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Introduction

Volcanic eruptions are among the most threatening natural disasters on Earth and over-
whelm people living near volcanic buildings. Eruptions may present explosions, with the
launch of rocks, gas, and pyroclastic material into the atmosphere, or the propagation
of lava from the vent, or both. Every eruption is an unstoppable event, but the effusive
phenomena (namely, those for which the lava steadily flows out of the volcano vent) are
relatively slow in terms of propagation because the lava front tends to advance at a few
hundred meters per hour. So, most of the time, it is possible to respond promptly once
the effusive event is underway by calling the civil protection and scientific responders that
set up the scenarios of the current event and then prepare evacuation and safety plans.
On the other hand, scientists and civil protection can prepare lava flow hazard maps to
forecast future scenarios in advance of the eruptions to forecast future scenarios. This is
also the only preventive action in the cases of rapid lava flow propagation, a rarer event
to be taken into account anyway. For example, the fastest lava flow ever recorded to date
is the 1977 eruption of Nyiragongo, which registered speeds of up to 60 kilometers per
hour [197] and caused the death of at least 600 people. Therefore, reliable forecastings of
lava flow paths require a quantitative description of the effusive phenomenon.

In the 1970s, the traditionally qualitative and observation-oriented field of volcanol-
ogy started transforming into a quantitative science because modern volcanologists began
asking why and how eruptions occur, hence turned to physics and mathematical mod-
els to find the answers. The first generations of numerical models for volcanic processes
were analytical models based on several simplifications of the real processes (steady-state,
1D, and homogeneous flow), trying to give correlations between the main parameters de-
scribing volcanic eruptions. More recently, advancements in the capability to describe
physical processes with new mathematical models and the increased computational re-
sources allowed the development of more complex transient and 2D/3D models. Today,
computational fluid dynamics (CFD) provides an important and influential approach to
studying volcanic eruptions. Now, understanding those natural events involves applying
physical laws, numerical techniques for solving the related equations, efficient code imple-
mentation, and geological observations. However, even though many volcanic processes
have several 3D models describing them with high-resolution physics and thermodynam-
ics (such as the plume models, pyroclastic flows models, and, to a less degree of accuracy,
chamber and conduit models), as far as lava flows concern, a smaller number of numeri-
cal models has been developed so far. This is mostly due to the complexity, variability,
and uncertainties in the physical phenomenon, which has also favored the development of
simple stochastic models.

The development of 2D and 3D models of lava flows must account for both fluid
dynamics and thermal effects. According to this approach, the physical principles of the
conservation of mass, momentum, and energy are the pillars to develop a mathematical
model. The numerical code that implements such a model produces numerical simulations

vii



viii INTRODUCTION

that improve the knowledge of the physical processes governing the dynamics of those
natural events. Thus, in addition to the physical laws, a “physics-based” model for lava
emplacement must consider:

(i) topography or slope;

(ii) eruptive input conditions such as volumetric effusion rate, vent geometry (point or
linear) and effusive temperature;

(iii) thermal boundary conditions at the top and bottom of the lava accounting for
insulation, convection, radiation, and conduction;

(iv) physical properties of the lava, like density, thermal conductivity, and viscosity
model.

The resulting governing equations form a system of partial differential equations (PDEs)
for whom a closed analytical expression of the solutions is not available except for special
cases with limited applications. Consequently, numerical methods are more and more em-
ployed to compute the approximated solutions of the PDEs. However, since theoretical
models and numerical methods cannot capture the entire complexity of lava properties
(and particular difficulties arise in considering the viscosity model), simplifications are re-
quired (both to make it possible to achieve a solution and speed up codes). Simplifications
are acceptable because the properties above impact the lava emplacement in a different
way, varying with the distance from the vent but also with time [37, 130]. “Physics-
based” (or “deterministic”) codes should respect as much as possible the requirements (i
- iv) listed above, though this is very hard to do in practice.

Numerical models for lava flow simulations have undergone major developments over
the past years, from initially oversimplified models to more complex ones. As already
stated, models are distinguished for the deterministic or stochastic approach, the nu-
merical method employed, and the complexity of the physical modeling adopted; hence
the associated codes differ for their physical implementations, numerical accuracy, and
computational efficiency.

Stochastic models require that the code runs several times with little changes in the
parameters; therefore, only codes that are very fast to execute are used. The fastest
codes correspond to the most simplified models, which only consider the topography
and describe lava as a gravity current following the topography along the steepest slope.
DOWNFLOW [83, 252], ELFM [64], VORIS [84], LASZLO [21], MrLavaLoba [66] are
examples of probabilistic models. The most simplified versions do not present a stop-
criteria for the flow advance and have no description of the temporal evolution.

Channeled models simplify the emplacement process by computing only dynamics that
develop in the downslope direction but using complex thermal and viscosity modeling that
also accounts for the crystallization process that happens during lava cooling. Codes that
implement channeled models, such as FLOWGO [116, 118, 119], are fast to run because
they compute 1D dynamics. Nevertheless, a model disadvantage consists of restrictions
on the choice of the channel dimensions at the vent to match the effusion rate inputs,
and, as already stated, the vent conditions influence the results.

Cellular automata are popular 2D models in which the computational domain is dis-
cretized by a 2D grid, and each cell has attributes, such as fluid thickness and temperature.
Dynamics is described by the variations of cell properties, which depend on the state of
neighboring cells. This model accounts for complex thermal and viscosity models and also
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manages to describe lava solidification. Each cellular automata code, such as MAGFLOW
[17, 68, 98, 121, 263], SCIARA [5, 7, 8, 60, 61, 62], FLOW FRONT [266, 280], and MO-
LASSES [49, 70, 155], implements different strategies for the transfer of mass, momentum,
and energy between cells.

Depth-averaged models follow the strategy of using depth-averaged variables to obtain
a 2D model. This approach is based on the so-called “shallow water approximation”, for
which the depth (or thickness) of the flow is required to be much smaller than the hori-
zontal scale of the phenomenon of interest. A small aspect ratio of the system implies (by
scale analysis of the continuity equation) that vertical velocities are much smaller than
horizontal velocities. A way to derive the model is by integrating mass and momentum
conservation equations over the fluid depth, from the bottom up to the free surface; oth-
erwise, variational principles are used. De Saint Venant first introduced shallow water
approximation in 1864 and Boussinesq in 1872, and their original formulation regarded
incompressible and non-viscous fluids. Shallow water models are currently applied to a
wide range of geophysical problems for hazard assessment (flood simulations, tsunamis
propagation), eventually enriched by additional transport equations such as equations for
energy or temperature. This is the case of models for lava flow, where viscosity depends
on temperature and thus needs to be accounted for. Costa and Macedonio [55] proposed
a depth-averaged model that considers lava cooling and also a temperature-dependent
viscosity. More recently, Kelfoun and Vargas [145] followed the depth-averaged model
approach too for their lava flow model (creating the numerical scheme VOLCFLOW)
with the differences that they adopted a viscoplastic model and used the restrictive hy-
pothesis of isothermal flow. Instead, another recent model that considers temperature
evolution and temperature-dependent complex viscosity was proposed in Bernabeu et al.
[13], using the RHEOLEF [12, 240] library based on the Finite Element Method. Usually,
in the depth-averaged approach, constant vertical profiles are assumed for the variables.
These assumptions lead to constant viscosity and temperature along the vertical direction,
limiting precise agreement of the viscosity model into the flow dynamics.

The above limit of lack of information about the vertical distribution of variables is
overcome by adopting 3D models. The 3D model approach describes the whole vertical
structure of the variables such as velocity, temperature, and viscosity, and precisely these
variables are correlated through the viscosity model. In most cases, the 3D description
produces multiphase models because it requires solving for the flow of interest and the
overlying atmosphere. From a computational point of view, 3D models are surely more
expensive to solve than depth-averaged models. Just because of this difficulty, 3D models
rose in popularity only recently, when the computational power improved thanks to tech-
nological developments and the possibility of parallelizing the execution. FLOW-3D®,
COMSOL®, and ANSYS® FLUENT are three examples of CFD commercial software,
based on the solution of 3D flow equations on a computational grid, that can apply to lava
flows. Among open-source grid-based software, OpenFOAM [137] gained a lot of popular-
ity in the CFD community in the last two decades. Such software includes many solvers to
handle complex fluid dynamics problems. Even though no specific solver devoted to lava
flow simulations exists, its open-source nature allows the users to modify the code creating
one that satisfies their needs by exploiting available solvers and tools. An alternative to
grid-based 3D models is the Smoothed Particle Hydrodynamics (SPH) approach, which
is a particle-based mesh-free method that follows the Lagrangian modeling to CFD. For
example, Zago et al. [282] proposed an SPH model for lava flow simulations that exploits
the GPU architecture to parallelize code.

https://github.com/geoscience-community-codes/MOLASSES
https://github.com/geoscience-community-codes/MOLASSES
https://www.flow3d.com/
http://www.comsol.com/products/multiphysics/
http://www.ansys.com/products/fluids/ansys-fluent
http://www.openfoam.com


x INTRODUCTION

Within this context, this Ph.D. project was initially born from the motivation to
contribute to the depth-averaged and 3D modeling of lava flows. Still, we can frame the
work done in a broader and more generalist vision. In fact, we developed two models
that may be used for generic viscous fluids, and we applied efficient numerical schemes
for both cases, as explained in the following.

The new solvers simulate free-surface viscous fluids whose temperature changes are
due to radiative, convective, and conductive heat exchanges. A temperature-dependent
viscoplastic model is used for the final application to lava flows. Both the models behind
the solvers were derived from mass, momentum, and energy conservation laws. Still,
one was obtained by following the depth-averaged model approach and the other by the
3D model approach. The numerical schemes adopted in both our models belong to the
family of finite volume methods, based on the integral form of the conservation laws. This
choice of methods family is fundamental because it allows the creation and propagation of
discontinuities in the solutions and enforces the conservation properties of the equations.
Codes proposed in this thesis respect all the requirements for numerical methods listed
before (i–iv).

In our work, we propose a depth-averaged model for a viscous fluid in incompressible
and laminar regime with an additional transport equation for a scalar quantity varying
horizontally and a variable density that depends on such transported quantity. Viscosity
and non-constant vertical profiles for the velocity and the transported quantity are as-
sumed, overtaking the classic shallow-water formulation. In fact, the classic formulation
bases on several assumptions such as the fact that the vertical pressure distribution is
hydrostatic, that the vertical component of the velocity can be neglected, and that the
horizontal velocity field can be considered constant with depth because the classic for-
mulation accounts for non-viscous fluids. In fact, when the vertical shear is important,
the last assumption is too restrictive, so it must relax, producing a modified momentum
equation in which a coefficient, known as the Boussinesq factor, appears in the advective
term. The spatial discretization method we employed is a modified version of the central-
upwind scheme introduced by Kurganov and Petrova [158] for the classical shallow water
equations. This method is based on a semi-discretization of the computational domain,
is stable, and, being a high-order method, has a low numerical diffusion. For the tem-
poral discretization, we used an implicit-explicit Runge-Kutta technique [237, 238], that
permits an implicit treatment of the stiff terms.

Our 3D model describes the dynamics of two incompressible, viscous, and immiscible
fluids, possibly belonging to different phases. Being interested in the final application of
lava flows, we also have an equation for energy that models the thermal exchanges be-
tween the fluid and the environment. We implemented this model in OpenFOAM, which
employs a segregated strategy and the Finite Volume Methods to solve the equations. To
deal with the multiphase dynamics, the Volume of Fluid (VoF) technique is used [127],
which bases on the Interphase Capturing strategy, and hence a new transport equation
for the volume fraction of one phase is added. The challenging effort of maintaining a
precise description of the interphase between fluids is solved by using the Multidimen-
sional Universal Limiter for Explicit Solution (MULES) method [196] that implements the
Flux-Corrected Transport (FCT) technique [22], proposing a mix of high and low order
schemes. The choice of the framework to use for any new numerical code is crucial. In
the 3D context, we gave preference to OpenFOAM, thanks to its open-source nature, to
its widespread over the community of researchers in computational fluid dynamics, and
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because it represents an up-to-date repository for the most efficient and validated numer-
ical schemes existing in literature which are a natural comparison term. This choice has
required full knowledge of such a tool.

The original contributions of our work are summarized below.
Concerning the depth-averaged approach, we relaxed the classic assumptions of the

shallow water equations of constant density, constant vertical profiles, and no viscosity.
In particular, in the whole §2.1 we considered density to depend on a depth-averaged vari-
able, therefore allowing density to vary horizontally. Furthermore, we added a transport
equation for a generic scalar quantity with a piecewise linear vertical distribution. As a
specific case, we considered the transport equation for the temperature and described its
vertical profile in relation to the conductive heat loss to the ground; under these condi-
tions, we obtained a new expression for the heat exchange terms (§2.1.5). We adapted
the numerical scheme described before (combining spatial and temporal discretizations
from [158] and [237, 238]) to our specific PDE system and proved that it still satisfies
important properties like well-balancing (§3.1.1) and positivity preserving for near-dry
states (§3.1.2). The implicit discretization leads to a nonlinear system of equations that
is solved by the Newton-Raphson procedure. The computation of the Jacobian of the sys-
tem is hence required by that procedure and clever use of complex arithmetic, borrowed
from [248], ensures an accurate computation (§3.3). The resulting numerical scheme was
implemented in a Fortran 90 code and has been tested and validated (§3.4) both with
literature examples and real applications. In particular, we have used the code with the
following tests: Riemann problem with the discontinuous bottom of a non-viscous fluid;
dam-break of an isothermal viscous fluid onto flat and inclined bottoms; dam-break of a
fluid with low viscosity and temperature-dependent density onto a flat bottom; spreading
of an isothermal viscous fluid onto an inclined plane; spreading and cooling of a viscous
fluid on a flat bottom; simulation of a lava flow onto Fogo’s real topography with plastic
temperature-dependent viscosity and radiative, convective, and conductive heat losses. In
addition, one of the selected tests was validated with data from a laboratory experiment
during the visit at the Lamont-Doherty Earth Observatory (at the Columbia University,
New York), performed during the Ph.D. program with the supervision of Prof. Einat Lev
and the assistance of Janine Birnbaum. Moreover, some of them come from the paper by
Cordonnier et al. [52], which determines recognized benchmarks addressed to lava flow
simulation codes to validate their accuracy at different modeling levels.

Thanks to all these simulations, we tested (among others):

• well-balancing and positivity preserving properties of the scheme;

• consequences of using different limiters (i.e. numerical stabilization schemes) and
the sensitivity to them;

• the observed differences when adopting constant vertical profiles of the variables or
not;

• the effects of the viscosity-related parameters on the final emplacement of a lava
flow.

From our work on the depth-averaged model, we published an article [15] (whose content
is entirely described in this thesis) where we consider a general viscous fluid: we introduce
the vertical profiles for both velocity and transported quantity, accounting also the variable
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density case and we present our numerical schemes proving its good properties and testing
it with some benchmarks. Another paper is in progress [16], which is more focused on
lava application and deals with temperature modeling.

Concerning the 3D multiphase approach, our contribution consists of creating a new
solver in the OpenFOAM framework. By modifying an existing solver for two incom-
pressible, immiscible, viscous, and isothermal fluids (interFoam, [69]), we developed the
new solver called interThermalRadConvFoam. We added an equation for energy that
models radiative and convective heat exchanges (§2.2.2) and implemented the bound-
ary conditions for the heat conduction with the soil. A temperature-dependent viscosity
model enriches the model and couples momentum and energy equations. The model was
implemented to import DEM files in order to compute simulation over real topography.
Dynamic mesh refinement has also been added to the solver to model the interface be-
tween fluids more accurately and obtain high accuracy dynamically where necessary. It is
also possible to parallelize the computation using the OpenMPI protocol implemented in
the software. We compared our simulations with some benchmarks from [52] to evaluate
the performances of our model (§4.7): dam-break of an isothermal viscous fluid onto a
flat bottom; spreading and cooling of a viscous fluid on a flat bottom. From our work
to develop the 3D model, we produced a tutorial that helps to modify interFoam and to
obtain our interThermalRadConvFoam (§A), and that will be made available soon for the
OpenFOAM user community. Furthermore, we plan to show in a separate paper (subject
of future work) the performance of our solver for lava flow simulations.

In this manuscript, the main topics are found in Chapters 2–4 and concern the deriva-
tion of the models, the description of numerical schemes that solve them, and the presen-
tation of the simulation results. The bulk of the work is heavily based on four building
blocks: the mathematical description of fluid dynamics, the finite volume numerical tech-
nique, the OpenFOAM setting for code development, and volcanic applications, which
motivated our project. Since this thesis is written trying to be self-supporting, and there-
fore accessible also to those who are not experts in the field, Chapter 1 collects several
details on these four building blocks in order to give the fundamental basis to understand
the main topics exposed in the rest of the work. However, an expert reader may decide
to skip or come back to it in a second moment since the other chapters present numerous
references to the first so that the reader can easily locate what he needs.

Since the modeling point of view in both the depth-averaged and 3D cases is very
similar, we gathered them together in Chapter 2, which describes the full derivation of
the mathematical models we developed. Thus, the chapter is basically divided into two
parts: the first devoted to the depth-averaged model and the second to the 3D multiphase
model.

Numerical schemes applied to these models are quite different and hence are described
in separate chapters.

Chapter 3 presents the numerical scheme we developed to solve our depth-averaged
model, that is, our modified version of the Kurganov and Petrova [158] scheme (for the
space discretization), for which we proved the well-balancing and positivity preserving
properties, and the implicit-explicit Runge-Kutta method [237, 238] (for the time dis-
cretization), which is accompanied by the use of complex arithmetics [248]. Furthermore,
results of numerical simulations tested also with literature benchmarks [52] and with a
real case are shown.

Chapter 4 first describes the segregated approach that OpenFOAM adopts to solve a
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system of PDEs. Then we give a wide overview of the specific solver we developed framed
in this context. After, we explore the implementation of the VoF and MULES methods
that OpenFOAM uses to treat the multiphase flows. Since OpenFOAM is accompanied
by poor documentation, one of our purposes in writing this Chapter 4 was to contribute
in this direction by adding specific details for the user. Finally, the results of numerical
simulations are shown.

Chapter 5 is dedicated to a final discussion about the results obtained, some conclusive
considerations, and the description of possible future developments.

Two Appendices end the manuscript by providing supplementary material. Appendix
A contains the Tutorial that helps to reproduce our OpenFOAM code. Appendix B
describes the variational derivation of the shallow water equations accompanied by the
necessary background notions about the calculus of variations.

In addition to what is presented in this thesis, the research activities carried out
during the Ph.D. program led to other collaborations and results. The theoretical inves-
tigations on the assumptions on which are based depth-averaged models, for example,
contributed to a study on the applicability of such approach to the simulation of tsunami
waves generated by landslides at Stromboli island, Italy, carried out in the framework
of the collaboration between the Italian Department of Civil Protection (DPC) and the
National Institute of Geophysics and Volcanology (INGV). This work is documented in
a technical report [80], representing a deliverable of the agreement DPC-INGV, Annex
B2 2019-2021, WP12. Studies about lava flow simulations also have been useful for the
collaboration with INGV into a science dissemination project that led to the presentation
of volcanic eruptions simulations story and to play live simulations of lava flows onto the
real topography of Vesuvio inside a sandbox [1].
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Chapter 1

Problem overview

This Chapter provides the basis to understand the main contents developed for the project
of this Thesis, which mostly occupy Chapters 2, 3, 4. Our project was distributed between
fluid dynamics, related computational methods and applications, and this chapter is anal-
ogously organized. Furthermore, this manuscript was written trying to be self-supporting,
and therefore accessible also to those who are not experts in the field, that is the reason
behind the presence of a so detailed Chapter of prerequisites. An expert reader may skip
this chapter and go directly to the next. Anyway, the rest of the manuscript has many
references to this chapter, so any reader can come back here to see what he needs in a
second moment.

Section §1.1 introduces some basis of fluid dynamics, derives the Navier-Stokes equa-
tions, and discusses them from an analytic perspective. This Section supports the com-
prehension of Chapter 2 where we present the derivation of our mathematical models.
Moreover, this Section offers the idea of the contexts in which we can insert our work.

Section §1.2 presents Finite Volume Methods, the most diffused family of numerical
schemes applied in the computational fluid dynamics, which constitute the core of the
numerical models we developed and analyzed in Chapters 3 and 4. In addition, this
Section provides the basic concepts about convergence, and some schemes are discussed.

Section §1.3 exposes how the Finite Volume Methods are implemented in the Open-
FOAM context. It is important to know this to understand the other methods and
strategies implemented in the software that we tackle in Chapter 4.

Section §1.4 presents the phenomenon of effusive eruptions, which is one of the possible
applications of our modeling and numerical work and also the initial motivation of our
project.

1.1 Physics of fluids

This section presents some background notions about the physics of fluids necessary to
define the equations that mathematically describe them.

The word fluid generally indicates the state of matter, gaseous, liquid, or plasma.
Still, its wider and deeper definition is that of a substance that tends to deform (to
flow) continually and irrecoverably under applied shear stress or any external force. Even
the solid materials may show a fluid behavior when observed on a long time scale. For
example, the glaciers formed by the water at the solid-state, even though they appear
still at a human glance, actually move very slowly downstream, Figure 1.1a. The rocks
constituting the earth mantle behave as elastic solids on short time scales when they

1
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transmit seismic shear waves; still, the mantle behaves like a fluid and exhibits convective
motions if it is observed at the geological time scale of 10 Myr (3 ˆ 1014 s), Figure
1.1b. Besides this, by changing the spatial scale of observation, different materials may
unexpectedly behave like fluids. The granular solid matters like sand or debris may show
a fluid behavior too when observed on a length scale bigger than the granule dimension,
Figures 1.1c and 1.1d.

A similar situation happens for multiphase flows, namely those cases where the con-
tinuous fluid phase incorporates a dispersed phase: for example, the geysers have bubbles
of gas dispersed in hot water, Figure 1.1e, lahars present volcanic pyroclasts dispersed in
water, Figure 1.1f. Again, if the composition is observed at a spatial scale larger than
the dimensions of the bubbles or the rocks, then the global behavior of these multiphase
materials is like a unique fluid.

1.1.1 Continuum hypothesis

The physics of fluid behavior, like the physics of elastic media, is based on the general
continuum hypothesis. This hypothesis requires that quantities like density, temperature
or velocity, are defined everywhere, continuously, and at “points” of infinitesimal volumes
containing a statistically meaningful number of molecules (or granules) so that such quan-
tities represent averages, independent of microscopic molecular fluctuations. The “points”
are called material element in continuum mechanics or fluid parcel in fluid mechan-
ics. Their dimensions must be bigger than the average distance between the molecules
(or granules) length scale but smaller than the characteristic length scale of the system.
The assumption of the continuum hypothesis might lead to results that are not of the
desired accuracy in some circumstances. For example, for flows with supersonic speed or
in molecular flows on a nanoscale, the continuum hypothesis fails [109], and the prob-
lems are solved by passing to the statistical mechanics. Despite this, under the right
circumstances, the continuum hypothesis produces extremely accurate results.

1.1.2 Conservation laws

In general, the equations that describe the motion of the fluid are derived from the
following three conservation laws :

• Conservation of mass : the mass of a closed system (in the sense of a completely
isolated system) remains constant in time;

• Conservation of momentum : the rate of change of the momentum of a closed
system is equal to the net forces acting on it (Newton’s second law);

• Conservation of energy : the total amount of energy in a closed and isolated
system remains constant over time.

The resulting equations are called governing equations (or balance equations) and express,
in a mathematical framework, the general physical principles that underlie the processes
of continuous bodies. Thus, the movement understood as the evolution of a continuous
body is physically admissible only if it satisfies, at each instant, the appropriate equations.
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(a) Glacier. The Perito Moreno Glacier at Los
Glaciares National Park, Argentina. National
Geographic.

(b) Models of mantle convection. University
of Saskatchewan.

(c) Sand. From: Learning Geology. (d) Debris. From: Learning Geology.

(e) Geyser. Castle Geyser in Yellowstone Na-
tional Park. From: World Atlas.

(f) Lahar (mudflows). Lahars in a river val-
ley Soufrière Hills Volcano, Montserrat. From:
BGS.

Figure 1.1: Different matters that exhibit a fluid behavior. Top row : solids that have a fluid-like
dynamics in a long time scale. Middle row : granular solid matters that show a fluid behavior
if observed on a length scale much bigger than the granule dimension. Bottom row : multiphase
matters, similarly to the previous examples, act like fluid if observed on a length scale bigger
than the dimension of the particles dispersed.

https://www.nationalgeographic.org/encyclopedia/glacier/
https://www.nationalgeographic.org/encyclopedia/glacier/
https://openpress.usask.ca/physicalgeology/chapter/3-3-earths-interior-heat/
https://openpress.usask.ca/physicalgeology/chapter/3-3-earths-interior-heat/
http://geologylearn.blogspot.com/2015/08/mass-flow.html
http://geologylearn.blogspot.com/2015/08/mass-flow.html
https://www.worldatlas.com/articles/what-is-a-geyser.html
https://www.bgs.ac.uk/discovering-geology/earth-hazards/volcanoes/volcanic-hazards/
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1.1.3 Lagrangian and Eulerian approach

To study the behavior of fluids and transpose in mathematical terms the conservation
laws, two different points of view are adopted: a Lagrangian approach and a Eulerian
approach.

• Lagrangian approach : it is a way of looking at fluid motion where the observer
follows an individual fluid parcel as it moves through space and time; therefore,
the individual fluid particles are tracked as they move and deform through the flow
field, as in Figure 1.2, left panel.

• Eulerian approach : it is a way of looking at the fluid motion by focusing on a fixed
location in space. The characteristics of the flow are evaluated for an imaginary and
fixed control volume, see Figure 1.2, right panel.

Figure 1.2: Comparison between Lagrangian approach (picture on the left), where the parcel
follows the flow, and Eulerian approach (picture on the right), where a control volume is fixed
and we observe what happens inside it.

An example of a Lagrangian description is given by a marine survey buoy that, free
to move with the ocean surface currents, provides the meteo-marine data such as temper-
ature, salinity, pollution, and the current velocity. Whereas when the buoy is anchored
gives an Eulerian description because it records the fluid parameters related only by its
fixed position.

In the next paragraph, we will see that these two different approaches are associated
with two “different” temporal derivatives, and the material derivative is introduced. In
§1.1.4 we adopt the Eulerian approach to derive the transport equation for a generic
conservative quantity. In §1.1.5 we adopt the Lagrangian point of view to derive the
governing equations related to the conservation laws of §1.1.2.

Material derivative. In the Eulerian formalism, the spatial coordinates x “ px, y, zq
are the independent variables and they refer to a fixed reference system. Each physical
quantity q related to the flow, may it be a scalar (such as density, pressure, and temper-
ature) or a vector quantity (like velocity), is defined in each point x and for every time t
and it constitutes a scalar field or vector field respectively, hence q “ qpx, tq, @t, @x.

In the Lagrangian framework, the focus is on a single fluid parcel which is followed in
the flow. The position of a fluid parcel initially located in r0 “ px0, y0, z0q is a function of
time expressed as

xr0ptq “ pxr0ptq, yr0ptq, zr0ptqq .
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The velocity of a fluid parcel is the time derivative of its position, namely

ur0ptq “
dxr0ptq

dt
“

ˆ

dxr0ptq

dt
,
dyr0ptq

dt
,
dzr0ptq

dt

˙

. (1.1)

For every time t, the velocity field in the Eulerian formalism u “ pu, v, wq can be expressed
in term of the fluid parcels velocity

upx, tq “ ur0ptq (1.2)

where @t, @x, it exists a fluid parcel initially located in r0 such that at time t its position
is exactly x “ xr0ptq. Therefore the fluid parcels velocities constitute the entire velocity
field.

The Lagrangian formalism allows to describe how the quantity represented by the field
qpt,xq evolves on each line associated with the motion of a fluid parcel initially located
at r0:

qr0ptq “ qpxr0ptq, tq. (1.3)

The time derivative of the Lagrangian representation of q, namely of qr0 , corresponds to
the computation of the variations of q along the history of a fluid parcel

dqr0
dt
ptq.

From Eq. (1.3) and by reminding Eqs. (1.1) and (1.2), the previous derivative is computed
with the chain rule and it might be expressed as

dqr0
dt
ptq “

Bq

Bt
px, tq `

Bq

Bx
px, tq

dx

dt
`
Bq

By
px, tq

dy

dt
`
Bq

Bz
px, tq

dz

dt

“
Bq

Bt
px, tq ` u

Bq

Bx
px, tq ` v

Bq

By
px, tq ` w

Bq

Bz
px, tq

“
Bq

Bt
px, tq ` pu ¨∇qqpx, tq,

where x “ xr0ptq. The Lagrangian derivative is also called material derivative (or
particle derivative) of the field q, and the following notation is used

Dq

Dt
px, tq “

Bq

Bt
px, tq ` pu ¨∇qqpx, tq, (1.4)

The first term on the right side, Bq{Bt, is the local rate of change (the unsteady term),
and it is null for steady flows, that is, for those flows such that the flow properties at
every point fixed in space do not depend upon time. For example, a river might be an
example of steady flow, with some approximations, because the velocity and pressure
fields are constant in time at a fixed location, even though they may change in space (for
example, because of narrowing or widening). The second term on the right-hand side is
called convective derivative, and it is associated with changes in the space of the quantity
of interest. Here the gradient of q is computed at a point x, fixed in space and time, thus
can be seen as a gradient computed in the Eulerian framework. With this in mind, we can
see that the terms of the material derivative can be computed in the more comfortable
representation of the Eulerian formalism, even if it represents the rate of change observed
by a fluid particle that moves with the fluid. Thus, it is seen as a link between the two
formalisms, Lagrangian and Eulerian.
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In the next two paragraphs, we adopt the Eulerian and Lagrangian approaches to
show the different derivation of equations from conservation principles. In particular,
the Eulerian approach is adopted in §1.1.4 to derive the transport equation for a generic
conservative quantity, as would be the derivation of the mass conservation equation. On
the other hand, the Lagrangian approach is instead employed in §1.1.5 to derive all the
governing equations related to the conservation laws stated in §1.1.2, leading to the Navier-
Stokes equations system.

1.1.4 Transport equation

In engineering, physics, and chemistry, the study of transport phenomena concerns the
exchange of mass, momentum, and energy (but also other properties of the fluid) be-
tween observed and studied systems. Mass, momentum, and heat transport all share a
very similar mathematical framework (as PDEs). The parallels between their PDEs are
exploited in the study of transport phenomena to draw mathematical connections that
often provide useful tools in analyzing one field that is directly derived from the others.
While it draws its theoretical foundation from principles in several fields, most of the
fundamental transport theory is a restatement of the basic conservation principles given
in §1.1.2. Thus, we see the example of a transport equation derivation from a generic
conservative principle in the Eulerian framework.

Let us consider a fluid moving with velocity upx, tq and a property qpx, tq, which may
be density or any other quantity for which there exists a conservation law. For example,
in a fluid with sand suspension, q may represent the suspension’s volume fraction; instead,
when modeling the sea and oceans, q might be the volumetric fraction of salt dissolved.
By adopting the Eulerian approach, we focus on an imaginary control volume V , fixed in
the space, immersed in the fluid as in Figure 1.3. We call QV ptq the total amount of the
property q in the control volume V at time t, namely

QV ptq :“

ż

V

qpx, tqdV, (1.5)

and we want to express the variation of QV in the control volume over time assuming
that it is governed by the conservation principle that states:

The rate of change of the property QV described by q inside a fixed control
volume V equals the net flux through the surface that constitutes the boundary
BV of the control volume.

V

∂V

u

dS

Figure 1.3: Flux through a fixed volume V .

The variation of QV in a time interval ∆t (represented by ∆QV “ QV pt `∆tq ´QV ptq)
is due to the amount of q that enters and exits from the control volume. We quantify
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the amount of property lost that exits from an infinitesimal surface area dS of BV in the
interval of time ∆t. If the fluid moves with velocity u and if n̂ is the unit outward vector
orthogonal to the infinitesimal element dS, see Figure 1.4, then u ¨ n̂ dS∆t is the volume
occupied by the molecules passing through dS in the time interval ∆t. As a consequence,
the property q that passes through the infinitesimal surface element is ´qu ¨ n̂ dS∆t. By

dS

un

Figure 1.4: Volume swept by the outgoing molecules from the infinitesimal surface element dS
in the time interval ∆t between t and t`∆t.

integrating all over the surface BV , we obtain that the rate of variation of QV occurred
in the time interval ∆t is

∆QV

∆t
“

QV pt`∆tq ´QV ptq

∆t
“ ´

ż

BV

qu ¨ n̂ dS.

Notice that the surface integral term is the flux passing through the surface BV , namely
the flux of the vector qu. Passing at the limit ∆tÑ 0, the expression results in

dQV

dt
“ ´

ż

BV

qu ¨ n̂ dS. (1.6)

From Eq. (1.5), the rate of change of QV in the control volume is

dQV

dt
“

d

dt

ˆ
ż

V

qdV

˙

“

ż

V

Bq

Bt
dV, (1.7)

where the time derivative and the integral operators invert the order because V does not
depend on time. Whereas, we use the Gauss Theorem (that follows) to express the surface
integral in (1.6) over BV as a volume integral over V . The Gauss theorem alternate names
are divergence theorem and Ostrogradskij theorem because the first proof of such theorem
was provided by M. Ostrogradskij [202].

Theorem 1.1 (Gauss Theorem). Suppose V is a subset of Rn which is compact and has
a piecewise smooth boundary BV . If F is a continuously differentiable vector field defined
on a neighborhood of V , then:

ż

V

∇ ¨ FdV “
ż

BV

F ¨ n̂dS.
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Thanks to the Gauss theorem, we obtain that:

´

ż

BV

pquq ¨ n̂ dS “ ´

ż

V

∇ ¨ pquqdV. (1.8)

From Eq. (1.6), the two quantities in Eqs. (1.7) and (1.8) must be equal, then the integral
form of the conservation law descends and, by moving every term on the left, it becomes
as follows:

ż

V

„

Bq

Bt
`∇ ¨ pquq



dV “ 0. (1.9)

It remains to discuss the role of pressure p. For that, we assume a Newtonian rheology.
If it is the thermodynamic pressure, then the deviatoric stress d follows Eq. (1.29) or
(1.28) and there is a state equation that relates pressure with the other state variables.
For instance, in the case of a perfect gas the following relation holds:

As this equality is true for every control volume V , if the integrand is continuous,
thanks to the fundamental lemma of calculus of variations [100, Lemma 1, page 9], we
obtain the differential form of the transport equation

Bq

Bt
`∇ ¨ pquq “ 0

Note that the integral form of the equation for the conservation of q may be used without
restrictions on the regularity of the functions: even in the case of discontinuous solutions,
all the integral form terms of the equation are well defined. Conversely, the differential
form requires q to be differentiable in both space and time and u to be differentiable with
respect to space.

Considering the density ρ as the property q, we have that its integral over the control
volume is simply the volume mass. The previous derivation is still valid for q “ ρ, and
it gives the mass conservation equation (which is commonly called continuity equation,
and we refer to the equation in both ways in the rest of the work). For the momentum
conservation, the property q to be transported is the momentum density ρu, which volume
integral over the control volume is the total momentum of the volume. Since momentum
is a vectorial quantity, the equations are written for the conservation of each component.
Whereas for energy conservation, the conservative quantity q is the density of total energy
E, and its volume integral is the total energy possessed by the volume. The rigorous
derivation of momentum and energy equations is a little more complicated than the mass
equation, and we skip it in the Eulerian approach. However, we derive the equations
completely in the Lagrangian framework in the next section. Anyway, we anticipate that
the derivation of the conservative equations produces equations such as the following
generic transport equation:

Bq

Bt
`∇ ¨ fpqq “ Spqq,

where the function f is called flux function and is related with the flux through the surface
of the property q, whereas the function S contains the source terms. If the conservative
property is a vectorial quantity, we have the divergence operator applied to a matrix.

1.1.5 Navier-Stokes equations

In this section, we use the Lagrangian approach (described in §1.1.3) to derive the gov-
erning equations corresponding to the conservation laws for the mass, momentum, and
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energy. Conservation laws, as introduced in §1.1.2, are already formalized according to the
Lagrangian formulation because they refer to a closed system (in the sense of a completely
isolated system) that we may assimilate to whatever fluid parcel. For this reason, it seems
that the Lagrangian derivation is “more natural” than the Eulerian one. The governing
equations that we obtain for the mass, momentum, and energy conservation are the so-
called Navier-Stokes equations . Historically, only the momentum equation was entitled
to Navier-Stokes, but in the modern context, instead, this name is given to the whole
system. The power of the Navier-Stokes equations is to describe the motion of whatever
viscous fluid mathematically through a system of PDEs. Under different assumptions,
the Navier-Stokes equations may change and simplify their expressions. For instance, in
§1.1.5.6 we analyze what happens in the incompressible case. Besides the derivation of
the equations, we examine some viscosity models in §1.1.5.7 and, by the introduction of
the well-known Reynolds number, we present the classification of laminar and turbulent
flows in §1.1.5.8.

In the next paragraphs, we consider a fluid parcel as it moves with the flow, and we
denote as Vt the spatial region occupied by the parcel at time t.

1.1.5.1 Derivation of the mass conservation equation

Being ρpx, tq the mass density function, the mass inside the fluid parcel at the time t is
defined by the integral

Mptq :“

ż

Vt

ρpx, tqdV. (1.10)

From the mass conservation law, as stated in §1.1.2, the mass Mptq is constant for each
t hence its time derivative must be null

dMptq

dt
“ 0. (1.11)

In order to obtain the mass governing equation, we introduce an important result of
Reynolds [225] which rules how to move the time derivative from out to inside an integral
defined over a time-dependent region.

Theorem 1.2 (Reynolds transport theorem I). Consider integrating a function f “

fpx, tq over the time-dependent region Vt; then taking its derivative with respect to time
results in

d

dt

ż

Vt

fdV “

ż

Vt

„

Df

Dt
` fp∇ ¨ uq



dV

p1.4q
“

ż

Vt

„

Bf

Bt
` pu ¨∇qf ` fp∇ ¨ uq



dV

“

ż

Vt

„

Bf

Bt
`∇ ¨ pfuq



dV.

(1.12)

By using the Reynolds transport theorem I we obtain that for each fluid parcel

dMptq

dt

p1.10q
“

d

dt

ż

Vt

ρpx, tqdV

p1.12q
“

ż

Vt

„

Bρ

Bt
`∇ ¨ pρuq



dV

p1.11q
“ 0.
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Notice that, if the integrand function is continuous, since the previous equation must be
valid for each control volume considered, then the integrand function itself results to be
null, namely it descends that

Bρ

Bt
`∇ ¨ pρuq “ 0, (1.13)

that is the differential form of the mass conservation equation.

1.1.5.2 Derivation of the momentum conservation equation

The momentum of a fluid parcel occupying the volume Vt at the time t is defined as the
integral of the momentum density ρu

Pptq :“

ż

Vt

ρpx, tqupx, tqdV. (1.14)

According with the conservation of momentum principle, at each time t, the rate of change
of momentum Pptq is equal to the sum of the forces acting on the fluid parcel

dPptq

dt
“ Rptq. (1.15)

Before deriving the differential equation for the momentum conservation, we introduce a
second result useful in the next computations.

