of survival prediction.
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6.5.2 The case of systolic blood pressure

In contrast to hypertensive patients, the concept of “reverse epidemiology”
suggests that symptomatic patients with HFrEF and elevated blood pressure
levels have an improved survival [43]. Thus, whereas variability of blood
pressure in hypertensive patients is frequently interpreted as random fluctu-
ation around a patient’s true underlying blood pressure [60], in patients with
HFrEF an increased SBP variability has been usually related to modifications
in cardiac output and medications, and associated with both poorer [87] and
improved outcomes [11]. Nonetheless, when HFrEF patients enrolled in the
SHIFT were stratified by baseline SBP, those with low SBP at baseline and
low SBP variations at follow-up had an additive deleterious effect on risk [11].
In our study, we found a significant interaction between time and mortality
in the groups of patients with baseline SBP ≤ 110 and 110 < SBP ≤ 120,
indicating that there was a greater increase in 6-month values of SBP change
in those alive vs those dead at the end of follow-up. Accordingly, the gain-
ing in prognostic accuracy was maximal when using longitudinal SBP values
in the group of patients with baseline SBP ≤ 110. We speculate that the
increase in SBP observed in these patients may be related to some recov-
ery in LVEF. A trend toward higher risk reduction was previously found in
HFrEF patients who increased their SBP to those who failed to increase their
SBP 6 months after the implantation of a cardiac resynchronization device
[9], further highlighting the importance of SBP augmentation as a marker of
myocardial function improvement with an impact on prognosis. SBP should
certainly not be considered as a substitute for measurements of LVEF, but
its value lies in its comprehensiveness and simplicity, as it can be routinely
measured at all outpatient visits [106], and multiple measurements in time
can considerably orient physicians toward the most appropriate management
of the patient.

6.5.3 Statistical modelling of longitudinal data

The change of a continuous parameter in a certain period of time(i.e. delta,
usually expressed as a percent change) or the slope of the regression line de-
rived from multiple values in time [87][12][55] have been traditionally used for
easy handling longitudinal data and to be tested as predictor of outcomes.
Alternatively, a continuous variable has been categorized (e.g. LVEF into
LVEF < 40%, 40 to 49% and ≥ 50%) and the subjects assigned to a “lon-
gitudinal” group based on their transition from an initial group to another
during follow-up [86][8]. Joint modelling brings at least three advantages in
comparison with these previous approaches. Firstly, JM handles the con-
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tinuous evolutions over time of the biomarker while a time-varying Weibull
or Cox model assumes unrealistically that the value remains constant be-
tween visits. Secondly, JM is more flexible, i.e. can work with biomarkers
collected at different time points from a patient to another and missing val-
ues do not affect the estimation because they are automatically handled by
the longitudinal sub-model [81]. Thirdly, JM takes advantage of the whole
medical history of each patient, as the model is created by using all the avail-
able information, including those closest to the event (i.e. death) that are
particularly valuable to draw more precise trajectories and to obtain better
prognostic estimates. After creating our JM from the whole database,we ar-
bitrarily tested its prediction accuracy by using data collected within the first
6 months of follow-up only, considering this as a clinically acceptable window
of time for permitting a better estimation of 4-year survival probability. We
acknowledge that about 4% of patients in the study died during these first 6
months.
To the best of our knowledge, a similar approach was previously used only
by Zhang and colleagues, who demonstrated the improvement in prediction
of 3-year mortality obtained by using longitudinal vs cross-sectional values
of N-terminal pro B-type natriuretic peptide [116]. Nonetheless, this study
and ours remain “proof of principle” studies, and further analysiswill have
to be performed to validate our model in independent HFrEF cohorts, and
to potentially develop a new prognostic tool to be used in the clinic, con-
senting the incorporation of longitudinal data. Prognostic models for specific
subgroup of HFrEF patients would have to be developed [30] (e.g. ischemic
vs non-ischemic HFrEF [47]), accounting also for the competitive modes of
death contributing to total mortality in HFrEF, particularly pump failure vs
sudden cardiac death vs. non-cardiovascular death (e.g. cancer) [16][4].

