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Introduction

This thesis is focused on Probabilistic Graphical Models (PGMs), which are a rich
framework for encoding probability distributions over complex domains. In partic-
ular, joint multivariate distributions over large numbers of random variables that
interact with each other can be investigated through PGMs and conditional inde-
pendence statements can be succinctly represented with graphical representations.
These representations sit at the intersection of statistics and computer science, re-
lying on concepts mainly from probability theory, graph algorithms and machine
learning. They are applied in a wide variety of fields, such as medical diagnosis,
image understanding, speech recognition, natural language processing, and many

more.

The fundamental and universal applicability of PGMs is due to a number of fac-
tors. Firstly, the graphs can visually represent the scientific content of a given model
and facilitate communication between researcher and statistician. Secondly, statis-
tical models supported on PGMs are naturally modular so that complex problems
can be described and handled by careful combination of simple elements. Thirdly,
graphs are natural data structures for modern digital computers. Thus, models
can be efficiently communicated to these and the road is paved for exploiting their

computational power [77].

Over the years theory and methodology have developed and been extended in a
multitude of directions. In particular, in this thesis different aspects of new classes
of PGMs called Staged Trees and Chain Event Graphs (CEGs) are studied. In
some sense, Staged Trees are a generalization of Bayesian Networks (BNs). Indeed,
BNs provide a transparent graphical tool to define a complex process in terms of
conditional independent structures. This facilitates the identification of relevant
structural components of the process, allows the factorization of the joint proba-
bility distribution and optimises the computational costs and time for inferences.
Despite this and their obvious strengths in allowing for the reduction in the dimen-
sionality of joint probability distributions of the statistical model and in providing

a transparent framework for causal inference, BNs are not optimal GMs in all situ-



ations. The biggest problems with their usage mainly occur when the event space
is not a simple product of the sample spaces of the random variables of interest,
and when conditional independence statements are true only under certain values
of variables. This happens when there are context-specific conditional independence
structures [13, [109].

Some extensions to the BN framework have been proposed to handle these issues.
For instance, a context-specific BN [I3] that uses supplementary trees to represent
the conditional probability tables that show context-specific information. Alter-
natively, the standard BN can be reorganized in order to depict context-specific
independences using multiple vertices associated with a single variable. Another
proposal is to use Bayesian Multinets or Similarity Networks [49]. These adopt a
hypothesis variable to encode the context-specific statements over a particular set
of random variables. For each value taken by the hypothesis variable the graphical
modeller has to construct a particular BN model called local network. The collec-
tion of these local networks constitute a Bayesian Multinet or a Similarity Network.
However, in both these approaches, a process is described by a set of networks in-
stead of a single graph. The natural consequence is that the modelling procedure
becomes more complicated and the computational complexity to encode these mod-
els increases substantially compared to a standard BN. These problems only get
worse when the hypothesis variable has to represent context-specific hypotheses as-
sociated with different states of the process. The corresponding drawbacks become

more pronounced and the computational complexities increase dramatically.

Probabilistic Decision Graph [64] were originally proposed for automated check
of probabilistic expert systems under context-specific information and are based on
ordered binary decision diagrams [I8]. This enables the user to perform efficient
probabilistic inference especially in models with context-specific structures. Since a
Probabilistic Decision Graph has an underlying tree graph it comes close to Staged
Trees and CEGs models, which are the main focus of this thesis. Smith and An-
derson [107] showed that CEG models encompass all discrete BN models and its
discrete variants described above as a special subclass and they are also richer than

Probabilistic Decision Graphs whose semantics is actually somewhat distinct [112].

Unlike most of its competitors, Chain Event Graphs can capture all (also context-
specific) conditional independences in a unique graph, obtained by a coalescence over
the vertices of an appropriately constructed probability tree, called Staged Tree
[27, 99, 107]. CEGs have been developed for categorical variables and have been
used for cohort studies [4], causal analysis [I11],[115] and case-control studies [68), 69].

Structure learning algorithms have been defined in the literature [5, 26, 28, [105].

2



The user’s toolbox to efficiently and effectively perform uncertainty reasoning with
CEGs further includes methods for inference and probability propagation [53, [116],
the exploration of equivalence classes [55] and robustness studies [80, 126]. The
model class of CEGs and Staged Trees have been further extended to model dynamic
problems with recursively updated probabilities [0, 45], decision problems under the

framework expected utility maximization [I13] and Bayesian games [114].

The main contributions of this thesis to the literature on Staged Trees are related
to Stratified Staged Trees with a keen eye of application. Few observations are made
on non-Stratified Staged Trees in the last part of the thesis. A core output of the
thesis is an R software package which efficiently implements a host of functions for
learning and estimating Staged Trees from data, relying on likelihood principles.
Also structural learning algorithms based on distance or divergence between pair of
categorical probability distributions and based on the clusterization of probability
distributions in a fixed number of stages for each stratum of the tree are developed.
This is in contrast with the only other method for learning Staged Trees available

in the literature which follows a Bayesian approach.

The thesis consists of seven chapters. Chapter [I| reviews the essential theory on
Probabilistic Graphical Models and presents in detail an estimation criterion based
on Neighborhood Regression for time-varying DAGs. It is instrumental to Chapter
2 which deals with a case study provided by Swiss Re Group, the sponsor of this
thesis. Chapter 1 includes also the analysis of a dataset on pediatric tooth cavities
using Undirected Graphical Models, which will be refined in Chapter 5 using Staged
Trees. In Chapter 2 a pilot study in an insurance context is presented. PGMs
are used to develop a variables selection based on estimated significant relations
between response variable and covariates. PGMs for time series are introduced
and a bootstrap approach is adopted in order to produce robust estimates and be
careful with data sensitivity, crucial topic in an insurance framework. Chapter 3
presents Staged Trees and Chain Event Graphs, giving details on their theoretical
formulations and estimation criteria based on Bayesian or Frequentist approaches or
based on distance/divergence between pair of categorical probability distributions.
It also gives a review of the Dynamic Programming algorithm, which guarantees a
global optimum of one of the estimation criteria above over the set of all Stratified
Staged Trees; this assumes an ordering of the components of a random vector X.
Next, the importance of the order of variables used to build the Staged Tree is

highlighted, providing also three different algorithms to infer such variables ordering.

In Chapter 4 the relation existing between Bayesian Networks and Staged Trees

is studied in details. It is proposed a conversion algorithm to obtain the Strati-



fied Staged Tree structure corresponding to a given BN. This is presented as an
asymmetry-labeled DAGs (ALDAGs), which is a minimal DAG such that the sta-
tistical model embedded in the given Staged Tree is contained in the one associated
to that DAG. Two applications of ALDAGs conclude the chapter.

Chapter 5 introduces the R package stagedtrees, which includes several algo-
rithms for learning the structure of Staged Trees and CEGs from data. Score-based,
distance-based and clustering-based algorithms are implemented, as well as various
functionalities to provide inferential, visualization, descriptive and summary statis-
tics tools for such models and about their graph structure. A simulation study for
all the learning algorithms is performed on nine datasets as well as the analysis on
the pediatric dentistry dataset is carried on through Staged Trees, which are able
to manage its structural zeros.

Chapter 6 considers Staged Trees as classification models. Firstly, an overview
about the theory of Bayesian Network Classifiers is given and Staged Tree Classi-
fiers are presented. A classification experiment involving 14 datasets is conducted,
comparing the performances of 9 Staged Tree Classifiers implemented through the
R package stagedtrees with respect to those obtained with the state of the art
classification algorithms.

In Chapter 7 the importance of structural or observed zero counts in contingency
tables is widely investigated. A method to overcome this issue in the context of
Staged Trees is proposed: remove vertices associated to zero counts from the model
search space. Indeed, it is shown as computational times of considering or not these
vertices for learning algorithms are highly different. To conclude the chapter, using
the fact that Stratified Staged Trees are relational models [72), [73] containing an
overall effect, it is shown that they are characterized by the usual properties of
log-linear models.

The following manuscripts are based on this thesis:

« Carli et al. [20], submitted to Journal of Statistical Software;

o Carli et al. [2I], submitted to Pattern Recognition;

o Varando et al. [121], submitted to International Journal of Intelligent Systems;
o Carli et al. [22], submitted to Insurance: Mathematics and Economics;

o Ugolini et al. [I17], submitted to Clinical Oral Investigations;

o Varando et al. [120], an R package available on the Comprehensive R Archive
Network (CRAN) at https://CRAN.R-project.org/package=stagedtrees.
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Chapter 1

Probabilistic Graphical Models

1.1 Introduction

Probabilistic Graphical Models (PGMs) refer to statistical models supported on a
graph or network consisting of vertices or nodes connected by undirected or directed
edges or arcs, where the vertices are associated to random variables and edges in-
dicate some kind of dependence relationship between these variables. Probability
distributions are associated to the graph which satisfies the conditional independence
structure implied by missing edges in the graph. Indeed, a missing edge between a
pair of nodes denotes that the two corresponding random variables are independent,
conditionally on the other variables.

PGMs vast applicability is due to a number of factors. Firstly, graphs can
visually represent the scientific content of a given model and facilitate communi-
cation between researcher and statistician. Secondly, the models are modular so
that complex problems can be described and hadled by combinations of simpler el-
ements. This has many advantages in terms of representation, inference, learning
and predictions [74]. The joint distribution can be decomposed according to the
factorization theorem [77]: each factor of this factorization relates to a subset of the
random variables considered, each subset can be modelled separately (and thus re-
ducing the dimensionality of the multivariate problem) and the marginal probability
distribution functions can be multiplied together to return the full joint probability
[10, 125]. Also Pearl [95] reasons that in real world problems it is often easier for
a group of experts to identify conditional independence statements among a small
number of variables instead of the joint distribution and that therefore judgements
are usually made only on a subset of variables.

PGMs belong to both the fields of statistics and computer science, relying on

concepts mainly from probability theory, graph algorithms, model selection and
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machine learning. There are many areas on which PGMs are applied, such as medical
diagnosis, image understanding, speech recognition, natural language processing,

economics, ecology, biology, insurance and many others.

A PGM estimated from a dataset can be useful to confirm known independence
relationships, to validate the dataset and mainly to identify unexpected relationships
among the collected variables. PGMs are quick and easy to be applied in many
fields, they can be estimated also in presence of latent/unobserved variables or
missing values and they supply a compact and intuitive representation of conditional
independences and correlations among problem factors. Furthermore, they do not
only allow the encoding of probability distributions but also provide a very clear
interface to interpret the model and to perform predictions. A really appealing
characterization of PGMs is that they do not require necessarily the definition of a
response variable, since they estimate a joint distribution and not the conditional
distribution of the response variable given the covariates, as usually done in statistics

or machine learning.

PGMs have been widely studied in Hgjsgaard et al. [62], Koller and Friedman
[74], Lauritzen [77], Smith [106], Studeny [110], Whittaker [125] and many more.
They are mainly distinguished in three classes: Undirected Graphs (UGs), Directed
Acyclic Graphs (DAGs) or Bayesian Networks (BNs) [32, 42] and Chain Graphs
(CGs) [110]. DAGs have only directed edges between vertices in the graph and do not
admit cycles. Any type of discrete/continuous distribution may be associated to each
variable of a DAG; however, usually for continuous variables a Gaussian distribution
is assumed. BNs are one of the most commonly used Graphical Models and will be
described in detail throughout this chapter. In contrast to this, UGs or Markov
Fields describe conditional independence statements between the variables in the
graph only through undirected edges. Examples of these are the Gaussian GMs with
continuous variables or log-linear GMs with discrete variables [77]. Finally, graphs
may have a mixture of directed and undirected edges, leading to the definition of
the chain graph [7§].

PGMs have been implemented in various softwares. In this work R is used,
which is a free software environment for statistical computing and graphics. The R
packages bnlearn by Scutari [103] and gRain by Hgjsgaard et al. [63] implement
BNs. In Chapter 5| we present the R package stagedtrees for a novel class of PGMs
which is the topic of the second part of this thesis.

Formally, a graph can be defined as a pair G = (V, E), where V is a finite set
of wvertices or nodes of G and E is the finite set of edges or arcs. Edges can be
undirected (o — f3), directed (a« — ) or bidirected (« <> ). Each edge e € F is
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related to a pair of nodes («a, ) € V x V and for any pair of nodes there may be
more edges. The nodes of a graph represent continue or discrete random variables
and a missing edge indicates a conditional independence statement as detailed in
next section.

The chapter is organized as follows: in Section the main definitions and
propositions about graph theory are set out, while Section [1.3| recalls how to read
independence statements from the graph of a PGM. Section considers an appli-
cation for UGMs (see Ugolini et al. [I17]) and Section presents an estimation
criterion for Graphical Models based on a neighborhood regression approach which
will be used in Chapter [2]

1.2 Graph Theory

In this section and in Section [1.3| we follow Lauritzen [77].

Definition 1. (Adjacent). Two vertices o and B are said to be adjacent or neigh-
bours, a ~ [3, if there is an edge between o and 3 in G. The set of neighbours of a
vertex « is denoted as adj(«) or ne(a). Otherwise, if there is not an edge between

a and B, a ot B, then o and B are said to be non-adjacent.
Definition 2. (Type of Graph). A graph can be:

o undirected, if all its edges are undirected;

o directed, if all its edges are directed;

o bidirected, if all its edges are bidirected,

o mized, if its edges are at least of two types.

Definition 3. (Complete & Clique). A subset A C 'V is complete if all pairs of
vertices in A are adjacent. A graph G = (V, E) is complete if the vertex set V is
complete. Furthermore, a clique of a graph G is a maximal complete subset not

contained in a larger complete subset. The set of cliques of a graph G is denoted by

C(G).

Definition 4. (Path & Separate). A path of length n between two vertices o and
B in a graph G is a set of vertices a = ag,q,...,0, = [, where a;_1 ~ «; for
t=1,...,n. If there is a path from « to B we say that « leads to 5, o+ [3.

A subset D CV in a graph G = (V, E) is said to separate A CV from B CV

if any path between a verter in A and a vertex in B contains a vertex from D.
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Definition 5. (Subgraph). The graph Go = (Vo, Ey) is said to be a subgraph of
G=(V,E) if Vo CV and Ey C E. For ACV, let E4 denote the set of edges in E
between vertices in A. Then G4 = (A, Ey4) is the subgraph induced by A.

Definition 6. (Boundary & Closure). The boundary of o € V', bd(«x) = adj(«), is
the set of vertices adjacent to a. So, for undirected graph the boundary is equal to
the set of neighbours ne(«). The closure of «, cl(a) = bd(a) U {a}, is the union of

the set of vertices adjacent to o and « itself.

Definition 7. (Parents & Children). The parents pa(/3) of a node 5 € V' are those
nodes o € V' for which « — . The children ch(a) of a node o € V' are those nodes
g eV for which « — .

The following nine definitions are useful to understand the characteristics of an

estimated PGM, such for instance if it is acyclic, triangulated or decomposable.

Definition 8. (Acyclic). A directed graph is acyclic if it has no directed cycles,
that is, cycles with the arrows pointing in the same direction all the way around.
In particular, it does not exist any vertexr v € V that leads to itself: v v~ v. So, a

directed acyclic graph is called DAG.

Definition 9. (Chord, Chordless & Triangulated). A cycle a = (o, a1, ..., ) = «
with adjacent elements o; ~ o, with j ¢ {i — 1,4+ 1}, is said to have a chord. If
it has no chords it is said to be chordless.

A graph with no chordless of length > 4 is called triangulated or chordal.

Definition 10. (Decompose € Decomposable). A triple (A, B, D) of non-empty
disjoint subsets of V' is said to decompose G into G aup and Ggup if V. =AUBUD
and D is a complete subset of V' and separates A from B.

A graph is said decomposable if and only if:

o it is complete;
e it can be decomposed into decomposable subgraphs;
o it is triangulated.

Definition 11. (Node Perfect Ordering). An ordering of nodes in a graph is called
perfect ordering if bd(i) N {1,...,i—1} is complete for alli € V. A perfect ordering
of nodes in a graph exists if and only if the graph is triangulated.
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Definition 12. (Topological Ordering). A topological order associated to a directed
graph is a linear ordering of its vertices such that for every directed edge e = (u,v),
u comes before v in the node ordering. A topological ordering is possible if and
only if the graph has no directed cycles, that is, if it is a Directed Acyclic Graph.

Furthermore, any DAG has at least one topological ordering.

Definition 13. (Mazimal Prime Subgraph Decomposition). The maximal prime
subgraph decomposition of an undirected graph is the smallest subgraphs into which

the graph can be decomposed.

Definition 14. (Markov Blanket). The Markov blanket of a vertex v € V in a
DAG G = (V, E) is defined as the minimal set that separates v from the remaining
vertices. So, the markov blanket of v is the union of v’s parents, v’s children and

the parents of v’s children.

1.3 Conditional Independence

Let A, B and C be three disjoint sets of vertices of a graph G = (V, E)). Throughout
all the thesis X 4 stands for the random vector associated to the indices of random
variables contained in the set A and f(x4) stands for the corresponding probability
density function. Furthermore, let X, be the sample space of X4 built as the
product of the marginal sample spaces of variables in A. Let’s indicate with ¢ the
cardinality of the set A, then:

X4 = (Xap,.., Xa,)
f(CUA) = f(XAl,...,XAq)
a
Xa = [[Xa.
i=1

Now, two different characterizations of conditional independence (factorization
criterion), indicated with A1l B | C, can be considered:

o fla,zp | zc) = f(za|zc) f(TB | Z0),
o f(xa,xp,xc) = %, with the functions f, g and h positive-definite
distributions.

Theorem (1] gives properties of conditional independence among sets of variables,
while Theorem [2| provides a decomposition of the joint distribution of a random
vector Xy according to the clique set C(G) of its undirected graph G = (V, E).
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Theorem 1. Let A, B,C and D be four sets of variables. Then, the following

fundamental properties of conditional independence can be defined:

o symmetry: AL B|C — Bl A|C;

reduction: A1 B | C and DCB — Al D | C;
o weak union: AL (BUC)| D — Al B| (CUD);
» contraction: (AL C | B) and (AlL D | BUC) — Al (CUD)| B.

Theorem 2. Let G = (V, E) be an undirected graph and C(G) its clique set. Then,

assuming that the joint distribution f(Xy) is strictly positive, it factorizes w.r.t. G

if

ceC(Q)

where . depends on Xy only through X..

Independence statements can be read from UGMs using Definition [15] [I6] and
17

Definition 15. (Pairwise Markov Property). Let a and B be two vertices of an
undirected graph G = (V, E). If a and [ are not adjacent, then the variables cor-
responding to « and [ are said to be independent conditionally on all the other

variables in 'V .

In symbols, a &  — all 5|V \{a,B}.

Definition 16. (Local Markov Property). Let a € V' be a vertex of an undirected
graph G = (V. E). For any o € V, « is independent from all other variables except
the closure of a,, conditionally on the boundary of c.

In symbols, V o € V : alL V' \ cl(a) | bd(c).

Definition 17. (Global Markov Property). If two sets of variables A C V' and
B C V are separated by a set C C 'V in an undirected graph G = (V, E), then A is

said to be independent from B given C.
In symbols, A and B are separated by C — A1l B|C.

Proposition [I] allows to rewrite that decomposition for Directed Acyclic Graphs
G = (V, E) by using topological orders of variables induced by the edges structure
E of that graph. Note that a DAG can have more than one topological ordering of

the variables on which it is estimated.
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Proposition 1. (Factorization Criterion for DAGs). The set of variables Xy cor-
responding to nodes in V. may be ordered in such way that the joint distribution
f(Xv) factorizes as

f(Xv) =1] Xy ] Zparw)) (1.2)

veV
for some sets of variables {pa(v)},ey such that the variables in pa(v) precede v

in the node ordering. This order is known as topological order, as introduced in

Definition [13

Proposition [2]states that if two disjoint sets of variables A and B are separated by
a third one C' in a graph G, then they are independent conditionally on C' according

to the underlying statistical model.

Proposition 2. (D-separation for DAG). Two sets of variables A CV and B CV
are d-separated by a set C' C V' if and only if they are separated in the graph formed
by moralizing the anterior graph of AUBUC. If A and B are d-separated by the
set C, then A1L B | C' under the model.

1.4 An Application in a Pediatric Dentistry Frame-

work

This section presents an application of UGM to model complex interactions among
factors affecting early childhood caries (ECC) development. The dataset is provided
by Dr. Alessandro Ugolini from the Department of Integrated Surgical and Diag-
nostic Sciences of the University of Genoa. “Early childhood caries is defined as
the presence of one or more decayed (non-cavitated or cavitated lesions), missing or
filled surfaces, in any primary tooth of a child under six years of age” [98]. ECC
is the most common chronic infectious disease of childhood with the prevalence up
to 65% and is becoming a serious public health problem in both developing and
industrialized countries. ECC can begin early in life at around three years old and
progresses rapidly in those who are at high risk, and often goes untreated. Its con-
sequences can affect the immediate and long-term quality of life of the child and
family and can have significant social and economic consequences.

The dataset is from an observational study and it enrolls all children born in
2008 and 2009, attending one of the 10 kindergartens in Chiavari (Genoa). The
design study, data collection, error of methods and data preparation are described
in Ugolini et al. [I17]. The dataset considered here has 234 observations and 8
variables described in Table[I.I} while in Table[I.2] the marginal distributions of the
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eight variables are reported in percentage. Two variables are binary, four ternary
and two variables have four levels for a total of 423%22 possible combinations of
values.

The UGM approach is adopted with the purpose of validating existing knowledge
on the interaction of the risk factors associated with ECC, of investigating the
existence of further interactions and of assessing the overall relationship among ECC
risk factors. In Section the results obtained through the UGM are commented
in detail, while in Section [1.4.2| an exhaustive final discussion about the analysis

carried out on this study is reported.

Variable Name Variable Type Variable Definition
. . Is the Oral hygiene status of
Oral hygiene status Binary the child adequate or not adequate?
. o . Has the child increased the number of
Caries variation Binary

caries at age five, with respect to age three?

Which type of breastfeeding has the child received?
Breastfeeding type Ternary No breastfeeding, exclusive or mized (also

with feeding bottle) breastfeeding?

For how many months has the child been breastfed?

Breastfeeding time Quaternary This is a categorization of the collected variable.
o i For how many months has the child used the pacifier?
Use of Pacifier Quaternary This is a categorization of the original variable.
. . How many times per day does the child
Frequency of toothbrushing Ternary

brush his/her teeth 1, 2 or more than 27

Does the child drink sugary or carbonated sodas
1 time at day, 1 time at week or occasionally?
Does the child eat vegetables

1 time at day, 1 time at week or occasionally?

Consumption of sugared beverages Ternary

Consumption of vegetables/fruits ~ Ternary

Table 1.1: Variables for the UG modelling constructed following associative and
explorative data analysis. The construction of the variables from the original ones
in Table [7.5] in the appendix is illustrated in the text. Here, in italics the same
variables as in Table [7.5] and in bold a categorization of the original ones. The
others are calculated starting from different original variables in Table .

1.4.1 Data Analysis

The UGM in Figure [1.1] gives the factorization of the joint probability distribution
of X shown in Equation , where P(X = ) is the probability that the eight
variables take the value . The UGM is obtained through a stepwise procedure wich
checks at each step of the algorithm if an addition or a deletion of an edge can be
carried out in order to minimize the BIC (Bayesian Information Criterion).

Hence it follows that, under the UGM, the eight variables are decomposed into
three macro factors. The factor P(Xy = xy) is the probability that the variable
Consumption of vegetables/fruits takes value zy, with zy that can be equal to 1, 2
or 3 (Table[1.2)). Similarly, P(Xp = x) is the estimated probability of the variable

Frequency of toothbrushing (Xg). The remaining six factors are collected in Xp.
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Caries variation Percentage Oral hygiene status Percentage
0 (no variation) 80.34 1 (adequate) 84.19
1 (variation) 19.66 2 (not adequate) 15.81
Breastfeeding type Frequency of toothbrushing
0 (not breastfed) 18.38 1 (once a day) 27.35
1 (exclusive breastfed) 58.12 2 (twice a day) 60.68
2 (breast and bottled fed) 23.50 3 (more than twice a day) 11.97
Consumption of sugared beverages Consumption of vegetables/fruits
1 (daily) 29.91 1 (daily) 41.45
2 (weekly) 56.84 2 (weekly) 53.42
3 (occasionally) 13.25 3 (occasionally) 5.13
Breastfeeding time Use of Pacifier
0 (0 months) 18.38 0 (0 months) 31.62
1 (1-6 months) 30.34 1 (1-36 months) 29.06
2 (7-12 months) 36.32 2 (36-48 months) 24.79
3 (>12 months) 14.96 3 (>48 months) 14.53

Table 1.2: Relative/percentage univariate distributions of the eight selected variables
used for the UG modelling.

BREASTFEEDING

. TYPE
- FREQUENCY OF 3

: TOOTHBRUSHING

ORAL
HYGIENE BREASTFEEDING
STATUS TIME

OF FRUITS OR 2 4

VEGETABLES

3

CONSUMPTION CARIES USE OF

OF SUGARED VARIATION PACIFIER
BEVERAGES 2 4

3

Figure 1.1: Estimated UGM on the eight selected variables. Inside the node repre-
senting each variable, the number of levels that it takes is reported.

In a framework with only categorical variables and having assumed the probabil-
ity of each instance of X strictly positive, in its simplest form an UGM could be seen
as a visualization of the more popular log-linear model [62, [77]. The assumption

of strict positivity is very strong and motivates the development of the statistical
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model classes called Staged Trees and Chain Event Graphs (see Chapters |3| and .
The parameters of the log-linear model for the six connected variables in Figure
correspond to the intercept, one for each node (that is, each variable or main effect),
one for each arc (that is, each two-way interaction). No three-way or higher level
of interaction among variables has to be included in the log-linear model because
in the estimated UGM’s graph in Figure [I.1] there are no triangles nor higher order
of fully connected nodes, equivalently not higher order interaction was detected by
the estimated UGM model (see e.g. Hgjsgaard et al. [62]). In formulae, the log-
linear model associated to the best fitting UGM for the considered dataset can be
expressed as in Equation , where S = Consumption of sugared beverages, O =
Oral hygiene status, C = Caries variation, TIME = Breastfeeding time, TYPE =
Breastfeeding type and P = Use of Pacifier. Furthermore, a generic instance x is
defined according to the product space defined by the product of the sample spaces
of the six connected variables, i.e. ® = (i, j, k, [, m, n), with¢ = 1,2,3, j =
1,2, k=0,1,1=0,1,2,3, m=0,1,2and n = 0, 1, 2, 3 the levels taken by S, O, C,
TIME, TYPE and P, respectively. P(x) is the joint probability of the occurrence of

a generic instance  and wu is a constant.

log P(x) =u + uf + uf + u; + o™ + u) " + ul +

SO 0cC
iy T Uk

(1.4)
+ u;)l TIME + uTIME TYPE + uTIME P

u Im In

Model Verification

Statistical hypothesis tests can be carried out in order to evaluate if a simpler model
with respect to the fitted UGM can be estimated, more precisely if any arc in the
graph in Figure [I.1| can be deleted. The F-test tests whether a single variable or an
interaction term can be removed from the model without information loss. The null
hypothesis is that the UG model and a simpler model are statistically equivalent,
so the latter is preferred because it has fewer parameters. Instead, the alternative
hypothesis states that the removal of a term from the original UG model produces
a significant information loss, so the UG model is preferable.

A preliminary study on the eight selected variables is also carried out within the
framework of contingency table analysis and is summarized with the Fisher’s exact
statistical hypothesis test for count data [87]. This test is used to examine whether
an association between two nominal variables in a sample is unlikely to reflect the

same association in the population from which the sample is extracted.

Table [1.3] summarises the p-values for the Fisher’s exact tests for all pairs of the
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eight selected variables. Five marginal dependences are detected by the test and
highlighted in Table [I.3] The strongest ones are four: Breastfeeding type and time,
Oral hygiene status and Consumption of sugared beverages, Oral hygiene status
and Caries variation, Caries variation and Consumption of sugared beverages. The
p-values for the Fisher’s exact test are carried out in order to examine the most
interesting three-way associations and are reported in Table|1.4] and Table The
first refers to independence of some pairs of problem variables conditional on Oral
hygiene status, while the second is related to conditioning on Breastfeeding time. In
contrast to the marginal associations detected in Table[I.3], these specific analyses on
conditional sub-populations do not support any associations. Instead, they suggest
independence of the three pairs of variables in the rows of Table and Table

conditional on Oral hygiene status and Breastfeeding time, respectively.

Xp  Xo Xs Xy XTIME Xo Xco
Xrypr | 0.586 0.436 0.374 0.875 <0.001***  0.126 0.104
Xp 0.837 0.613 0.095 0.453 0.067 0.787
Xo <0.001*** 0.515 0.057 0.164  <0.001***
Xg 0.718 0.473 0.361 <0.001%**
Xy 0.429 0.122 0.760
XrivE 0.008** 0.110
Xp 0.824

Table 1.3: P-values of the Fisher’s exact tests for marginal independences. P-values
smaller than 0.001 suggest the four strongest relations. * Significant (p < 0.050), **
Significant (p < 0.010) and *** Significant (p < 0.001).

Oral hygiene status
1 (adequate) 2 (not adequate)

Consumption of sugared beverages Caries variation 0.101 1.000
Breastfeeding time Caries variation 0.505 0.108
Breastfeeding time Consumption of sugared beverages 0.928 1.000

Table 1.4: P-values of Fisher’s exact tests for the most interesting conditional in-
dependences given the Oral hygiene status. Not Significant p-values suggest inde-
pendence relationships among pair of variables (left) given a specific level of Oral
hygiene status. Since for all three pairs of variables the p-values are not significant
for both the levels of the oral hygiene, the conclusion is that these pairs of variables
are conditional independent.

The F-test statistics for all sub-models of the UGM in Figure [1.1] are reported
in Table [1.6] Only the main effect of the use of pacifier could be removed, due to
a p-value greater than the reference level 0.05. But Use of Pacifier is statistically
significant in the interaction with Breastfeeding time. Hence, Use of Pacifier is kept

in the model, which is taken to be hierarchical, so as main effects are included in
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Breastfeeding time
0 1 2 3
(0 months) (1-6 months) (7-12 months) (>12 months)
Oral hygiene status Use of Pacifier 0.069 0.326 0.052 0.933
Oral hygiene status | Breastfeeding type 1.000 0.677 1.000 0.708
Use of Pacifier Breastfeeding type 1.000 1.000 1.000 1.000

Table 1.5: P-values of Fisher’s exact tests for the most interesting conditional inde-
pendence given Breastfeeding time. Not Significant p-values suggest independence
relationships among pair of variables (left) given a specific level of Breastfeeding
time. Since for all three pairs of variables the p-values are not significant for all
the four levels of the time of the breastfeeding, the conclusion is that these pairs of
variables are conditional independent.

the model for any two-way interaction in the model. In conclusion, the estimated
UGM is also supported by the F-tests and the Fisher’s exact tests.

Df Deviance AIC F-value  P-value
UGM - 135.82  419.57 - -

Oral hygiene status 1 252.43 53418 465 <0.001%**
Consumption of sugared beverages 2 313.52  593.27 355 <0.001***
Breastfeeding time 3 177.68 45543 56 <0.001%**
Breastfeeding type 2 230.30  510.05 189 <0.001%**

Use of pacifier 3 137.00  414.76 2 0.194
Caries variation 1 320.82  611.58 774 <0.001*F*
Oral hygiene status - Consumption of sugared beverages 2 287.02  566.77 302 <0.001***
Oral hygiene status - Caries variation 1 279.48  561.24 573 <0.001%**
Oral hygiene status - Breastfeeding time 3 14322 42098 10 <0.001%**
Breastfeeding time - Breastfeeding type 6 361.07  632.82 150 <0.001***
Breastfeeding time - Use of pacifier 9  158.62  424.37 10 <0.001%**

Table 1.6: F-tests for the estimated UGM. Each row corresponds to a test that tests
if a single variable or an interaction between pair of variables can be removed from

the estimated UGM without losing information. Significant p-values suggest that
the preferable model is the UGM.

The main findings implied by the UGM in Figure and the factorization in
Equation (|1.3) can be listed:

1. Consumption of vegetables/fruits and Frequency of toothbrushing are marginal-
ly independent with respect to the other six variables. This implies that further
analyses can be focused on the six connected variables. This factorization es-
tablishes that Xy, Xp and Xz are mutually independent random vectors, i.e.
for the children we analysed, brushing teeth frequency has limited relevance for
the oral hygiene status and the variation of number of caries. The joint proba-
bility distribution of the six connected variables X g can be further factorized
according to the structure of the graph in Figure [77]. This factorization
is not reported here. It is sufficient for the purpose of this study to note that
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each factor corresponds to an arc, nodes connecting arcs play the special role
of separators and that there are no cycles. Consequences of these facts are

illustrated next.

. Main conclusions can be drawn from the analysis of the six remaining variables
are: Consumption of sugared beverages and Caries variation are conditionally
independent given Oral hygiene status, that is the effect of the consumption
of sugared beverages on caries development is mediated by the oral hygiene
status. Furthermore, for caries development the quality of oral hygiene is more
relevant than the frequency of toothbrushing. Conditionally on Breastfeeding
time, the three variables Oral hygiene status, Breastfeeding type and Use of
Pacifier are independent. In particular, Use of Pacifier is independent from
Breastfeeding type given Breastfeeding time, that is the type of breastfeeding
is a risk factor for the development of caries but simply mediated by the
duration of breastfeeding. In the same way, the role of the use of pacifier
in the caries development is mediated by the duration of breastfeeding and
it resulted statistically significant only when considered in combination with

breastfeeding time.

. Five two-way contingency tables suffice to the understanding of the relation-
ships among the six connected variables and no higher order table is needed.
This is because only five arcs and no cycle are present in the UGM in Fig-
ure 1.1} The table matching type and time of the breastfeeding is reported on
Table [L7 It is the most troublesome for estimation because it includes five
structural zeros: indeed, Breastfeeding time is zero for children that have not
been breastfed.

. Hard to estimate parameters are associated with cells with zero counts: the R
package gRim used to carry out this study returns parameters estimation and
the model diagnostics are satisfactory. This is the weak point in the analysis
with UGM (see Chapters [3| and [7)).

. The UGM in Figure|l.1{has 38 parameters: 21 for two-way interactions (arcs),
16 for the linear terms (nodes) and 1 for the constant term. This is a drastic
reduction with respect to the 42322 (5184) possible combinations of the eight
selected variable levels. As already stated in point 1 above, the analysis can
be carried out without the two variables Consumption of vegetables/fruit and

Frequency of toothbrushing.

19



Breastfeeding type
0 1 2
18.38 0.00  0.00
0.00 23.08 7.26
0.00 25.64 10.68
0.00 9.40 5.56

Breastfeeding time

W N = O

Table 1.7: Relative/percentage distribution of joint distribution of Breastfeeding
type and time. It highlights structural zeros.

Focus on Caries Variation

To investigate the relevance of the seven collected variables on the caries variation,
an odds-ratio analysis was carried out. The odds-ratios and the corresponding p-
values are reported in Table It shows a strong relation between caries variation
and oral hygiene status (p-value < 0.001 and odds-ratio > 50) and between caries
variation and consumption of sugared beverages (p-value < 0.001 and odds-ratio
> 50). However, unlike what most would expect, no statistical direct evidence has
been found to support a relation between the variation of caries and toothbrushing

frequency.

1.4.2 Discussion

This is the first caries study in which dental caries risk factors are assessed by Prob-
abilistic Graphical Models. UGM analysis has provided useful insights regarding
specific interactions between risk factors in caries development and valuable biolog-
ical information that could be missed otherwise.

Firstly, in this study Consumption of sugared beverages variable, a proxy for
sugar intake, results to be conditional independent from Caries variation given Oral
hygiene status and also that Frequency of toothbrushing is marginally independent
from the variable Caries variation. This means that the quality of oral hygiene (and
therefore the plaque index) and not the toothbrushing frequency is a primary factor
that modulates (+ or -) the sugar consumption in his primary role of the ECC
developer.

Secondly, in Kumar et al. [75] the authors reported that individuals who state
that they brush their teeth infrequently are at a greater risk for the incidence or
increment of new carious lesions than those brushing more frequently. But they
considered only toothbrushing frequency as the main outcome because their inter-
est was on whether toothbrushing frequency was predictive of the development of

carious lesions, without any consideration for the correctness and efficiency of the
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Breastfeeding type odds-ratio left-end confidence interval right-end confidence interval p-value

1VS0 2.528 0.918 8.939 0.101
2VS0 3.329 1.086 12.539 0.048*
2VS1 1.317 0.619 2.718 0.463
Breastfeeding time
1VSo 2.395 0.791 8.937 0.148
2VS 0 2.437 0.832 8.929 0.132
3VSO0 4.469 1.360 17.608 0.019*
2VS1 1.018 0.462 2.269 0.965
3VS1 1.866 0.732 4.703 0.185
3VS2 1.833 0.740 4.446 0.182
Frequency of toothbrushing
2VS1 0.800 0.390 1.694 0.550
3VS1 0.974 0.311 2.782 0.962
3VS2 1.217 0.415 3.151 0.700
Oral hygiene status
2VS1 673.200 126.338 12581.880 0.001%**
Consumption of sugared beverages
2VS1 0.653 0.233 1.904 0.419
3VS1 270.000 47.232 5196.620 0.001%**
3VS2 413.333 75.672 7796.548 0.001%**
Consumption of vegetables/fruits
2VS1 0.868 0.445 1.704 0.678
3VS1 1.283 0.267 4.774 0.726
3VS2 1.478 0.310 5.413 0.580
Use of Pacifier

1VSo 1.113 0.495 2.507 0.794
2VS 0 0.722 0.282 1.768 0.483
3VS0 1.020 0.355 2.721 0.970
2VS1 0.649 0.252 1.594 0.353
3VS1 0.916 0.317 2.453 0.865
3VS2 1.412 0.458 4.215 0.537

Table 1.8: Odds-ratios of Caries variation with respect to the other seven selected
variables. Significant p-value associated to an odds-ratio highlights a useful variable
in order to predict the variation of the number of caries. 95% Confidence intervals
for odds-ratios are also calculated.

oral hygiene. This introduced an important bias in the evaluation of the role of oral
hygiene in caries development. The present studies linked toothbrushing frequency,
the quality of oral hygiene (checked by a senior trained dentist) and the caries devel-
opment also with diet habits and made evident that the quality of oral hygiene plays
a pivotal role in ECC development and that it can act as a protective factor in the
ECC development. These results suggested that the community- and school-based
oral health programs should focus also on the quality of oral hygiene and not only
on the toothbrushing frequency. Indeed, here the odds-ratio study confirmed the
findings reported in the literature: a direct relation has been found between ECC de-
velopment and oral hygiene and the consumption of sugared beverages. Instead, no
statistical evidence has been found to support a relation between ECC development
and toothbrushing frequency. It is widely believed that effective removal of dental
biofilm by toothbrushing can reduce the development of new carious lesions, but the
evidence base is weak, especially because most of the results come from studies that

considered the frequency of brushing and not the quality of oral hygiene [75].
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Based on the results, the oral health education of children and parents in dentist’s
clinical practice and the community- and school-based oral health programs for ECC
prevention should be improved with supervised toothbrushing program.

Thirdly, another group of interactions identified by the UGM is that ECC devel-
opment (Caries variation) is conditionally independent from Type of breastfeeding
given Oral hygiene status and also from the Breastfeeding time and Use of Pacifier.
In the present study the odds-ratio analysis found moderated correlation between
ECC development, type of breastfeeding (p-value = 0.048 and odds-ratio = 3.329)
and length of the period of breastfeeding (p-value = 0.019 and odds-ratio = 4.469,
Table Therefore, it appears that the type of breastfeeding and the use of paci-
fier are risk factors for the development of caries but mediated by the duration
of breastfeeding and oral hygiene status, resulting both statistically significant only
when considered in combination with breastfeeding time. These are interesting find-
ings on a very debated topic in the literature. Among the ECC risk factors not only
the type, but also the duration of feeding represents a critical issue in literature. The
UGM again displayed on this topic the pivotal role of the quality of oral hygiene
(this information is lost in commonly used statistical models) and how it is able
to act as a protective factor in ECC development (Figure [L.1)). Thus, in order to
decrease the ECC incidence, the antenatal and postnatal educational interventions
to mothers for breastfeeding practices (focusing on the duration of the breastfeeding
period, which has been shown to be one of the most important risk factors), need
to be supported by incorporating mother and child oral health promotion to reduce

caries experience, improve oral hygiene and dietary habits.

1.5 Estimation through Neighborhood Regression

In this chapter only the estimation criterion based on neighborhood regression is
explained in detail since it has been used for a real application in Chapter [2|

The neighborhood regression approach is described in Haslbeck and Waldorp
[57] and is implemented in the R package mgm. Haslbeck and Waldorp studied

four different scenarios:

» Mixed Graphical Models (MGMs) on stationary time series.
» Mixed Graphical Models (MGMs) on time-varying time series.

o Mixed Vector Autoregressive Graphical Models (mVAR GMs) on stationary

time series.
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» Mixed Vector Autoregressive Graphical Models (mVAR GMs) on time-varying

time series.

Consider a p-dimensional random vector X with each variable X taking values
in a potentially different set X, and let G = (V, E) be an Undirected Graph over p
nodes corresponding to the p variables. Assuming that each variable X, € X belongs
to an exponential family, s = 1,..., p, the factorization of the joint distribution seen
in Equation can be rewritten as displayed in Equation ([1.5)), where 6. are
parameters associated to the clique functions, ¢.(X.) = log ©.(X.) are sufficient

statistics and ®(0) the log-normalization constant [57].

]P)(X) = exp Z chbc(Xc) - (13(0) (15)
ceC(G)

Denote with N(s) = {t € V | (s,t) € E} the neighborhood of a generic node
s € Vin a graph G = (V, E), and with X\ (53 = Xy (s the set of all variables in X

excepted the one corresponding to the vertex s.

Definition 18. (Node-conditional Distribution). The node-conditional distribution
of each node X, € X given X\ (s is given by an arbitrary univariate exponential
family distribution and is shown in FEquation (@, where ®g(-) is the sufficient

statistic, B,(-) is the base measure and Es(X\,) the canonical parameter.

]P(XS|X\S) = €exp E5<X\s) ¢S(XS> + Bs<Xs) - (I)(X\s) (16)

Note that ®4(-) and B(-) are characterized by the exponential family to which
the node s belongs and F,(X\;) is a function of all variables in X excepted X;.