Theorem 1.3 (Reynolds transport theorem II). If the continuity equation (1.13) is valid,
integrating the product ρpx, tqfpx, tq over the time-dependent region Vt and taking its
derivative with respect to time results in

d

dt

ż

Vt

ρfdV “

ż

Vt

ρ
Df

Dt
dV. (1.16)

Using the Reynolds transport theorem II, the rate of change of the momentum is
expressed as follows

dPptq

dt

p1.14q
“

d

dt

ż

Vt

ρudV
p1.16q
“

ż

Vt

ρ
Du

Dt
dV.

By using the definition of material derivative and the continuity equation, the integrand
of the previous equation might be rewritten as

ρ
Du

Dt

p1.4q
“ ρ

Bu

Bt
` ρu ¨ p∇uq

“ ρ
Bu

Bt
`∇ ¨ pρuuT q ´ u∇ ¨ pρuq

p1.13q
“ ρ

Bu

Bt
`∇ ¨ pρuuT q ` u

Bρ

Bt

“
Bpρuq

Bt
`∇ ¨ pρuuT q.

(1.17)

As a consequence the rate of change of momentum results to be

dPptq

dt
“

ż

Vt

„

Bpρuq

Bt
`∇ ¨ pρuuT q



dV. (1.18)
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The forces acting on the fluid parcel are of two types, bulk and contact forces which
sum respectively as Fpbqptq and Fpcqptq. A bulk force is, for example, a gravitational field,
and we assume for simplicity that it is the only one bulk force acting on the system (other
bulk forces may be prescribed otherwise). Instead, the contact forces act on the fluid
parcel through its boundary because of the interaction with the neighbor parcels or with
the external environment; such forces are entirely described by the stress tensor σ (whose
expression will be described in the next §1.1.5.3). In the following equation, we give the
expression of the net external forces at the right hand side of (1.15) and use the Gauss
theorem to pass from a surface integral to a volumetric integral:

Rptq “ Fpbqptq ` Fpcqptq

“

ż

Vt

ρgdV `

ż

BVt

n ¨ σdS

“

ż

Vt

ρgdV `

ż

Vt

∇ ¨ σdV,

(1.19)

where n is the unit outward vector normal to the volume surface.
Reassembling the results (1.18) and (1.19) together in the initial Eq. (1.15), we get

the integral form of the momentum conservative equation
ż

Vt

„

Bpρuq

Bt
`∇ ¨ pρuuT q ´ ρg ´∇ ¨ σ



dV “ 0.

Also, as in the continuity equation case, the condition above must be respected for every
parcel V . Therefore, the integrand itself must be null so that the differential form of the
momentum conservation equation descends:

Bpρuq

Bt
`∇ ¨ pρuuT q “ ρg `∇ ¨ σ. (1.20)

In the next section, we analyze the tensor σ that contributes to the contact forces acting
on the boundary surface of the fluid parcels.

1.1.5.3 Stress tensor, pressure and viscosity

The stress forces acting on a fluid surface are a combination of normal stress, which may
be compression or tension, as represented in Figures 1.5a and 1.5b, and tangential stress
(also called shear stress), see Figure 1.5c. The stress tensor σ is a second-order tensor
that describes these stress forces. Each element σij denotes the i-component of the force
per unit area acting on a plane surface normal to the j-direction. The diagonal entries
model the normal stresses and the non-diagonal elements the shear stresses.

From a mathematical point of view, σ is a symmetric matrix; hence it always exists
a local system of orthogonal axes B that brings the stress tensor to a diagonal form σB.
The matrix eigenvalues are the so-called principal stresses, σ111, σ122, σ133, and each of them
corresponds to a tension or to a compression, depending on the sign. According to this,
each fluid parcel undergoes a superposition of tensions/compressions along with the three
local orthogonal directions B. Reminding that the trace of a matrix, denoted as t, is
invariant for a change of basis, namely

t :“ trpσq “
3
ÿ

i“1

σii “ σ111 ` σ
1
22 ` σ

1
33 “ trpσBq,
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(a) (b) (c)

x1

x2

u1

(d)

Figure 1.5: Normal (a,b) and tangential (c) stress forces acting on the surface normal to x1 and
the flow consequent to the shear stress (d).

then the stress tensor, expressed with respect to B, may be split as follows:

σB “

»

–

σ111 0 0
0 σ122 0
0 0 σ133

fi

fl “

»

–

1
3
t 0 0

0 1
3
t 0

0 0 1
3
t

fi

fl`

»

–

σ111 ´
1
3
t 0 0

0 σ122 ´
1
3
t 0

0 0 σ133 ´
1
3
t

fi

fl .

The first tensor has spherical symmetry (it is isotropic) that corresponds to a uniform
compression or uniform tension; hence we can see it as a tensor representation of pressure.
As a consequence of the isotropic property of pressure, it tends to change the volume of
the fluid parcel at which they are applied as represented in Figures 1.6a and 1.6b. The
second tensor has a null trace, so the normal stresses represented by that tensor must
be at least one compression and one tension, with the consequence that the fluid parcel
deforms, see Figure 1.6c.

(a) (b) (c)

Figure 1.6: Different combination of compressions and tensions acting on a spherical fluid parcel.

If a fluid is at rest, it does not move, so it does not deform, and its volume does
not change. The absence of deformation translates that the second tensor is null. This
also means that the principal stresses are the same, that is σ111 “ σ122 “ σ133 “

1
3
t at all

points in the fluid; therefore, the stress tensor in a fluid at rest is everywhere isotropic,
all orthogonal axes of reference are principal axes for the stress tensor and only normal
stresses act. Moreover, the fluids at rest are normally in a state of compression, so it is
convenient to write the stress tensor as

σ “ ´pI, (1.21)

p “ ´
1

3
t, (1.22)

where we introduce p, that we call pressure (and, since the fluid is at rest, we could see
that as the hydrostatic pressure, which may be a function of position), notice that such
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a definition of pressure is purely mechanical. Despite it, for a fluid at rest, the pressure
p coincides with the thermodynamic pressure that is a state variable (which may depend
on the temperature and density, for example). Underlining this difference, we introduce
the notations pmech and pth to distinguish in general the mechanical and thermodynamic
pressure at equilibrium. Hence, for a fluid at rest, the following equation holds

p “ pmech “ pth.

However, for a moving fluid, the mechanical and the thermodynamic pressure may not
coincide, and we deal with it in detail below.

When the fluid is not at rest, the previous observations and results do no hold. Despite
this, it is still useful to have the analog of the static pressure also for a moving fluid,
measuring the local intensity of the “squeezing” of the fluid. Then we continue to call
pressure the isotropic part of the stress tensor, whereas the remaining non-isotropic term
d is named deviatoric stress tensor or viscous stress tensor :

σ “ ´pI` d. (1.23)

The deviatoric stress tensor is present only in the case of motion; in fact, it depends on
the velocity distribution or, more precisely, on the deviation from the uniformity of such
distribution. From this observation descends that the main parameter of the deviatoric
stress tensor is the velocity gradient. In order to clarify the last statement, consider
pure shear stress, as represented in Figure 1.5c, that acts on a rectangular portion of a
viscous fluid and makes it move. One may imagine as if a series of parallel planes move
one over the other, with the upper layers that run faster than those underlying with a
resulting configuration similar to that represented in Figure 1.5d. The velocity shows

in this example a non-zero gradient
Bu1

Bx2

‰ 0. The difference of velocity between two

contiguous layers is named shear rate (or strain rate when dealing with the deformation
of solids), and the symmetric tensor formalizes it

E :“
1

2

“

∇u` p∇uqT
‰

(1.24)

that is called shear rate tensor.
Aiming to find a relationship between the stress tensor σ and the velocity derivatives

Bui{Bxj, some assumptions are made on the fluid properties and on the tensor:

1. the fluid is assumed homogeneous (its physical characteristics are constant in space)
so that the spatial variations of the stress tensor depend only on the spatial variations
of the velocity field;

2. the fluid is assumed isotropic, namely without preferred direction as far as the re-
lationship between stress and rate of shear concerns. This assumption is not a
great restriction, in fact the isotropic structure characterizes all gases and most liq-
uids; non-isotropic liquids are, for example, solutions containing very long chain-like
molecules because they present some directional preferences due to the alignment
of such molecules;

3. the stress tensor σ depends only on the velocity derivatives, hence on the spatial
distribution of the velocity field;
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4. the relationship between the stress tensor and the velocity derivatives is linear

σij “
3
ÿ

k,l“1

aijkl
Buk
Bxl

. (1.25)

Fluids that respect the conditions 1-4 exhibit a Newtonian behavior. Being σ symmetric,
the tensor a has a symmetry with respect to i and j. Without entering in details of
further considerations and calculations (refer to the book [9], §3.3 for further details), the
following expression of the stress tensor Eq. (1.23) for a Newtonian fluid holds:

σ “ ´pI` 2µE` λp∇ ¨ uqI
looooooooomooooooooon

d

, (1.26)

where the coefficient µ relates the shear rate tensor to the stress and is called dynamic
viscosity, whereas the coefficient λ is called bulk viscosity (also volume viscosity) and is
related with the damping associated with volumetric straining. It remains to determine
what the pressure p means, and there are two possible definitions.

Case A. We may adopt a mechanical point of view assuming that pressure p “ pmech
and respects the condition p “ ´1

3
trpσq, as it is for a fluid at rest. From this, it descends

a relation between the viscosity coefficients:

trpσq “ ´3p` 2µtrpEq ` 3λp∇ ¨ uq p1.24q
“ ´3p` 2µp∇ ¨ uq ` 3λp∇ ¨ uq

p1.22q
ùñ λ “ ´

2

3
µ,

and hence the stress tensor is rewritten as:

σ “ ´pmechI` 2µE´
2

3
µp∇ ¨ uqI

loooooooooomoooooooooon

d

. (1.27)

Case B. On the other hand, if in Eq. (1.26) we define p as the thermodynamic equi-
librium pressure p “ pth (in the cases where the thermodynamic is involved) the stress
tensor is simply

σ “ ´pthI` 2µE` λp∇ ¨ uqI
looooooooomooooooooon

d

. (1.28)

To write the expression of the stress tensor in a way that links the mechanics and the
thermodynamics, we use the equilibrium thermodynamic pressure pth that in this case
differs from the mechanic pressure of a quantity proportional to the divergence of the
velocity field, hence in an isotropic medium, the relation is

p “ pmech “ pth ´ ζ∇ ¨ u,

where ζ is a proportionality coefficient depending on the dynamic and bulk viscosity, as
described in the following. Therefore, the stress tensor of Eq. (1.27) becomes:

σ “ ´pthI` 2µE`

ˆ

ζ ´
2

3
µ

˙

p∇ ¨ uqI
looooooooooooooomooooooooooooooon

d

. (1.29)
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In both approaches, the equations we obtain when considering the thermodynamic pres-
sure, Eqs. (1.29) and (1.28), are the same and linked by the relation

λ “ ζ ´
2

3
µ ùñ ζ “ λ`

2

3
µ.

If thermodynamics is not involved, ζ “ 0, Eq. (1.27) is valid and λ “ ´2
3
µ.

In the light of the considerations above about the stress tensor σ, the momentum Eq.
(1.20) may be written as

Bpρuq

Bt
`∇ ¨ pρuuT q “ ρg `∇ ¨ σ p1.23q

“ ρg ´∇p`∇ ¨ d. (1.30)

For a Newtonian fluid, p and d verify Eq. (1.27) if thermodynamic is not involved,
otherwise they respect Eq. (1.29) or (1.28).

1.1.5.4 Derivation of the energy conservation equation

The law for the conservation of energy (introduced in §1.1.2) states that the total amount
of energy in a closed and isolated system remains constant over time. However, for the
thermodynamic processes, the energy conservation law is adapted, and it translates into
the first law of thermodynamics : in a closed system (such as a fluid parcel), the rate of
change of the total energy of the system is equal to the sum of the rate of work done on
the system due to the body and surface forces and the net flux of heat supplied to the
system.

Considering the total energy E as the sum of the thermal energy and the kinetic energy,
then the total energy possessed by a fluid parcel at time t is

Eptq :“

ż

Vt

ρe dV `

ż

Vt

ρ
|u|2

2
dV “

ż

Vt

E dV, E :“ ρ

˜

e`
|u|2

2

¸

, (1.31)

where e is the specific internal energy, |u|2{2 is the specific kinetic energy, and E is the
total energy density.

For the first principle of thermodynamics, the rate of change of the energy in the fluid
parcel is equal to the sum of the rate of work done on the parcel and the heat received
from the surrounding bodies, namely

d

dt
Eptq “ Lptq `Qptq, (1.32)

where the two terms on the right-hand side represent the work and heat contributions
respectively.

Thanks to the Reynolds transport theorem II, the rate of change of energy expresses
as follows

d

dt
Eptq p1.31q

“
d

dt

ż

Vt

ρ

˜

e`
|u|2

2

¸

dV

p1.16q
“

ż

Vt

ρ
D

Dt

˜

e`
|u|2

2

¸

dV

“

ż

Vt

„

BE

Bt
`∇ ¨ pEuq



dV,

(1.33)
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where the last equation is obtained with computations similar to those present in Eq.
(1.17):

ρ
D

Dt

˜

e`
|u|2

2

¸

“ ρ
B

Bt

˜

e`
|u|2

2

¸

` ρu ¨∇

˜

e`
|u|2

2

¸

“ ρ
B

Bt

˜

e`
|u|2

2

¸

`∇ ¨

«

ρu

˜

e`
|u|2

2

¸ff

´ r∇ ¨ pρuqs

˜

e`
|u|2

2

¸

p1.13q
“ ρ

B

Bt

˜

e`
|u|2

2

¸

`∇ ¨

«

ρu

˜

e`
|u|2

2

¸ff

`
Bρ

Bt

˜

e`
|u|2

2

¸

p1.31q
“

BE

Bt
`∇ ¨ pEuq.

The term L is related to the power of the external forces acting on the system. Re-
minding that the mechanical power of a fluid flow is the rate at which the work (exerted
by the forces) is done, the power is the product of the bulk and contact forces exerted on
the control volume and its velocity. Assuming that gravity is the only bulk force acting
on the system and that the contact forces are entirely described by the stress tensor σ
defined in Eq. (1.23), then L is expressed as:

Lptq “
ż

Vt

ρg ¨ udV `

ż

BVt

n ¨ pσuqdS

“

ż

Vt

”

ρg ¨ u`∇ ¨ pσuq
ı

dV

p1.23q
“

ż

Vt

”

ρg ¨ u´∇ ¨ ppuq `∇ ¨ pduq
ı

dV.

(1.34)

The Q term is related to two heat exchange phenomena: (i) the volumetric heating
such as absorption or emission of radiation, and (ii) the heat transfer across the surface
due to temperature gradients, i.e., thermal conduction. By naming r “ rpx, tq the rate of
volumetric heat addition per unit mass and considering the heat flux qcond “ qcondpx, tq
due to thermal conduction at the boundaries, the expression of Q is:

Qptq “
ż

Vt

ρrdV ´

ż

BVt

qcond ¨ ndS “

ż

Vt

”

ρr ´∇ ¨ qcond
ı

dV, (1.35)

in particular, the conductive heat flux depends on the temperature gradient as qcond “
´k∇T , where k is the thermal conductivity and T “ T px, tq is the temperature.

By using what we derived in Eqs. (1.33), (1.34), and (1.35) to reassemble Eq. (1.32),
we obtain the integral form of the energy conservation equation

ż

Vt

"

BE

Bt
`∇ ¨ pEuq ´

”

ρg ¨ u´∇ ¨ ppuq `∇ ¨ pduq ` ρr ´∇ ¨ qcond
ı

*

dV “ 0.

Since the previous condition must be verified for every fluid parcel V , the integrand must
be null, so we find the differential expression of the energy conservation equation:

BE

Bt
`∇ ¨ pEuq “ ρg ¨ u´∇ ¨ ppuq `∇ ¨ pduq ` ρr ´∇ ¨ qcond. (1.36)
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1.1.5.5 Governing equations system, constitutive and state equations

The previous paragraphs showed the derivation of the Navier-Stokes governing equations
for a viscous fluid in the presence of heat conduction and heat supply; we also assumed
gravity to be the only external body force. We obtained the equations for the mass (1.13),
momentum (1.30), and energy conservation (1.36) and we gather them together in the
following system:

Bρ

Bt
`∇ ¨ pρuq “ 0, (1.37a)

Bpρuq

Bt
`∇ ¨

`

ρuuT
˘

“ ρg ´∇p`∇ ¨ d, (1.37b)

BE

Bt
`∇ ¨ pEuq “ ρg ¨ u´∇ ¨ ppuq `∇ ¨ pduq ` ρr ´∇ ¨ qcond (1.37c)

where we recall that ρpx, tq is the fluid density (that might depend on other thermody-
namic variables), upx, tq is the velocity vector field (with components u “ pu, v, wq), g is
the gravity acceleration, ppx, tq is the pressure, dpx, tq is the viscous stress tensor, Epx, tq
is the density of total energy, rpx, tq is the rate of volumetric heat addition per unit mass,
qcondpx, tq is the heat flux due to thermal conduction, dependent on the temperature
gradient as qcond “ ´k∇T where k is the thermal conductivity.

Usually, gravity g and heat supply r are prescribed. The viscous stress tensor d has
the most generic expression defined in Eq. (1.23). In the case that the fluid exhibit a
Newtonian behavior, the tensor d assumes the form reported in Eq. (1.26), which presents
the viscosity coefficients µ and λ that represent two parameters of the problem. These
two are always a property of the fluid and sometimes may depend on the unknowns of the
problems by constitutive assigned equations. The total energy E is the sum of internal
and kinetic energy E “ ρe` ρ |u|2

2
, see Eq. (1.31), so it depends on density ρ, velocity u,

and internal specific energy e. This last unknown is a state variable, such as temperature
and pressure; hence it depends on those variables through state equations that depend on
the fluid. For example, in the case of an ideal gas, the internal energy is proportional to
its mass, which is determined by the number of moles n, to its temperature T , and its
molar heat capacity (at constant volume) cV

e “ cV nT.

It remains to discuss the role of pressure p. To do that, we assume Newtonian behavior.
If p is the thermodynamic pressure, then the deviatoric stress d follows Eq. (1.29) or
(1.28) and there is a state equation that relates pressure with the other state variables.
For instance, in the case of a perfect gas the following relation holds:

ρ “
pmg

RT
,

where mg is the gas molecular weight and R is the ideal gas constant. If the pressure is
a mechanical quantity, the deviatoric stress d follows Eq. (1.27), and the pressure field p
(apart from a constant value) is determined by the velocity distribution. To conclude, we
assign the values of µ and λ with the constitutive equations and use the state equations
for e and p, so the system of governing equations (1.37) has 5 equations (because the
momentum Eq. (1.37b) contains 3 equations) and 5 unknowns ρ, u, and T . Moreover,
initial and boundary conditions need to be also assigned as we will see in §1.1.7.
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The Navier-Stokes Eqs. (1.37) form a system of non-linear and coupled PDEs that is
therefore very difficult to solve analytically. To date, there is no general closed-form solu-
tion for these equations. Before discussing the differential nature of the Navier-Stokes Eqs.
(1.37), we recall that in the theory of scalar PDEs, according to a classic classification, it
is common to distinguish them between:

• elliptic PDEs,

• parabolic PDEs,

• hyperbolic PDEs;

the first two types do not occur in the first-order case. Elliptic PDEs describe equilibrium
problems such as, for example, the Laplace equation which describes the steady-state tem-
perature distribution in the absence of heat sources. Conversely, parabolic and hyperbolic
equations model evolutive problems, where the variables change not only in space but
also in time. The parabolic PDEs have solutions characterized by irreversibility and the
information travels in space at infinite speed (i.e. a perturbation prescribed at a fixed lo-
cation in space immediately affect all the spatial domain). The main example of this type
of equations is the heat equation. The wave equation, instead, is the most famous second
order equation of the hyperbolic type; first order equations like the transport equation
presented in §1.1.4 are another example of hyperbolic PDE.

Coming back to the Navier-Stokes system of Eqs. (1.37), we see that the equations
show a mixed hyperbolic and parabolic nature. In fact, the continuity equation is purely
hyperbolic. In contrast, the equations for the momentum and energy are parabolic, since
the terms with the viscous stress tensor d and the term with the thermal conduction qcond
involve second-order spatial derivatives.

1.1.5.6 Incompressible Navier-Stokes equations

The Navier-Stokes Eqs. (1.37) model the motion of a generic Newtonian fluid. Additional
hypotheses on the fluid physical properties or about the flow characteristics may simplify
the equations. For the applications we are interested in, the hypothesis of incompressible
flow is assumed and, because of it, the equations undergo important variations.

We pay attention to the terminology, and we distinguish between incompressible fluids
and incompressible flows. In common sense, compressibility is a physical property of the
fluids themselves, but the term incompressible may also be associated with a flow regime.
Many texts that treat these concepts often do not distinguish between them because the
results that these conditions produce are similar.

Definition 1.1. An incompressible fluid is a fluid with constant density

ρpx, tq “ const. (1.38)

Definition 1.2. A flow is said incompressible (or isochoric) when the density of each
fluid parcel that moves with the flow remains constant. This is equivalent to saying that
the material derivative (defined in Eq. (1.4)) of density vanishes:

Dρ

Dt
“
Bρ

Bt
` p∇ρq ¨ u “ 0. (1.39)
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The introduction of the incompressible flow condition inside the mass conservation
modifies it as follows

Bρ

Bt
`∇ ¨ pρuq “ Bρ

Bt
` p∇ρq ¨ u` ρ p∇ ¨ uq

p1.4q
“

Dρ

Dt
` ρ p∇ ¨ uq

p1.39q
“ ρ p∇ ¨ uq
p1.37aq
“ 0,

and, hence, the continuity equation under the incompressible flow condition becomes the
kinematic constraint of divergence-free velocity field (for fluids with a nonzero density)
instead of a dynamic equation:

∇ ¨ u “ 0 (1.40)

which corresponds to the condition of volumes conservation1.

Notice that the incompressible flow condition, Eq. (1.39) allows the fluid to have a
different density for each parcel, namely a non-homogeneous density distribution.

If one considers the case of an incompressible fluid, namely one restricts to the case of
constant density, Eq. (1.38), this trivially implies that the partial derivatives of density are
null; in such a situation, it descends that the incompressible flow condition of Eq. (1.39) is
trivially verified, and therefore we find, again, that the mass conservation equation results
to be the divergence-free velocity condition:

ρpx, tq “ const ùñ

#

Btρ “ 0,

∇ρ “ 0,
ùñ ∇ ¨ u “ 0. (1.41)

It is not possible to say the opposite, namely that the incompressible flow condition implies
a constant and homogeneous density field.

Even the momentum conservation Eq. (1.37b) changes its expression under the hy-
pothesis of incompressible flow. We first focus on the hyperbolic terms to see how they
change, then show the consequences of the incompressibility assumption on the stress
tensor. Finally, expanding the hyperbolic terms by the chain rules, the density variable
moves out of the differential terms, and it appears as a scalar that multiplies both the

1The volume of a fluid parcel V at time t is VV ptq :“
ş

Vt
dV . The conservation of the volume of the

fluid parcel means that
dVV ptq

dt
“ 0, therefore by using the Reynolds transport Th.1.2 with f ” 1 we

obtain
dVV ptq

dt
“

d

dt

ż

Vt

dV
p1.12q
“

ż

Vt

∇ ¨ u dV “ 0;

then the conservation of volume translates in the condition of null divergence ∇ ¨ u.
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transient term and the advective term:

Bpρuq

Bt
`∇ ¨

`

ρuuT
˘ p1.43q
“

Bρ

Bt
u` ρ

Bu

Bt
` r∇ ¨ pρuqsu` pρu ¨∇qu

“

ˆ

Bρ

Bt
` r∇ ¨ pρuqs

˙

loooooooooomoooooooooon

“0 for Eq. (1.37a)

u` ρ
Bu

Bt
` ρ pu ¨∇qu

“ ρ
Bu

Bt
` ρ pu ¨∇qu` ρp∇ ¨ uqu

looooooomooooooon

“0 for Eq. (1.40)

p1.44q
“ ρ

ˆ

Bu

Bt
`∇ ¨ puuT q

˙

,

(1.42)

where the first and last equalities use the following non trivial differential equivalences

∇ ¨
`

ρuuT
˘

“ r∇ ¨ pρuqsu` rρ pu ¨∇qsu, (1.43)
∇ ¨

`

uuT
˘

“ p∇ ¨ uqu` pu ¨∇qu. (1.44)

Since the second equation is a simpler version of the former one, only the first equation
is proved (recalling that u has the components pu, v, wq):

∇ ¨ pρuuT q “ ∇ ¨

»

–

ρu2 ρuv ρuw
ρvu ρv2 ρvw
ρwu ρwv ρw2

fi

fl “

»

–

Bxpρu
2q ` Bypρuvq ` Bzpρuwq

Bxpρvuq ` Bypρv
2q ` Bzpρvwq

Bxpρwuq ` Bypρwvq ` Bzpρw
2q

fi

fl

“

»

–

Bxpρuqu` Bypρvqu` Bzpρwqu
Bxpρuqv ` Bypρvqv ` Bzpρwqv
Bxpρuqw ` Bypρvqw ` Bzpρwqw

fi

fl`

»

–

pρuqBxu` pρvqByu` pρwqBzu
pρuqBxv ` pρvqByv ` pρwqBzv
pρuqBxw ` pρvqByw ` pρwqBzw

fi

fl

“ pBxpρuq ` Bypρvq ` Bzpρwqq

»

–

u
v
w

fi

fl` ppρuqBx ` pρvqBy ` pρwqBzq

»

–

u
v
w

fi

fl

“ r∇ ¨ pρuqsu` rρu ¨∇su.

The incompressible flow condition may be applied to the stress tensor too (defined in
Eq. (1.26)), and its expression simplifies and loses the term related with the damping
associated with the volumetric straining:

σ
p1.26q
“ ´pI` 2µE` λp∇ ¨ uqI

looooooooomooooooooon

d

p1.40q
“ ´pI` 2µE

loomoon

d

. (1.45)

Notice also that the thermodynamic is not involved, because no volume variations are
allowed in the incompressible condition, hence p is intended as the mechanical pressure,
p “ pmech.

Under the incompressible flow hypothesis, the density “moves” out of the hyperbolic
terms of the momentum equation, see Eq. (1.42). Therefore both the left and right sides
of the momentum equation (1.37b) may be divided by ρ and one finds a modified version
of the momentum equation

Bu

Bt
`∇ ¨ puuT q “ g ´

∇p
ρ
`

1

ρ
∇ ¨ p2µEq . (1.46)
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Being mostly interested in modeling Newtonian fluids and incompressible flows, we
rename the deviatoric stress tensor under these precise conditions as τ

τ :“ 2µE
p1.24q
“ µ

“

∇u` p∇uqT
‰

, (1.47)

and in the following we only refer to this notation.
For an incompressible fluid, namely in the case of constant density, Eq. (1.38), the

momentum equation may further simplify its expression: ρ can move inside the pressure
gradient and the divergence of the viscous stress, obtaining

Bu

Bt
`∇ ¨ puuT q “ g ´∇p

ρ
`∇ ¨ p2νEq , (1.48)

where the coefficient ν is called kinematic viscosity and defined as

ν :“
µ

ρ
.

In such simplified case of incompressible fluid, the Eq. (1.48) is accompanied only by the
condition ∇ ¨ u “ 0.

Coming back to the case of a viscous Newtonian fluid, incompressible flow and with
possibly non-constant and not uniform density, the governing equations are

Bρ

Bt
`∇ ¨ pρuq “ 0, (1.49a)

Bpρuq

Bt
`∇ ¨

`

ρuuT
˘

“ ρg ´∇p`∇ ¨ τ , (1.49b)

namely a transport equation for the fluid density ρpx, tq and the momentum equation
with the viscous stress tensor under the incompressible condition τ px, tq. As observed,
the pressure p is intended as the mechanical pressure, so it depends on the pressure
distribution at the boundary. The system (1.49) is composed by 4 equations (because the
momentum equation is written in vectorial formalism, but consists of 3 scalar equations)
in 4 unknowns: ρ and u “ pu, v, wq. Even if some energy equation accompanies the
system, there would not be a state equation (linking energy, pressure, and density) to
add because thermodynamics is not involved. For example, in Chapter 2 we show that
an equation for temperature may be added to the system, as a sort of energy equation,
without accounting for any thermodynamic behavior. Also, such an equation would be
coupled with the system only if a variable (such as ρ) or a parameter (like the dynamic
viscosity µ) depends on temperature through a constitutive equation.

There is one last thing to notice about the term involving the divergence of the viscous
stress tensor. Because of the definition of τ , it may split in two terms

∇ ¨ τ p1.47q
“ ∇ ¨

 

µ
“

∇u` p∇uqT
‰(

“ ∇ ¨ pµ∇uq `∇ ¨ rµp∇uqT s.

We compute the two resulting terms. The first one is

∇ ¨ pµ∇uq “ ∇ ¨

¨

˝µ

»

–

Bxu Byu Bzu
Bxv Byv Bzv
Bxw Byw Bzw

fi

fl

˛

‚“

»

–

BxpµBxuq ` BypµBxvq ` BzpµBxwq
BxpµByuq ` BypµByvq ` BzpµBywq
BxpµBzuq ` BypµBzvq ` BzpµBzwq

fi

fl .
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Note that the partial derivatives of µ appear; since they are equal in any direction (because
the fluid is Newtonian and therefore isotropic) then the order of derivatives may change
in every term:
»

–

BxpµBxuq ` BxpµByvq ` BxpµBzwq
BypµBxuq ` BypµByvq ` BypµBzwq
BzpµBxuq ` BzpµByvq ` BzpµBzwq

fi

fl“

»

–

Bx pµpBxu` Byv ` Bzwqq
By pµpBxu` Byv ` Bzwqq
Bz pµpBxu` Byv ` Bzwqq

fi

fl“

»

–

Bx pµp∇ ¨ uqq
By pµp∇ ¨ uqq
Bz pµp∇ ¨ uqq

fi

fl

p1.40q
“ 0.

As a consequence, the first term is null for isotropic fluids. The second term is

∇ ¨ rµp∇uqT s “ ∇ ¨

¨

˝µ

»

–

Bxu Bxv Bxw
Byu Byv Byw
Bzu Bzw Bzw

fi

fl

˛

‚“

»

–

BxpµBxuq ` BypµByuq ` BzpµBzuq
BxpµBxvq ` BypµByvq ` BzpµBzvq
BxpµBxwq ` BypµBywq ` BzpµBzwq

fi

fl .

In the case where µ is constant, it exits from the derivatives and the second term becomes

µ

»

–

BxBxu` ByByu` BzBzu
BxBxv ` ByByv ` BzBzv
BxBxw ` ByByw ` BzBzw

fi

fl “ µ

»

–

∆u
∆v
∆w

fi

fl “ µ∆u.

We conclude that when the fluid is Newtonian and isotropic and the flow is incom-
pressible, the viscosity term in the momentum equation assumes the following expression

∇ ¨ τ “ ∇ ¨ pµ∇uq `∇ ¨ pµp∇uqT q “ ∇ ¨ pµp∇uqT q.

In addition, if viscosity is constant then we obtain

∇ ¨ τ “ µ∆u. (1.50)

1.1.5.7 Rheology models

Many fluids we deal with in everyday life are Newtonian, such as water, oil, air, alcohol,
and glycerol, but just as many are not. For this reason, we present the generalization of the
Newtonian models, investigating the rheologycal properties of other materials. Rheology
is the branch of physics that studies the response of solids and liquids to the application
of surface forces, the deformation and flow of the matter under the influence of applied
stress. Eugene C. Bingham coined the term rheology for the first time in 1920, taking
inspiration from the Greek aphorism panta rhei that means “everything flows”, in partic-
ular r’eoz (rheo-) stands for “flow” and log’ia (-logìa) for “the study of”. This study
has applications in multiple fields and disciplines such as material science, engineering,
biology, pharmaceutics, geophysics and food studies.

We remind that the Newtonian fluids in incompressible flow have the viscous stress
tensor defined (in Eq. (1.47)) as

τ “ µp2Eq,

where µ denotes the dynamic viscosity. A generalized model is considered for those non-
Newtonian fluids for which the 4th Newtonian assumption from 1–4 does not hold, that
is, the linear dependence on velocity derivatives, Eq. (1.25), anyway the constitutive
equation of the shear stress may still be formalized as the Newtonian way as follows

τ “ µappp2Eq, (1.51)
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and the proportionality coefficient µapp is named as apparent viscosity.
For fluids that respect the power-law relationship introduced in 1926 by Herschel and

Bulkley to express the shear stress as a function of shear rate for both Newtonian and non-
Newtonian fluids, see [251], the apparent viscosity depends on the shear rate according
to the formula

µapp :“ rµ|2E|N´1
`

τ0

|2E|
, (1.52)

where | ¨ | denotes the tensor norm (corresponding to the matrix Frobenius norm, [106,
page 55]), rµ is the flow consistency index (also called power-law viscosity) and N P R is
the pseudoplastic constant that indicates the degree of non-linearity between the shear
stress and the shear rate. All these coefficients may depend on other parameters such as
temperature. τ0 is the yield stress and is a threshold for the shear stress: if the shear
stress magnitude is smaller than that, then there is no deformation, and therefore (1.52)
does not hold whenever |τ | ă τ0. The Bingham fluids are those characterized by τ0 ą 0.
Consider, for example, a fluid that moves with a one-dimensional shear flow along the x1

axis, as the one represented in Figure 1.5d, so that the only nonzero velocity gradient is
Bu1
Bx2

. The shear rate tensor 2E and its norm |2E| result in

2E “
Bu1

Bx2

»

–

0 1 0
1 0 0
0 0 0

fi

fl , |2E| “
?

2

ˇ

ˇ

ˇ

ˇ

Bu1

Bx2

ˇ

ˇ

ˇ

ˇ

.

The only nonzero entries of the shear stress tensor are τ12 and τ21 that, in addition, are
equal because of the symmetry of the tensor. We write the expression of τ12, considering
the Eqs. (1.51), (1.52), applied to a Bingham fluid:

$

’

’

&

’

’

%

τ12 “ rµ

ˆ

?
2

ˇ

ˇ

ˇ

ˇ

Bu1

Bx2

ˇ

ˇ

ˇ

ˇ

˙N´1
Bu1

Bx2

˘
τ0
?

2
, if |τ | ą τ0,

Bu1

Bx2

“ 0, if |τ | ď τ0,

meaning that there is no shear flow (Bu1
Bx2
“ 0) if the shear stress exerted is lower than the

yield stress τ0.
Giving a glimpse to Figure 1.7, a brief overview of the different types of rheological

models that can be described with the power-law model of Eq. (1.52) is discussed. The
consequent behavior of the apparent viscosity, according with Eq. (1.52), is displayed in
Figure 1.8. Newtonian fluids correspond to the case τ0 “ 0, N “ 1. The pseudoplastic
fluids, or shear thinning fluids, have n ă 1 then the shear rate increases faster than the
shear stress; shampoos and ketchup belong to this family. On the opposite, the dilatant
fluids, or shear thickening fluids, present the complementary behavior and N ą 1; a
mixture 1:2.5 of water and cornstarch is a common representative of this rheology because
it behaves like water to small forces, but it acts as a solid and resists to the impact of
violent forces. Toothpaste is a familiar example of Bingham plastic rheology, τ0 ą 0 and
N “ 1; the toothpaste tube needs an initial squeeze to get the toothpaste out, however,
squeezing it harder will not make it flow any easier (in fact, looking at Figure 1.8, viscosity
stays over the specific threshold rµ). The mayonnaise is a case of Bingham pseudoplastic
rheology which presents τ0 ą 0 and N ă 1; mayonnaise flows out from a bottle as soon as
it is squeezed, and the harder the bottle is squeezed, the thinner the mayonnaise comes
out. A Bingham dilatant rheology model, τ0 ą 0 and N ą 1, is used in snow avalanches
modeling [150].
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Figure 1.7: Classification of fluids according to the power law relation between the shear rate
and the shear stress, see Eq. (1.52).
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Figure 1.8: Apparent viscosity depending on the shear rate, see Eq. (1.52), of fluids that satisfy
the power law. Note that the shear thickening plot represents a case where N ą 2.

Viscosity is intrinsically related to the physical nature and chemical composition of
involved materials, and it may also vary according to other factors related to the event
dynamics. For example, it may depend on the concentration of sediments in geophysical
flows involving erosion/deposition phenomena. Even the temperature may be accounted
for as it happens, for example, in the Arrhenius model for liquids.

In this thesis, we are mainly interested in the specific application of lava flow modeling
(we introduce it in the next §1.4.2), and fully molten lava exhibits Newtonian rheology (see
Gonnermann and Manga [107]). However, the cooling of lava, crystallization process, and
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degassing changes this behavior (see Pinkerton and Sparks [216], Cimarelli et al. [43], Lev
et al. [165]) with the consequence that lava requires minimal shear stress to flow, therefore
the Bingham model is the simplest approximation to it. Because of this motivation, in this
thesis we will employ and refer to the Newtonian and Bingham plastic rheological models
(also adopted in the VOLCFLOW software by Kelfoun and Vargas [145], for example).
Furthermore, we plan to adopt also the Bingham pseudoplastic rheology in our model in
future works.

1.1.5.8 Laminar and Turbulent flows

Some basic information about laminar and turbulent regimes is given here, without en-
tering into the turbulence theory and modeling details (which represent research areas
with great questions still to be explored), because it is far from our interest. For an
introduction about turbulence, consult [9] and more specifically [255].

In everyday life experience, a river shows to the observer two scenarios: the flow may
be calm as in Figure 1.9a or be impetuous and tumultuous as in Figure 1.9b when the
water moves with swirls flowing downstream with great mixing.

(a) (b)

Figure 1.9: (a) Laminar flow in Arno river, Italy. (b) Turbulent flow in the middle Shire River,
below one of the Nkula Falls hydroelectric dams, Malawi.

The different behavior is due to the relative magnitude of the viscosity forces and the
inertial forces. In simple words, viscosity force could be considered a force that helps the
fluid parcels to move with an order, one close to another. On the reverse, the greatest is
the velocity, the more turbulent and chaotic the motion of fluid parcels might be. Thus,
the way the fluid parcels move has consequences on the velocity field characteristics and
leads to a classification of the flow:

• Laminar flow is a layer-like movement in which the fluid particles move in parallel
directions, even if not necessarily at the same speeds.

• Turbulent flow is characterized by a chaotic distribution of particle motions; all
the fluid parcels move in different directions and with curvilinear trajectories.