6.5.4 Strengths and limitations

Among the strengths of this analysis is the large cohort of well phenotyped
heart failure patients enrolled in a pragmatic trial of substantially neutral
medications (i.e. n-3 polyunsaturated fatty acids and rosuvastatin), and
with several longitudinal parameters collected during a long-term follow-up.
In addition, longitudinal real-world data are usually collected at the clini-
cian’s discretion, often following episodes of deterioration, whereas our trial
data were recorded at prespecified time points, allowing the examination
of unbiased observations. Importantly, patients with missing longitudinal
variables of interest were excluded from the analysis, as well as those with
preserved LVEF, according to the aims of our analysis focused on the HFrEF
population only. The choice of removing patients with missing markers can
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also be seen as a limitations. It can seem tendentious but it is motivated by
two different aims: firstly, we needed to put ourselves in the best scenario
where all markers of interest are collected, secondly, we wanted to be consis-
tent through the entire study, using the same set of patients: the missingness
of some marker would lead to regression models based on different subsets
of patients. Finally, the application of the Joint Model is often affected by
problem of convergence, to avoid this fact we needed to have the best and
clean dataset.
Among the limitations is the retrospective nature of the analysis, performed
on a database collected > 10 years ago with a utilization of disease mod-
ifying therapy (particularly beta-blocker, mineral receptor antagonists and
implantable cardioverter defibrillator) lower than the one reported in contem-
porary real-world HFrEF European outpatients [54]. We cannot determine
whether longitudinal changes in SBP were due to changes in medications
or LVEF. Nonetheless, the use of HFrEF recommended medications was ex-
tremely high at enrolment, stable at 6-month follow-up (diuretics 89.6%,
ACE inhibitors/angiotensin receptor blockers 93.2%, beta-blockers 71.3%,
mineral receptor antagonists 40.8%), and most of these treatments could
have lower and not increase SBP. As in previous analysis, variables contain-
ing information on medications were excluded from multiple analysis because
of the impossibility to distinguish causality of treatment effects from con-
founding by indication and reverse causation [7]. Similarly, we could only
speculate on the relationship between changes in SBP and LVEF; longitudi-
nal LVEF data were lacking, thus we could not investigate this aspect any
further. We finally acknowledge that the 2-3% increase observed in AUC,
although statistically significant, could have little impact at the single pa-
tient level. However, this is a proof of principle study, and recent large-scale
studies have reported similar AUC improvements when comparing older vs
newer models [1] [15] or adding biomarkers [6].
Regarding the statistical methods, at least two drawbacks should be men-
tioned.
The first one regards the very small number of functions available to fit the
Joint Model. We used the method and the function proposed by Rizopoulos
[80] and another package was developed in STATA by Crowther [24] [25].
Some other functions are available on the web but how they work is not
very clear. The package proposed by Crowther is useful in practice but the
environment of STATA is less flexible and, for the purposes of our study, it
does not allow for comparison between Weibull and Joint Model.
The second drawback is related to the computational issues related to the
Joint Model. In general, we noticed that it requires a relative big number of
repeated measurements for each subject and a good sample size. No formal
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considerations are done, but in the development of this analysis we noticed
than more than 4 longitudinal measurements for each subject are required
and, if possible, a study design that sets the repeated measurements at fixed
time points, even if the Joint Model should be implemented to manage pa-
tients with repeated measurements collected scattered over the follow-up.
Another limitation is related to the computational times: if the Joint Model
requires several longitudinal measurements, the increase of the sample size
and the number of visits for each subject involve an increase of the computa-
tional time, specially in the calculation of the predicted survival probabilities
that requires the use of simulation. If the univariate Joint Model requires
from 5 to 10 minutes to run, the multivariate Joint Model takes a few hours.
This fact is also related to the number of covariates inserted in the survival
submodel and their distribution. Another computational limitation is re-
lated to the definition of the two submodels and the Joint Model itself. The
Joint Model should allow to use several functional forms for the modelling
of the time or different structure for variance/covariance matrices as well as
the use of different baseline hazard function (Weibull, Cox, . . . ). In practice,
the number of computation issues increases as the complexity of the model
increase as definition of the model becomes more complex. Finally, some
functions necessary to the derivation of the predicted survival probabilities
are not available with all the possible combinations of the submodels for the
longitudinal and survival part.