Definition 19. (Mized Graphical Model). A Graphical Model G = (V, E) esti-
mated on a random vector X with components X, that can be continuous, count or
categorical variables, for s € V', is called a mized Graphical Model (MGM).

Definition 20. (k-order Mized Graphical Model). A MGM G = (V, E) is said to

have order k if each clique c in the clique set C(G) contains at most k nodes.

Proposition 3. The node-conditional distributions in Equation @, for each
X, € X, are consistent with the joint distribution in FEquation , which is
Markov with respect to the graph G = (V, E) with corresponding clique set C(Q)
of mazximal dimension k for each clique ¢ € C(G), if and only if the canonical pa-
rameters {Es(-)}sev are a linear combination of products of univariate sufficient

statistic functions {¢(X,)}ren(s) of mazimal order k, that is:
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k—1
ES(X\S> = 98 + Z 98T¢T(XT) + """ + Z 67‘1,...,7’;@,1 H (b’r']' (XTj)7 (17>
j=1

reN(s) 1y "k—1 EN(S)

where 05. = {05, O, ..., Osp . ro_,} are the canonical parameters and N(s) is the

set of neighborhoods of node s according to G.

Finally, by multiplying p conditional distributions, the joint distribution of X

can be factorizes as in Equation (|1.8)).

P(X):exp Z 95¢8(XS) + Z Z esr¢s(Xs)¢r(Xr) + ..

seV s€eV reN(s)

X O [ on (X)) + 30 Bi(X) — ©(6)

seV

(1.8)

The canonical parameters 6. for each node s € V' could have different dimensions
according to the exponential family of the corresponding variable X, or according
to whether X is a discrete or continuous variable. For instance, let’s discuss the
simplest version of the generical k£ dimensional clique set: k = 2, that is only cliques
with at most two nodes are considered. Only three different scenarios can occur

between a generic pair of variables X, and X,

1. X, and X, both continuous variables: only R = 1 parameter 6, is sufficient

to monitor their interaction relation;

2. X, and X, both categorical variables with m and w levels, respectively: R =

(m — 1) x (u— 1) parameters are needed to monitor their interaction;

3. X, continuous variable and X, discrete variable with m levels: R = (m — 1)

parameters are needed to estimate their interaction.

All this reasoning can be formalized denoting with 62, the parameter defining

the interaction between nodes s and r indexed by z € {1,..., R}.

Proposition 4. (Presence of an edge). An edge is present between s and r if and
only if there exists at least one parameter 07, different from zero: (s,r) € E <=
dz st |07] > 0.

For a k-order MGM, an edge between s and r is a function of all cliques of size

at most k that include both s and r. In particular, for pairwise (k = 2) MGM is
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sufficient to build an undirected graph to represent the two-way interactions, while
for a &k > 2 MGM a factor graph (see Definition is needed to represent all
two-way and higher-order interactions, since with an undirected graph one can not
understand if an interaction relationship is present due to a two-way or an higher-

order relation.

Definition 21. (Factor Graph). A Factor Graph is a bipartite graph representing
the factorization of the joint distribution of X. A bipartite graph is a graph whose
vertices can be divided into two disjoint and independent sets A and B such that

every edge connects a vertex in A to one in B.

1.5.1 Parameters Estimation

The joint distribution in Equation is the product of univariate conditional
distributions. Since all univariate conditional distributions in Equation (1.6 are
members of exponential families, it is possible to estimate the joint distribution by
a series of regressions, one for each variable, as in the Generalized Linear Model
(GLM) framework [93]. Indeed, the internal sums in Equation (1.6)) are related to
the neighborhood N (s) for each s € V; first, they are estimated and then they are
combined to provide an estimation of the joint distribution of X.
The lasso estimates of 8 are computed as

A

0 = argmin | — 1(0,X) + X|0]1], (1.9)

where [(0,X) is the log-likelihood function, ||@]|y = >>7_, [|6;]| is the I; norm of the
parameter vector 8, J is its length and X is the penalization hyper-parameter [59].
The [; penalty ensures that the model is identified also in high-dimensional settings
where the number of variables p is greater than the number of observations n [60].

The design matriz X is defined with respect to the node-conditional distribution
of s and the maximal interaction order k allowed by the Mixed Graphical Model.
For instance, for each node s € V, for k = 2 the design matrix contains all the
other variables X\ or their respective indicator functions if they are categorical; for
k = 3 the same structure described for k = 2 plus the interaction terms among all
the variables in WA, or their respective indicator functions.

In Proposition 4] the criterion to use for establishing whether an edge is present or
not has been described. Now it remains to detail how the estimates of parameters are
combined, since multiple parameters are generally required to monitor an interaction
between non-continuous variables. Hence, when the interaction is among a pair of

continuous variables the estimation of the corresponding parameter is taken, while
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when the interaction involves categorical variables the mean of the absolute value
of the estimates is taken. For example, for a pairwise interaction between nodes s
and 7, one parameter 0, is estimated from the regression on s and another one (6,)
from the regression on r. To obtain a conditional dependence graph G, these values
has to be combined in some way to produce a final weight. This can be done in two

different ways:

e OR-rule: arithmetic mean between the two estimates of parameters:
X O + 0
9(87’) — ST rs
2
e AND-rule: arithmetic mean between the two estimates of parameters if they

are both different from zero, otherwise the estimate of their relation is set to

be zero: o
buthee i£0, 0 and G £0

0, otherwise

The formulations of the OR/AND rules can be intuitively generalized for a
generic k MGM.

The penalized parameter A\ can be selected using the cross validation or a model
selection criterion as the Eztended Bayesian Information Criterion (EBIC), which
is shown in Equation (1.10]), where ||0|| is the number of parameters estimated from
the proposed model, i.e. the nonzero neighbors, and v a tuning parameter. Note
that if v = 0 the EBIC corresponds to the classical BIC [102].

EBIC,(8) = —21(8,X) + [|8]jologn + 2~ 8] log p (1.10)
Pseudo-Algorithm 1. (MGMs estimation via neighborhood regression).
1. for each node s € V:

(a) build the design matriz defined by the order k of the MGM;

(b) solve the lasso problem in Equation (@ with penalization hyper-parameter
A.

(¢c) aggregate interactions with several parameters into a single edge-weight.
2. Combine the estimates of parameters with the OR or AND rule obtaining 6.
3. Define G according to 6.
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1.5.2 Mixed Vector Autoregressive Graphical Models

This neighborhood regression can be applied also in a framework with time de-
pendent variables, i.e. time series. In particular, in mixed Vector Autoregressive
(mVAR) Graphical Models, each variable X € X detected at a temporal instant ¢
is modelled as a linear combination of all variables in X (s included) detected at a
previous temporal instant ¢ — [, where [ stands for the temporal lag in which one is
interested in.

The theoretical assumptions and reasonings done throughout the section are also
valid for the autoregressive context, except for one big difference: here, the canonical
parameter EF(X\,) in Equation is not a function of parameters associated to
interactions between variables detected at the same current time ¢, but of a previous
instant ¢ —[. This is formularized below, where L indicates the set of lags one wants

to investigate:

EiX) = 0, + > > 0.7 ¢ (XI).

JEL reN(s)

Two changes can be applied to the Algorithm 1 in order to obtain the procedure
to use in the context of mVAR GMs. Firstly, the design matrix X has to be a
function also of L, i.e. its structure is the same as in Algorithm 1, but there are as
many design matrices as lag [ € L. Secondly, the OR or AND rules have not to be
applied, since the effect of X!™' on X! is conceptually different from the effect of
X1 on X!. Algorithm 2 gives a pseudo-code for the estimation of an mVAR model
via neighborhood regression.
Pseudo-Algorithm 2. (mixed VAR models estimation via neighborhood regres-

sion).
1. for each node s € V:

(a) build the design matriz according to the set of lags L;
(b) solve the lasso problem in Equation with penalization hyper-parameter
A obtaining 6.

2. Define the DAG D; according to é, for each lag j € L.

An application of Algorithm 2 is shown in Chapter 2l There exist a variant of
Algorithms 1 and 2 for time-varying variables, but, since in the application frame-
work of Chapter [2] we assume to have stationary time series, their details are not

given here [57].
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1.6 Conclusion

The chapter provides several definitions and propositions about theory on PGMs,
graphs and conditional independence. In Section [1.5| an estimation approach for
PGMs based on neighborhood regression is described. This criterion will be em-
pirically used in Chapter [2| in an insurance framework to estimate the dependence
structure among thirty covariates and two response variables. The chapter gives de-
tails about the consolidated theory of PGMs and does not propose new theoretical
contributions. It includes the analysis of a dataset via UGM; for further details see
also Ugolini et al. [I17]. This study presents problems related to structural zeros,
as shown in Table [[.7] leading to approximated results according to the theory of
PGMs. This is because the model estimation criteria for PGMs have the assumption
that the probability associated to any possible event in the sample space is strictly
greater then zero. This problem can be overcome with Staged Trees, since they per-
mit to encode detailed information about conditional probability distributions, as
it will be shown in Chapter [3| In Chapter [5| the analysis on this pediatric dentistry

dataset is carried on with Staged Trees.
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Chapter 2

An Insurance Application: Swiss
Re Project

2.1 Introduction

This chapter uses Carli et al. [22] as a guideline. The context of this work is ma-
rine insurance and the objective is to forecast the trend of marine losses at a global
scale in upcoming years in order to constantly update an insurance company costing
model. The proposed procedure starts from a potentially large number of indica-
tors collected at different time frequencies, selects the most relevant ones through
Graphical Models and uses regressive models to forecast loss trends. The use of
GMs makes the variable selection more understandable and interpretable even for
not statisticians. Indeed, they supply a compact representation of the dependence
structure among problem factors and do not only allow the encoding of probabil-
ity distributions but also provide a very clear interface to interpret the model and
to perform predictions. Furthermore, GMs estimated from a dataset can be useful
to confirm known independence relationships, to validate the dataset and mainly
to identify unexpected relationships. Robustness of estimates and data sensitivity,
which are crucial in an insurance context, are dealt with bootstrap. Goodness of fit
and of estimates is expressed via the percentage error and the mean square error.
Functions available in a number of R packages are used and the whole process is col-
lected in an ad-hoc Shiny App for making the analysis replicable and the proposed

procedure usable also by business experts.
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2.1.1 Motivation

The objective of this project is to forecast the trend of marine losses in upcoming
years, that is the loss or damage of ships. Marine losses are divided into two cat-
egories, total and partial. A total loss occurs when damage to a vessel is beyond
repair or salvage, while a partial loss occurs when a damage can be repaired.

As a matter of fact, the global trend of marine losses is not constant, so that
insurance companies are interested in evaluating not only which are the factors that
may have an influence on marine losses, but also in predicting the future trend in
order to adjust baseline cost produced by the in-house costing model. For example,
if the trend is predicted to be increasing, an increase in the baseline cost of the
insurance policy would be recommended, and vice versa. The aim of this work
is to derive a model based on some covariates which can anticipate the trend of
marine losses at a global scale; that is, the focus is not on the single vessel rather
consider all the vessels together, not considering single characteristics of a specific
ship but worldwide indicators. Furthermore, the derived model has to be constantly
evaluated and updated as soon as new data arrives.

Two different models have been implemented for the two response variables,
total and partial losses. These two models are derived with the same procedure
outlined in this chapter but they are different in the involved covariates. In the
case study of Section [2.5 as proposed by Swiss Re Group, these models are used
for adjusting baseline cost of the in-house costing model, but the output of the
procedure suggested here can be employed in the costing model in other ways, e.g.

for improving its predictability.

2.1.2 Marine Context

Marine traffic is a very complex system that includes ships, ports, routes, equipment,
people, cargo material and environmental issues, but also political regulations. The
volume of ship transportation has increased rapidly in the last few years due to the
growth of the economic development and trade among different countries with 6480
millions of tons in 2003 to 11005 millions of tons in 2018. Furthermore, despite
nowadays the safety of ships and equipment have reached a very high technological
level, the number of amount of claims is not significantly decreased as expected.
Careful analysis of the causes of accidents carried out through accident causation
theory /waterborne transport research shows that most accidents are not caused by
a single event, but by a series of interacting factors.

It is reasonable to study the relationship between marine losses and sources
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of risks, some of which are known in the business and some have been identified
with the procedure of this work. One can consider four different types of factors:
those that are certainly influential whose effect only needs to be measured, those
for which one wants to evaluate if their measured effect is statistically significant,
not measurable factors that could possibly be relevant or influential (e.g. crew
composition) and hidden/undetected factors. Here only factors of the first two
types are included in order to obtain an easily interpretable model. This choice has
been made because we were interested in working with known and/or measurable
variables, as the application on which we tested the procedure in the following of

the chapter required it.

The number of covariates that can influence marine losses at a global scale is
huge, for example various indicators related to economical, social, political, tech-
nological and environmental global phenomena are used. Both marine losses and
factors/indicators taken into considerations in this work are time series. A first dif-
ficulty is then to reduce this huge number of factors to the most influential ones.
Another difficulty is to understand the causal temporal structure of these indicators
and take into account the temporal shift among marine losses and some of them.
The derivation of these predictive models is empirical in part, in the sense that
when new time points become available, the model can be automatically updated,

carrying out some checks guided by insurance domain experts if needed.

The indicators are available from different sources, both public and private
databases. They may be collected at different time frequencies and they may be
incomplete, particularly on the most recent time points. In Section [2.2] different
methods for dealing with indicators at different time frequencies and for imputing

missing values in time series are considered.

It is highly plausible that, considering a large number of indicators, multi-
collinearity problems may arise. To deal with this, in Section [2.3] mixed Vector
Autoregressive (mVAR) Graphical Models and their usage in this framework in or-
der to select the most influential factors are briefly presented. The methodologies
outlined in Sections 2.2] and 2.3 not only allow to deal with multi-frequency and
multi-collinearity, but also provide a visualization of the relationships among fac-
tors which can advise domain experts. These are a sort of preprocessing of the
data.

Once these preliminary results have been validated with the help of business
experts, multivariate autoregressive models to forecast marine losses trends have
been implemented in Section[2.4.1] They use information from the mVAR Graphical

Models such as lags at which each selected indicator has an influence. Section [2.4.2]
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is dedicated to the robustness of the models estimates to deal with data sensitivity.
Finally, in Section the case study that motivates the procedure proposed in

this work is presented.

2.1.3 Process Flow of the Procedure

Figure illustrates the process flow of the whole procedure. This follows the main
steps that allowed us to address the difficulties emerging during this work. Starting
from a set of indicators from public and private databases gathered with the help
of business experts, firstly, it is necessary to ensure that all the indicators collected,
whose trend could influence marine losses, have the same sampling frequency (quar-
terly in the case study of Section . This is because the interest is in performing
a multivariate analysis for the reasons mentioned in Section [2.1.2] Secondly, this
reduces the number of indicators to the most influential ones. Thirdly and finally,
we build the model of interest.

As soon as new data arrives, if the sampling frequency is already the one desired,
the output of the procedure is simply updated; otherwise, if the new observation is on
a lower sampling frequency, it is necessary to proceed with temporal disaggregation,
carrying out also some checks guided by insurance domain experts. A review of the
entire procedure is instead required if major events that may change dependence

relationships occur.

MVAR GMs & , :
Temporal . Time Series
Disaggregation ) variable -7 Modellin
) geree selection &
R i Robustness of
e Forecasts

Figure 2.1: Process flow.

2.2 Temporal Disaggregation and Interpolation

Important economic indicators are taken from official sources such as official national
and EU statistics. Often they are observed only on a yearly time window (low
sampling time frequency) and are calculated after the end of the year. But if one is

interested in constantly evaluating the decisions in order to identify preventively a
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potential new trend and, eventually, update the business strategy, it is reasonable
to adjust economic indicators to the sampling time frequency of the marine loss
variables, i.e. quarterly. From now on, the term time frequency is used instead of
sampling time frequency for simplicity.

The problem of reliably disaggregating low frequency to high frequency time
series is known as temporal disaggregation. Temporal disaggregation methods are
widely used in official statistics and their main objective is to construct a new
high frequency series which is somehow consistent with the low frequency ones.
Consistency could be of different types and depends on the nature of the data: for
example, in France, Italy and other European countries, quarterly values of Gross
Domestic Product (GDP) are computed using disaggregation such that, for each
year, the sum of quarterly values of GDP must be equal to the annual value. For
the case study in this work, yearly time series are disaggregated into quarterly time

series.

Furthermore, estimating a multivariate autoregressive model requires all vari-
ables to have the same frequency. Since there is no way to fully make up for the
missing data, the accuracy of the resulting high frequency series may be low, but,
despite this, having one bad high frequency series could still be preferable to the

switch to a lower frequency.

There are two general approaches to temporal disaggregation [124], 128]: (a)
fitting a smooth and continuous curve through the lower frequency benchmark points
[23], (b) using proxy indicators [I01], which are high frequency indirect measures
that approximate a phenomenon measured by the low frequency indicator to be
disaggregated. Approach (a) includes smoothing methods based on e.g. cubic splines
[7] and the Boot, Feibes and Lisman (BFL) method [II]. Important methods for
approach (b) are introduced in Denton [34], Dagum and Cholette [30], Chow and
Lin [24], Fernandez [43] and Litterman [84].

The Denton and Denton-Cholette methods use a single proxy indicator; as a
special case a constant (e.g. a series consisting of only ones in each quarter) can
be embodied allowing for temporal disaggregation without high frequency indica-
tor series. Regression methods on the low frequency series based on several proxy
indicators are described in Chow and Lin [24], Fernandez [43] and Litterman [84].

A problem with the smoothing methods in approach (a) is that while the values of
the low frequency series are often interpolated or well estimated by the disaggregated
series, the other estimated values may not even be in a reasonable range. For
instance, if there are change points within a year then this approach will not work.

In the same way, the use of an additional indicator may not always be the best
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solution because two time series that are strongly correlated at a lower frequency,
may not be strongly correlated at a higher frequency, so that also the choice of
indicators may be critical. In order to guarantee more reasonable estimates, the
validation by business experts is essential.

Some of the above mentioned methods are employed, in particular using the R
packages tempdisagg and imputeTS, and then, following standard practice with
forecasting in machine learning, a linear combination of the estimates of the high
frequency time series is computed with pre-specified weights: this could lead to
more robust estimates than each method taken separately [59]. The weights can be
assumed equal in case of non prior knowledge on their value, or can be elicited by
experts or through some preliminary analysis.

The details of this procedure for the case study are presented in Section [2.5]

2.3 Variable Selection Through Mixed Vector Au-

toregressive Graphical Models

In the past twenty years there has been an explosion in the use of Graphical Models
to represent relationships in a random vector as conditional independence state-
ments among its components [77]. GMs are helpful to perform inference which
takes advantage of the underlying graphical representations and can also be used as
a tool for (a sort of) variable selection. GMs provide a useful visualization of depen-
dence relationships through their graphical representation and this greatly benefits
the identification of which variables are relevant (i.e. dependent) for one or more
response variables of your choice.

Here, for the variable selection an approach based on mixed Vector Autoregres-
sive (mVAR) Graphical Models is adopted [57]. These are an extension of GMs
for time-varying random vectors in which the underlying model changes over time
under the assumption that change is a smooth function of time and they can be im-
plemented in R through the package mgm. Furthermore, a univariate exponential
function can be associated to each component of the random vector. mVAR GMs
are able not only to define the set of influential factors for the response variable, but
also to identify the time lag ¢ on which each selected time series is influential (see
below).

Model estimation in mVAR GMs is based on a neighborhood regression approach

and it can be explained through Example 1.

Example 1. Consider a random vector X with four stationary and continuous
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yearly time series: X = (X1, X, X3, X4). Here let assume that the four time series
are already on the same time frequency and in the appropriate unit measure (impor-
tant point for the application in Section [2.5). In Figure a path of each of the

four components of X is shown.

X3 X2 X1
b b o ko b A o e N

X4

0 25 50 75 100
Time

Figure 2.2: Plot of the four components of X.

For each time lag ¢ of interest (here { = 1,2 and in the case study in Section[2.5
¢=1,...,12), a GM is estimated by regressing each component of X on all of X

according to Equation , where t stands for time and random errors are centered
in zero, E(gy) =0, fori=1,...,4.

X1t = Bore + BrreXut—e + BoreXot—¢ + B31e Xzt + BareXar—1 + €1e
KXot = Boze + BroeXut—e + BooeXot—¢ + B320 X3t + Baoe Xar—¢ + €20
Xat = Bose + Pr3eX1—e + BazeXor—e + B30 X31—0 + BazeXar—o + €30
Xar = Boae + BraeXvi—e + BaaeXor—o + B300 X310 + BaaeXar—o + €40

(2.1)

The estimated parameters Bg can be efficiently stored in ¢ square matrices with
dimension the length of X plus one, say p + 1. The strength of the effect of each

covariate on the components of X can be displayed in a GM considered for each
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lag, obtaining an intuitive and helpful representation. The color of edges in the
graphs denotes the sign of the corresponding Bg between the two time series and
the thickness of edges is proportional to the strength of that relationship. The
selection of the dependence structure of X and of the important lags is based on
these matrices. The presence of an edge and its thickness are the information needed
to perform a variable selection.

Notice that one time series lagged at a specific lag can have an effect on another
time series and the latter can have an effect at the same time lag on that time
series. This is represented in a GM with two nodes with two edges pointing each
other (this does not occur in Example[I]|but occurs in the case study of Section [2.5).
Mathematically, this occurs when for a generic pair of time series X; and Xj, the

corresponding 31‘]‘[ > (0 and also B]‘Z‘g > 0, for a specific lag /.

Figure 2.3: Possible GMs for Equation (2.1)) showing covariates significance for time
series lagged at one year (left) or two years (right).

Example 1. (continued). A possible outcome with ¢ = 1,2 is given in Figure .
According to the GM in Figure (left) X3 lagged at one year has a negative
effect on Xo, while X4 has a positive effect on Xo. The self-loop on X, denotes an
autoregressive time series. For time series lagged at two years (Figure right) X,
and X3 have a positive influence on anticipate Xy. In this example, assuming that
Xy is the variable of interest, Xo can be excluded from further analysis since it has
no edge pointing in or out of it for both considered lags, while X1 and X3 have to be

retained because at their effect at lag 2.

The variable selection procedure outlined above is a thoroughly multivariate
method, computationally efficient, and, as expected, has produced more accurate

results than those obtained from a simple univariate analysis as shown below.

Example 1. (continued). The forecasts for the last two yearly values of the re-

sponse variable X4 provided by an univariate autoregressive model (X4t = 31X4t_1)
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and by the multivariate autoregressive model estimated with the procedure outlined
in this section (relations displayed in Figure , that is reported in Equation ,
are compared.

Xy = Ban X1 + BraaXus—o + BaaaXae o (2.2)

In Figure these forecasted values are displayed: red is related to univariate ap-
proach and green to the multivariate one. The estimates obtained with the multi-

variate method are more accurate than the ones with the univariate method.

Model

- True
- Univariate
-»- Multivariate

80 90 100
Time

Figure 2.4: Plot of predicted values obtained by univariate (red) and multivariate
(green) analysis.

In the case study of Section two response variables are considered, but the
variable selection is performed reasoning one variable at a time, in analogy to X, in
Example 1. This is because for each response variable one has to select the corre-
sponding influential covariates, which can be different with respect to the influential

factors for the other response variable.

2.3.1 Parameters Estimation

The log-likelihood associated to the estimated neighborhood regression model can
be calculated and it can be penalized with respect to the number of estimated
parameters [57]. For variable selection purpose, the Lasso Penalization is used [59)].
It has the property to shrink the less important variable’s coefficients to zero by
setting, a priori, a penalization hyper-parameter which often is unknown or hard to
estimate. Equation shows how the parameters vector Gy is estimated in this
work, where A is the penalization hyper-parameter, [(8,, X) the log-likelihood of the

model and ||B¢||; the ¢; norm of the parameters vector S3,.
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B¢ = arg min {l(,ﬂg,XH—)\ ||5¢||1} (2.3)

Be

For a robust estimation of B, many different hyper-parameters (one hundred
hyper-parameters values suffice for the case study in Section are used and then
the average of all the estimates of the 8, is computed. With this procedure one can
be more confident that the most significant relationships between time series have
been selected, with respect to the estimation of a neighborhood regression model
made only once. An approach based on the choice of a specific value of A that
leads to a a particular level of sparsity in the graph could be adopted. Also a study
using a cross validation method to select the best lambda could be carried out.
The choice made in this thesis is motivated by the fact that, at first, we wanted to
distinguish the variables that were most likely not influencing the response variable.
Then, through an analysis of these first results together with the business experts,
the threshold below which to consider an effect as not significant has been selected.
We are aware that this approach is not usual in a machine learning context, but it
was considered the most appropriate together with the business experts, in order to
have a conservative intermediate result and to be able to discuss the continuation
of the work together.

To achieve a more conservative dependence structure for X, relationships among
variables are considered significant if the corresponding estimated ,ég is not only

different from zero, but also greater, in absolute value, of a fixed threshold, say :

‘Bd > .

Example 1. (continued). According to the thickness of edges in Figure it can
concluded that also X3 is not relevant for X4, due to the thin edge between them.

This leads to a further reduction of the set of selected variables.

Note that normalize or standardize the explanatory variables, if they are not on

the same scale, is advisable for applying this shrinking method on the parameters.

2.4 Time Series Modelling

2.4.1 Data Modelling

After the temporal disaggregation and the selection of time series of interest for
the prediction of one or more response variables, the next step is the modelling

of the data in order to produce a forecast for future time points. Thus, from the
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original variables in X, a response Y is chosen (below Y is unidimensional for sake
of exposition), and a subset, say X, of p variables is selected.

In this work four different methods chosen for their predictive performances,
their simplicity of use and/or their recognized usefulness in the application context

of this work and their forecast values are compared. These models are the following;:

» Vectorized Autoregressive Moving Average with Exogenous Variables (VAR-
MAX) (for details see Liitkepohl [86]);

» Generalized Linear Autoregressive Moving Average Model (GLARMA) (e.g. Dun-
smuir et al. [39]);

» Generalized Linear Regression Model (GLM) (e.g. Hastie et al. [59]);
 Linear Regression Model (LM) (e.g. Hastie et al. [59]).

The VARMAX(k, q) model has the formulation shown in Equation , where
Y; is the response variable at time ¢, ag, ..., the k 4+ 1 coefficients related to the
autoregressive part of the process, Xy, ..., X, the k + 1 covariate variables X at
lagged values from 0 to k, B, ..., Bk the k + 1 coefficients vectors of the regressive
component of the model, &,..., &, the ¢ + 1 white noise error term and 04, ..., 0,

the q coefficients vectors related to the moving average part of the process.

Yi=ag+ Y+ -+ oY + XiBo+ Xemi B+ -+ Xk Bi

(2.4)
+ &+ ngt—l + -4 qut—q

The GLARMA model in Equation ([2.5)) is expressed as the expected value of the
response variable at time ¢, where g is the link function (e.g. log), Z; = 22, ¢ies_i,
er—; , 1 =1,...,00, the residual term and ¢; , : =1, ..., 00, the coefficients related

to the residuals.
E(Yy) = =g (XiBo+ XeaBr+ -+ Xy 4Bi + Z1) (2.5)

If the terms Z; are not present in Equation (2.5), the GLARMA model is the
standard GLM in Equation ([2.6).

E(Y;) = =g (XiBo+ X181 + -+ Xi_1Br) (2.6)

Furthermore, if the link function ¢ in Equation ({2.6)) is the identity function,
then it is the standard LM. In the case study in Section the link function ¢
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is the logarithm and the expected value is with respect to a Poisson distribution.
GLM and LM are estimated to study whether a model without autoregressive and
moving average components provides competitive forecast’s performances. They are
considered also for their minor complexity with respect to VARMAX and GLARMA
models and because they are already adopted by the company. The forecasting per-
formances of these four models can be compared, for instance, using some measures
of the quality of the forecasts (e.g. Mean Square Error). For the case study, also
a Weighted Combination (WC) of the forecasts of the four models is performed in
order to build more robust estimates compared to each forecasts obtained with the
four models taken separately (see e.g. Box et al. [I5]). Note that the WC is not a

statistical model itself.

Example 1. (continued). According to the variable selection performed in Exam-
ple |1 of Section and denoting the response variable X4 with Y;, Equation
becomes

Yi=ap+ Y1+ Xy 2B+ + Oier1 + Oaes—o,

with X;_o the matriz with relevant covariates at lag ¢ = 2, i.e. X; and X3. Hence,
the X B term that holds for also the other three estimated models is simply X;_ 235,

since at lag ¢ = 1 no variable was influential for the response one.

2.4.2 Robustness of Forecasts

In Section some methods for temporal disaggregation are presented in order to
obtain high frequency values from low frequency ones and it has been commented
on the fact that the accuracy may be low since it is impossible to fully make up
for the missing data. It has been proposed also to employ different methods of
disaggregation and then compute their weighted linear combination. In this section,
a bootstrap approach is adopted in order to deal with the data sensitivity derived
from disaggregation, to achieve robustness of the model estimates in Section [2.4.1
and improve forecasting accuracy.

In the last decade, many developments have taken place in bootstrapping time
series in order to apply a risk preventive approach. The bootstrap method is a
powerful tool, especially when only a small data set (e.g. a short-in-time series)
is available to predict the behaviour of complex systems or processes and obtain
robust results. The main idea is to generate bootstrap replicates by resampling
with replacement the original time series according to one of the methods outlined
below and, on these bootstrap samples, calculate statistics, i.e. parameter estimates

in Section [2.4.1] and obtain their confidence intervals. In this work, this is carried
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out only on the response variables.

Efron’s original bootstrap procedure [40] requires i.i.d. data; a way to overcome
the issue of the dependence structure of time series is to use the naive bootstrap,
that is to compute the first order differences and, if those are i.i.d., resample the
differences and sum these differences to construct many bootstrap samples of the

original time series.

Since the first order differences in many cases are not i.i.d., one can instead use
the block bootstrap [19, 122], which tries to replicate the dependence structure of a
time series by resampling i.i.d. blocks of data instead of individual time points. This
requires us to choose a large enough block length b, according to the autocorrelation
on the original time series, so that observations more than b, time units apart will

be nearly independent. This method, clearly, works only if the blocks are i.i.d..

If neither i.i.d blocks can be identified or if one can make some assumptions on
the modelling of the dependence structure underlying the data, then it is possible
to apply the residual bootstrap [19]. Once one of the models in Section m (e.g.
VARMAX) is estimated on the observed time series, the residuals which embody the
remaining uncertainty can be calculated. If they are i.i.d., one can resample them
and generate bootstrap samples by adding these resampled residuals to the fitted
time series (according to the estimated model). For example, considering an estimate
of the LM in Equation with g the identity function as Y; = f/; + &4, the residual
bootstrap consists in resampling with replacement the residuals ;, obtaining the
new sampled residuals €} and the new bootstrap samples Y, = Y, + e;. Extensions
of residual bootstrap to not i.i.d. residuals can handle other dependency structures
[36].

There is no universal method that works well for every case, but it must be
selected according to the type of time series and their dependence structure. For
the case study, the residual bootstrap approach is adopted and it is employed on

the response variables, i.e. total and partial losses.

The application of one of the above bootstrap methods leads to the construction
of many bootstrap samples on which, being them plausible variations of the original
time series, is reasonable to estimate one of the models in Section 2.4.1 With
this procedure the objective is trying to overcome the data sensitivity problem:
indeed, instead of having a single forecast, as many forecasts as the number of
bootstrap samples are obtained. Hence, a distribution of the predicted values and the
corresponding confidence intervals are derived in order to evaluate their robustness,

i.e. the wider the confidence intervals, the less robust the estimates.
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2.5 Case Study

In this work 30 time dependent indicators, modelled as Xi,..., X3, are consid-
ered in addition to the two response variables, total and partial losses (Y; and Y5
respectively), collected from 2006 to 2017. Among these 30 indicators, thirteen
require disaggregation as their collected values are only on a yearly scale while
the time series for Y] and Y, are on a quarterly scale. Let X = (Xi,..., X30)
and Y = (Y1,Y3) be respectively the random vectors of either Poisson or Gaus-
sian distributed covariates and of two Poisson distributed responses, defining X =
(X,Y) = (Xy,...,X30,Y1,Y32). The time series in X are divided into five macro
areas: technological (e.g. seaborne trade), political (e.g. piracy), social (e.g. death),
economical (e.g. steel price, GDP) and environmental (e.g. CO, maritime, sea ice
extent). These indicators are mainly collected from public sources but also from
private databases; for this reason the data reported in this section are masked or

altered, if needed, to overcome the problem of violation of sensitive data.

2.5.1 Temporal Disaggregation

The steps for performing temporal disaggregation in Section are outlined on the
covariate C'Oy Maritime, i.e. the CO, emissions by vessels. Different methods in
Denton [34], Dagum and Cholette [30] and Baxter [7] are used, in particular the
na_interpolation function of the R package imputeTS [90] for simple linear and
cubic spline interpolation and the td function of tempdisagg [101] for Denton and
Denton-Cholette methods. The results of these four methods are shown in Fig-
ure The linear interpolation and the Denton method (red curve) give exactly
the same estimates of the quarterly values, indeed it can be shown that the Denton
method without a proxy indicator corresponds to the linear interpolation. Although
the cubic spline interpolation (green) and the Denton-Cholette method (blue) pro-
duce very similar estimates, some differences can be observed especially in the last
quarters of 2016 and 2017. As already mentioned at the end of Section [2.2] a linear
combination of the estimates (pink line) is computed assuming, in this case, equal

weights for each method.

2.5.2 mVAR Graphical Models and Variable Selection

After temporal disaggregation, all thirty-two time series are on a quarterly frequency
scale. In Equation ([2.1)) lags ¢ are taken from 1 to 12, due to the company’s interest
in modelling losses by monitoring the dependence structure up to at most three

previous years (i.e. lag 12 with quarterly time series). As the random vector X
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Figure 2.5: Temporal Disaggregation methods applied on the covariate CO, Mar-
itime; time window from 2010 to 2017.

has thirty two components, the neighborhood regression scheme in Equation ([2.1)
of Section [2.3| is composed by thirty two regression equations for each considered
lag, leading to the definition of twelve square matrices of size thirty three for the

estimated parameters ,ég.

Estimates of the mVAR GMs were performed also with a penalty parameter A
selected through cross validation. However, for many lags few edges have been esti-
mated, resulting this approach not reliable and too sensitive to the hyper-parameter
value. From a practical point of view, this was also not useful since we want to un-
derstand the causal relationship among the variables taken into consideration and
we cannot rely on such unstable estimates. In Table[2.1|the results obtained through
the optimal lambda selected with a cross validation approach are summarized. It
highlights that for many lags the variable selection is too restrictive. Indeed, for
6 lags out of the 12 considered, no significant covariates were found for Total and
Partial losses. In contexts like this, it is usual to use an approach based on cross
validation, but the poor stability of the results shown in Table led us to adopt
a different method.

For this reason, the neighborhood regression procedure is repeated one hundred
times. The range of values chosen for A by the software’s default is a linear sequence
(on logarithmic scale) from the minimum value for which no parameters are esti-
mated to be zero to the smallest maximum value for which the model would set all
parameters to zero [58]. Therefore, hundred parameters estimates BZ are obtained,
one for each chosen penalization hyper-parameter, A € [0.0001,0.5500], and from

now on:
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Time Lag A # edges for Total Loss | # edges for Partial Loss
=1 0.1705 2 2
(=2 0.2291 0 0
(=3 0.2133 1 3
(=4 0.2620 0 0
=5 0.2485 1 1
(=6 0.2467 0 0
=17 0.2384 0 0
(=38 0.2375 2 1
=9 0.2483 1 1
¢=10 | 0.2849 0 0
¢=11 | 0.3365 0 0
(=12 | 0.2181 0 2

Table 2.1: Summary of variable selection procedure applied to Total and Partial
losses with penalization parameter lambda selected through cross validation.

R 1 IOOAT
B¢ = 100 ;54-

In Figure the estimated mVAR GM for ¢ = 3 is displayed, where the edges

give a graphical representation of the matrix of estimated parameters Bg for ¢ = 3.

Figure 2.6: Graphical representation of estimated mVAR GM for lag ¢ = 3.

This provides an estimate of the dependence structure among the components of
X at lag ¢ = 3. However, the main focus is in identifying the time series that have
a direct effect on the two response variables (orange nodes in Figure [2.6)). Following

the steps outlined in Example [T} the graphical representation can be considerably
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simplified, first by drawing only the edges pointing the nodes (one or both) related
to the two response variables (Y7, Y3) and second by eliminating nodes that do not
have an edge pointing to Y; or Y5. The result of these two simplifications for lag
¢ = 3 is shown in Figure Demolition (Xg) has a large positive effect on both the
responses, while Population Growth (Xzs) and Total Losses have a negative effect
on Partial Losses. Note for instance that in the mVAR GM in Figure [2.6] the effect
of X7 on Y] is mediated by Xg; indeed in the graph there is a direct path from X5
to Y] through Xg. This is the power of Graphical Models: probably the exclusion of
Xg from the study would lead to the definition of a significant effect of X7 on Y7, but

this effect is mediated from Xg and then X; can be excluded for further analyses.

Figure 2.7: Restricted graphical representation of estimated mVAR GM for lag ¢ = 3.

After the estimation of mVAR GM for lags ¢ from 1 to 12, one can select the
covariates that have a larger significant effect at different lags on total or partial
losses, separately. A summary of the variable selection made in the case study is
reported in Table 2.2] Here, the color of a time series indicates the strength, in
absolute value, of its effect on predicting the losses. Three ranges are considered:
red is for small intensity, i.e. |8, € (0.001,0.01), orange for medium, i.e. |8, €
(0.01,0.1) and green for large |B,] > 0.1. For completeness, in Table all the
time series with a corresponding statistically significant ,ég # (0 are reported, but,
for a conservative estimate of the dependence structure as suggested in Section [2.3]
an effect on the losses is considered significant only if |8, > 0.01, that is only the
colors orange and green. Note that at this level of the process flow it is important to
identify only the set of most influential covariates, without the sign of their effect on
the losses. Conversely, the signs will be really crucial in the next step for forecasting

losses with regressive models.
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Time Lag Total Losses Partial Losses
(=1 s s s s , Globalization, Size Ship
(=2 Laidup
(=3
(=4 , Orderbook
(=5
(=6 , Sea Temperature , Sea Temperature
(=7
(=8 , Average Age
=9
(=10
(=11 Demolition
(=12 , Globalization

Table 2.2: Summary of variable selection procedure applied to total and partial
losses.

At this step, the process has identified the most influential variables for total
and partial losses and also the lags at which the influence occurs. This is another
key information for the next step of the process flow, namely the estimation of
regressive models of Section [2.4.1] From Table it can observed that many time
series are influential at more than one lag; if all the indicators are considered at
all the lags at which they are influential, there would be more parameters to be
estimated in the regressive models than observed time points. Then, influential
indicators are included only at lag ¢ for which the strongest dependence relationship
(largest intensity) is estimated, for example Demolition for total losses is selected
as relevant at lag ¢ = 3. Furthermore, if for an indicator the same intensity (e.g.
medium) is observed at multiple lags, the indicator is included in the model only at
the smallest lag; for instance, Port detention for partial losses is selected as relevant
at lag ¢ = 1. Finally, partial and total losses are not considered as relevant covariates
even if an edge pointing the losses is estimated in the corresponding mVAR GM,
since we want to have always available data for covariates and, therefore, this may
not be verified with the losses, because their real values are published with a time

delay of several quarters.

The result of these steps is reported in Table [2.3] For both losses it happens to
select 11 covariates. Either total and partial losses at £ = 5, 11 do not have influential
indicators, while they share at the same lag Sea Ice Extent (¢ = 1), Demolition
(¢ = 3) and Average Age (¢ = 12). The overall number of shared indicators is
seven. Results in Table were confirmed with business experts. Some variables at
the estimated lag were expected in the model. For other variables the process flow
allowed the identification of the lags at which they are most influential. Furthermore,
for indicators for which a strong influence was not expected but were included in
the regressive models by the variable selection, the business experts agreed on their

relevance thanks to insights given by this pilot study.
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Time Lag | X;_, Total Losses Partial Losses
(=1 X;_1 | Sea Ice Extent, Steel Price | Port Detention, Sea Ice Extent
(=2 Xi o Sea Temperature
=3 X3 Demolition Demolition, Population Growth
/=4 X4 Weather Incidents
f =5 Xt_5
(=6 Xi g Crude Oil Laidup
(=17 X7 Port Detention Steel Price
(=38 X g Commodity Orderbook
(=9 X9 Weather Incidents
(=10 X 10 | Piracy, Sea Temperature Death
(=11 X;_11
(=12 | X;_1o | Average Age, Safety Route Average Age

Table 2.3: Final results of variable selection procedure applied to total and partial
losses.

2.5.3 Time Series Modelling and Robustness of Forecasts

For the prediction of future time points for total and partial losses, the last step
of the process flow in Figure is to estimate a regressive model, based on the
temporal dependence structure estimated in the previous subsection. The resulting
VARMAX models are reported in Equations and , respectively for total

and partial losses.

Yii = oo+ X181+ X383 + XiufBs + Xi—6B86 + Xy—787 + X35

(2.7)
+ Xi—10B10 + X282 + e +F 0161 + ..+ 045

Yoo = a0+ Xo181 + X082 + X383 + X686 + Xi—787
+ X sB8s + X989 + Xi_10810 + Xi—12812 + &1 (2.8)
+ Hlst_l + ..+ @qéft_q

With X, , are denoted the covariate variables X at lagged values for ¢ =
1,...,12 as reported in Table 2.3] For instance, for total losses at lag ¢ = 1, only
indicators Sea Ice Fxtent and Steel Price are considered. Clearly, the covariates
that were not influential on the response variables at a certain lag (white lines in
Table were not included in the model and the corresponding B parameters were
not estimated, e.g B5. Furthermore, the term X;8, is not considered because one
would always like to have available data for covariates and, therefore, observed in

the past quarters and not at the current time point ¢.
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The other three predictive models outlined in Section [2.4.1]confirm the VARMAX
models and their X 3 structure follows the structure of the VARMAX equations.
For the GLARMA and GLM, the link function g is set to be the logarithm since the
two response variables belong to the Poisson family. Moreover, here the error term
is intended as the predictive residual, as outlined for Equation ([2.5)).

In order to measure the goodness of fit of the regressive models, the observed
sample is divided into a train set (from 2006 to 2016) for their estimation and a test
set (2017) to evaluate their predictive performances.