Consider the case of a viscous fluid moving horizontally in a laminar regime with a
uniform velocity u8, see in Figure 1.10 the green arrows on the left that refer to the
streamlines and that represent the uniform velocity profile. As soon as the fluid gets

https://www.flickr.com/photos/neilsingapore/4043374096
http://africhthy.org/en/file-colorboxed/76
http://africhthy.org/en/file-colorboxed/76
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in touch with a horizontal and stationary plate, the velocity profile changes because the
friction with the plate constrains the velocity to decrease, see the green arrows in Figure
1.10 on the right. The orange dashed line approximately divides the free-stream region
from the region where velocity differs from the value u8, such region is named velocity
boundary layer, and we will deal again with this in §2.1.3. The blue arrows in Figure
1.10 within the plate and the dashed line represent the fluid parcels trajectories. In the
beginning, the flow is laminar with the fluid parcel trajectories that follow the streamlines
exactly. After a transition moment, if the velocity is large enough, the trajectories become
curvilinear, with eddies of many sizes, and the flow turns into the turbulent regime.
Despite that, there is still a region close to the plate where the viscous forces due to the
friction with the bottom produce a laminar behavior.

u 8 u 8

x

z
free-stream

u(z)

Laminar Transition Turbulent

Figure 1.10: Laminar and turbulent flow. The straight and parallel green arrows refer to the
streamlines and represent the velocity profile. The blue arrows symbolically represent the fluid
parcels trajectories.

As anticipated, the relative magnitude of inertial force concerning viscous force rules
the type of regime. Reynolds [224] introduced a dimensionless number, named Reynolds
number and denoted as Re, which is proportional to the ratio between the inertial forces
(caused by velocity) and the viscous forces. It helps to classify the type of regime. We
show its derivation for a Newtonian fluid with constant viscosity in the incompressible
flow condition. We consider the momentum Eq. (1.46) and use the result obtained for the
viscosity term under such hypothesis; namely, we use Eq. (1.50), and we get the following
expression for the momentum equation

Bu

Bt
`∇ ¨ puuT q “ g ´

∇p
ρ
`
µ

ρ
∇2u.

We rewrite the left-hand side, express that in terms of the material derivative (see Eq.
(1.4)) and use the incompressible condition ∇ ¨ u “ 0:

Bu

Bt
`∇ ¨ puuT q

p1.44q
“

Bu

Bt
` p∇ ¨ uqu` pu ¨∇qu “ Du

Dt
.

Adopting this expression, the momentum equation writes as follows

Du

Dt
“ g ´

∇p
ρ
` ν∇2u, (1.53)
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where we also introduced the kinematic viscosity ν “ µ{ρ. Consider some characteristic
values (i.e., reference values depending on the problem): a characteristic length L0, a
characteristic velocity V0, and density scale ρ0. For example, when considering an open
channel flow like a river, the depth-averaged velocity and the fluid depth are chosen as
characteristic values V0 and L0; in other situations, the choice of the parameters changes.
We define the dimensionless fluid variables:

û “
u

V0

, x̂ “
x

L0

, p̂ “
p

ρ0V 2
0

.

In a similar fashion, we define a dimensionless time, a dimensionless density, a dimension-
less spatial differential operator, and a dimensionless gravity acceleration:

t̂ “
t

L0{V0

, ρ̂ “
ρ

ρ0

, ĝ “
L0

V 2
0

g, ∇̂ “ L0∇.

We use these definitions to write the momentum equation in terms of the adimensional
quantities

V 2
0

L0

Dû

Dt̂
“
V 2

0

L0

ĝ ´
ρ0V

2
0

ρ0L0

∇̂p̂
ρ̂
`
νV0

L2
0

∇̂2û,

and after simplifying the coefficients, we obtain the following dimensionless equation

Dû

Dt̂
“ ĝ ´

∇̂p̂
ρ̂
`

ν

L0V0

∇̂2û.

The interesting thing in this formulation is the coefficient of the viscous term. It is the
inverse of the Reynolds number, one of the most important dimensionless numbers in fluid
dynamics:

Re “
V0L0

ν
. (1.54)

Problems characterized by similar Reynolds number are expected to exhibit similar fluid
behavior. Intuitively, we could say that the Reynolds number measures the importance
of inertia with respect to viscosity in Eq. (1.53)

Re «
Du{Dt

ν∇2u
.

At low Reynolds numbers, the flow is mostly dominated by the viscous effects, which
act as momentum diffusion, resulting in a laminar behavior, that is the case of Figure
1.9a. Whereas, at high Reynolds numbers, the flow tends to be turbulent because the
inertia is dominant, as the situation of Figure 1.9b.

1.1.6 Systems of hyperbolic PDEs

Generally, in fluid dynamics, the solution of a system of PDEs is required, such as the
Navier-Stokes system of Eqs. (1.37) introduced in §1.1.5 or the systems (2.40) and (2.59)
derived in Chapter 2. Even though the system of PDEs we have to solve show a mixed
differential nature, both parabolic and hyperbolic, we focus and investigate their hyper-
bolic setting. This choice is because we will use numerical schemes for PDEs that first
solve the hyperbolic part of the equations and then the non-hyperbolic terms.
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In the case of a system of transport equations (by focusing on the hyperbolic parts of
the equations), the vector that gathers the conservative variables is defined:

q “

»

—

–

q1
...
qN

fi

ffi

fl

,

and the vector of the fluxes is f “
`

f p1q, f p2q, f p3q
˘

with the components in the three
directions (if we consider the most generic case of 3 dimensional problem). The system is
expressed by the following equation:

Bq

Bt
`∇ ¨ fpqq “ Spqq ðñ

Bq

Bt
`
Bf p1qpqq

Bx
`
Bf p2qpqq

By
`
Bf p3qpqq

Bz
“ Spqq, (1.55)

where Spqq is the vector of the source terms and possibly parabolic terms. We underline
that, even though it is not explicitly written, the conservative quantities depend on the
spatial coordinates x and time t. Thus, even if the single equations that constitute
the system (1.55) are hyperbolic, the whole system might not be classified as hyperbolic
system. In the following, we present the condition the system has to respect for being
classified as hyperbolic.

The system of Eqs. (1.55) is non-linear in most of the cases, and knowing its quasi-
linear expression might be useful. By applying the chain rule to the spatial derivative
terms, the quasi-linear formulation of the system descends:

Bq

Bt
`
df p1q

dq

Bq

Bx
`
df p2q

dq

Bq

By
`
df p3q

dq

Bq

Bz
“ Spqq, (1.56)

where the matrices
df piq

dq
are the Jacobian of the flux functions f piqpqq.

Definition 1.3. The quasi-linear system of PDEs (1.56) is said hyperbolic in a “point”

pq,x, tq if all the matrices
df piq

dq
, i “ 1, . . . , 3, are diagonalizable with real eigenvalues,

which means that in such a point the system verifies the hyperbolic condition for systems.

Definition 1.4. The nonlinear system of PDEs (1.55) is said hyperbolic in a point if its
quasi-linear form (1.56) is hyperbolic in a point.

The eigenvalues of the matrices are related with the velocity of propagation, playing
the role of ū in the simplest linear transport equation Btq ` ūBxq “ 0. Remember that
there are some classes of matrices for which the system is certainly hyperbolic, for example,
for symmetric matrices because they are always diagonalizable with distinct eigenvalues.
Generally, we denote the eigenvalues of the three Jacobian matrices as:

λ
piq
1 ď ¨ ¨ ¨ ď λ

piq
N , i “ 1, . . . , 3. (1.57)

Note that if the flux explicitly depends also on x and t, namely f “ fpq,x, tq, we need
a different treatment.
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1.1.7 Initial and boundary conditions

Any system of PDEs must be associated with additional conditions in order to make
the problem well-posed. Generally, the initial conditions are necessary for at least every
variable that evolves in time. For the classic Navier-Stokes Eqs. (1.37), one may give the
initial conditions for the variables ρ,u, E:

ρpx, 0q, upx, 0q, Epx, 0q.

The classic boundary conditions to use on a single variable are the Dirichlet and
Neumann conditions, which supply a fixed value constraint on the variable itself or its
gradient, respectively. Other boundary conditions are derived from different types of
combinations of these two. Having a system of PDEs, the boundary conditions imposed
on each variable must not conflict with the others. Obviously, the boundary conditions
must not be in contradiction with the initial conditions. A common boundary condition
in the presence of a wall is that the velocity component normal to the wall should be
zero, which corresponds to a solid obstacle that fluid cannot pass through. In the case of
a viscous fluid, there is another physical boundary condition one might wish to impose at
a solid wall: the no-slip boundary condition, that produces a perfect contact, but with
no-slip, between the fluid and the solid surface that constitutes the boundary. The no-slip
boundary condition states that the tangential velocity component too should vanish at
the wall along with the normal velocity so that fluid adjacent to the wall is stationary
(this corresponds to a Dirichlet condition for velocity). This condition is expected due
to friction between the wall and fluid molecules, which prevents molecules from slipping
freely along the wall. However, this friction is present only in viscous fluids.

In hyperbolic problems, moreover, the boundary conditions must consider the eigen-
values of the Jacobian matrices of the fluxes; this is because the eigenvalues are associated
with the solution propagation velocity. So, considering, for example, a flux that enters
from the left side of the domain, propagates to the right, and exits on the right side of
the domain, the direction of the flow determines the boundary conditions to impose: an
input condition is necessary on the left whereas none condition is necessary on the right.

1.2 Finite Volume Method for hyperbolic problems
In the past, scientists had to rely on analytical skills to solve significant problems in
mathematics, and thus they had to undergo rigorous training. Nevertheless, analytical
solution methods are limited to highly simplified problems over simple geometries. When
attempting to get an analytical solution to a physical problem, there is often the tendency
to oversimplify the problem to make the mathematical model simple enough to warrant
an analytical solution. Because of this tendency, one ends to obtain the exact solution of
an oversimplified model.

Today’s scientists have access to an enormous amount of computational power, allow-
ing them to find approximate solutions of less simplified models. A mathematical model
intended for a numerical solution is likely to represent the actual problem better. The
approximation obtained by the numerical models consists of replacing the original terms
of the equations with a set of expressions that a computer can solve.

When we plan to solve a mathematical model by a computer searching for a numerical
solution, we have to consider that computers have a finite amount of memory, whereby we
have to select a set of discrete locations in space and/or time where the numerical solution
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is computed. The discrete locations at which the variables are evaluated are defined by the
numerical grid which is essentially a discrete representation of the geometric domain
on which the problem has to be solved.

There are mainly three families of methods to solve the partial differential equations:

• Finite difference methods: the domain is discretized as numerical grid points, the
numerical solution is a point-wise approximation at the points of the numerical grid,
and the derivatives of the solution are approximated by finite differences, requiring
a strong hypothesis on the regularity of the solution.

• Finite element methods: the domain is discretized to create a mesh composed of
small parts (the finite elements). On each element, the solution is approximated by
a linear combination of functions called shape functions and the coefficients of the
linear combination are the unknowns of the algebraic problem obtained from the
discretization. Then, variational methods are used to approximate the solution by
minimizing an associated error function. The finite element method (FEM) belongs
to the class of Galerkin methods whose starting point is the weak formulation of the
differential problem, based on the concept of derivative in the sense of distributions.
The FEM differs from other Galerkin methods in the local choice of polynomial
shape functions, whereby a piece-wise polynomial function approximates the whole
solution. Thus, the FEM is advantageous for complex geometries but has difficulties
dealing with shocks and other evolving discontinuities.

• Finite volume methods: the domain is discretized into a finite number of cells
(the finite volumes) and the numerical solution is approximated by the cell average,
which is the integral of the variable over the grid cell divided by the volume of the
cell. This family was born to solve problems with governing equations expressed
as the integral form of a conservation law, such as the continuity equation for the
conservation of the mass Eq. (1.49a), namely for

ż t`∆τ

τ

ż

V

„

Bρ

Bt
`∇ ¨ pρuq



dV dt “ 0.

Since the equations in integral form do not require the hypothesis of smoothness
or regularity of the functions involved, the finite volume methods (FVM) do not
impose restrictions and are suitable to capture discontinuities that are typical in
fluid dynamics (as, for example, at the flow front).

Because of all the good properties concerning the finite volume methods, we use methods
of this class in our work.

In this section, we give the fundamental knowledge about the FVM applied to hy-
perbolic problems; for a wider treatment of this topic, the reader can consult LeVeque
[168].

We start describing the application of the FVM to a scalar equation in §1.2.1. Then we
discuss some good convergence properties that the schemes belonging to the FVM family
need, with a focus on stability, in §1.2.2. After, from §1.2.3 to §1.2.8, we present some
relevant examples of numerical schemes and discuss their performances with particular
attention to the discontinuity treatment. Lastly, in §1.1.6, we introduce the discretization
strategy of the FVM for a system of PDEs in a multidimensional context shortly; we write
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an example of a numerical scheme applied to a system, and then we comment on stability.
Our presentation is an introduction to the FVM and sets the basis to understand our
numerical scheme for the shallow-water equations described in chapter §3. Moreover, in
the next section §1.3, we show the way the FVM is used to solve a generic PDE in the
OpenFOAM context, and such numerical setting sets the basis for the numerical scheme
for the 3D model described in chapter §4.

1.2.1 Scalar equation

For the sake of simplicity, we consider a problem with one scalar equation in one space
dimension. The interval ra, bs is the spatial domain and we use a uniform discretization
dividing it into m, m P N, sub-intervals of amplitude ∆x :“ b´a

m
. We denote by Ci, for

i “ 1, . . . ,m, the i-th sub-interval, and we refer to it as a cell, a finite volume or even a
control volume. The interface between two cells Ci, Ci`1 is located in position xi`1{2, in
particular

xi` 1
2
“ a` i∆x, Ci “

´

xi´ 1
2
, xi` 1

2

¯

, i “ 1, . . . ,m,

because we are using a uniform grid. The middle point of the cell Ci is said xi. Figure
1.11 shows the domain discretization.

Ci Ci+1Ci-1

xi 1
2

xi 1
2

xi 3
2

xi 3
2

Figure 1.11: Example of spatial discretization.

We consider the unknown variable qpx, tq, x P ra, bs, t ě 0, a conservative quantity
that verifies the following integral form of the conservation equation

ż τ`∆t

τ

ż β

α

„

Bq

Bt
`
Bfpqq

Bx



dxdt “ 0, (1.58)

for every time τ ě 0, for every interval rα, βs Ď ra, bs. By rearranging the terms, we get
an equivalent expression of the equation:

ż τ`∆t

τ

„

B

Bt

ż β

α

qpx, tqdx



dt “ ´

ż τ`∆t

τ

”

fpqq|β ´ fpqq|α

ı

dt,

ż β

α

qpx, τ `∆tqdx´

ż β

α

qpx, τqdx “ ´

ż τ`∆t

τ

”

fpqq|β ´ fpqq|α

ı

dt, (1.59)

where the notation fpqq|β and fpqq|α means the evaluation of the flux function at x “ β
and x “ α.

From the discretizations of time and space descends, it that the Eq. (1.58) must be
verified for every cell Ci and for every time interval rtn, tn`1s, then the discretized form
of Eq. (1.58) results to be

ż

Ci

qpx, tn`1qdx´

ż

Ci

qpx, tnqdx “ ´

ż tn`1

tn

”

fpqq|x
i` 1

2

´ fpqq|x
i´ 1

2

ı

dt. (1.60)

We indicate by Qn
i the approximation of the integral average of the solution qpx, tq

over the cell Ci at the time step tn:

Qn
i «

1

∆x

ż

Ci

qpx, tnqdx. (1.61)
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According with this definition, we have that the left-hand side of Eq. (1.60) is approxi-
mated as pQn`1

i ´Qn
i q∆x. We need to determine an approximation also for the right-hand

side terms.

1.2.1.1 Numerical flux

The approximation of the integral average, between tn and tn`1, of the real flux fpqpx, tqq
at the interface xi` 1

2
is named numerical flux, denoted as Fi` 1

2
:

Fi` 1
2
«

1

∆t

ż tn`1

tn

f
`

q
`

xi` 1
2
, t
˘˘

dt. (1.62)

By using the definitions of numerical solution, Eq. (1.61), and of the numerical flux,
Eq. (1.62), the exact integral Eq. (1.60) is approximated as follows:

Qn`1
i “ Qn

i ´
∆t

∆x

ˆ

Fi` 1
2
´ Fi´ 1

2

˙

. (1.63)

A scheme that uses these approximations is said to be a conservative scheme since it
guarantees that the integral of the numerical solution over the whole domain is preserved
in the proper way, which means that the numerical approximation verifies Eq. (1.59)
with rα, βs “ ra, bs. In fact, notice that the sum of the flux differences cancels out at
every interface except for the fluxes at the extreme edges, as we can see by the following
passages

Qn`1
1 ` ¨ ¨ ¨ `Qn`1

m “

“ Qn
1 ` ¨ ¨ ¨ `Q

n
m ´

∆t

∆x

´

F1` 1
2
´ F1´ 1

2
` ¨ ¨ ¨ ` Fm` 1

2
´ Fm´ 1

2

¯

“

“ Qn
1 ` ¨ ¨ ¨ `Q

n
m ´

∆t

∆x

´

Fm` 1
2
´ F1´ 1

2

¯

.

The numerical flux must be defined as a function of the numerical solution, i.e. as a
function of the values Qi, i “ 1, . . . ,m, if we want an explicit treatment. Since we know
that in hyperbolic problems the information travels at finite speed, we reasonably assume
that, for small values of the time step, the flux Fi` 1

2
is based only on Qn

i and Qn
i`1:

Fi` 1
2
“ FpQn

i , Q
n
i`1q, (1.64)

thus a definition of the numerical flux is explicit in time, but we will see in §1.2.8 that
even the implicit treatment of the numerical flux is possible. From now on, we consider
that the superscript of the numerical flux corresponds to the superscript of the temporal
evaluation of the numerical solution. The FVM results in the following scheme:

Qn`1
i “ Qn

i ´
∆t

∆x

“

FpQn
i , Q

n
i`1q ´ FpQn

i´1, Q
n
i q
‰

, (1.65)

that rules the time marching of the numerical solution. The scheme is completely defined
once the numerical flux F n

i` 1
2

of Eq. (1.64) is specified: according with the possible
definitions of the function F , different methods descend.

Later in this section, from §1.2.3 to §1.2.8, we introduce various ways to define the
numerical flux function leading to different FVM schemes.
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The first type of methods we introduce (§1.2.3) are the centered schemes, for which the
numerical flux is defined symmetrically with respect to the interface, and in this context
we present two examples. In §1.2.3 we show the simplest definition for a symmetric nu-
merical flux, namely the arithmetic mean of the fluxes across the interface; such simplicity
has the drawback that produces unstable results over the discontinuities of the solution,
even though the CFL condition (the necessary condition for stability, see §1.2.2.2) is re-
spected. The second centered scheme presented (§1.2.3) is the Lax-Friedrichs scheme.
Its definition is similar to the previous scheme but with a corrective diffusive term that
prevents instabilities to occur. The defect of the scheme is related to the corrective term,
for which the numerical results present too much diffusion and the discontinuities are
smoothed.

The second type of method we introduce (§1.2.4) is the upwind of the simplest type,
whose background idea is to use the knowledge of the flux velocity direction for the
definition of the numerical flux. However, even though the upwind schemes are stable, they
still present a diffusive behavior. After discussing these three first-order accurate schemes,
we present the second-order Lax-Wendroff method (§1.2.5), which is more accurate and
less dissipating than the previous ones. In particular, the Lax-Wendroff scheme produces
much better numerical approximations of the smooth parts of the solution. However,
together with these good features, the Lax-Wendroff scheme introduces instabilities in
correspondence to the discontinuities in the form of oscillations; therefore, it may not be
satisfactory. The four schemes described so far are linear methods but, in Theorem 1.5,
we discover that the linear schemes that do not generate oscillations (namely that are
stable under the CFL condition) are at most first-order accurate. Therefore, a higher-
order method (allowing us to improve the accuracy) that does not generate oscillations
cannot be linear, so we pass to examine non-linear higher-order schemes. To obtain
such kinds of schemes, in §1.2.6 we introduce the concept of linear reconstruction for
the numerical solution over each cell and use the related information about the solution
at the interfaces to get better estimations of the numerical flux. In the context of the
higher-order schemes with linear reconstructions, we dig into the oscillations generation
for the advective equation with constant velocity (§1.2.6), we find that the Total variation
diminishing (TVD) is the additional stability property that the higher-order schemes must
respect to prevent oscillations (§1.2.6) and we introduce the geometric limiters (or slope
limiters) as the tool to ensure the property (§1.2.6). In §1.2.7, we present an alternative
point of view for the creation of higher-order TVD schemes offered by the flux limiters ;
however, it is possible to translate the slope limiters into flux limiters. Finally, in §1.2.8,
we present the Kurganov-Noelle-Petrova scheme, which is an example of a higher-order
TVD scheme. This method brings the advantage of better accuracy because it estimates,
for each interface, the specific speed of propagation of discontinuities (accounting for a
non-symmetric behavior at the interface). Moreover, this scheme may be applied to linear
and non-linear hyperbolic equations, and it admits a semi-discrete expression.

1.2.2 Convergence

When solving a PDE with a numerical approach, knowing the accuracy and convergence
properties of the methods adopted is important to ensure the numerical solution to be a
sufficiently good approximation of the exact solution. Usually, the equations that model
real problems do not have an exact solution to compare with the numerical solution; hence
one must rely on a combination of the following techniques in order to understand better
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the performances of the numerical schemes:

• Validation on test problems. The method is tested on a simple problem for which
the exact solution is known or on problems for which a highly accurate comparison
solution may be computed by other means. In some cases, experimental results may
also be available for comparison.

• Theoretical analysis of convergence and accuracy. Prove that the method used con-
verges to the correct solution as the grid is refined and obtain reasonable estimates
of the numerical error that will be observed on any particular finite grid.

Here we present the theoretical analysis, but in our work, we validate the numerical
methods also by using benchmarks related to our applications, see §3.4 and §4.7.

In order to talk about accuracy or convergence, quantifying the error done when ap-
proximating a function of space and time is necessary, and there are several ways to
measure it. In Eq. (1.61), we defined Qn

i as the approximation of the averaged value over
a cell of the exact solution at time tn. For comparison with the exact solution, we need
to introduce qni that represents the exact value that Qn

i should approximate, namely

qni :“
1

∆x

ż xi`1{2

xi´1{2

qpξ, tnqdξ.

In order to discuss the convergence, one picks a finite time interval r0, T s over which
we compute the approximated solution. Errors generally grow with time and with the
number of time steps. Therefore, it would be unreasonable to expect that any finite grid
would be capable of yielding good solutions at an arbitrarily large time T " 0 requiring
a great number of time steps.

From now on, in this discussion about convergence, we use the superscript N to refer
to the last time step, T “ N∆t.

Definition 1.5 (Global error). The global error at the time T “ N∆t is

EN
“ QN

´ qN ,

where QN “
“

QN
i

‰

i
and qN “

“

qNi
‰

i
are vectors containing the approximated and exact

averages of the solution qpx, tq over the cells at the ending time.

A convergent method preserves this grid-function EN bounded as the grid is refined.
Assume that the ratio ∆t{∆x is fixed. Therefore, when ∆t goes to 0, also the grid is
refined, and we can speak about convergence with order s if the errors vanish like Op∆tsq
or as Op∆xsq which are the same thing.

To quantify the error at a fixed time, a norm is chosen among the standard set of
p-norms that are commonly used:

‖E‖p “
ˆ

∆x
8
ÿ

i“´8

|Ei|
p

˙1{p

, (1.66)

that are the discrete analogs of the function-space norms:

‖E‖p “
ˆ
ż 8

´8

|Epxq|pdx

˙1{p

. (1.67)
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The presence of the factor ∆x in Eq. (1.66) ensures the correct scaling and order of
accuracy as the grid is refined. We highlight that in the framework of the conservation
laws, the 1-norm (namely p “ 1) is commonly adopted because the integrals of the
solution itself are of particular importance. Anyway, we do not specify the norm and use
the generic notation ‖¨‖.

Definition 1.6 (Convergent method and order of convergence). A numerical method for
PDE is said to be convergent at time T with respect to the norm ‖¨‖ if:

lim
∆tÑ0
N∆t“T

∥∥EN
∥∥ “ 0.

A numerical method for PDE is said to be accurate of order s if:∥∥EN
∥∥ “ Op∆tsq, as ∆tÑ 0.

Since it is generally impossible to determine a closed-form expression for the global
error after so many time steps, another approach is usually adopted, which consists of
studying two other features of the problem:

• Consistency : the error introduced in a single time step is small, showing that the
method is consistent with the differential equation;

• Stability : the local error do not grow dramatically and a bound for the global error
can be expressed in terms of the local one.

1.2.2.1 Consistency

An explicit numerical method may be written as follows

Qn`1
“ N pQn

q,

where N p¨q denotes the numerical operator that maps the solution (possibly approxi-
mated) at a certain time step to the solution approximation at the next time step. The
error committed using the numerical method at a single time step is the difference be-
tween the result of the numerical operator applied to the true (cell-averaged) solution at
some time N pqnq and the true solution at the next time qn`1.

Definition 1.7 (Local truncation error). The local truncation error is defined by dividing
the one-step error by ∆t:

τ n “
N pqnq ´ qn`1

∆t

Moreover it is quite easy to investigate the local truncation error in the case of smooth
solutions, because it is well approximated by simple Taylor series expansions.

Definition 1.8 (Consistent method). The numerical method for PDE is said consistent
with the differential equation if for any n and for all smooth functions qpx, tq, satisfying
the differential equation

τ n ÝÑ 0 as ∆tÑ 0.

For an exhaustive discussion about consistency see [168, chapter 8].
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1.2.2.2 Stability and CFL condition

By using a conservative finite volume method based on the integral form of the conser-
vation laws, we hope to get a numerical solution that correctly approximates the weak
solutions of the conservation laws. Lax and Wendroff [162] proved this in the following
theorem (not formally written):

Theorem 1.4 (Lax-Wendroff theorem). For a conservative and consistent method that
applies to scalar equations (or even to non-linear system of conservation laws), in the case
a sequence of numerical approximations converges in an appropriate sense (see [162],[168,
chapter 12, page 240]) to a function qpx, tq as the grid refines, then the limit function is
a weak solution of the conservation law.

Thanks to what was stated, we can trust the solution we compute. Even though we
usually do not compute an entire sequence, if the numerical solutions look reasonable and
the discontinuities are well-treated, we can believe in having good approximations to some
weak solutions.

Despite the great relevance of this theorem, it does not provide any results about
convergence. Also, convergence requires some form of stability, as we see in the following.
Although we do not give a detailed study of stability analysis, we provide the basic ideas
of stability theory. (i) We start introducing the CFL Condition which is necessary for a
finite volume method that is expected to be stable and convergent to the solution. (ii) We
derive the general condition for the global error bounds from information about the local
truncation error. (iii) Then, the Lax–Richtmyer stability condition for linear methods
is presented. (iv) Finally, we conclude with some considerations about the non-linear
schemes.

Consider for simplicity a quantity q advected with constant velocity ū, then the dy-
namics is ruled by the transport equation

qt ` pūqqx “ 0.

The real solution of this equation at time t`∆t is obtained by translating the solution at
time t of a length ū∆t. When the numerical solution evolves in one time-step, there are
two possible scenarios: — the solution translates less than, or equal to, one grid cell; —
the solution moves more than one grid cell. In the first case, the time step is small enough
to ensure that the flux at the interface depends only on the solution at the beginning of
the time step in the cells that share such interface. Figure 1.12 shows the case of ū ą 0 and
ū∆t ă ∆x. The flux at xi´ 1

2
depends on the solution in Ci´1, so the solution propagates,

in a single time step, less than one grid cell. In the second case, the time step is too large

Ci+1CiCi-1

tn

tn+1

xi 1
2

xi 3
2

xi 1
2

xi 3
2

Figure 1.12: Example of flux through the interface xi´ 1
2
that depends only on the solution Qni´1

in Ci´1.

and the flux at the interface depends on the value of the solution in more cells. Figure
1.13 shows the example with ū ą 0 and ū∆t ą ∆x, in which the flux at xi´ 1

2
depends
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both on Qn
i´1 and on Qn

i´2. We defined the numerical flux as a function F depending
only on Qn

i´1 and Qn
i , Eq. (1.64), therefore in this situation, when computing F n

i´ 1
2

, the
information about the solution in cell Ci´2 is lost, leading to instabilities. In conclusion, a

Ci+1CiCi-1

tn
xi 1

2
xi 3

2
xi 1

2
xi 3

2

tn+1

Figure 1.13: Example of flux through the interface xi´ 1
2
that depends both on Qni´1 and on

Qni´2, the numerical solution on Ci´1 and on Ci´2.

necessary (but not sufficient) condition for the stability and convergence of any numerical
method for the solution of hyperbolic (more generally, time dependent) partial differential
equations is the Courant-Friedrichs-Levy condition (see [57], [58], [168§4.4]).

Courant-Friederichs-Levy (CFL) condition. A numerical method
can be convergent only if its numerical domain of dependence contains the true
domain of dependence of the PDE, at least in the limit as ∆t and ∆x go to
zero.

For the simple advection equation qt`pūqqx “ 0 considered so far, the CFL condition
is the following:

c “

∣∣∣∣ ū∆t

∆x

∣∣∣∣ ď 1 (1.68)

where c is called Courant number. Figure 1.12 represents a situation with c ď 1 and
the CFL condition is respected; conversely, in Figure 1.13 the CFL condition is violated
because ν ą 1. For the generic scalar equation Btq ` Bxfpqq “ Spqq (where Spqq consists
of the source terms), the propagation speed is determined by f 1pqq, therefore it is not
homogeneous in the domain and it depends on the solution itself. Then the CFL condition
relies on the following more general definition of the local Courant number:

c “
∆t

∆x
|f 1pqq|.

In the latter case, the Courant number may assume different values in each cell, therefore
the time step must be chosen in order that the CFL condition c ď 1 is verified everywhere.

Now we discuss the boundedness of the global error by using the information about the
local truncation error. Such analysis is easy to apply to linear methods (like the centered
and upwind schemes presented respectively in §1.2.3 and §1.2.4). It leads to useful results,
whereas it is hard to apply to the non-linear methods (like those that use the limiters,
such as the KNP and KT schemes described in §1.2.8). The essential requirements and
importance of stability may be easily seen in the following attempt to bind the global error
by using a recurrence relation. At the time step n, suppose to have an approximation Qn

with error En, so that
Qn

“ qn ` En.
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The numerical scheme is applied to get Qn`1

Qn`1
“ N pQn

q “ N pqn ` En
q,

then the global error at the new time-step is

En`1
“ Qn`1

´ qn`1

“ N pqn ` En
q ´ qn`1

“ N pqn ` En
q ´N pqnq `N pqnq ´ qn`1

“
“

N pqn ` En
q ´N pqnq

‰

`∆t τ n.

(1.69)

Because of the introduction of N pqnq, the global error at the new time step becomes the
sum of two terms:

• N pqn ` Enq ´ N pqnq, which measures the effect of the numerical method on the
previous global error En,

• ∆t τ n, the new one-step error introduced in this time step.

The study of the local truncation error allows us to bound the new one-step error. Sta-
bility theory is required to bound the other term, N pqn ` Enq ´N pqnq.

Consider the numerical schemes for which the associated numerical operator N p¨q
satisfies the following property

‖N pPq ´N pQq‖ ď p1` α∆tq‖P´Q‖, (1.70)

where P and Q are any two grid functions and α is some positive constant independent
of ∆t as ∆tÑ 0; as a consequence, for those schemes the next inequality holds

‖N pqn ` En
q ´N pqnq‖ďp1` α∆tq‖En‖. (1.71)

From this result, we obtain a boundedness on the global error

∥∥EN
∥∥ p1.69q
“

∥∥“N `

qN´1
` EN´1

˘

´N
`

qN´1
˘‰

`∆t τN´1
∥∥

p1.71q

ď p1` α∆tq
∥∥EN´1

∥∥`∆t
∥∥τN´1

∥∥
ď p1` α∆tqN

∥∥E0
∥∥`∆t

N´1
ÿ

i“0

p1` α∆tqi‖τ‖

“ p1` α∆tqN
∥∥E0

∥∥`∆t
p1` α∆tqN ´ 1

p1` α∆tq ´ 1
‖τ‖

ď eαT
ˆ∥∥E0

∥∥` 1

α
‖τ‖

˙

,

where N∆t “ T and ‖τ‖ “ max0ďn´1ďN‖τ n‖.
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Linear methods. In the case the numerical operator N p¨q is linear, then

N pqn ` En
q “ N pqnq `N pEn

q, (1.72)

the term N pqn ` Enq ´N pqnq in Eq. (1.69) simplifies as N pEnq and the global error at
the new time step is

En`1
“ N pEn

q `∆tτ n.

Under these assumptions it is often possible to prove the inequality

‖N pEq‖ ď p1` α∆tq‖E‖, (1.73)

for any arbitrary grid function E, which implies the property (1.70); hence the global error
is bounded as shown before. For the linear methods, this form of stability is generally
referred to as Lax-Richtmyer stability.

Non-linear methods. The non-linear schemes, such as those of §1.2.8 using the geo-
metric limiters, cannot rely upon the previous result about the global error, i.e., on the
Lax-Richtmyer stability. In fact, for such schemes, the Eq. (1.73) could still hold, but it
does not imply the property (1.70) that is much more difficult to prove. For the non-linear
schemes, even though the CFL condition remains a necessary stability condition for the
explicit schemes, other conditions might be added in the absence of a formal stability
proof other conditions might be added. For the higher-order methods, it is appropriate
to adopt the TV-stability associated with the TVD property that we introduce in §1.2.6.

1.2.3 Centered schemes

We begin to present examples of FVM by introducing two methods that belong to the
family of the central schemes. They compute the numerical flux F n

i` 1
2

, defined in Eq.
(1.64), in a symmetric fashion with respect to the cell interface where they are evalu-
ated. The first scheme described presents a stability lack, whereas the second one is too
dissipative.

An unstable flux

A first attempt for F might be the simple arithmetic average of the fluxes

F n
i´ 1

2
“ FpQn

i´1, Q
n
i q “

fpQn
i´1q ` fpQ

n
i q

2
(1.74)

and this corresponds to the following scheme:

Qn`1
i “ Qn

i ´
∆t

∆x

„

fpQn
i q ` fpQ

n
i`1q

2
´
fpQn

i´1q ` fpQ
n
i q

2



“ Qn
i ´

∆t

2∆x

”

fpQn
i`1q ´ fpQ

n
i´1q

ı

.

(1.75)

This method results to be unstable for hyperbolic problems and cannot be used, even
if the time step is small enough that the CFL condition is satisfied (note that the CFL
condition is necessary for the stability, but it is not sufficient). In fact, consider the
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example of the following Cauchy problem for the advection equation defined on an interval,
with periodic boundary conditions:

Bq

Bt
` ū

Bq

Bx
“ 0, x P r´1; 1s, ū “ 1

qpx, 0q “

#

1, ´1
2
ď x ď 1

2

0, elsewhere

(1.76)

The exact solution is obtained by shifting the initial condition to the right. In Figure 1.14,
from left to right, from up to bottom, we show the initial condition and the numerical
solution after few time steps; the divergence of the solution is evident although the CFL
condition (1.68) is verified, see also [168].

x

Q

x

Q

x

Q

x

Q

Figure 1.14: Example of non-stability for centered schemes. Numerical solution of the Cauchy
problem of Eq. (1.76) computed by using the centered scheme, Eq. (1.74).

Lax-Friedrichs flux

The Lax-Friedrichs (LxF) scheme is obtained by replacing Qn
i of Eq. (1.75) with the

average of the numerical solution in the two neighbouring cells, namely:

Qn`1
i “

1

2

´

Qn
i´1 `Q

n
i`1

¯

´
∆t

2∆x

”

fpQn
i`1q ´ fpQ

n
i´1q

ı

. (1.77)

This method respects the scheme form of Eq. (1.65), i.e. the numerical flux is defined
as

F n
i´ 1

2
“ FpQn

i´1, Q
n
i q “

fpQn
i´1q ` fpQ

n
i q

2
´

∆x

2∆t

´

Qn
i ´Q

n
i´1

¯

. (1.78)
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When the CFL condition is satisfied, the LxF method results stable. The numerical
flux of this method is like the unstable flux of the previous scheme, Eq. (1.75), but with

the additional term
∆x

2∆t

`

Qn
i ´Q

n
i´1

˘

. This term corresponds to a numerical diffusion. In
fact, the scheme in Eq. (1.77) is the same we obtain applying the centered finite difference
scheme to the following modification of the original problem:

Bq

Bt
`
B

Bx
fpqq “ β

B2q

Bx2
, β “

p∆xq2

2∆t

where the second order derivative term is the diffusive term. In general, stability problems
occur when the numerical solution introduces a local maximum or local minimum that
the method amplifies. The presence of a second-order derivative regulates the behavior
of the computed solution: it assumes a negative value in the presence of a maximum, and
the opposite occurs with a minimum. Therefore, the presence of the second derivative
raises the points where the function is convex and lowers them where it is concave. By
keeping ∆x{∆t fixed (whereby, fixing the Courant number), when refining the grid, the
coefficient β of the diffusive term goes to zero, and the modified problem converges to the
original problem.

The drawback of the diffusive behavior of the LxF scheme is that even the disconti-
nuities proper of the solution are smoothed. The dissipating nature of LxF is shown in
Figure 1.15 where we find the numerical solution of the Cauchy problem of Eq. (1.76)
approximated by the LxF method, Eq. (1.77).

x

Q

x

Q

Figure 1.15: Example of stability and numerical dissipation of the Lax-Friederichs scheme. Nu-
merical solution of the Cauchy problem of Eq. (1.76) computed by using Lax-Friederichs scheme,
Eq. (1.77).

In conclusion, even though the LxF method is both consistent and stable, it intro-
duces much more diffusion than is actually required and gives numerical results where the
discontinuities are typically badly smeared unless a very fine grid is used.

1.2.4 Upwind schemes

The centered schemes define symmetric fluxes with respect to the interface where they
are evaluated. This family of schemes does not take advantage of the intrinsic property
of hyperbolic problems: the solution propagates along the characteristic curves and the
propagation direction is well defined. The family of the upwind schemes exploits the
knowledge of the hyperbolic nature of the equation to give a better definition of the
numerical fluxes.
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In order to introduce the upwind schemes, consider again the simple advection case
with constant velocity

Bq

Bt
`
Bpūqq

Bx
“ 0,

and assume the CFL condition verified, Eq. (1.68). The numerical flux F n
i´ 1

2

depends on
the velocity direction. Supposing that ū ą 0, the characteristic curves are represented as
in Figure 1.12 and the flux at the interface xi´ 1

2
is completely determined by the value of

the numerical solution in the cell Ci´1, i.e., Qn
i´1. This suggests to express the numerical

flux as
F n
i´ 1

2
“ FpQn

i´1, Q
n
i q “ fpQn

i´1q “ ūQn
i´1, ū ą 0.

From the numerical flux definition, descends the following scheme:

Qn`1
i “ Qn

i ´
ū∆t

∆x

`

Qn
i ´Q

n
i´1

˘

, ū ą 0.

Likewise, if velocity has the opposite direction, ū ă 0, the numerical flux is completely
determined by the numerical solution at cell Ci

F n
i´ 1

2
“ FpQn

i´1, Q
n
i q “ fpQn

i q “ ūQn
i , ū ă 0,

and the scheme that descends is

Qn`1
i “ Qn

i ´
ū∆t

∆x

`

Qn
i`1 ´Q

n
i

˘

, ū ă 0.