6.6 Conclusions

The findings, even if collected on a retrospective sample, proves that the
use of longitudinal data over cross-sectional data can significantly improve
the accuracy of survival prediction in HFrEF patients. The use of 6-month
values of five continuous biomarkers, including SBP, HR, hemoglobin, crea-
tinine and uric acid, allowed obtaining greater accuracy in prognostication
than the use of baseline values only. In particular, during this window of time
an increase in SBP in patients with low baseline SBP values was associated
with a greater survival, potentially linked to some recovery in left ventricular
function.
Limitations of available prediction scores are being increasingly acknowledged
[30], and clinicians are reluctant to incorporate them in their routine clinical
practice[15]. Although prognostication remains a “once and for all” moment
(that is, when the patient and the physician have to take a particular deci-
sion), during this crucial moment the physician should account for the whole
trajectory of the patient. In light of this principle and of our results, prog-
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nostication in HFrEF becomes a dynamic process, which may be worth the
waiting of few months before electing the patient to advanced therapy such as
the implantation of internal cardioverter defibrillator and/or left ventricular
support devices [91]. Further investigation on this matter is warranted, due
to the clinical relevance of the issue and the increasing availability of longitu-
dinal real-world data and statistical models able to comprehensively handle
them for the production of more advanced prognostic tools. In general, an
opportune perspective clinical trial to compare the common and the Joint
Model approach is recommended to better address the problem and provide
an incentive for new patient monitoring and care strategies.
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Appendix A

A proof for REML Theorem

Theorem 1. Let Y = Xβ + Zb + ε the linear mixed model obtaining by
the combination of N subject-specific models Yi ∼ Nni(Xiβ, Vi(α)), then the
REML log-likelihood function for ϑ = (β, α) can be written as

lREML(β, α; y) = C − 1

2
log

∣∣∣∣∣
N∑
i=1

X ′iVi
−1Xi

∣∣∣∣∣+ lML(β̂(α), α; y)

with C a constant, and because
∣∣∣∑N

i=1X
′
iVi
−1Xi

∣∣∣ does not depend on β, it

follows that the REML estimators fo α and β can also be found maximizing
the REML function with respect to all parameters simultaneously.

Lemma 1. Let A be a matrix defined as previous then

U = A′Y ∼ Nn−p(0, A
′V A)

with V = V (α). Thus, the distribution of U depends on α but not β.

Proof. Because Y ∼ Nn(Xβ, V ) we get that:

E[U ] = E[A′Y ] = A′E[Y ] = 0

V[U ] = V[A′Y ] = A′V[Y ]A = A′V A

hence:
U = A′Y ∼ Nn−p(0, A

′V A).

Lemma 2. Let A a matrix defined as previous, and G = V −1X(X ′V −1X)−1,
then

(a) |[A,G]|2 = |X ′X|−1
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(b) |A′V A| = |X ′V −1X| |V | |X ′X|−1

(c) A(A′V A)−1A′ = V −1 − V −1X(X ′V −1X)−1X ′V −1

Proof. Let A a matrix n× (n− p) defined as previous that satisfying

A′A = In−p and AA′ = I − PX
and G = V −1X(X ′V −1X)−1.

(a)

|[A,G]|2 = |[A,G]′[A,G]| =
∣∣∣∣[A′G′

]
[A,G]

∣∣∣∣
=

∣∣∣∣[ A′A A′G
G′A G′G

]∣∣∣∣ =

∣∣∣∣[ I A′G
G′A G′G

]∣∣∣∣ 1

= |I||G′G−G′AI−1A′G| = |G′G−G′AA′G|
= |G′G−G′[I − PX ]G| = |G′G−G′G+G′PXG|
= |G′X(X ′X)−1X ′G| = |(X ′X)|−1

(b)

A′V G = A′V V −1X(X ′V −1X)−1 = 0

G′V G = (X ′V −1X)−1X ′V −1V V −1X(X ′V −1X)−1

= (X ′V −1X)−1(X ′V −1X)(X ′V −1X)−1 = (X ′V −1X)−1

Hence:

|[A,G]|2|V | = |[A,G]′||V ||[A,G]|
= |[A,G]′V [A,G]|

=

∣∣∣∣[A′G′
]
V [A,G]