The results below refer to the residual bootstrap procedure outlined in Sec-
tion for partial losses, with 500 bootstrap iterations; if more bootstrap iter-
ations are considered the forecasts are analogous. The results for total losses are
similar and they are not reported here.

In Table the true and forecasted values of partial losses for year 2017 are
shown. These forecasts are provided by the five models seen in Section [2.4.1] that
are VARMAX, GLARMA, GLM, LM and their Weighted Combination (WC).

Quantity True | VARMAX | GLARMA | GLM LM WC
2017 - Q1 507.00 528.00 539.00 539.00 | 545.00 | 538.00
2017 - Q2 464.00 511.00 470.00 474.00 | 471.00 | 481.00
2017 - Q3 459.00 493.00 478.00 484.00 | 483.00 | 485.00
2017 - Q4 574.00 959.00 563.00 573.00 | 573.00 | 567.00
2017 2004.00 | 2091.00 2050.00 | 2070.00 | 2072.00 | 2071.00

2017 % Error - 4.34 2.30 3.29 3.39 3.34
2017 MSE - 4031.00 1542.00 | 1815.00 | 2070.00 | 1959.00

Table 2.4: True and forecasted values of partial losses for year 2017. The forecasts
are provided by the five models seen in Section 2.4.1]

The yearly estimated value of 2017 is the sum of the four quarterly predicted
values and the global percentage error (% Error) is computed as the percentage of the
difference between the yearly predicted value and the true one divided by the latter,
e.g. for GLARMA 2.87% = %. The best performing model according to the
% Error and the Mean Square Error (MSE) is the GLARMA, but also the other four
models provide competitive performances since the % Error for all cases is less than

5%.

hence, the overall yearly estimate results to be overestimated and this is a positive

The first three quarters are overestimated, while the last is underestimated;

aspect as, from an insurance point of view, it is better to consider overestimates
in order to be more provident. Note also that the WC in this case study does not
provide the best estimate, but in another context where not all models overestimate

the true values, the WC could achieve more robust estimates.
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In Table the 90% bootstrap confidence intervals are reported, which contain

the corresponding true values in all cases considered here.

Quantity True VARMAX GLARMA GLM LM WwC
5% 95% 5% 95% 5% 95% 5% 95% 5% 95%
2017 - Q1 507.00 | 446.95 607.10 | 474.00 611.00 | 473.00 612.05 | 476.95 614.00 | 471.68  607.09
2017 - Q2 464.00 | 427.30  696.10 | 402.00  550.00 | 405.90  551.05 | 387.75  557.05 | 405.71  559.76
2017 - Q3 459.00 | 387.95 686.10 | 396.00 572.00 | 401.95 573.05 | 384.95 580.00 | 398.21  573.62
2017 - Q4 574.00 | 418.70  997.10 | 426.00 730.00 | 436.00 737.05 | 426.75 712.00 | 440.70  711.01
2017 2004.00 | 1691.80 2445.45 | 1706.95 2442.05 | 1729.90 2455.15 | 1709.40 2446.40 | 1729.86 2430.55
2017 % Error - -15.58 22.03 -14.82 21.86 -13.68 22.51 -14.70 22.08 -13.68 21.28

Table 2.5: True values and 90% confidence intervals of forecasted values for partial
losses and year 2017. Confidence interval is not calculated for MSE since it is hardly
interpretable.

As an additional tool for the goodness of fit of the estimated models, Figure [2.8
depicts the true values of partial losses from 2010 to 2017 and the corresponding
estimated values. For a better visualization of forecasts, in Figure 2.9 only the time
window related to 2017 is displayed. The GLARMA seems to be again the most
accurate, but all models catch the correct trend and match roughly the true one,
except for the second quarter of 2017 that is highly overestimated by the VARMAX.
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Figure 2.8: Graphical representation of partial losses from 2010, its forecast for
quarters of 2017 obtained through 5 models and fitted values for time window from
2010 to 2016.

In Figure and Figure the histograms of the bootstrap estimates of,
respectively, quarterly and yearly values for 2017 obtained with the GLARMA model
are shown. The vertical dashed black lines corresponding to the true values in the
observed sample and the red ones representing the bootstrap mean for the considered
value are quite close in each histogram. This suggests that the estimated model is

robust.
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Figure 2.9: Zoom of graphical representation of partial losses and its forecast ob-
tained through 5 models.
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Figure 2.10: Histograms of bootstrap estimates of quarterly values obtained through
GLARMA.
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Figure 2.11: Bootstrap distributions of yearly estimates obtained through
GLARMA.

The bootstrap samples (red lines) obtained by the residual bootstrap procedure
of Section [2.4.2] are displayed in Figure [2.12] For the four quarters of 2017, also the
whole bootstrap predictions (green lines), the mean bootstrap prediction of Table
(yellow line) and the 90% confidence intervals of Table (blue vertical lines)
obtained with the GLARMA are plotted. Further confirmation that the residual
bootstrap procedure is appropriate derives from the fact that the bootstrap samples

are plausible variations of the observed time series (black line).
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Figure 2.12: Bootstrap replicates of the GLARMA model for partial losses from
2010 to 2017.

An ad-hoc Shiny App has been designed and implemented in R for carrying on
the steps in the process flow in Figure 2.1] except for the temporal disaggregation
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step that is done a priori. The App in input receives quarterly time series and in
output returns estimates of future time points of losses, their confidence intervals
based on residual bootstrap and plots of both the estimated mVAR GMs and fore-
casts such as Figure 2.12] The App is completely interactive, in the sense that the
user can select how many and which lags ¢ for the mVAR GMs to consider (e.g. Fig-
ure , if only the restricted graphical representation (e.g. Figure should be
displayed or also the tables (e.g. Table and plots (e.g. Figure of forecasts
obtained by regressive models. Furthermore, the user can choose to visualize also
bootstrap samples, bootstrap predictions with their 90% confidence intervals and

the corresponding histograms (e.g. Figure [2.11]).

2.6 Conclusion

In this pilot study the problem of forecasting the trend of marine losses at global
scale up to three years has been considered. Since the collected time series were
on different time frequencies, in Section different methods of temporal disaggre-
gation are outlined in order to obtain for all indicators the same high frequency of
the response variables, i.e. quarterly data. In Section [2.3] the number of considered
variables is reduced by selecting the most influential ones for the prediction of total
and partial losses with mixed Vector Autoregressive Graphical Models.

After carrying out temporal disaggregation and variable selection, regressive
models have been estimated in order to forecast future time points of marine losses.
Data sensitivity and robustness of regressive model estimates were achieved and
verified through a residual bootstrap procedure. In this context, the best perform-
ing model among those estimated, according to MSE and % Error, was GLARMA,
providing a percentage error equal to 2.30%. To make the procedure illustrated in
this chapter usable also by business experts, an ad-hoc Shiny App has been designed
and implemented in R.

The whole procedure summarized in Figure [2.1] is a complex combination of
different approaches, which are often used separately to solve smaller problems.
Indeed, the state of the art of methods used in the chapter, for instance time series
disaggregation, variable selection and bootstrap approach, is consolidated in the
machine learning context. On the other hand, the sequentially application of these

criteria may be view as an innovative idea.
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Chapter 3

Stratified Staged Trees and Chain
Event Graphs: Theory and

Estimation

3.1 Why Staged Trees?

In this chapter recently introduced statistical models for categorical data called
Staged Trees and Chain Event Graphs (CEGs) are presented [27, 107]. Also a
number of algorithms for learning Stratified Staged Trees from data is introduced;
they are at the core of the R package stagedtrees [120].

All discrete Bayesian Networks from Chapter 1 can be seen as Stratified Staged
Trees (see Smith and Anderson [107] and Chapter [f}). BNs provide a transparent
graphical tool to define a complex process in terms of conditional independent local
structures. This facilitates the identification of relevant structural components of the
process being modelled, allows the factorization of the joint probability distribution
and optimises the computational costs and time for inferences. Despite this and
their obvious strengths in allowing for the reduction in the dimensionality of joint
probability distributions of the model and in providing a transparent framework for

causal inference, BNs may be not suitable models in certain context, for example:

e when the event space is not a product space, i.e. the event space can not be
obtained as the product of the sample spaces of each considered variable. This
may occur also when the nature of the hypothesis underlying the process is

asymmetric; for instance, with many survey data;

o when conditional independence statements are true only under certain values

of the considered random variables. This happens when there are context-
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specific conditional independence structures [13] [109], which are detailed next.

The first scenario can be overcome through non-Stratified Staged Trees, which
are described in Section 3.2l Some notes about the second scenario are discussed in
Chapter [7] We recall the definition of context-specific independence for a random
vector X from Pensar et al. [96]; this will be developed in Chapter [

Some extensions to the BN framework have been proposed to handle context-
specific conditional independences and not product sample spaces. For instance, a
context-specific BN proposed by Boutilier et al. [I3] uses supplementary trees to
represent the conditional probability tables that show context-specific information.
Also the standard BN can be reorganized in order to depict context-specific indepen-
dences using multiple vertices associated with a single variable. Another proposal
is to use Bayesian Multinets or Similarity Networks [49]. These adopt a hypothesis
variable to encode the context-specific statements over a set of random variables
Z. For each value taken by the hypothesis variable the graphical modeller has to
construct a particular BN model called local network. The collection of these local
networks constitute a Bayesian Multinet or a Similarity Network.

In all the above approaches, a process is described by a set of networks instead of a
single graph. The natural consequence is that the modelling procedure becomes more
complicated and the computational complexity to encode these models increases
substantially compared to a standard BN. These problems get worse when variables
have to be intended as context-specific hypothesis associated with different states
of the process. The corresponding drawbacks become more pronounced and the
computational complexities increase dramatically.

Another class of models that enables to handle context-specific information is the
Probabilistic Decision Graph [64]. These models were originally proposed for auto-
mated check of probabilistic expert systems and are based on ordered binary decision
diagrams [18]. They allow efficient probabilistic inference especially in models with
context-specific structures. Although there is a considerable overlap between Prob-
abilistic Decision Graphs and BNs, the Probabilistic Decision Graph model class
does not constitute a superclass of BNs. However, Probabilistic Decision Graphs
have an underlying treegraph and, in this sense, are similar to Staged Trees and
CEGs models.

Smith and Anderson [107] showed that CEG models encompass all discrete BN
models and its discrete variants described above as a special subclass and they are
also richer than Probabilistic Decision Graphs [I12]. Unlike most of its competitors,
CEGs [27,[99] can capture all conditional independences (also context-specific), com-

patible with the order of vertices, in a unique graph. Any CEG is obtained by a
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coalescence over the vertices of an appropriately constructed probability tree, called
a Staged Tree. Indeed, the Staged Tree and its associated CEG defined the same
statistical model, but the CEG offers a more compact graphical representation of
that statistical model. CEGs have been used for cohort studies [4], causal analy-
sis [I11} 115] and case-control studies [68], [69]. Structure learning algorithms have
been defined in the literature [5, 26] 28] [105]. There are methods for inference and
probability propagation [53] [116], the exploration of equivalence classes [55] and ro-
bustness studies [80, 126]. The model class of CEGs and Staged Trees have been
further extended to model dynamic problems with recursively updated probabilities
[6, [45], decision problems under the framework expected utility maximization [113]
and Bayesian games [114].

The chapter is organized as follows: Section [3.2] introduces Staged Trees and
CEGs and provides graphical examples. Sections and [3.5] outline the theory
inherent to algorithmic implementations of estimation criteria for Stratified Staged
Trees based on bayesian, frequentist and distance/divergence between probability
distributions approaches, respectively. Section [3.6| gives a review of the Dynamic
Programming algorithm, which guarantees a global optimum of one of the estimation
criteria above over the set of all Stratified Staged Trees given an ordering of the
components of a random vector X . It also provides an intuitive and empirical proof
of its non-applicability in real contexts even with few random variables. Section
highlights the importance of the order of variables in the construction of a Staged
Tree, and gives three different algorithms to infer such variables order. Section
shows how confidence intervals can be calculated for transition probabilities of a
Staged Tree; four different methods are provided. At last, Section [3.9] offers a brief
conclusion of the chapter, highlighting the salient results.

All the above is implemented in the R package stagedtrees [120], whose usage
will be detailed in Chapter [5]

3.2 Staged Trees

Staged Trees are directed trees equipped with probabilities where atomic events co-
incide with root-to-leaf paths. A CEG is constructed starting from a Staged Tree by
coalescence of some vertices and it represent the same statistical model. Definition
22| refers to a general Staged Tree, while Defintion 23] to X-compatible Staged Trees
and Defintion [24] to Stratified Staged Trees. The R package stagedtrees [120] is
currently available for Stratified Staged Trees and Carli et al. [20] offers a guideline

for its usage. The implementation of non-Stratified Staged Trees is still currently
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under investigation, since they do not present any structure, as for instance they
are not X-compatible; Gorgen et al. [54] provides an algorithm for their estimation.

A directed tree T = (V, E) is a tree with vertex set V' and edge set E, where
each vertex except for the root has one parent only, all non-leaf vertices have at least
two children and all edges point away from the root. Denote with I+ the leaves of
7. In this framework directed trees are also called Event Trees and their vertices
are also called situations. For v,v" € V' let e = (v,v’) € E be the edge pointing from
v to v'. For a non-leaf v, let E(v) = {v' € V : (v,v") € E} and call F(v) = (v, E(v))
a floret of the tree. Let © be a non-empty set of labels and § : £ — © be a
function such that for any non-leaf v € V the labels in 0(E(v)) are all distinct.
The set §(E(v)) is denoted by 6, and is called the set of floret labels. Next assume
© C [0,1]. If X cpw) 0(e) = 1 for all non-leaf v, then T together with the 6,’s is
called a probability tree and (e) is the probability of the edge e € E. Given a vertex
v € V, there is a unique path in 7 from the root of the tree to v, denoted as A(v).
Each root-to-leaf path A(v) in T, for each leaf vertex v € I, is associated to an atom
in a discrete probability space and the corresponding atomic probabilities can be
defined as [[.ep(n) 0(e), where E(\) = {e € E': e € A(v)} denotes the set of edges in
the path A(v). Throughout this thesis, edges on root-to-leaf paths A(l7) are ordered
from the closest to the root to the closest to the leaf. The atomic probabilities

together with © give the statistical model associated to the tree.

Definition 22. A Probability Tree where for some v,v" € V 0, = 0., is called a

Staged Tree. The vertices v and v' are said to be in the same stage.

Although not strictly necessary, a probability tree can represent the joint prob-
ability distribution of a discrete random vector X = (X1,...,X,) taking values in
a product space X = x?_, X, where X is the finite sample space of X;,i=1,...,p.
Indeed, for x = (z1,...,2,) € X, the joint probability can be factorized according

to the chain rule of probabilities

p

p(x) =[] plz; | x71) play), (3.1)
i=2
where X! = (z1,...,2;-1) € x/Z1X;. This sequential factorization can be repre-

sented by a probability tree as the one in Figure where the probabilities on the
right-hand-side of Equation (3.1]) are associated to the edges emanating from the

non-leaf vertices.
Definition 23. A Probability Tree T is called X-compatible if:

o it has as many leaves as elements in X;
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(a)

Figure 3.1: Illustration of the construction of Stratified Staged Tree and CEG start-
ing from a BN for three binary random variables. The BN in (a) is represented
like the X-compatible tree in (b) where the edges emanating from vy represent the
outcomes of X7, the edges emanating from v; and v, represent the outcomes of X,
conditionally on the outcome of X; and the edges emanating from wvs, ..., vg repre-
sent the outcomes of X3 conditionally on X; and X,. The conditional independence
encoded by the BN coincides with the staging {vs,v4} and {vs,vs}. The Stratified
Staged Tree in (b) is transformed into the CEG in (c), with positions ug = {wvo},

uy = {Ul}, Uz = {Uz}, Uz = {U3,U4}, Uy = {U57U6} and U, = {U7, .. ,U14}-

e edges on a root-to-leaf path A\ are ordered from the closest to the root to the

one closest to the leaf: X = (eq,...,ep);

o for each x € X there exists a unique root-to-leaf path A = (e1, ..., e,) such that
0(e1) = 0(x1) and 0(e;) = p(z; | 2°71), fori=2,...,p.

For an X-compatible tree, all vertices at distance ¢ from the root are associated
to the same random variable X; 1,72 =1,...,p — 1, and are said to be in the same
stratum.

Conditional independence statements embedded in BNs correspond to equalities
between probabilities on the right-hand-side of Equation . This can be captured
in Probability Trees by identifying some of the floret probability values.

For example, the BN in Figure implies that X3 is conditionally independent
of Xy given X, ie. p(xs | x2,21) = p(ag | z1) for all ; € X;, ¢ = 1,2,3. The
same conditional independence is embedded in the Staged Tree in Figure by
the staging {vs, v4} and {vs, v¢} so that 6,, = 0,, and 0,. = 0,,. By construction, all
BNs have a Staged Tree representation such that situations in the same stage must
be in the same stratum as in Figure |3.1] Details on the estimation of the Staged

Tree corresponding to a BN are given in Section [

Definition 24. An X-compatible Staged Tree is called stratified if all non-leaf ver-

tices in the same stage are in the same stratum.
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Figure 3.2: Stratified Staged Tree and CEG for three binary random variables with
stages {vo}, {1}, {va}, {vs, v6}, {va, v5} and positions wg = {vo}, w1 = {v1}, w2 =
{va}, ug = {3, v6}, ug = {vg,v5} and us = {v7,...,v14}.

Consider again a discrete random vector X = (X7,..., X)) taking values in a
product space X = x?_ X;. Each root-to-leaf path A\ in a Stratified Staged Tree
corresponds to a possible realization x = (z1,...,z,) € X. The number of leaves in
a Stratified Staged Tree is equal to the cardinality of the product space X.

The class of Stratified Staged Trees is much larger than the one of BNs over the
same variables. This is so because we demand that the BN is built on the random
variables themselves and not on functions of them. Indeed, there is always a BN
representation of a Staged Tree or a CEG if we allow the BN to be on functions of
X.

For instance, the Stratified Staged Tree with staging {vs, v} and {vs,vs} in
Figure does not have a BN representation over the same X variables. The
conditional independence structure embedded in the Stratified Staged Tree in Fig-
ure[3.2alis asymmetric. The stage structure for the stratum related to the variable X
is totally asymmetric, one can not even write a conditional independence statement
in mathematical formulas. This Stratified Staged Tree states that the probability
distribution of X3 conditional on the path vy — v; — w3 is equal to the one given
the path vg — vy — vg. The same conclusion can be drawn for the stage {v4,vs},
saying that the probability distribution of X3 conditional on the path vy — vy — vy

is equal to the one given the path vy — vy — vs.

3.2.1 Chain Event Graphs

Staged Trees are very expressive and flexible but, as the number of variables in-
creases, they can not succinctly visualize their staging. For this reason, Smith and

Anderson [107] devised a coalescence of the tree by merging some of its vertices
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in the same stage and therefore reducing the size of the graphical representation.
The resulting graph is called Chain Event Graph (CEG), which represents the exact
same probability model as the original Staged Tree [27]. The construction of a CEG

starting from a Staged Tree is illustrated next.

Given a probability tree 7, a subtree 7 (v) rooted at v € V is the tree with v-to-
leaf paths of 7 and the same edge probabilities. Two vertices v, v’ € V in the same
stage are said to be in the same position if the subtrees 7 (v) and 7 (v') are equal.
For instance, the vertices v3 and vy in Figure [3.1b|are in the same stage but also in
the same position. Therefore, for situations in the same position the full downstream
stage structure is identical, and not only the immediate floret probabilities as for
situations in the same stage. Positions give a coarser partition w of the vertex set
of a Staged Tree than stages do. Hereby, all leaves are trivially in the same position

denoted by Uy.

Definition 25. The Chain Event Graph (CEG) is the graph obtained from a Staged
Tree T = (V, E) having a vertex for each set in U and edge set F' so constructed: if
there exist edges e = (v,0'), € = (w,w') € E and v,w are in the same position then
there exist corresponding edges f, f' € F. If also v',w' are in the same position then

the labels associated to f and f' are equal and are probabilities inherited from T .

The process of constructing a CEG is illustrated in Figure [3.1] Intuitively CEGs
are very appealing, highly "viable and straightforward new tools for statistical infer-
ence' [27]. Indeed, the greater the number of levels of categorical variables involved,
the more difficult it will be to have conditional independence that are valid for all
the levels. A price one has to pay for the flexibility that CEGs offer is that the
search space for model selection can be huge. Nevertheless, it is possible to counter
this problem by restricting the search space using constraints. For example, if there
are collections of Staged Trees that correspond to different people hypotheses, then
model selection and comparison can be trivial. This is because usually only a subset

of models would make much sense to domain experts.

3.2.2 Notations

Some simple facts and notation on Staged Trees CEGs follow, which are important
for the development of the stagedtrees package. They are expressed for Stratified

Staged Trees but analogue facts can be considered for any Staged Tree.
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Vertices

Let X = (Xy,...,X,) be a discrete random vector taking values in a product space
X = x¥_,X;. Denote with |X;| = s; the cardinality of X;, for : = 1,...,p, and with
IX| = [T7_; s; the cardinality of the product space X. The number of vertices/situa-

tions associated to each stratum of the tree is given in Table [3.1]

Variable | Stratum Number | Number of Situations
X 1 (root) 1
XQ 2 S1
X3 3 S1 X 89
X4 4 51 X S9 X S3
Xp p Hg‘):_ll i
- p+1 (leaves) s

Table 3.1: Number of situations in each stratum of a Stratified Staged Tree.

The cardinality of the vertex set V' is the sum of the number of situations for
each stratum, i.e. the sum of values in the third column of Table [3.1}

VI =141+ (51 X 82) + (51 X S2X83)+ ... +(s51X...X8,)=
=14+s51(1+s2(1+s3(...(1+s,)))) =5

Stages

Let g = (qi, . .., qx) be the vector containing the stage structure, with &£ the number
of distinct stages in the Stratified Staged Tree. Each q;, for i« = 1,... k, is the set
of vertices in the i-th stage. Since leaves are terminal vertices without a probability
distribution associated, it does not make sense to define stages for that stratum of
the tree. The number of possible stages associated to a Stratified Staged Tree can
range between the number of stages of an independence model and a full-dependence
model. The first corresponds to a tree where for each stratum all situations are in the
same stage, while in the second one vertices in the same stratum are in a own stage
(see Figure . Hence, the smallest number of distinct stages is p, i.e. the number
of variables, and is achieved by the independence model: all vertices in a stratum
are in the same stage. On the other hand, the largest number of stages is obtained
through the full-dependence model and is equal to s — [[5_; s;, i.e. the cardinality
of the vertex set V minus the number of leaves. In the example in Figure |3.3
three binary variables are considered, leading to the definition of 7 not-leaf vertices:

the number of stages can be included between 3 (independence model) and 7 (full-
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dependence model). For convenience and shortage of symbols, in a Stratified Staged
Tree stages located in different strata are depicted with the same shape, as circle
or rectangle in Figure [3.3b] Throughout the thesis as already mentioned, if not
specified, we will always talk about Stratified Staged Trees. Then, the assumption
is that only situations belonging to the same stratum, i.e. associated to the same

random variable, can be enclosed in the same stage.

V10
V11
V12
V13
V14

Figure 3.3: (a): Stratified Staged Tree for the independence structure on three
binary variables X, X, and X3, ie. X; 1L Xo 1L X3. q = (q1,99,¢q3), with
a1 = {vo}, g2 = {v1,v2}, g3 = {v3,v4, 05,06} (b): Stratified Staged Tree embedding
a full-dependence structure among the three binary variables X;, Xy and X3. q =
(@1, 92,93, 94,95, Gs, q7), With g1 = {vo}, @2 = {v1}, g3 = {2}, qu = {v3}, g5 =

{va}, g6 = {vs}, g7 = {ve}.

Stages Probabilities

Let again ¢ = (qi,...,qx) be the vector of stages and E(q;) = {e;,,- .. ,eiki} be
the edges emanating from the stage q;, for © = 1,... k. Then, we denote with
P = (Py,---,Pg) the parameters vector associated to that stage structure q and,
without loss of generality, we indicate p,, with p;. The latter can be written as
pi = pi; = pley), for j = 1,... k;, and corresponds to transition probabilities
associated to edges emanating from the stage q;, F(g;). Hence, the parameters
vector can be succintly written as p = (pi;, ¢ = 1,...,k; j = 1,...,k;). Each
component p; of p is subject to the constraint Z?izl pij = 1, which guarantees that
each stage parameters define a probability distribution.

Note that the number k; of edges and the corresponding parameters associated to
the stage g; is determine with respect to the stratum in which that stage is located.
More precisely, this number corresponds to the cardinality of the sample space of

the variable related to the stratum in which the stage is. For example, in Figure
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situations in the stage g3 = {v3, v4, V5, v6} have two outgoing edges, since they are

related to X3, which is a binary variable (|X3| = s3 = 2).

Stages Sample Sizes

The same reasoning is done for the observations in the sample, using the notations
as above. Let y = (¥g1, -+, ¥aq) = V15, ¥8) = (v, 0 =1,....k; j=1,..., k)
be the sample sizes vector associated to the stages. ;; denotes the number of
observations that arrive at the stage gq;, starting from the root, and pass along the
edge e;;. Let n be the number of observations collected in the sample: n = Zf;l Y1,
indicating with the vector y; the sample size of the stage related to the root of the
tree. Note that in a Stratified Staged Tree the sample size n corresponds to the sum
of all the sample sizes of all the stages associated to a stratum of the tree. This

holds for any stratum of the tree.

Prior Distribution, Likelihood Function and Posterior Distribution for
Staged Trees

A Bayesian or a Frequentist approach can be adopted for the estimation of the
stages structure and the probability distributions associated to each stage. In
Bayesian probability theory, if the posterior distribution of the parameters of in-
terest belongs to the same probability distribution family of its prior distribution,
then the prior and posterior are called conjugate distributions and the prior is said
to be a conjugate prior for the likelihood function. The choice made in this the-
sis for the prior distribution for the components p; of the parameters vector p is
the Dirichlet distribution, for which the Multinomial distribution is the conjugate:
P~ Dir(a), o = (v, ..., 5 ), with a;; > 0, fori=1,....kand j =1,... k.
Other choices for the prior distribution can be done, especially according to con-

jugate distributions [27]. The prior Dirichlet distribution of p is shown in Equa-

tion (3.2).

7(0) = [[#(P = i) = [[ —s=1%) ], 001 (32)

i=1 i=1 H?iﬂ [(cvij) j=1

The likelihood function of parameters vector p given the observed sample y is

factorized according to the stage structure g and by assuming for each Y;, i =

1,...,k, a Multinomial distribution: Y; | P, = p; ~ Multinom(y; = Z?;l Yij, Pi)-
Equation (3.3)) exhibits the likelihood function in details.
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The posterior distribution is shown in Equation ({3.4), which, unless a rewrite of
the constant C' and a normalization coefficient dependent only on the sample size y
(L(y)), is still a Dirichlet distribution. The posterior distribution of the components
piof pis P |Y; =y; ~ Dir(ay,), with a;y = a; +y;, fori=1,... k.

L
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A big advantage of an analysis closed under sampling is that the marginal like-

lihood (Equation (3.5))) of the corresponding model can be written in closed form.

szﬂw:Lfmmw=Lﬂ@med
_ / ,H ] 10413) ﬁpqij—l—yij—ldp
p =1 HJ 1F(azj) yzg j=1 Y (35>
T D(S5 ai) & Tlagy)
B z:l_[l F(Z?iﬂ Qijt) ]1_[1 ()

Finally, the marginal log-likelihood can be expressed as

log L(y i [<logf a;) — log F(QH)) _ (

=1

Zi log F(Oéij) — IOg F(O&mq.))],

j=1
with a; = Z?Z:l Qg for i = 1, R ,/{?.

In the framework introduced in this section, the estimation of a component p;; of
the parameters vector p can be done mainly with a Bayesian approach according to

the Maxium A Posterior (MAP) criterion and with a Frequentist approach through
the Maximum Likelihood Estimation (MLE). The formulations of these two criteria

are reported in Equation (3.6) and (3.7)), respectively.
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pMAP _ i T Y fori=1,... .k j=1,... k. (3.6)

! Zj:l Q5+ Yij
N Yij . .
pi‘j“E = Zkzij’ fori=1,....k; j=1,... k. (3.7)
7=1 Yij

The posterior distribution is hence maximizes through the MAP estimates pMAP =

(PMAP . pMAP) = (ﬁf‘fAP, i=1,....k; 7=1,...,k;), leading to the definition

of the SCORE associated to the estimated model based on the observed sample y:
SCORE = n(pMAP | y)

On the other hand, the estimation of p with the MLE pMME = (pMLE A MLE) —
(ﬁf\fLE, i=1,...,k j=1,... k) allows to maximize the likelihood function in a

Frequentist approach:

max L(p | y) = L(P™"® |y)

3.3 Agglomerative Hierarchical Clustering Esti-

mation

The main challenges for implementing the MAP algorithm for Stratified Staged

Trees are:

« setting the prior distribution parameters a;; € a even for a single Stratified
Staged Tree often needs a considerable amount of care. Furthermore, the
number of possible models one can estimate according to the observed sample
is huge. This is because the estimation of the stage structure g and the
corresponding stage probabilities p;; € p require to set a priori the parameters

.

o The number of possible stage structures q of a Stratified Staged Tree increases
exponentially with the number of situations/vertices in the underlying Event

Tree.

o When a dataset has millions of observations, the MAP method tends to assign
higher posterior probability than it should to models that contain less structure
than the true data generating process. This means that the corresponding

Stratified Staged Tree tends to have too many stages.
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For these reasons, instead of a straightforward MAP method, Freeman and Smith
[46] designed an Agglomerative Hierarchical Clustering (AHC) algorithm which is
also implemented in the R package ceg [25] and was one of the few available algo-
rithms for learning Stratified Staged Trees and CEGs from data, before the work
of this thesis. Despite the algorithm comes from the literature and is not a novelty
proposed with this thesis work, it is necessary to introduce it in detail for the un-
derstanding of the algorithms that will be proposed in the following. To explain the

details of this algorithm, it is necessary to introduced some extra information.

Throughout this chapter suppose that the set of atomic event 2 is fixed. From a
statistical point of view, a model associated to a Stratified Staged Tree is identified
through the stage structure q and stage parameters p inherent to the tree. The
model search space can be defined as T = {My | T is a Stratified Staged Tree in
accordance with the established context}. Using the strengths of Graphical Models,
rather than searching over statistical models M+ € T, the model search is done

over stage structures representing these models.

Let M, M5 € T be two models one wants to compare with 7; and 75 the
corresponding Stratified Staged Trees with stage parameters vectors p; and po,
respectively. To compare these two models, the posterior Bayes Factor (pBF) shown
in Equation (3.8) can be adopted, with L;(y), m(p; | y) and m;(p;) the marginal
likelihood function, the posterior and prior distributions, respectively, for the model

M, i=1,2.

~mely) - mp) Liy)
PER(TLT) = 20Ty = mape) Laly) (38)

Computing the logarithm on both sides of Equation (3.8) leads to the definition
of the log-posterior Bayes Factor (IpBF) reported in Equation (3.9), where k! and
k? are the number of distinct stages in 7; and 73, respectively, and p! and p? the

stage parameters vectors associated to 7; and 7, respectively.
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IpBF(T1,72) = log mi(p1 |y) — log m(p2 | y)
= log Wl(Pl) + log Ll(Y) — log 7T2(P2) — log L2(Y)
= log m(p1) — log ma(p2) +

(1og T(@}) ~ tog T(@L,)) - (Z log T(a}) ~log Tla,) )| -

f (log I'(a?) — log P(@i)) - (k; log T(a2) — log r(a3j+)>

(3.9)

Finally, the AHC algorithm can be described in detail. In a Stratified Staged
Tree framework, the algorithm starts from the saturated (full-dependence model)
Stratified Staged Tree 7Ty in which each situation is in a own stage, whose underlying
tree is the event tree 7. Then, it merges sequentially stages at each iteration until
the best stage structure according to a criterion is reached. This greedy search
strategy is based on the log-posterior probability of each constructed model. In
particular, assume that the AHC algorithm has chosen the Stratified Staged Tree
T: as the best local model at the end of the iteration i. Let N(7;) C T be the
family of possible models at the iteration ¢ 4+ 1, which is composed by all Stratified
Staged Tree 7T;y1 having the same underlying event tree as the saturated model Ty
but with one stage less than 7;. Hence, if a couple of distinct stages g; and go in 7T;
are merged together in 7;; forming q;_», without any other changes over the tree,
then 7;,1 is I-nested in 7;. An example of 1-nested Stratified Staged Tree will be
reported in next section (Figure [3.4).

Setting a uniform prior distribution over the model space 7T, the IpBF between
the current model 7; at the iteration ¢ and a candidate 7;11 € N(7;) can be calculated
in a closed form as shown in Equation , where 04}]- and a?j are the parameters
associated to T; and T;.1, respectively. Note that since the Stratified Staged Trees
T; and T; ;1 are 1-nested for definition of the model seach of the AHC algorithm, the
parameters vectors p! and p? are different in only one component. More precisely,
assuming that stages ¢, and ¢, in 7; are merged together in 7;,; forming ¢,_,, p?
has one less element with respect to p'. In Equation , ki and k?_, denote the
number of emanating edges from stages ¢; and ¢ in 7; and ¢;_» in 7,1, respectively.
In the Stratified Staged Tree framework, these values are equal since only stages
located in the same stratum, i.e. associated to the same variable, can be assigned

to the same new stage: ki = k?_,.
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IpBF(7;, Tiz1) = log F(d}) — log F(&h) + log F(d%) — log F(@Jr) —
ki
> (10g F(o&j) — log F(o&H) + log F(ozéj) —

J=1

~ ~ (3.10)
log F(O‘%jJr)) - (10g F(O‘%ﬁ) — log F(O‘%—H) -

% <10g [(af_y;) — log F(af_2j+))>

Jj=1

Algorithm 1| below reports the pseudo-code for the AHC algorithm.

3.4 Penalized Log-Likelihood Estimation

The maximum likelihood estimator of a Stratified Staged Tree is always the full-
dependence model, that is the one which assigns each node of the tree to a own stage
(e.g. Figure . Clearly this has a big downside, because the full-dependence
model in the context of this thesis corresponds to the most overfitted model one can
estimate, since the probability distribution associated to each node of the tree is set
to be different from others. Consequently, even any inference that one wishes to
make on such a model would be of poor significance, as each variable is marginally
dependent on all the others: this is an implausible situation and other estimation
criteria are considered next.

An estimation method for Stratified Staged Tree based on penalized log-likelihood
enables us to reduce the number of degrees of freedom of the model through the join-
ing in the same stage of vertices of the tree which provides an improvement of the
penalized log-likelihood function. Denote with M, the statistical model associated
to a Stratified Staged Tree Ty with k stages, using all the notations introduced in
Section [3.2] Suppose that for a stratum of the tree one wants to merge together
two stages that in M were separated, creating an alternative model M, with k —1
stages.

The penalized log-likelihood associated to M, is reported in Equation (3.11)),
where ) is the penalization hyper-parameter and |[My| = |p| = SF_, |pi|, with
|pi| the cardinality of the parameters associated to the stage ¢;, is the number of
parameters estimated under M. The likelihood function of M, is the logarithm
of Equation , from which adding a penalty term leads to the penalized log-
likelihood in Equation (3.11]).
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Algorithm 1: AHC Algorithm

10

11
12
13
14

15

16
17

18
19

20

Input: A complete dataset, an event tree 7 and a prior parameters vector
p.
Output: The best scoring Stratified Staged Tree found.
Initialize an array q with the saturated stage structure of 7o = 7.
Initialize an array y with the conditional frequencies tables for each stage of
To (stages sample sizes).
Obtain the maximum a posterior estimate pMAF of the stage parameters
vector p (Equation (3.6)).
Initialize the score with the log-posterior probabilities mo(p
according to pMAP |y and q associated to 7j.
stop < FALSE
while stop = FALSE do
for every pair of stages q; and q; with the same number k; = k; of
outgoing edges do
Calculate the log-posterior bayes factor (IpBF) (Equation (3.10]))
between the stage structure that merges the stages g; and g; into
the same stage q,—; = g; U g; keeping all other stages invariant and
the current stage structure q.
if there does not exist any pair q; and q; then
L stop < TRUE

MAT | y)

Take the pair of stages g; and g} that provides the largest IpBF.

if IpBF(q;,q;] > 0 then

score < score + IpBF|q;, q;]

Update q gathering g; and g into a single stage q;_;. Let £k, be
the number of outgoing edges from that stage.

Update y gathering y; and y; into the new stage sample size

Yioj =Y Ty

*

* : * *. — * *
Update a;_; summing o and o: af ; = af + o.
Update the maximum a posterior estimate
N [ T .
Py A = et - of the unique component of stage
i—j

=1 g T U
parameters vector p that has to be updated.

else
L stop < TRUE

return score, q, y and p.

k ki k ki
ZMO(P | Y7)‘> = logn! — ZZ log yij! + ZZ Yij log bij — A |M0| (3-11)

i=1 j=1 i=1j=1
For clarity of exposure, let ¢; and gs be the two separated stages in M that are
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merged together in M1, defining the new stage ¢;_» with the following properties:

o ky_o = ki = ko number of outgoing edges from the florets of q;_s;
o Y19 = Yi; + Yoy, for j =1,..., ki_o, number of observations within q;_s;

e pi1_s the q,_» stage parameter vector.

The likelihood function associated to M, is given in Equation (3.12]).

k1—2 ko k;
n! . :
LM(ply)= . T iy TI 1T i (3.12)
H?;Q Y1—2;! Hf:;», H?Zﬂ vi;! = ’ i=3 j=1 ’

Note that the same notation about the sample sizes and parameters associated
to stages, which are stored respectively in y and p, is adopted for both models M,
and M. This is because these vectors represent the same quantities of interest,
since the two models are nested, that is they are equivalent over all the tree except
the new stage ¢;_» in My, involving a small difference in notation only for this stage.

The penalized log-likelihood of M, is given in Equation (3.13), where |[M;| =
p| = [p1a2| + Xis | pil-

k12 k ki

Mip |y, A) = logn!l — Y logyia! — 3> log yy!
=1 i—3 j—1
ki _— (3.13)
+ > yisgjlogpia; + D> yilog piy — A My
j=1 i=3 j=1

To test if the proposed alternative model M, is preferable with respect to the
original M, the (log) likelihood ratio test (LRT) can be used [82]:

W(p) = -2 (l,?“(p |y, A) = B |y, A)) ~ Xl

testing the hypothesis:

Hy: M, preferable model
H, : M; preferable model.

The computations of the LRT in this framework are the following:
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ki1—2
LRT = -2 ((log n! — Zlog Y1—2;! — ZZ log ;!

1=3 j=1
) k ki

+ Z Y1—2; 1Og P1-2j + ZZ Yij log Dij - A |M1|>

=3 j=1

i=1j=1 =1 j=1

— <1Og nl — ZZ log yi;! + ZZ Yij log pij — A |M0|>)
k12 k12
= -2 <Z Y125 log p1oj — Z log y1-9;! — A |M1|>
j=1

=1

2 k‘—; 2 k?i
- (ZZ vij log pij — ZZ log ;! — A |M0|>)

Jj=17=1 j=1j=1

k12 2 ki
= -2 (Z Y125 log p1oj — ZZ Yij log pij

j=1 j=1j=1
k12 2 k;
2
— Y log gl 4+ D> logyil = A (IMa] = [IMol) | ~ Xl
7=1 j=145=1
where the term |M;| — | M| associated to the penalization hyper-parameter \ is a

negative number, since M, is 1-nested in M.

3.4.1 A Detailed Example

Let X = (X, X3) be a random vector composed by two Bernoulli random variables.
Suppose that the aim is to establish if X5 is independent from X; or not: this can
be done also using a Stratified Staged Tree. In this framework, the Probability Tree
has one vertex related to the variable X1, i.e. the root of the tree, two vertices in the
second stratum for conditional distributions of X5 given X; and four situations in the
leaves stratum. The product space X has four elements since it is determined by all
possible combinations of two Bernoulli variables, and this value corresponds to the
number of leaves in the associated tree. In Figure the Stratified Staged Trees
corresponding to a dependence (Figure and an independence (Figure
model are displayed. The stage structures associated to these two trees are the only
possible ones, as the unique choice one can make is whether to put the situations
vy and vz in the same stage or not. If they are set together, it means that the
conditional probability distributions of X5 given the two possible outcomes of X;
are equal, i.e. X; and X5 are independent. Denote this independence model with
M and the dependence model with M.
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X1 X Leaves X1 X Leaves

Figure 3.4: Stratified Staged Trees corresponding to My (a) and M; (b). Stage
structure for My: ¢ = {v1}, 2 = {v2}, ¢ = {vs}. Stage structure for Ms:
@1 =A{vi}, @23 = {v2,v3}.

The penalized log-likelihood function associated to the dependence model M,
with corresponding Stratified Staged Tree in Figure is the following:

l;/;\/lo(P | y,A) = logn! — log yi1! — log y1a! — log yo1! — log ya! — log ys!
— log yso! + w11 log pi1 + w12 log pra + yo1 log pay
+ Y22 1og paa + w31 log p31 + yz2 log pza — 3 A,

where the penalization term is 3 A because the parameters that have to be esti-
mated are only p11, p21, psi1, since a Stratified Staged Tree has the property that
characterized a Probability Tree introduced in the Section [3.2, namely it has the
constraint to sum up to 1 for each floret distribution: p1o = 1 — p11, poo = 1 — po1
and p3s = 1 — par.

The penalized log-likelihood for the independence model M; with corresponding
Stratified Staged Tree in Figure [3.4D]is the following:
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lﬁ/ll(p | y,A) = log n! — log yn! — log yiz! — log y2-31! — log ya 3!
+ yu log pui + yi2 log pra + yo—31 log pa_s
+ Yoz log pa_3z2 — 2 A

The objective of this simple example is to determine if X; and X5 are dependent
or independent, which is reflected in identifying the preferable model among M,
and M;. This can be done through the log LR test as explained above, which in

this framework has the following theoretical formulation:

M M
LRT = —2 (zp Cplyaa) — o <p|m>)

= =2 <— log yo—31! — log ya_32! + log yo1! + log yao!
+ log ys1! + log ysa! + 231 10g pa_31 + ya_32 log pa_so

— Y21 log pa1 — w22 log paa — ys1 log ps1 — ys2 log p3o + )\> ~ X%-

In a practical example, the log-likelihood ratio test can be computed returning
a value. This is done by calculating the penalized log-likelihood function of the
models My and M, in the maximum likelihood estimation of the parameters vector
p: PMEE. This leads to the following formulation, in which by replacing all the
sample sizes stored in y returns a value (fixing also a A value) to be compared with
the theoretical value of a Chi-Square distribution with one degree of freedom, which

is, for instance at a significance level of 5%, 3.84.