The scheme may be rewritten as a single compact expression if we introduce the variables
a` and a´ describing the propagation velocity to the right and to the left at the interface

a` :“ maxtū, 0u, a´ :“ mintū, 0u, (1.79)
ùñ F n

i` 1
2
“ a`Qn

i ` a
´Qn

i`1, F n
i´ 1

2
“ a`Qn

i´1 ` a
´Qn

i ; (1.80)

hence, the numerical scheme reads as follows:

Qn`1
i “ Qn

i ´
∆t

∆x

“

a`
`

Qn
i ´Q

n
i´1

˘

` a´
`

Qn
i`1 ´Q

n
i

˘‰

.

In the case of an equation with a generic flux fpqq, the propagation velocity is provided
by f 1pqq, so that we define for every interface the right side and left side propagation
velocity (that depends on the suitable cell), and consequently the numerical fluxes, as
follows:

a`
i` 1

2

:“ maxtf 1pQn
i q, 0u, a´

i` 1
2

:“ mintf 1pQn
i`1q, 0u,

ùñ F n
i` 1

2
“ a`

i` 1
2

Qn
i ` a

´

i` 1
2

Qn
i`1, F n

i´ 1
2
“ a`

i´ 1
2

Qn
i´1 ` a

´

i´ 1
2

Qn
i .

The upwind schemes are stable but diffusive. The scheme presented above is first-
order accurate, but there exist more accurate upwind schemes. The second-order accurate
scheme, presented in the next section, is also known as linear upwind and is less diffusive
if compared to the first-order accurate upwind scheme.
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1.2.5 Lax-Wendroff, a second order method

The second-order method named Lax-Wendroff (LxW) scheme (see [168] and pag. 23 in
[226]) is born as a numerical method based on finite differences, but we show that it can
also be seen as a finite volume method.

We present the simplest expression of the scheme by considering its application to the
usual advective equation with the linear flux and constant velocity ū (the definition of the
numerical scheme for a generic flux expression fpqq is presented in [168, Chapter 4.7]):

qt ` ūqx “ 0. (1.81)

Given a time tn for which we suppose to know the exact solution qpx, tnq, we express
the solution at time tn`1 by using a Taylor expansion of q with respect to the variable t
starting from tn:

qpx, tn`1q “ qpx, tnq `∆tqtpx, tnq `
1

2

`

∆t
˘2
qttpx, tnq ` . . . (1.82)

where ∆t “ tn`1 ´ tn. The derivative with respect to t can be expressed in terms of the
derivative with respect to x by using the fact that q is the solution of the PDE (1.81):

qt “ ´ūqx, qtt “ p´ūqxqt “ ū2qxx.

By substituting qt and qtt in the Taylor expansion (1.82), we obtain

qpx, tn`1q “ qpx, tnq ´∆t ūqxpx, tnq `
1

2

`

∆t
˘2
ū2qxxpx, tnq ` . . .

When the expansion is truncated at the second order and the spatial derivatives are
approximated by the following finite difference centered schemes

qxpxi, tnq «
Qn
i`1 ´Q

n
i´1

2∆x
, qxxpxi, tnq «

Qn
i`1 ´ 2Qn

i `Q
n
i´1

2∆x2
,

where Qn
i is the approximation of the point-wise value qpxi, tnq and ∆x “ xi`1´xi because

the LxW scheme descends from finite difference approximations, then we get the second
order LxW scheme:

Qn`1
i “ Qn

i ´
∆t

2∆x
ū
`

Qn
i`1 ´Q

n
i´1

˘

`

ˆ

∆t

2∆x

˙2

ū2
pQn

i`1 ´ 2Qn
i `Q

n
i´1q. (1.83)

However, the finite difference LxW scheme of Eq. (1.83) may be reinterpreted as a fi-
nite volume scheme because it is possible to find the definition of the numerical flux by
reordering the terms, i.e:

F n
i´ 1

2
“

1

2
ū
`

Qn
i `Q

n
i´1

˘

´
∆t

2∆x
ū2
`

Qn
i ´Q

n
i´1

˘

, (1.84)

where now Qn
i is the approximation of the averaged integral of qpx, tnq in the cell Ci and

∆x “ xi` 1
2
´ xi´ 1

2
. The numerical flux expression interprets LxW as a FVM scheme.

We notice that the definition of the LxW flux, Eq. (1.84), looks like the unstable
averaged flux of Eq. (1.74) plus a diffusive flux (the second-order term), but this diffusive
term is chosen to exactly match what appears in the Taylor series expansion Eq. (1.82).
Indeed, this shows why the averaged flux Eq. (1.74) alone is unstable: the Taylor series
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expansion of the exact solution contains a diffusive term qxx that is missing from the
numerical method when the unstable flux is used.

The performances of LxW and upwind schemes are compared in Figure 1.16, that
shows the numerical solutions of the advection equation qt ` ūqx “ 0 pū “ 1q, computed
with the two schemes with periodical boundary conditions. The initial condition (rep-
resented by a solid line) consists of a smooth pulse and a square-wave pulse. Because
of the periodic boundary conditions and the constant velocity, the computed solution
should overlap the initial conditions for every period. The results obtained by the upwind
method (upper plots) show excessive dissipation. The solution computed by the LxW
scheme (lower plots) captures the smooth pulse much better than in the upwind case,
but, unfortunately, the square wave gives rise to an oscillatory solution. The presence
of oscillations can be explained by looking at the Taylor series expansion, Eq. (1.82), as
follows. The LxW scheme matches the first three terms in the series expansion, and then
the dominant error is given by the next term: qttt “ ´ū3qxxx. This term is a dispersive
term, which leads to oscillations. In the next section, we see a different explanation for
these oscillations, along with a remedy based on limiters.

x

Q

x

Q

x

Q

x

Q

Figure 1.16: Tests on the advection equation with upwind and Lax-Wendroff schemes (figures
taken from [168, Fig. 6.1]). The solid line represents the initial condition. Results are shown for
times t “ 1 and t “ 5, which correspond to 1 and 5 horizontal revolutions through the domain
because of the periodic boundary conditions. The results were computed by using a Courant
number ∆t{∆x “ 0.8. The choice of other values gives somewhat different results, anyway the
same basic behavior remains.

1.2.6 Linear reconstruction and slope limiters

The numerical schemes introduced previously to estimate the numerical flux at the in-
terfaces, F n

i` 1
2

, by using the values Qn
i that approximate the averaged value of the exact
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solution q over the cells Ci. The next numerical effort is to create a numerical solution
that estimates the exact solution qpx, tq in every point of the domain and for every time.
To get this, we build such approximation rQnpxq by using the cell averaged values Qn

i to
obtain a piece-wise reconstruction on the cells. Notice that there is no need for the recon-
struction to be continuous: the solution reconstruction always gives useful information to
write a more efficient method. In fact, if we manage to know an approximation of the
solution at the interfaces, thanks to a piece-wise reconstruction, we can evaluate more
precisely the fluxes at the interfaces obtaining a higher-order method. For this reason, we
investigate further in a simple case what happens to the solution on the interfaces. The
methods that follow are of the Godunov’s type, namely are characterized by three steps:
(1) reconstruction of the solution over the cells, (2) evolution of the solution with the
computation of the numerical flux, (3) average of the evolved results over the cells. The
original Godunov method used piece-wise constant reconstruction, and it was first-order.
However, then the method has been generalized to polynomial piece-wise reconstruction
with a higher order of accuracy. The upwind scheme may be seen as a special case of the
original Godunov’s scheme applied to the advective equation. Godunov’s scheme is the
original starting point for methods for non-linear equations [168].

The simplest kind of reconstruction is a piece-wise constant function, where the value
Qn
i is assumed in the whole i-th cell, i.e.

rQn
pxq “ Qn

i , @x P Ci.

Otherwise, a piece-wise linear reconstruction may be adopted:

rQn
pxq :“ Qn

i ` σ
n
i px´ xiq, @x P Ci, (1.85)

where σni is the local slope. Figure 1.17 shows the two piece-wise reconstructions.

Ci+1CiCi-1

Qi
n

Qi+1
n

Q      n      (x)

     x Ci+1CiCi-1

Q      n      (x)

Qi
n

Qi+1
n

      x

Figure 1.17: Left: piece-wise constant reconstruction rQnpxq. Right: piece-wise linear recon-
struction rQnpxq.

Consider again the advection equation qt` ūqx “ 0 with constant velocity ū ą 0 and a
piece-wise linear reconstruction. Recalling the definition of the numerical flux Fi` 1

2
in Eq.

(1.62), we want to estimate f
`

q
`

xi` 1
2
, t
˘˘

that, in the actual case of advection equation,
is ūq

`

xi` 1
2
, t
˘

. Therefore, we want to know how the solution at the interfaces evolves in
one time-step. At the interface passing by xi` 1

2
, we consider the generic time t between

tn and tn`1 and find the point pxi` 1
2
, tq, Figure 1.18. As we are considering a simple

advection equation with constant velocity, the solution in pxi`1{2, tq is the same along the
characteristic curve (in the plane px, τq) passing by it:

x´ xi` 1
2
“ ūpτ ´ tq.
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At time τ “ tn, the characteristic curve passes by x “ xi` 1
2
´ ūpt ´ tnq, therefore the

solutions in pxi` 1
2
´ ūpt´ tnq, tnq and in pxi` 1

2
, tq are equal:

q
`

xi` 1
2
, t
˘

“ q
`

xi` 1
2
´ ūpt´ tnq

˘

« rQn
`

xi ` δx
˘

, (1.86)

where we have introduced δx :“ xi` 1
2
´ ūpt´ tnq ´ xi to simplify the notation.

Ci+1Citn+1
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2

xi 1
2
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  -u    (t-tn), tn)xi 1
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(

x

ti
m
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Figure 1.18: Characteristic lines passing through the interface (axes plotted: space x and time
τ).

By using the linear reconstruction in the i-th cell Eq. (1.85), as shown in Figure 1.19,
we obtain the value of rQnpxi ` δxq:

rQn
pxi ` δxq

p1.85q
“ Qn

i ` σ
n
i pxi ` δx´ xiq “ Qn

i ` σ
n
i δx. (1.87)

xi 1
2

xixi 1
2

iQ
n

Qn+σnδxi i

δx

x

Q

Figure 1.19: Linear reconstruction (axes plotted: x and q).

Finally, in this case of the advection equation, it is possible to evaluate the exact flux for
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the approximate solution:

F n
i` 1

2

p1.62q
«

1

∆t

ż tn`1

tn

f
`

q
`

xi` 1
2
, t
˘˘

dt

“
1

∆t

ż tn`1

tn

ūq
`

xi` 1
2
, t
˘

dt

p1.86q
«

1

∆t

ż tn`1

tn

ū rQn
`

xi ` δx
˘

dt

p1.87q
“

1

∆t

ż tn`1

tn

ū pQn
i ` σ

n
i δxq dt

“ ūQn
i `

1

2
ū
`

∆x´ ū∆t
˘

σni .

(1.88)

By comparing this flux to the LxW flux Eq. (1.84), we see that the LxW flux corresponds
to the flux obtained with a linear reconstruction, where the slope is given by

σni “
Qn
i`1 ´Q

n
i

∆x
. (1.89)

Note that the approximation used in the slope reconstruction is downwind.
As seen before, the linear reconstruction of the solution is useful in the computation

of the flux at the interfaces of the cells. Different definitions for the local slope σni will
bring to stable or unstable methods. In fact, as said in the previous section, the LxW
method works well when the initial condition is a smooth function; oscillations develop
in the case of square waves instead, namely when there are discontinuities in the initial
condition.

Oscillations

The piece-wise linear reconstruction might produce undesired oscillatory behavior where
discontinuities in the initial condition are present. We try to explain why some situations
give rise to such a problem and, in the following, how to avoid it by using little precautions
during the linear reconstruction.

The problem of oscillations is related to the use of downwind approximation for the
linear reconstruction. For example, suppose to have an advection equation with constant
velocity ū ą 0 and a discontinuity in the solution at time tn defined as:

Qn
j “

#

1 if j ď i,

0 if j ą i,

(see Figure 1.20 on the left side); if we choose the slopes downwind in each grid cell, i.e.

σni “
Qn
i`1 ´Q

n
i

∆x
, i “ 1, . . . , N, (1.90)

then the reconstructed solution is constant in every cell except in the i-th, because σni ă 0,
hence the reconstruction in Ci is a descending line, as shown in Figure 1.20 on the right
side. Unfortunately, with this reconstruction, we lost the original discontinuity of the
solution, and, in addition, the reconstructed function rQnpxq has an overshoot with a new
maximum value of 1.5 regardless of ∆x.
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Figure 1.20: On the left, averaged cell solution at time tn. On the right, linear reconstruction,
by using downwind slope, with the introduction of a new maximum.

Since we considered a positive velocity ū ą 0, when this numerical solution is advected
of a distance ū∆t, it shifts to the right, as shown in the left picture of Figure 1.21. When
we compute the average of the solution on each cell to find tQn`1

i u for all i “ 1, . . . , N , in
the i-th cell we will get a value greater than 1 for any ∆t with 0 ă ū∆t ă ∆x. ū∆t “ ∆x{2
is the worst case and it implies that Qn`1

i “ 1.125; this case is represented in Figure 1.21
on the right.
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Figure 1.21: On the left, advection of the solution rQnpxq. On the right, averaged values of the
solution on each cell at time tn`1.

In the next time step this overshoot is accentuated, because in the cell Ci´1 there is
a positive slope, leading to a value of Qn`1

i´1 that is less than 1, see Figure 1.22. This
oscillatory behavior increases with time.
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Figure 1.22: On the left, linear reconstruction of the solution rQn`1pxq. On the right, solution
advected.

This problem occurs when a downwind approximation is used for the slope and ū ą
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∆t

∆x
ą 0.

The slopes proposed might be used together with the assumption of a smooth solution.
There is no reason to believe that the accuracy will improve by introducing this slope near
a discontinuity. On the contrary, if one of our goals is to avoid non-physical oscillations,
we must set the slope to zero in the i-th cell in the example above. Any σni ă 0 will lead
to Qn`1

i ą 1, whereas a positive slope would not make much sense. On the other hand,
we do not want to set all slopes to zero all the time, or we have the piece-wise constant
reconstruction. Moreover, we will see below that even near a discontinuity, once the
solution is somewhat smeared out over more than one cell, introducing non-zero slopes
may help to keep the solution from smearing out too far, and hence will significantly
increase the resolution and keep discontinuities fairly sharp, as long as care is taken to
avoid oscillations. This suggests that we must pay attention to how the solution behaves
near the i-th cell in choosing our formula for σni . Where the solution is smooth, we
want to choose something like a downwind slope, as in the Lax-Wendroff slope. Near a
discontinuity, we want to limit this slope by using a value that is smaller in magnitude to
avoid oscillations. Methods based on this idea are known as slope-limiter methods.

The methods that adopt the slope limiters are second or higher-order and are not
linear schemes. Before introducing them, we present an important result from Godunov
for the development of non-oscillatory schemes. Godunov proved this theorem as a Ph.D.
student at Moscow State University, [104], [105].

Theorem 1.5 (Godunov’s order barrier theorem). Linear numerical schemes for solving
PDEs, having the property of not generating new extrema (non-oscillatory scheme), can
be at most first-order accurate.

A consequence of this result is that high-order non-oscillatory schemes cannot be linear.
Notice that the Lax-Wendroff scheme respects this theorem, being it linear, second-order,
but generates oscillations. Also, the upwind scheme follows the theorem being a linear
scheme, non-oscillatory, and first order.

Total variation diminishing

How much should we limit the slope? Ideally, we would like to have a mathematical
prescription that will allow us to use downwind slope (1.90) whenever possible while
guaranteeing that no non-physical oscillations will arise. To achieve this, we need a
way to measure oscillations in the solution. This is provided by the notion of the total
variation of a function: for a grid function Q “

 

Qi

(

i
we define

TV pQq :“
ÿ

i

ˇ

ˇQi ´Qi´1

ˇ

ˇ. (1.91)

The total variation at the time tn`1 of the previous example of Figures 1.20 and 1.21 is
larger than the total variation at the time tn: TV pQn`1q ą TV pQnq, where Qn “

 

Qn
i

(

i
.

For an advection problem, the exact solution propagates with velocity ū and its shape
does not change with time. Consequently, we request the total variation to be the same at
each time step. As seen before, the LxW scheme applied to an advection problem with a
discontinuous initial condition does not satisfy this request. For more general equations,
we want that a numerical scheme does not increase the total variation.
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Definition 1.9. A method is said TVD (total variation diminishing) if, for any initial
condition Qn, the solution Qn`1 evaluated by such method satisfies:

TV
`

Qn`1
˘

ď TV
`

Qn
˘

.

Geometric limiters

One choice of slope that gives second-order accuracy for smooth solutions while still
satisfying the TVD property is the minmod slope defined by

σni “ minmod

ˆ

Qn
i ´Q

n
i´1

∆x
,
Qn
i`1 ´Q

n
i

∆x

˙

(1.92)

where minmod is a function of two arguments

minmod pa, bq “

$

’

&

’

%

a if |a| ă |b| and ab ą 0

b if |a| ą |b| and ab ą 0

0 if ab ď 0.

(1.93)

Using the minmod slope for the example in Figure 1.23 on the left (where dashed lines are
the arguments used by the minmod function), we obtain the reconstruction represented
on the right. Moreover, we can see that no spurious maximum has been added in the
reconstruction.

Ci+1CiCi-1

Qi-1
n

Qi
n

Qi+1
n

x

Q

CiCi-1 Ci+1

Qi-1
n

Qi
n

Qi+1
n

x

Q

Figure 1.23: Linear reconstruction using the minmod slope.

Another choice of limiter that still gives second order accuracy for smooth solutions,
is the so-called superbee limiter introduced by Roe:

σni “ maxmod
`

σ
p1q
i , σ

p2q
i

˘

where

σ
p1q
i “ minmod

ˆ

Qn
i ´Q

n
i´1

∆x
, 2
Qn
i`1 ´Q

n
i

∆x

˙

,

σ
p2q
i “ minmod

ˆ

2
Qn
i ´Q

n
i´1

∆x
,
Qn
i`1 ´Q

n
i

∆x

˙

,

maxmodpa, bq “

$

’

&

’

%

b if |a| ă |b| and ab ą 0

a if |a| ą |b| and ab ą 0

0 if ab ď 0;

each one-sided slope is compared with twice the opposite one-sided slope, then the maxmod
function selects the argument with larger modulus, for details see [168]. In Figure 1.24
we have the comparison between minmod and superbee use.
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Figure 1.24: Test on the advection equation with high-resolution methods that adopt the minmod
and superbee limiters respectively (figure taken from [168, Ch. 6.3, page 104]). The solid line
represents the initial condition of a smooth and a square pulses. Results are shown for times
t “ 1 and t “ 5, corresponding to 1 and 5 horizontal revolutions through the domain because of
the periodic boundary conditions.

1.2.7 Flux limiters

We consider again the LxW scheme and rewrite the numerical flux for an advective equa-
tion with a constant velocity ū in the following alternative form:

F n
i´ 1

2
“ a´Qn

i ` a
`Qn

i´1 `
1

2
|ū|

ˆ

1´
|ū|∆t

∆x

˙

`

Qn
i ´Q

n
i´1

˘

where a˘ follow the definition of Eq. (1.79). Notice that the first two terms on the
right-hand side correspond to the upwind scheme (Eq. (1.80)), which is first order, and
the last term is a second-order correction. We observed that the upwind scheme treats
the discontinuity better, whereas the LxW scheme works better with the smooth parts of
the solution. Therefore we want to introduce a coefficient for the second-order term (the
last term) acting as a flux limiter, able to switch from the first-order to the second-order
schemes accordingly to the smoothness of the solution and without introducing oscillations
in the linear reconstruction.

The limiters on the flux may be obtained starting from the geometric limiter on the
slopes of the linear reconstructions. The flux limiters “measure” the smoothness of the
solution. Generally, the flux limiters are applied to the jump in the solution (∆Q) instead
of the approximated slope (∆Q{∆x) as done so far. We also denote as δn

i´ 1
2

the limited
version of the jump at the interface, ∆Qn

i´ 1
2

“ Qn
i ´ Qn

i´1. Denoting the flux limiter as
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φp¨q, then δn
i´ 1

2

is defined as follows:

δn
i´ 1

2
“ φ

´

θn
i´ 1

2

¯

∆Qn
i´ 1

2
,

where the parameter θn
i´ 1

2

measures the smoothness of the solution near the interface:

θn
i´ 1

2
“

$

’

’

’

’

’

&

’

’

’

’

’

%

∆Qn
i´ 3

2

∆Qn
i´ 1

2

, if ū ą 0,

∆Qn
i` 1

2

∆Qn
i´ 1

2

, if ū ă 0.

The flux limiter definition and the smoothness study depend on the sign of velocity. In
fact, if we have ū ą 0, then the solution propagates to the right; therefore, it is important
to check the smoothness of the solution on the left of the interface. We expect that
θn
i´ 1

2

« 1 where the solution is smooth, whereas near discontinuities the value of θn
i´ 1

2

may
be far from 1.

The flux-limiter function φpθq assumes values dependent on the solution smoothness.
By setting φpθq “ 1 for all θ produces the LxW method, whereas φpθq “ 0 gives the
upwind scheme. More generally, the aim is to set a limiter function φ that assumes values
close to 1 for θ « 1, reducing the jump where data are not smooth.

It is possible to translate the various slope limiters into flux-limiter functions, obtaining
the flux-limiter functions reported in Table 1.1.

Linear methods

upwind: φpθq “ 0
LxW: φpθq “ 1

High-resolution limiters

minmod: φpθq “ maxp0,minp1, θqq
superbee: φpθq “ maxp0,minp1, 2θq,minp2, θqq

Table 1.1: Flux-limiter functions and classification of the methods. For more schemes see [168].

For simple limiters such as minmod, it is easy to check that the TVD condition of
Definition 1.9 is satisfied. Instead, for more complicated limiters, this condition can be
more difficult to be proven.

1.2.8 Kurganov-Noelle-Petrova scheme

In this section, we present a second-order TVD scheme belonging to the family of the
Godunov’s type schemes (Reconstruct-Evolve-Average schemes) introduced in §1.2.6. This
scheme has the advantages of simplicity, high accuracy, and a semi-discrete expression.
Thanks to the use of linear reconstruction with slope limiter, there is less numerical
dissipation at the non-smooth parts of the solution; therefore, the accuracy is higher.
This method was described by Kurganov et al. [160] as an improvement of the scheme
introduced by Kurganov and Tadmor [159]. In §1.2.8 the differences between them are
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shown. Moreover, Kurganov and Petrova [158] adapted the KNP scheme to the Saint-
Venant system of shallow-water equations. In §2.1 we derive a depth-averaged model and
in §3 we present the numerical scheme which is based on such adapted method.

The family of the high-resolution Godunov-type schemes may also be described and
characterized by projection-evolution steps. Starting with the cell averages at time level
tn, one reconstructs a piecewise interpolating polynomial of degree r ´ 1, where r is the
formal order of the scheme (in our discussion r “ 2), which is evolved to the next time
level tn`1, and then it is projected onto a space of piecewise constants.

The KNP scheme follows a central-upwind approach. In fact, we can say that the
scheme is of central Godunov-type because the evolution step employs the integration
over the region of influence of the interface points. It also has an upwind nature since
one-sided information is used to estimate the region width.

As anticipated previously, the KNP scheme is based on a semi-discrete formulation,
namely the temporal derivative is retained, resulting in a formulation like

d

dt
Qiptq “ ´

Fi` 1
2
ptq ´ Fi´ 1

2
ptq

∆x
. (1.94)

The great advantage of this formulation is allowing the adoption of the ODE solvers of
higher order, such as Runge-Kutta, so that a second-order spatial scheme may be asso-
ciated with a second-order temporal scheme. The semi-discrete formulation is obtained
passing to the limit ∆tÑ 0 whereas ∆x is left fixed. In §1.2.8, we show that this method
does not possess a semi-discrete formulation, although the LxF scheme has a relationship
with it.

At each time step of the scheme, we do these four passages:

1. Piecewise linear reconstruction of the solution;

2. Estimation of the speed of the solution through the interfaces;

3. Computation of the numerical flux ;

4. Evolution of the solution at the following time step.

Reconstruction. Suppose to be at time level t “ tn and to know the cell average values
tQn

i ui, then the discontinuous piece-wise linear reconstruction is calculated:

rQn
pxq “ Qn

i ` σ
n
i px´ xiq, xi´ 1

2
ă x ă xi` 1

2
, @i, (1.95)

where, according with previous arguments, the slopes tσni ui should be computed by using
a geometric limiter such as those seen in §1.2.6.

The reconstructed solution may be discontinuous at the interfaces, as shown in Figure
1.25, then we define QL

i` 1
2

and QR
i` 1

2

as the left and right sided reconstructed solution
point value respectively, namely:

QR
i` 1

2

:“ lim
xÑx`

i` 1
2

rQn
pxq “ Qn

i`1 ´
∆x

2
σni`1,

QL
i` 1

2

:“ lim
xÑx´

i` 1
2

rQn
pxq “ Qn

i `
∆x

2
σni .

(1.96)

Note that the quantities QR
i` 1

2

and QL
i` 1

2

depend on the time-step tn, but, for simplicity,
we suppress the time-dependence in our notation.



54 CHAPTER 1. PROBLEM OVERVIEW

Q      n      (x)

x

Figure 1.25: Black lines represent the cell-averaged values of the solution, while the green lines
depicts a linear reconstruction of the solution over the cells.

Estimation of the local speed. The solution propagates at the interfaces with right-
sided and left-sided local speeds which must be estimated. In the case of the simple
advective equation with constant velocity qt` ūqx “ 0, the propagation velocity is exactly
ū and it is the same at each interface. In the case of a generic non-linear equation
Btq`Bxfpqq “ 0, the spatial derivative is expanded according with the chain rule and the
equation is rewritten in the quasi-linear form

Bq

Bt
`
dfpqq

dq

Bq

Bx
“ 0,

and the coefficient df{dq results to be the local velocity of propagation, which depends
on the solution and, therefore, is potentially different at each interface.

The discontinuity at the interface moves to the right at most with a velocity that
corresponds to the maximum of the positive propagation velocities; on the opposite, the
solution moves on the left at most with a velocity that is the minimum of the negative
propagation velocities. Hence we are interested in these two values:

a`
i` 1

2

:“ max

"

df

dq

´

QR
i` 1

2

¯

,
df

dq

´

QL
i` 1

2

¯

, 0

*

,

a´
i` 1

2

:“ min

"

df

dq

´

QR
i` 1

2

¯

,
df

dq

´

QL
i` 1

2

¯

, 0

*

.

(1.97)

For each interface, we define the two points that contain the region of influence (that is,
the region where q could propagate according to the values (1.97)) at time tn`1:

xn
i` 1

2
,r

:“ xi` 1
2
`∆ta`

i` 1
2

,

xn
i` 1

2
,l

:“ xi` 1
2
`∆ta´

i` 1
2

.
(1.98)

By reminding that a´
i` 1

2

ď 0, we know that these two points are on the right and left side
of xi` 1

2
respectively, as in Figure 1.26.

Numerical flux. By using the notation xn
i` 1

2
,r{l

of Eq. (1.98), we separate the regions
in which the solution undergoes the effects of discontinuities propagation at the interfaces
from the parts that are not affected by that. Therefore, we consider the following non-
equal intervals

Ji :“
”

xn
i´ 1

2
,r
, xn

i` 1
2
,l

ı

, and Ji` 1
2

:“
”

xn
i` 1

2
,l
, xn

i` 1
2
,r

ı

, (1.99)
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x

t

Figure 1.26: On the plane px, tq, the red points represent the possible characteristic lines (Rie-
mann fan) at the interfaces at the time tn, whereas the red triangles denote the regions of
influence.

and the solution is smooth in the first interval, whereas it is non-smooth in the second
one. Notice that these intervals depend on the time-step tn, but we have neglected this
dependency in the notation.

In order to compute the cell averages of the exact solution at time tn`1, we distinguish
between the solution averaged over the smooth regions, named ωn`1

i , and the solution
averaged over the non-smooth region, called ωn`1

i` 1
2

, by integrating over the corresponding
domains in (1.99), see Figure 1.27:

ωn`1
i «

1

|Ji|

ż

Ji

qpx, tn`1qdx,

ωn`1
i :“

1

|Ji|

"
ż

Ji

rQn
pxqdx´

ż tn`1

tn

”

f
´

q
´

xn
i` 1

2
,l
, t
¯¯

´ f
´

q
´

xn
i´ 1

2
,r
, t
¯¯ı

dt

*

, (1.100)

and

ωn`1
i` 1

2

«
1

ˇ

ˇ

ˇ
Ji` 1

2

ˇ

ˇ

ˇ

ż

J
i` 1

2

qpx, tn`1qdx,

ωn`1
i` 1

2

:“
1

ˇ

ˇ

ˇ
Ji` 1

2

ˇ

ˇ

ˇ

#

ż

J
i` 1

2

rQn
pxqdx´

ż tn`1

tn

”

f
´

q
´

xn
i` 1

2
,r
, t
¯¯

´ f
´

q
´

xn
i` 1

2
,l
, t
¯¯ı

dt

+

.

(1.101)

Thanks to the definition of the piece-wise linear reconstruction rQnpxq, Eq. (1.95), the
spatial integrals can be calculated explicitly. The discretization of the flux integrals may
require an appropriate quadrature formula, since the solution is smooth along the line
segments

´

xn
i` 1

2
,l
, t
¯

and
´

xn
i` 1

2
,r
, t
¯

, with tn ď t ă tn`1. At this stage, we realize the
solution at time level tn`1 in terms of the approximate cell averages ωn`1

i and ωn`1
i` 1

2

. These
averages spread over a non-uniform grid which is over-sampled by twice the number of
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the original cells. The last thing to do is to convert these averages back into the original
grid.

To do this, from the averaged values ωn`1
i and ωn`1

i` 1
2

we build a piece-wise linear
reconstruction on the non-uniform grid at time tn`1 by computing new values for the
slopes with geometric limiters (introduced in §1.2.6): we denote as rωn`1

i pxq the linear
reconstruction for the interval Ji, and as rωn`1

i` 1
2

pxq the reconstruction for Ji` 1
2
. Hence the

global piece-wise linear function on the staggered cells takes the following expression:

rωn`1
pxq :“

ÿ

i

´

rωn`1
i pxqχJipxq ` rωn`1

i` 1
2

pxqχJ
i` 1

2

pxq
¯

, (1.102)

where χIpxq is the characteristic function of the interval I. Thus, with the computation
of the cell averages at the next time level, namely by projecting rωn`1 back on the original
grid, the scheme is completely constructed:

Qn`1
i “

1

∆x

ż

Ci

rωn`1
pxqdx ,@i. (1.103)

Noticing that the (possibly non-trivial) linear reconstruction rωn`1
i pxq is averaged out on

the interval Ji for the computation of Qn`1
i in (1.103), any linear choice leads again to

the value ωn`1
i because the region is smooth:

1

|Ji|

ż

Ji

rωn`1
i pxqdx “ ωn`1

i . (1.104)

From this observation, we conclude that we may consider a constant reconstruction over
Ji. Figure 1.27 represents these choices for the reconstructions over the different types of
intervals.

Ci+1CiCi-1
x

Figure 1.27: The horizontal black lines represent the piecewise constant reconstruction obtained
with ωn`1

i and ωn`1
i` 1

2

. The green lines depict the linear reconstruction rωn`1
i` 1

2

.

The previous treatment brings a fully discrete Godunov-type central-upwind scheme
that can be derived explicitly, similarly to the derivation of other central schemes [156,
159]. However, we are not interested in this formulation, and we present the derivation of
a semi-discrete expression of the scheme in the form (1.94). The semi-discrete formulation
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is obtained by expressing the time derivative d
dt
Qiptq as the limit, for ∆t that goes to zero,

of the discretized term as follows:

d

dt
Qiptq “ lim

∆tÑ0

Qn`1
i ´Qn

i

∆t

p1.103q
“ lim

∆tÑ0

1

∆t

«

1

∆x

ż

Ci

rωn`1
pxqdx´Qn

i

ff

.

(1.105)

The integral over the whole cell Ci splits over three intervals: CiXJi´ 1
2
, Ji, and CiXJi` 1

2
.

We suppose that the slopes of the linear reconstructions rωn`1
i` 1

2

are uniformly bounded,

independently of ∆t. Therefore, as the width of Ji` 1
2
is equal to

´

a`
i` 1

2

´ a´
i` 1

2

¯

∆t, we
obtain

rωn`1
i` 1

2

pxq “ ωn`1
i` 1

2

`Op∆tq, @x P Ji` 1
2
. (1.106)

By using the previous equation, we evaluate separately the integrals over the three inter-
vals, and we get
ż

CiXJi´ 1
2

rωn`1
pxqdx

p1.102q
“

ż x
i´ 1

2 ,r

x
i´ 1

2

rωn`1
i´ 1

2

pxqdx
p1.98q,p1.106q

“ a`
i´ 1

2

∆t ωn`1
i´ 1

2

`Opp∆tq2q , (1.107)

ż

CiXJi` 1
2

rωn`1
pxqdx

p1.102q
“

ż x
i` 1

2

x
i` 1

2 ,l

rωn`1
i` 1

2

pxqdx
p1.98q,p1.106q

“ a´
i` 1

2

∆t ωn`1
i` 1

2

`Opp∆tq2q , (1.108)

ż

Ji

rωn`1
pxqdx

p1.102q
“

ż x
i` 1

2 ,l

x
i´ 1

2 ,r

rωn`1
i pxqdx

p1.104q
“ |Ji|ω

n`1
i . (1.109)

By using the results of Eqs. (1.107–1.109), the time derivative of the Eq. (1.105) may
be expressed as follows

d

dt
Qiptq “

a`
i´ 1

2

∆x
lim

∆tÑ0
ωn`1
i´ 1

2

` lim
∆tÑ0

1

∆t

˜

|Ji|

∆x
ωn`1
i ´Qn

i

¸

`

a´
i` 1

2

∆x
lim

∆tÑ0
ωn`1
i` 1

2

. (1.110)

We compute the three limits separately.
Using the definition of ωn`1

i` 1
2

in Eq. (1.101), we obtain that the third limit may be
expressed as follows

lim
∆tÑ0

ωn`1
i` 1

2

“

a`
i` 1

2

QR
i` 1

2

´ a´
i` 1

2

Qi` 1
2

a`
i` 1

2

´ a´
i` 1

2

´

fpQR
i` 1

2

q ´ fpQL
i` 1

2

q

a`
i` 1

2

´ a´
i` 1

2

, (1.111)

and a similar expression descends also for the first limit. Instead, by using the definition
of ωn`1

i of Eq. (1.100), the second limit results as:

lim
∆tÑ0

1

∆t

˜

xn
i` 1

2
,l
´ xn

i´ 1
2
,r

∆x
ωn`1
i ´Qn

i

¸

“

a´
i` 1

2

QL
i` 1

2

´ a`
i´ 1

2

QR
i´ 1

2

∆x
´

fpQL
i` 1

2

q ´ fpQR
i´ 1

2

q

∆x
.

(1.112)
Finally, a substitution of Eqs. (1.112) and (1.111) in Eq. (1.110) results in the KT

semi-discrete central-upwind scheme, which can be written in the canonical conservative
form by considering a generic time t instead of tn:

d

dt
Qiptq “ ´

Fi` 1
2
ptq ´ Fi´ 1

2
ptq

∆x
, (1.113)
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where the numerical flux Fi` 1
2
is defined as

Fi` 1
2
ptq “

a`
i` 1

2

f
`

QL
i` 1

2

ptq
˘

´ a´
i` 1

2

f
`

QR
i` 1

2

ptq
˘

a`
i` 1

2

´ a´
i` 1

2

`

a`
i` 1

2

a´
i` 1

2

a`
i` 1

2

´ a´
i` 1

2

”

QR
i` 1

2
ptq´QL

i` 1
2
ptq

ı

; (1.114)

notice that the first term on the right-hand side is a weighted average of the evaluated
fluxes with the speeds of propagation because the total flux at the interface depends both
on the left-going and on the right-going fluxes, each weighted with the maximum speed
in that direction.

Evolution. The semi-discrete scheme (1.113)-(1.115) is a time-dependent ODE (Ordi-
nary Differential Equation) which can be solved by any stable ODE solver that retains
the order of the spatial accuracy of the semi-discrete scheme. If the forward Euler scheme
is adopted, the final discretization results in the next equation

Qn`1
i “ Qn

i ´∆t

˜

F n
i` 1

2

´ F n
i´ 1

2

∆x

¸

.

Instead, if the backward Euler method is applied, we obtain the following discretization:

Qn`1
i “ Qn

i ´∆t

˜

F n`1
i` 1

2

´ F n`1
i´ 1

2

∆x

¸

.

Kurganov-Tadmor and Lax-Friedrichs schemes as particular cases of KNP

The KNP scheme described before is a direct improvement of the method proposed by
Kurganov and Tadmor [159]. The two schemes differ in the usage of the propagation
velocity at the interface; in fact, Kurganov and Tadmor [159] derived their numerical flux
KT by considering only the maximum velocity of propagation instead of Eq. (1.97):

ai` 1
2

:“ max

"
ˇ

ˇ

ˇ

ˇ

df

dq

´

QR
i` 1

2

¯

ˇ

ˇ

ˇ

ˇ

,

ˇ

ˇ

ˇ

ˇ

df

dq

´

QL
i` 1

2

¯

ˇ

ˇ

ˇ

ˇ

*

.

Therefore, by imposing that the left and right propagation velocities have the same mag-
nitude of ai` 1

2
, namely that

a`
i` 1

2

“ ai` 1
2
, a´

i` 1
2

“ ´ai` 1
2
,

and by replacing these values in the expression (1.114) of the KNP flux, then the KT flux
descends:

Fi` 1
2
ptq “

f
´

QL
i` 1

2

ptq
¯

` f
´

QR
i` 1

2

ptq
¯

2
´
ai` 1

2

2

”

QR
i` 1

2
ptq ´QL

i` 1
2
ptq

ı

. (1.115)

Moreover, the scheme reduces to the first-order LxF method in the case that the piece-
wise linear reconstruction rQn is replaced by a piece-wise constant reconstruction, and the
forward Euler scheme is adopted. In fact, in the case of constant reconstruction, the
values at the interfaces are the same as the averaged values

Qi` 1
2
Ñ Qn

i , QR
i` 1

2
Ñ Qn

i`1,
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and the propagation velocities are assumed to be

ai` 1
2
“

∆x

∆t
;

as a consequence, the numerical flux of Eq. (1.115) reduces to the LxF numerical flux
defined in Eq. (1.78).

We add the further observation about the LxF scheme that it does not admit a semi-
discretization expression, differently from the KT and KNP schemes. To prove it, we pass
to the limit ∆t Ñ 0 in the expression of the scheme (as we did in Eq. (1.105) for the
KNP scheme), keeping constant the value of ∆x. By rearranging the terms in Eq. (1.77,
the LxF scheme writes according to the next expression

Qn`1
i ´Qn

i

∆t
“
fpQn

i´1q ´ fpQ
n
i`1q

2∆x
`

1

2∆t

´

Qn
i`1 `Q

n
i´1 ´ 2Qn

i

¯

. (1.116)

Passing to the limit ∆t Ñ 0, the left-hand side term results in the exact temporal
derivative d

dt
Qiptq, whereas the second term on the right-hand side, that is related to

dissipation, increases and tends to infinity. This observation offers a second point of view
on the dissipating behavior of the LxF scheme. When the CFL condition is respected
with ∆t ! ∆x, the dissipation is excessive and produces smearing of the solution.