∣∣∣∣
=

∣∣∣∣[ A′V A A′V G
G′V A G′V G

]∣∣∣∣
=

∣∣∣∣[ A′V A 0
0 (X ′V −1X)−1

]∣∣∣∣
= |A′V A||(X ′V −1X)|−1

1The result on the determinant of a partitioned matrix gives

|M | =
∣∣∣∣[ A B

B′ D

]∣∣∣∣ = |D||A−B′D−1B′| = |A||D −B′A−1B′|



128

Using Lemma A.3.a we obtain

|[A,G]|2|V | = |A′V A||(X ′V −1X)|−1

|(X ′X)|−1|V | = |A′V A||(X ′V −1X)|−1

=⇒ |A′V A| = |(X ′X)|−1|V ||(X ′V −1X)|−1

(c) In analogy at proof of Lemma A.3.b we have:

([A,G]2V )−1 =

[
A′V A 0

0 (X ′V −1X)−1

]−1

=

[
(A′V A)−1 0

0 X ′V −1X

]
Multiplying for [A,G]2 we obtain:

[A,G]([A,G]2V )−1[A,G]′ = [A,G]

[
(A′V A)−1 0

0 X ′V −1X

]
[A,G]′

V −1 = A(A′V A)−1A′ +GX ′V −1XG′

A(A′V A)−1A′ = V −1 −GX ′V −1XG′

= V −1 − V −1X(X ′V −1X)−1X ′V −1X(X ′V −1X)−1X ′V −1

= V −1 − V −1X(X ′V −1X)−1X ′V −1

Now, I can use the three previous lemmas to prove the REML theorem.

Proof. The log-likelihood function for α vector of parameters of the covari-
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ance matrix V = V (α) with respect to the sample U = A′Y is given by:

l(α;u) = −n− p
2

log 2π − 1

2
log |A′V A| − 1

2
U ′(A′V A)U

= −n− p
2

log 2π − 1

2
log |X ′V −1X| − 1

2
log |V | − 1

2
log |X ′X|−1 − 1

2
y′A(A′V A)A′y

= C − 1

2
log |X ′V −1X| − 1

2
log |V | − 1

2
y′A(A′V A)A′y

= C − [...]− 1

2
y′A(A′V A)A′y

= C − [...]− 1

2
y′(V −1 − V −1X(X ′V −1X)−1X ′V −1)′y

= C − [...]− 1

2
y′V −

1
2 (I − V −

1
2X(X ′V −

1
2V −

1
2X)−1X ′V −

1
2 )V −

1
2y

= C − [...]− 1

2
y′V −

1
2 (I − P

V −
1
2X

)V −
1
2y

= C − [...]− 1

2
y′V −

1
2 (I − P

V −
1
2X

)′(I − P
V −

1
2X

)V −
1
2y

= C − [...]− 1

2
y′V −

1
2 (I − P

V −
1
2X

)′(I − V −
1
2X(X ′V −

1
2V −

1
2X)−1X ′V −

1
2 )V −

1
2y

= C − [...]− 1

2
y′V −

1
2 (I − P

V −
1
2X

)′(V −
1
2y − V −

1
2X(X ′V −1X)−1X ′V −

1
2V −

1
2y)

= C − [...]− 1

2
y′V −

1
2 (I − P

V −
1
2X

)′(V −
1
2y − V −

1
2Xβ̂)

= C − [...]− 1

2
(y −Xβ̂)′V −

1
2V −

1
2 (y −Xβ̂)

= C − [...]− 1

2
(y −Xβ̂)′V −1(y −Xβ̂)

= C − 1

2
log |X ′V −1X| − 1

2
log |V | − 1

2
(y −Xβ̂)′V −1(y −Xβ̂)

Now we can observe that: −1
2

log |V |−1
2
(y−Xβ̂)′V −1(y−Xβ̂) ∝ lML(β̂(α), α; y)

more less than a constant. Hence:

lREML(β, α; y) = C − 1

2
log

∣∣∣∣∣
N∑
i=1

X ′iVi
−1Xi

∣∣∣∣∣+ lML(β̂(α), α; y)
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