LRT = —2 (zgﬁ (PMEP |y, \) — i (pMEE |y, A))

= -2 <— log y2—31! — log ya_32! + log yo1! + log yao! + log ys:!

+ log ys2! + y2_31 log Yasl + Yo_32 log Ya-s2
Y2-31 T Y232 Y231 T Y2-32
— Y1 log R Y22 log R y31 log R
Y21 T+ Y22 Y21 + Yoo Y31 + Y32

Y32 2
_y3210g+)\>’\’X-
Y31 + Y32 !

Hence, if LRT is less than 3.84 the dependence model M, is preferable with
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respect to the independence one, M, otherwise the latter is the best fitting model.

To conclude the example, the Chain Event Graphs associated to the Stratified
Staged Trees in Figure are reported in Figure

AR
.

Sapoun
1 ~__~ 00
(a) (b)

Figure 3.5: Corresponding Chain Event Graphs for Stratified Staged Trees in
Figure B.4 (a): positions for My: w; = {v1}, uo = {w}, us = {vs} and
Uy = {v4,...,v7}. (b): Positions for My: u; = {v1}, us = {vg,v3} and
U = {v4,... vr}.

3.4.2 Penalized Log-Likelihood Algorithm

From an algorithmic point of view, the algorithm inherent to a model search based
on penalized log-likelihood approach can be outlined along the lines of what was
done for Agglomerative Hierarchical Clustering in the Section Instead of us-
ing the likelihood ratio test, which is a test that returns simply a p-value of how
much one model is likely preferable over another, the algorithm introduced in this
thesis is based on a log-likelihood related quantity that can be updated on each its
step. In particular, this quantity indicates if two different stages q; and gy in the
Stratified Staged Tree 7; at a generic iteration ¢ can be merged together, obtaining
the new stage q;_o = q; U @2 in the proposed Stratified Staged Tree 7T, ;. This is
denoted with Difference between Penalized Log-Likelihood (DPLL) functions, it is a
function of trees 7; and 7T;,; and, using the notations already introduced previously,
its formulation is reported in Equation . Also with this approach, since the
Stratified Staged Tree T;,; is 1-nested in 7;, the corresponding stage structures q'
(7;) and g2 (T;41) are different only in one component, then the DPPL is composed
by a limited number of terms. Note also that DPLL corresponds to the quantity

between the round brackets in the log-likelihood ratio test.
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DPLL(T;, Ti) = I*'(p|y.0) — (| y.\)

2k k1o
gjg 0g Yis ]Z::l 08 Y1-2; (3.14)
ki— 2 k;
+ Z Y1-2; log p1oj — ZZ yij log pij + A kg
=1 i=1 =1

Proposition 5. Let T; and T;11 be two Stratified Staged Trees with stages structure
ql and q? respectively. Assume that T, is I-nested in T;. Then, the configuration
of the stages 2 in T;y1 is preferable with respect to q in T; if:

DPLL(T;, Tix1) > 0

0

2k ki—2 ki—2 2k
Z log y;;! — Z log 125! + Z Y125 log p1 o — Z Z yijlogpij > — Aki .
i=1 =1 = =1 i=1j=1

Furthermore, the difference between the not penalized likelihood of the Stratified
Staged Trees Tiv1 and T; (left-side of the previous inequality) is always less than
zero, since Tiv1 is 1-nested in T;, implying this that they have exactly the same stage
structure except the union of the stages q, and qo in 2.

Therefore, at the i-th step of the algorithm the pair of stages q1 and qo related

to the same variable is merged into qi1_s if and only if:

ki—2 k1—2 2k
— Ak < ZZ log yij! — > logyioj! + Y y1osjlogpig; — Y > yijlogpy; < 0.
i=1j5=1 7=1 7=1 =1 j5=1

At each step of the algorithm, among all possible unions of stages that satisfy

this inequality, the bigger one is chosen, i.e. the one that is closest to zero.

Finally, in Algorithm [2| a pseudo-code for the implementation of the algorithm
based on penalized log-likelihood is reported.

Other interesting estimation criteria based on a penalization version of the log-
likelihood are Akaike Information Criterion (AIC) and Bayesian Informa-
tion Criterion (BIC): their formulations are reported in Equation and
, respectively, where | M| is the number of estimated parameters in the model

M., n the number of observations in the collected sample and [ the maximum value
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Algorithm 2: Penalized Log-Likelihood Algorithm
Input: A complete dataset, an event tree 7 and a penalization
hyper-parameter \.
Output: The best scoring Stratified Staged Tree found.
1 Initialize an array q with the saturated stage structure of 7o = 7.
2 Initialize an array y with the conditional frequencies tables for each stage of
To (stages sample sizes).
3 Obtain the maximum likelihood estimate pMYE of the stage parameters
vector p (Equation (3.7))).
4 Initialize the score with the maximum penalized log-likelihood
17 (PMEE |y, A) according to pMMF, y and q associated to To.
5 stop + FALSE
6 while stop = FALSE do

7 for every pair of stages q; and q; with the same number k; = k; of
outgoing edges do
8 Calculate the difference between penalized log-likelihood

(Equation (3.14])) functions between the proposal model with the
stage structure that merges the stages ¢; and ¢; into the same stage
gi—j = ¢; U q; keeping all other stages invariant and the model with
the current stage structure q.

9 if there does not exist any pair g¢; and q; then
10 L stop < TRUE

11 Take the pair of stages ¢; and ¢} that provides the largest DPLL.
12 | if DPLL[gf,q;] > 0 then

13 score < score + DPLL[q}, qj]

14 Update q gathering ¢/ and ¢j into a single stage ¢;_;. Let k7_; be the
number of outgoing edges from that stage.

15 Update y gathering y; and y; into the new stage sample size
Yii; =y T ;.

16 Update the maximum likelihood estimate f)l*_y LE — ,37‘7* of
the unique component of stage parameters vector p tflzat ﬁa:s] tto be
updated.

17 else
18 L stop < TRUE

19 return score, q andy.

of the log-likelihood function for M. The lower AIC and BIC values, the better the

corresponding model M.

AIC = 2 |M| — 21 (3.15)
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BIC = |M|log (n)— 21 (3.16)

When fitting models, it is possible to increase the likelihood corresponding to the
model by adding parameters, but this may lead in the introduction of overfitting.
AIC, BIC and DPLL attempt to resolve this problem by introducing a penalty term
for the number of parameters estimated in the model. Note that the penalty term
is larger in BIC than in AIC, so in general the best fitting model according to one
of the two criteria is different from the best fitting according to the other one.

An ad-hoc algorithm can be implemented also for the minimization of AIC and
BIC index: it is enough to change the equation used in line 8 of the pseudo-code in

Algorithm [2| For this reason, this is not explicitly reported here.

3.5 Distance and Divergence Based Estimation

In this section an algorithm for estimating Stratified Staged Trees based on distance
or divergence between discrete probability distributions is introduced. In particular,
two situations located in the same stratum of the tree are merged together in the
same stage if their probability distributions are close enough: how to establish if
these distributions are close enough is detailed throughout this section.

Eight different distances/divergences are defined to compare conditional distri-
butions associated to situations related to the same random variable, i.e. in the
same stratum of the tree, in order to build the stage structure of the Stratified
Staged Tree. Furthermore, relations that exist among some of these distances and
their properties are discussed and the pseudo-code for the estimation of the Strat-
ified Staged Tree based on these distances/divergences is reported in Algorithm .
Throughout the section, a generic pair of discrete distributions over the same un-
derlying set of events is denoted with p(x) and ¢(z). The metrics implemented in

the R package stagedtrees are the following:

1. Euclidean Distance:

dip,q) = | > (pa) — q(fﬁ))Q- (3.17)

reX
2. Manhattan Distance, also known as tazicab geometry or ly norm:

di(p,q) =Y |p(x) — al@)]. (3.18)

TEX
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3. Kullback-Leibler Divergence, also known as Relative Entropy:

PE) S g 40)
Dir(p || q) %p logq@)— %p()lgp(x)- (3.19)

4. Bhattacharyya Distance:

Dp(p,q) = —In(BC(p,q)) = — ln(Z V() Q(x)>7 (3.20)

xreX

where BC(p,q) = X.e, \/P(x) q(x) is the Bhattacharyya coefficient and

measure the amount of overlap between two statistical samples or populations.

5. Rényi Divergence generalizes the Kullback—Leibler divergence.
For 0 < a < ooand a # 1, the Rényi Divergence of order o (or

a-divergence) of a distribution p from a distribution ¢ is:

Do(plla) = ail log > ](jgjzl (3.21)

TEX q

6. Hellinger Distance is closely related to the Bhattacharyya distance:

H(p.q) \/‘\/ ) (Vple) — Valo))’ (3.22)

7. Total Variation Distance is an example of a statistical distance metric and

it is sometimes called statistical distance or variational distance:

=5 Z p(z) — q(z)] (3.23)

reX

8. Chan-Darwiche Distance:

CD(p,q) = log R — logr = log max ar) _ log min —=, (3.24)

where R = max 4% and r = min 942
TEX p(z) TEX p(z)

The main relations among these distances are reported in Appendix.
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3.5.1 Distance and Divergence based Algorithm

From an algorithmic point of view, at each step of the algorithm, for a fixed stratum
of the Stratified Staged Tree, the idea is to select the pair of stages that provides
the smallest distance/divergence among the corresponding conditional probability
distributions of these two stages. If this difference is smaller than a fixed threshold
¢, then the two stages are merged together in the same stage and all the quantities
of interest as for instance the penalized log-likelihood and the stage structure are
updated. If for a stratum of the tree the smallest distance among probability dis-
tributions of stages is greater than ¢, the algorithm moves on the next variable, i.e.
stratum. When no union of stages for any stratum can be carried out, the algorithm
ends.

There is no guarantee that at each step of this algorithm the penalized log-
likelihood or some score based on it such as AIC or BIC is optimized. However,
intuitively also the penalized log-likelihood intends to merge together stages with
similar probability distributions (e.g. with a low distance), since from a penalized
log-likelihood point of view it is convenient to reduce the number of parameters
only in this setting. For this reason, in many of its steps also the distance based
algorithm will provide an improvement of the penalized log-likelihood.

In Algorithm [3| the pseudo-code of the distance or divergence based algorithm for
estimating the stage structure of a Stratified Staged Tree, where f(p}, pj) represents
any distance between a pair of probability distributions one wants to implement, for
instance one of the eight presented in this section. In Section an exaustive study

using also these distances is carried out through the stagedtrees package.

78



Algorithm 3: Distance or Divergence Based Algorithm

Input: A complete dataset, an event tree T, a penalization
hyper-parameter A and a threshold € to evaluate distances between
probability distributions of pairs of stages.

Output: The best scoring Stratified Staged Tree found.

Initialize an array q with the saturated stage structure of 7o = T.

Initialize an array y with the conditional frequencies tables for each stage of

To (stages sample sizes).

Obtain the maximum likelihood estimate PMLE of the stage parameters

vector p, as shown in Equation ((3.7)).

Initialize the score with the maximum penalized log-likelihood

17 (PMEE |y, A) according to pPMME, y and q associated to To.

5 stop « FALSE

10

11
12
13

14
15

16

17

18
19

20

while stop = FALSE do
for every pair of stages q; and q; with the same number k; = k; of
outgoing edges do

Calculate the Distance or Divergence between their probability

distributions using f (Equations from (3.17)) to (3.24)): f(p:,p;).

if there does not exist any pair g¢; and g; then

L stop < TRUE

Take the pair of stages ¢; and ¢} that provides the smallest value of f.

f flaf q5] = f(pj.pj) < €then

Calculate the difference between penalized log-likelihood
(Equation ([3.14))) functions between the proposal model with the
stage structure that merges the stages ¢; and ¢; into the same stage
gi—j = ¢; U q; keeping all other stages invariant and the model with
the current stage structure q.

score < score + DPLL|q;, qj]

Update q gathering ¢ and q]* into a single stage q;*_j. Let ki*_j be the
number of outgoing edges from that stage.

Update y gathering y; and y; into the new stage sample size
iy =Y Y5
Update the maximum likelihood estimate ﬁf_]jw LE — __Yimi  of
o1’ Uit
the unique component of stage parameters vector p that has to be

updated.

il

else
L stop <~ TRUE

return score, q and y.
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3.6 A Dynamic Programming Algorithm

Given a dataset and an order of its variables, an algorithm which returns the best
fitting Stratified Staged Tree is described in Collazo et al. [27]. Tt performs an ex-
haustive and dynamic search in a very large model space. Its idea is to decompose
the estimation of the global stage structure associated to the Staged Tree into many
local estimates, more exactly one for each stratum of the tree. It explores all pos-
sible configurations of stages structures associated to each variable and selects the
one that maximizes the optimization criterion, for instance the log-posterior Bayes
Factor or the penalized log-likelihood function. From a theoretical point of view,
this algorithm ensures that the global optimum according to a score-optimization
criterion is achieved. Unfortunately, in practice it is unusable as soon as the number
of the variables is greater than a very small number, such as 4. Indeed, the num-
ber of possible configurations has an highly exponential growth with respect to the

number of vertices.

Figure [3.6| shows all possible configurations with five situations. Below each
configuration the number of possible arrangements according to that type of config-
uration is reported. Considering only five situations, seven different configurations
of stages can be set: the simplest is the one where all situations are in the same stage
(independence), while when each situation is in a own stage characterizes the most
complex one (full-dependence). We also have five intermediate configurations that
can be obtained with a number of arrangements. For instance, the configuration
where 4 situations are in the same stage and one is in a own stage can be achieved
in five different ways, excluding each vertex one at a time from the stage composed

by the remaining four.

In general, for a fixed combination, the number of possible settings for the stage
structure is given by the partitions [92] of the number of vertices into at most a
number of stages equal to that number, i.e. the limit case with each vertex in a own
stage. The total number of partitions of n elements is the Bell number B,,, which
satisfies the recursive formula displayed in Equation . Bell numbers can be
calculated as in Equation (|3.26)), where {Z} is the Stirling partition number. The
first Bell numbers are the following: By = 1, By = 1, B, = 2, By =5, By =
15, Bs =52, Bg = 203, B; = 877, By = 4140, By = 21147, By = 115975. They

exhibit an exponential growth, indeed By is already on the order of trillions.

Byt = znj (Z) B, (3.25)

k=0
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Figure 3.6: Possible configurations with five situations.

B, = g:o {Z} - gjo ]i, Zf%(—l)i <k> (k— )" (3.26)

1

In Table the exact values obtained with a number of situations between one
and twelve are shown. From a computational point of view, with only twelve sit-
uations the calculation of the best stage structure is already very expensive, since
more than four millions of different stage structures have to be compared. Moreover,
adding a situation leads to an increase of about five times the cardinality of parti-
tions obtained with one less situation. This implies that with only twenty vertices
about six thousand of billions of stage structures have to be compared and this re-
sults clearly intractable. Note that, even just with few variables, the corresponding
Staged Tree has tens and tens of situations. In conclusion, this algorithm is really
appealing from a theoretical point of view, but it is unfortunately totally unusable
in application frameworks. For this, only score-optimizations based on local opti-
mum can be implemented, as for instance the hill-climbing model search adopted in

previous algorithms.

3.7 Order of Variables in Stratified Staged Trees

It is well known that the ordering of the variables in a Bayesian Network affects
the quality of the inference that can be done through it. Also for Stratified Staged

Trees, the order of the variables plays a crucial role for the model learning. This is
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# Situations # Configurations # Partitions

1 1 1

2 2 2

3 3 S

4 ) 15

) 7 02

6 11 203
7 15 877
8 22 4140
9 30 21147
10 42 115975
11 56 678570
12 7 4213597

Table 3.2: Cardinality of possible configurations with a given number of situations.

because contingency tables associated to nodes of the tree, from which conditional
probability distributions are estimated, are constructed according to the order in
which variables are placed in the strata of the tree. At the end of this section an
exhaustive simulation over two datasets is performed, estimating the stage structures
associated to Stratified Staged Trees based on each possible ordering of the variables.
This study shows that changing the order of the variables leads to quite different
performances of learning algorithms according to the accuracy of the predicted values
they provide. The outcome of interest, on which the accuracy is computed as the
proportion of corrected predictions for the whole dataset, is a Bernoulli variable for
both studies; details will be given in Section Accuracy was chosen since one
of the contexts in which it is very useful to select the order of the variables is that
of the prediction of a categorical variable.

In this section three different fundamentals of probability or information theory
are proposed to be used to infer a variables ordering. Let X, Y and Z be three
categorical random variables with sample spaces X', ) and Z, respectively. Then,

three criteria can be introduced as follows:

o Mutual Information between X and Y:

= x x = x 0 7]}(:10,3/)
I(X,Y) = Dgr(plz,y) | p(z) p(y)) = > > p(z,y)log @) o5 (3.27)

yeY zeX p

where Dy (p(z,y) || p(x) p(y)) is the Kullback-Leibler Divergence between

the joint distribution of X and Y and the product of the two marginal ones.
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o Conditional Mutual Information between X and Y given Z:

1GYIZ) = 5 5 5 ploagz) log LELAPE) g0

z€Z yeYy zeX p(x,z) p(y,z)

o Conditional Entropy of X given Y:

o ) Tog PEY)

remembering that the marginal entropy of X is H(X) = — Y ,cx p(z) log p(x).

These quantities have many properties, including some that make it possible to
express one of these fundamentals as a function of other. The ten main ones are
reported in the appendix.

Each variable ordering algorithm assumes that the variable associated to the
root of the tree is the response variable. This is suggested for a classification usage
of Stratified Staged Trees and for a clearer interpretation in a sense explained in
Carli et al. [2I]. The requirement of the variable of interest being the root of the
tree follows from the idea that one may want that it has no parents, in order to
maximize the information provided by the features. This is because, otherwise,
features not connected to the response variable, i.e. variables located in previous
strata with respect to the response one, would not provide any information for
classification. Details on this choice are also given in Section [6.6] where the usage
of the R package stagedtrees for a classification purpose is demonstrated.

Note that not for a classification purpose, once a Staged Tree has been fixed,
if the response variable is placed in internal strata, then the learning carried out
on its ancestors within the tree explains relationships about the response variable
(through Bayesian rules).

The pseudo-code of the algorithm based on the minimization of conditional en-
tropy is reported in Algorithm . Let X = (Xi,...,X,) be the random vector of
interest and X; be the response variable. The first step of Algorithm [ consists in
identifying the variable X; € X, i = 2,...,p, such that the entropy of its probability
distribution given the response variable X; is minimal. The choice of the minimum
guarantees that the most unbalanced probability distribution, and then the most in-
fluential variable according to the conditional entropy, is selected. At the i—th step
of the algorithm, the variable which provides the smallest entropy of its distribution
conditionally on the previous ¢ — 1 variables is chosen.

The general idea is that the minimization of the entropy of the probability distri-

bution of a variable conditionally on all the variables that precede it in the ordering
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is associated to the assignment of more importance to the distributions of those
variables that have not a uniform behavior. Indeed, the entropy is maximized in
the presence of maximum indecision (e.g. uniform distribution) and is minimized
where there is no indecision (indicator variable). For example, the outcome of the
toss of a fair coin represents the maximum uncertainty (maximum entropy), while
the outcome of the throw of a rigged die with all the faces equal corresponds to an

exact event (minimum entropy).

Algorithm 4: Variables Ordering according to Conditional Entropy
Input: A complete dataset.
Output: The best variable ordering for Stratified Staged Tree.
1 Initialize an array order with the name of the response variable. For ease
of exposure, let X; be the response variable.
Initialize an array names with the name of all variables in the dataset,
except Xj.
3 Initialize an array score with the entropy of the marginal probability
distribution of Xj;.
while names # () do
for every variable’s name nam € mames do
6 Calculate the conditional entropy H of the probability distribution
L of nam given order (Equation ([3.29))).

N

[S B

7 Take the variable’s name nam* which provides the smallest value of
conditional entropy H*.

Update order by adding nam*.

Update names by removing nam*.

10 score = score + H*.

11 return order and score.

The ordering of variables attained with mutual information or conditional mutual
information is based on the maximization of these quantities, since both measure
the information of the system. The idea of the algorithm based on conditional
mutual information is the same as for conditional entropy, with the exception of the
maximization of this quantity instead of its minimization, as just mentioned; the
pseudo-code in reported in Algorithm [5] At each step of the algorithm the mutual
information between the response variable and the proposed variable, conditionally
on variables placed in the ordering between these two, is computed.

At last, the pseudo-code of the mutual information based algorithm is displayed
in Algorithm [6]

These three algorithms do not find a global optimum according to some per-
formance criterion. This is because at each step of algorithms the best variable is

chosen accordingly, but we have no guarantee that the final result is the best over-
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Algorithm 5: Variables Ordering according to Conditional Mutual Infor-
mation
Input: A complete dataset.
Output: The best variable ordering for Stratified Staged Tree.
1 Initialize an array order with the name of the response variable. For ease
of exposure, let X; be the response variable.
2 Initialize an array names with the name of all variables in the dataset,
except Xj.
3 for every variable’s name nam € nmames do
4 Calculate the mutual information I of response variable X; and nam
L (Equation ([3.27))).
5 Take the variable’s name nam* which provides the greatest value I'* of
mutual information with the response variable.
Update order by adding nam*.
Update names by removing nam*.
Initialize score with the mutual information I*.
while names # () do
10 for every variable’s name nam € mames do
11 L Calculate the conditional mutual information I (Equation ) of
X; and nam given order (excluding X7).

© 0 N o

12 Take the variable’s name nam* which provides the largest value of
conditional mutual information I*.

13 Update order by adding nam®.

14 Update names by removing nam*.

15 score = score + [*.

16 return order and score.

all. Their usage is useful to produce a variables ordering that can be justified as it

optimizes, locally step by step, foundations of information or probability theory.

3.7.1 An Application: Staged Tree Classifiers

A brief empirical study is conducted to shown that classification accuracies of Staged
Tree Classifiers estimated according to the conditional mutual information algorithm
for ordering the variables are better than the average computed on those of all
possible ordering. Staged Tree Classifiers will be discussed in detail in Section [6.6]
showing that different orders of the variables lead to different classification. They
are Staged Trees seen as classification tool.

Two datasets with a small amount of features, namely puffin and monks3 (see
Table for details) are considered. In particular, using the whole dataset, we com-
pute the accuracy in classifying the response variable, located at the root of the tree,

according to all the possible variables ordering. The datasets are not divided in train
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Algorithm 6: Variables Ordering according to Mutual Information
Input: A complete dataset.
Output: The best variable ordering for Stratified Staged Tree.

1 Initialize an array order with the name of the response variable. For ease
of exposure, let X; be the response variable.

2 Initialize an array names with the name of all variables in the dataset,
except Xj.

3 Initialize score = 0.

4 for every variable’s name nam € mnames do

Calculate the mutual information I(X;, nam) of response variable X;

L and nam (Equation (3.27)).

6 Update order: order the variable’s name nam € names in decreasing
ordering according to the value of mutual information I(X;, nam) they
provide jointly with Xj.

7 score = > I(Xy, nam).
nam € names

8 Update names with the empty set .
9 return order and score.

and test set, since the purpose of this section is not to produce inference according
to the forecasted values but is only to show how the variables ordering algorithms
perform. The accuracy is computed as the proportion of corrected predictions for
the whole dataset.

Two learning algorithms are designed:

o ST_Naive, the Naive Staged Tree Classifier learnt with hierarchical clustering
of probability distributions in two different stages for each stratum of trees
(details in Chapter [6));

o ST_FBHC, the Staged Tree Classifier learnt with the fast backward hill-climbing
algorithm, maximizing the negative BIC score (see Section .

Figure shows the wviolin plots of the distributions of accuracies for monks3
and puffin, achieved with ST_Naive and ST_FBHC and using all possible orders of
variables; the accuracy obtained through the CMI variables ordering is indicated
with a cross symbol. The figure shows that, as expected, the order of the features
is highly relevant with respect to classification performance. For instance, both
learning algorithms exhibit a variety of accuracies (from 0.5 to 1) for the monks3
dataset.

It is therefore critical to couple any algorithm to learn a Staged Tree with an
appropriate method to select a good ordering of the variables. Here the use of the

conditional mutual information (CMI) criterion is adopted as a representative for
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Figure 3.7: Violin plots of distribution of accuracy for all possible orders of features.
Accuracies obtained with the CMI variables ordering are shown with a cross. Results
using two learning algorithms for datasets monks3 and puffin.

the three algorithms proposed in this section, since the other two methods provide
comparable results, showing accuracies better than average and similar to the one
obtained through CMI.

It can be observed that in both monks3 and puffin datasets, the CMI order
leads to a Staged Tree which performs better than the majority of all possible
orders. Remember that high accuracy values correspond to preferable models. In
particular, the fast backward hill-climbing algorithm provides almost the global

optimum according to the accuracy of its estimates for both the analyzed datasets.

3.8 Confidence Intervals for Stages Probability Dis-

tributions

In this section multiple confidence intervals for stages probabilities are considered.
The probability distribution associated to the i-th stage belongs to the Multinomial
family:

where y;, = Zfi:l y;; is the number of observations in the i-th stage and p, =
(i1, -+ Pik;), for i = 1,... k. Let y; = (vi1,...,Yir,) be the vector of observed

cell counts for the k; outgoing edges from stage ¢, for ¢ = 1,...,p. Assuming the
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sample size y; is fixed, the vector y; is an observation from a Multinomial distri-
bution with parameters p; = (p1,...,pir,). The vector p; = (P, ..., Dk, ), With

Dij = ‘Z—J, is the maximum likelihood estimation of p; and is unbiased. The variance
1

of the estimation p;; is pii1=Pis) o s usually estimated by w
1] )
Four different methods to compute confidence intervals are outlined in this work:

Goodman [51], Wald [123], Waldec [123] and Wilson [127].

For ease of exposure, we consider two-sided confidence intervals and we focus on
a single stage. Clearly the procedure can be generalized for all the stages and also

for one-sided intervals.

The Goodman confidence intervals meet the requirement that the corresponding
confidence statement about all the p;;, for j = 1,..., k;, will be correct with prob-
ability at least equal to 1 — «, with « the desired confidence level. The confidence
interval for each parameter p;; is computed as L < p;; < U, with L and U the

lower and upper bounds of that interval, respectively.

In Equations (3.30]) and (3.31]) the computations to obtain L and U according to

Goodman method are displayed, where B is the upper = percentile of a Chi Square

i

distribution with 1 degree of freedom: B = x} (1 —a+ ).

B—i—2yij—\/B (3+w>
2 (B+wy)

L= (3.30)

B+2yij+\/B (B trle vl

Yi
U p—
2 (B+y)

(3.31)

A Bonferroni correction is used in order to obtain simultaneously k; confidence
intervals for p; [2]. This is reflected in the selected percentile of the Chi Square

distribution for the value of B, which is more conservative (1) with respect to the

original one («). This implies that the probability that the confidence interval thus

o
k;

the probability is a (or less) that at least one of the k; confidence intervals will be

obtained will be incorrect for a single given parameter p;; is (&) and, therefore,

incorrect.

The endpoints L and U of the confidence interval according to the Wald method

are

21— a) piy(1—py
L:ﬁu—«“( @) by(l = by) (3.32)
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U:ﬁiﬁJX%G_O‘) Piy(1 = Pi) (3.33)
Yi

The Waldcc method is a continuity correction of the Wald confidence intervals

and lower and upper values can be implemented through Equations and

respectively. This correction expands the interval by i with respect to the one

obtained through Wald, which represents a significant alteration in the presence of

small sample sizes y;, while it is negligible as y; grows.

2(1 — Dii(1 — Dys 1
L =pi; — il =a) Pyl =py) _ (3.34)
Yi 2y
2(1 — Dii (1 — Dis 1
Yi 2y

At last, the Wilson method is similar to the Goodman method, with a modifi-
cation on B: B* = x3(1 — «).

B*+2y; — /B +4y; B (1— %)
I — iy ’ v (3.36)

B* + 2y + /B 4+ 4 yy; B (1 — %)
U — J \/ ! vi (3.37)

The main problems that can be encountered in estimating confidence intervals

on Stratified Staged Trees are the presence of very small sample sizes in some nodes
of the tree and the presence of highly unbalanced, almost degenerate, distributions.
The first problem can also be the cause of the second, especially in the strata of
the tree next to the leaves. Confidence intervals that have been estimated in one of
these two scenarios may be therefore biased. For details, see Glaz and Sison [50] and
Mostel et al. [91]. Clearly, a credible interval using a Bayesian approach through
the posterior distribution of parameters could be defined, which would also help to
overcome the above problems. But, since the thesis is mainly based on a frequentist
approach, these intervals are not explored here.

Consider a simple example with two variables, Class and Sex, on which a Strat-
ified Staged Tree has been estimated using a backward hill-climbing search starting
from the full dependence model. The resulting tree is depicted in Figure[3.8| showing

the partial conditional independence

Sex 1 Class |Class = {lst,2nd},
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which corresponds to merging the two nodes corresponding to the paths Class =

1st and Class = 2nd into the "black" stage for the Sex stratum.

Class Sex

Figure 3.8: Example of a Stratified Staged Tree based on 2 variables: Class and
Sex.

The estimated transition probabilities and the corresponding confidence intervals
obtained through the four methods described in this section are shown in Table |3.3]
In particular, the distribution associated to the root vertex is a Multinomial with 4
possible outcomes, while the distributions associated to stages for Sex are Binomial

distributions.

The confidence intervals obtained through the Goodman method have a greater
width because of the Bonferroni correction, which implies that the probability that
the true parameter lies within the interval, for each parameter of the Multinomial
distribution of a fixed stage, is 1 — a + ot This guarantees that the simultaneous k;

confidence intervals have 1 — a as coverage.
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Wald Waldce Goodman Wilson
Stage Event MLE 25% 975% 25% 9756% 25% 975% 25% 975 %

Class = 1st  0.1477 0.1328 0.1625 0.1326 0.1627 0.1298 0.1675 0.1335 0.1631
Class = 2nd  0.1295 0.1155 0.1435 0.1152 0.1437 0.1127 0.1484 0.1161 0.1442
Class = 3rd 0.3208 0.3013 0.3403 0.3010 0.3405 0.2964 0.3461 0.3016 0.3406
Class = Crew 0.4020 0.3816 0.4226 0.3814 0.4228 0.3763 0.4284 0.3818 0.4227

—_

Sex = Male 0.5885 0.5495 0.6276 0.5487 0.6284 0.5433 0.6323 0.5490 0.6269
Sex = Female 0.4115 0.3724 0.4505 0.3716 0.4513 0.3677 0.4567 0.3731 0.4510
Sex = Male 0.7224 0.6893 0.7554 0.6886 0.7561 0.6831 0.7585 0.6882 0.7541
Sex = Female 0.2776 0.2446 0.3107 0.2439 0.3114 0.2415 0.3169 0.2459 0.3118
Sex = Male 09740 0.9635 0.9845 0.9630 0.9851 0.9591 0.9836 0.9613 0.9826
Sex = Female 0.0260 0.0155 0.0365 0.0149 0.0370 0.0164 0.0409 0.0174 0.0387

WWRN R~ R —= ==

Table 3.3: Confidence intervals obtained with Wald, Waldce, Goodman and Wilson
methods for the estimated parameters of the Stratified Staged Tree in Figure .

3.9 Conclusion

The chapter provides the main definitions of Staged Trees and Chain Event Graphs.
In Section [3.3| the Agglomerative Hierarchical Clustering [40] is presented. It is the
first algorithm for learning a Staged Tree from data. Sections [3.4] and |3.5| show two
innovative estimation criteria for the learning of stages, which are based on penal-
ized log-likelihood and distance/divergence between pair of probability distributions
of stages, respectively. Section empirically demonstrates that the Dynamic Pro-
gramming algorithm, which is appealing from a theoretical point of view since it
searches the global optimum of a score function, can not be used in practical appli-
cations. Section suggests three algorithms to infer an order of variables for the
building of the Staged Tree structure. These algorithms are based on conditional
entropy and conditional mutual information. Finally, how to calculate confidence
intervals in the context of Staged Trees is presented in Section [3.8f Four methods are
developed, one (Goodman) resulting the most appropriate for transition probabili-
ties for stages with Multinomial distributions with more than two possible outcomes,
since it uses a Bonferroni correction. The other three methods proposed are Wald,

Waldce and Wilson, which nevertheless represent suitable alternatives to Goodman.
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Chapter 4

Asymmetry-labeled DAGs

This chapter follows Varando et al. [121] and explains in detail the relation existing
between Bayesian Networks and Staged Trees. Every BN can be represented as
a Staged Tree, as demonstrated by Smith and Anderson [I07] and by Duarte and
Solus [38]. In this chapter, first an algorithm for the Staged Tree representation of a
given BN is provided following Smith and Anderson [I07] and, second, the minimal
BN representation of a Staged Tree which embeds all its conditional independences
is introduced. It allows the introduction of a criterion to identify all conditional

independences implied by a Staged Tree model.

The presence or absence of edges in a BNs encodes either (conditionally) full de-
pendence or independence between two variables. The flexibility of the Staged Tree
enables to model and consequently identify intermediate relationships among vari-
ables, namely contezt-specific, partial or local [97]. Here, it is proposed to address
this problem by defining classes of dependences among variables and introducing
methods to identify the appropriate class from the Staged Tree. This leads to the
definition of a new class of DAGs, called asymmetry-labeled DAGs (ALDAGS),
which is a DAG whose edges are colored according to the type of relationship ex-
isting between the variables corresponding to the edge nodes. Learning algorithms
for ALDAGs, which use any structural learning algorithm for Staged Trees, are dis-
cussed below and applied to various datasets. Some definitions may be repeated

from previous sections for making the chapter more self-contained.
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4.1 Bayesian Networks and Conditional Indepen-

dence

Let X = (X1,...,X,) = (Xi)icp), with [p] = {1,...,p}, be a categorical random
vector with joint distribution probability P and sample space X = X, X;. For
A C [p], let be X4 = (X;)ica and 4 = (2;)ica, where 4 € Xy = X;c4X;. Then, a
directed acyclic graph (DAG) for X can be written as G = ([p], E), indicating with
V' = [p| the vertex set and E the edge set.

We say that the joint distribution P is Markov with respect to G if, for & € X

P(CU) = H P(xk, | a:pa(k)), (41)

ke[p]

where pa(k) is the parent set of k in G and P(xy, | Zpaw) is a shorthand for P(X; =
Tk | Xpa(k) = Tpagry)- The Markov condition implies conditional independences of
the form

Xi L Xijima) | Xpagi), (4.2)

which are equivalent to

P(z; | li—1\pa(i) Tpa(i)) = P(@i | Tpagi), (4.3)

for all € X. Henceforth, P is assumed to be strictly positive.

Definition 26. The Bayesian Network model (associated to G) is
Mg ={P € Ak _; | P is Markov to G},

where Afy,_, is the (|X[ —1)-dimensional open probability simplex.

It is customary to label the vertices of a BN to respect a topological order of
G (see Definition [12). In the sequel we assume that the vertices of the DAG are
ordered according to a given topological order.

To illustrate the methodology, throughout the section the Titanic dataset [33]
will be used, which provides information on the fate of the Titanic passengers and
available from the datasets package bundled in R. Titanic includes four categorical
variables: Class (C) has four levels whilst Gender (G), Survived (S) and Age (A)
are binary. The BN learned using the hill-climbing algorithm implemented in the R
package bnlearn is reported in Figure[4.1]and embeds only the following conditional
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Figure 4.1: Learned BN on the Titanic dataset.

independence statement:
Age I Gender | Class, Survived. (4.4)

There is only one topological order of the variables: C, G, S, A.

4.1.1 Non-Symmetric Conditional Independence

Three types of non-symmetric conditional independences can be considered, accord-
ing to Pensar et al. [97]. Let X4, Xp and X¢ be three disjoint subsets of (X;)ic[y-

Definition 27. (Context-specific Conditional Independence). We say that X 4 is
context-specific independent of Xpg given context xo € X¢ if

P(xa | xp,xc) = P(xa | xc) (4.5)

holds for all (x4, xp) € Xaup and write X4 1 Xp | xc.

The condition in Equation (4.5) reduces to standard conditional independence
in Equation (4.2)) if it holds for all ¢ € X¢.

Definition 28. (Partial Conditional Independence). We say that X 4 is partially

conditionally independent of Xpg in the domain Dg C Xp given context Xo = xc
if

P(xa | zp,xc) = P(xa | Tp,xc) (4.6)
holds for all (xa,xp), (xa,Zp) € X4 X D and write X, 1L Xp | Dp,xc.

Clearly, Equation (4.5) and Equation (4.6) coincide if D = Xp. Furthermore,
the sample space Xp must contain more than two elements for a non-trivial partial

conditional independence to hold.

Definition 29. (Local Conditional Independence). Fori € [p] and A C [p] such that

AnN{i} =0, local conditional independence expresses identifications of probabilities
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of the form
P(z; | xa) = P(x; | @) (4.7)

for all z; € X; and two x4, x4 € Xy4.

Notice that in terms of generality, Equation (4.5) < Equation (4.6)) < Equation
. Condition in Equation simply states that some conditional probability
distributions are identified, where no discernable patterns as in Equations and
can be detected.

Differently to any other Probabilistic Graphical Model, the class of Staged Trees

is capable of graphically represents and formally encodes any of the types of condi-

tional independences defined in Equations from (4.3)) to (4.7).

4.2 Notation

Let T = (V, E) be a directed, finite, rooted tree with vertex set V', root node vy
and edge set E. As introduced in Chapter [3] let © be a non-empty set of labels and
0 : E — © be a function such that for any non-leaf v € V' the labels in §(E(v)) are
all distinct. Then, the equivalence classes induced by 6(F(v)) form a partition g of
the internal vertices of the tree in stages. We also have that, for all v € V', § satisfies
O(v,xp)) = (k(v), z;) for some function s : V' — C, where C is a set of labels.

As an illustration, Figure depicts a small Staged Tree: the labeling 6 is given
by the colored text labels in the edges. The Staged Tree represents a possible model
for sequential testing and isolation policies for individuals in an infectious disease
scenario. In particular, an individual can get tested or not with some probability;
if tested, the result is positive or negative and this affects the probability of being
isolated or not. Similarly, if an individual is not tested at first, he/she could get
tested or not in a second time and again the result of the test influences if isolation
is applied. The staging of the Staged Tree in Figure [4.2]is given by the partition
q = (q1 = {vo, v1}, @2 = {v2, s}, @3 = {vs}, qu = {ve,v10}, @5 = {vs,v9}). The
associated model describes equalities between conditional distributions of events, for
example the fact that vy and vy are in the same stage indicates that the probability
of being tested is equal to the probability of being tested in a second time given that
in a first time the individual has not been tested. Similarly, the stages g, and gs
represent the fact that the probability of being isolated depends only on the results
of the test for an individual who has been tested.

The parameter space O associated to a Staged Tree T = (V| E) is defined as
in Equation , which defines a class of probability mass functions over the edges
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Figure 4.2: A small Staged Tree representing sequential testing and isolation policies
in an infectious disease scenario.

emanating from any non-leaf vertex.

Or = {a: € ROl | v e € Bagy € (0,1)and > w0 = 1} (4.8)
ecE(v)
Definition 30. The Staged Tree model Mt associated to the Staged Tree T with
labeling 0 is the image of the map

b7 Op = A% y;

¢T1$'—>pz=( H x@(e)) .
lelr

ecE(())

(4.9)

The definition of Staged Trees model in Definition [30]is based on the topology of
the underlying directed tree. Although not strictly required, it is customary for such
a tree to represent the sample space of a categorical random vector X and its labeling
to represent non-symmetric conditional independences over the components of X.
These Staged Trees are called X-compatible, as already mentioned. Henceforth, and
as common in practice, here the focus is on X-compatible Staged Trees, since they

naturally model distributions of categorical random vectors. From now on, denote
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with _; the vector & without its ¢-th entry.

Figure reports an example of an X-compatible Staged Tree model for the
Titanic dataset learned with the R package stagedtrees. The coloring given by the
function  is shown in the vertices and each edge (-, (x1,...,2;)) is labeled with x;.
The edge labeling 6 can be read from the graph combining the text label and the color
of the emanating vertex. For example, (v, vs) # 0(vy,v6) = 0(ve, vs) # 0(vs, v19) #
0(vs, v14). This representation of the labeling 6 over vertices is equivalent to that over
edges, whilst being more interpretable. There are 29 non-leaf vertices and the stage
structure is ¢ = (g1 = {vo}, g2 = {v1,v2}, @3 = {vs}, qu = {v4}, @5 = {vs,v10},
qs = {vs}, @7 = {vr, v}, gz = {vs,v12}, @0 = {vn1}, quo = {v14,v21,v22}, qu =
{v13, V15, V16, V17, V19, Vas, Vag, Var, Vas}, Q12 = {V1s}, Qi3 = {20, Va2 }, qua = {V23, Vas}).
Definition 31. Let T = (V, E) be a Staged Tree. The depth of a vertex v € V is
equal to the number of edges in A(v) and denote with Vi, the set of vertices in T with
depth k.

Using Definition [31] Stratified Staged Trees are Staged Trees where vertices in
the same stage have the same depth; see for instance the Staged Tree in Figure 4.3
that is equal colors at different depths can not correspond to same staging.

Conditional independence is formally modeled and represented in Staged Trees
via the labeling 6. As an illustration consider the Staged Tree in Figure for
the Titanic dataset. The fact that v; and vy are in the same stage represents the
partial independence Gender | Class | {1st,2nd}. Considering vertices at depth
two, g7 and gg again represents partial conditional independences. More interesting

is the stage g5, which implies
P(S = s | Female,3rd) = P(S = s | Male, 1st),

i.e. the probability of survival for females travelling in third class is the same as
that of male travelling in first class. Such a statement is a generic local conditional
independence. Considering the last level, it can be noticed a very non-symmetric
staging structure. For instance, the fact that the top four vertices wvos5, vog, v97 and

vgg belong to the same stage implies the context-specific independence
Age 1 Survived, Gender | Class = Crew.

The Staged Tree in Figure [4.3] embedding the above non-symmetric conditional
independences, gives a better representation of the data than the BN in Figure 4.1
Indeed, the BIC of the Staged Tree can be computed as 10440.39, whilst the one of
the BN is larger and equal to 10502.28.
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Figure 4.3: A Staged Tree compatible with (Class, Gender, Survived, Age), learned
over the Titanic dataset.
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4.2.1 Staged Trees and Bayesian Networks

Although the relationship between BNs and Staged Trees was already formalized by
Smith and Anderson [107], a formal procedure to represent a BN as a Staged Tree
has been only recently introduced in Duarte and Solus [38]. This is reviewed next.