1.2.9 Numerical discretization of a system of hyperbolic PDEs

In the previous sections, from §1.2.1 to §1.2.8, we presented the theory and schemes of
the FVMs applied to the numerical solution of a single scalar equation in a 1D context.
Nevertheless, we know that CFD often requires solving systems of equations, even in a
multidimensional context. Hence, in the present section, we give hints to connect what
was described previously and translate it into this more general context.

In §1.1.6 we wrote in vectorial notation a generic (possibly non-linear) hyperbolic sys-
tem of PDEs (see Definition 1.4) as

Bq

Bt
`∇ ¨ fpqq “ Spqq ðñ

Bq

Bt
`
Bf p1qpqq

Bx
`
Bf p2qpqq

By
`
Bf p3qpqq

Bz
“ Spqq,

where q “ rq1, . . . , qN s
T is the vector of the conservative variables, f “

`

f p1q, f p2q, f p3q
˘

is
the vector of the fluxes with the components in each direction (if we consider the case of
a 3 dimensional problem), and Spqq is the vector of the source terms.

Suppose to apply a uniform discretization of the spatial domain obtaining hexahedral
cells Ci,j,k (centered at the point pxi, yj, zkq), then the finite volume method described in
§1.2.1 is applied similarly to the Eqs. (1.55). One defines Qn

i,j,k as the approximation of
the average solution inside the cell Ci,j,k at the time tn:

Qn
i,j,k «

1

V olpCi,j,kq

ż

Ci,j,k

qpx, tnqdV. (1.117)
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and also the numerical fluxes at the interfaces of the three directional fluxes:

F
p1q,n

i` 1
2
,j,k
«

1

∆t

ż tn`1

tn

ż y
j` 1

2

y
j´ 1

2

ż z
k` 1

2

z
k´ 1

2

f p1q
`

q
`

xi` 1
2
, y, z, t

˘˘

dz dy dt,

F
p2q,n

i,j` 1
2
,k
«

1

∆t

ż tn`1

tn

ż x
i` 1

2

x
i´ 1

2

ż y
j` 1

2

y
j´ 1

2

f p2q
`

q
`

x, yi` 1
2
, z, t

˘˘

dx dz dt,

F
p3q,n

i,j,k` 1
2

«
1

∆t

ż tn`1

tn

ż x
i` 1

2

x
i´ 1

2

ż y
j` 1

2

y
j´ 1

2

f p3q
`

q
`

x, y, zi` 1
2
, t
˘˘

dx dy dt.

The FVM for systems has the generic expression, which corresponds to Eq. (1.63) of the
scalar case, as follows:

Qn`1
i,j,k “ Qn

i,j,k´
∆t

∆x

”

F
p1q,n

i` 1
2
,j,k
´ F

p1q,n

i´ 1
2
,j,k

ı

´
∆t

∆y

”

F
p2q,n

i,j` 1
2
,k
´ F

p2q,n

i,j´ 1
2
.k

ı

´
∆t

∆z

”

F
p3q,n

i,j,k` 1
2

´ F
p3q,n

i,j,k´ 1
2

ı

.

For example, the numerical flux definition of the centered schemes seen previously in Eqs.
(1.74), (1.78) may be adapted in a straightforward way.

Since we are mostly interested in the use of the KNP scheme, we consider the semi-
discrete formalization:

dQi,j,kptq

dt
“ ´

F
p1q

i` 1
2
,j,k
ptq ´ F

p1q

i´ 1
2
,j,k
ptq

∆x
´

F
p2q

i,j` 1
2
,k
ptq ´ F

p2q

i,j´ 1
2
,k
ptq

∆y
´

F
p3q

i,j,k` 1
2

ptq ´ F
p3q

i,j,k´ 1
2

ptq

∆z
.

Next, we show how to calculate the first term on the right-hand side of the equation, refer-
ring to the flow along the x-direction. Then, the remaining two terms can be determined
with the same procedure.

According to the numerical scheme KNP, a linear reconstruction at the interface is
computed for each direction. We denote as rQpx, y, zq the piece-wise linear reconstruction
of the numerical solution which is the multidimensional and vector analogue of Eq. (1.95).
Then the values assumed at the interfaces along the x-direction are:

QE
i` 1

2
,j,k

:“ lim
xÑx`

i` 1
2

rQpx, yj, zkq “ Qi`1,j,k ´
∆x

2
σ
p1q
i`1,j,k,

QW
i` 1

2
,j,k

:“ lim
xÑx´

i` 1
2

rQpx, yj, zkq “ Qi,j,k `
∆x

2
σ
p1q
i,j,k,

where we have neglected the time dependence. These definitions correspond to Eq. (1.96).
Also, notice that σ

p1q
i,j,k is the vector of the slopes of the variables in Qi,j,k along the x-

direction and the possible adopted limiter is applied component-wise.
The velocity of propagation of these solutions at the interfaces depend on the maximum

and minimum eigenvalues of the Jacobian matrix of the flux function f p1q evaluated at the
interface, then we define

a`
i` 1

2
,j,k

:“ max

#

λN

ˆ

df p1q

dq

´

QW
i` 1

2
,j,k

¯

˙

, λN

ˆ

df p1q

dq

´

QE
i` 1

2
,j,k

¯

˙

, 0

+

,

a´
i` 1

2
,j,k

:“ min

#

λ1

ˆ

df p1q

dq

´

QW
i` 1

2
,j,k

¯

˙

, λ1

ˆ

df p1q

dq

´

QE
i` 1

2
,j,k

¯

˙

, 0

+

.
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Finally, we define the numerical flux of the KNP scheme along the x-direction in the
multidimensional and vector case (the analog of Eq. (1.115) for the scalar 1-dimensional
scheme):

F
p1q

i` 1
2
,j,k
ptq “

a`
i` 1

2
,j,k

f p1q
´

QW
i` 1

2
,j,k
ptq

¯

´ a´
i` 1

2

f p1q
´

QE
i` 1

2
,j,k
ptq

¯

a`
i` 1

2
,j,k
´ a´

i` 1
2
j,k

`

a`
i` 1

2
,j,k
a´
i` 1

2
,j,k

a`
i` 1

2
,j,k
´ a´

i` 1
2
,j,k

”

QE
i` 1

2
,j,k
ptq ´QW

i` 1
2
,j,k
ptq

ı

.

Stability and CFL condition

In §1.2.2.2 we discussed about stability and introduced the CFL condition (a necessary
condition for stability) for a scalar equation, we explore a little what we can say in the
case of a system.

In the case of a one dimensional system of PDEs such as Btq ` Bxfpqq “ Spqq, the
physical speeds of propagation are determined by the eigenvalues of the flux Jacobian

matrix
df

dq
, named as λ1 ď ¨ ¨ ¨ ď λN , then the Courant number is defined as follows in

terms the eigenvalue with the maximum magnitude

c :“
∆t

∆x
max
p

|λp|,

because the highest propagation speed imposes the most restrictive condition on the time
step.

In the case that the problem is multidimensional, then the flux function f has com-

ponents
`

f p1q, f p2q, f p3q
˘

, one for each direction. Considers the matrices
df piq

dq
, i “ 1, . . . , 3

which are the Jacobians of the flux functions f piqpqq with eigenvalues λpiq1 ď ¨ ¨ ¨ ď λ
piq
N .

For each direction, we define the Courant number cpiq associated as

cpiq “
∆t

∆x
max
p

∣∣λpiqp ∣∣, i “ 1, . . . , 3

then the CFL condition to respect is that

c :“ max
`

cp1q, cp2q, cp3q
˘

ď 1.

Notice that the Courant number c, and hence the CFL condition, might assume dif-
ferent values in each cell because of the change in the values of the eigenvalues. For this
reason, the time-step ∆t must be chosen such that the CFL condition c ď 1 is verified
contemporary in each cell.

In the discussion about stability in §1.2.2.2, we stated that the high-order schemes
applied to scalar equations need to respect the TVD property (described in §1.2.6) as a
necessary requirement for stability. Unfortunately, the TV notion does not extend to the
systems of non-linear equations. In general, the exact solution of systems itself does not
satisfy a TVD property in any reasonable sense, so we expect the numerical solution to do
the same. Moreover, to our knowledge, no convergence proof is available for the Godunov
scheme even in the more classic and simple systems cases (such as the shallow-water



62 CHAPTER 1. PROBLEM OVERVIEW

equations or the Euler equations), as stated in [168]. There is a sort of connection between
the knowledge of the solution’s existence and defining stability conditions. Consider, for
example, that Courant, Friedrichs, and Levy determined the CFL condition while were
studying the existence of the solution, see [57, 58]. Therefore, it seems obvious that there
is no stability condition for the Godunov schemes in the absence of convergence results.
Despite this lack of rigorous results, both the Godunov method and its high-resolution
variations generally succeed in practice and are widely used.

1.3 Computational setting with OpenFOAM
A part of our work leans on the OpenFOAM software, in fact, we developed a solver
in the OpenFOAM framework in order to solve numerically our 3D model, therefore we
give some fundamental information about it. OpenFOAM (Open Field Operation And
Manipulation) is a free, open source software for Computational Fluid Dynamics (CFD)
produced primarily by OpenCFD Ltd since 2004. It is widely used across different areas
of engineering and science, from both commercial and academic organisations. Open-
FOAM is a C++ library using the object-oriented programming (OOP). OpenFOAM has
an extensive range of features to solve anything from complex fluid flows involving chemi-
cal reactions, turbulence and heat transfer, to acoustics, solid mechanics and electromag-
netism. Also, OpenFOAM permits High-Performance Computing (HPC) because it offers
the possibility to launch and handle the computations in parallel. Finally, OpenFOAM
has frequent updates and there is a profitable correspondence between the communities
of users and of developers that helps to improve the performance and to fix possible bugs
of the software. The website https://www.openfoam.com/ provides further information
about OpenFOAM, there are also a User’s Guide, a Tutorial Guide and a wiki site with
the links to the repositories.

In the following, after a description of the spatial domain discretization into a mesh
in §1.3.1, we present how OpenFOAM discretizes a generic transport equation (§1.3.2).
OpenFOAM treats and discretizes in a specific manner each different type of term present
in a PDE and then produces an algebraic equation to solve for each cell of the discretized
domain. Gathering together such algebraic equations, OpenFOAM assembles an algebraic
system, as shown in §1.3.3, and solves it.

We underline that the whole section is devoted to describe the application of the FVM
to the numerical solution, in the context of the OpenFOAM software, of a single PDE.
When having to solve a system of coupled PDEs, more attention and a specific strategy
are required in order to preserve the coupling, but in this section we neglect this aspect
(it will be treated in §4.1 by means of the segregated strategy).

For more details on the way the equations are defined in OpenFOAM and how we can
add an equation to an already existing system, see §4.5 and §A respectively.

1.3.1 Computational domain and variable arrangement

The spatial domain, over which the PDE is defined, is discretized as a mesh ofN elements,
referred to as cells or control volumes. Each control volume VP of the computational
domain is identified by its centroid, say it P , and its volume is V . The position of the
centroid P is xP such that:

xP P VP :

ż

VP

px´ xP q dV “ 0. (1.118)

https://www.openfoam.com/
https://www.openfoam.com/documentation/user-guide/
https://www.openfoam.com/documentation/tutorial-guide/
https://develop.openfoam.com/Development/openfoam/-/wikis/home
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The vector that connects the centroid P of VP to the centroid N of a neighboring cell VN
is named d (or dPN), see Figure 1.28.

Figure 1.28: Example of two neighboring control volumes P and N . The face f shared by them
is owned by the control volume P and points outward; Sf is the surface area vector.

The boundary of a control volume is constituted by a finite number of faces f Ă BVP .
An internal face is shared between two neighboring cells, whereas a boundary face belongs
only to one control volume and it constitutes the boundary of the domain. Considering an
internal face, even though it is shared by two cells, only one control volume is denoted as
the owner of the face, while the other control volume is labeled as neighbor. The cells at
the boundary are the only owners of their boundary faces. For each face f , the position
of its central point (denoted as f , like the face itself) is xf :

xf P f Ă BVP :

ż

f

px´ xf q ¨ dS “ 0. (1.119)

A surface area vector Sf is then associated to each face, it is positioned at the face center
xf , it is normal to the face, its magnitude is equal to the area of the face and it points
outward to the owner cell it belongs to (see Figure 1.28); in the case of a boundary face,
the surface area vector Sf points outward the computational domain.

For our case study, the mesh is always “still”, in the sense that it may be refined at
run-time, but for sure the cells do not move with respect to the fixed coordinate system
that we consider.

Cell-centered co-located arrangement. For the storage of the values of the dis-
cretized variables (e.g., pressure or velocity) OpenFOAM uses a cell-centered co-located
arrangement. This means that the values of all the discretized variables are stored at
the same positions (co-located arrangement) that are the center of the control volumes
(cell-centered), as represented in Figure 1.29a. Because of this type of arrangement, we
must compute interpolations every time we need the values at the faces. In OpenFOAM,
the value at time tn of any stored variables, say q, is its cell average

Qn
P «

1

VP

ż

VP

qpx, tnqdV.

The alternative to the co-located memorization is the staggered arrangement, repre-
sented symbolically in Figure 1.29b, for which the scalar variables (like pressure, density,
temperature, energy) are stored at the cell center of the control volumes, whereas velocity
or momentum variables are referred to the face centers.
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(a) Co-located arrangement. (b) Staggered arrangement.

Figure 1.29: The red dots refer to pressure p, the blue and green arrows refer to the velocity
components u and v respectively.

1.3.2 Transport equation discretization

The system of governing equations that OpenFOAM solves is the system of Navier-Stokes
Eqs. (1.37) or its variations like Eqs. (1.49) possibly enriched by other transport equa-
tions. We describe how OpenFOAM deals with a generic transport equation, see §1.1.4, for
a scalar conservative property (that might be the density, temperature, energy, enthalpy,
and more), but the discussion may be appropriately extended also to vector quantities
(like velocity and momentum).

Let q be a conservative scalar quantity advected with the flow of velocity u according
with the following standard transport equation:

Bq

Bt
`∇ ¨ pquq ´∇ ¨ pΓ∇qq “ Spqq, (1.120)

where the terms are, in order from left to right, the temporal derivative, the convection
term, the diffusion term (Γ is a diffusion coefficient) and S is a source term that might
depend on q. Notice that the equation is a second-order PDE because the diffusive
term involves the second derivative in space. In general, for a good approximation, the
discretization order in space must be equal to or higher than the order of the discretized
equation. We use a piece-wise linear approximation of the exact solution, name it rQpx, tq,
to guarantee the required second-order accuracy. The approximating function is such
that at the cell centroids P at the time step tn it approximates the averaged value of the
solution over the considered VP control volume, namely rQpxP , tnq “ Qn

P . Being rQ a linear
approximation in each control volume, we have:

rQpx, tnq “ Qn
P ` px´ xP q ¨∇ rQpxP , tnq, @x P VP . (1.121)

Similarly, a piece-wise linear approximation is assumed also on the faces for any vector
quantity a:

rApx, tnq “ An
f ` px´ xf q ¨∇rApxf , tnq, @x P f, (1.122)

where An
f “

rQpxf , tnq.
OpenFOAM, using the Finite Volume method, demands that Eq. (1.120) is verified
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over each control volume VP in the integral form of the PDE, that is:

ż t`∆t

t

„
ż

VP

Bq

Bt
dV `

ż

VP

∇ ¨ pquq dV ´
ż

VP

∇ ¨ pΓ∇qq dV


dt “

ż t`∆t

t

ˆ
ż

VP

SpqqdV

˙

dt.

(1.123)
The discretization of Eq. (1.123) requires the use of the Gauss Theorem and peculiar
treatments for every term.

1.3.2.1 Space discretization

We consider Eq. (1.123) temporarily neglecting the integral over the time interval rt, t`
∆ts. The partial time derivative moves out of the integral over the control volume because
we assumed to deal with a discretized domain that does not depend on time. The difficulty
to handle the volume integrals of divergence and gradient operators is overcome by using
the Gauss theorem (often called divergence theorem). In fact, the Gauss theorem permits
to convert the volume integral over the control volume VP of most spatial derivative terms
into integrals over the cell boundaries BVP . By adopting the divergence theorem on Eq.
(1.123) we obtain

B

Bt

ż

VP

qdV `

ż

BVP

pquq ¨ dS´

ż

BVP

pΓ∇qq ¨ dS “
ż

VP

SpqqdV,

where dS represents an infinitesimal surface element, which associated vector points out-
ward normal on BVP . The boundary of the control volume is constituted by a finite
number of faces, so each surface integral over BVP is a finite sum of the surface integrals
over each face f :

B

Bt

ż

VP

qdV `
ÿ

fPBVP

„
ż

f

pquq ¨ dS



´
ÿ

fPBVP

„
ż

f

pΓ∇qq ¨ dS


“

ż

VP

SpqqdV (1.124)

Reminding that the piece-wise linear function rQ approximates the solution q,see Eq.
(1.121), we can discretize the differential terms. For example, the volume integral of the
quantity q is:

ż

VP

qdV «

ż

VP

rQdV

p1.121q
“

ż

VP

”

QP ` px´ xP q ¨ p∇ rQqP

ı

dV

“ QP

ż

VP

dV ` p∇ rQqP ¨

ż

VP

px´ xP qdV

p1.118q
“ QPVP

(1.125)

where the last equality is due to the definition of centroid. From Eq. (1.125) descends a
straightforward discretization of the transient term in Eq. (1.124):

B

Bt

ż

VP

qdV
p1.125q
«

B

Bt
pQPVP q . (1.126)
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In a similar way, the surface integral of the vector quantity a through the face f is
approximated as follows:

ż

f

a ¨ dS «

ż

f

rA ¨ dS

p1.122q
“

ż

f

”

Af ` px´ xf q ¨ p∇rAqf

ı

¨ dS

“ Af ¨

ż

f

dS` p∇rAqf ¨

ż

f

px´ xf q ¨ dS

p1.119q
“ Af ¨ Sf,P

(1.127)

where in the last equality we have used the definition of the face centroid, and where Sf,P
is the face area vector pointing outward VP . Notice that when using the Gauss theorem,
we get the sum of surface integrals, hence we have to deal with expressions like

ÿ

fPBVP

ˆ
ż

f

a ¨ dS

˙

«
ÿ

fPBVP

Af ¨ Sf,P .

As stated before, the versus of the surface area vector Sf depends on its owner control
volume: Sf points outwards from the control volume P only if f is owned by P , otherwise
the neighboring face Sf points inwards. This fact must be taken into account when we
consider Sf,P in the sum over the faces of the boundary, so the sum is split into sums over
owned and neighboring faces:

ÿ

fPBVP

Af ¨ Sf,P “
ÿ

fPBVP
f owned by P

Af ¨ Sf ´
ÿ

fPBVP
f neighb. of P

Af ¨ Sf . (1.128)

This is true for every summation over the faces, and in the rest of the text this split is
automatically assumed.

For the convective flux discretization, the piece-wise linear approximation of the
variables q and u at the face is used and we get that the integral on the face is approxi-
mated as follows:

ż

f

pquq ¨ dS «

ż

f

´

rQru
¯

¨ dS

p1.122q
“

ż

f

!

“

Qf ` px´ xf q ¨ p∇ rQqf
‰“

uf ` px´ xf q ¨ p∇uqf
‰

)

¨ dS

«

ż

f

pQfuf q ¨ dS`

ż

f

Qf

“

px´ xf q ¨ p∇uqf
‰

¨ dS`

ż

f

“

px´ xf q ¨ p∇ rQqf
‰

uf ¨ dS

“ Qf puf ¨ Sf,P q `Qf p∇uqf ¨

ż

f

px´ xf qdS` uf p∇ rQqf ¨

ż

f

px´ xf qdS

p1.119q
“ puf ¨ Sf,P qQf ,

(1.129)

where, at the third passage, since we deal with a second order approximation, the second
order term is neglected. The notation φf for the volumetric flux through the face f is
now introduced:

φf :“ uf ¨ Sf,P , (1.130)
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then the entire convective term results as
ÿ

fPBVP

„
ż

f

pquq ¨ dS



p1.129q
«

ÿ

fPBVP

puf ¨ Sf,P qQf
p1.130q
“

ÿ

fPBVP

φfQf . (1.131)

It results that the divergence term discretization needs two schemes: the Gauss theorem
(to treat the volume integral of the divergence term) and an interpolation scheme (like
those presented in the next §1.3.2.2) to compute the value of the variable at the faces Qf ,
whereas the computation of the volumetric flux φf will be described in §4.1. These two
specifications, about schemes chosen, must be set in the divSchemes dictionary.

The diffusive flux is discretized in a similar way,hence, the approximation of the
diffusive term is

ÿ

fPBVP

„
ż

f

pΓ∇qq ¨ dS


p1.127q
«

ÿ

fPBVP

pΓ∇Qqf ¨ Sf,P

“
ÿ

fPBVP

ΓfSf,P ¨ p∇Qqf .
(1.132)

From this expression we see that the Laplacian term discretization requires three schemes:
the Gauss scheme (which is the only choice for the discretization of the volume integral of
the Laplacian term), an interpolation scheme for the face values of the diffusion coefficient
Γf , presented in the next paragraph §1.3.2.2, and finally a scheme for the surface-normal
gradient term Sf,P ¨ p∇Qqf , which are introduced in a following paragraph §1.3.2.3. The
three schemes chosen must be specified in the laplacianSchemes.

All the terms in the original equation (1.120) that cannot be expressed as temporal,
convection or diffusion terms are then considered as sources. The source term is usually
a function of space and time, of the solution and of other variables, so it might be difficult
to treat. Before the actual discretization, the source term is linearized:

Spqq « Su ` Sp rQ,

where both Su and Sp might depend on the variable rQ. According with this, the volume
integral of the source term is calculated as:

ż

VP

SpqqdV « pSu ` SpQP qVP . (1.133)

In summary, by using the previous approximations (1.126), (1.131), (1.132) and (1.133)
of the volume and surface integrals, Eq. (1.124) over the control volume VP assumes the
following semi-discrete expression:

B pQPVP q

Bt
`

ÿ

fPBVP

φfQf ´
ÿ

fPBVP

ΓfSf,P ¨ p∇Qqf “ pSu ` SpQP qVP (1.134)

The solution of Eq. (1.134) in the control volume VP requires the knowledge of the values
QP , Qf , Γf and Sf,P ¨ p∇Qqf , for each f P BVP . Remind that, due to the cell-centered
co-located arrangement of the variables, only the values of the variables at the centroids
of the control volumes are stored and used for the computations. Notice, instead, that
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the convective and diffusive fluxes use the value of the variables at the faces. Because of
this, an approximation of the value at the faces is computed in terms of the values at the
cell-centroids, resulting in a sort of reconstruction over the entire control volume of the
approximation function rQ. The values QP , Qf and Γf are determined with interpolation
schemes like those presented in the next paragraph §1.3.2.2, and the computation of
Sf,P ¨ p∇Qqf is done according with the surface-normal schemes described in a following
paragraph §1.3.2.3. The time discretization schemes are introduced in §1.3.2.4.

1.3.2.2 Interpolation schemes

OpenFOAM has many interpolation schemes implemented, reported in Table 1.2 and di-
vided into 4 categories: one category (the first row in the table) includes general schemes,
whereas the other 3 categories (second, third and fourth rows in the table) involve the
schemes to use in conjunction with the Gauss theorem. Among them, the convection-
specific schemes calculate the interpolation based on the flux of the flow velocity. The
specification of these schemes requires the name of the flux field on which the interpo-
lation is based, that we called φ as most of the OpenFOAM applications do. It is not
recommended that the user adopts any of the convection-specific schemes for generic field
interpolations.

centered schemes: linear
cubicCorrection
midPoint

Upwinded convection schemes: upwind
linearUpwind
skewLinear

TVD schemes: limitedLinear
vanLeer
MUSCL
limitedCubic

NVD schemes: SFCD
Gamma ψ

Table 1.2: Interpolation schemes in OpenFOAM.

In the next paragraphs, we see three examples of interpolation schemes: the linear cen-
tered (linear), the classic upwind (upwind) and a scheme that mixes them (limitedLinear).

Central differencing. The Central Differencing (CD) scheme assumes a linear varia-
tion of rQ between the centroids of two neighboring cells. Consider the one dimensional
mesh shown in Figure 1.30. A simple linear interpolation is used to compute the face
value:

Qf “ θfQP ` p1´ θf qQN , where θf :“
fN

PN
, (1.135)

where the interpolation factor (weighting factor) is θf . The expression of the CD scheme
complicates with more complex meshes, in multi-dimensional situations, and in case that
the centroids P and N are not aligned with the face center f .
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P Nf
d

QP

QN

Qf

Figure 1.30: Assumption of linear variation of rQ between two neighboring control volumes P
and N . The face f is normal to the vector dPN .

Ferziger and Peric [89] showed that the CD scheme is second order accurate, hence it
is consistent with the overall accuracy of the method. Even though the CFL condition is
respected, the CD scheme can be unstable causing nonphysical oscillations in the solution
for convection-dominated problems, thus violating the boundedness of the solution.

Upwind differencing. The Upwind Differencing (UD) scheme determines the value of
Qf looking at the direction of the flux, namely as:

Qf “

#

QP if φf ě 0,

QN if φf ă 0.
(1.136)

As a clarifying example, consider the control volume P represented in Figure 1.31. It
has four neighbor cells N , E, S, W , and the fluid flow is determined by the velocity field
u. In order to compute the values at the faces Qf in the cell P , we need to know the sign
of the volumetric flux φf at the faces. The faces owned by P are fN and fW , with the
face-area vectors SfN and SfW that point outward. Reminding that, when determining
the sign of φf , we must take the face-area vector owned by the neighbor cells with the
minus sign; the upwind scheme is then applied as follows:

φfN “ SfN ¨ ufN ě 0 ùñ QfN “ QP ,

φfE “ p´SfEq ¨ ufE ě 0 ùñ QfE “ QP ,

φfS “ p´SfSq ¨ ufS ă 0 ùñ QfS “ QS,

φfW “ SfW ¨ ufW ă 0 ùñ QfW “ QW .

The upwind scheme guarantees the boundedness of the solution, namely the stabil-
ity. Despite this advantage, it is first order accurate then it violates the order of the
discretization, also it produces high numerical diffusion/dissipation in the solution where
large gradients exist, as stated also in §1.2.4.

Blended differencing. The Blended Differencing (BD) schemes try to preserve both
boundedness and accuracy of the solution by using a linear combination of the CD and
UD schemes as it follows:

Qf “ θQf,CD ` p1´ θqQf,UD, with 0 ď θ ď 1, (1.137)

where Qf,CD and Qf,UD are computed by Eq. (1.135) and Eq. (1.136) respectively. The
blending factor θ prescribes how much numerical diffusion is introduced. For θ “ 1 the
scheme reduces to CD, whereas for θ “ 0 the scheme is UD.
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P
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u

SfN

SfE

SfS

SfW

Figure 1.31: The control volume P and its adjacent cells. The red arrows represent the face-area
vectors. The blue arrows represent the flow velocity.

As we saw in §1.2.3, diffusion may be considered as a raw cure to instability problems
(those that born even if the CFL condition is respected). In such a context, the diffusive
behavior introduced by the UD scheme reduces the generation of oscillations generated
by the CD scheme. Peric [212] proposed a constant θ for all the faces of the mesh.

Eq. (1.137) is only one of the numerous blending schemes that try to find a good
compromise between accuracy and boundedness.

1.3.2.3 Surface-normal gradient schemes

OpenFOAM offers several surface-normal gradient schemes to compute the quantity Sf,P ¨
p∇Qqf in the diffusive flux (1.132); we report some of them in Table 1.3 and describe
below with some details the orthogonal, uncorrected and corrected schemes. For
these schemes, the choice of the user should take into account the mesh quality: it is
orthogonal or not.

orthogonal No non-orthogonal correction, 2nd order accurate*, stable*
uncorrected No non-orthogonal correction, 2nd order accurate*, stable,

but more diffusive than corrected and limited
corrected Explicit non-orthogonal correction, 2nd order accurate,

bounded (depending on the mesh quality)
limited ψ Limited non-orthogonal correction, 2nd order accurate,

bounded (depending on the mesh quality)

Table 1.3: snGradSchemes: some of the surface-normal gradient schemes available in Open-
FOAM. The conditions * are valid for orthogonal hexaedral meshes with no grading.

In the case of orthogonal mesh, the vectors d and Sf,P are parallel, see Figure 1.32,
and the scalar product may be computed through the following expression:

Sf,P ¨ p∇Qqf « |Sf,P |
QN ´QP

|dPN |
, (1.138)
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that corresponds to the orthogonal scheme.

P Nf
d S

Figure 1.32: Face area vector Sf,P in an orthogonal mesh.

When the mesh is non orthogonal, the computation is split in two parts, the orthogonal
contribution and the non-orthogonal correction, as follows:

Sf,P ¨ p∇Qqf “ ∆ ¨ p∇Qqf
looooomooooon

orth. contribution

` K ¨ p∇Qqf
loooomoooon

non-orth. correction

, with Sf,P “ ∆`K, (1.139)

where ∆ is parallel to the vector d, therefore the first scalar product is approximated as
in Eq. (1.138). The computation of the scalar product of the non-orthogonal correction
depends on the chosen decomposition of Sf , we see three of them. According with a
minimum correction approach (also said under-relaxed approach), that aims to have the
correction K as small as possible, the vector K is orthogonal to ∆, see Figure 1.33a. In
the orthogonal approach, the length of Sf,P is reported along the direction PN , namely
|∆| “ |Sf,P | as in Figure 1.33b. In the over-relaxed approach, that is represented in Figure
1.33c, the vector K is orthogonal to Sf,P and therefore the relevance of ∆ increases with
the non-orthogonality.

P Nf
d

S K

(a) Under-relaxed approach.

∆ “
d ¨ Sf,P
d ¨ d

d

P Nf
d

S K

(b) Orthogonal approach.

∆ “
|Sf,P |

|d|
d

P Nf

S
d

K

(c) Over-relaxed approach.

∆ “
|Sf,P |

2

d ¨ Sf,P
d

Figure 1.33: Three decompositions of the face area vector Sf,P in a non-orthogonal mesh.

The uncorrected scheme neglects the non-orthogonal correction and uses the under-
relaxation approach, hence it should be used only for meshes with very low non-orthogonality:

Sf,P ¨ p∇Qqf « |∆|
QN ´QP

|dPN |
, with |∆| “

1

cos θ
|Sf,P |,

where θ is the angle formed by Sf,P and ∆. The corrected scheme adopts the non-
orthogonal correction and the under-relaxed approach, so the surface-normal gradient
scheme results to be:

Sf,P ¨ p∇Qqf « |∆|
QN ´QP

|dPN |
`K ¨ p∇Qqf ,

with |∆| “
1

cos θ
|Sf,P |, K “ |Sf,P |

ˆ

Sf,P
|Sf,P |

´
1

cos θ

dPN
|dPN |

˙

.
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1.3.2.4 Time discretization

The original PDE, written in integral form as Eq.(1.123), has been discretized with respect
to the space, then its approximation is the following equation:

ż t`∆t

t

«

B pQPVP q

Bt
`

ÿ

fPBVP

φfQf ´
ÿ

fPBVP

ΓfSf,P ¨ p∇Qqf

ff

dt “

ż t`∆t

t

”

pSu ` SpQP qVP

ı

dt

(1.140)
where the values at the faces are computed in terms of the centroid values. The time
discretization is the last thing we need to obtain a full discretization.

The time discretization scheme to apply must be specified in the ddtSchemes dictio-
nary. The time discretization schemes available in OpenFOAM are those listed in Table
1.4. There is an “off-centering” coefficient ocCoeff referred to CrankNicholson that is
used for blending the CrankNicholson scheme with the Euler scheme. A coefficient oc-
Coeff“ 1 corresponds to pure Crank-Nicholson method and ocCoeff“ 0 corresponds to
pure Euler scheme (we go deep in this in §4.2.1 and followings). The blending coefficient
helps to improve stability in cases where pure Crank-Nicholson is unstable.

Euler First order, bounded, implicit
localEuler Local-time step, first order, bounded, implicit
CrankNicholson ocCoeff Second order, bounded, implicit
backward Second order, implicit
steadyState Does not solve for time derivatives

Table 1.4: ddtSchemes: time discretization schemes available in OpenFOAM.

1.3.2.5 Example of fvSchemes

To run a simulation in OpenFOAM, the user must specify in the file case/system/fvSchemes
the discretization schemes applied to the differential terms that appear in the equations
to solve. We consider a particular example and we report the code of a fvSchemes file
that shows a possible choice of discretization schemes to apply, for example the Code 1.1.
The power of OpenFOAM is that the code is very readable, hence what reported could
be almost intuitive. However, we pass through it in order to clarify what stated.

Suppose to have the following equation:

Bq

Bt
`∇ ¨ pquq ´∇ ¨ pΓ∇qq “ Spqq.

The equation is composed of three different differential terms that need individual dis-
cretization schemes to be specified in three dictionaries respectively: (i) ddtSchemes, (ii)
divSchemes and (iii) laplacianSchemes. For each scheme, it is mandatory to write an
instruction for the default choice. By stating default none, it is necessary to write
explicitly a declaration for every term since no default scheme is defined. Otherwise, the
user can define just a few terms and use the default for the rest. In the case of a system
of equations, where several terms may have the same differential operator, the default
instruction flexibility is useful.

18 ddtSchemes
19 {
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20 default Euler;
21 }
22

23 divSchemes
24 {
25 default none;
26 div(phi ,Q) Gauss linear;
27 }
28

29 laplacianSchemes
30 {
31 default Gauss linear orthogonal;
32 }

Listing 1.1: Example of code of fvSchemes file.

(i) The Code 1.1 states that the Euler scheme (reported in Table 1.4) is adopted for
the time discretization.

In all the schemes for the spatial derivative terms (ii, iii), the Gauss theorem is used,
and the keyword Gauss written in the Code 1.1 refers to this. The semi-discretization
expression related to this keyword is

B pQPVP q

Bt
`

ÿ

fPBVP

φfQf ´
ÿ

fPBVP

ΓfSf,P ¨ p∇Qqf “ pSu ` SpQP qVP . (1.141)

It remains to specify the schemes to determine Qf ,Γf , Sf,P ¨ p∇Qqf , and pf .
(ii) The Code 1.1 indicates that the linear differencing scheme, defined in Eq. (1.135),

should be used to compute Qf . Remind that phi corresponds to the volumetric flux
φf “ uf ¨Sf,P defined in Eq. (1.130), and descends from the discretization of the convective
flux, Eq. (1.129).

(iii) For the Laplacian term, we have two more specifications in addition to the string
Gauss that indicates the use of Gauss theorem because we must choose two interpolations
to compute Γf and Sf,P ¨p∇Qqf . The first specification refers to the interpolation scheme to
compute Γf (in this case it is linear, namely the centered scheme defined in Eq. (1.135)).
The second specification denotes the surface-normal scheme that evaluates Sf,P ¨ p∇Qqf .
In the Code 1.1 the orthogonal scheme is indicated (defined in Eq. (1.138)) that should
be employed in case of orthogonal meshes.

The application of these schemes to Eq. (1.141) results in the following full discretiza-
tion:

Qn`1
P ´Qn

P

∆t
VP `

ÿ

fPBVP

φf
“

θfQ
n`1
P ` p1´ θf qQ

n`1
N

‰

`

´
ÿ

fPBVP

“

θfΓ
n`1
P ` p1´ θf qΓ

n`1
N

‰ |Sf,P |

|dPN |
pQn`1

N ´Qn`1
P q “

`

Su ` SpQ
n`1
P

˘

VP . (1.142)

1.3.3 Algebraic system

For each control volume VP , by summing the discretizations of the transient term, of all
the flux terms and of the source term, the solver produces an algebraic equation which
relates the variable under consideration at the centroid of VP to the values at the centroids
of the neighbor control volumes VN . Doing this for each control volume, and assuming
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that N is the number of the cells that constitute the computational domain, OpenFOAM
finally assembles a set of N algebraic equations:

Ax “ b,

where the entries of A may depend on the unknowns. A is typically a sparse matrix (i.e.,
with many zero entries). We call AP the diagonal coefficients and AN the off-diagonal
coefficients, so each equation may be written as follows:

APxP `
ÿ

N

ANxN “ bP , (1.143)

This system is assembled and solved for each time step to determine the progress of the
solution of the PDE.

In order to show how the discretization of a PDE reduces to an algebraic system, we
rearrange the terms of the fully discretized Eq. (1.142) and identify the terms that build
the system of Eqs. (1.143):
#

VP
∆t
´ Sp `

ÿ

fPBVP

φfθf `
ÿ

fPBVP

“

θfΓ
n`1
P ` p1´ θf qΓ

n`1
N

‰ |Sf,P |

|dPN |

+

loooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooon

AP

Qn`1
P

loomoon

xP

`
ÿ

fPBVP

"

φf p1´ θf q ´
“

θfΓ
n`1
P ` p1´ θf qΓ

n`1
N

‰ |Sf,P |

|dPN |

*

loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon

AN

Qn`1
N

loomoon

xN

“ Su `
VP
∆t
Qn
P

looooomooooon

bP

. (1.144)

The coefficient AP contains the contributes of all terms referred to Qn`1
P : the temporal

derivative, the linear part of the source term, the convective and diffusive terms. The co-
efficients AN have the respective terms that correspond to the neighbor control volumes.
The summation is equivalently done over the faces that belong to VP or over the neigh-
boring cells that share a face with VP . The term bP is constituted by all those terms that
do not rely on the unknown at the new time step, hence the constant part of the source
term, and the parts of the differential term discretization that depend on the variables at
the previous time-step.

From the usage of the Euler scheme, we draw an important observation that is valid
also for the more generic cases. Both the coefficients AP and AN may contain the term
φf that accounts for the volumetric flux (defined in Eq. (1.130)). The volumetric flux
depends on the velocity field u. When the transported variable q is independent of velocity,
for example, if it represents the density in the continuity equation q “ ρ, Eq. (1.49a),
the system is clearly linear. On the reverse, when the transported variable depends on
velocity, as it happens for the momentum equation, Eq. (1.49b), where the momentum
q “ ρu is transported by velocity, the system is quadratic and must be solved with proper
strategies. In §4.1 we analyze classic solutions to these problems using linearization and
a segregated approach.