Assume X is topologically ordered with respect to a DAG G and consider an
X-compatible Staged Tree with vertex set V', edge set E and labeling 6 defined via
the coloring k() = Tpaq) of the vertices. The Staged Tree Tg, with vertex set
V', edge set E and labeling # so constructed, is called the Staged Tree model of G.
Importantly, Mg = My, i.e. the two models are exactly the same, since they
entail exactly the same factorization of the joint probability. Clearly, 7 is stratified
and its staging represents the Markov conditions associated to the graph G.

As an illustration, Figure reports the tree 7 associated to the BN in Figure
[4.1] Since the variables Class, Gender and Survived are fully connected in the BN,
the associated Staged Tree representation is such that vertices with depth one and
two are in their own individual stages. The only symmetric conditional independence
embedded in the BN given in Equation is represented by joining pairs of
vertices with depth three in the same stage. Clearly, the structure of the Staged Tree
representing a BN in Figure [4.4] exhibits a lot more symmetry than the one in Figure
[4.3] whose staging can represent a wide array of non-symmetric independences.

Another contribution is the solution of the following inverse problem: given an X-
compatible Stratified Staged Tree 7 = (V, E') with labeling 6, find the corresponding
DAG G. The resulting DAG can not represent, in general, the same model as the
Staged Tree, since BNs can not represent non-symmetric conditional independences.
Nevertheless, in Varando et al. [I2I] the authors prove that a minimal DAG can be

retrieved, in a sense that is formalized next.

Lemma 1. Let T = (V, E) with labeling 0 and T' = (V, E) with labeling ' be two
Staged Trees with same tree (V, E). We have that My C My if and only if for each

e,f € E, 0(e)=0(f) = 0(e) =0(f).
Proof. The proof follows directly from the definition of M. m

Proposition 6. Let T = (V, E) with labeling 0 be an X-compatible Stratified Staged
Tree, with r : V' — C the vertex labeling that defines 6. Let G = ([p|, Fr) be the
DAG with vertex set [p] and whose edge set Fr includes the edge (k,i),k < i, if and
only if there exist xj_1),X'—1) € Xjj_1] such that x; = x; for all j # k and

K(X[i_l}) 7& K(X/[i_l]). (4.10)
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Figure 4.4: The Staged Tree representation of the BN in Figure 4.1|for the Titanic
dataset.

e (v}

Then Gr = ([p], Fr) is the minimal DAG such that My C Mg, in the sense
that for every DAG G = ([p], F') such that 1,...,p is a topological order, if My C
Mg then Fr C F.

In particular X4 L Xp | X¢ holds in My if and only if A and B are d-separated
by C' in G.

Proof. Let start by proving that M7 © Mg, We have that Mq, = My, and
let 6" be the labeling of T¢;.. Both 7 and 7¢, are X-compatible Staged Tree and
thus share the same vertex and edge set. Suppose that for xj_1),yu-1 € X_y,
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K(X[i—1]) 7# K(Yi—1]) - We define now a sequence of nodes xp;_1) = x?i_l], . ,Xfi__ll] =

Yii—1) in Xj_;; € V as following,

0o _ 0 e
’ y,  J<h

Define hy = min{h s.t. I{(Xﬁ_l]) # m(xﬁ:}])}. We have that k(x;_q) = ... =
m(xﬁo:l]l) + ﬂ(xﬁo_l]) and thus, by construction of G, (ho,i) € Fr that in turn
implies ' (xp—1), z;) # 0 (yp-1), ;) for all z; € X;. We thus have My C MTGT =
Mg, by Lemma [I]

Assume now G = ([p], F') is a DAG with 1,...,p as a topological ordering and
such that My C Mg, then My C My, and if v is the labeling of 7 we have that
v(e) = y(f) = 0(e) = 0(f) for each e, f € E by Lemma[l] Let (k,i) € Fr be an
edge of G, then by construction there exist x[i_l},x’[ifl] € Xy witha; = 2%, 5 #k
such that r(xj-1)) # k(x};_y)). Hence, v(x—1), (X-1) 1)) # Y(X}_qps (X1 @)
and it is easy to see that this implies (h,i) € F' by construction of 7g.

O

Corollary 1. In the setup of Praposition@ Mz, = M. -

A Staged Tree T is therefore a sub-model of the resulting G+ which embeds the
same set of symmetric conditional independences. The BN (G is minimal in the
sense that it includes the smallest number of edges among all possible BNs that
include M7 as a sub-model. The models M7 and M. are exactly equal if and
only if 7 embeds only symmetric conditional independences. As an illustration
consider the Staged Tree in Figure It can be shown using Proposition [f] that
the associated BN G is complete and, since G'7 is the saturated model, it must
be that My C Mg,. Conversely, if Proposition [0 is used to transform the Staged
Tree in Figure [£.4] into a BN, using Corollary [I] the resulting BN must be the one
in Figure [4.1]

Importantly, Proposition [] gives a novel criterion to read symmetric conditional
independence statements from a Staged Tree, by transforming it into a BN whose
structure represents the same equalities of the form in Equation . Conditional
independence statements in the Staged Tree can then be read from the associated
BN using the d-separation criterion (see Proposition [2| and [74]). For instance, the
Staged Tree in Figure does not embed any symmetric conditional independence,
since the associated BN is complete. In next sections how to identify non-symmetric

conditional independences in Staged Trees is discussed.
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4.3 Non-Symmetric Dependence and DAGs: AL-
DAGs

Proposition [6] identifies if there is a dependence between two random variables in a
X-compatible Staged Tree 7 and in such a case draws an edge in G. However, the
Staged Tree carries a lot more information about the type of relationship existing
between the two variables. In this section methods to label the edges of G+ are
introduced in such a way that the labeling provides some of the information stored

in the Staged Tree T about the underlying non-symmetric independences.

4.3.1 Classes of Statistical Dependence

First, it is needed to characterize the type of dependence existing between two

random variables that are joined by an edge in a DAG G.

Definition 32. Let P be the joint probability distribution of X taking values in X
and assume P is Markov with respect to a« DAG G = ([p|, E'). For each (j,i) € E
we say that the dependence of X; from X; is of class

« context, if X; and X; are context-specific independent given some context X¢
with C' = pa(i) \ {7}

« partial, if X; is partially conditionally independent of X; in a domain D; C X;
given a context xc with C' = pa(i)\{j}; and X; and X; are not context-specific

independent given the same context X¢.

« local, if none of the above hold and a local independence of the form P(x; | Xpa(s)) =

P(x; | Xpagi)) is valid where xj # ;.
o total, if none of the above hold.

Notice that if the class of dependence between X; and X is context or partial
then there may also be local independence statements as in Equation involving
these two variables. Similarly, the dependence between X; and X, can be both
context and partial with respect to two different contexts. On the other hand
if their class of dependence is local, by definition there are no context-specific or
partial equalities.

Proposition [6] paves the way to assess the class of dependence existing between
X; and X;. In particular, one has to check if there are equalities of the form in
Equation for all or some x}; € X;) and, if so, to which class they correspond.
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4.3.2 Asymmetry-Labeled DAGs

An edge in a BN represents, by construction, a total dependence between two ran-

dom variables. However, the flexibility of Staged Trees enables us to assess if such a

dependence is of any other of the classes introduced in Definition [32] This leads us

to define a new graphical representation, called asymmetry-labeled DAG (ALDAG),

whose edges are colored depending on the type of relationship among variables.
Formally, let G' be the DAG and F its edge set. Let

L4 = {‘context’, ‘partial’, ‘context /partial’, ‘local’, ‘total’}

be the set of edge labels marking the type of dependence.

Definition 33. An ALDAG is a pair (G,v) where G = ([p], E) is a DAG and 1)
is a function from the edge set of G to LA, ie. ¢ : E — LA We say that a
joint probability P is compatible with an ALDAG (G,v) if P is Markov to G and
additionally P respects all the edge labels given by 1; that is, for each (j,i) € E, X;
is (i, j) dependent from X;.

Henceforth, the labeling is represented via a coloring of the edges of the ALDAG.
Note that BNs have an ALDAG representation where all edges have label ’total’.
Standard features of BNs are also valid over ALDAGs: for instance, the already-
mentioned d-separation criterion as well as fast probability propagation algorithms
7.

General structural learning algorithms for ALDAGs can be easily defined using
the following routine: (i) learn a Staged Tree model T from data using for instance
any of the algorithms in stagedtrees; (ii) transform the learned Staged Tree T
into G as in Proposition @; (iii) assign a label to each edge of G7 by checking the
equalities in Equation (4.10)).

An ALDAG can also be seen as a refinement of a DAG by the addition of edge
labels indicating the class of dependence. Given a DAG G, the following steps
implement such a refinement: (i) transform G into the Staged Tree Tg; (ii) run a
backward structural learning algorithm, which can only join stages together, using
T as starting model (see for detail about computational implementation Chapter
and Carli et al. [20]); (iii) transform the resulting tree into G7,, and apply the edge-
labeling. The resulting ALDAG has an edge set which is either equal to or a subset
of the edge set of the original DAG. Furthermore, the edge set is now labeled and
denoting the class of dependence existing between any pair of random variables.

As an illustration of ALDAGsS, consider the Staged Tree for the Titanic data in
Figure [d.3] which, using Proposition [0} is transformed into the ALDAG in Figure [4.5
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Although the ALDAG does not carry all the information stored in the Staged Tree,
which is quite complex to read, it intuitively describes the class of dependence ex-
isting among the random variables. The blue edges denote that there is partial
dependence between Class and any other variable. The red edges denote that Age
has a context dependence with Gender and Survived. Notice importantly that in
the standard BN, which does not have the flexibility to embed non-symmetric inde-
pendences, the variables Age and Gender were considered conditionally independent.
Lastly, the green edge between Gender and Survived implies that there is only a
local dependence between these two variables. Such extended forms of dependence
better describe the fate of the Titanic passengers since, as already noticed, the BIC

of the associated Staged Tree is smaller than the one of the best scoring BN.

©

N

©

Figure 4.5: An ALDAG for the Titanic dataset constructed from the Staged Tree
in Figure . The edge coloring is: red - context; blue - partial; green - local.

4.4 Conversion Algorithms

The implemented algorithms work with X-compatible Stratified Staged Trees. Let
X be a random vector taking values in X = X;¢;X; and assume there are total
orders over each X;; then, Xj; has an induced lexicographic total order. The node
labeling (or coloring) x can be represented by a vector of vectors of symbols s =
(s',...,8"7Y), where s/ € Cu+1l is the vector of coloring (“(U))uex[j] and X[j4q) 18
the set of nodes of 7 with depth j. Since the tree is stratified, the vector s represents
the stages of the tree. Indeed, the original vector of stages ¢ = (qu,...,qx) can be
rewritten as a vector of vectors s, where each s?, for j = 1,...,p — 1, encloses all

the components of g related to stages with depth j from the root.

105



Algorithm [7] describes the pseudo-code for the conversion algorithm that takes
as input a DAG over [p] and outputs an X-compatible Stratified Staged Tree. Let
assume that 1,...,p is a topological ordering of the DAG nodes.

Algorithm 7: DAG to X-compatible Stratified Staged Tree
Input: A DAG G = ([p], F') such that 1,...,p is a topological order
according to G.

Output: The stage vector s = (s!,..., s?7!) encoding an X-compatible
Stratified Staged Tree T such that Ms = Mg.

1 fori=1top—1do

2 st =1]

3 for j=1to1do

4 if j € pa(i+ 1) then

5 | s'=[sxX;:s5€s]

6 else

7 | s'=[sx[l,...,1]:s €5

8 return s.

Theorem |3| shows two important characteristics of the Stratified Staged Tree
representation of a BN. It uses the notation |pa(i)| for the cardinality of the parent
set of X, pa(i)[j] for the j-th element of the parent set of X; and |pa(i)[j]| for the
dimension of the sample space of that element.

Theorem 3. Let G = ([p], E) be a DAG with vertex set [p| = {1,...,p} and edge
set E. Let X = (Xj)icp be a categorical random vector and O a topological order
of variables. Then, the number of stages in the Stratified Staged Tree To = (V, F)
built according to O and which embeds the same statistical model My, as the one

associated to G, Mg, can be calculated in a closed form:

p |pa(i

P )
# stages = Z 1{pa(i) = 0} + Z: 1:[ ‘pa(z’)[j]‘. (4.11)

=1

Also the number of degrees of freedom of My, can be computed:

P Ipa(9)]
#df = > UpaG) =0} (1% — 1) + > (K| = 1) I |pa()lj]]- (4.12)
i=1 =1 Jj=1
Algorithm [§]is an implementation of the conversion from a Stratified Staged Tree
to the corresponding DAG. It records also additionally information on the type of
dependence among variables that could be used to define the corresponding ALDAG.
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In the pseudo-code for Algorithm |8 the following notation will be used: vec(A)

is the column-wise vectorization of a matrix A and mat™"(a) is the column-wise

(m, n)-matrix-filling such that vec(mat(a)) = a and mat™"(vec(A)) = A. At last,

a is a vector of symbols of length mn and A is a matrix of symbols of dimensions

(m,n).

Algorithm 8: X-compatible Stratified Staged Tree to ALDAG

© 00 N & oA~ W N =
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24
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27
28

Input: An X-compatible Stratified Staged Tree T encoded with stage
vector s = (s!,...,sP71).
Output: A minimal DAG G = ([p], F) such that M7 C M and a
labeling of its edges 1 defining an ALDAG.

G=(V.E=0)
fori=1top—1do
a=s

# compute the number of distinct symbols in a
N = length(a) = Hje[i] ‘XJ‘

c={ay : k € [N]}|

for j=17to1do

m = |X|
n=N/m
A = mat™"(a)

cr = |[{Aur :u € [ml]}, k € [n]
re = {Auk  k € [n]}], u € [m)]
if max{cy : k € [n|]} > 1 then
# j is a parent of 1 + 1
E=FU{(j,i+1)}
a = vec(AY)
# check now the type of dependence
if min{c; : k € [n]} = m then
P = Siem HAug b € [}
d=|{Aur:u€[ml], ke [n]}
if r # d then

L (4,74 1) = local

f min{c; : k € [n]} =1 then

¥(j,7+ 1) = context

if 3k € [n] s.t. 2 < ¢, <m then
| #(j,i+ 1) = partial

=1

else
| ¢(j,i+ 1) = partial
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4.5 Applications

Two additional real-world applications are analyzed to further illustrate the capa-
bilities of Staged Trees and ALDAGs.

4.5.1 Cancer-Associated Muscle Wasting

First a subset of the dataset of Eisner et al. [41] including metabolomic information
of 77 individuals is studied: 47 of them suffering of cachexia, whilst the remaining
do not. Cachexia is a metabolic syndrome characterized by loss of muscle with or
without loss of fat mass. Although the study of Eisner et al. [41] included 71 different
metabolics which could possibly distinguish individuals who suffer of Cachexia from
those who do not, for the illustrative purposes the focus is on only six of them:
Adipate (A), Betaine (B), Fumarate (F), Glucose (GC), Glutamine (GM) and Valine
(V). These metabolics are measured in a continuous scale and have been recently
investigated in the context of Gaussian BNs [52]. The variables are discretized into
three levels using the equal frequency method (see e.g. Ropero et al. [100]). A BN
over these variables together with the binary variable Muscle Loss (ML) is learnt
using an hill-climbing algorithm and reported in Figure (left). The learned BN

is quite sparse: it only includes six edges and has 35 free parameters.

PO

?ﬁ&ﬁ

Figure 4.6: Learned BN (left) and ALDAG (right) for the muscle wasting applica-
tion. The edge coloring is: red - context; blue - partial; yellow - context/partial;
black - total.

The learned BN is then used as starting point of a hill-climbing structural search

over the space of Stratified Staged Trees. The final Staged Tree model, with a
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BIC score of 793.36, provides a big improvement compared to the starting BN
whose BIC is 963.97, without increasing the complexity since the number of free
parameters has not changed. The associated tree has 1458 leaves and therefore its
staging can not be visually investigated. On the other hand, the ALDAG gives a
concise summary of the underlying dependence structure and is reported in Figure
4.6 (right). First, one can notice that the resulting graph is complete and that there
are various types of dependence between random variables. Only the arc between
F and GC is total, meaning that it encodes the same dependence as in the BN. All
other edges are labeled with non-symmetric dependences. Therefore the presence of
an edge in the BN is too generic and does not flexibly represent local equalities in
the probability tables. Similarly, the absence of an edge is actually too restrictive
since the equalities associated to symmetric conditional independence do not hold
over the corresponding whole sample spaces. The latter suggests that the BN is not
a good representation of this data; the chosen BN is selected only because it is the

best of a poorly fitting collection.

4.5.2 Body Fat and Body Measurements

Next the body fat data first studied in Johnson [66] reporting percentage of Body Fat
(BF), Age (A), Weight (W), Height (H), and ten body-circumference measurements
for 252 men is analyzed. As in Lauritzen and Zwiernik [79], 11 individuals are
removed from the study for various problems associated to their observations. The
variables are again discretized into two levels using the equal frequency method.

A BN is learned over this data using hill-climbing and reported in Figure by
assuming all edges to represent total dependence. In this case a refinement of this
BN using a backward hill-climbing algorithm which can only join stages together
(as discussed in Section is considered. The resulting Staged Tree, with a
BIC score of 3419.11, better represents the data than the discrete BN which has
a BIC of 3468.32. The associated ALDAG is in Figure 4.7 The same pairs of
nodes are connected by edges, due to the algorithm chosen to learn the Staged Tree,
but a variety of dependence classes now exist. For some random variables the BN
represented the actual relationship between them since there are quite a few edges
of class "total" in the ALDAG. However, it can be also seen that there are multiple
edges of class "context" and "local". Notice that since the variables are binary there
can not be partial dependences.

One interesting conclusion that can be drawn from this network is that, condi-
tionally on the Abdomen (AB) measurement, Body Fat is independent of all other

measurements. One can be interested in assessing if this conclusion is due to the
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Figure 4.7: Learned BN (without considering coloring) and ALDAG (with coloring)
for the body fat application.

fact that structural learning of BNs is restricted to symmetric relationships. For
this reason, starting from the learned Staged Tree, an hill-climbing algorithm is run,
which can both join and split stages, only over the vertices associated to the vari-
able BF. The resulting Staged Tree has a better score, BIC = 3403.01, and, more
importantly, the associated ALDAG (not reported here) is such that the parents of
Body Fat are now Age, Weight and measurements of Abdomen, Thigh and Chest:
many of these variables were conditionally independent of Body Fat in the original
BN.

4.6 Conclusion

Staged Trees are a flexible class of models that can represent highly non-symmetric
relationships. This richness has the drawback that independences are often difficult
to assess and visualize intuitively through its graph. In this chapter, methods that
summarize both the symmetric and non-symmetric relationships learned from data
via structural learning by transforming the tree into a DAG are outlined. As a result,
a novel class of graphs which extend DAGs by labeling their edges is introduced.
The data applications showed the superior fit to data of such models as well as the
information they can provide in real domains.

The new DAG edge labeling is based on the identification of the class of de-
pendence. A different possibility would be to define a dependence numerical index

between any two variables which measures how different their relationship is from
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total dependence/independence. By learning a Staged Tree from data, one could
then label the edges of a BN with such indexes. The definition of such models is the
focus of current research.

This work further provides a first criterion to read any symmetric conditional
independence from a Staged Tree. Algorithms to assess if generic non-symmetric
conditional independence statements hold still need to be developed. Here an in-
termediate solution to this problem has been provided by characterizing if a non-
symmetric independence exists or not. The plan is to provide a conclusive solution
to non-symmetric independence queries in future work.

The chapter exhibits the relationship between Staged Trees and Bayesian Net-
works. In particular, the first two sections give a quick review of interesting results
from the state of the art on BNs, Staged Trees and symmetric conditional indepen-
dence. In Section non-symmetric independences are introduced: total, context-
specific, partial and local. These can not be represented through Bayesian Networks,
but they can in a succinctly way and in a unique graph with a Staged Tree. Fur-
thermore, a new class of DAGs, called Asymmetry-labeled DAGs (ALDAGs) [121],
is proposed: this is a minimal DAG such that the statistical model embedded in
the given Staged Tree is contained in the one associated to that DAG. Also two
conversion algorithms are presented with the pseudo-code: the first starts from a
BN and a topological order of variables and returns the corresponding Staged Tree
structure embedding the same statistical model; the second takes in input a Staged
Tree and returns the corresponding ALDAG. In the last part of the chapter two
small applications are carried out in order to show the strength and usefulness of
this innovative DAG.
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Chapter 5
The R Package stagedtrees

In this chapter the R package stagedtrees [120] is presented. The chapter fol-
lows [20] closely. stagedtrees is freely available from the Comprehensive R Archive
Network (CRAN) at https://CRAN. R-project.orq/package=stagedtrees and includes
several algorithms for learning the structure of Staged Trees and CEGs from data.
Score-based and clustering-based algorithms are implemented, as well as various
functionalities to provide inferential, visualization, descriptive and summary statis-
tics tools for such models and about their graph structure. There is another R
package called ceg [25] for the implementation of Staged Trees, which, however, in-
cludes a single learning algorithm (Agglomerative Hierarchical Clustering, [46]) and
few functionalities to produce graphs and/or inference starting from an estimated
model. The project of stagedtrees was born from the need to build new estimation
algorithms for Staged Trees and Chain Event Graphs capable of making applicable
in real contexts all the theoretical knowledge developed in the last decade regarding
these Graphical Models. The capabilities of stagedtrees are illustrated throughout
this chapter using mainly two datasets both included in the package, as done sim-
ilarly in Carli et al. [20] where this package is introduced. Currently, the package
works for X-compatible Staged Trees.

Section explains how to initialize a Staged Tree starting from a dataset and
how to build the corresponding CEG. In Section the implemented estimation
algorithms are listed, while Section presents the main functions for producing
graphs, outputs and summaries of the models estimated using the algorithms in
Section [5.2 More details are available in the R manual and the R help page of
stagedtrees. In Section a detailed example of the usage of the package is con-
ducted on the Titanic dataset [33]. In Section[5.5|a simulation study is carried out by
comparing the performance of different algorithms implemented in stagedtrees on

a number of datasets, in order to verify accuracy and robustness to hyper-parameters
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that has to be set a priori. Section carried on the study performed in Chapter 1

on the pediatric dentistry dataset using UGMs, with the usage of Staged Trees and
ALDAGS.

5.1 Initialize Staged Trees and Create CEGs

The main object class implemented in the R package stagedtrees is sevt, which
represents a Staged Tree model. Given a dataset, either in data.frame, table or
list format, a Staged Tree which is compatible with the variables in the dataset can
be constructed using the functions full or indep. The function full returns a sevt
object which defines in R a Staged Tree where each vertex is in a different stage. It
corresponds to the saturated statistical model, where the number of free parameters
equals the number of edges minus the number of non leaf vertices, equivalently the
number of leaves minus one. Conversely, indep returns a tree where all vertices in
the same stratum are in the same stage, corresponding to a model where all variables
are marginally independent of each other.

Worth-mentioning arguments of these two functions are:

e order, which fixes the order of the variables in the tree. It can be used also
to take a subset of the collected variables in the dataset (data) given in input:
if an order not considering all the variables in data is provided, then the

estimated Staged Tree will have strata related only to that subset; see e.g.

Section [5.4.4}

e join_unobserved which enables vertices of the tree where no observations are
observed according to given dataset to be collapsed (by default set to TRUE). If
this is TRUE, name_unobserved can be used to specified the name to assign to
these unobserved situations (by default "UNOBSERVED"); see e.g. Section [7.1}

e lambda, which implements a Laplace smoothing to address possible zero counts
in the case where join_unobserved is set to FALSE. If one wants to use a
Bayesian approach, it can be used also as a uniform prior distribution over the

tree, even if join_unobserved is TRUE.

Furthermore, a bn.fit object created with the bnlearn package could be turned
into a sevt object modelling the same conditional independences with as_sevt. A
Staged Tree can be converted into a CEG model using the ceg function. The
usual print, summary and plot functions provide basic information, more detailed

information and the graphical representation of the model, respectively.
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5.2 Structure Learning Algorithms

stagedtrees implements a variety of structure learning algorithms. These can be

grouped into three macro-categories:

o score-based algorithms using various heuristics to maximize a score function.
The default value of score is the negative BIC, but any other can be defined

by the user. Four different score optimizers are developed in the package:

— an hill-climbing score optimization stages_hc which, for each stratum,
at each iteration, searches for the stage that has to move either to a
different or a new stage maximizing a score, until no score improvement
is found. The theoretical formulations are shown in detail in Section [3.4]
where the function that has to be optimize at line 11 of Algorithm [2] is
by default the BIC index;

— a backward hill-climbing stages_bhc which searches the joining of two

stages maximizing a score until no score improvement is found;

— a fast backward hill-climbing stages_fbch which joins two stages when-
ever the joining improves the score, until no improvement is possible or

the maximum number of iterations max_iter is reached;

— a random backward hill-climbing stages_bhcr which at each iteration
randomly selects a stratum and two stages and joins the stages if the score
is increased. The procedure is repeated until the number of iterations

reaches max_iter.

« Distance-based algorithm using different distances or divergences for compar-

ing discrete probability distributions of stages:

— backward joining of stages stages_bj which iteratively joins stages if the
distance between their floret probabilities is less then a given threshold
value thr. The distance can be chosen with the distance argument: the
default is the symmetrized Kullback-Leibler divergence "kullback", but
also the other seven described in details in Section are implemented,
i.e. Manhattan ("manhattan"), Euclidean ("euclidean"), Renyi Diver-
gence ("reny"), Total Variation ("totvar"), Hellinger ("hellinger"),
Bhattacharyya ("bhatt") and the Chan-Darwiche ("chandarw"). Note
that the higher thr, the more vertices will be agglomerated in the same
stage using any distance or divergence, converging asymptotically to the

independence model.
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o Clustering-based algorithms, where stages are identified according to the clus-

terization of the discrete probability distributions of florets:

— hierarchical clustering of stages stages_hclust which estimates a user-
defined number k of stages in each stratum. The function inherits all
arguments of the standard hclust function from the stats package. For
instance, the distance used for the clustering can be choosen from the
ones implemented in dist of stats, with the addition of "totvar" and

"hellinger";

— clustering of stages using the kmeans algorithm stages_kmeans, creating
a user-defined number k of stages in each stratum. The function inherits

all arguments of the standard kmeans function from the stats package.

The starting model of any structure learning algorithm has to be a Staged Tree
which, for instance, may be constructed directly from a dataset using full or indep.
The function stages_hc embeds both split and join of stages, that is a combina-
tion of forward and backward procedure as done similarly in stepwise regression
with an approach based on bidirectional elimination [59]. All other score, distance
and clustering based algorithms have implemented only a joining step of previously
defined stages, i.e. a backward approach. For this reason, it is appropriate that
the independence model indep is used as starting model only for the algorithm
stages_hc. Indeed, any other structure learning algorithm executed starting from
the independence model will end after zero iterations, since no joining step can be
performed. Instead, the stage structure related to the dependence model full can
be used as starting point for any algorithm developed in the package, including
stages_hc. Intuitively, stages_hc is the slowest algorithm due to its more detailed
model search. The computational costs of each algorithm in stagedtrees will be
discussed in Section [7.2]

Different structure learning algorithms can be easily combined since the starting
model for any algorithm could be also an already estimated model with another
structure learning algorithm. Furthermore, model search can be performed only
over a subset of strata specified by the argument scope; stages in other strata will
not be touched. With the option ignore one can specifies a vector of stages that
will be ignored and left untouched by the model search; by default it is the set of the
unobserved stages stored in name _unobserved, if it exists. This can be useful both
to left untouched some probability distributions that one knows a priori that does
not want to merge together with others and to reduce the computational burden.

The option trace is used to print via message amount of info about the composition
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of stages during the iterations of the algorithm.

Even if not properly a structure learning algorithm, it is important to re-emphasize
the usefulness of isolating in separate stages those situations in which no observa-
tion arrives starting from the root of the Staged Tree. They are the analogue of
empty cells (zero counts) in contingency tables. As mentioned above, this can be
done with the option join_unobserved of functions full and indep. Moreover,
an ad-hoc function join_unobserved for doing this is implemented in the pack-
age. Indeed, not-observed situations do not contribute to the log-likelihood of the
model and thus algorithms based on penalized log-likelihood scores, as AIC and
BIC indices, will always join unobserved situations with other stages in a randomly
manner. This is a coherent behaviour from a score-optimization point of view, which
implies a reduction of the number of parameters but, nevertheless, the user would
probably prefer to isolate unobserved situations for interpretation’s sake.

All above algorithms work with a fixed ordering of the variables, which can be
set with the argument order. For learning a Staged Tree from data with an optimal
variable ordering, the function order_dynamic can used, which implements the
dynamic programming ordering algorithm of Silander and Leong [105] and Cowell
et al. [28]. The search of the optimal order can be coupled with any of the model

search algorithms mentioned above which can be set with the argument alg.

5.3 Main Functions for Inference on Staged Trees

stagedtrees provides an array of functions to explore and perform inference over a

learned model, among which the main ones are the following:

» stndnaming renames stages in a standard manner. It assigns them increasing
numbers from 1 to the number of different stages, for each stratum in the tree.
Its main usage is for greater visual clarity for print, plot and summary of the

estimated model;

o subtree enables for the construction of a subtree having as root any vertex of
the tree. This can be achieved specifying the path starting from the root and

ending at that vertex;

o summary returns for each stratum of the tree all the estimated stages, the
number of paths and observations starting from the root that arrives to each

stage and their corresponding probability distributions;

e compare_stages compares the stage structure of two X-compatible Staged

Trees with the same order of variables, given in input as object1 and object2.
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It returns also a plot where nodes in different stages are colored in red if plot
is set to TRUE. Three methods (method) are available:

— "naive" first applies stndnaming to both objects and then simply com-

pares the resulting stage names;

— "hamming" uses the hamming_ stages function that finds a minimal subset

of nodes which stages must be changed to obtain equal stage structures;

— "stages" uses the diff_stages function that checks whether exactly the

same stage structure is present in both models.

Intuitively, the second method finds less differences between stage structures,
while the third being more restrictive leads to the identification of many diver-
sities. Setting the option return_tree to TRUE will return the stages differ-
ences obtained according to the selected method as a list of numerical vectors
with same lengths and structure as the list stages in objectl and object2,
where values are 1 if the corresponding vertex has different (with respect to
method) associated stage, and 0 otherwise. For more details see the R help

page of compare_stages;

sample_from generates nsim observations according to the probability distri-
butions encoded in the Staged Tree given in input via object. This can be
used to perform simulation studies over a learned model, exploiting also the

option seed for replicable analysis;

get_stage retrieves the stage associated to a given path from the root. To be

used in combination with summary and/or plot for a more helpful use;

get_path gives all the paths that starting from the root arrive to a given

stage for a given stratum (var);

prob computes the probability (or its logarithm if log = TRUE) of any event
of interest (x) according to the probability distributions encoded in the Staged
Tree given in input through object. It can be used to derive all atomic
probabilities; see theory in Section

confint provides confidence intervals for Staged Tree parameters. By default,
it computes the confidence intervals for the probability parameters for all the
stages in the Staged Tree given in input; intervals can be computed only for
a single variable by specifying it in parm. Five methods are available: wald,

waldcc, wilson, goodman and quesenberry-hurst;
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e LR_test performs a likelihood ratio test to assess if two nested Staged Trees

are significantly different from each other.

o plot is a dependencies-free plotting function for Staged Trees and Chain Event
Graphs; users can specify stage-coloring, node and edge size and labels ap-
pearance for the graphical representation of the model given in input as x.
An useful argument of the function especially in contexts with many variables
is 1imit, which permits to specify the number of stratum to be plotted; by
default 10. The user can also choose if some situations have not to be plotted
by setting ignore to the name of those stages that must not be displayed

(default ignore = x$name_unobserved);

e barplot generates barplots to visualize the floret probabilities for each stage
of a specified variable (var). Many functionalities of the original barplot

function of graphics package are inherited;

» predict forecasts the most probable level for the class variable (class), ac-
cording to an estimated Staged Tree (object), given all the other variables
in the model. If specified prob = TRUE, it returns the probabilities related to

each class levels for each observation in newdata.

5.4 Usage of stagedtrees

The well-known Titanic dataset [33], which provides information on the fate of the
Titanic passengers and available from the datasets package bundled in R, is used
to exemplify the usage of stagedtrees. stagedtrees and its dependencies (the R

packages graphics and stats) are available from CRAN; as is the package bnlearn.

5.4.1 Learning the Stage Structure from a Dataset

The Titanic dataset can be loaded into a table of the same name with the call to

data.

R> data (' Titanic")
R> str(Titanic)

"table’ num [1:4, 1:2, 1:2, 1:2] 00 35 0 0 0 17 0 118 154

— attr (x, "dimnames')=List of 4
..$ Class : chr [1:4] "lst" "2nd" "3rd" "Crew'
.. % Sex : chr [1:2] "Male" '"Female'
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.. % Age : chr [1:2] "Child" "Adult'
..$ Survived: chr [1:2] "No" "Yes'

Titanic includes four categorical variables: Sex, Age and Survived are binary
and Class has four levels. Initial Staged Trees where all vertices within a stratum
are either in the same or in different stages can be constructed using the indep
and full functions, respectively. For both models, for each stratum of the tree,
situations where no observations are observed in Titanic are isolated in an own

stage called "na".

R> library (stagedtrees)

R> m. full <— full(Titanic, name_unobserved = "na')

R> m.indep <— indep(Titanic, name unobserved =
R> m. full

na!l)

Staged event tree (fitted)
Class [4] — Sex[2] — Age[2] —> Survived [2]
"log Lik.’ —5151.517 (df=30)

R> m.indep

Staged event tree (fitted)
Class [4] — Sex[2] — Age[2] — Survived [2]
'log Lik.’ —5773.349 (df=T7)

The printing of m.full and m.indep gives information about the order of the
variables in the tree, the value of the log-likelihood function and the number of
free parameters, whilst plot displays the Stratified Staged Tree with stages colored
within each stratum as shown in Figure The plot of m. full is depicted using the
Dynamic palette from the colorspace package [129], since the default palette has
only 8 colors and thus stages for the last variable would be impossible to graphically

distinguish.

R> library (colorspace)
R> plot (m. full ; col = function(s) qualitative hcl(length(s),
"Dynamic"))

R> plot (m.indep)

Notice that there are no crew members, either male or female, who are children
and this is correctly reflected in the trees in Figure since the subtree associated

to such events are collapsed (by default the argument join_unobserved is set to
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Figure 5.1: Left: Staged Tree m.full where all vertices in the same stratum are
in a different stage, except for unobserved situations: there are 28 different stages
considering also the "na" stage in the stratum related to Survived. Colors in
different strata can be equal. Right: Staged Tree m.indep where all vertices in the
same stratum are in the same stage: there are 5 different stages. The labels at the
bottom denote the variable associated to a stratum.

TRUE). The name of these collapsed vertices was set to "na" with the argument
name unobserved as seen before.

Using the Staged Tree m.full or m.indep as starting point, structural learning
algorithms can be used to infer the staging structure from the data. The hill-climbing
algorithm implemented in stages_hc can receive in input both m.full and m. indep,
whilst backward score-based (stages_bhc, stages_fbhc and stages_bhcr), distance-
based (stages_bj) and clustering algorithms (stages_hclust and stages_kmeans)
start from them.full tree. For illustration purposes, the stages_hc function is used

with the m.indep tree, whilst stages_bj is used with m.full.

R> modl <— stages_hc(m.indep)
R> mod2 <— stages_ bj(m. full , thr = 0.1)

The stages_hc function has the negative BIC as a default score to be maximize,
while the default distance for stages_bj is the symmetrized Kullback-Leibler diver-
gence, with threshold 0.1 in this example. The learned mod1 and mod2 are plotted
in Figure 5.2l Both Staged Trees suggest that the variables are dependent in a
non-symmetric fashion and thus suggest context-specific independences. The stage

structures of the two trees are quite different and may be affected by the choice of
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Figure 5.2: Staged Trees mod1 (left) and mod2 (right) learned using the stages_hc
and the stages_bj algorithms, respectively.

threshold in mod2. However, they also share some common features: for instance,
both state that the distribution of Male/Female is the same for passengers in the
first and second class.

Since all structural learning algorithms take as input a Staged Tree, it is possible
to refine a learned model: for instance the model mod2 learned using a backward

algorithm may be refined using a standard hill-climbing algorithm.

R> mod3 <— stndnaming(stages_hc(mod2))

R> plot (mod3, ignore = NULL, cex_ label nodes = 1.5,

cex_nodes = 0, font = 2)

The resulting Staged Tree is reported in Figure[5.3] For illustrative purpose, the
full tree (by setting ignore = NULL) and the numbering of the stages after renaming
them with the function stndnaming are reported. The two Staged Tree structures in
modl and mod3 are compared through the compare_stages function, whose output
highlights in red the nodes in different stages. Different methods can be used to
compare two Staged Tree structures, here the "stages" method is used: it checks

if the same exact stages are present in both models.

R> compare_stages(modl, mod3, method = "stages", plot = TRUE)

[1] FALSE

122



—pot — Y
o A 2e e

—— e e —)%
—Ra—¥6s d
—pidl ¥ A0 o
SH v:s; A e H1e —XES
—ApY Vo & e —A! o
o —XesS d ——¥esS
¥o
A—XeS ——¥es
—— it o S . o—4¢
— ‘? 1, — S
— () NS R e ) o
el ——esS el ——XeS
\
—a\\7 Vo —A o
g —XesS A\ e ——XeS
—Agit ¥ “e ——Ad o
Lye —&S e —¥eS
Class Sex Age Survived Class Sex Age Survived

Figure 5.3: Staged Event Tree mod3 (left) and output of the compare_stages func-
tion between models mod1 and mod3 (right). Vertices depicted by a red dot in the
right plot correspond to vertices for which the staging structure differs.

Figure [5.3| shows that the two models have the same stage structure over the Sex
and Survived variables, but they completely differ over Age.
The model selection criteria AIC and BIC can be used to choose the best fitting

model.

R> cbind (AIC(modl, mod2, mod3),
BIC = BIC(modl, mod2, mod3)$BIC)

df AIC BIC
modl 15 10364.49 10449.94
mod2 15 10390.37 10475.82
mod3 15 10365.02 10450.47

According to both criteria, mod1 is the best fitting model among those tried. It
is not surprising that mod2 obtains the worst BIC scores since it was estimated with
the stages_bj function that joins stages following a distance based heuristic and

thus not the minimization of the BIC score.

5.4.2 Bayesian Networks as Staged Trees

stagedtrees has the capability of translating a BN learned with the bnlearn pack-
age into a Staged Tree. To use bnlearn the dataset Titanic needs to be converted

into a data frame.
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R> titanic.df <— as.data.frame(Titanic)
R> titanic.df <— titanic.df[rep(row.names(titanic.df),
titanic.df$Freq), 1:4]

The hc function of bnlearn can be used to learn the graph of the BN reported
in Figure [5.4] left.

R> library (bnlearn)
R> mod.bn <— bnlearn::hc(titanic.df)
R> plot (mod.bn)

bn.fit returns an object of class bn.fit which can be turned into an object of
class sevt using the as_sevt function. sevt_fit is used to compute also the stage
probability distributions. Below the R code.

R> mod.bn <— bn. fit (mod.bn, titanic.df)
R> bn.tree <— sevt_fit(as_sevt(mod.bn),
data = titanic.df, lambda = 0)

R> plot (bn.tree)

ﬁ

Class Sex Survived Age

Figure 5.4: Left: BN model learned using the hc function of bnlearn. Right:
associated Staged Event Tree.

The learned BN embeds only one conditional independence statement: Age and
Sex are conditionally independent given Class and Survived. This is represented
in Figure right by the highly symmetric staging structure over the variable Age.

Notice that this tree, since it is representing the associated BN, does not collapses
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subtrees where there are no associated observations in the dataset. However, this can
be achieved by using the function join_unobserved. It is also worth noticing that
the order of the variables chosen by bnlearn to build the corresponding Stratified
Staged Tree is different to the one used for mod1, mod2 and mod3. Therefore, it is
not possible to use compare_stages to compare bn.tree with mod1, mod2 or mod3.

The Staged Tree corresponding to the associated learned BN could be used as the
starting point of any structure learning algorithms (see also Barclay et al. [4]). As
an illustration, the stages_hclust function is used specifying that in each stratum

there should be 2 stages.

R> mod4 <— stages_hclust(bn.tree, k = 2)
R> plot (mod4, col = function(x) c("red3", "blued"))

The Staged Tree mod4, which is displayed in Figure left, is coalesced into the
more compact CEG representation shown in Figure [5.5|right. This can be achieved
by the ceg function which takes as input mod4 and the plot method for ceg objects,

which requires the recommended igraph package [29].

R> library (igraph)
R> plot(ceg(mod4), col = function(x) c("red3", "blued"))

For mod4, vertices in the last stratum are coalesced into two positions, whilst
vertices in the penultimate stratum are coalesced into four positions, thus reducing
the overall number of vertices of the underlying graphical representation. We refer

to the Conclusions for a discussion of the CEG plotting capabilities.

5.4.3 Querying the Model

Having chosen a model, the focus is on using it to perform inference and under-
standing the relationship among the problem variables. Here mod1 is chosen since
it was the best scoring model according to AIC and BIC.

The dataset in this simple example only includes four variables and its Staged
Tree can be easily investigated by eye. For more complex applications the function
subtree is useful as it enables the construction of a subtree having as root any
vertex of the tree. The subtree can be achieved specifying the path starting from
the root and ending at that vertex. For instance, it is possible to construct the

subtree for the crew members of the Titanic.

R> subtree.crew <— subtree(modl, c(Class = "Crew"))

R> subtree.crew
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Figure 5.5: Staged Event Tree mod4 (left) and its corresponding CEG representation
(right).

Staged event tree (fitted)
Sex [2] — Age[2] —> Survived [2]

R> plot (subtree.crew)

Sex Age Survived

Figure 5.6: Subtree of the Staged Tree mod1 representing Sex, Age and Survived of
Crew passengers only.

subtree.crew is still formally a Staged Tree over three variables. It is displayed
in Figure [5.6| and clearly its stage structure coincides with the one in the upper half

of mod1 reported on the left of Figure The colors of the stages are different
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in the two plots since two different colors palettes have been used, but the stage

structure is the same.