The numerical algorithms that solve the system of equations fall in two main categories:
direct and iterative methods. The direct algorithms compute the solution of the system
in a finite number of arithmetic operations. This approach is generally more appropriate
for small systems; in fact, the number of operations required to reach the solution often
grows with the number of equations squared (which depends on the number N of cells
that constitute the computational domain), making them prohibitively expensive for large



1.4. LAVA FLOW APPLICATION 75

systems [195]. The iterative methods start with an initial guess of the solution and then
improve the current approximation till the computed solution verifies a certain “tolerance”.
The iterative algorithms are less expensive than the direct methods, but they need the
matrix to have some properties. (i) The sparsity of the matrix is a feature that makes
the iterative solvers preserving this property very attractive because this allows to save
computer memory. (ii) The convergence of the iterative methods must be ensured, for
example if the matrix exhibits a diagonal dominance, namely if

|AP | ě
ÿ

N

|AN |, @P “ 1, . . . ,N ,

with the inequality strictly verified for at least one row.

1.4 Lava flow application
In the previous sections, we presented the modeling and numerical contexts in which
we developed our work, whereas in this section we introduce the final application of our
effort: making simulations of the lava flows. In §1.4.1 we give a general overview of
volcanic eruptions and give motivations on the importance of having accurate simulations
for such phenomena. In §1.4.2 some more specific details are given about lava flows.

1.4.1 Volcanic eruptions

Volcanic eruptions represent the episodic or continuous surface discharge of magma from
a storage region named the magmatic chamber. In the broadest sense, volcanic eruptions
are either explosive or effusive, represented in Figure 1.34 (a-b) respectively. Eruption
styles are often correlated with magma composition and with the energy involved. To
some extent, this relationship reflects differences in tectonic settings, which also influences
magmatic volatile content and magma supply rate. Explosive eruptions occur when the
erupting magma is fragmented exiting the conduit. The reason is usually a high viscosity
of the magma combined with high gas content. Dissolved gases cannot escape so easily
because of the high viscosity (due to the magma composition), so pressure may build up
until gas explosions blast rock and lava fragments into the air. The resulting fragments
of the magma itself consist of small and large pieces: ash, lapilli, and bombs. If magma
is sufficiently fluid not to fragment when gases expand approaching the surface vent, the
magma can exit from the vent and flow downslope the topography. This is called effusive
eruption and magma takes the name lava.

Volcanic eruptions are among the most destructive natural disasters that occur on our
planet. Only in Italy there are at least ten active volcanoes (see Figure 1.35: Colli Albani,
Campi Flegrei, Vesuvio, Ischia, Stromboli, Lipari, Vulcano, Etna, Pantelleria, and Isola
Ferdinandea) which erupted in the last 10,000 years and two of them, Etna and Stromboli,
have persistent activities, in fact, they erupt continuously or at most interrupt for brief
periods of rest in the order of months or a few years.

Stromboli is considered one of the most active volcanoes in the world and is character-
ized by persistent explosive activity, just called strombolian, interrupted only by occasional
effusive episodes of more intense activity, accompanied by lava flows, as recently occurred
in 1975, 1985, 2003, 2007 and 2014. Etna is the largest volcano in Europe and one of the
most active volcanoes in the world. Etna is considered an effusive volcano predominantly
because the emission of lava mainly characterizes it. Lava flows can cause damage but
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(a) (b)

Figure 1.34: (a) Explosive eruption of Mount Fuego (Guatemala), 2015. (b) Effusive eruption
of Mount Kilauea (Hawaii), May 2018.

do not represent a direct threat to the lives of the 900,000 people living in potentially
hazardous areas. However, recently it has been observed, especially from the late 70s, a
strong increase of explosive eruptive episodes, especially at the summit craters.

Figure 1.35: Volcanoes in Italy.

Although volcanic eruptions do not often cause
large humanitarian disasters, they have the poten-
tial to induce extreme ones [76, 203]. For exam-
ple, volcanically induced mudflows caused 21800
deaths in Colombia in 1985, and CO2 poisoning
due to a crater lake’s overturn caused 1746 deaths
in Cameroon in 1986. Both events lasted min-
utes to hours and impacted a single catchment
but caused near-complete destruction within the
impacted catchment. Even large-scale evacuations
for extended periods should be considered as dis-
asters, even if not many people die, as, for ex-
ample, in the cases that follow. The eruption
of the Merapi volcano, Indonesia, in late 2010,
killed more than 300 people, posed significant chal-
lenges for evacuations, and resulted in a peak num-
ber of almost 400000 internally displaced people
[189]. Similarly, Indonesia’s Mt. Sinabung erup-
tions, February 2014, caused 16 deaths and con-
tinuous evacuations of 30,000 residents [36]. More,
the eruption of Fuego volcano, Guatemala, on 3rd
June 2018, had tragic outcomes when pyroclastic
flows inundated an entire village, and the eruption has prompted evacuations of around
12000 people [176]. Finally, the 2017–19 activity at Mt. Agung in Bali, Indonesia, saw the
delay between intense unrest and eruption causing considerable challenges to emergency
responders, local and national governmental agencies, and the population of Bali near
the volcano, including over 140,000 evacuees [250]. Some explosive volcanic eruptions
impacted vast populations, for example, 1 million people in 1991 in the Philippines, plus
around 300000 in Nicaragua (1992), Ecuador (2006), and Indonesia (1982) [111] and ma-

https://www.volcanodiscovery.com/photos/fuego/dec2015/eruption.html
https://www.britannica.com/place/Kilauea##/media/1/317653/234324
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jor historical eruptions, such as Laki 1783 (Iceland) [256], or Tambora 1815 (Indonesia)
[249], had a regional or even global climatic and economic impact [75].

Like any volcanic eruption, an effusive event cannot be stopped (see, for example,
Figure 1.36 showing the destructive impact on the civilian infrastructures and houses of
the Kilauea eruption in 2018). However, effusive flows are relatively slow in propagation
because lava flow fronts tend to advance at a few hundred meters per hour most of
the time. Hence there is time to respond to an advancing lava flow once the event is
underway. We may thus argue that the effusive-event scenario is relatively easy to prepare
for, being there time to issue a call to scientific and civil protection responders to set up
event scenarios and response plans in almost real-time. So, if volcanic eruptions are a
major concern in terms of casualties, evacuation needs, and damage, effusive eruptions
also require an adequate humanitarian response owing to the hazard they pose to human
populations in their catchments [19]. Anyway, in addition to the needs, costs, and logistics
of evacuation, intervention, replacement, and relocation for these populations, we must
consider the need for mental health care, measures against the collapse of social structures,
and the maintenance of law and order. Table 1.5 reports some of the major effusive events
that happened after the Second World War, which involve 12 volcanoes for 38 eruptions.

Figure 1.36: Satellite images of near Kapoho Bay in The Big Island (Hawaii), before and after
Kilauea lava flow propagation, June 2018.

Even though lava may be slow and take some time before getting in touch with a
civilian community, evacuation is necessary for those communities along the path of the
lava flow [120]. Lava burns and buries everything in its path [19, 120], hence also a
post-event plan for the replacement of infrastructures, society, and community is required
if human interventions have not succeeded. Human interventions may consist of using
ditches and barriers to deflect the lava flow, and also bombs, explosives, and/or water
are employed. All such measures require preparation, planning, and allocation of money
and resources. For example, the deflection barriers constructed to protect vulnerable

www.thetimemagazine.com
www.thetimemagazine.com
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infrastructure on the south flank of Mount Etna during the 1983 eruption required the
construction of 10 km of service roads and delivery of 750000 m3 of rock to the construction
site over a period of 50 days at 13 h/day [47]. Shipping 103 m3 of rock to the site each
hour required 20 trucks per hour, with the total cost being 3678 million Italian lire or 1.9
million Euros.

Table 1.5: Some of the major effusive eruptions of the last 70 years, after the Second
World War, are reported. Consult [75, 259] for the damages and impacts caused by the
eruptions on the civil population.

Volcano Eruption

Eldfell (Iceland) 1973
Etna (Italy) 1971, 1981, 1983, 1991–1993,

2001, 2002–2003
Fogo (Cape Verde) 1951, 1995, 2014–2015
Izu-Oshima (Japan) 1986
Karthala (Comoros) 1977
Kilauea (USA) 1955, 1960, 1983–1991, 2018
La Palme (Spain) 1971
Mauna Loa (USA) 1950, 1984
Miyakejima (Japan) 1962, 1983
Mt. Cameroon (Cameroon) 1959, 1982, 1999, 2000
Nyiragongo (Democratic Republic of Congo) 1977, 2002
Piton de la Fournaise (France) 1977–1978, 1980, 1986, 1998,

2001, 2002, 2004, 2005, 2007,
2018

Oversimplifying modern volcanology, we can distinguish three main approaches through
which volcanologists study volcanic eruptions:

1. monitoring of volcanoes (for example, observing the long-term and short-term seis-
mograph surveys, variations of temperature registered by thermographic cameras,
changes in the gravitational field, the composition of the gases in the air) to know
the current status of the volcanic system because some phenomena are assessed
together as signs (precursors) of an imminent eruption; based on the information
provided by the monitoring instruments, it is decided whether justify an evacuation;

2. reconstructing the eruptive history using stratigraphic and analytical studies on the
volcanic products of past eruptions (namely on the scoria composing the cone, the
solidified lava, lapilli, and ashes) and studies of the cameras videos (if present on
the land during the eruptive event) and of the satellite pictures as far as the most
recent events concern;

3. modeling the volcanic processes using physical and mathematical models, statistical
models, and numeric simulations.

From the integration of these approaches, volcanologists derive the eruptive scenarios
underlying the emergency and mitigation plans.

In this thesis, we deal with the modeling approach and the production of numerical
simulations. The first objective of the physical-mathematical modeling is improving the
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knowledge of the physical processes governing the dynamics of such events. The second
goal is to contribute to the quantification of the hazard and risks associated with volcanic
eruptions. In this work, we are mainly interested in the first objective, particularly in
modeling the geophysical process of lava flows that characterize the effusive events.

1.4.2 Lava flows

Lava is a viscous fluid, hence the Navier-Stokes Eqs. (1.37) are the mathematical tool to
describe its behavior. In a first approximation, lava flows are gravity currents, whereby
topography has a major role in determining their evolution. Secondly, the chosen rheolog-
ical and viscosity models (introduced in §1.1.5.7) make another difference in determining
the dynamics. The third major factor characterizing lava flows is the temperature because
it has an enormous impact on viscosity. Indeed, lava viscosity is closely related both to
temperature, its chemical composition (for example, basaltic, andesitic, and rhyolitic lava
distinguish on the percentage of silica that contain and that leads to different eruptive
behaviors), and other factors which might be, for example, the crystal fraction (as in the
celebrated Krieger-Dougherty equation [154]) or the number of bubbles (for a magmatic
fluid). A viscosity model accounting temperature is, for example, the Costa and Macedo-
nio [55] lava model. In addition, during the cooling process, the lava may produce rafts
of solidified material on the free surface (that move with the flow) or create a superficial
crust that insulates lava from the atmosphere and reduces its cooling. Finally, the last
fundamental factors influencing the lava flow dynamics in terms of flow extent are the
effusion rate and the erupted volume. Most of these factors are related to each other and
contribute to determine the final lava flow extent and emplacement.

In a pioneering work [268], the author studied the Mount Etna eruption in 1971 and set
the basis for understanding the relationship between the effusion rate, lava emplacement,
and flow field type. From such work descended that viscosity is a secondary factor in
the relationship governing the interplay between the flow length, heat loss, and effusion
rate [117]. The author observed that higher effusion rates corresponded to long and
straightforward flows emplacements, whereas lower effusion rates produced multiple and
short flows that pile up around a vent and build compound flow fields. Also, the author
noticed the counterintuitive fact that relatively low viscosity flows tend to propagate less
than the somewhat more viscous flows. The author conjectured that this tendency was
caused by some factors, other than viscosity, that control the lengths of the lava flow. For
example, flows with relatively low viscosity are thinner than the other and so are affected
by a relatively higher rate of heat loss per unit volume, this could be one reason behind
the shorter extent. From these observations the complexities involved in determining how
far a flow can extend emerge. The effusion rate, rheology, heat loss, and eruption duration
all play roles, and all are subject to complex feedbacks with each other. Heat loss, for
example, determine an increase of viscosity (that is temperature-dependent), which leads
to a velocity decrease, eventually limiting a flow’s ability to move.

Under particular conditions of effusion rate, temperature, and chemical-physical com-
position of the lava, the superficial crust that might develop during the cooling process
behaves like a tube [110], see Figure 1.37a, allowing the lava to flow under it faster (be-
cause the crust keeps the lava hotter) and letting it extend further. In other conditions,
the crust may produce inflation [222], a phenomenon for which the lava beneath lifts the
crust upwards (increasing the lava flow thickness even of tens of meters), see Figure 1.37b.
When the viscosity is very high, lava-domes arise, that is, mound-like structures that form
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directly over the volcano’s vent by the build-up of lava [90], see Figure 1.37c.

(a) A peek through a “skylight” into the inte-
rior of an active lava tube, Hawaii, US. From:
U.S. Geological Survey, Ph: J. Judd.

(b) Inflation process at Kilauea, Hawaii, US.
From: Volcano Discovery, Ph: Tom Pfeiffer.

(c) Volcanic domes in the crater of Mount
Saint Helens, southwestern Washington, US.
From: U.S. Geological Survey, Ph: Willie
Scott.

(d) Fully molten lava flow, Mount Fagradalsf-
jall in 2021, Iceland. From: Phys.org.

Figure 1.37: Lava flows which different behavior depends on the different physico-chemical
and tectonic conditions.

Despite the high complexity related to lava flows, in this thesis, we consider only the
case of completely molten lava, see Figure 1.37d. So, we use the incompressible Navier-
Stokes Eqs. (1.49) adopting both a Newtonian rheological model for viscosity (Eq. (1.47))
because completely molten lava shows this rheology, as stated in [107], and a Bingham
plastic rheological model (Eqs. (1.51,1.52)).

https://www.nps.gov/havo/learn/nature/lava-tubes.htm
https://www.volcanodiscovery.com/photos/kilauea/mar17/lava-flows/image27.html
https://www.britannica.com/science/volcanic-dome
https://phys.org/news/2021-04-iceland-volcano-unleashes-lava-stream.html


Chapter 2

Mathematical models

This chapter presents two different models that describe the motion of a free surface,
incompressible, Bingham plastic fluid in a laminar regime. We also consider that the
fluid is warmer than the surrounding environment and that it cools down because of heat
exchanges with the environment and ground. In addition, the fluid viscosity may be
affected by the temperature changes. We derive the two models from the incompressible
Navier–Stokes Eqs. (1.49), and they differ in the number of spatial dimensions explicitly
involved.

A depth-averaged model is derived in section §2.1 by considering a shallow water ap-
proximation. Shallow water equations are widely used to simulate those geophysical flows
for which the flow horizontal length scale is much greater than the vertical one. Inspired
by the example of lava flows, we derive a modified shallow water model that also presents
an additional transport equation for a scalar quantity. In the first instance, we consider a
situation with only the advection of such scalar quantity. After, we assimilate that scalar
quantity to temperature and model the heat exchanges between the fluid and the environ-
ment. Having the temperature description, we use it in a temperature-dependent viscosity
model. The derivation of the governing equations, from depth-averaging the incompress-
ible Navier-Stokes equations, is presented. Because of the depth-averaging procedure, the
problem reduces by one dimension, and this model comes out to be 2D. The assumption
of constant vertical profiles is a common hypothesis of the classic shallow-water approxi-
mation; in our modified model, we relax such assumption for some of the model variables
allowing the presence of vertical profiles. It also follows that some appropriate shape
coefficients are introduced because of the non-linearity of the flux terms.

Depth-averaged models have the drawback to fixing a priori the vertical distribution
of the variables, both in the classical and our model. For this reason, we also consider a
full 3D model and will dedicate the section §2.2 to its derivation. The 3D model presents
the simultaneous description of the dynamics of both the free surface fluid of our interest
and of the air around it (which respects the incompressibility condition as well), leading
to a multiphase model. Furthermore, because of the approach we choose, an additional
equation for transporting the phases joins the system. Finally, the resulting governing
equation system also has an equation for the thermal energy that describes the heat loss
from the warm fluid to the surrounding environment and soil, similar to what happens in
the depth-averaged case.

In section §2.3, we review alternative ways to treat the multiphase flows from the one
we adopted for the 3D model, namely the VOF method; furthermore, we also present the
variety of possible approaches to the free surface fluids modeling different from the depth-
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averaged and the 3D models, with a particular focus on the codes currently available for
the lava flow simulations.

2.1 Depth-averaged model
Shallow water equations are a depth-averaged system of partial differential equations de-
scribing the dynamics of inviscid and constant-density fluids for which the flow horizontal
length scale is much greater than the vertical one. In the past two centuries, they have
been widely used to simulate a multitude of geophysical flows. In the volcanologic field,
for example, they are applied with success to the simulation of pyroclastic density cur-
rents [244], lava flows [55, 145], and lahars [221]. In the meteorological field, they are used
to describe the horizontal structure of the atmosphere with an additional term modeling
Coriolis forces [11, 273]; in the study of ocean circulation, they are employed to produce
global, realistic tidal models [179], and they accurately describe the propagation of a
tsunami until waves approach the shore [85, 182]. In work about the dunes’ evolution
[132], a modified depth-averaged approach was used to model the transport of sediment.

The classical shallow water equations, first introduced by De Saint Venant in 1864
and Boussinesq in 1872, are based on several assumptions, among which the fact that the
vertical pressure distribution is hydrostatic, the vertical component of the velocity can be
neglected, and that the horizontal velocity field can be considered constant with depth.
In the past, several modifications have been proposed to weaken this last assumption and
to obtain a better model for flows where vertical shear is essential, resulting in a modified
momentum equation where a multiplying coefficient (named shape or Boussinesq factor) is
introduced in the advective flux term [24]. Its magnitude relates the mean square velocity
to the square of the mean velocity and reflects the shear in the profile of the horizontal
fluid velocity, and may depend on factors such as the Reynolds number (defined in Eq.
(1.54)) or the boundary roughness. It is well known that these modifications do not
change the hyperbolic nature of the equations, but in some cases, they can significantly
impact the front features and propagation [128].

From the modeling point of view, in this contribution, we go a step further, considering
viscosity and enriching the classical model with the parameter describing the vertical vari-
ation of the velocity field (the Boussinesq coefficient), see §2.1.1, and with an additional
transport equation for a scalar quantity varying horizontally and with a non-constant ver-
tical profile, see §2.1.4. This is a pretty standard feature in environmental science where.
For example, this quantity may represent the concentration of sediment-laden flows [35],
where a high-concentration basal layer may affect the transport dynamics or pollutants
[169]. In geophysics and volcanological applications, it may represent the fraction of solid
particles in pyroclastic flows [67] or the temperature in lava flows [55], where a thermal
boundary layer develops when fluids flow over a solid, or it may represent both the tem-
perature and the salinity of water in oceanology [274]. Even for this quantity, as done
for the velocity field, a shape coefficient describing the vertical profile is introduced, and
the resulting depth-averaged transport equation is derived. We also present a modified
version of such transport equation that is designed explicitly for temperature, describing
the thermal exchanges between the fluid and the surrounding environment, see §2.1.5. In
addition, we also consider the case where density depends on the depth-averaged tempera-
ture; therefore, density varies horizontally, further relaxing the assumptions of the classical
shallow water equations. Moreover, the equations have terms that describe the emission of
new fluid into the system from a source point. After deriving the depth-averaged model,
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we study the hyperbolicity of the system (see Definition 1.4) highlighting the role of the
shape parameters, see §2.1.6.

Other ways to derive the shallow water equations pass through the use of variational
principles or asymptotic expansions. In Appendix B we provide some background notions
about variational principles and calculus of variations which are used to derive both the
classic Saint-Venant equations and a modified version of them where correction terms
related to the topography irregularities are present (by taking inspiration from the works
of Clamond and Dutykh [45] and Clamond and Dutykh [46]). Instead, the derivation based
on the asymptotic expansions uses the solutions of the Cauchy momentum equations in
the shallow water scaling and in the neighbourhood of steady solutions. Such a method
was first introduced for the case of Newtonian fluids [29], then in the more complex case
of arbitrary topography [25], and eventually even in the case of power-law fluids and
Bingham fluids [86, 87].

Assumptions

We present the derivation of a depth-averaged model for the dynamics of an incompress-
ible, laminar, viscous, and homogeneous fluid over variable topography. The model also
considers the transport of an additional quantity with the vertical distribution. Even
though the depth-averaged equations are commonly derived directly from the two prin-
ciples of the conservation of the mass and momentum, here we obtain them by depth-
averaging the general 3D equations. In the Eulerian framework, the equations are derived
by depth-averaging the Navier-Stokes equations assuming that the horizontal length scale
is much greater than the vertical length scale. Since we are interested in incompress-
ible flows even with non-constant density, we refer to the incompressible formulation of
the Navier-Stokes Eqs. expressed in (1.49). This choice is because in many geophysical
flows, like in oceans, lava flows, or debris flows, fluids are incompressible but with variable
density, for example, as a result of spatial and temporal variations in temperature (for
instance, due to thermal exchanges and cooling of a lava flow), in the concentration of
sediments (due to settling or erosion processes) or in the concentration of salinity.

We assume that the horizontal length scale is much greater than the vertical length
scale and that the vertical dynamics is negligible compared to horizontal effects (that is,
the velocity vector is u “ pu, v, wq with w “ 0); by integrating over the flow thickness,
it is possible to derive a simpler 2D transient model describing the fluid dynamics. Here,
we write this simplified system of equations by adopting a horizontal Cartesian system of
coordinates such that the topography (assumed not varying with time) expresses by the
function Bpx, yq and the two significant components of velocity, u and v, are defined as the
components along the x and y axes respectively. The plane defined by the x and y axes is
orthogonal to the z axis which is parallel to the gravitational acceleration (g “ p0, 0, gq).
We introduce two additional variables describing the system: hpx, y, tq, which denotes
the fluid thickness above the ground, and T px, y, z, tq, which is the field of an additional
transported intensive property, i.e., a local physical property of a system that does not
depend on the system size or the amount of material in the system. For clarity, from now
on, we assume that the transported quantity will represent the temperature of the flow,
as it would be for a lava flow.

Following these assumptions, we introduce the notation Upx, y, tq for the z-averaged
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horizontal velocity vector, whose two components U and V are given by

Upx, y, tq “
1

h

ż B`h

B

upx, y, z, tq dz, V px, y, tq “
1

h

ż B`h

B

vpx, y, z, tq dz. (2.1)

Similarly, we introduce the notation T for the depth-averaged temperature

T px, y, tq “
1

h

ż B`h

B

T px, y, z, tq dz. (2.2)

Density depends on the temperature in various situations, and we assume a linear
dependence as follows density,

ρpx, y, z, tq “ ρ0 `mT px, y, z, tq. (2.3)

that is precisely the case of some of the materials (wax and silicone oils) investigated in
the examples presented in §3.4. For the applications we are interested in (for example,
lava flows or the laboratory analog experiments simulated in this work), the vertical
variations of density are minor with respect to the horizontal ones, for such reason, we
will consider only horizontal variations of the depth-averaged density. By observing that
also the depth-averaged density depends linearly on the depth-averaged temperature

ρ̄ :“
1

h

ż B`h

B

ρpzq dz “
1

h

ż B`h

B

”

ρ0 `mT pzq
ı

dz “ ρ0 `mT,

then, in the following, we will use for the depth-averaged density, without ambiguity,
the notation ρ. Since we mainly speak about temperature, we have m ă 0 because the
density decreases when the temperature grows. In other situations, where the transported
quantity has a different physical meaning (e.g., particle concentration), the sign ofm could
be different. In section §2.1.7 we will deal with a preliminary treatment of the more general
situation where even the density assumes a vertical profile.

2.1.1 Velocity profile

In the derivation of the classical shallow-water model, from the assumption of inviscid
fluid, it descends that the velocity does not depend on the vertical coordinate, i.e., u “
upx, tq. With this assumption, the depth-averaged velocity U corresponds to the local
velocity. Instead, for a free surface laminar viscous flow, moving in one direction, a vertical
velocity profile develops, and three conditions must be satisfied: (i) null velocity at the
bottom, (ii) null traction between air and fluid, and (iii) maximum velocity at the free
surface.

When considering the motion of a Newtonian fully developed laminar viscous flow,
the balance of friction and gravitational force leads to a parabolic velocity profile, as
represented in Figure 2.1 and shown in [73], similarly to a Poiseuille flow:

upx, z, tq “ apz ´Bq2 ` bpz ´Bq ` c, (2.4)

with a “ apx, tq, b “ bpx, tq, c “ cpx, tq. The parabolic profile is assumed for both the
components of velocity u “ pu, vq. By imposing the previous conditions to the expression
of upx, z, tq in Eq. (2.4), we completely determine its expression:

(i) upx, B, tq “ 0 ðñ cpx, tq “ 0, @x, @t;
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B+h

B
u(x,z,t)

z

u

Figure 2.1: Parabolic velocity profile.

(ii) Bzupx, B ` h, tq “ 0 ðñ bpx, tq “ ´2h apx, tq, @x, @t;

(iii) upx, B ` h, tq “ apx, tqh2 ` bpx, tqh ðñ apx, tq “ ´
1

h2
upx, B ` h, tq, @x, @t.

For this parabolic profile, from the definition of U in Eq. (2.1), we find a relation between
the depth-averaged velocity and the velocity at the free surface

U
p2.1q
“

1

h

ż B`h

B

upzqdz

“
1

h

ż B`h

B

´
upB ` hq

h2

”

pz ´Bq2 ´ 2hpz ´Bq
ı

dz

“ ´
upB ` hq

h3

„

pz ´Bq3

3
´ hpz ´Bq2

B`h

B

“
2

3
upB ` hq

and, finally, by applying (i)–(iii) and the previous relation, we are able to express u in
terms of U as

upx, z, tq “
3

2

$

&

%

1´

«

z ´
`

Bpxq ` hpx, tq
˘

hpx, tq

ff2
,

.

-

Upx, tq. (2.5)

To summarize, even though the shallow water model solves for the depth-averaged velocity
U, by using the assumptions of parabolic profile (i´ iii), we succeed to obtain an useful
explicit expression of the velocity vertical distribution upzq in terms of U, the free-surface
high B ` h and the fluid thickness h. In the following, we assume the parabolic profile
given by Eq. (2.5).

Continuity equation. We integrate the equation of the conservation of the mass
(1.49a) over the flow thickness

ż B`h

B

„

Bρ

Bt
`∇ ¨ pρuq



dz “
B

Bt

ż B`h

B

ρ dz `
B

Bx

ż B`h

B

`

ρu
˘

dz `
B

By

ż B`h

B

`

ρv
˘

dz,

and, reminding that the density ρ does not depends on the vertical coordinate, we obtain
the depth-averaged continuity equation:

Bpρhq

Bt
`∇ ¨ pρhUq “ 0. (2.6)
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One observes that, despite the presence of a velocity profile, the depth-averaged continu-
ity equation does not present any formal difference from the classical expression of Eq.
(1.49a).

When one wants to model also the release of new material into the system, the source
term ρR must be added on the right hand side of the equation, where R represents the
volumetric rate of fluid per unit area

Bpρhq

Bt
`∇ ¨ pρhUq “ ρR. (2.7)

Hyperbolic terms of the momentum equation. When the transient term of the
momentum equation (1.49b) is integrated over the flow thickness, because of the assump-
tion that ρ does not depend on the flow depth, we have:

ż B`h

B

Bpρupzqq

Bt
dz “

B

Bt

ż B`h

B

ρupzq dz “
BpρhUq

Bt
. (2.8)

Again, one notes that the presence of a velocity vertical profile does not modify the
transient term expression.

In the derivation of the advective flux term of the depth-averaged momentum equation,
we consider, for the sake of simplicity, the 1D model. By substituting the expression for
the velocity profile in the advective term and by integrating it, one obtains

ż B`h

B

ρ u2
pzq dz

p2.5q
“

ż B`h

B

ρ
9

4

$

&

%

1´

«

z ´
`

B ` h
˘

h

ff2
,

.

-

2

U2dz

“

ż B`h

B

9

4
ρU2

#

1´ 2

“

z ´
`

B ` h
˘‰2

h2
`

“

z ´
`

B ` h
˘‰4

h4

+

dz

“
9

4
ρU2

#

z ´
2

3

“

z ´
`

B ` h
˘‰3

h2
`

1

5

“

z ´
`

B ` h
˘‰5

h4

+B`h

B

“
9

4
ρU2

"

h`
2

3

r´hs3

h2
´

1

5

r´hs5

h4

*

“
9

4
ρhU2

"

1´
2

3
`

1

5

*

so that one finds:
ż B`h

B

ρ u2
pzq dz “ βuρ hU

2, (2.9)

where βu “ 6
5
. This coefficient is often termed in literature as Boussinesq momentum

coefficient or shape factor or corrector factor, and its magnitude reflects the shear in the
profile of the horizontal fluid velocity. Different velocity profiles, arising, for example,
when non-Newtonian viscosity applies, will result in different values of βu. Even though
it is frequently set equal to unity (which holds only when velocity is constant over the
flow thickness), it is well known that this coefficient may have a significant effect on the
dynamics of the flow when a complete sheared flow is expected [128].

In the advective flux term, because of its non-linearity with respect to velocity, we
finally see a difference from the classical shallow water equations in the case that a non-
constant vertical distribution is adopted for the velocity. It is worth to add that the value
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of βu is 6
5
even in the case that one considers the parabolic profile represented in Figure

2.2, where the maximum velocity is at the average depth and it is null both on the bottom
and at the surface. This case may represent, several situations such as the fluid motion
in a pipe, or the fluid motion between two steady plates, or the situation of a “lava tube”
in which case the lava surface is completely solidified and does not move.

B+h

B

u(x,z,t)

x

z

Figure 2.2: A different kind of parabolic profile for velocity.

2.1.2 Pressure and viscosity terms

Let assume now a hydrostatic profile for the pressure p, i.e.

Bppx, z, tq

Bz
“ ρpx, tqg.

Integrating p from the height z to the free surface B ` h, and fixing at 0 the pressure
value at the free surface, we obtain the expression of hydrostatic pressure at height z

ppx, z, tq “

ż B`h

z

Bppx, ζ, tq

Bζ
dζ “ ρpx, tqg

”´

Bpxq ` hpx, tq
¯

´ z
ı

and, deriving with respect to x, we have

Bppx, z, tq

Bx
“ g

B

Bx

”

ρpx, tq
´

Bpxq ` hpx, tq
¯ı

´ gz
Bρpx, tq

Bx

When this term is integrated with respect to z over the flow thickness, i.e. it is integrated
from z “ B to B`h, we obtain the desired term of the depth-averaged equation accounting
for pressure gradient for the x component, that is

ż B`h

B

Bp

Bx
dz “ gh

B

Bx
rρ pB ` hqs ´ g

Bρ

Bx

„

z2

2

B`h

B

“ ρgh

ˆ

Bh

Bx
`
BB

Bx

˙

`
1

2
gh2 Bρ

Bx
.

By rearranging the derivatives, the depth-integrated pressure gradient reduces to
ż B`h

B

Bppzq

Bx
dz “

B

Bx

ˆ

1

2
ρgh2

˙

` ρgh
BB

Bx
, (2.10)

which is the term usually found in depth-averaged momentum equations in presence of a
variable topography. An analogous expression is obtained when deriving with respect to
y.
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Finally, the expression for the viscous term of the depth-averaged equation is obtained
by integrating vertically the term ∇ ¨ τ that appears in the Navier-Stokes Eq. Under
the incompressible assumption, such term simplifies. We computed it in section §1.1.5.6
obtaining the expression µ∆u in Eq. (1.50), where µ is the dynamic viscosity introduced
in Eq. (1.26).

For the depth-averaged viscous term expression, consider the x-direction (it is similar
for the y-direction case), then the integral results in

ż B`h

B

µ
B2u

Bz2
dz “ µ

Bu

Bz

ˇ

ˇ

ˇ

ˇ

B`h

B

“ µ

„

Bu

Bz
px, B ` h, tq ´

Bu

Bz
px, B, tq



p˚q
“ ´µ Bzupx, B, tq,

where in p˚q we have considered again no traction between air and fluid, as done for the
parabolic velocity profile assumption. In particular, according with the parabolic profile
expressed in Eq. (2.5), the vertical derivative evaluated at the bottom is

Bzupx, B, tq “ 3
Upx, tq

h

so that the viscous term expression becomes
ż B`h

B

µ
B2u

Bz2
dz “ ´ρpx, tqγUpx, tq, (2.11)

where γ :“
3ν

h
is the friction coefficient, depending on kinematic viscosity and flow

thickness (by reminding the relationship between dynamic and kinematic viscosity: µ “
ρν). Note that Gerbeau and Perthame [101], by using a different approach, obtained a
similar expression for γ. For a Bingham plastic rheology model (introduced in §1.1.5.7),
the derivation of the viscous term is similar and it descends to be

ˆ

3

h
rµ`

τ0

|U |

˙

U,

where we used power-law viscosity rµ instead of the dynamic viscosity µ because the
Bingham model uses the apparent viscosity (the reader may refer to Eqs. (1.51) and
(1.52)). Hence, the factor γ in this case is defined as follows:

γ :“
3

hρ
rµ`

τ0

ρ|U |
. (2.12)

For several materials the dynamic viscosity µ is strongly temperature dependent, and
in the case of lava a simple exponential relationship between magma viscosity and tem-
perature can be assumed [53]:

µ “ µref expr´bpT ´ Tref qs, (2.13)

where b is an appropriate rheological parameter and µref is the viscosity value at the
reference temperature Tref (for instance, Tref “ Tvent with Tvent equal to the emission
temperature at the vent). In the present work we do not explicitly account for crystal-
lization and crystallinity-dependence of the viscosity, but they are implicitly considered
in the determination of value of the rheological parameters b.
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Momentum equation (complete form). To sum up, we write the complete expres-
sion of the depth-averaged momentum equation in the general two-dimensional setting, by
using the results previously obtained: the transient term from Eq. (2.8), the advective
flux expression from Eq. (2.9), the pressure contribution from Eq. (2.10) and the viscosity
term from Eq. (2.11)

BpρhUq

Bt
`∇ ¨

`

βuρhUUT
˘

`∇
ˆ

1

2
ρgh2

˙

“ ´ρgh∇B ´ ργU. (2.14)

2.1.3 Thermal boundary layer

Variations in fluid temperature are of great importance when they affect the physical
properties of the fluid and hence the dynamic itself. For example, this happens in the
cooling process of lava because owing to the viscosity increase the lava slows down its
motion; the same happens also for the wax because it has similar behavior. Even in the
metalworking process, it is important knowing the cooling state of the molten material.

A hundred years ago, Prandtl [219] introduced the concept of boundary layer for a
fluid flowing on a plate: the framework consists of a fluid moving horizontally, in laminar
regime, initially with constant and uniform velocity and temperature, commonly denoted
as u8 and T8, see Figure 2.3. When the fluid gets in touch with a horizontal and stationary
plate uniformly cooled/heated to a different temperature, then the fluid starts to flow over
the plate and the velocity and temperature profiles change. In the case of no-slip boundary
condition, the fluid has zero velocity at the plate surface, but, moving further from it, the
velocity increases gradually and asymptotically approaches the free stream velocity u8.
Similarly, the temperature is cooler/hotter close to the plate, but, when approaching the
free stream part of the fluid, it is near to the free stream temperature T8. These regions
next to the plate, where velocity and temperature vary, are called velocity and thermal
boundary layers respectively. The thermal boundary layer thickness is usually denoted
as δT , and its common definition is the vertical distance from the plate to the point with
a temperature that is the 99% of the free stream temperature. The thickness of such
boundary layers changes in space, since it is thinner close to the edge of the stationary
plate that is considered, and it increases moving from it, see Figure 2.3 and Schlichting
[241].

u 8 u 8

(z)

x

z

T

T8T8

δT
Tgr

free-stream

δuu(z)

Figure 2.3: Velocity and thermal boundary layers on a cold flat plane. u8 and T8 denote the
unchanging velocity and temperature of the free stream, Tgr indicates the temperature of the
fluid in contact with the cold plate, upzq and T pzq are the vertical distributions of velocity and
temperature, while δu and δT are the thicknesses of the velocity and thermal boundary layers.
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In our model, we assume that the velocity boundary layer coincides with the whole
fluid thickness, as represented in Figure 2.1, and that the thermal boundary layer is
considered as a fixed fraction of the fluid depth. In the next sections §2.1.4 and §2.1.5 we
present two different models that both account a linear temperature profile in the thermal
boundary layer. The first one sees only advection and a fixed value for the temperature
on the surface. Instead, in the second situation, we consider heat exchanges between the
fluid and the environment, with the consequence that the surface temperature changes
too.

2.1.4 Temperature profile with fixed surface value

Because of the dependence of friction and viscosity on temperature (as shown in §2.1.2),
besides the Eqs. (2.7), (2.14) for the mass and momentum conservation, it is necessary
to solve an additional equation describing the temperature evolution. The temperature
equation is usually derived from the energy conservation law (written in terms of the tem-
perature), but in our model we consider the temperature only as a transported quantity.
For these motivations, we refer to a simple transport equation for T :

BT
Bt
`∇ ¨ pT uq “ 0. (2.15)

We assume in this subsection two hypotheses: (i) the temperature admits a thermal
boundary layer near the ground over a fixed fraction of the flow thickness, namely δT “ h{n
(with n ě 1); (ii) a linear profile is adopted at the ground with a constant temperature
for z ą B` δT , i.e. T px, B`h, tq “ Tsurf , @x, @t (see Figure 2.4). One appends that this
procedure is general and applicable to other variables for which similar hypotheses (i)-(ii)
may hold, like for example to particle concentration in a sediment-laden flow, where a
Rouse profile for the suspension might be used [235, 262].

δT

B+h

B

(x,z,t)

z

T

Tgr Tsurf T

Figure 2.4: Piece-wise linear temperature profile. The thermal boundary layer δT is assumed
linear, and a constant temperature Tsurf at the surface is assumed.

The explicit expression of the assumed profile is

T px, z, tq “

$

’

&

’

%

Tsurf , if B ` δT ă z ď B ` h,

Tsurf ´ Tgrpx, tq

δT
pz ´Bq ` Tgrpx, tq, if B ă z ď B ` δT .

(2.16)
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We compute the depth-averaged temperature T by using the definition of Eq. (2.2) and
then we obtain a relation between T , Tsurf and Tgr

T
p2.2q
“

1

h

ż B`h

B

T pzqdz

“
1

h

ż B`δT

B

„

Tsurf ´ Tgr
δT

pz ´Bq ` Tgr



dz `
1

h

ż B`h

B`δT

Tsurfdz

“
1

h

„

Tsurf ´ Tgr
2δT

pz ´Bq2 ` Tgrz

B`δT

B

`
1

h

„

Tsurfz

B`h

B`δT

“
1

h

„

Tsurf ´ Tgr
2δT

δ2
T ` TgrδT ` Tsurf ph´ δT q



“
1

h

„

Tsurf ´ Tgr
2

h

n
` Tgr

h

n
` Tsurf

ˆ

h´
h

n

˙

“
1

2n
Tgr `

2n´ 1

2n
Tsurf ,

and we use the result to express Tgr as a function of T and Tsurf :

Tgrpx, tq “ 2nT px, tq ` p1´ 2nqTsurf .