A detailed model summary of mod1l can be obtained by the summary function.

For ease of exposition the stages are also renamed with stndnaming.

R> modl <— stndnaming(modl)

R> summary (mod1)

Survived

size
2201

size
610
706
885

size
359
1030
812

stage npaths sample.size

Call:
stages__hc(m.indep)
lambda: 0
Stages:
Variable:
stage npaths sample.
1 0
Variable:
stage npaths sample.
1 2
2 1
3 1
Variable:
stage npaths sample.
1 2
2 3
3 3
Variable:
1 5
2 3
3 2
4 2
5 2
na 2

174
371
630
116
910

0

1st

1476602

Male

0.5885246
0.7223796
0.9740113

Child

2nd
0.1294866

Female
0.4114754
0.2776204
0.0259887

3rd
0.3207633 0.40209

Crew

Adult

0.0445682451 0.9554318
0.0009708738 0.9990291
0.1133004926 0.8866995

o O O o O

No

.02298851
60377358
.85873016
.13793103
17472527

NA

Yes
0.9770115
0.3962264
0.1412698
0.8620690
0.2252747

NA

The output of summary together with the function get_stage allow to determine
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the estimated survival probabilities of the passengers of the Titanic. Stage 1 for
Survived has the highest survival probability and it includes children from the first

two classes and adult women from the first class, as shown by the following code.

R> get_path(modl, var = "Survived', stage = "1")

Class Sex Age
1st Male Child
1st Female Child
1st Female Adult
2nd Male Child
2nd Female Child

N Ut = W =

Stage 3 has the lowest survival probability and includes adult males of second
and third class. These considerations about stage 1 and 3 are in agreement also

with what is displayed in Figure [5.7]

R> get_path(modl, var = "Survived', stage = "3")

Class Sex  Age
6 2nd Male Adult
10 3rd Male Adult

The package stagedtrees also includes the function get_stage to get the stage

associated to a given path.

R> get_ stage(modl, path = c¢("Crew", "Female"))

1] 2

The function prob allows for the computation of the probability of any event of

interest.

R> prob(modl, c(Survived = "Yes"))
[1] 0.3236376

R> prob(modl, c(Survived = "Yes"),
conditional on = c(Age = "Adult"))

[1] 0.3165252
R> prob(modl, c(Survived = "Yes"),

conditional _on = c¢(Age = "Child"))
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[1] 0.4584954

For instance, the probability of survival of any passenger is 0.3236, but this
decreases to 0.3165 or increases to 0.4585 given that the passenger was an adult or
a child, respectively. Similarly the conditional probability of survival of a male child

traveling in first class can be computed.

R> cond <— c(Age = "Child", Class = "lst", Sex = "Male")

R> prob(modl, c(Survived = "Yes"), conditional on = cond)

[1] 0.9770115

Notice that this exactly the same probability shown with the summary function
for vertices in stage 1 of the variable Survived. This probability is also estimated to
be the same for the conditioning events shown above with the get_path function.

All atomic probabilities related to the leaves of the Staged Tree can be also

obtained as follows:

R> obs <— expand.grid (modl1S$tree[4:1])[, 4:1]
R> cbind (obs, p = round(prob(modl, obs), 6))

Class Sex Age Survived p
1 1st Male Child No 0.000089
2 1st Male Child Yes 0.003784
3 1st Male Adult No 0.050130
4 1st Male Adult Yes 0.032898
5 1st Female Child No 0.000001
6 1st Female Child Yes 0.000058
7 1st Female Adult No 0.001395
8 1st Female Adult Yes 0.059304
9 2nd Male Child No 0.000078
10 2nd Male Child Yes 0.003318
11 2nd Male Adult No 0.062524
12 2nd Male Adult Yes 0.010286
13 2nd Female Child No 0.000139
14 2nd Female Child Yes 0.005898
15 2nd Female Adult No 0.006516
16 2nd Female Adult Yes 0.040727
17 3rd Male Child No 0.020339
18 3rd Male Child Yes 0.005914
19 3rd Male Adult No 0.176434
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20 3rd Male Adult Yes 0.029025
21 3rd Female Child No 0.006092
22 3rd Female Child Yes 0.003998
23 3rd Female Adult No 0.047675
24 3rd Female Adult Yes 0.031286
25 Crew Male Child No 0.000000
26 Crew Male Child Yes 0.000000
27 Crew Male Adult No 0.303119
28 Crew Male Adult Yes 0.088141
29 Crew Female Child No 0.000000
30 Crew Female Child Yes 0.000000
31 Crew Female Adult No 0.001440
32 Crew Female Adult Yes 0.009000

It shows that around 30% of the observations follows the root-to-leaf path Crew,
Male, Adult, No.

As another possible usage of the prob function, it can be used to retrieve the
estimated parameters for any vertex of the tree. This can be performed through the
option conditional on by specifying a path starting from the root and arrives to
the desired vertex. For instance, the probability parameters associated to the event
Age = "Adult" conditioned on the eight paths defined by the stratified Staged Tree
in Figure for the vertices in the stratum of Age can be computed as below. The

output retrieves the stage parameters shown through the summary of mod1.
R> grid <— expand.grid(modl$tree[2:1])[, 2:1]
R> cbind (Stage = modl$stages$Age, grid,
p = prob(modl, data.frame(Age = rep("Adult", 8)),

conditional _on = grid))
Stage Class Sex p
1 1st Male 0.9554318
2 1st Female 0.9990291
1 2nd Male 0.9554318
3 2nd Female 0.8866995
3 3rd Male 0.8866995
3 3rd Female 0.8866995
2 Crew Male 0.9990291
2 Crew Female 0.9990291

In the package also a function (confint) for the estimation of confidence intervals
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for Staged Tree parameters is provided. For instance, confidence intervals for stages

related to Age with the goodman method can be computed as follows:

R> confint (modl,

Age=Child |1
Age=Adult |1
Age=Child |2
Age=Adult |2
Age=Child |3

2.5 %

0.0258101180
0.9241028192
0.0001411609
0.9933549540
0.0907102352
0.8593536135

97.5 %
0.075897181
0.974189882
0.006645046
0.999858839
0.140646387
0.909289765

"Age', method = "goodman")

Age=Adult |3

Finally, barplots can be created to give a visual representation of the estimated

probabilities associated to a stratum of the tree as reported in Figure [5.7]

R> barplot (mod3, "Survived', ylab = "Survived', horiz = TRUE,
args.legend = list (x = 1), legend.text = TRUE)

Yes

Survived

No

[ T T T 1
0.0 0.2 0.4 0.6 0.8

probability

Figure 5.7: Output of the barplot function for the variable Survived according to
the stage structure of mod3 depicted in Figure [5.3] left.
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5.4.4 A Dataset analysis: PhDArticles

The data.frame PhDArticles includes information regarding the number of publi-
cations of 915 PhD biochemistry students during the 1950s and 1960s [85] and it is
available in the stagedtrees package.

The pipe operator from the magrittr package [3] is also used. Even if it is not
essential for the stagedtrees implementations and it is not one of the dependencies,
the use of the pipe operator improves readability of the code and simplifies the user

experience.

R> library (magrittr)
R> data("PhDArticles")
R> str(PhDArticles)

"data . frame : 915 obs. of 6 variables:

$ Articles: Factor w/ 3 levels '"0","1—-2"">2": 1 1 1

$ Gender : Factor w/ 2 levels "male","female": 1 2 2

$ Kids : Factor w/ 2 levels "yes'",'no": 2 2 2

$ Married : Factor w/ 2 levels "no',"yes': 2 1 1

$ Mentor : Factor w/ 3 levels "low","medium" "high": 2 2 2
$ Prestige: Factor w/ 2 levels "low',"high": 1 1 2

bn <— bnlearn ::hc(PhDArticles)
plot (bn)

order <— c¢("Gender", "Kids", "Married", "Articles")
bn.as.tree <— as_sevt(bn.fit (bn, data = PhDArticles),
order = order)

R> plot(bn.as.tree)

The learned BN model in Figure left states that the number of publications
(Articles) is marginally independent of Gender, Married and Kids and states that
the prestige of the University is conditionally independent of the number of publica-
tions of the student given the number of publications of the mentor. The strength
of the marginal independence between Articles and (Gender, Kids, Married) is
investigated in Figure right.

On these four variables, a Staged Tree starting from the independence tree
(phd.mod1) and from the full tree (phd.mod2) is learned using the hill-climbing
algorithm and they are reported in Figure [5.9

R> phd.modl <— PhDArticles %% indep (order = order) %%
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@

Figure 5.8: BN model learned over the PhDArticles dataset and equivalent Staged
Tree over Gender, Kids, Married and Articles.

Gender Kids Married Articles

stages hc
R> phd.mod2 <— PhDArticles %% full (order = order) %%

stages_hec

Gender Kids Married Articles Gender Kids Married Articles

Figure 5.9: Staged tree models learned over the variables Gender, Kids, Married
and Articles of PhDArticles. Left: Staged Event Tree phd.mod1. Right: Staged
Event Tree phd.mod2.

R> compare_stages(phd.modl, phd.mod2, plot = TRUE,

method = "stages")
[1] FALSE
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Figure 5.10: Left: Comparison between phd.mod1l and phd.mod2 over the variables
Gender, Kids, Married and Articles of PhDArticles. Right: Conditional prob-
ability of Articles given Gender, Kids and Married for the stages in phd.mod2.

The estimated staging structures of the two Staged Trees in Figure |5.9[show that
for the first three variables they are exactly equal, according also to the comparison
depicted in Figure left. Conversely, for the variable Articles in phd.mod1 only
one stage distribution is estimated and in phd.mod2 three stages distributions are
obtained (apart from the unobserved situations in the "UNOBSERVED" stage). To
further explore the different conditional probabilities associated to the stages for
Articles in phd.mod2, the barplot function can be used (Figure right).

R> barplot (phd.mod2, "Articles"', legend.text = TRUE,
xlab = "Articles")

From the output in Figure [5.10] right together with the Staged Tree in Figure [5.9
right, it can be noted that unmarried women without kids as well as married women
with kids (stage 3) have the lowest estimated probability of a high number of articles.
The population with the highest probability of a high number of publications consists
of men with no kids (stage 2).

A likelihood-ratio test can be carried out with LR_test to test if the simpler
phd.mod1 model describes the data sufficiently well compared to the more complex

phd.mod2. The function automatically checks if the two input models are nested.

R> LR_ test(phd.modl, phd.mod2)
p—value = 0.001972608
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The small p-value obtained (< 0.05) confirms that the asymmetric structure
described by phd.mod2 is indeed supported by the data.

Finally, a Staged Tree over all the variables in PhDArticles is built by using the
backward-joining algorithm implemented in stages_bj. In Figure the plot of
the resulting model is displayed together with the barplot associated to Articles

conditional probabilities.

R> order <— c('Prestige', "Mentor", order)
R> phd. all <— PhDArticles %% full (order = order) %%
stages_bj(thr =+ 0.5) %% stndnaming

OEnm
W N e

0.4 0.6
|

probability

1

0.2

1

0 1-2 >2

Prestige Mentor Gender Kids Married Articles

Articles

Figure 5.11: Staged Tree phd.all (left) over all the variables of PhDArticles
and corresponding estimated conditional probabilities for stages related to variable
Articles (right).

The stage with highest probability of a large number of articles (stage 3) includes

now the following paths:

R> get_path(phd.all, "Articles", "3")

Prestige Mentor Gender Kids Married

18 low high male yes yes
20 low high male no yes
22 low high female yes yes
24 low high female no yes
43 high high male no no
44 high high male no yes
48 high high female no yes
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So, PhD students with a high number of publications all have a mentor with a
high number of publications and most of them are married and with no kids.

In all previous analyses we were interested in assessing how the number of articles
were affected by the other factors. For this reason, the variable Articles was chosen
to be the last in the order, whilst the others were arbitrarily fixed according to one
of the topological orders of the learned BN. However, the function search_dynamic
implements the dynamic programming ordering algorithm of Cowell et al. [28] to

search an optimal order of the variables from data.

R> phd.order <— search dynamic(PhDArticles)

Staged event tree (fitted)
Articles [3] — Married [2] — Mentor [3] — Gender[2] —
Prestige [2] — Kids[2]
"log Lik.’ —4076.919 (df=19)

In the optimal order Articles is chosen as the root of the tree and therefore its
staging can not be studied to assess how it depends on the other variables. However,

according to the BIC, this new Staged Tree provides a great improvement compared
to phd.all.

R> BIC(phd.all , phd.order)

df BIC
phd. all 15 8504.529
phd. order 19 8283.398

5.5 A Simulation Study

A simulation analysis of structural learning algorithms implemented in stagedtrees
is performed on nine datasets, chosen mostly from the literature on CEGs and PGMs
for contingency tables. The main features of these datasets are summarized in
Table which for each dataset gives the number of observations, variables, root-
to-leaf paths, cells with zero counts, non-leaf nodes and edges in the corresponding
Stratified Staged Tree. Some dataset is available directly in the R software, in
particular from packages stagedtrees, gRbase [35], MBCbook [14] and datasets.

It is not the purpose of this section to show how to model these datasets and
interpret the estimated stage structure in each specific context. For how to perform

inference on Staged Tree see Section[5.4], while for more details about the datasets, its
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features and main references refer to Table[5.2|or the help function in R. Indeed, here
only indices relating to the performances of the estimated algorithms are reported,

without going into details of their interpretation.

Dataset # observations # variables # root-to-leaf paths A # non-leaf nodes # 0 cells # edges
Asym 1000 4 16 15 1 30
chestSim500 500 8 256 255 182 510
FallEld 50000 4 64 27 0 90
PhDArticles 915 6 144 136 0 279
Pokemon 999 5 32 31 0 62
puffin 69 6 768 343 284 1110
reinis 1841 6 64 63 0 126
selfy 2804 4 72 34 4 105
Titanic 2201 4 32 27 0 58

Table 5.1: Summary information about the datasets considered for the simulation
study.

Dataset References R Package
Asym simulated dataset stagedtrees
chestSim500 | Hgjsgaard et al. [62] gRbase
FallEld Shenvi et al. [104]

PhDArticles Long [85] stagedtrees
Pokemon Gabbiadini et al. [48]  stagedtrees
puffin Bouveyron et al. [14] MBCbook
reinis Hgjsgaard et al. [62] gRbase

selfy Dalla Zuanna et al. [31]
Titanic Dawson [33] datasets

Table 5.2: Main references and R packages related to the analyzed datasets.

For all nine datasets and all algorithms from the stagedtrees package, the

simulations respect the following characteristics:

« all the algorithms are estimated after the isolation of unobserved situations in

own stages;

o score-based algorithms, namely the ones based on a hill-climbing optimization,

use the maximization of the negative BIC as score;

o for distance-based algorithms, all the distances and divergences implemented
in stagedtrees are adopted, through the option distance, each one with four
different threshold values, i.e. 0.01, 0.05, 0.20 and 0.50;

o a Bayesian Network learnt with bnlearn package has been refined through
the backward hill-climbing algorithm (Refined BN);
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o the algorithm based on the clustering of the probability distributions asso-

ciated to vertices of the Staged Tree is estimated three times, i.e. defining

two, three or four different stages in each stratum of the Staged Tree. Stages

embedding unobserved situations are not counted, since they do not require

the estimation of any parameter. The clustering method is based on Total

Variation as distance between pair of probability distributions (HClust);

the kmeans algorithm is based on the Hartigan-Wong approach [56] and it is

estimated three times, defining two, three or four different stages in each stra-

tum of the Staged Tree, without counting stages corresponding to unobserved

situations.

For more details see Table [5.3]

Name Function
Indep indep
Full full
HC - Indep stages_hc
BHC stages_bhc
Fast BHC stages_fbhc
Random BHC stages_bhcr
Kullback-Leibler stages_bj
Manhattan stages_bj
Buclidean stages_bj
Renyi stages_bj
Total Variation stages_bj
Hellinger stages_bj
Bhattacharyya stages_bj
Chan-Darwiche stages_bj
HClust stages_hclust
Kmeans stages_kmeans
Refined BN stages_bhc(as_sevt(bn.fit( )))

Table 5.3: List of algorithms from the R package stagedtrees used to estimate
stage structures of Stratified Staged Trees for the nine datasets in Table .

For each dataset, each algorithm is run 10 times on 80% of the data randomly

selected and the estimated model is tested on the remaining part (20%). The av-
erage of all the investigated quantities over the 10 runs is then computed. The
collected indices of performance for each estimated model are the number of de-
grees of freedom, log-likelihood, AIC and BIC values, classification accuracy (the
response variable is the one in the first stratum of the Stratified Staged Tree) and

the computational cost (in seconds).
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From Table reported in this section as guideline and from Table to Ta-
ble in Appendix, the results obtained with all algorithms on the nine datasets

are shown. The following general conclusions can be made:

o Full and Indep are the starting models in order to compare the performances
of all the structural learning algorithms implemented. The first fits a full-
dependence structure to the dataset, by providing one of the best results ac-
cording to the log-likelihood, due to the overfitting introduced. The Indep
model fits a full-independence structure to the dataset, estimating always the

smallest log-likelihood, due to its underfitting.

o The number of estimated parameters (df) is highly variable, according to the
criterion and the starting stage structure (dependence or independence model).
As expected, for backward algorithms with a distance-based joining, the higher
is the threshold below which the distance between the probability distributions
of two stages are set to be equal, the lower will be the number of estimated

parameters.

o Most often, the higher the number of degrees of freedom a model has, the

higher is the correspoding log-likelihood value.

e The minimum values of the AIC and BIC indices are attained with hill-
climbing algorithms. This is intuitive, because the implemented score-based
algorithms have as optimization default the minimization of the BIC index.
However, even if the distance-based algorithms not aiming to minimize these
indices, their performances according to AIC and BIC values are satisfactory

and comparable with the score-based methods.

o The hill-climbing algorithms are slower than others. In particular, the hill-
climbing starting from the independence model (HC - Indep) is the slowest,
because it both joins and splits stages. Conversely, distance-based methods,

fast or random backward hill-climbing and HClust are the fastest.

e The accuracy of all models is comparable, the lowest scoring models being In-
dep, HClust and Kmeans due to their simplicity. Occasionally, some distance-
based algorithm provides low accuracy with threshold 0.50. This is because
many situations are merged together in the same stage, being 0.50 often a too

high threshold under which two discrete distributions are set to be equal.
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Model df logLik AIC BIC Accuracy Computational Time

Indep 10.00 -7892.51 15805.03 15862.19 0.76 0.21

Full 64.60 -6251.36 12631.92 13001.18 0.85 0.22

HC - Indep 31.00 -6277.94 12617.89 12795.08 0.85 1.05
BHC 32.60 -6271.70 12608.60 12794.94 0.85 0.34

Fast BHC 31.00 -6301.09 12664.18 12841.38 0.85 0.22
Random BHC 37.60 -6284.50 12644.21 12859.13 0.85 0.23
Kullback-Leibler - 0.01 60.40 -6250.38 12621.56 12966.80 0.85 0.21
Kullback-Leibler - 0.05 50.20 -6250.88 12602.17 12889.11 0.85 0.22
Kullback-Leibler - 0.20 38.00 -6262.82 12601.65 12818.86 0.85 0.23
Kullback-Leibler - 0.50 28.20 -6308.05 12672.49 12833.68 0.84 0.22
Manhattan - 0.01 64.40 -6251.30 12631.40 12999.51 0.85 0.22
Manhattan - 0.05 62.20 -6250.53 12625.45 12980.99 0.85 0.21
Manhattan - 0.20 46.40 -6253.90 12600.61 12865.83 0.85 0.22
Manhattan - 0.50 29.40 -6331.54 12721.88 12889.93 0.84 0.21
Euclidean - 0.01 64.20 -6251.16 12630.72 12997.69 0.85 0.22
Euclidean - 0.05 59.00 -6250.15 12618.31 12955.55 0.85 0.21
Euclidean - 0.20 40.50 -6263.78 12608.56 12840.06 0.85 0.21
Euclidean - 0.50 20.40 -6595.01 13230.83 13347.43 0.84 0.22
Renyi - 0.01 63.00 -6251.07 12628.13 12988.24 0.85 0.21
Renyi - 0.05 54.80 -6250.66 12610.91 12924.15 0.85 0.22
Renyi - 0.20 44.80 -6254.68 12598.96 12855.04 0.85 0.22
Renyi - 0.50 35.00 -6274.63 12619.25 12819.31 0.85 0.23
Total Variation - 0.01  64.40 -6251.30 12631.40 12999.51 0.85 0.22
Total Variation - 0.05 62.20 -6250.53 12625.45 12980.99 0.85 0.21
Total Variation - 0.20 46.40 -6253.90 12600.61 12865.83 0.85 0.22
Total Variation - 0.50 29.40 -6331.54 12721.88 12889.93 0.84 0.22
Hellinger - 0.01 51.40 -6250.56 12603.91 12897.72 0.85 0.22
Hellinger - 0.05 38.00 -6262.60 12601.20 12818.41 0.85 0.21
Hellinger - 0.20 21.00 -6560.98 13163.95 13283.99 0.83 0.22
Hellinger - 0.50 15.00 -6904.43 13838.87 13924.61 0.77 0.22
Bhattacharyya - 0.01  45.60 -6253.13 12597.46 12858.11 0.85 0.22
Bhattacharyya - 0.05 2840 -6307.20 12671.20 12833.53 0.84 0.22
Bhattacharyya - 0.20  18.00 -6826.32 13688.63 13791.52 0.80 0.22
Bhattacharyya - 0.50  13.00 -7333.95 14693.90 14768.21 0.80 0.22
Chan-Darwiche - 0.01  64.40 -6251.30 12631.40 12999.51 0.85 0.22
Chan-Darwiche - 0.05 64.40 -6251.30 12631.40 12999.51 0.85 0.22
Chan-Darwiche - 0.20 62.80 -6250.97 12627.53 12986.50 0.85 0.22
Chan-Darwiche - 0.50 54.80 -6250.40 12610.39 12923.63 0.85 0.22
HClust k = 2 16.00 -6724.99 13481.97 13573.43 0.80 0.22
HClust k = 3 22.00 -6530.52 13105.03 13230.78 0.83 0.22
HClust k = 4 27.00 -6373.04 12800.09 12954.42 0.83 0.22
Kmeans k = 2 16.00 -6689.69 13411.39 13502.85 0.81 0.21
Kmeans k = 3 22.00 -6497.92 13039.83 13165.58 0.81 0.22
Kmeans k = 4 27.00 -6377.29 12808.58 12962.91 0.83 0.22
Refined BN 28.60 -6286.85 12630.89 12794.37 0.85 0.31

Table 5.4: Mean results for stagedtrees algorithms over 10 replications for selfy
dataset. FExperiments performed on a standard laptop with 8 GB of RAM and an
i5 3.1 GHz CPU.
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5.6 Application on Pediatric Dentistry Framework

The analysis done in Section [I.4]on the Pediatric Dentistry dataset is carried forward
in this section with Stratified Staged Trees and ALDAGs. The need to implement
these new types of Graphical Models arises from the fact that in this pediatric study
there were structural zeros (Table , which led to obtain approximate estimates
through the UGM proposed in Section[I.4.1] These structural zeros can be managed
efficiently through Staged Trees, as it can be seen in Figure [5.12] Indeed, it shows
that for children which have not been breastfed, i.e. type of breastfeeding equal to

0, the breastfeeding time is clearly equal to 0 months.
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Figure 5.12: Stratified Staged Tree estimated on the six connected variables in the

UG in Figure [.1}

The construction of the Staged Tree needs the choice of a variables ordering.
For this, first a Bayesian Network is estimated on the six connected variables in
Figure in order to obtain the set of possible topological orders of variables.
Among them, it is chosen an ordering that can be interpretable for a practical point

of view for the dentists: type of breastgeeding, time of breastfeeding, use of pacifier,
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oral hygiene status, consumption of sugared beverages (Sodas) and caries variation.
The Stratified Staged Tree in Figure is obtained with a backward hill-climbing
algorithm, starting from the full-dependence stage structure, isolating structural and
observed zeros in own stages, for each stratum of the tree. Figure gives the plot
of the tree with the removal of these unobserved vertices, in order to have a more
straightforward graphical representation. For instance, the stage composed by the

two red nodes for breastfeeding time shows the partial conditional independence

Time 1 Type | Type = {1, 2}.

For a better visualization of the estimated stage structure, since the tree is not
very readable for the last two strata, the subtrees conditioned on the three levels of
the root variable, i.e. the type of breastfeeding, are shown in Figures [5.13] and
Figure [5.13] shows only the tree associated to the time of breastfeeding equal
to 0, being it the only category assumed by children who have not been breastfed

(structural zeros).

Pacifier Oral_hygiene Sodas Caries

Figure 5.13: Subtree considering only "0" for type of breasfeeding and time of breast-
feeding.

Also from Figure and an asymmetric dependence structure is high-
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lighted, proving the usefulness in this context of an approach based on Staged Trees.
Since the complete tree and the three subtrees have many vertices, a reading of the
conditional independences according to the corresponding stage structure is diffi-
cult. An attempt was therefore made to simplify the graphical representation by
constructing the CEG, which however did not lead to a clear improvement. For this

reason his graph is not shown here.
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Time Pacifier Oral_hygiene Sodas Caries

Figure 5.14: Subtree considering only type of breasfeeding equal to "1".

Context-specific, partial and local independences can be read all in a unique
graph through the ALDAG (Figure corresponding to the Stratified Staged
Tree in Figure This type of graph is very useful when the interpretation of the
Staged Tree is difficult or impossible for its dimension. The ALDAG highlights many
dependences, since its graph is complete. Note for instance the partial independence
(blue edge) between type and time of breastfeeding, as observed studying the stage
coloring in the second stratum of the Stratified Staged Tree. It is a current work
the deepening of this asymmetric dependence structure in order to provide useful
clinical insights. Indeed, this is not an easy task, since the ALDAG has a complex
structure. A possible choice in order to simplify the structure Stratified Staged Tree
and consequently also that of the ALDAG is to use another learning algorithm for
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the estimation of the stage structure. For instance we can use the distance-based
one with a threshold that is not too low, so as not to be too restrictive and therefore
in order to place an higher number of vertices of a stratum of the tree in the same

stage.

TR TARBRAY

HD HD HD HD HbD Hb Hb Hb Hb HbD Hb Hb

Time Pacifier Oral_hygiene Sodas Caries

Figure 5.15: Subtree considering only type of breasfeeding equal to "2".
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Figure 5.16: Asymmetry-labeled DAG estimated on the Pediatric Dentistry dataset.
TYPE: Breastfeeding type, TIME: Breastfeeding time, P: Use of pacifier, C: Caries
Variation, O: Oral hygiene status, S: Consumption of sugared beverages. The edge
coloring is: red - context; blue - partial; yellow - context /partial.

5.7 Conclusion

The chapter presents the R package stagedtrees [120] for estimating Staged Trees
and Chain Event Graphs from a dataset. Its functionalities are showed and exem-
plified and a simulation study is carried out to check the efficiency of its different
structural learning algorithms. The package is also supported by Carli et al. [20],
which explains its main features along the lines of what was done throughout this
chapter.

The analysis of the pediatric dentistry dataset with Staged Trees carried out in
Section highlights many asymmetric dependences, suggesting that an UGM is
not suitable in this context. Currently, we are studying this asymmetric dependence
structure among the six connected variables of interest in order to provide useful

insights for the experts.
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Chapter 6

Staged Trees as a Classification
Tool

Generative models for classification purpose employ the joint probability distribu-
tion of the response variable and the covariates to construct a decision rule. Among
generative models, Bayesian Networks and Naive Bayes Classifiers are the most
commonly used and they provide a clear graphical representation of the relation-
ship among all variables. However, they have the disadvantage of highly restricting
the type of relationships that could exist, by not allowing for context-specific in-
dependences. In Carli et al. [21] a new class of generative classifiers is introduced,
called Staged Tree Classifiers (STCs), which formally account for asymmet-
ric and context-specific independences. The Naive Staged Tree Classifier is also
defined, which extends the Naive Bayes Classifier whilst retaining the same com-
plexity. A simulation study in Section shows that the classification accuracies of
Staged Tree Classifiers implemented using stagedtrees are competitive with those
obtained through classifiers of the state of the art of machine learning.

The aim of statistical classification is to assign labels to instances described
by a vector of explanatory/feature variables. The classification task is guided by a
statistical model learnt using data containing labeled instances. The array of models
now designed to perform classification is constantly increasing and includes, among
others, Random Forests [61], Recursive Partitioning [I7] and Neural Networks [I0§].

Bayesian Network Classifiers (BNCs) [9, 47] are special types of BNs designed
for classification problems. These have been applied to a wide array of real-world
applications with competitive classification performance against classifiers from the
state of the art [44]. There are many advantages associated to BNCs. First, they
provide an explicit and intuitive representation of the relationship among features

represented by a graph. Second, they are a fully coherent probabilistic model thus
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giving uncertainty measures about the chosen labels. Third, many of the methods
and algorithms developed for general BNs can be simply adapted and used for BNCs
(e.g. Benjumeda et al. [§]). Last, they are implemented in various pieces of user-
friendly software, for instance in the R package bnclassify of Mihaljevic et al. [88].
More generally, BNCs are generative classifiers which give an estimate of the joint

probability distribution of both features and class.
As discussed in Chapter [4], one of the main limitations of BNs is that they can

only explicitly represent symmetric conditional independences among variables of
interest. However, in many applied domains, conditional independences are context-
specific, meaning that they only hold for specific instantiations of the conditioning
variables. For this reason, extensions of BNs have been proposed that can take
into account asymmetric independences [12, 65, O7]. With the exception of the
Probabilistic Decision Graph [65], all these models somehow lose the intuitiveness

of BNs since they can not represent all the models’ information into a unique graph.

In this chapter a novel class of generative classifiers based on Staged Trees is
considered. Indeed, although Staged Trees have been used in a variety of applica-
tions, including the modelling of health problems [4], 69] and criminal activities [26],

their specific use for classification problems has been limited.

STCs are generative classifiers which, whilst extending the class of BNCs to deal
with asymmetric conditional independences, share the same advantages of BNCs:
first, the relationship among random variables is still intuitively depicted in a unique
graph; second, they are fully coherent probabilistic model; third, learning algorithms
already defined for Staged Trees [20), 26} [46] can simply be adapted for classification
purposes; fourth, the freely-available R package stagedtrees gives an implementa-
tion of a variety of learning algorithms and inferential routines to apply the methods
in practice.

Mirroring the theory of BNCs, Staged Tree Classifiers of different complexity
are discussed and their properties investigated. Experimental studies demonstrate
that they have comparable classification rates to state of the art classifiers, with the

added benefit that they are highly expressive in a meaning that is formalized below.

Section [6.1] gives an overview about the theory of Bayesian Network Classifiers,
while in Section the Staged Tree Classifiers are presented. Section |6.3|shows the
relationship between BNCs and STCs and Section provides two propositions for
the reading on STCs of dependences between the class variable and the freatures.
Section proposes the corresponding of the Naive Bayes Classifier in the context
of Staged Trees, which is called Naive Staged Tree Classifier. In Section a classi-

fication experiment involving 14 datasets is conducted, comparing the performances
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of 9 STCs implemented through stagedtrees with respect to those obtained with
BNCs, classification tree, logistic model, neural network, random forest and naive
bayes. Section provides a conclusion of the chapter with the main insights and

results obtained.

6.1 Bayesian Network Classifiers

Let X = (Xi,...,X,) be a vector of discrete feature variables with sample space
X = x!_X;, where X; is the sample space of X;, and x = (x1,...,2,) € X. Let
C' be the discrete class variable with sample space C and ¢ € C. Given a training
set of labeled observations D = {(x!,c!),..., (x",c™)}, where x* € X and ¢’ € C,
the aim of a generative classifier is to learn a joint probability p(c,x), shorthand
of p(C' = ¢, X = x), and assign a non-labeled instance x to the most probable a

posterior class found as
argmax p(c | x) = argmax p(c, x).

Such a classifier is referred to as Bayes Classifier.

BNCs are Bayes Classifiers that factorize p(c, ) according to a BN over the
variables X1,..., X, and C as shown in Equation (6.1]), where m(z;) € X jcpai) X,
(c) € Xjcpate) Xi, pa(i) and pa(c) are the parent sets of X; and C' in the BN,

respectively.

ple,x) = ple|w ﬁ (z; | m(z;)) (6.1)

i=1

Therefore, the learning of a BNC consists of two steps: first the learning of its
DAG; second, given the DAG structure, the learning of the probabilities in Equa-
tion . Notice that, given a DAG, by taking advantage of the probability factor-
ization associated to a BNC, the number of parameters to be learnt is usually a lot
smaller than |C| x |X|, the total number of atoms in the sample space. Furthermore,
these probabilities can be easily learnt using the methods designed for generic BNs,
both in a frequentist or a bayesian approach.

Although any BN model could be used for classification purposes, most often
the underlying DAG is restricted so that the class variable C' has no parents, that
is pa(c) = (). Therefore, in BNCs the class variable is the root of the DAG and
there is a direct link from C to X;, for ¢ = 1,...,p, since otherwise features not
connected to the class would not provide any information for classification. The

simplest possible model is the so-called Naive Bayes Classifier [89] which assumes
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(a) Naive BNC (b) SPODE BNC (¢) TAN BNC

Figure 6.1: Examples of BNCs with three features and one class.

the features are conditionally independent given the class (Figure . BNCs of in-
creasing complexity can then be defined by adding dependences between the feature
variables. For instance, the super-parent-one-dependence-estimator (SPODE) BNC
[70] assumes there is a feature parent of all others (Figure[6.1b). Another commonly
used classifier is the tree-augmented naive (TAN) BNC [47] for which each feature
has at most two parents: the class and possibly another feature (Figure .

Although BNCs of any complexity can be learnt and used in practice, empirical
evidence demonstrates that model complexity does not necessarily implies better
classification accuracy [9]. Despite of their simplicity, Naive BNCs have been shown
to lead to good accuracy in classification problems [9, 44]. For such models the
inclusion of redundant variables worsen the performance of the classifier [76]. It
is therefore critical to include in BNCs a small number of variables with a high
predictive association with the class.

Alongside these empirical evaluations of BNCs, theoretical studies about the
expressiveness of such models have appeared. Recently, Varando et al. [118], 119
fully characterized the decision functions induced by various BNCs and consequently
derived bounds for their expressive power. They built on the work of Ling and Zhang
[83] that demonstrated that any BNC whose vertices have at most k parents can
not represent any decision function containing (k + 1)-XORs (also known as parity
functions [94]). Thus, Naive BNCs are not capable of capturing any 2-XORs. On
the positive side, Domingos and Pazzani [37] demonstrated that Naive BNCs are
optimal under a 0 — 1 loss even when the assumption of conditional independence

among features does not hold.

6.2 Staged Tree Classifiers

The technology of Staged Trees and CEGs has been refined over the years and
methods to investigate causal relationships [I15], perform statistical inference [53],

and check model’s robustness [81] are now available. However, the specific use of
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Figure 6.2: Representation of BNCs as Staged Trees Classifiers. (a): Naive BNC
in Figure as a Staged Tree Classifier. (b): SPODE BNC in Figure as a
Staged Tree Classifier. (c): TAN BNC in Figure as a Staged Tree Classifier.

Staged Trees for classification has not been investigated in the literature. Thus, just
as BNCs have been defined as a specific subclass of BNs whose graph entertains

some properties, the class of Staged Tree Classifiers is defined here.

Definition 34. A Staged Tree Classifier for the class C' and features X is a (C, X)-
compatible Staged Tree.

The requirement of C' being the root of the tree follows from the idea that in
most BNCs the class has no parents, so to maximize the information provided by
the features for classification. Although classifiers associated to non-product spaces
could be considered, here, for comparison to BNCs, the assumption of compatibility

is made.

6.3 Relationship between BNCs and Staged Tree

Classifiers

The BNCs reviewed in Section [6.1|can now be represented as Staged Tree Classifiers.
For instance Naive BNCs (Figure[6.2a]), SPODE BNCs (Figure[6.2b) and TAN BNCs
(Figure can concisely be represented as Staged Tree Classifiers. It is henceforth
assumed that STCs are constructed using a topological order of the features which
is compatible to the one embedded in the corresponding BNC.

From the existence of an equivalent Staged Tree compatible with the topological
order of a given BN [27], it follows that every BNC such that pa(c) = @ can be
directly translated into a Staged Tree.

Proposition 7. All BNCs such that pa(c) = () are Stratified Staged Tree Classifiers.
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The proof of Proposition [7| follows by observing that, since pa(c) = (), there
exists a topological sorting in which the class variable C is in the first position.
In particular Naive Bayes, SPODE, and TAN Classifiers can all be represented by
STCs.

Recall that with Vj we indicate the set of vertices at depth k& from the root of
the tree. Then, Proposition [§] is useful to understand the structure of BNCs and
consequently propose extensions of these based on Staged Trees which entertain

similar properties.

Proposition 8. A Naive BNC' is equivalent to a Staged Tree Classifier built with
an arbitrary ordering of features and where, for all v € Vi, the subtree T (v) is a
Stratified Staged Tree where all nodes at the same distance from the root are in the
same stage. In particular, the Naive Bayes equivalent Stratified Staged Tree has |C|

stages per each feature.

6.4 Conditional Independence in Staged Tree Clas-

sifiers

For the specific task of classification, it is possible to derive two results about the

dependence between the features and the class in Staged Tree Classifiers.

Proposition 9. If all v € Vi, of a Staged Tree Classifier are in the same stage then
(C, X1, Xo, ..., Xy—1) and Xy, are marginally independent, i.e. (C, Xy, ..., Xp_1) L
Xp.

Proposition 10. For any v € Vi, let T(v) be the subtree with root v. If all T (v)
have the same stage structure over the vertices at distance k — 1 from the root, then
Xy is independent of C' conditionally on Xy, ..., X1, t.e. C 1L Xy | Xq,..., Xp_1.

These two results are illustrated in Figure[6.3] For instance, consider the features
associated to the last random variable in Figure The vertices in the upper half
are framed as the vertices in the bottom half, thus implying that the class variable

is conditionally independent of the last feature given all others.

6.5 Naive Staged Tree Classifiers

The class of STCs is extremely rich and for any classification task the number of
candidate models that could explain the relationship between class and features

increases exponentially. One first common assumption that can be made here is to
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Figure 6.3: Staged Trees Classifiers embedding conditional independence statements
among features and the class. (a): X3 1 C. (b): X3 1L C' | X1, Xo.

consider only Stratified Staged Trees, ones where only vertices at the same distance
from the root can be in a same stage. However, even with this assumption the
model class of STCs is still much richer than that of BNCs. Therefore, just like
BNCs whose DAGs have restricted topologies (as SPODE and TAN classifiers) have
been studied, next a class of simpler Staged Tree Classifiers is introduced.

In many practical applications the Naive BNC has very good classification per-
formance despite of its simplicity. A Naive BNC has a total of >¥_; |C| - (|Xj| —
1) + |C| —1 free parameters that need to be learnt, whilst its DAG is always fixed.
Similarly, a class of STCs which has the constraint of having the same number of
free parameters as naive BNCs, and therefore has the same complexity, whilst being

a much richer class of models then the naive BNC, is introduced.

Definition 35. A Stratified Staged Tree Classifier such that, for every k < p, the

set Vi, is partitioned into |C| stages is called naive.

It straightforwardly follows from the definition that Naive STCs have the same
number of free parameters as Naive Bayes Classifiers.

Despite of the strict constraint on the number of parameters, the class of Naive
STCs is still rich and extends naive BNCs in a non-trivial way. Differently to naive
BNCs, it is not sufficient to simply learn the probabilities of the Naive Staged Tree
Classifier, but also the staging structure has to be discovered. However, because of
the strict restriction on the number of parameters, fast algorithms can be devised
to efficiently explore the model space. Notice that in a binary classification problem

the set V, must be partitioned into two subsets.
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ST Naive RFor NB

-1 1 -1 1 -1 1
-1 0.4623 0.0713 0.3972  0.3123 0.4314 0.3982
1 0.0347 0.4317 0.0998 0.1907 0.0656 0.1048

Table 6.1: Proportion of predicted instances in the simulated XOR example for the
Naive Staged Tree Classifier (ST_Naive), Random Forest (RFor) and Naive Bayes
(NB).

Critically and differently to Naive Bayes Classifiers, Naive Staged Trees are ca-
pable of representing complex decision rules. For instance, consider the simplest
scenario of a binary class with two binary features. The Naive STC in Figure [6.4]
which does not have a naive BNC representation [I1§], is capturing the only 2-XOR

present.
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Figure 6.4: Example of Naive Staged Tree Classifier capturing a 2-XOR.

To investigate further the capabilities of Naive STCs in expressing complex de-
cision rules, Ny = 200 observations are simulated from p = 10 binary variables
Xi,..., X, taking values in X = {—1,+1}?. The class variable is defined as the
parity (or XOR) function C' = ‘l_p[ X, and Naive Bayes, Random Forest and Naive
Staged Tree Classifiers are comzpzalred over N = 10000 test instances, obtaining
the results in Tables As expected, the Naive Bayes Classifier is unable to rep-
resent the parity function [I18] and wrongly classifies the class in more than 40% of
the test data. Similar performances are obtained by Random Forests (implemented
with the R package randomForest using 500 trees), even if theoretically they have
much larger expressive power. Conversely, the Naive Staged Tree correctly learns

the parity function with an accuracy of 90%.
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6.6 Classification Study

An experiment based on classification problem is conducted. The learning of the

stage structure of a Staged Tree Classifier is obtained through the R package staged-

trees. The classification accuracy for binary classification of Staged Tree Classifiers

is investigated in a comprehensive simulation study involving 14 datasets, whose
details are given in Table [6.2] Each dataset is randomly divided ten times in train
set (80% of the data) to learn the classifiers and test set (remaining 20%) to predict

the response. The reported performance measures, area under the curve (AUC) and

balanced accuracy, are computed as the mean over these ten replications.

Dataset # observations # variables # atomic events
Asym 100 4 16
BreastCancer 683 10 1024
chestSim500 500 8 256
energyl 768 9 1728
energy?2 768 9 1728
FallEld 5000 4 64
fertility 100 10 15552
monks1 432 7 864
monks2 432 7 864
monks3 432 7 864
puffin 69 6 768
tic-tac-toe 958 10 39366
Titanic 2201 4 32
voting 435 17 131072

Table 6.2: Details about the 14 datasets included in the classification study.