Thanks to the previous relation, the profile of T px, z, tq (see Eq. (2.16)) may be rewritten
in terms of the averaged temperature T , of the free-surface temperature Tsurf and of the
thickness index n as follows:

T px, z, tq “

$

’

&

’

%

2n
“

Tsurf ´ T px, tq
‰

δT
pz ´Bq ` p1´ 2nqTsurf ` 2nT px, tq, if B ď z ď B ` δT

Tsurf , if B ` δT ă z ď B ` h.

(2.17)
By integrating over the depth the transient term of Eq. (2.15), we obtain

ż B`h

B

BT pzq
Bt

dz “
B

Bt

ż B`h

B

T pzqdz “ BphT q
Bt

. (2.18)

For the vertical integration of the advective term of Eq. (2.15), the use of the expression
(2.17) for the piecewise linear temperature profile and of Eq. (2.5) for the parabolic
velocity profile, lead to the sum of two terms whose coefficients depend on the parameter
n related to the thermal boundary layer thickness h{n; the expression of the flux with
respect to the x-direction is

ż B`h

B

T pzqupzq dz “ 4n2 ´ n

4n3
hTU `

4n3 ´ 4n2 ` n

4n3
hTsurfU,

and the expression for the y-direction is similar. We denote by βT the coefficient of the first
term on the right-hand side of the previous equation and we obtain the 1D formulation
of the advective flux

hU
“

βTT ` p1´ βT qTsurf
‰

. (2.19)

Being 0 ď βT ď 1, the term in brackets in the previous equation corresponds to a
convex combination of the maximum and averaged temperatures. For instance, when
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considering n “ 4 (as suggested by Costa and Macedonio [55] for a lava model), the value
of the coefficient is βT « 0.24. One observes that the smaller is the thickness of the
thermal boundary layer and the smaller is also the value of βT . Thus, when the boundary
layer thickness goes to zero (n goes to `8) the maximum temperature and the depth-
averaged temperature coincide and the vertical integration of the advective term leads
to

∇ ¨
`

hTU
˘

, (2.20)

which is the classical form resulting from the assumption of a uniform temperature profile
(hence T “ Tsurf ) and corresponds to the choice βT “ 0.

We mention also that if the parabolic profile for velocity is not assumed, or, otherwise,
if we consider a constant temperature distribution over the depth, then the advective term
derived would be Eq. (2.20).

2.1.5 Temperature profile for soil conduction and other heat ex-
changes

In this section, we derive a depth-averaged temperature equation which accounts both
the transport of the temperature T and the heat exchange phenomena, such as conduc-
tion, convection and radiation. We assume that the vertical temperature variations are
due to the conductive heat flux between the fluid and the ground with the consequent
development of two thermal boundary layers in both materials. Indeed, in the case of lava
flows or similar situations, the terrain (or the bottom) is colder than the fluid, so that a
thermal boundary layer emerges in the fluid. At the same time, the ground temperature
increases to a certain depth because of the presence of the hotter fluid, hence an under-
ground thermal boundary layer develops too. In such context, we arrive to describe the
entire temperature profile in terms of the fluid depth-averaged temperature and of the
unchanged temperature underground, and the expression of the advective flux that we
get is very similar to what we found previously in §2.1.4, because we are assuming similar
shapes for the vertical profiles and one fixed value of temperature. Finally, we derive the
radiative and convective terms, and the viscous heating term.

We make two hypotheses: piq we assume that the fluid and the ground are both
homogeneous and isotropic materials, and that their thermodynamic properties are tem-
perature independent, piiq we consider the temperature profile reached at the thermal
equilibrium. The Fourier law (consult [81]) states that the conductive flux qcond, intended
as the heat flux through a unit area per unit of time, is linearly proportional to the
negative temperature gradient and to the thermal conductivity k

qcond “ ´k∇T .

Since, in our model, the conductive heat flux occurs along the vertical direction, we have
only the z-component of qcond:

qcond,z “ ´k
BT
Bz
. (2.21)

Because of the first assumption piq, the thermal conductivity of the fluid and of the ground,
named as kfl and ksoil respectively, are constant and do not depend on temperature.
Thanks to the second assumption piiq, we refer to the heat equation at the stationary
state condition, namely to the Laplace equation. As the temperature variations (due to
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conduction) come about the vertical direction, then the Laplace equation reduces to one
term equation, which solution is a linear function:

B2T
Bz2

“ 0 ùñ T pzq “ Az `B.

This leads to a linear profile for temperature in each thermal boundary layer considered
and therefore motivates the assumption already made in §2.1.4. According with this
result, the two temperature profiles, in both thermal boundary layers at the fluid/bottom
interface, are assumed linear, therefore the profile overall the fluid and terrain depths
is piecewise-linear. We denote as δT and δsoil the thermal boundary layer thicknesses
of fluid and soil respectively, Tsurf is the temperature of the free fluid surface, Tgr is
the temperature at the fluid/ground interface, and Tsoil is the unchanged temperature
underground of the soil, see Figure 2.5. The profile explicit expression is:

T px, z, tq “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

Tsurf px, tq, if B ` δT ă z ď B ` h

Tsurf px, tq ´ Tgrpx, tq

δT
pz ´Bq ` Tgrpx, tq, if B ă z ď B ` δT

Tgrpx, tq ´ Tsoil
δsoil

“

z ´ pB ´ δsoilq
‰

` Tsoil, if B ´ δsoil ă z ď B

Tsoil, if z ď B ´ δsoil.

(2.22)
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δsoil
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Figure 2.5: Vertical temperature profile. δT and δsoil are the thermal boundary layers of fluid
and ground respectively.

Usually, the thickness of the fluid thermal boundary layer is a fraction of the whole
flow depth δT “ h{n (with n ě 1), meanwhile the thickness for the ground depends on
the fluid depth as δsoil “ Mh (with M ě 1); for example in the paper of Patrick et al.
[209], which is a work about the characterization of the cooling of a stationary lava flow,
the authors used M “ 2.
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We show in the following that the temperature at the fluid/ground interface Tgr de-
pends on Tsoil, on Tsurf , on the physical properties of both materials and also on the
thickness of the thermal boundary layers, according to the Fourier Law (2.21).

By assuming the same heat flux in both the means, the fluid and the solid, the following
equality holds

q
pflq
cond,z “ ´kfl

Tsurf ´ Tgr
δT

“ ´ksoil
Tgr ´ Tsoil

δsoil
“ q

psoilq
cond,z. (2.23)

From this equation we find the value of Tgr expressed in terms of the other parameters.
First we rearrange the equation and we move on the left hand side Tgr

ˆ

kfl
δT
`
ksoil
δsoil

˙

Tgr “
kfl
δT
Tsurf `

ksoil
δsoil

Tsoil
ˆ

kfl
δT

δsoil
ksoil

` 1

˙

Tgr “
kfl
δT

δsoil
ksoil

Tsurf ` Tsoil.

By renaming a coefficient as

φ :“
1

kfl
ksoil

δsoil
δT

` 1

“
1

kfl
ksoil

nM ` 1

, (2.24)

we find the expression for Tgr in terms of the other variables

Tgr “ p1´ φqTsurf ` φTsoil. (2.25)

From the definition of the depth-averaged temperature T , we find a relation binding
T to the top and bottom fluid temperatures Tsurf and Tgr, and to the thickness index n

T :“
1

h

ż B`h

B

T pzqdz “ 1

2n
Tgr `

2n´ 1

2n
Tsurf “ aTgr ` p1´ aqTsurf , a :“

1

2n
. (2.26)

We want to express Tsurf and Tgr in terms of the constant value Tsoil and of the depth-
averaged temperature T . First, we use the relations (2.25) and (2.26) to rewrite the
expression of T

T
p2.26q
“ aTgr ` p1´ aqTsurf
p2.25q
“ a

“

p1´ φqTsurf ` φTsoil
‰

` p1´ aqTsurf

“ p1´ aφqTsurf ` aφTsoil,

then we get the following expression for Tsurf :

Tsurf “ ζT ` p1´ ζqTsoil, with ζ :“
1

1´ aφ
. (2.27)

In a similar way, we use the relations (2.25) and (2.27) to obtain Tgr as a function of T
and Tsoil

Tgr
p2.25q
“ p1´ φqTsurf ` φTsoil
p2.27q
“ p1´ φq

“

ζT ` p1´ ζqTsoil
‰

` φTsoil

so we find that

Tgr “ ψT ` p1´ ψqTsoil, with ψ :“ p1´ φqζ “
1´ φ

1´ aφ
. (2.28)
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2.1.5.1 Advective term

We integrate with respect to the depth the advective flux of the temperature transport
equation, Eq. (2.15). Without loss of generality we consider a flat bottom B “ 0 and we
recall from Eqs (2.5) and (2.22) the expressions of the parabolic velocity profile and of
the piece-wise linear temperature profile for this simplified case.

upx, z, tq “
3

2

U

h2

`

2hz ´ z2
˘

,

T px, z, tq “

$

’

&

’

%

Tsurf px, tq, if δT ă z ď h

Tsurf px, tq ´ Tgrpx, tq

δT
z ` Tgrpx, tq, if 0 ă z ď δT .

We compute the depth-averaged advective flux along the x-direction, and similar steps
are also valid for the y-direction

ż h

0

upzqT pzqdz “
ż δT

0

upzqT pzqdz `
ż h

δT

upzqT pzqdz

“

ż δT

0

„

3

2

U

h2

`

2hz ´ z2
˘

ˆ

Tsurf ´ Tgr
δT

z ` Tgr

˙

dz

`

ż h

δT

„

3

2

U

h2

`

2hz ´ z2
˘

Tsurf



dz

“
3

2

U

h2

"„ˆ

2

3
hz3

´
1

4
z4

˙

Tsurf ´ Tgr
δT

`

ˆ

hz2
´

1

3
z3

˙

Tgr

δT

0

`

„ˆ

hz2
´

1

3
z3

˙

Tsurf

h

δT

*

“
3

2

U

h2

"„

2

3
hδ2

T ´
1

4
δ3
T ´

ˆ

hδ2
T ´

1

3
δ3
T

˙

`

Tsurf ´ Tgr
˘

`
2

3
h3Tsurf

*

“
3

2

U

h2

"„

1

12
δ3
T ´

1

3
hδ2

T



`

Tsurf ´ Tgr
˘

`
2

3
h3Tsurf

*

“
3

2

U

h2

"„

1

12

h3

n3
´

1

3

h3

n2



`

Tsurf ´ Tgr
˘

`
2

3
h3Tsurf

*

“ hU

"ˆ

1´
4n´ 1

8n3

˙

Tsurf `
4n´ 1

8n3
Tgr

*

.

We rename the coefficient as θ, finding
ż h

0

upzqT pzqdz “ hU
!

`

1´ θ
˘

Tsurf ` θTgr

)

, θ :“
4n´ 1

8n3
(2.29)

and then we write Tsurf and Tgr in terms of T and Tsoil by using (2.27) and (2.28)
ż h

0

upzqT pzqdz “hU
!

p1´ θq
”

ζT ` p1´ ζqTsoil

ı

` θ
”

ψT ` p1´ ψqTsoil

ı)

“ hU
!”

θψ ´ θζ ` ζ
ı

T `
”

1´ pθψ ´ θζ ` ζq
ı

Tsoil

)

.
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In the end, the depth-averaged advective flux term along the x-direction is:

hU
”

βTT ` p1´ βT qTsoil

ı

, βT :“ θψ ´ θζ ` ζ. (2.30)

In order to express the dependence of βT on the physical quantities, we use the Eqs.
(2.27), (2.28), (2.29) to replace the definitions of θ, ψ, ζ:

βT “ θψ ´ θζ ` ζ

“
4n´ 1

8n3
¨

1´ φ

1´ aφ
´

4n´ 1

8n3
¨

1

1´ aφ
`

1

1´ aφ

p2.26q
“

4n´ 1

8n3
¨

2np1´ φq

2n´ φ
´

4n´ 1

8n3
¨

2n

2n´ φ
`

2n

2n´ φ

“
p4n´ 1qp1´ φq ´ p4n´ 1q ` 8n3

4n2p2n´ φq

“
8n3 ´ 4n2φ` 4n2φ´ 4nφ` φ

8n3 ´ 4n2φ

“ 1`
p2n´ 1q2

8n3

φ
´ 4n2

p2.24q
“ 1`

p2n´ 1q2

8n3

ˆ

kfl
ksoil

nM ` 1

˙

´ 4n2

“ 1`
p2n´ 1q2

8n4

ˆ

kfl
ksoil

M `
1

8n
´

1

2n6

˙ .

From the last expression, we notice that the influence of the temperature of soil becomes
negligible and the vertical distribution of temperature becomes similar to a constant
vertical profile, in two situations: (i) when the thickness δT “ h{n of the fluid thermal
boundary layer thins, or (ii) when the thickness δsoil “Mh of the soil thermal boundary
layer increases a lot. In fact, as n or M goes to `8, the value of βT gets closer to 1 so
that the advective term reduces to ∇ ¨

`

hTU
˘

which is the classic expression obtained
under the assumption of a uniform temperature profile (namely T “ Tsurf “ Tgr). We
notice also that when nÑ `8 both ζ and ψ go to 1; in fact, for ζ we have

ζ
p2.27q
“

1

1´ aφ
p2.26q
“

1

1´
φ

2n
p2.24q
“

1

1´
1

2n2

ˆ

kfl
ksoil

M `
1

2n

˙

ÝÑ
nÑ`8

1,

(2.31)

and the same is immediately proved for ψ of Eq. (2.28) by following computations similar
to what previously done for ζ. We get the consequence that Tsurf « T (from Eq. (2.27))
and Tgr « T (from Eq. (2.28)).
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The expression obtained in Eq. (2.30) is similar to that derived in the previous section,
i.e. to Eq. (2.19), because we have assumed the same vertical profiles; moreover, the two
temperatures that appear, in both cases, are the depth-averaged temperature T px, tq and
the unchanged temperature: in the former case there was the fixed surface temperature,
in the latter case there is the fixed underground temperature. The observations done in
§2.1.4 about the coefficient βT and about the thickness of the thermal boundary layer are
valid also in the present context.

2.1.5.2 Conductive heat transfer source term

In the previous section we analyzed the way that the conductive heat loss affects the
temperature profile and we derived a consequent expression for the advective flux. We
need to quantify the actual thermal loss due to conduction and to write the corresponding
source term for the temperature equation. As already said by the Fourier Law (consult
[81]), the heat exchanged between the hot fluid and cold ground, which affects only the
boundary layer δT “ h{n, is directly proportional to the temperature differences and to
the thermal conductivity, see Eq. (2.21) and Eq. (2.23). Since we are writing an equation
for the temperature and not for the energy, we must divide the thermal conductivity by
the specific heat cp and by the density ρ (‹), obtaining that the thermal diffusivity κ is
the coefficient appearing in the conductive source term:

q
pflq
cond,z

p2.23q
“ ´

kfl
δT

”

Tsurf ´ Tgr

ı

p‹q
ùñ ´

kfl
ρcpδT

”

Tsurf ´ Tgr

ı

“ ´
κ

δT

”

Tsurf ´ Tgr

ı

.

Reminding that the temperatures at the surface and at ground can be expressed in terms
of T and Tsoil, according with the relations (2.27), (2.28), we find that the previous formula
becomes

´
κ

δT

”

ζT ` p1´ ζqTsoil ´
`

ψT ` p1´ ψqTsoil
˘

ı

, (2.32)

and, by rearranging the expression and renaming the conductive coefficients, we get the
final term:

´H
`

ζ ´ ψ
˘`

T ´ Tsoil
˘

, H :“
κn

h
. (2.33)

2.1.5.3 Convective heat transfer source term

The convection heat loss is the heat transfer from the surface of a warm body to the sur-
rounding colder gas or liquid and is characterized by the motion of such fluid. Convection
involves the combination of two processes, the heat diffusion and the advection of the
warmed fluid. Convection might be a natural phenomenon driven by the buoyancy force,
but also an artificial fact caused by a forced motion, or a mix of both of them. Natural
convection, also said free convection, is driven by the buoyancy force and it is caused by
the density variations due to the fluid warming. In natural convection, a hot body warms
the fluids around it by heat diffusion, then the warmed fluid moves up because of the
buoyancy forces and this induces the fluid advection, so the farther and colder fluid gets
in touch with the hot body cooling it. This phenomenon is visible in everyday life when
a pot with water is warmed on the stove. The fire heats the pot bottom which warms the
water near there due to conductive heat transfer, the heat spreads in the fluid because of
diffusion. As soon as the water near the bottom is warm enough, its density decreases (and
the volume increases) hence it starts to move because of the buoyancy force, triggering the
convective motion. In forced convection, the fluid advection is induced mechanically and
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it produces the body cooling. In our case, the hot body corresponds to the hot free-surface
fluid which is overhang by the colder air. In models where the air is not represented (as in
our case), or when the whole complexity of the processes are not properly described, there
is not the exact modeling of the convective phenomenon. However, the convective heat
flux can be described by the Newton law of cooling in terms of the heat transfer coefficient
λ and of the temperature difference between the fluid surface and the environment (see
[81]) and writes as follows:

qconv “ λf
“

Tsurf ´ Tenv
‰

.

The coefficient λ depends on the physical properties of the second fluid; for example, in
the case of the lava that flows on the ground, the second fluid is the air, but we may also
think about a submerged volcano, and in that circumstance the second fluid would be the
water. Moreover, the value of λ changes if one models natural or forced convection, for
example a value between 2.5–25 Wm´2 K´1 is proposed in literature [153] for natural air
convection and between 10–500 Wm´2 K´1 for the forced case. The variable f indicates
the fractional area of the exposed inner core: the value of f is exactly equal to 1 for a
fluid completely molten; when there is a superficial crust, then it insulates partially or
totally the fluid, as might happen in the case of lava (consult Fagents et al. [81] for more
details). Moreover, in real flows, the value of f may change with time and space, because
it depends on the solidification temperature of the material considered and on its chemical
composition. Despite these things, in our model we assume for simplicity a constant value
for f .

We need to divide the coefficient by the specific heat cp and the density ρ of the fluid
because we deal with a temperature equation; we rename the convective coefficient and
obtain the source term to be added to the temperature equation:

´W
“

ζT ` p1´ ζqTsoil ´ Tenv
‰

, W :“
λf

ρcp
. (2.34)

2.1.5.4 Thermal radiation transfer source term

The thermal radiation is the energy emitted by matter in form of electromagnetic waves
and it involves every “hot body”, namely every body which temperature is greater than
the absolute zero temperature, that is 0 K “ ´273.15 C; in fact, the movement of atoms
and molecules of the body produces electromagnetic waves which transfer the energy from
the surface of the body to the surrounding. The radiative heat flux is described by the
Stefan-Boltzmann law, which name is due to two Austrian physicists, Josef Stefan and
Ludwig Boltzmann, that formulated the same law as result of their different studies, in
1879 and 1884 respectively. The Stefan-Boltzmann law states that the rate of thermal
radiation emitted from a surface per unit area qrad is as follows

qrad “ εσSBT
4
surf , (2.35)

namely it is proportional to the fourth power of its absolute temperature at the surface
Tsurf expressed in kelvin, to the Stefan-Boltzmann constant σSB “ 5.67 ¨ 10´8 and to
the emissivity ε of the material, for more details see Modest [194]. The emissivity of the
matter ε is a parameter that indicates how well the body radiates, for example, ε “ 1
for the “black body” (that is the ideal body that absorbs all incident electromagnetic
radiation and that radiates back all the energy absorbed) and ε “ 0 for a body that is a
perfect “reflector” (namely a body that does not emit nor absorb thermal radiation); for
the real objects the value of ε falls between these two cases.
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The energy balance for the “opaque surfaces” (namely the surfaces that are not perfect
reflectors, i.e. with the emissivity ε ‰ 0) is the difference between the thermal radiation
emitted and that absorbed. The absorption depends on the thermal radiations emitted
from the surfaces around the observed body, including those far away from it. In our
model of free-surface fluid, the thermal radiation of both the fluid and of the environment
are accounted. As a consequence, the radiative heat flux depends on the difference of the
fourth powers of the surface temperature and environmental temperature, according with
Eq. (2.35), and it follows that the radiative heat loss of the fluid is

´εσSBf
”

T 4
surf ´ T

4
env

ı

where Tenv denotes the constant environmental temperature, ε is the emissivity of the fluid
and the variable f indicates the fractional area of the exposed inner core, that appears
because also the radiative heat loss is influenced by the presence of a superficial crust.

Since we deal with a temperature equation, as in the previous section we have to divide
the heat loss by the specific heat cp and the density ρ of the fluid to obtain the radiative
term. We express again the surface temperature in terms of T and Tsoil, according with
Eq. (2.27), and rename the radiative coefficient, so we get the final expression for the
radiative term in the transport equation:

´ E
”

`

ζT ` p1´ ζqTsoil
˘4
´ T 4

env

ı

, E :“
εσSBf

ρcp
. (2.36)

Further considerations

We make some considerations about the temperature model derived so far.

• From comparing the types of heat transfer in the last three subsections, two main
differences arise. The first one is that radiation does not require the presence of a
medium to transfer the energy, whereas it is the opposite for conduction and con-
vection. The second difference is about the temperature dependence: it is linearly
proportional to the temperature difference for both conductive and convective heat
transfers, whereas the radiative heat transfer is proportional to the difference of
the fourth power of temperatures. As a consequence, the radiative transfer is more
relevant when great temperature differences between the fluid and the ambient are
present.

• In the case that a constant velocity profile is assumed, namely when upzq “ U ,
for example in the classic formulation of the shallow-water equations, a thermal
boundary layer may still be adopted, with the consequence that the expression of
the advective flux term simplifies into

ż B`h

B

upzqT pzqdz “
ż B`h

B

UT pzqdz “ U

ż B`h

B

T pzqdz p2.2q“ UhT

and the terms rewarding the thermal exchange with the ground and the environment
are Eqs. (2.33, 2.36, 2.34):

BphT q

Bt
`∇ ¨ phTUq “ ´H

`

ζ ´ ψ
˘`

T ´ Tsoil
˘

´W
“

ζT ` p1´ ζqTsoil ´ Tenv
‰

´ E
”

`

ζT ` p1´ ζqTsoil
˘4
´ T 4

env

ı

.
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• We consider the asymptotic case for n Ñ 8. The convective term in Eq. (2.34)
and the radiative term in Eq. (2.36) contain the parameter ζ that multiplies T and
we have seen in Eq. (2.31) that ζ goes to 1 when n goes to 8. Therefore, the
asymptotic behavior of the convective and radiative terms is the following

´W
”

ζT ` p1´ ζqTsoil ´ Tenv

ı

ÝÑ
nÑ`8

´W pT ´ Tenvq ,

´E
!

“

ζT ` p1´ ζqTsoil
‰4
´ T 4

env

)

ÝÑ
nÑ`8

´E
`

T 4
´ T 4

env

˘

.

Concerning the conductive term, we consider the Eq. (2.32) where we recognize
the expression of the ground temperature defined in Eq. (2.28). The parameter ψ
too, that is present in the definition of Tgr, goes to 1 as n goes to `8, with the
consequence that Tgr Ñ T . This produces that the term of the conductive heat
loss goes to zero, which can be expected because we related the presence of heat
conduction to the existence of the thermal boundary layer:

´H
”

ζT ` p1´ ζqTsoil ´
`

ψT ` p1´ ψqTsoil
˘

looooooooooomooooooooooon

Tgr

ı

ÝÑ
nÑ`8

´H pT ´ T q “ 0.

If we aim to model the heat loss due to conduction even in the case of a constant
temperature profile, we must define the temperature at the ground, which we would
denote as rTgr, in another way.

Costa and Macedonio [55], for example, consider rTgr as a constant value, fixed a
priori, that denotes the temperature of the fluid at the ground (which is smaller
than the averaged temperature because of the conductive heat transfer with the
soil). Also, the authors do not model the temperature profile explicitly (as we do),
hence they only deal with the depth-averaged temperature T and write the source
terms as follows:

´HpT ´ rTgrq ´WpT ´ Tenvq ´ EpT 4
´ T 4

envq (2.37)

(actually, these terms coincide in a different order with those originally reported in
the article [55]).

We underline that, even though the assumption of constant temperature profile
leads to a simpler model, the correct setting of the rTgr value is not obvious.

• In a simulation with a source area representing a vent, a shrewdness must be ac-
counted. At the vent there is no cooling at the bottom because there is no conductive
heat exchange with the ground. For this reason, only in the source area, the ad-
vective flux term assumes the classic expression and only the heat exchanges with
the air must be considered, namely radiation and convection, hence only the second
and third terms of equation (2.37)

BphT q

Bt
`∇ ¨ phTUq “ ´WpT ´ Tenvq ´ EpT 4

´ T 4
envq.

2.1.5.5 Viscous heating term and effusive source term

In the dynamic of fluids characterized by a temperature-dependent viscosity, the cou-
pling between the momentum and temperature (or energy) equations is important. In
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our model we obtained such coupling by assuming the Nahme’s exponential law of Eq.
(2.13), in §2.1.2. In addition, we include also viscous heating, another important process
that connects the temperature to the dynamic. For some viscous fluids, such as lava or
polymers, the viscous friction produces an increase in temperature near the bottom, in
the open-channel flow cases, or near the tube walls, when the fluid moves in a pipe, both
natural and artificial. The temperature increment leads to a viscosity decrease, which
reflects in a velocity increase, then the higher velocity causes further warming. The in-
fluence of the viscous heating on the dynamic is investigated in the work of Costa and
Macedonio [54] where they highlight that this process is the cause of some unexpected
phenomena. In the pahoehoe lava flows, for example, it produces that the temperature at
the front is higher than the effusive one, as observed in Keszthelyi [147]. Moreover, the
viscous heating may change the velocity and temperature profiles, for example, moving a
parabolic velocity profile into a uniform velocity distribution, and this may happen both
in the case of an open-channel flow (with the profile of Figure 2.1) and in the case of a flow
in a natural or artificial conduit (with profile represented in Figure 2.2), see Kauahikaua
et al. [141]. The viscous heating term is proportional to the dynamic viscosity and to the
square of the vertical derivative of velocity. In our depth-averaged model, we compute it
as follows

1

ρcp

ż B`h

B

µ

„

´

Bu

Bz

¯2

`

´

Bv

Bz

¯2


dz
p2.5q
“

1

ρcp

ż B`h

B

µ

„

9

`

U2 ` V 2
˘

h4

`

z ´ pB ` hq
˘2



dz

“
3µ

ρcph

`

U2
` V 2

˘

(2.38)

where we have used the analytic expression of the vertical derivative of upzq defined in
Eq. (2.5). When viscosity is temperature dependent, the viscous heating term writes as
follows

K
`

U2
` V 2

˘

exp
“

´ bpT ´ Tref q
‰

, K :“
3µref
ρcph

(2.39)

where we have renamed the coefficient. If we had used a parabolic velocity profile for
a velocity boundary layer of thickness δu “ h{α, we would have found K “ 3αµ{ρcph,
instead we have simply α “ 1.

When one wants to consider also the release of new hot material in the system at the
emissive temperature Tvent, an additional source term is required which accounts for the
volumetric rate of fluid per unit area, R, namely the term

RTvent.

2.1.6 Characteristic analysis

In summary, assuming an incompressible homogeneous fluid, a hydrostatic pressure dis-
tribution, a parabolic velocity profile, a piecewise linear temperature profile with a fixed
temperature value on the surface (as derived in §2.1.4), the depth-averaged equations for
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the flow in the absence of release of new material and with no heat exchange are:
Bpρhq

Bt
`∇ ¨ pρhUq “ 0, (2.40a)

BpρhUq

Bt
`∇ ¨

`

βuρhUUT
˘

`∇
ˆ

1

2
ρgh2

˙

“ ´ρgh∇B ´ ργU, (2.40b)

BphT q

Bt
`∇ ¨

“`

βT T ` p1´ βT qTsurf
˘

hU
‰

“ 0, (2.40c)

where we underline that U is a column vector; the system falls into the framework pre-
sented in §1.1.6 and is coupled with the state equation that considers the density depen-
dence on the average temperature

ρpT q “ mT ` ρ0. (2.41)

Moreover, if we consider the heat exchanges between fluid, ground and environment, the
viscous heating and the release of new fluid, then the temperature equation (2.40c) must
be replaced by the results derived in §2.1.5 and the source term ρR must be added on the
right hand side of the continuity equation

Bpρhq

Bt
`∇ ¨ pρhUq “ ρR, (2.42a)

BpρhUq

Bt
`∇ ¨

`

βuρhUUT
˘

`∇
ˆ

1

2
ρgh2

˙

“ ´ρgh∇B ´ ργU, (2.42b)

BphT q

Bt
`∇ ¨

“`

βT T ` p1´ βT qTsoil
˘

hU
‰

“ ´H
`

ζ ´ ψ
˘`

T ´ Tsoil
˘

´W
“

ζT ` p1´ ζqTsoil´Tenv
‰

´ E
“`

ζT ` p1´ ζqTsoil
˘4
´ T 4

env

‰

`K
`

U2
` V 2

˘

exp
“

´ bpT ´ Tref q
‰

`RTvent. (2.42c)

Notice that no “vent” term is included in the momentum equations because we assume
that the lava is emitted with no velocity along x and y.

The stationary steady-state solutions of our system are the lake-at-rest conditions:

U “ 0, B ` h “ const, T “ const, ρ “ const, (2.43)

in the case that there is no emission of new fluid in the system and when there are no
heat exchanges with the environment.

The homogeneous part of the systems (2.40) or (2.42) are constituted by non-linear
hyperbolic PDEs, and thus they are solved by classical numerical techniques developed for
such kind of equations [168, 258]. In order to do that, we first rewrite the homogeneous
system in a more compact notation, introducing the vector of conservative variables q

q “

»

—

—

–

q1

q2

q3

q4

fi

ffi

ffi

fl

:“

»

—

—

–

ρh
ρhU
ρhV
hT

fi

ffi

ffi

fl

.

If we denote by f “ pG,Hq the flux vector (argument of the divergences), and we express
the fluxes as function of the conservative variables

Gpqq “

»

—

—

—

—

—

–

ρhU

βuρhU
2 `

ρg

2
h2

βuρhUV
`

βTT ` p1´ βT qT˚
˘

hU

fi

ffi

ffi

ffi

ffi

ffi

fl

, Hpqq “

»

—

—

—

—

–

ρhV
βuρhUV

βuρhV
2 `

ρg

2
h2

`

βTT ` p1´ βT qT˚
˘

hV

fi

ffi

ffi

ffi

ffi

fl

,
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(where T˚ represents Tsurf or Tsoil) then we rewrite the homogeneous part of the governing
equations as

Bq

Bt
`∇ ¨ pfpqqq ” Bq

Bt
`
BGpqq

Bx
`
BHpqq

By
. (2.44)

In order to study the hyperbolicity and local propagation velocities, we replace the
homogeneous system by the equivalent quasi-linear formulation

qt `∇ ¨ pfpqqq “ 0 ÐÑ qt `G1
pqqqx `H1

pqqqy “ 0,

where G1 and H1 are the Jacobian matrices of the advective fluxes, and they read as
follows:

G1
pqq “

»

—

—

—

—

—

–

0 1 0 0

´βU2 ` gh 2βU 0 0

βUV βV βU 0

´βT pUT q{ρ βTT {ρ` p1´ βT qT˚{ρ 0 βTU

fi

ffi

ffi

ffi

ffi

ffi

fl

,

H1
pqq “

»

—

—

—

—

—

–

0 0 1 0

βUV βV βU 0

´βV 2 ` gh 0 2βV 0

´βT pV T q{ρ 0 βTT {ρ` p1´ βT qT˚{ρ βTV

fi

ffi

ffi

ffi

ffi

ffi

fl

.

The two Jacobians has four eigenvalues, which are the elements of these spectra:

Sp pG1
q “

"

βu U ˘
a

βupβu ´ 1qU2 ` gh, βu U, βTU

*

,

Sp pH1
q “

"

βu V ˘
a

βupβu ´ 1qV 2 ` gh, βu V, βTV

*

.

(2.45)

When the eigenvalues are real, it ensues that the equations are hyperbolic, and the pertur-
bations in the solution propagate with finite velocities given by the previous equations.
We also note that, when βu “ 1 (resulting from the assumption of a uniform velocity
profile), the first eigenvalues reduce to

U ˘
a

gh and V ˘
a

gh, (2.46)

thus they coincide with the characteristic velocities of the classical shallow water equa-
tions.

Recall that the Froude number is a dimensionless variable accounting for the relative
importance of inertial and gravitational forces. Classically, the Froude number for shallow
water waves is defined as

Fr “
|U|
?
gh
, (2.47)

see LeVeque [168], and according to the value assumed by this ratio, the regime is clas-
sified as subcritical if Fr ă 1, critical if Fr “ 1 and supercritical if Fr ą 1. When flow
conditions are supercritical, surface waves generated by downstream disturbances can-
not travel upstream. Conversely, when flow is subcritical, disturbance propagates both
upstream and downstream. This classification is relevant also for numerical simulations,
because the boundary conditions must be prescribed according to the flow regime. We
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point out that the effects of a parabolic velocity profile assumption on the solution be-
come less important as the Froude number approaches 0, because in such situations the
dynamics are less affected by the inertial term.

As shown above, the parabolic velocity profile defined in Eq. (2.5) leads to the presence
of the coefficient βu in the inertial term appearing in the momentum equation. Because of
that, from a mathematical point of view, also the critical conditions change with respect
to the classical shallow water equations. In fact, considering the 1D case, the eigenvalues
of the flux Jacobian for the parabolic velocity case have the same sign when the following
condition is satisfied:

|U |
a

p1´ 1{βuqU2 ` gh{β2
u

ą 1.

According to this formulation, for the same value of the flow thickness h, the critical
regime for a parabolic profile is obtained at a smaller depth-averaged flow velocity than
for constant velocity profile. In addition, we observe that the left-hand side quantity
converges to the Froude number when the velocity tends to have constant profile, namely
when βu goes to 1.

2.1.7 The case of a density profile (outline)

What would happen in the case that a non-constant density profile was assumed? Without
providing complete nor exhaustive discussions on this theme, we give two cues that might
lead to future work developments.

In the assumptions of our model, we supposed that density has a linear dependence
from temperature ρpzq “ ρ0 ` mT pzq with m ă 0 (see Eq. (2.3)), and we narrowed it
down to the cases where the vertical variations of density are negligible and hence we used
the depth-averaged value ρ̄ to derive the equations. What would happen to the equations
if such restriction was deleted? We started to investigate in that direction and we present
the preliminary results which accounts only the hyperbolic terms of mass and momentum
equations. The piece-wise linear profile of temperature reflects into a piece-wise linear
profile for density, as represented in Figure 2.6.

δT

B+h

B

(x,z,t)

z

T

Tgr Tsurf T

δT

ρ ρ ρ

B+h

B

(x,z,t)

z

grsurf

ρ

Figure 2.6: Vertical temperature and density profiles. Left: temperature piece-wise linear profile,
right: density piece-wise linear profile that linearly depends on temperature.

If we consider the temperature model of §2.1.4, we may assume that the expression of the
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density profile is

ρpx, z, tq “

$

’

&

’

%

ρsurf , if B ` δT ă z ď B ` h,

ρsurf ´ ρgrpx, tq

δT
pz ´Bq ` ρgrpx, tq, if B ă z ď B ` δT ,

(2.48)

where δT is exactly the thickness of the thermal boundary layer, and ρsurf and ρgr denote
the density at the surface and at the ground respectively and they implicitly depend on
temperature. Similarly to the procedure adopted in §2.1.4, we can express the density
profile in function of ρ̄ and ρsurf . Without entering in details, the transient and the
advective terms of the mass and momentum equations have the following structures (for
simplicity we present the 1D formulation)

Bpρ̄hq

Bt
`
B

Bx
rpα1ρsurf ` α2ρ̄qhU s ,

B

Bt
rpα1ρsurf ` α2ρ̄qhU s `

B

Bx

“

pβ1ρsurf ` β2ρ̄qhU
2
‰

,

assuming also the parabolic profile for velocity, otherwise we would obtain the classic
expression of the shallow water equation.

The next step of our work in this direction will be the derivation of the pressure term.
Looking in literature, we found that the recent work of Pokrajac et al. [217] pursues a
similar aim. The authors focus mainly on the pressure term derivation in the case of
different density profiles, i.e. constant, linear and exponential, that are represented in
Figure 2.7, but they do not get the explicit expressions of the other terms, neither they
dig into the cases of co-presence of different profiles for the other variables.

B+h

B

(x,z,t)

z
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B+h

B

(x,z,t)
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ρ

ρ-ρ0

B+h

B

(x,z,t)

z

ρ

ρ-ρ0

Figure 2.7: Vertical density profiles assumed in Pokrajac et al. [217] where ρ0 is the ambient
density. Left: constant, center: linear, right: exponential.

The argument carried out in Pokrajac et al. [217] leads to a coefficient in the pressure
term that depends on the density profile or, equivalently, on the pressure profile. For
an easier derivation of their model, they take into account also the ambient fluid, which
has constant density ρ0 and a pressure distribution p0pzq, and they assume that on the
free-surface of the fluid the pressure coincides with the ambient pressure. They consider
a hydrostatic pressure distribution (as we do in §2.1.2):

ppzq ´ p0pzq “

ż B`h

z

`

ρpζq ´ ρ0

˘

gdζ.
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The pressure term that they obtain is

B

Bx

„

1

2
ap pρ̄´ ρ0q gh

2



` pρ̄´ ρ0q gh
BB

Bx
(2.49)

which differs from ours (see Eq. (2.10)) in the presence of the coefficient ap. Such
coefficient is defined as the pressure force per unit width, normalized with the force that
corresponds to the constant density:

ap “

şB`h

B
pppzq ´ p0pzqq dz

1
2

”

1
h

şB`h

B
pρpzq ´ ρ0q dz

ı

gh2
“

şB`h

B
pppzq ´ p0pzqq dz
1
2
pρ̄´ ρ0qgh2

“ 2

ż 1

0

ppẑq ´ p0pẑq

pρ̄´ ρ0qgh
dẑ

(2.50)
where the last equality comes from the variable change ẑ :“ pz´Bq{h. In order to under-
stand how the value of ap varies according to the density profile, we analyze Figure 2.8
that depicts the integrated function with respect to ẑ, for the different density distribu-
tions. The value of ap depends on the area under the functions represented, therefore it is
easy to observe that ap is equal to 1 for a constant density profile and it is less than 1 in
the other cases. From this, it is evident that the pressure force (see Eq. (2.49)) is smaller
for the variable density cases with respect to the constant density case. As a consequence,
if the pressure coefficient ap is omitted in the variable density cases, then the pressure
force is overestimated.

1

1 p-p0
gh(ρ-ρ0)

z-B
h

z = 

Figure 2.8: Vertical profile of the normalized pressure (the integrated function in Eq. (2.50), on
the abscissa) with respect to the normalized depth: the continuous line corresponds to constant
density profile, the dashed line to the linear density profile, the dotted line to the exponential
density profile assumed in Pokrajac et al. [217].

The authors conclude that with the hypothesis of constant density there is an overesti-
mation of the driving force due to the pressure gradient of 33% with respect to a linear
profile and up to the 50% with respect to the exponential profile. There are consequences
also for the propagation speed of the small disturbances because the coefficient ap ap-
pears also in the eigenvalues of the Jacobians (see Eq. (2.46)), it follows that there is an
overestimation of the local speeds of propagation of the 22% and 40% compared to linear
and exponential profiles respectively.