First, 9 model search algorithms for learning Staged Tree Classifiers are com-

pared, namely:

ST _Full, each vertex is in its own stage;

ST _HC_ Indep, hill-climbing algorithm starting from independence model;
ST HC Full, hill-climbing algorithm starting from ST Full;

ST BHC, backward hill-climbing;

ST FBHC, fast backward hill-climbing;

ST BJ_ 01, backward joining of vertices that have Kullback-Leibler diver-
gence between their floret probability distributions less than 0.01;
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« ST BJ 20,as ST BJ 01 but with threshold at 0.20;
o ST Naive HC, Naive Staged Tree learnt with hierarchical clustering;
e« ST Naive KM, Naive Staged Tree learnt with kmeans.

Further details about these algorithms can be found in Section [5.2] or in Carli
et al. [20].

Due to computational restrictions, for ST HC Full the model search is re-
stricted to the first five features according to the variable ordering chosen through
Conditional Mutual Information criterion (Algorithm [5)), whilst for ST BHC and
ST HC_Indep only the first seven are considered. The vertices corresponding to
the remaining variables are still used for classification but left as in the starting tree

of the model search.

e ST BHC ST BJ 20 ST_Full ST_HC_Indep © ST Naive KM
ST BJ 01 ST FBHC e ST HC_Full e ST Naive HC

AUC Balanced Accuracy Log Time
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Figure 6.5: AUC, balanced accuracy and logarithm of time spent for structure
learning for nine STCs algorithms over fourteen datasets.

The results of the experiment are reported in Figure [6.5, which suggests the

following conclusions:

o The ST _Full model (in yellow), which does not require any model search and

has the largest number of parameters, has in general lower AUC and balanced
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accuracy than other Staged Trees. This highlights the need of a model-based

search of simpler models;

« Models based on hill-climbing (in blue) overall perform better than others (in
particular ST HC_ Full). This is expected since these are the most refined

learning algorithms and, as a consequence, they are also the slowest.

« Models based on backward joining (in green) have a satisfactory performance,
often comparable to that of hill-climbing models, whilst being much quicker

to learn.

o Naive Staged Trees (in red) can be learnt extremely quickly and whilst often
they have a lower performance, there are cases where they are comparable to
the one of much more complex trees (see e.g. the balanced accuracy for the

Titanic dataset)

Let mention that AUC is the area under the ROC curve [I6] and the balanced
accuracy is the average between the sensitivity and the specificity of predicted val-
ues. In turn, the sensitivity and specificity are calculated as the proportion of true
positive and negative predicted values by the considered model, respectively. In par-
ticular, the balanced accuracy is useful when the outcomes of the binary response
variable are imbalanced, i.e. one of the two categories appears a lot more often than
the other.

Next, STCs are compared with their competitor generative classifier, namely
BNCs. For ease of exposition, three representative Staged Trees are selected (ST-
_BJ 01, ST_HC_Full and ST_Naive_ KM) and three BNCs are fitted: (i) the
TAN BNC (BNC_TAN); (ii) the 3-dependence BNC (BNC_KDB); (iii) the Naive
Bayes (BNC_NB). The results are reported in Figure . It can be seen that for
most datasets there is one STC (in red) that outperforms BNCs (in blue). Due to
the complexity of the models, Staged Trees are in general slower to learn, but the
ST Naive KM, due to its simplicity, has learning times comparable to those of
generic BNCs.

Figure reports the results of the simulation experiments for three STCs
(ST_BJ_ 01, ST HC_ Full and ST_Naive KM) as well as other state of the art
generative and discriminative classifiers, namely: (i) the Naive Bayes (BNC_NB);
(ii) the TAN BNC (BNC_TAN); (iii) Classification Trees (CTree) (iv) Logistic Re-
gression (Logistic); (v) Neural Networks with 20 hidden layers and 0.01 as weight
decay (NNet); (vi) Random Forests combining 100 classification trees (RFor). Al-

though in some cases discriminative classifiers (in green) outperform Staged Trees (in
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Figure 6.6: AUC, balanced accuracy and logarithm of time spent for structure
learning for three STCs (in red) and three BNCs (in blue) over fourteen datasets.

red), in many others they have comparable AUC and balanced accuracy. However,
as shown in the next section, STCs have the capability of producing an understand-
ing of the relationship between the class and the features, since they are generative
models. As already noticed, Staged Trees have an advantage over BNCs (in blue).
Although the learning time for generic Staged Trees is larger, the learning time for
Naive Staged Tree Classifiers is comparable to those of state of the art classifiers.
Last, the performance of Naive Bayes Classifiers are compared with the one
of Naive Staged Tree Classifiers in Figure [6.8f The overall conclusion is that in
most cases Naive Staged Trees (in red) outperform Naive Bayes in terms of AUC
and balanced accuracy. Furthermore, although Naive Staged Trees require more
learning time since their structure has to be discovered, these can be learnt very

quickly and most times in less than one second.

6.6.1 An applied classification analysis

To illustrate the inference capabilities of STCs, next an applied classification analysis
over the freely available Titanic dataset is developed. It has three binary variables

(Survived, Sex and Age) and a categorical variable Class taking four levels (1st,
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Figure 6.7: AUC, balanced accuracy and logarithm of time spent for structure
learning for three STCs (in red), two BNCs (in blue) and other discriminative models
(in green) over fourteen datasets.

2nd, 3rd and Crew). The aim is to correctly classify whether the Titanic passengers

survived or not based on their gender, age and travelling class.

In Figure [6.5]it can be seen that one of the best STCs is the ST_BJ_01 learnt
using a backward joining of the vertices based on the Kullback-Leibler divergence
and a threshold of 0.1. Therefore, in Figure this STC learnt over the full Titanic
dataset using the R package stagedtrees is reported. By investigating the stag-
ing structure, one can deduce conditional independence statements relating to the
classification variable (Survived) and the features. From stages associated to Class:
P(Class | Sex = Male, Survived) = P(Class | Sex = Male) since the second
and the fourth vertices (starting from the top) are in the same stage. This implies

the context-specific conditional independence
Class 1L Survived | Sex = Male.

The complex staging structure over the Age variable also implies asymmetric condi-
tional independences. It can be noticed that all paths going through an edge labeled

Crew are in the same stage for the variable Age. This implies the context-specific
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Figure 6.8: AUC, balanced accuracy and logarithm of time spent for structure
learning for two Naive Staged Tree Classifiers (in red) and two implementations of
Naive Bayes Classifiers (in blue) over fourteen datasets.

independence
Age 1L Survived | Class = Crew.

The same statement can also be drawn for Class = 3rd.

As an additional illustration in Figure the Naive STC learnt over the full
Titanic dataset using the kmeans hierarchical clustering algorithm is reported. The
staging structure over the variables Sex and Class implies that Sex and Survived are
not independent and that Class is conditionally independent of Survived given Sex.
The staging structure over the Age variable is a lot more complex describing highly
asymmetric constraints on the associated probabilities. Whilst imposing much more
flexible dependence structures, the Naive STC has the same complexity of the Naive

Bayes Classifier, meaning they have the same number of independent parameters.

BNCs of different complexity are also learnt over the full Titanic dataset using
the R package bnclassify. Irrespective of the complexity chosen, the model selection
search always returns the simple Naive Bayes Classifier. The fact that Staged Tree
Classifiers outperfom BNCs in classification measures for the Titanic dataset (see
Figure , as well as for other datasets, highlights the need of asymmetric and

160



Survived Sex Class Age

Figure 6.9: STC ST _BJ_01 learnt over the full Titanic dataset.

Survived Sex Class Age

Figure 6.10: Naive STC learnt over the full Titanic dataset using the
stages_kmeans algorithm.

context-specific generative classifiers that can more flexibly model the dependence

structure between the classification variable and the features.
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6.7 Conclusion

The idea to use Staged Tree for a classification purpose is an innovative proposal
done in Carli et al. [2I]. Staged Trees Classifiers are a highly-expressive new class of
generative classifiers with classification performance comparable to that of state of
the art classifiers. They embed context-specific conditional independence statements
which can be easily read by the stage structure of the tree.

A special STC is the Naive Staged Tree Classifier which, whilst having the same
complexity as the Naive Bayes Classifier, can flexibly represents sophisticated clas-
sification rule. Naive Staged Trees not only relax the assumption of conditional
independence of the features as in Naive Bayes Classifiers, but also have better
performances in classification, as highlighted by the simulation study.

Naive Staged Trees are learnt from data using a clustering algorithm of the
probability distributions over the non-leaf vertices of the tree. Such algorithms
divide the vertices at the same distance from the root in |C| stages. More generally,
one could devise clustering algorithms were, for each variable, the number of stages
is selected according to an optimality criterion. Furthermore, many model search
algorithms implemented in stagedtrees are based on the maximization of a model
score. A personal research currently under investigation is an algorithm based on

the minimization of the classification error, as commonly implemented for BNCs.
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Chapter 7

Handle Zero Counts with Staged
Trees

This chapter presents some thoughts on one of the motivations behind Staged Trees,
that is the presence of structural and observed zero counts in contingency tables.
This is also one of the main problems that we encountered estimating Staged Trees
on real data. This problem is investigated proposing a method to overcome this

issue in the context of Staged Trees.

Section shows through an example how predominant is the presence of ver-
tices where no observation arrive starting from the root of the tree; this issue corre-
sponds to observe a zero count in the corresponding contingency table. In Section|[7.2]
computational costs of algorithms in stagedtrees for estimating stage structure are
investigated, by comparing their execution times if unobserved situations are left
untouched or not. This is done with an analysis on four datasets. In Section
relational models [72] [73] are introduced, since they are defined on not Cartesian
product sample spaces, thus permitting to model data with structural and observed
zeros. The connection with Staged Trees is due to how relational models can ef-
ficiently manage conditional independence relationships. Indeed, when the sample
space is an incomplete Cartesian product, the relational model can specify different
variants of conditional independence in the parts of the sample space, depending on
whether or not the part is or is not affected by the missing cells. In Section [7.3.2]
it is shown that the Stratified Staged Trees are relational models with the overall
effect.
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7.1 Structural and Observed Zero Counts in Con-

tingency Tables

One of the major problems in working on categorical variables is related to the pos-
sibility of finding contingency tables with structural and/or observed zero counts.
This problem is extensively addressed in Agresti [I], where theory on categorical
analysis about model’s parameters estimation in presence of zeros is outlined. In-
stead, regarding the classical PGMs, as Undirected Graphs or Bayesian Networks,
or Staged Trees and Chain Event Graphs, this topic is not handled in depth.

For all these reasons, in this section an intuitive idea on how to treat them in
a Staged Trees framework is pointed out. It is also shown how much relevant is
this problem for Staged Trees, which have the advantage of being capable to detect
any asymmetric or context-specific conditional independence statements, with the
disadvantage that the search space for model selection can be huge also with a
not large number of variables. This is because, for a fixed order of variables, any
probability distribution of a variable given any possible combination of the first ones
that precede it in the tree is defined. This leads to the definition of a huge number of
conditional contingency tables, which could have many cells with zero count since,
adding each stratum of the tree a variable on which the distribution of the next one
has to be conditioned on, it is even more probable to not observe any units for many

combinations of levels of the variables.

The problem of zero count, also denoted in this framework with unobserved
vertices/situations, has been extensively addressed also in stagedtrees, as already
shown in previous chapters. Indeed, this is an interesting topic from both theoretical
and computational points of view. It is reasonable that the model search space is
restricted only to vertices in which, starting from the root of the tree, at least one
observation of the collected data gets. This is because, if this restriction was not
supposed, learning algorithms for Staged Trees would agglomerate randomly unob-
served vertices to any other stage, being this step convenient from a modelling point
of view, since the number of parameters that should be estimated would decrease.
This is because the contribution to the likelihood function of a degenerate proba-
bility distribution associated to not observed vertices is null. Then, the randomly
joining of unobserved situations to other stages is a coherent behaviour from a score-
optimization (e.g. likelihood, AIC, BIC) point of view, which implies a reduction
of the number of parameters but, nevertheless, one would probably prefer to isolate
unobserved vertices for interpretation’s sake. The researcher can choose whether to

separate unobserved vertices from others. In Carli et al. [20] the recommendation is
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to isolate them also in order to perform fast estimations of learning algorithms. This
leads to a a huge reduction of the dimension of the model search space, especially
with a large number of variables.

In the R package stagedtrees the possibility for the user to specify if he/she
wants to separate in a own stage the unobserved vertices of the Staged Tree is in-
cluded. A simple example can be seen in Figure [7.1] where these particular vertices
are denoted with "UNOBSERVED". In addition, all the implemented learning algo-
rithms allow the specification of whether this set of vertices has to be untouched
and excluded from the model search space. This is discussed also in Chapter [5
Another way in which zeros can be managed is to implement a Laplace smoothing
for the probability distributions associated with the vertices of the tree. This can
be done in the package by defining a lambda greater than zero, which permits to

not have any degenerate probability distributions over the tree. For details see also

Section B.1]

NOBSERVED—AES

—
——A\“z;r-
——A\“zg

NO
——XgS
——A\“vg
Wata R — NS

‘—“?5;

Class Sex Age Survived

Figure 7.1: Stratified Staged Tree with two unobserved situations.

To clarify what introduced in this section, the number of unobserved vertices
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on Stratified Staged Trees associated to twenty-two datasets, mostly of which are
analyzed in Chapter [0, are calculated. In particular, the percentage of zero count
vertices among all the vertices in the tree is computed. This is done stratum by
stratum of the tree in order to show the behavior of this process as the number of
involved variables increases, as shown in Figure [7.2] The structure of the trees is
created according to the order of the variable in each dataset. The order of the
variables is another important feature that is discussed in Section The features
of all datasets are not exhibited here since the aim of this section is only related to
properties of unobserved situations in Staged Trees and not on performing inference
on estimated models. The number of unobserved situations is clearly also related
to the number of collected observations and the number of levels associated to the
considered categorical variables. As a guideline, the datasets are mainly character-
ized by binary and ternary variables, while the units are mostly not more then one
thousand. This example wants to be a simple empirical demonstration of the rele-
vant presence of zero counts in contingency tables. Intuitively, from an algorithmic
point of view, the computational burden of structural learning algorithms would
extremely decrease lefting isolated the unobserved situations. In Section an
analysis on computational costs of algorithms in stagedtrees for estimating stage
structure is carried out, by comparing their execution times if unobserved situations

are left untouched or not.
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Figure 7.2: Percentage of unobserved vertices with respect to the number of involved
variables. Each line corresponds to the behavior of the percentage of unobserved
situations in a dataset, by adding one variable/stratum at time. Twenty-two datasets
are considered.

7.2 Computational Burden of Algorithms whether

or not Unobserved Situations are Isolated

In this section the computational costs of 14 algorithms from stagedtrees esti-
mated on four datasets are recorded. The algorithms are mostly the whole of those
implemented in stagedtrees, except the hill-climbing (stages_hc) and backward
hill-climbing (stages_bhc) which are the slowest. The computational costs of each
algorithm are recorded starting from considering two variables, adding one at time
up to the number of variables in the corresponding dataset. Furthermore, the order
of variables is chosen according to the conditional mutual information algorithm
(Algorithm [5)).

The whole experiment is repeated twice for each dataset, isolating or not the
unobserved situations in a own stage for each stratum of the corresponding Stratified

Staged Tree and keeping them untouched. Indeed, the aim of this section is to
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show the extreme importance of the isolation of vertices associated to contingency
tables with zero counts. The results are reported as ratio (R) between the cost of
estimate the algorithm not separating the unobserved situations from others (M)
and by isolating them (MuynopserveD ); its formulation is displayed in Equation .
Hence, values of R larger than 1 correspond to how many times it takes the algorithm
that does not treat zeros to estimate the stage structure of the tree with respect to

the algorithm that isolates them.

TIME(M)
TIME(MunoBSERVED)
Results obtained on chestSim500, energyl, energy2 and puffin are reported
in Table[7.1] [7.2] and respectively, where empty values on first columns stand

for ratios that are zero or infinite due to extremely fast execution of algorithms on

R:

(7.1)

few strata of the tree. From these tables it can be seen that computational burden
related to algorithms Full, Indep, Fast BHC, Random BHC, HClust with k = 2 and
Kmeans is not really affected by the isolation of unobserved situations, since the cor-
responding R index is near to 1 for each dataset and number of considered variables.
This is because these algorithms are extremely fast and they are not affected by the
difference in executing M or MuynosservED, Since the four datasets are also char-
acterized by a not high number of variables. Conversely, the remaining algorithms,
e.g. the distance-based ones with the eight distances/divergences implemented in
the package, prove to be really slow if the zero counts are not investigated, showing
computational times from 10 to 450 times higher than those obtained by isolating
these vertices. The behavior of the R value for these algorithms has an exponen-
tially trend with respect to the number of considered variables. This suggests that
considering a dataset with few more variables than those considered in this study,
as a dozen, the M algorithm would not be able to provide an estimate of the stage
structure in a reasonable time. Instead, the Mynossgrvep version of algorithms
in stagedtrees can be applied in frameworks with more variables, for instance in
Section [6.6] a dataset with 17 binary variables is analyzed (voting).

Furthermore, note that stages_hc and stages_bhc algorithms are not estimated
here as the M algorithm take too long to run. Indeed, the difference on computa-
tional times would have been seen on these algorithms in an even more marked way

than what happens for distance-based ones.
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# of Variables

2 3 4 5 6 7 8
Full 0.50 0.50 1.50 1.00 1.33 0.86 0.87
Indep 1.00 0.50 2.00 0.75 0.67 1.00
Fast BHC 0.67 0.60 0.57 0.87 1.27
Random BHC 2.00 1.33 1.25 0.83 1.00 1.11
Kullback-Leibler - 0.1 2.00 1.00 1.00 1.80 4.87 44.22
Manhattan - 0.1 1.50 5.00 1.75 2.40 4.75 16.25
Algorithm Euclidean - 0.1 1.00 1.00 1.00 1.40 2.71 9.50
Renyi - 0.1 1.50 1.50 1.80 5.38 27.44
Total Variation - 0.1 3.00 3.00 140 267 7.80
Hellinger - 0.1 0.50 1.00 1.00 1.00 1.00 3.17 11.33
Bhattacharyya - 0.1 1.00 1.33 0.80 2.83 9.00
Chan-Darwiche - 0.1 1.00 0.67 1.50 5.00 21.78
HClust k = 2 1.00 0.25 1.00 1.25 1.33 1.25
Kmeans 1.00 1.00 1.00 0.75 0.75 0.92

Table 7.1: Computational costs of 14 algorithms estimated on chestSim500 dataset
by adding one variable at a time. All the algorithms are estimated according to the
variables ordering given by the conditional mutual information.

# of Variables
2 3 4 5 6 7 8 9

Full 1.00 1.00 0.50 1.00 1.00 0.90 1.21

Indep 1.00 0.33 133 0.60 0.83 0.62 1.14

Fast BHC 1.00 0.50 1.00 1.33 1.8 1.85 2.56

Random BHC 3.00 0.67 1.00 1.00 0.88 1.00 1.00 1.12
Kullback-Leibler - 0.1 | 2.00 2.00 1.25 14.67 33.80 138.42 407.92
Manhattan - 0.1 2.00 0.75 3.40 12.50 48.13 326.67
Algorithm Euclidean - 0.1 1.00 1.67 550 11.00 84.33 368.84
Renyi - 0.1 2.00 0.40 1.40 17.00 43.89 156.53 448.05
Total Variation - 0.1 1.00 0.33 1.00 3.00 13.25 65.62 243.83
Hellinger - 0.1 1.00 1.00 2.50 5.40 21.00 78.21 335.82
Bhattacharyya - 0.1 | 0.50 1.50 1.00 3.00 10.50 52.83 343.41
Chan-Darwiche - 0.1 0.50 5.00 7.50 31.71 122.29 382.06

HClust k = 2 0.50 1.33 1.00 080 1.83 1.27 1.56

Kmeans 2.00 033 0.75 1.00 133 1.10 1.59

Table 7.2: Computational costs of 14 algorithms estimated on energyl dataset by
adding one variable at a time. All the algorithms are estimated according to the
variables ordering given by the conditional mutual information.
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# of Variables
2 3 4 5 6 7 8 9

Full 1.00 0.67 1.67 1.00 1.14 1.00

Indep 2.00 0.67 1.00 0.83 067 144 0.68

Fast BHC 2.00 1.00 1.67 0.56 2.43 1.50  1.57 2.21
Random BHC 1.00 0.33 1.00 0.80 1.00 1.00 0.92 0.80
Kullback-Leibler - 0.1 0.50 1.67 8.80 40.80 134.20 156.02
Manhattan - 0.1 0.67 0.67 0.50 156 4.53 18.76 93.03
Algorithm Euclidean - 0.1 1.00 0.67 2.14 14.71 44.00 224.96
Renyi - 0.1 2.00 0.33 1.50 9.60 28.14 116.72 302.85
Total Variation - 0.1 1.00 1.00 9.33 1045 57.60 267.21
Hellinger - 0.1 2.00 0.75 4.20 18.00 82.67 281.00
Bhattacharyya - 0.1 1.00 0.67 1.33 4.33 14.00 63.46 219.59
Chan-Darwiche - 0.1 2.00 2.00 1.25 11.00 51.00 170.93 292.25
HClust k = 2 0.50 1.00 1.25 0.86 0.92 0.96
Kmeans 0.20 1.00 0.60 1.00 1.10 1.22

Table 7.3: Computational costs of 14 algorithms estimated on energy2 dataset by
adding one variable at a time. All the algorithms are estimated according to the
variables ordering given by the conditional mutual information.

# of Variables

2 3 4 5 6
Full 0.67 0.75
Indep 0.50 0.50 1.00
Fast BHC 2.00 0.75 1.67
Random BHC 1.00 0.67 0.60 0.71
Kullback-Leibler - 0.1 0.50 2.50 5.33 68.60
Manhattan - 0.1 3.00 2.20 29.83
Algorithm Euclidean - 0.1 0.50 2.00 34.67
Renyi - 0.1 5.00 5.17 84.38
Total Variation - 0.1 0.67 3.67 30.00
Hellinger - 0.1 4.00 4.00 45.20
Bhattacharyya - 0.1 3.00 2.75 30.67
Chan-Darwiche - 0.1 2.50 7.33 83.67
HClust k = 2 1.00 1.00 0.80
Kmeans 2.00 0.67 1.20

Table 7.4: Computational costs of 14 algorithms estimated on puffin dataset by
adding one variable at a time. All the algorithms are estimated according to the
variables ordering given by the conditional mutual information.

7.3 Relational Models

In this section relational models are described. After introducing definitions, propo-
sitions and theorems that help to understand this class of models, in the final part
of the section the relationships that have been found between these models and the

Staged Trees will be presented. This link represents a novelty in the state of the

170



art. In this regard, the research carried out on this topic is certainly still at the
beginning and many other things will be done in the near future.

Relational models are log-linear models defined on arbitrary discrete sample
spaces by specifying effects associated with any subsets of their cells, even if these
spaces have not a Cartesian product structure [72, [73]. Let X, ..., X, be random
variables taking values in finite sets &7, ..., &}, and denote with Z the sample space,
defined as a non-empty subset of X; x --- x A, and written as a sequence of length

I = |Z| in the lexicographic order.

Definition 36. A statistical model is called relational model if it can be written as

logéd = A" 0, (7.2)
where:

e 6 =(01,...,07), with 6; € (0,1), fori=1,...,1, the parameter associated to
celli € T and Y1 6; =1;

e 0= (01,...,0;)7 are the log-linear parameters of the model;

o the model design matrix A with dimension J x I is a 0—1 full row rank matriz

with at least one 1 in each column.

Then, we say that the model design matriz A defines the relational model RM (A).

The parameters 6 can be understood as probability parameters of Multinomial

distributions, §; = p;, or, for count data, as parameters of Poisson distributions,

Proposition 11. The number J of rows of the model design matrix A is less or

equal of its number I of columns.

Proof. For the definition of a design matrix of a relational model, A is a full row

rank matrix (J). But, for the definition of the rank of a matrix we also have that
J = rank(A) < min(J, I),

which implies that J < [. O]

Proposition [11] states that super-saturated (over parameterized) models can not

be written as relational models, unless they are reparameterized.

Definition 37. Relational models which have a normalizing constant/grand mean/in-

tercept for all the cells i € I are said relational models with the overall effect.
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Proposition 12. Let 17 = (1,...,1) be the row of 1’s of length I. Then, if 17
belongs to the space spanned by the rows of A, the relational model RM(A) is said

to be a model with an overall effect.

From Proposition [12| it follows that if 17 does not belong to the space spanned
by the rows of A, the RM(A) is said to be a model without the overall effect. This
occurs only if 2 < J =rank(A) < I —1.

Theorem 4. If the sum of the rows of the design matrix A is a constant vector
c’' = (c...,c), with ¢ # 0, then 1T belongs to the row space of A and the
relational model RM(A) contains the overall effect.

Proof. Let al’ be the i-th row of A. If ¥/ al’ = ¢”, then it follows that

al =c1” — 1"

i=1 i=1

a )

that is the 1’s vector can be obtain as a linear combination of the rows of A. ]

Theorem [4] gives only a sufficient condition for verifying whether an overall effect

in a relational model is included or not. Consider for instance the following design

111
A= ,
(100)

which does not satisfy that theorem, since its rows sum is the vector (2,1, 1), but

matrix A

its row space contains the 1’s vector.

Theorem 5. Let A be a J x I matriz as in Definition[36 and D a basis of Ker(A).
Then, a dual representation of the relational model RM(A) can be obtained through
D: log 6 = AT holds if and only if D log § = 0.

Proof. 1t follows from the definition of the kernel of a matrix. O

The number of the degrees of freedom K of the relational model is equal to
dim(Ker(A)). Denote with d?,...,d% the rows of D. The dual representation
can be expressed in terms of generalized odds ratios or cross-product differences,
displayed respectively in Equation and , where dt and d~ stands for the

positive and the negative parts of a vector d. By convention, p® = p@pd2 . .. p?l .

dy dy dr
p:_, P2=_4 . PT_y (7.3)
ph p2 pix
pi —ph =0, p% —ph =0, .., plx—pix=0 (7.4)
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A generalized odds ratio in Equation (7.3 is called homogeneous if the sum
of the components of d¥ is the same as the sum of the components of d=, and

non-homogeneous otherwise.

Proposition 13. A relational model RM(A) does not contain the overall effect if
and only if

1. among the generalized odds ratios defining RM(A), there is at least one non-

homogeneous odds ratios;

2. there exists a kernel basis matrix D whose rows satisfy:

dl 140, dd1=0, ..., di1=0.

Proof. According to Definition D has at least one row, say df, that is not
orthogonal to 1: C; = dI # 0. Suppose there exists another row, say d2, that is
not orthogonal to 1 and thus Cy = dg # 0. Then, the vectors d; and d, are linear
independent as the vectors dy and Cad; — C1ds. Note that (Cody — Cld2)T1 = 0;
substitute the row dl with the row Cod? —Cdl and apply the same transformation

with appropriate C’s to the remaining rows, if needed. O

7.3.1 Relational Model Structure with and without the Over-
all Effect
This section deals with adding the overall effect to a relational model which does

not include it and with removing it when it is included. The consequences of adding

or removing the overall effect is studied separately.

Include the Overall Effect in a Relational Model

Let RM(A) be a relational model without the overall effect and RM(A) be the

corresponding augmented model, with A the augmented matrix:
_ 17
A= i
A
Then, the following two Theorems hold. For their proofs, see Klimova et al. [73].

Theorem 6. The dual representation of RM(A) can be obtained from the dual rep-
resentation of RM(A) by removing the constraint specified by the non-homogeneous

odds ratio from the latter.
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Theorem 7. The following holds:

1. RM(A) is a reqular exponential family;

2. RM(A) C RM(A). In particular, RM(A) = {6 € RM(A) : 0y,(6) = 0},
with 0y(8) the overall effect of §;

3. RM (A) is minimal, in the sense that any reqular exponential family containing

RM(A) also contains RM(A).

Example 2. The relational models generated by the matrices

1110 bbb
A= : A=([1110
0011
0011
consist of positive probability distribution which can be written in the following para-

metric forms:

1= p1= 0o B
P2 = g p2=Bo S
3 =01 Qg p3 = Bo b1 B2
Ps = Q2 pa = Bo o,

where By is the overall effect. The dual representation can be written in the log-linear
form, using dy = (—=1,0,1,—1)T € Ker(A), and dy = (—1,1,0,0)7 € Ker(A) N

Ker(A):

{le logp =20

{dg log p = 0.
d¥ logp =0

By Theorem|[0, after that the overall effect is added, the model specification does
not include the non-homogeneous constraint anymore. In terms of the generalized

odds ratios:

ps _ 1
P1 P4 {[)1:1
n 1 p2

p2
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Remove the Overall Effect in a Relational Model

A relational model with the overall effect can be reparameterized such that its design
matrix has a row of 1’s, and because of full row rank, this vector is not spanned by
the other rows.

The implication of the removal of the overall effect is investigated using a design
matrix of that structure, call it A;. By the removal of the row 17, one may obtain
a different design matrix on the same sample space, but it may happen that there
exists a cell 79, whose only parameter is the overall effect, and after its removal, the
1o-th column contains zeros only. In such cases, to have a proper design matrix,
such columns, that is such cells, need to be removed. Denote with Zy the set of all
cells iy and let Iy = |Zy|. Then, the reduced design matrix A; is obtained from A
after removing the row of 1’s and deleting the columns which, after this, contain
only zeros. This is a design matrix on Z \ Z;. Using this terminology, the matrix

A; can be written as

A1 = (172[\]0) 1}; ) .
Ay O -x
If the sample spaces of RM(A;) and RM(A,) are the same, i.e. when T is
empty, the reduced model is the subset of the original one, consisting of the distri-
butions whose overall effect is zero (see Theorem . If the sample space is reduced,
the relationship between the kernel basis matrices is described in Theorem [§ For

its proof see Klimova et al. [73].
Theorem 8. The following holds:
1. dim(Ker(A,)) = dim(Ker(A,)) — I + 1;

2. the kernel basis matriz Dy of Ay may be obtained from the kernel basis matriz
D, of A, by deleting the columns in Iy and then leaving out the redundant

rows.

Example 3. Let RM(A,) be the relational model generated by

A1:

S =
_ O
— = =
—_ O
o O =
o O =

The corresponding system of equations are:
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P1 = &g &1 l0951:90+91

P2 = Qp Q9 log 6y = 0y + 0

P3 = Qg 0 Qg log 63 = 0y + 01 + 02
—

Ps = Qg Qg log 04 = 6y + 0,

D5 = Qg log 05 = 6

Pe = Qg log 06 = 0Oy

Hence, Iy = {5, 6}, since the 5-th and 6-th columns of A, have only zeros, after
the elimination of the first row which has only 1°s, corresponding to the overall effect.

In terms of the generalized odds ratios, the model can be written as:

p3 ps
P1 p2
P3 pe _ |
p1 p2
Pz _ 1

P4
Removing the row 17 and the last two columns corresponding to Iy leads to the

definition of the reduced design matriz A;:

1 1
A = X O.
0111

The model RM (A1) does not have the overall effect and can be specified by two

generalized odds ratios:

p3 _1

pP1 pa

- |
P4

These odds ratios are defined on the smaller probability space and may be obtained
by removing ps and pg and the redundant odds ratio from the ones specified from the

original model characterized by A;.

7.3.2 Relationship between Relational Models and Staged
Trees

In this section the relationship between Staged Trees and relational models is inves-
tigated. These two classes of models for categorical data are intersected but are not

identical, as shown in the following two examples, where the first shows that not all
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relational models can be seen as Staged Trees and the second that not all Staged

Trees are relational models.

Example 4. Relational Model which is not a Staged Tree. In Kawamura
et al. [677], three types of baits were used in traps to catch crabs: fish alone, sugarcane
alone, fish-sugarcane combination. The sample space consists of three cells, T =
{(0,1),(1,0),(1,1)}, and the cell (0,0) is absent by design, because there were no
traps without bait. Under the AS independence (Klimova & Rudas, 2015), the cell
parameter associated with the other two cells. This is a relational model without the

overall effect, generated by the matriz

1 01
A= :
01 1
The overall effect is not included in the model defined by A. We also have that
there does not exist a Staged Tree corresponding to the model defined by that matriz.

Example 5. Staged Tree which is not a Relational Model. FExample of coin
tossing: suppose that a coin is flipped once and only if the outcome is heads it is
flipped again. Let be py the probability of heads and py = 1 — py the probability of
tails. This experiment can be represented by the Staged Tree in Figure [7.3.

Figure 7.3: Staged Tree which is not a relational model.

pP1 = p2 log 61 = 0
P2 = p1 P2 = log 09 = 0 + 0
ps = p} log 65 =2 6,
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The design matriz A corresponding to this model is:
010
A= ,
11 2

Definition 38. The model design matriz A associated to a Staged Tree is built

which s not a 0 — 1 matriz.

according to its root-to-leaf paths. The number of root-to-leaf paths corresponds to
the number of columns in A, while the number of distinct probability parameters

associated to floret distributions of the whole tree characterizes the number of rows

n A.

For an example of the construction of the design matrix A associated to a Staged
Tree see Example [6] Note that the probability distribution associated to each root-
to-leaf path of the tree can be obtained as the product of the floret probability
parameters along the considered root-to-leaf path. Then, Definition [39| gives a char-

acterization of a type of Staged Trees we are interested on.

Definition 39. Staged Trees are said multilinear if and only if they do not have

repeated parameters in each root-to-leaf path.

Proposition 14. Multilinear Staged Trees can be formalized through a design matriz
A with 0 — 1 values.

Proof. The proof follows from the definition of a design matrix for a multilinear
Staged Tree. Each root-to-leaf path is the product of distinct parameters and this
implies that each row of A has only zeros or ones. A value greater than 1 would be
present in A only if a floret probability parameter were repeated in a root-to-leaf

path, but, for definition, this is not possible for multilinear Staged Trees. O

For instance, Staged Tree in Figure is not multilinear, since ps3 is obtained as
the square of p;. From this it follows that Staged Trees which are not multilinear
have a corresponding design matrix A which does not contain only 0 or 1, leading
then to a not relational model. For this reason, next only multilinear Staged Trees
will be considered. Note that Stratified Staged Trees are multilinear, since probabil-
ity distributions can be defined through the same parameters vector only for vertices

in the same stratum of the tree.

Proposition 15. Stratified Staged Trees are relational model RM(A*), with A*
a basis of the vector space gemerated by the rows of the matrix A built according
the root-to-leaf paths of the tree. A* has a number of rows smaller or equal of the
number of columns (J < 1I).
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Proof. The original model design matrix A corresponding to the parametrization
deduced from the Stratified Staged Tree defines a saturated model. This is for
the sum up to one constraints for each floret distributions, which are not explicitly
considered in A. This issue is overcome by obtaining a new design matrix A* as a
basis of the vector space generated by the rows of the original A. The so-built A*

has a number of rows smaller or equal of the number of its columns (J < I). O

Corollary 2. Let T = (V, E) be a multilinear Staged Tree. Then, T is a relational

model containing an overall effect.

Proof. If the model design matrix A built according to root-to-leaf paths in 7T is
not full row rank, through Proposition 15| a full row rank matrix A* can be always
obtained. Then, the model defined by A* is the relational model RM(A*).

Denote now with vy the root vertex of 7 and F(vg) = (vo, E(vp)) the corre-
sponding floret, with kg = |E(vp)| the number of outgoing edges from vg. Then, the
space spanned by the first kg rows of the original design matrix A contains the 1’s
vector. This is because each root-to-leaf path of a multilinear Staged Tree contains
exactly one eg € F(vg). But, for construction, also the row space spanned by A*
contains that vector, since A* is a basis of the vector space generated by the rows
of the original A. m

Example 6. Consider the Stratified Staged Tree associated to an independence

model between two variables, X1 and Xs, whose graphical representation is depicted

in Figure 7).

Figure 7.4: Stratified Staged Tree representing marginal independence between X;
and Xs.
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Denote with O and 1 the possible outcomes for X1 and X, then the sample space
is T = {0,1}2. Vertices v, vy, vs and vg are the leaves of the tree and they correspond
to the joint probability P(X, = x1, Xo = x3), for (x1,22) € Z. Let py,p2, ps and py be
the probabilities associated to the leaves, respectively from the top to the bottom of the
tree. Hence, the corresponding joint probabilities and log-linear model probabilities

can be computed as:

P1=p1 P3 log 61 = 61 + 03
D2 = p1 P4 log 09 = 61 + 04
— ,
D3 = P2 P3 log 03 = 02 + 03
Ps = P2 P4 log 04 = 05 + 04

with 6; = p; and 0; = log p;, for i =1,2,3,4. As a consequence, the design matrix

A embedding this model is:

O = O =
_ O O =
O = = O
—_ O = O

A has 4 rows since the florets of the tree have four distinct parameters (p1, p2, ps
and py) and 4 columns for the four root-to-leaf paths with probabilities pi,ps,ps
and py. Note that A is not full rank, since the first row can be obtain as a linear
combination of the others: al = af +al —al, with al the i-th row of A. Deleting

the first row, a full row rank matriz A* is obtained:

=

I
o = o
— o O
S =
_ o

whose row space contains 17 and then RM(A*) contains the overall effect. The new

system of equations is

P1 = p2
b2 = p3

b3 = p1 P2 ,
Pa = p1 p3
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which can be represented with a Staged Tree structure only as in Figure which
unfortunately is not a Staged Tree. This is because the sum up to one for each floret
must be valid, but setting ps+ p3 = 1 leads to define py = 0. This suggests that there
exists always a design matrix A* representing the same statistical model embedded

in the Stratified Staged Tree with design matriz A, but there is not always a Staged
Tree representation of A*.

U1

Q‘b

Vg ——— > VU9

P
P Uy
N
<

2
U3
X

Us

Figure 7.5: Model parametrization which can not be seen as a Staged Tree.

In conclusion, a multilinear Staged Tree model can be always reparameterized
in order to be written as a relational model in the form of Equation (7.2 through
a design matrix A*. Furthermore, it always includes an overall effect (see Corollary

. Figure summarizes these relations existing between relational models and
Staged Trees.

RELATIONAL MODELS
STAGED TREES

WITH

OVERALL  MULTILINEAR
EFFECT

WITHOUT
OVERALL
EFFECT

NOT MULTILINEAR

Figure 7.6: Graphical representation of relation between relational models and
Staged Trees.
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An important consequence for multilinear Staged Trees of being relational mod-
els with an overall effect is that they are members of regular exponential family,
according to Theorem [7] This implies that the theory about maximum likelihood
estimates (MLEs) of model parameters and the goodness of fit tests are analogous
to those computed under traditional log-linear models and already introduced in
Chapter 3} for details see Klimova et al. [72, [73] and Klimova and Rudas [71].

Another interesting result shown in Klimova et al. [73] is that if the overall effect
is missing in the model, the latter belongs to a curved exponential family, while if
the overall effect is added in the model, the exponential family becomes the smallest

regular containing the curved one (Theorem .

7.4 Conclusion

In Section a method is proposed to isolate vertices of the tree corresponding to
zero counts in contingency tables in unobserved stages and, not considering them
in the model search space, it drastically reduces the computational burden of es-
timation algorithms. Section exhibits computational times for algorithms from
stagedtrees applied to four datasets to monitor the effect of zero observations in
some vertices. In particular, this computational burden is calculated as a ratio be-
tween the time of algorithms where vertices of the Staged Tree are not isolated in a
own stage and those where are isolated. It shows that it is crucial to not consider
unobserved vertices in the model search space.

Section gives the theory of relational models. These models are introduced
in this thesis since they are strongly related to Stratified Staged Trees, which are for
construction multilinear trees. Proposition[I5]and Corollay [2] states that a Stratified
Staged Tree can be always seen as a relational model as in Equation ([7.2), with a
reparameterization of its transition probabilities. The theory on relational models
guarantees also that the maximum likelihood estimation and statistical tests for
Stratified Staged Trees are the traditional ones for log-linear models. An important
area of application of relational models is the case when several binary variables
are observed, but the combination that no variable is present is either logically
impossible (structural zero) or is possible but was left out from the study design
(observed zero). Section m gives details on the relationship existing between
relational models and Staged Trees: Stratified Staged Trees are relational models
with the overall effect. This section is only a first result of the research carried out

on this topic, which can be used as a starting point for future works.
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Conclusion

This work provides several new contributions to the state of the art on Staged Trees

and Chain Event Graphs, among which the main ones are the following:

score-based and distance-based algorithms for learning the stage structure of
Staged Trees. The first are based on the minimization of AIC or BIC index or
on the maximization of the penalized log-likelihood, while the second can be
implemented using any distance or divergence that can be calculate between

two discrete probability distributions [20];

algorithms based on conditional entropy, mutual information and conditional
mutual information to establish a variables ordering to use for the construction
of a Stratified Staged Tree. This is because the ordering of strata in the tree

plays a crucial role [21];

how to treat vertices of tree where no data is observed. It is empirically shown
how learning algorithms are appealing also from a computational point of view
when these vertices are excluded from the model search space. Otherwise,
considering also them, they result too slow with respect to those from the
state of the art;

algorithm to obtain the Staged Tree representation embedding the same sta-
tistical model of a given Bayesian Network and a topological order of the

considered variables [121];

new class of Directed Acyclic Graph, named Asymmetric-labeled DAG (AL-
DAG), which gives a BN representation of a given Staged Tree. The ALDAG
is a minimal DAG such that the statistical model embedded in the Staged
Tree is contained in the one associated to the ALDAG. This is possible thanks
to the use of colored edges, so that each color indicates a different type of

conditional dependence: total, context-specific, partial or local [121];

Staged Trees view as a statistical tool for classification purpose. Staged Tree

Classifiers are introduced, which exhibit comparable predictive results based
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on accuracy with respect to algorithms from state of the art of machine learning

such as neural networks and random forests [21];

* R package stagedtrees which permits to implement structural learning algo-
rithms for Staged Trees and Chain Event Graphs for a set of categorical vari-
ables. Various functionalities to provide inferential, visualization, descriptive
and summary statistics tools for such models and about their graph structure
are developed [120].

In particular, this work offers in its first chapter an overview of the state of the art
on Probabilistic Graphical Models. It exhibits also the usage of Undirected Graphs
in a pediatric dentistry framework, providing interesting results and conclusions
about the mechanism according to which dental caries form in children. The details
of an estimation criterion based on neighborhood regression is reported, since it is
useful for a real application in Chapter 2. Indeed, Chapter 2 proposes a complex
procedure for an insurance analysis, which starts from a potentially large number
of indicators collected at different time frequencies, selects the most relevant ones
through Probabilistic Graphical Models and uses regressive models to forecast trends
for two response variables. The use of PGMs makes the variable selection more
understandable and interpretable even for not statisticians. The estimated PGMs
turned out to be useful to confirm known independence relationships, to validate
the used dataset and mainly to identify unexpected relationships. Robustness of
estimates and data sensitivity, which are crucial in an insurance context, are dealt
with a bootstrap approach. Goodness of fit and of estimates is expressed via the
percentage error and the mean square error, resulting the GLARMA model the best
fitting model for this analysis, among those tried.

Chapter 3 gives the motivations for which Staged Trees and Chain Event Graphs
have been introduced in the last decade in the state of the art of PGMs. Shortly,
in real application with the increase of available data, methods that do not allow
to identify asymmetric or context-specific conditional independence relationships,
as for instance Bayesian Networks and Undirected Graphs, are increasingly unus-
able. Innovative learning algorithms for the estimation of the stage structure of
Staged Trees are proposed. Three algorithms based on fundamentals of probability
and information theory, i.e. mutual information, conditional mutual information
and conditional entropy, are introduced in order to obtain a variables ordering to
use for the construction of the Staged Tree for a set of variables of interest. The
chapter ends providing methods for computing confidence intervals for probability

parameters of Staged Trees. If one is interested to confidence intervals for many
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stages probability distributions, the Goodman method results to be more robust,
since it uses a Bonferroni correction. A considerable amount of care must be used
in calculating confidence intervals in presence of very small sample sizes for some

nodes of the tree and with highly unbalanced, almost degenerate, distributions.

A particular Directed Acyclic Graph encoding also these types of conditional in-
dependence statements is proposed in Chapter 4: Asymmetry-Labeled DAG (ALDAG).
It is able to represent in a unique graph total, context-specific, partial and local con-
ditional independences by depicting edges between nodes with different colors. In
the chapter the close relationship that exists between BNs and Staged Trees is out-
lined, proposing an algorithm which takes as input a BN and a topological order of
variables and returns the corresponding Stratified Staged Tree embedding the same
statistical model. Also the opposite algorithm is implemented: it takes in input a

Staged Tree and returns the corresponding ALDAG.
Chapter 5 exhibits the R package stagedtrees which permits to estimate a

Staged Tree from a given dataset using structure learning algorithms based on score
optimization or clustering of probability distributions or distance/divergence be-
tween pair of probability distributions. An exhaustive simulation study on nine
datasets is conducted to show the performances of each algorithm as the parameters
that have to be set change. The application on the pediatric dentistry dataset car-
ried out in Chapter 1 is continued through Staged Trees, which are able to manage
the presence of structural zeros in this dataset. Furthermore, many asymmetric

conditional independences which are material on the current research are detected.

Chapter 6 of this work shows as Staged Trees can be view as a classification tool.
In particular, Staged Tree Classifiers are defined, with a focus on the Naive Staged
Tree Classifier which is the Staged Tree representation of the Naive Bayes Classifier.
It appears that Staged Tree Classifiers have predictive performances comparable
with those obtained with the state of the art classifiers. This is the results of
a classification analysis carried out on fourteen datasets, on which accuracy, area
under the ROC curve and computational time of algorithms from stagedtrees and
the most famous classifiers in the state of the art are compared. The great advantage
of the algorithms from stagedtrees is that they provide a graphical representation

of the results, making them more understandable to anyone has to interpret them.

In the last chapter the importance of manage vertices in Staged Trees associated
to zero counts in contingency tables is explained in detail from theoretical, practical
and computational point of view. Indeed, computational times of all algorithms in
stagedtrees have been compared when unobserved vertices, i.e. vertices associated

to contingency tables with structural or observed zero counts, are left untouched
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from the model search or not. It turns out that not considering these vertices in the
analysis reduces considerably the computational times. The chapter offers also a
review of the state of the art on relational models as well as the relationship existing
between these models and Staged Trees. It follows that Stratified Staged Trees
are relational models with the overall effect, ensuring that the maximum likelihood

estimates of its parameters are unbiased.
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Appendix

Chapter 1

4 unit identification variable | Id; Progressive number; Gender; Ethnicity

Binary variables. If the child was born in time;
has been breastfed, if yes, if he/she has been breastfed in an exclusive or mixed way;
has used the feeding bottle; has used the pacifier; has sucked his thumb;

has received instructions of oral hygiene; has suffered tooth or face trauma; takes fluoride.
18 general

Other variables:
questionnaire variables
how many times each day the child brushes his teeth.

For how many months the child has been breastfed; used the feeding bottle;

used the pacifier; sucked his thumb.

Binary variables. If the child has had tonsils or adenoids surgery; allergies;
good oral hygiene; only milk teeth; an infantile or normal swallowing; lip competence;
normal or oral type of breathing; recurrent otitis; wears a cross bite;

drinks juices, tea or sugary drinks; drinks coca cola, fanta or other carbonated drinks.
Ternary variables. If the child eats fruit or vegetables daily, weekly or occasionally;

drinks juices, tea or sugary drinks daily, weekly or occasionally;
drinks coca cola, fanta or other carbonated drinks daily, weekly or occasionally;
has mesial, head to head or distal step right occlusion;
29 variables measured at the | has mesial, head to head or distal step left occlusion;
three timepoints age 3, 4 and 5 | has first, second or third class of right canine key;
has first, second or third class of left canine key;
has a bilateral, right unilateral or left unilateral cross bite;
has a right deflected, centered or left deflected upper midline;
has a right deflected, centered or left deflected lower midline;

has a normal, low or interposed posture of tongue.
Other variables:

child age; weight; height; number of caries and of fillings; mm of overbite and of overjet.

Table 7.5: Measured variables in the longitudinal study.
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Chapter 3

The main properties and relations among the distances introduced in Chapter 3 are

the following:

« 8(p,q) = 3 di(p,q)
o« Dir(pllg) >0

- lim Do |l ¢) = Drrlp || q)

o lim Du(p | q) = —21log BC(p,q) = —2log Ypex \/p(x) ¢(2)

a—3

« 0 < BC(pg <1 = 0 < Dpp,q) <

« Pinsker’s inequality: i(p,q) < % Dkr(p | q)

« H(p,q) =1 — BC(p,q) = V1 — e Psl:0)

« H*(p,q) < d(p,q) < V2 H(p,q)

Mutual information, conditional mutual information and conditional entropy

have many properties, among which the main ones are the following:

1. I(X;Y|Z) = H(X,Z) + HY,Z) — H(Z) — HX,Y,Z) =
= H(X|Z) - HX|Y,Z) =
= H(X|Z)+ H(Y|Z) — H(X,Y|Z)
2. I(X;Y[Z) = Dgr(p(z,y,2) || p(z]2) p(yl2) p(2))
3. 1(X:Y:2) = I(X;2) + I(X:Y|Z)
4. I(X;Y|Z) > 0 always
5. 1(X:Y) = I(Y; X)
6. I(X;Y) = H(X) — HX|Y) =
= H(Y) — HY|X) =
= H(X)+ H(Y) — HX,Y) =
(X,Y) — HXJY) — H(Y[X)

l
=

7. 1(X;Y) = Ey| Dr(p(z,y) | p(a))]
8. H(X) > H(X|Y)
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9. HY) = I(Y,Y)

10. HY|X) = 0 <= X and Y completely dependent

Chapter 5
Model df logLik AIC BIC  Accuracy Computational Time
Indep 5.00 -2151.47 4312.94 4336.36 0.70 0.05
Full 15.00 -1914.68 3859.36 3929.63 0.85 0.05
HC - Indep 10.30 -1919.84 3860.27 3908.52 0.85 0.12
BHC 10.30 -1919.85 3860.30 3908.55 0.85 0.06
Fast BHC 10.10 -1921.83 3863.85 3911.17 0.85 0.06
Random BHC 9.10 -1921.83 3861.85 3904.48 0.85 0.06
Kullback-Leibler - 0.01 13.30 -1914.88 3856.36 3918.67 0.85 0.05
Kullback-Leibler - 0.05 11.50 -1916.79 3856.57 3910.45 0.85 0.05
Kullback-Leibler - 0.20  9.40 -1927.55 3873.90 3917.93 0.85 0.06
Kullback-Leibler - 0.50  8.00 -1947.56 3911.12 3948.59 0.85 0.05
Manhattan - 0.01 14.80 -1914.68 3858.96 3928.30 0.85 0.05
Manhattan - 0.05 13.80 -1914.74 3857.09 3921.73 0.85 0.06
Manhattan - 0.20 11.10 -1917.55 3857.30 3909.29 0.85 0.05
Manhattan - 0.50 8.40 -1940.09 3896.98 3936.34 0.85 0.05
Euclidean - 0.01 14.70 -1914.68 3858.77 3927.63 0.85 0.05
Euclidean - 0.05 13.60 -1914.76 3856.73 3920.44 0.85 0.05
Euclidean - 0.20 10.00 -1921.27 3862.53 3909.38 0.85 0.06
Euclidean - 0.50 7.00 -1956.18 3926.35 3959.14 0.85 0.06
Renyi - 0.01 13.60 -1914.76 3856.73 3920.44 0.85 0.06
Renyi - 0.05 11.90 -1916.18 3856.16 3911.91 0.85 0.05
Renyi - 0.20 10.10 -1920.78 3861.77 3909.08 0.85 0.06
Renyi - 0.50 8.60 -1937.35 3891.90 3932.19 0.85 0.06
Total Variation - 0.01  14.80 -1914.68 3858.96 3928.30 0.85 0.05
Total Variation - 0.05 13.80 -1914.74 3857.09 3921.73 0.85 0.05
Total Variation - 0.20 11.10 -1917.55 3857.30 3909.29 0.85 0.06
Total Variation - 0.50  8.40 -1940.09 3896.98 3936.34 0.85 0.06
Hellinger - 0.01 11.90 -1916.18 3856.16 3911.91 0.85 0.06
Hellinger - 0.05 9.40 -1927.55 3873.90 3917.93 0.85 0.06
Hellinger - 0.20 7.00 -1956.18 3926.35 3959.14 0.85 0.05
Hellinger - 0.50 6.00 -2058.07 4128.13 4156.24 0.70 0.06
Bhattacharyya - 0.01  10.80 -1918.35 3858.30 3908.89 0.85 0.05
Bhattacharyya - 0.05 ~ 8.20 -1943.60 3903.59 3942.01 0.85 0.05
Bhattacharyya - 0.20  6.00 -2058.07 4128.13 4156.24 0.70 0.06
Bhattacharyya - 0.50 5.00 -2151.47 4312.94 4336.36 0.70 0.06
Chan-Darwiche - 0.01  15.00 -1914.68 3859.36 3929.63 0.85 0.05
Chan-Darwiche - 0.05 14.50 -1914.69 3858.38 3926.31 0.85 0.05
Chan-Darwiche - 0.20  13.30 -1914.88 3856.36 3918.67 0.85 0.05
Chan-Darwiche - 0.50 11.80 -1916.36 3856.33 3911.61 0.85 0.05
HClust k = 2 8.00 -1957.83 3931.65 3969.13 0.85 0.05
HClust k = 3 10.00 -1929.41 3878.82 3925.67 0.85 0.05
HClust k = 4 12.00 -1919.89 3863.77 3919.99 0.85 0.05
Kmeans k = 2 8.00 -1956.07 3928.14 3965.62 0.85 0.06
Kmeans k = 3 10.00 -1929.40 3878.80 3925.65 0.85 0.06
Kmeans k = 4 12.00 -1920.99 3865.98 3922.19 0.85 0.05
Refined BN 9.00 -1916.46 3850.92 3893.08 0.85 0.08

Table 7.6: Mean results for stagedtrees algorithms over 10 replications for Asym
dataset. Experiments performed on a standard laptop with 8 GB of RAM and an
i5 3.1 GHz CPU.
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Model df logLik AlIC BIC  Accuracy Computational Time

Indep 13.40 -1170.78 2368.35 2421.84 0.54 0.08

Full 73.20 -897.04 1940.49 2232.66 0.85 0.08

HC - Indep 20.40 -886.90 1814.60 1896.03 0.85 2.17
BHC 20.50 -886.57 1814.14 1895.96 0.85 0.32

Fast BHC 20.10 -908.36  1856.92 1937.14 0.85 0.09
Random BHC 36.10 -912.44 1897.07 2041.16 0.84 0.08
Kullback-Leibler - 0.01 44.50 -886.20 1861.40 2039.02 0.84 0.11
Kullback-Leibler - 0.05 32.10 -884.94 1834.08 1962.21 0.85 0.10
Kullback-Leibler - 0.20 24.10 -897.33 1842.85 1939.04 0.84 0.10
Kullback-Leibler - 0.50 19.80 -912.40 1864.40 1943.43 0.84 0.10
Manhattan - 0.01 54.80 -889.05 1887.70 2106.43 0.84 0.09
Manhattan - 0.05 45.40 -887.57 1865.94 2047.15 0.84 0.09
Manhattan - 0.20 29.80 -889.01 1837.62 1956.57 0.84 0.09
Manhattan - 0.50 20.00 -908.69 1857.38 1937.21 0.84 0.09
Euclidean - 0.01 53.60 -888.34 1883.88 2097.82 0.84 0.08
Euclidean - 0.05 42.40 -887.28 1859.35 2028.59 0.85 0.09
Euclidean - 0.20 26.00 -894.07 1840.14 1943.91 0.84 0.09
Euclidean - 0.50 18.00 -914.10 1864.21 1936.05 0.83 0.09
Renyi - 0.01 49.40 -887.82 1874.44 2071.61 0.84 0.09
Renyi - 0.05 38.00 -885.15 1846.31 1997.98 0.85 0.09
Renyi - 0.20 29.00 -885.63 1829.25 1945.00 0.84 0.09
Renyi - 0.50 22.80 -902.83 1851.26 1942.26 0.84 0.10
Total Variation - 0.01 54.80 -889.05 1887.70 2106.43 0.84 0.08
Total Variation - 0.05 45.40 -887.57 1865.94 2047.15 0.84 0.08
Total Variation - 0.20 29.80 -889.01 1837.62 1956.57 0.84 0.09
Total Variation - 0.50 20.00 -908.69 1857.38 1937.21 0.84 0.09
Hellinger - 0.01 33.50 -884.68 1836.35 1970.07 0.85 0.09
Hellinger - 0.05 24.00 -898.07 1844.14 1939.93 0.84 0.09
Hellinger - 0.20 18.00 -914.89 1865.79 1937.64 0.84 0.09
Hellinger - 0.50 17.50 -925.12 1885.24 1955.09 0.81 0.09
Bhattacharyya - 0.01  30.00 -885.16 1830.33 1950.07 0.84 0.09
Bhattacharyya - 0.05 21.10 -908.78 1859.77 1943.99 0.84 0.09
Bhattacharyya - 0.20 17.70 -915.17 1865.74 1936.39 0.84 0.09
Bhattacharyya - 0.50  15.40 -1021.94 2074.68 2136.15 0.54 0.09
Chan-Darwiche - 0.01  59.60 -892.09 1903.37 2141.27 0.85 0.09
Chan-Darwiche - 0.05 58.10 -891.83 1899.86 2131.77 0.84 0.09
Chan-Darwiche - 0.20 51.60 -889.92 1883.03 2088.99 0.84 0.09
Chan-Darwiche - 0.50 38.90 -885.24 1848.28 2003.54 0.84 0.09
HClust k = 2 20.40 -904.68 1850.17 1931.59 0.84 0.08
HClust k = 3 26.40 -894.35 1841.50 1946.87 0.84 0.08
HClust k = 4 32.00 -887.79 1839.58 1967.31 0.84 0.08
Kmeans k = 2 20.40 -905.75 1852.30 1933.72 0.84 0.08
Kmeans k = 3 26.40 -890.17 1833.13 1938.51 0.84 0.08
Kmeans k = 4 32.00 -887.50 1839.00 1966.73 0.84 0.08
Refined BN 18.50 -892.87 1822.73 1896.58 0.85 1.41

Table 7.7: Mean results for stagedtrees algorithms over 10 replications for
chestSim500 dataset. Experiments performed on a standard laptop with 8 GB
of RAM and an i5 3.1 GHz CPU.
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Model df logLik AIC BIC Accuracy Computational Time

Indep 8.00 -69495.80 139007.61 139076.38 0.69 2.68

Full 63.00 -54797.79 109721.58 110263.17 0.77 2.68

HC - Indep 24.50 -54780.72 109610.44 109821.05 0.77 3.06
BHC 24.50 -54780.72 109610.44 109821.05 0.77 2.74

Fast BHC 24.40 -54797.71 109644.22 109853.98 0.77 2.72
Random BHC 27.20 -54792.90 109640.20 109874.03 0.77 2.67
Kullback-Leibler - 0.01 45.20 -54783.11 109656.61 110045.18 0.77 2.69
Kullback-Leibler - 0.05 29.50 -54882.73 109824.47 110078.07 0.77 2.69
Kullback-Leibler - 0.20 24.70 -54921.32 109892.05 110104.38 0.76 2.76
Kullback-Leibler - 0.50 16.00 -54950.54 109933.09 110070.63 0.76 2.68
Manhattan - 0.01 49.50 -54784.34 109667.68 110093.21 0.77 2.67
Manhattan - 0.05 40.30 -54778.43 109637.47 109983.91 0.77 2.67
Manhattan - 0.20 21.30 -54887.62 109817.84 110000.95 0.77 2.67
Manhattan - 0.50 16.00 -54950.54 109933.09 110070.63 0.76 2.66
Euclidean - 0.01 44.70 -54779.78 109648.96 110033.23 0.77 2.73
Euclidean - 0.05 38.10 -54778.18 109632.57 109960.10 0.77 2.86
Euclidean - 0.20 19.80 -54897.22 109834.04 110004.25 0.77 2.79
Euclidean - 0.50 15.00 -57872.08 115774.16 115903.11 0.70 2.71
Renyi - 0.01 50.10 -b54787.43 109675.07 110105.76 0.77 2.73
Renyi - 0.05 38.50 -54871.66 109820.32 110151.29 0.77 2.70
Renyi - 0.20 25.80 -54906.76 109865.13 110086.92 0.77 2.71
Renyi - 0.50 21.70 -54942.22 109927.84 110114.38 0.76 2.69
Total Variation - 0.01  49.50 -54784.34 109667.68 110093.21 0.77 2.69
Total Variation - 0.05 40.30 -54778.43 109637.47 109983.91 0.77 2.71
Total Variation - 0.20 21.30 -54887.62 109817.84 110000.95 0.77 2.71
Total Variation - 0.50 16.00 -54950.54 109933.09 110070.63 0.76 2.71
Hellinger - 0.01 30.90 -54872.56 109806.93 110072.56 0.77 2.73
Hellinger - 0.05 21.70 -54918.43 109880.27 110066.82 0.76 2.74
Hellinger - 0.20 15.00 -55342.04 110714.09 110843.04 0.76 2.67
Hellinger - 0.50 14.00 -59134.06 118296.11 118416.47 0.69 2.66
Bhattacharyya - 0.01  26.00 -54899.67 109851.33 110074.85 0.77 2.68
Bhattacharyya - 0.05  16.00 -54950.54 109933.09 110070.63 0.76 2.67
Bhattacharyya - 0.20  14.00 -59134.06 118296.11 118416.47 0.69 2.67
Bhattacharyya - 0.50  11.00 -59926.86 119875.71 119970.27 0.69 2.68
Chan-Darwiche - 0.01  63.00 -54797.79 109721.58 110263.17 0.77 2.67
Chan-Darwiche - 0.05 63.00 -54797.79 109721.58 110263.17 0.77 2.67
Chan-Darwiche - 0.20 62.00 -54799.82 109723.65 110256.64 0.77 2.68
Chan-Darwiche - 0.50 55.70 -54795.84 109703.09 110181.92 0.77 2.67
HClust k = 2 15.00 -57814.20 115658.40 115787.35 0.72 2.67
HClust k = 3 19.00 -54872.81 109783.62 109946.96 0.77 2.67
HClust k = 4 23.00 -54804.19 109654.38 109852.10 0.77 2.66
Kmeans k = 2 15.00 -58550.45 117130.89 117259.84 0.70 2.67
Kmeans k = 3 19.00 -55017.23 110072.46 110235.79 0.77 2.85
Kmeans k = 4 23.00 -54844.36 109734.71 109932.44 0.77 2.77
Refined BN 21.00 -54778.87 109599.74 109780.27 0.77 2.94

Table 7.8: Mean results for stagedtrees algorithms over 10 replications for Fal1E1d
dataset. FExperiments performed on a standard laptop with 8 GB of RAM and an
i5 3.1 GHz CPU.
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Model df logLik AlIC BIC  Accuracy Computational Time
Indep 8.70  -3525.04 7067.49 7107.47 0.46 0.15
Full 142.40 -3264.92 6814.65 7469.09 0.46 0.14
HC - Indep 15.30 -3282.52 6595.64 6665.96 0.44 12.22
BHC 18.80 -3260.57 6558.73 6645.13 0.42 7.30
Fast BHC 1470 -3361.31 6752.02 6819.58 0.44 0.17
Random BHC 84.80 -3314.66 6798.92 7188.65 0.45 0.14
Kullback-Leibler - 0.01  42.10 -3244.74 6573.68 6767.16 0.45 0.46
Kullback-Leibler - 0.05 26.70 -3251.73 6556.85 6679.56 0.44 0.47
Kullback-Leibler - 0.20 16.30 -3286.16 6604.92 6679.84 0.44 0.45
Kullback-Leibler - 0.50  10.80 -3364.85 6751.29 6800.93 0.43 0.47
Manhattan - 0.01 93.80 -3247.62 6682.84 7113.92 0.46 0.21
Manhattan - 0.05 55.30 -3242.87 6596.34 6850.48 0.46 0.23
Manhattan - 0.20 25.90 -3252.61 6557.02 6676.05 0.44 0.24
Manhattan - 0.50 13.30 -3313.82 6654.23 6715.36 0.43 0.24
Euclidean - 0.01 86.40 -3245.93 6664.66 7061.73 0.46 0.23
Euclidean - 0.05 46.40 -3243.19 6579.19 6792.43 0.45 0.25
Euclidean - 0.20 21.80 -3262.60 6568.80 6668.99 0.44 0.25
Euclidean - 0.50 9.90 -3394.15 6808.10 6853.60 0.43 0.26
Renyi - 0.01 50.30 -3244.01 6588.62 6819.79 0.46 0.46
Renyi - 0.05 31.20 -3248.15 6558.71 6702.10 0.45 0.47
Renyi - 0.20 22.10 -3263.11 6570.43 6671.99 0.44 0.46
Renyi - 0.50 15.00 -3294.17 6618.34 6687.28 0.44 0.47
Total Variation - 0.01  93.80 -3247.62 6682.84 7113.92 0.46 0.21
Total Variation - 0.05  55.30 -3242.87 6596.34 6850.48 0.46 0.23
Total Variation - 0.20  25.90 -3252.61 6557.02 6676.05 0.44 0.24
Total Variation - 0.50  13.30 -3313.82 6654.23 6715.36 0.43 0.24
Hellinger - 0.01 27.50 -3250.69 6556.39 6682.77 0.44 0.26
Hellinger - 0.05 16.20 -3286.77 6605.94 6680.39 0.44 0.27
Hellinger - 0.20 9.70  -3393.49 6806.39 6850.97 0.44 0.26
Hellinger - 0.50 8.90  -3498.45 7014.70 7055.60 0.46 0.27
Bhattacharyya - 0.01  24.10 -3255.77 6559.75 6670.51 0.44 0.24
Bhattacharyya - 0.05 13.30  -3307.05 6640.69 6701.82 0.45 0.24
Bhattacharyya - 0.20 9.70  -3393.49 6806.39 6850.97 0.44 0.24
Bhattacharyya - 0.50 8.70  -3525.04 T7067.49 T7107.47 0.46 0.25
Chan-Darwiche - 0.01  106.30 -3252.36 6717.32 7205.85 0.46 0.33
Chan-Darwiche - 0.05  85.10 -3251.69 6673.58 7064.69 0.46 0.35
Chan-Darwiche - 0.20  46.20 -3245.81 6584.02 6796.34 0.45 0.39
Chan-Darwiche - 0.50  27.30 -3252.79 6560.17 6685.64 0.44 0.39
HClust k = 2 1470  -3320.17 6669.74 6737.30 0.44 0.14
HClust k = 3 20.70 -3283.48 6608.35 6703.48 0.43 0.14
HClust k = 4 25.70  -3260.73 6572.86 6690.97 0.44 0.14
Kmeans k = 2 1470 -3301.21 6631.83 6699.38 0.45 0.14
Kmeans k = 3 20.70 -3274.58 6590.57 6685.70 0.45 0.14
Kmeans k = 4 25.70  -3261.63 6574.66 6692.77 0.44 0.14
Refined BN 18.80 -3302.69 6642.98 6729.38 0.48 0.39

Table 7.9: Mean results for stagedtrees algorithms over 10 replications for

PhDArticles dataset. FExperiments performed on a standard laptop with 8 GB
of RAM and an i5 3.1 GHz CPU.
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Model df logLik AlIC BIC  Accuracy Computational Time

Indep 5.00 -2628.05 5266.10 5289.52 0.72 0.07

Full 31.00 -2577.11 5216.22 5361.44 0.72 0.07

HC - Indep 6.60 -2589.86 5192.93 5223.85 0.72 0.14
BHC 7.90 -2583.28 5182.37 5219.38 0.72 0.15

Fast BHC 6.10 -2594.10 5200.41 5228.99 0.72 0.07
Random BHC 6.30 -2593.02 5198.65 5228.16 0.72 0.08
Kullback-Leibler - 0.01 12.40 -2578.31 5181.43 5239.52 0.72 0.08
Kullback-Leibler - 0.05 8.20 -2583.64 5183.68 5222.10 0.72 0.08
Kullback-Leibler - 0.20  6.10 -2594.25 5200.70 5229.28 0.72 0.09
Kullback-Leibler - 0.50 5.00 -2628.05 5266.10 5289.52 0.72 0.08
Manhattan - 0.01 26.70 -2577.09 5207.59 5332.67 0.72 0.07
Manhattan - 0.05 17.90 -2577.30 5190.40 5274.25 0.72 0.07
Manhattan - 0.20 8.50 -2582.53 5182.06 5221.88 0.72 0.08
Manhattan - 0.50 6.00 -2594.47 5200.93 5229.04 0.72 0.08
Euclidean - 0.01 25.60 -2577.09 5205.38 5325.31 0.72 0.07
Euclidean - 0.05 15.30 -2577.64 5185.89 5257.56 0.72 0.08
Euclidean - 0.20 7.40 -2587.89 5190.57 5225.24 0.72 0.08
Euclidean - 0.50 5.00 -2628.05 5266.10 5289.52 0.72 0.09
Renyi - 0.01 15.40 -2577.62 5186.03 5258.18 0.72 0.08
Renyi - 0.05 10.00 -2579.85 5179.70 5226.55 0.72 0.08
Renyi - 0.20 6.90 -2589.91 5193.62 5225.94 0.72 0.08
Renyi - 0.50 6.10 -2594.25 5200.70 5229.28 0.72 0.08
Total Variation - 0.01  26.70 -2577.09 5207.59 5332.67 0.72 0.07
Total Variation - 0.05 17.90 -2577.30 5190.40 5274.25 0.72 0.07
Total Variation - 0.20 850 -2582.53 5182.06 5221.88 0.72 0.09
Total Variation - 0.50  6.00 -2594.47 5200.93 5229.04 0.72 0.08
Hellinger - 0.01 8.80 -2582.10 5181.81 5223.03 0.72 0.08
Hellinger - 0.05 6.10 -2594.25 5200.70 5229.28 0.72 0.08
Hellinger - 0.20 5.00 -2628.05 5266.10 5289.52 0.72 0.08
Hellinger - 0.50 5.00 -2628.05 5266.10 5289.52 0.72 0.08
Bhattacharyya - 0.01 ~ 7.50 -2587.14 5189.28 5224.42 0.72 0.08
Bhattacharyya - 0.05  5.20 -2620.32 5251.04 5275.40 0.72 0.08
Bhattacharyya - 0.20  5.00 -2628.05 5266.10 5289.52 0.72 0.08
Bhattacharyya - 0.50  5.00 -2628.05 5266.10 5289.52 0.72 0.08
Chan-Darwiche - 0.01  29.00 -2577.10 5212.20 5348.05 0.72 0.07
Chan-Darwiche - 0.05 23.10 -2577.11 5200.42 5308.64 0.72 0.08
Chan-Darwiche - 0.20 12.50 -2578.25 5181.49 5240.05 0.72 0.08
Chan-Darwiche - 0.50 8.10 -2583.96 5184.11 5222.06 0.72 0.08
HClust k = 2 9.00 -2583.35 5184.71 5226.87 0.72 0.07
HClust k = 3 12.00 -2579.27 5182.54 5238.76 0.72 0.07
HClust k = 4 15.00 -2577.93 5185.86 5256.13 0.72 0.07
Kmeans k = 2 9.00 -2582.97 5183.94 5226.10 0.72 0.07
Kmeans k = 3 12.00 -2579.42 5182.84 5239.06 0.72 0.07
Kmeans k = 4 15.00 -2578.09 5186.18 5256.45 0.72 0.07
Refined BN 6.20 -2593.74 5199.89 5228.93 0.72 0.09

Table 7.10: Mean results for stagedtrees algorithms over 10 replications for
Pokemon dataset. Experiments performed on a standard laptop with 8 GB of RAM
and an i5 3.1 GHz CPU.
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Model df loglik  AIC BIC  Accuracy Computational Time

Indep 21.00 -250.43 542.86 585.39 0.69 0.02

Full 139.40 -203.66 686.12 968.45 0.94 0.02

HC - Indep 27.00 -200.98 455.96 510.64 0.93 0.33
BHC 31.40 -181.33 425.46 489.05 0.90 0.26

Fast BHC 27.00 -210.83 475.67 530.35 0.96 0.02
Random BHC 19.60 -211.89 462.98 502.68 0.95 0.02
Kullback-Leibler - 0.01  91.10 -185.96 554.12 738.63 0.95 0.03
Kullback-Leibler - 0.05 75.70 -180.13 511.67 664.99 0.94 0.03
Kullback-Leibler - 0.20  54.50 -175.48 459.96 570.34 0.92 0.03
Kullback-Leibler - 0.50 41.20 -175.51 433.41 516.86 0.89 0.03
Manhattan - 0.01 99.00 -191.48 580.96 781.47 0.94 0.02
Manhattan - 0.05 95.40 -188.65 568.11 761.33 0.94 0.02
Manhattan - 0.20 72.70 -179.17 503.73 650.97 0.94 0.02
Manhattan - 0.50 45.90 -175.96 443.73 536.69 0.88 0.02
Euclidean - 0.01 98.80 -191.32 580.23 780.34 0.94 0.02
Euclidean - 0.05 90.00 -185.42 550.84 733.12 0.94 0.02
Euclidean - 0.20 56.60 -176.16 465.52 580.16 0.92 0.02
Euclidean - 0.50 32.80 -180.67 426.95 493.38 0.90 0.03
Renyi - 0.01 94.50 -188.26 565.51 756.91 0.95 0.03
Renyi - 0.05 84.60 -183.42 536.04 707.38 0.95 0.03
Renyi - 0.20 62.10 -177.51 479.22 604.99 0.93 0.03
Renyi - 0.50 49.50 -175.71 450.41 550.67 0.92 0.03
Total Variation - 0.01  99.00 -191.48 580.96 781.47 0.94 0.02
Total Variation - 0.05  95.40 -188.65 568.11 761.33 0.94 0.02
Total Variation - 0.20  72.70 -179.17 503.73 650.97 0.94 0.02
Total Variation - 0.50  45.90 -175.96 443.73 536.69 0.88 0.02
Hellinger - 0.01 79.70 -181.40 522.20 683.62 0.95 0.02
Hellinger - 0.05 54.50 -175.48 459.96 570.34 0.92 0.02
Hellinger - 0.20 35.30 -178.71 428.02 499.52 0.90 0.03
Hellinger - 0.50 29.50 -189.40 437.80 497.54 0.90 0.03
Bhattacharyya - 0.01  65.20 -177.81 486.01 618.07 0.93 0.02
Bhattacharyya - 0.05  44.40 -175.42 439.64 529.57 0.88 0.02
Bhattacharyya - 0.20  30.80 -184.24 430.08 492.46 0.90 0.03
Bhattacharyya - 0.50  23.10 -230.14 506.48 553.27 0.68 0.03
Chan-Darwiche - 0.01  99.00 -191.48 580.96 781.47 0.94 0.03
Chan-Darwiche - 0.05  99.00 -191.48 580.96 781.47 0.94 0.03
Chan-Darwiche - 0.20 92.50 -187.04 559.08 746.42 0.95 0.03
Chan-Darwiche - 0.50 80.00 -182.02 524.04 686.07 0.95 0.03
HClust k = 2 33.00 -189.24 444.49 511.32 0.92 0.02
HClust k = 3 44.00 -182.11 452.22 541.34 0.93 0.02
HClust k = 4 55.00 -181.86 473.72 585.11 0.92 0.02
Kmeans k = 2 33.00 -187.08 440.16 506.99 0.93 0.02
Kmeans k = 3 44.00 -180.79 449.59 538.70 0.92 0.02
Kmeans k = 4 55.00 -182.57 475.14 586.54 0.90 0.02
Refined BN 30.10 -200.56 461.31 522.28 0.95 1.57

Table 7.11: Mean results for stagedtrees algorithms over 10 replications for puffin
dataset. FExperiments performed on a standard laptop with 8 GB of RAM and an
i5 3.1 GHz CPU.
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Model df logLik AIC BIC Accuracy Computational Time

Indep 6.00 -5651.15 11314.30 11346.08 0.86 0.17

Full 63.00 -5303.06 10732.12 11065.71 0.85 0.17

HC - Indep 10.20 -5330.93 10682.27 10736.28 0.86 1.34
BHC 12.20 -5317.72 10659.84 10724.44 0.85 0.79

Fast BHC 9.50 -5343.53 10706.05 10756.35 0.86 0.18
Random BHC 18.20 -5341.70 10719.81 10816.18 0.86 0.18
Kullback-Leibler - 0.01 23.50 -5305.60 10658.19 10782.63 0.85 0.20
Kullback-Leibler - 0.05 14.30 -5320.88 10670.36 10746.08 0.85 0.20
Kullback-Leibler - 0.20 8.70 -5357.79 10732.97 10779.04 0.86 0.21
Kullback-Leibler - 0.50 7.00 -5374.01 10762.01 10799.08 0.86 0.21
Manhattan - 0.01 49.10 -5303.03 10704.26 10964.25 0.85 0.18
Manhattan - 0.05 32.10 -5303.28 10670.77 10840.74 0.85 0.18
Manhattan - 0.20 14.90 -5318.15 10666.11 10745.00 0.85 0.18
Manhattan - 0.50 8.00 -5362.16 10740.32 10782.68 0.86 0.19
Euclidean - 0.01 45.90 -5303.04 10697.88 10940.92 0.85 0.18
Euclidean - 0.05 27.10 -5304.08 10662.36 10805.86 0.85 0.18
Euclidean - 0.20 11.50 -5336.74 10696.49 10757.38 0.86 0.19
Euclidean - 0.50 7.00 -5374.01 10762.01 10799.08 0.86 0.19
Renyi - 0.01 28.20 -5303.78 10663.97 10813.29 0.85 0.20
Renyi - 0.05 17.60 -5312.40 10660.00 10753.19 0.85 0.20
Renyi - 0.20 11.30 -5336.83 10696.26 10756.10 0.85 0.21
Renyi - 0.50 8.00 -5362.16 10740.32 10782.68 0.86 0.20
Total Variation - 0.01 49.10 -5303.03 10704.26 10964.25 0.85 0.18
Total Variation - 0.05 32.10 -5303.28 10670.77 10840.74 0.85 0.18
Total Variation - 0.20 14.90 -5318.15 10666.11 10745.00 0.85 0.19
Total Variation - 0.50  8.00 -5362.16 10740.32 10782.68 0.86 0.19
Hellinger - 0.01 15.40 -5317.05 10664.89 10746.44 0.85 0.19
Hellinger - 0.05 8.60 -5358.06 10733.31 10778.85 0.86 0.19
Hellinger - 0.20 7.00 -5374.01 10762.01 10799.08 0.86 0.19
Hellinger - 0.50 6.00 -5651.15 11314.30 11346.08 0.86 0.19
Bhattacharyya - 0.01  12.90 -5325.47 10676.75 10745.05 0.85 0.18
Bhattacharyya - 0.05  7.30 -5373.22 10761.03 10799.68 0.86 0.19
Bhattacharyya - 0.20  7.00 -5374.01 10762.01 10799.08 0.86 0.19
Bhattacharyya - 0.50  6.00 -5651.15 11314.30 11346.08 0.86 0.19
Chan-Darwiche - 0.01  53.90 -5303.04 10713.88 10999.28 0.85 0.18
Chan-Darwiche - 0.05 41.00 -5303.05 10688.11 10905.21 0.85 0.19
Chan-Darwiche - 0.20 24.70 -5305.42 10660.23 10791.02 0.85 0.20
Chan-Darwiche - 0.50 14.30 -5321.64 10671.88 10747.60 0.85 0.20
HClust k = 2 11.00 -5341.77 10705.55 10763.79 0.86 0.17
HClust k = 3 15.00 -5324.98 10679.95 10759.38 0.86 0.18
HClust k = 4 19.00 -5310.91 10659.82 10760.43 0.85 0.18
Kmeans k = 2 11.00 -5336.97 10695.94 10754.19 0.86 0.17
Kmeans k = 3 15.00 -5321.69 10673.37 10752.80 0.86 0.18
Kmeans k = 4 19.00 -5311.20 10660.39 10761.00 0.85 0.18
Refined BN 10.90 -5336.92 10695.63 10753.35 0.86 0.28

Table 7.12: Mean results for stagedtrees algorithms over 10 replications for reinis
dataset. FExperiments performed on a standard laptop with 8 GB of RAM and an
i5 3.1 GHz CPU.
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Model df logLik AlIC BIC  Accuracy Computational Time

Indep 6.00 -4610.44 9232.88 9265.72 0.68 0.13

Full 31.00 -4119.90 8301.80 8471.48 0.79 0.12

HC - Indep 15.10 -4121.59 8273.38 8356.03 0.79 0.46
BHC 15.60 -4119.42 8270.04 8355.42 0.79 0.19

Fast BHC 14.90 -4123.30 8276.40 8357.96 0.79 0.12
Random BHC 15.10 -4126.49 8283.18 8365.83 0.79 0.13
Kullback-Leibler - 0.01 20.70 -4117.32 8276.04 8389.34 0.79 0.12
Kullback-Leibler - 0.05 16.20 -4122.03 8276.46 8365.13 0.79 0.12
Kullback-Leibler - 0.20 13.40 -4143.84 8314.48 8387.83 0.78 0.12
Kullback-Leibler - 0.50 8.10 -4327.43 8671.06 8715.40 0.77 0.12
Manhattan - 0.01 26.60 -4117.63 8288.47 8434.07 0.79 0.12
Manhattan - 0.05 20.40 -4118.27 8277.33 8388.99 0.79 0.12
Manhattan - 0.20 14.30 -4163.65 8355.91 8434.18 0.77 0.12
Manhattan - 0.50 10.20 -4284.46 8589.31 8645.14 0.77 0.12
Euclidean - 0.01 25.70 -4117.42 8286.25 8426.92 0.79 0.12
Euclidean - 0.05 18.90 -4119.17 8276.14 8379.59 0.79 0.12
Euclidean - 0.20 13.10 -4209.33 8444.87 8516.57 0.78 0.12
Euclidean - 0.50 790 -4338.84 8693.48 8736.72 0.77 0.13
Renyi - 0.01 22.20 -4117.23 8278.87 8400.38 0.79 0.12
Renyi - 0.05 19.20 -4117.77 8273.94 8379.04 0.79 0.12
Renyi - 0.20 15.50 -4125.59 8282.18 8367.03 0.79 0.12
Renyi - 0.50 13.10 -4147.19 8320.58 8392.28 0.78 0.14
Total Variation - 0.01  26.60 -4117.63 8288.47 8434.07 0.79 0.12
Total Variation - 0.05 20.40 -4118.27 8277.33 8388.99 0.79 0.12
Total Variation - 0.20 14.30 -4163.65 8355.91 8434.18 0.77 0.12
Total Variation - 0.50  10.20 -4284.46 8589.31 8645.14 0.77 0.12
Hellinger - 0.01 17.10 -4120.38 8274.97 8368.56 0.79 0.12
Hellinger - 0.05 13.40 -4143.84 8314.48 8387.83 0.78 0.12
Hellinger - 0.20 790 -4338.84 8693.48 8736.72 0.77 0.12
Hellinger - 0.50 6.00 -4610.44 9232.88 9265.72 0.68 0.12
Bhattacharyya - 0.01  15.50 -4125.03 8281.07 8365.91 0.79 0.12
Bhattacharyya - 0.05  8.80 -4310.75 8639.10 8687.27 0.77 0.12
Bhattacharyya - 0.20  7.00 -4353.48 8720.96 8759.28 0.77 0.12
Bhattacharyya - 0.50  6.00 -4610.44 9232.88 9265.72 0.68 0.12
Chan-Darwiche - 0.01  30.60 -4119.81 8300.82 8468.31 0.79 0.12
Chan-Darwiche - 0.05 2870 -4119.71 8296.82 8453.91 0.79 0.12
Chan-Darwiche - 0.20 24.90 -4119.34 8288.47 8424.76 0.79 0.12
Chan-Darwiche - 0.50  19.70 -4119.45 8278.30 8386.13 0.79 0.12
HClust k = 2 11.00 -4266.11 8554.22 8614.43 0.77 0.12
HClust k = 3 13.00 -4216.91 8459.83 8530.98 0.76 0.12
HClust k = 4 15.00 -4153.64 8337.29 8419.39 0.78 0.12
Kmeans k = 2 11.00 -4218.70 8459.41 8519.62 0.77 0.12
Kmeans k = 3 13.00 -4165.42 8356.84 8427.99 0.78 0.12
Kmeans k =4 15.00 -4131.36 8292.72 8374.82 0.78 0.12
Refined BN 16.80 -4128.07 8289.74 8381.69 0.79 0.17

Table 7.13: Mean results for stagedtrees algorithms over 10 replications for
Titanic dataset. Experiments performed on a standard laptop with 8 GB of RAM
and an i5 3.1 GHz CPU.
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