Concerning our model and applications, we should follow what they did, namely de-
termine the coefficient ap, but using our density profile.
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2.2 3D multiphase model

In this section, we present the equations that describe a 3D model. The advantage of
having a 3D model is that the vertical profiles of variables are not forced a priori with any
analytic assumption, but are free to change only according to the boundary conditions,
the evolution of the dynamics, and the properties of the fluid. Our specific interest is in
liquids with a free surface, and we choose a way to model them which takes into account
also the air above. This means that we deal with a multiphase model for the liquid-gas
couple. Moreover, the two fluids are considered immiscible. The multiphase modeling is
realized by adopting the Volume of Fluid (VOF) method [127], where a new transport
equation is added to the system of the governing equations, involving a new variable that
describes the transport of the volume fraction of one phase. We treat both the liquid
and the air above it as incompressible fluids, and hence they may be described by the
same kind of equations, namely the incompressible Navier-Stokes Eqs. (1.49) (derived in
section §1.1.5.6) that we report also here:

Bρ

Bt
`∇ ¨ pρuq “ 0,

Bpρuq

Bt
`∇ ¨

`

ρuuT
˘

“ ρg ´∇p`∇ ¨ τ ,

where we recall that ρ is the density, u is the velocity, g is the gravity acceleration, p
is the pressure, and τ is the viscous stress tensor defined in Eq. (1.47). In our model,
we also assume that both liquid and gas have constant density respectively, therefore the
continuity equation for the conservation of the mass reduces to the kinetic condition of null
velocity divergence∇¨u “ 0 (as already observed in Eq. (1.41)). Even though we consider
constant densities for both fluids, those are not equal, therefore we retain the expression
of the momentum equation as that one reported above (instead of using the expression
of Eq. (1.48) which applies in the constant density case). The new transport equation
for the volumetric fraction of one phase allows us to distinguish where the two fluids are
located, and to associate their densities correctly. In this 3D model that describes two
immiscible fluids, we must consider also the effect of the surface tension; therefore an
additional source term is added in the momentum equation. Being the lava flows the
ultimate application of our model, we also have to enrich our system by an additional
equation for the transport of the thermal energy, derived as a modified version of the
energy conservation equation (1.37c).

Even though our multiphase (liquid-gas) 3D model describes two incompressible, im-
miscible, constant density fluids that exchange heat, our attention is mostly on the good
thermodynamic description of the liquid phase. The section is organized in three parts.
We start in §2.2.1 by giving an overview of the existing techniques that deal with the
modeling of two immiscible multiphase fluids, and in §2.2.1.1 we focus on the derivation
of the equation that characterizes the VOF method, which is the specific technique we
decided to use. In §2.2.2 we show how to derive the transport equation for the thermal
energy as a modified version of Eq. (1.37c) for the conservation of energy in the Navier-
Stokes system, accounting for the radiative and convective heat transfer. The last section
§2.2.3 exhibits the whole system of equations of our 3D model.
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2.2.1 Immiscible multiphase simulations

In the description of the motion of two immiscible fluids, a good treatment of the free
surface that separates them is of overall importance. Generally, one refers to two fluids
belonging to different phases as liquid and gas, where the water-air couple is probably
the most frequent case to simulate, but one may also consider the case of two immiscible
liquids like water-oil or water-mercury. The free surface that separates the immiscible
fluids is often called phase interface or simply interface and its evolution is computed as
a part of the solution. Having in mind that the equations of any model we choose will be
solved on a discrete computational grid, it is important to classify in two major groups
the methods that treat the phase interface, since this leads to different modeling issues.

• The interface-tracking methods describe the free surface as a sharp boundary
between the phases through the computational grid [126, 171, 223, 257]. In this
family of methods the computational grid evolves in time and adapts and advances
forward to define the free surface as represented in Figure 2.9.a; in particular, in
each control volume only one phase can be present. This issue impacts on the model,
where appropriate boundary conditions between the phases are applied directly to
the surfaces of the domain belonging and defining the interface;

• The interface-capturing methods define the interface as those cells filled by both
phases as shown in Figure 2.9.b, and the computational grid is possibly fixed, at
most it is refined; therefore the interface is not as sharp as in the previous family of
methods. As we will see, this leads to adding a further equation to the mathematical
model.

(a) Interface-tracking method. (b) Interface-capturing method.

Figure 2.9: Computational grid and phase interface between two fluids.

In this work we focus on one specific method, proposed by Hirt and Nicholls [127]
and called the Volume of Fluid (VOF) method; it belongs to the second group of the
interface-capturing methods. See in §2.3 a brief overview of other methods in such family
with the related modeling issues. A new variable α is introduced in VOF to describe the
volume fraction of one phase and a dedicated transport equation is derived from the mass
conservation equation

Btα `∇ ¨ pαuq “ 0.
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When a cell is completely full with one of the two fluids then α is equal to one or zero
respectively and the interface is defined by those cells that see both phases inside and
hence a value 0 ă α ă 1, see Figure 2.10.
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Figure 2.10: Volume of Fluid. The value assumed by the variable α is reported in each cell.

The Volume of Fluid approach can be applied with three different declinations. piq The
first one is that introduced by Hirt and Nicholls [127] and it sees the transport equation
for α solved on the entire (multiphase) domain, instead the conservation equations for
mass and momentum are solved only for the liquid phase, hence the gas phase behaves
in an unrealistic way. piiq Kawamura and Miyata [143] proposed the second variant in
which a different transport equation for the density function is solved (instead of the
volumetric fraction α they consider its product with the density ρα) and the free surface
is the iso-surface with α “ 0.5. The conservation equations for mass and momentum are
solved separately for the two phases and the interface is considered a boundary for both of
them and boundary conditions are prescribed on it. This method was used particularly to
compute the flows around ships and submerged bodies. piiiq For the third and last variant
of the Volume of Fluid method, the two fluids are treated as a single fluid which properties
(namely, density and viscosity) vary in space according to the volumetric fraction of each
phase

ρ “ αρl ` p1´ αqρg, µ “ αµl ` p1´ αqµg,

and both fluids share the same velocity field and pressure field, hence the conservative
equations for mass and momentum are solved for such single and promiscuous fluid. Since
we follow this last variant of the VOF method, its whole derivation is shown in the next
section according to Deshpande et al. [69].

2.2.1.1 Derivation of α-equation

Assume that a domain Ω sees the co-presence of two immiscible fluids, which from now
on are referred to, for simplicity, as liquid and gas, and that those occupy two disjoint
regions of the domain Rlptq and Rgptq respectively (varying with time), where

Rlptq YRgptq “ Ω and Rlptq XRgptq “ H @t,
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and the indicator-function of the liquid phase is defined accordingly

χlpx, tq “

#

1 if x P Rlptq,

0 if x P Rgptq.

The densities of the two fluids are ρl and ρg (supposed to be constant in time) and, thanks
to the immiscibility hypothesis, a shared density function is defined, that leans on the
indicator-function of the liquid phase:

ρpx, tq “ ρlχlpx, tq ` ρg
`

1´ χlpx, tq
˘

“ pρl ´ ρgqχlpx, tq ` ρg.
(2.52)

One may interpret that as if only one incompressible fluid is considered, in the whole
domain, which density is distributed according to equation (2.52).

When a control volume V Ă Ω is considered, the function α of the liquid-phase
volumetric fraction is introduced, defining it as the average over the whole volume of the
indicator-function of the liquid phase, @x P V, @V Ă Ω, as follows:

αpx, tq “
1

|V |

ż

V

χlp¨, tqdV, (2.53)

and it results as a piece-wise constant function. If a control volume is fully occupied by
the liquid or by the gas, then the values assumed by α are exactly equal to one or to zero
respectively, otherwise 0 ă α ă 1. Similarly, one defines another density function that is
a piece-wise constant function named ρ̃ which corresponds to the density averaged over
each control volume, it is defined @x P V, @V Ă Ω, and can be expressed in terms of the
liquid volumetric fraction α as follows:

ρ̃px, tq “
1

|V |

ż

V

ρp¨, tqdV

p2.52q
“

1

|V |

ż

V

pρl ´ ρgqχlp¨, tqdV `
1

|V |

ż

V

ρgdV

p2.53q
“ pρl ´ ρgqαpx, tq ` ρg

“ ρlαpx, tq ` ρgp1´ αpx, tqq.

(2.54)

From the conservation of the mass (whose equation is averaged in every control volume
V ) descends the transport equation for the average density

Btρ̃`∇ ¨ pρ̃uq “ 0 (2.55)

where u is a velocity function shared by both phases through the entire domain. From the
combination of the density expression (2.54) with the mass conservation equation (2.55)
descends that

Bt
`

pρl ´ ρgqαpx, tq
˘

` Btρg `∇ ¨
`

pρl ´ ρgqαpx, tqupx, tq
˘

`∇ ¨
`

ρgupx, tq
˘

“ 0

and by reminding that the flow field is divergence free (∇ ¨u “ 0) due to the incompress-
ibility constraint and that ρg is constant in time, we obtain a transport equation for the
liquid volume fraction

Btαpx, tq `∇ ¨
`

αpx, tqupx, tq
˘

“ 0 (2.56)
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that is the principal equation in the VOF method.

The presence of two fluids entails that even the surface tension is considered. It is
modeled as a continuum surface force [27] and added in the momentum equation defining
it as:

fΣ :“ σΣκΣ∇α, κΣ “ ´∇ ¨
∇α
|∇α|

, (2.57)

where σΣ is the surface tension constant and κΣ is the curvature of the surface.

2.2.2 Energy equation

In our 3D model, we consider a modified version of the equation for the energy conserva-
tion, whose general form is written in Eq. (1.37c). Such modified equation goes to join the
system constituted by the mass and momentum conservation equations and by the liquid
volume fraction equation. We consider only the thermal energy, namely E “ ρcpT , where
T is the temperature and cp is the specific heat of the fluid. The hyperbolic terms on the
left hand side of the energy conservation Eq. (1.37c) are retained, i.e. BtE ` ∇ ¨ pEuq,
together with the conductive flux term ∇ ¨ qcond. We assume that piq the pressure varia-
tions produce negligible effects on the thermodynamic variables and that piiq the effects
of the energy dissipation caused by viscosity are small enough to be neglected. Because
of these two hypotheses, that are common to many contexts including lava flows, the
pressure and the viscous terms that were present in Eq. (1.37c) are not accounted. From
the Fourier Law of heat conduction (see §1.1.5.4, §2.1.5 and [81] for more details), the
conductive flux is qcond “ ´k∇T , then it descends that the term involving the divergence
of the conductive flux, that appears in the equation, becomes a Laplacian term as follows

´∇ ¨ qcond “ ´∇ ¨ p´k∇T q “ ∆pkT q

where the last equality holds because we assume that the thermal conductivity k is con-
stant for each fluid considered. This Laplacian term models the heat diffusion and, since
it involves derivatives of the unknown T , is moved at the left hand side. The resulting
equation for the energy conservation writes as

BpρcpT q

Bt
`∇ ¨ pρcpTuq ´∆pkT q “ 0

and describes only the transport and diffusion of the thermal energy. For the applications
of our interest, also the heat exchange phenomena must be considered, such as conduction
with the ground and convection and radiation heat losses with the environment. Conduc-
tion is implemented as a boundary condition (treated in Appendix A), while the radiative
and convective phenomena take place at the free surface, namely at the interface between
the two phases, and their implementation is described in the following two paragraphs
under the assumption that the liquid phase is hotter than the gaseous phase. Moreover,
we underline that, since we deal with a two phase model, we need to account the ther-
mophysical characteristics of both fluids, liquid and gas, so we introduce the following
parameters for both of them: the density ρl and ρg, the specific heat cp,l and cp,g, the
thermal conductivity kl and kg.
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2.2.2.1 Radiative heat loss term

From the Stefan-Boltzmann law, the radiative heat loss per unit surface that takes place
on the free-surface of the fluid is εσSBfpT 4 ´ T 4

envq, where ε is the emissivity, σSB is the
Stefan-Boltzmann constant, f is the fractional area of the exposed inner core and Tenv is
the environmental temperature, as described in §2.1.5.4. As this phenomenon happens
above the phase interface, for each control volume located at the interface of the two
fluids, the radiative heat loss is also proportional to the free surface area Afs related to
such control volume (see §2.2.2.2 for details about the differences between the 3D model
and the depth-averaged model). Since the energy equation is expressed per unit volume,
then it is necessary also to divide for the volume of each control volume, denoted as V ol.
Finally, the radiative contribution to add as source term to the energy equation is the
term:

´εσSBf
Afs
V ol

pT 4
´ T 4

envq.

2.2.2.2 Convective heat loss term

Convective heat loss is a transfer of heat referred to as the motion of a fluid. It takes
place between the surface of a hot body or of hot fluid, and a colder fluid (liquid or gas)
that is warmed from that, see §2.1.5.3 for a further description. For the applications of
our interest, we try to model the natural situation of a hot fluid moving on a surface
and exchanging heat with the environment. We would expect that the air in contact
with the fluid gets warmer and starts a convective motion, so that new fresh air would
get in contact with the fluid and little by little the fluid should cool down. Since we are
adopting an incompressible assumption, this natural situation cannot be described exactly.
In our case, even if the fluid warms the air because of the diffusion, there would never
be a density variation of the air: the warm air would remain close to the surface, getting
hotter and hotter, with the consequence that the fluid would not cool down as it naturally
should. Since the real event cannot be captured by our basic model, we compensate for
this disadvantage by adding a source term in the heat equation that accounts for the
supposed heat loss due to convection. This term will be active only on the fluid surface,
exactly as the radiative term.

The term describing the convective heat loss depends on the difference between the
fluid and the environment temperatures, it is proportional to the heat transfer coefficient
λ and to the fractional area of the exposed inner core f , as described in §2.1.5.3. As
observed for the radiative term in the previous section §2.2.2.1, also for the convective
heat loss term it is necessary to multiply for the area of the free surface Afs and divide
it by the volume V ol of the control volume. In summary, this term has the following
expression:

´λf
Afs
V ol

pT ´ Tenvq.

There is an additional consideration to make: since the convective heat loss is fully
described by this term, the heat diffusion between the two phases should not be present.
So, the diffusion at the phase interface is suppressed. Considering that the function
χΣpx, tq denotes the indicator function of the phase interface Σ, we use its complementary
function χ̄Σpx, tq as a coefficient of the Laplacian term to override the diffusion at the phase
interface. Finally, the complete energy equation is

BpρcpT q

Bt
`∇ ¨ pρcpTuq´ χ̄Σ∆pkT q “ ´

εσSBfAfs
V ol

`

T 4
´T 4

env

˘

´
λfAfs
V ol

`

T ´Tenv
˘

. (2.58)
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Further considerations

We compare the energy Eq. (2.58) of the 3D model with the temperature Eq. (2.42c)
derived for the depth-averaged model to highlight differences and similarities.

• The greatest difference is given by conservative variables. In the shallow wa-
ter model, it is hT [mK], the depth-averaged temperature referred to the whole
fluid thickness; in the 3D model, it is the thermal energy per unit volume ρcpT
[kg m´1s´2].

• In the shallow water case, T is the averaged value over all the fluid depth; in the
3D model, T represents the temperature of a single fluid parcel that is usually a
fraction of the entire depth.

• The temperature equation of the depth-averaged model is defined per unit surface,
instead, the energy equation of the 3D model is defined per unit volume. Hence,
in the shallow water model, the free surface area parameter Afs (that instead is
necessary in the 3D case) we simplified the radiative and convective terms. The
example of radiative heat transfer term for the depth-averaged case (that was derived
in §2.1.5.4) is shown:

´
εσSBf�

��Afs
ρcp�

��Afs

`

T 4
´ T 4

env

˘

“ ´
εσSBf

ρcp

`

T 4
´ T 4

env

˘

.

• In the 3D case, also the heat diffusion phenomenon is modeled, whereas it is missing
in the depth-averaged model. We could include it even in the shallow water model
by adding an appropriate Laplacian term.

• In the 3D case, the heat conduction with the ground concerns only the boundary
parcels of fluid that are at the ground, and is referred to as a boundary condition,
whereas the radiative and convective terms only involve the interface between the
phases. In the depth-averaged model, these three phenomena are instead accounted
together and for every fluid parcel, in fact each fluid parcel for which we write the
equation simultaneously includes the surface and the bottom of the fluid. Moreover,
in the shallow water model, conduction with the ground cannot be prescribed as a
boundary condition because the boundary, in such problems, is only constituted by
the lateral sides of the domain.

2.2.3 The final system

To sum up, the equations that we are going to solve are:

∇ ¨ u “ 0, (2.59a)
Bpρuq

Bt
`∇ ¨

`

ρuuT
˘

“ ´∇p`∇ ¨ τ ` ρg ` fΣ, (2.59b)

Btα `∇ ¨ puαq “ 0, (2.59c)
BpρcpT q

Bt
`∇ ¨ pρcpTuq ´ χ̄Σ∆pkT q “ ´

εσSBfAfs
V ol

`

T 4
´ T 4

env

˘

´
λfAfs
V ol

`

T ´ Tenv
˘

,

(2.59d)
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namely the continuity equation that under the assumption of constant density reduces
to a kinematic constraint, the equation for the momentum conservation, the α-equation
that permits to distinguish the two phases, and the energy equation that determines the
temperature. We have found again a system of PDES which falls into the framework
presented in §1.1.6.

2.3 Other models

In this section, we show some alternatives to our models which are present in the literature.
In §2.3.1, we introduce some multiphase modeling approaches different from the VOF that
we adopted for the 3D case. §2.3.2 is devoted to a review of the wide variety of possible
approaches to modeling lava flows that are different from the depth-averaged and 3D
models we employed.

2.3.1 Other multiphase models

A kind of method belonging to the group of the interface-capturing methods (see Fig-
ure 2.9b), alternative to VOF presented in §2.2.1, is the first appeared in literature. The
Marker-and-Cell (MAC) family, introduced by Harlow and Welsh [115], is characterized
by mass-less particles which are used as markers to locate the free surface; the mathemat-
ical model is enriched by adding specific equations involving these particles. According
to the classification introduced in §1.1.3, this may be considered as a “semi-Lagrangian”
method, since it couples the Lagrangian approach to model the markers with the Eulerian
one of the other equations. MAC allows to deal with well complex phenomena like wave
breaking or smoke diffusion, but on the other hand it is computationally very expensive
because of the large number of particles to track which corresponds to a large number of
other equations to add to the governing equations for the fluid flow, see Figure 2.11a.

From a numerical point of view, even though the VOF approach is more efficient than
the MAC method, the interface is usually smeared on one, two or three cells because of
the difficulties of computing the advection without any diffusion. For this reason some
numerical techniques that help to keep the interface sharp and compressed have been
developed (as will be presented in §4.2).

Another family of interface-capturing method was proposed by Osher and Sethian
[201] and it is based on the level set formulation. In this case a level set function φ is
defined onto the computational domain and the interface is defined by the iso-surface of
the value φ “ 0, while the function assumes on the other points a value expressing the
distance with sign from the interface. The two phases are simply associated with the sign
of the level set function, see Figure 2.11c, and the evolution of the interface is computed
by solving a transport equation for the level set function

Btφ`∇ ¨ puφq “ 0.

A great advantage of this method is that the function φ describing the interface is smooth,
whereas in the case of the VOF method the function α has a discontinuity exactly at the
interface, therefore we don’t find here the same difficulties to maintain the discontinuity.
On the other side, from a numerical point of view, when the level set function becomes
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too complicated (namely when the norm of the gradient of φ is far from the unity) then
it is reinitialized as the distance function from the interface, in order to allow to keep the
norm of the gradient close to the unity (avoiding ill-conditioning), see Min [193] for more
details. Moreover, the level set function is never involved in any conservation equation
therefore the level set method does not maintain exactly the mass unless doing some
modifications.

(a) Marker-and-Cell.
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(b) Volume of Fluid.

=0φ

<0φ

>0φ

(c) Level Set.

Figure 2.11: Methods belonging to the interface-capturing group.

2.3.2 Other existing models for lava flows

In this section, we provide a short overview of the existing models for lava flow simulations
(neglecting the depth-averaged and 3D models that we have treated in details). Models
might be classified as deterministic or stochastic, or according with the numerical approach
they are based on, as done in [52, 142].

Channeled models. Channeled models consider confined fluids that move in only one
direction, down-slope, unlike from the free flows that can spread also transversely. Since
this restriction simplifies the physical processes related to the fluid emplacement, this
model often treats complex thermal and rheological models. Also, channeled models are
used to study the behavior of fluids, for example, this model was employed in Lev and
James [164] to examine the influence of cross-sectional channel geometry on the rheology
and on the velocity and temperature profiles.

The main code implementing this approach is FLOWGO [116, 118, 119], which models
the dynamics of lava in a channel by considering the radiative and convective thermal
exchanges with the environment and the conductive one with the soil. The cooling rate
that results is used to determine a crystallization rate that affects the rheology as much
as the temperature directly. Codes of channeled models are fast to execute because do
not compute the fluid motion. Nevertheless, a model disadvantage is that it imposes
restrictions on the choice of the channel dimensions at the vent in order to match the
effusion rate inputs and, as already stated, the vent conditions influence the flow results
[270].

Cellular automata. The cellular automata approach is a popular 2D model. The
computational domain is discretized by a 2D grid of cells and each cell has attributes
such as altitude, fluid thickness, and fluid temperature. Dynamics is described through
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the variations of the properties of the cells with time and, for each cell, such variations
depend on the state of the neighboring cells. Complex thermal and viscosity models are
implemented. This model, at first, used the plastic rheology as a stop condition for the
flow, whereas, nowadays the stop criteria is determined by a solidification temperature,
defined a priori. Moreover, the model allows the solidified lava to become part of the
topography simply updating the altitude registered as a property of the cells.

Each code that implements cellular automata models has a different strategy for the
mass, momentum, and energy transfer between cells. Cellular automata codes are rela-
tively fast to run and some of the most known codes are MAGFLOW [17, 68, 98, 121, 263],
SCIARA [5, 7, 8, 60, 61, 62], FLOWFRONT [266, 280], and MOLASSES [49, 70, 155].

Nuclear-based models. There is a family of models for lava flows that was initially
born to model another event where the cooling of a hot fluid spreading on the topography
is observed: this family originates in the context of nuclear reactor safety. The acci-
dents of Three Mile Island, in 1979, and Chernobyl, in 1986, are nuclear reactor disasters
that induced the nuclear safety groups to control any potential accident in the reactor
containment in order to minimize off-site consequences. During a severe nuclear reactor
meltdown, it is fundamental that the fusion melt product (corium) quickly spread onto
the widest possible surface to extinguish it as fast as possible. Since this event is definitely
similar to the lava flow dynamics, the codes developed for the nuclear disaster simulations
can be used also by volcanologists.

Codes that implement this nuclear model are CORFLOW [275], CROCO [192], LAVA
[199], MELTSPREAD [82], RASPLAV [20], SAMPSON [124] and THEMA [247]. Even
though these codes implement a modified version of the cellular automata models in which
also the height is discretized with several cells (producing a multilayer model), there is
not the direct modeling of the free surface. The only further difference between nuclear
and lava models is the absence of the topography, hence its implementation is required to
convert these nuclear engineering codes to lava flow emplacement models. For example,
the code LavaSIM [124, 125, 228] was adapted to lava flow simulations [94].

Meshless and ‘bottom-up’ methods. The approaches described so far have the flow
model that depends on the topography, and this may be an expensive cause when the
computations require numerous re-meshing procedures. So, meshless methods may be
less expensive in terms of computational cost. Furthermore, the approaches described
previously are based on the so-called ‘top-down’ approach, in which a macroscopic system
is modeled by a system of PDEs. On the opposite, the meshless methods are built
according to a ‘bottom-up’ approach based on the description of microscopic systems.
The fluid is not seen as a continuum (so the Navier-Stokes equations are not adopted)
but composed of particles, and collision methods are employed to model their interactions
and hence to derive the dynamics. The Lattice Boltzmann methods (LBM) [205, 206] and
smoothed particles hydrodynamics (SPH) [122] are the most important approaches to the
bottom-up models.

Bottom-up methods are not so widely used in geosciences and only the SPH approach,
which is naturally 3D, has been applied to the lava flow simulations: an example of
application is presented in Herault et al. [122], others are in Bilotta et al. [18], Zago et al.
[281].

https://github.com/geoscience-community-codes/MOLASSES
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Stochastic models. The stochastic modeling approach produces probability distribu-
tions of the final fluid emplacement, instead of a unique solution. Such an approach
requires that a deterministic code runs several times with small changes in the parame-
ters in order to build the probability distribution. Even though in principle most codes
can be used for this application, only codes that are very fast to execute are used in prac-
tice. The fastest codes for fluid flows correspond to the most simplified models for which
the physical modeling is strongly simplified and the fluid is described as a gravity current
that moves following the topography steepest slope [72]. In the context of lava flows,
this also means that the viscosity and thermodynamic models may not be accounted for.
A drawback of the most simplified codes is the absence of stopping criteria for the flow
advance; furthermore, they have no description of the temporal evolution. Those codes
are used to create hazard flow maps. On the contrary, when using more accurate models,
e.g. the cellular automata-based codes, also the time evolution of the front propagation
is assessed.

DOWNFLOW is a probabilistic code for lava flow emplacement [83, 252] adopted also
recently to produce lava hazard maps [39, 254]. Even the code ELFM “Etna Lava Flow
Model” [64] is used lately for lava hazard maps [56, 246]. VORIS “Volcanic Risk Informa-
tion System” [84] is a topography-based code that has been also included in VOLCANBOX
[187] (a simple method for assessing volcanic hazards and risks). Other codes have been
developed, as LASZLO “lava flow zonation system using low-cost methods” [21], models
for random pahoehoe lava-lobe emplacement [103, 112], and the recent MULTIFLOW
[230].

Selection of the best code. The selection of a modeling approach and of a code must
be driven by the objectives to reach. As seen so far, the complexity described by the
physical model and the code execution speed are two aspects inversely proportional to
take into account, therefore the choice to do is usually a compromise between accuracy
and speed. On one hand, the stochastic codes have the most simplified physics to produce
faster results and can be of great support during an effusive event to forecast rapidly a
possible scenario according to the actual parameters derived from the direct observations
of the eruption. On the other hand, these models cannot describe the entire complexity
of the physical processes that, in turn, influence the dynamics. The deterministic codes
that take into account viscosity and thermodynamics, being relatively slower, are mostly
used in the phases before and post-eruption. To conclude, the best code is the one that
satisfies the current necessity of the user.
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Chapter 3

Numerical discretization of the
depth-averaged model

Due to the non-linearities present in the shallow water equations, it is possible to find
analytical solutions only in particular cases, and in general, a numerical approach is
adopted for their solution. When dealing with the numerical solution of depth-averaged
flow models, an important issue is properly tracking wet/dry fronts, i.e., the propagation
of interfaces between regions occupied by the flow (wet) and regions without flow (dry).
A large number of numerical models solving for the shallow water equations are based on
explicit finite volume schemes [28, 85, 157], and they adopt different strategies to deal with
wetting and drying. It is important to remark that the stability of any explicit scheme
is controlled by the Courant-Friedrichs-Lewy (CFL) condition (introduced and described
in the sections §1.2.2.2 and §1.2.9) and by the maximum characteristic speed of the gov-
erning equations, which depends on the square root of flow thickness. For this reason, a
numerical scheme producing negative thickness is not only physically unrealistic but also
results in numerical problems. A simple but effective method to capture wet/dry fronts
and to overcome these problems would be set to zero any negative thickness produced by
a numerical scheme, together with the corresponding velocities [14], but we observe that
this approach does not preserve the total mass of the system. In Godunov-type schemes,
other conservative methods have been proposed to treat wetting and drying [10, 170]. Our
approach for the spatial discretization is based on the KNP scheme described in section
§1.2.8, a central-upwind finite-volume scheme. On the one hand, such an approach guar-
antees the positivity of the solution, and on the other hand, it is able to capture steady
states (see Eq. (2.43) over complex topography, like those represented by a null velocity
and a flat free surface (like a lake at rest). In literature, methods able to preserve these
stationary states are generally called well-balanced methods [23]. However, in addition
to the numerical issues described above, computational instabilities may also arise in the
numerical simulation of wet/dry fronts when friction terms inversely proportional to flow
thickness are considered, like, for example, in the Manning formulation [183]. For this rea-
son, it is essential to employ appropriate numerical schemes for time discretization, such
as semi-implicit schemes [10, 14], or implicit-explicit Runge-Kutta methods [237, 238]. In
this work, we propose a combination of some of the above-mentioned existing techniques.
The spatial discretization is performed using a modified version of the central-upwind
finite volume scheme introduced by Kurganov and Petrova [158]. They developed a nu-
merical method to solve the classic shallow water equations basing on similar ideas to
those of the general KNP scheme treated in §1.2.8. We adapted such method to our
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depth-averaged modified model, derived in §2.1, proving that important properties like
well-balancing and positivity-preserving for near-dry states are satisfied, see section
§3.1. We couple this approach with an implicit-explicit Runge-Kutta technique employed
to the temporal discretization (proposed in [238] for the classical shallow water equations,
but not considered in [158]), where a suitable selection of the stiff terms to be treated
implicitly is performed in section §3.2. Clever use of complex arithmetic, described in sec-
tion §3.3, ensures an accurate computation of Jacobians, which is a necessary requirement
for the efficient solution of the implicit part of the scheme. That is a general technique
borrowed from [248] and has not yet been considered in the literature cited above. The
present combination of choices is new and appears quite efficient. The conservative and
positivity-preserving explicit central-upwind numerical scheme allows for robust and ac-
curate tracking of flow fronts. Meanwhile, the implicit treatment of nonlinear viscous
terms allows us to properly simulate steady-state equilibrium states and flow-stopping
conditions without the need for any ad-hoc empirical criteria. In §3.4 several numerical
simulations obtained with our modified scheme are presented.

Vectorial notation

We have to solve the system of Eqs. (2.40) or the system (2.42) and, for the sake of
simplicity, we present the numerical scheme for the one dimensional case. We already
gave some hints and details about the numerical discretization of a multidimensional
system in section §1.2.9 and for additional considerations the reader might consult the
discretization of the 2D version of a different shallow water model in de’ Michieli Vitturi
et al. [67]. We rewrite here the 1D version of the system (2.42)

Bpρhq

Bt
`
BpρhUq

Bx
“ ρR,

BpρhUq

Bt
`
B

Bx

`

βuρhU
2
˘

`
B

Bx

ˆ

1

2
ρgh2

˙

“ ´ρgh
B

Bx
B ´ ργU, (3.1)

BphT q

Bt
`
B

Bx

“`

βT T ` p1´ βT qTsoil
˘

hU
‰

“ ´H
`

ζ ´ ψ
˘`

T ´ Tsoil
˘

´W
“

ζT ` p1´ ζqTsoil´Tenv
‰

´ E
“`

ζT ` p1´ ζqTsoil
˘4
´ T 4

env

‰

`KU2 exp
“

´ bpT ´ Tref q
‰

`RTvent,

that is coupled with the state equation for the temperature dependent density

ρ “ mT ` ρ0.

Naming q the vector of conservative variables, we denote by fpqq the vector of the advec-
tive fluxes:

q “

»

–

ρh
ρhU
hT

fi

fl , fpqq “

»

—

—

–

ρhU

βuρhU
2 `

ρg

2
h2

`

βTT ` p1´ βT qT˚
˘

hU

fi

ffi

ffi

fl

,

where T˚ might represent Tsurf or Tsoil, depending on which system is considered. The
source terms of the equations are divided in two vectors Epqq and Spqq so that we can
write the 1D system in the vectorial form:

Bq

Bt
`
Bfpqq

Bx
“ Epqq ` Spqq. (3.2)
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When the first system of Eq. (2.40) is considered, the vectors of the source terms have
respectively the topography and the viscosity terms:

Epqq “

»

–

0
´ρghBx

0

fi

fl , Spqq “

»

–

0
´ργU

0

fi

fl ;

instead, if the second system of Eq. (2.42) is adopted, the vectors contain also the viscous
heating term, the effusion rate terms, and the conductive, convective and radiative heat
exchanges terms, respectively:

Epqq “

»

–

ρR
´ρghBx

K exp
`

´ bpT ´ Tref q
˘

`RTvent

fi

fl , Spqq “

»

–

0
´ργU
‹

fi

fl

where ‹ stands for

´H
`

ζ ´ ψ
˘`

T ´ Tsoil
˘

´W
“

ζT ` p1´ ζqTsoil ´ Tenv
‰

´ E
“`

ζT ` p1´ ζqTsoil
˘4
´ T 4

env

‰

.

The distinction between the two source terms will be exploited in §3.2.

3.1 Spatial discretization
In order to apply a Finite Volume scheme, according to §1.2, the domain is divided into a
uniform grid of width ∆x, and for each cell we denote by xi its midpoint and indicate by
Ci “

”

xi´ 1
2
, xi` 1

2

ı

the i-th cell. An important feature of a numerical scheme is a proper
treatment of the topography. Here, as a preliminary step, the original topography Bpxq
is approximated by a continuous linear-piecewise function rBpxq, as shown in Figure 3.1,
whose values rBi` 1

2
at the interfaces xi` 1

2
are obtained by averaging the limits of Bpxq

from both the sides

rBi` 1
2

:“
Bpxi` 1

2
q` `Bpxi` 1

2
q´

2
, with Bpxi` 1

2
q
˘ :“ lim

δxÑ0˘
Bpxi` 1

2
` δxq.

The approximation rB and its derivative are used for the finite-volume numerical dis-
cretization in the cell Ci of the second component of the source term Epqq:

1

∆x

ż x
i` 1

2

x
i´ 1

2

p´ρghBxqdx « ´gρihi

rBi` 1
2
´ rBi´ 1

2

∆x
. (3.3)

We denote by Qi the approximation of the average of qp¨, tq over the i-th cell

Qiptq «
1

∆x

ż x
i` 1

2

x
i´ 1

2

qpx, tqdx ,

then we apply a semi-discretization of Eqs. (3.2) obtaining the following system of ODEs
in each cell:

d

dt
Qiptq “ ´

Fi` 1
2
ptq ´ Fi´ 1

2
ptq

∆x
` Eiptq ` Siptq (3.4)

where Fi˘ 1
2
are the numerical fluxes, here defined accordingly with Kurganov and Petrova

[158] (KP in the following). Our modified version of the central-upwind finite volume KP
scheme is briefly summarized in the following steps (see the original reference [158] for
details).
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Figure 3.1: Piecewise linear approximation of the bottom. The purple line represents the bottom
topography function Bpxq, the green line shows its continuous piecewise linear approximation
rBpxq.

(1) Solution reconstruction. From the values of the conservative variables Q, we
obtain an additional set of variables P “ rw,U, T sT (where w :“ h ` B denotes the
free-surface height), by using the following relations

h “
Qp1q ´mQp3q

ρ0

, T “
Qp3q

h
, ρ “ mT ` ρ0, U “

Qp2q

ρh

(Qpjq denotes the j-th component of Q) and we use their discretized values in most of
our computations, differently from [158]. When the height h is very small, an appropriate
de-singularization procedure is necessary, in order to prevent inaccuracies in velocity and
temperature values. To do that, we adopt the following expressions to compute the
temperature and velocity values instead of the previous ones

T “

?
2hQp3q

a

h4 `maxph4, εq
, U “

?
2hQp2q

ρ
a

h4 `maxph4, εq

where ε is a small a-priori chosen positive number, according to the analogous formulas
suggested in [158] for the set of conservative variables.

By using the cell values tPiui calculated from the cell averages tQiui, we define a
discontinuous piecewise linear reconstruction over each cell:

rPipxq “ Pi ` σipx´ xiq, xi´ 1
2
ă x ă xi` 1

2
, @i, (3.5)

where the slopes tσiui are computed by using a suitable geometric limiter. One choice
of slope (that gives second-order accuracy for smooth solutions) is given by the minmod
limiter, defined in Eq. (1.92), applied to each component. An other example of choice for
the slope is offered by the generalized minmod limiter, defined as

σi “ minmod

ˆ

θ
Qi ´Qi´1

∆x
,
Qn
i`1 ´Qi´1

2∆x
, θ

Qi`1 ´Qi

∆x

˙

, (3.6)

where θ is a suitable parameter and the minmod function is defined as follows:

minmod pa1, a2, . . . q “

$

’

&

’

%

minjtaju, if aj ą 0 @j,

maxjtaju, if aj ă 0 @j,

0, otherwise.
(3.7)
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The reconstructed solution might be discontinuous at the interfaces points xi` 1
2
, then

we define PL
i` 1

2

and PR
i` 1

2

as the left and right side values of the reconstructed solution
respectively, represented in Figure 3.2

PL
i` 1

2

:“ Pi `
∆x

2
σi , PR

i` 1
2

:“ Pi`1 ´
∆x

2
σi`1.

~

xi 1
2

xi 1
2

LPi 1
2

RPi 1
2

RPi 1
2 Pi

Pi
Pi 1

Pi 1

~
Pi 1

LPi 1
2

~
Pi 1

Figure 3.2: Solution reconstruction. The black lines represent the piecewise constant recon-
struction of the Pi variables, the green lines depict the linear reconstructions trPiui.

In addition, a suitable correction is needed for the reconstructed values wL{R
i` 1

2

of the

first components, in order to preserve the positivity of each h
L{R

i` 1
2

:“ w
L{R

i` 1
2

´ rBi` 1
2
, not

guaranteed by the geometric limiters. In order to give the idea about how such problem
may rise, one considers the situation represented in Figure 3.3 where the generalized
minmod limiter (3.6)) is applied for the linear reconstruction of w. In such configuration,
despite the adoption of a geometric limiter, the reconstruction in the i-th cell produces
that wL

i` 1
2

ă Bi` 1
2
, hence there is a negative value of the thickness hL

i` 1
2

ă 0, which is
physically unacceptable.
A correction to the reconstruction of w is necessary in two cases:

• if wL
i` 1

2

ă rBi` 1
2
,

• if wR
i´ 1

2

ă rBi´ 1
2
.

The first case is portrayed in Figure 3.4, and when this situation occurs, then the value
of wL

i` 1
2

is set equal to the topography, the slope of the linear reconstruction is updated
using the cell center value and the corrected value at the interface, while wR

i´ 1
2

is obtained
computing the linear reconstruction in the i-th cell:

wL
i` 1

2
“ rBi` 1

2
ùñ wR

i´ 1
2
“

wL
i` 1

2

´ wi

∆x{2
pxi´ 1

2
´ xi` 1

2
q ` rBi` 1

2

“ ´

rBi` 1
2
´ wi

∆x{2
∆x` rBi` 1

2

“ 2wi ´ rBi` 1
2
.

The other case is corrected analogously, so we resume the two procedures as:
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Figure 3.3: Negative thickness. The green lines represent the piece-wise linear continuous
reconstruction of the bottom rBpxq and the black dots are the cell values of w “ B`h. Left: the
dashed lines are the three slopes that are compared from the generalized minmod limiter (3.6)
to determine the slope to use for the reconstruction over the i-th cell; the blue line refers to the
slope effectively accounted by the limiter. Right: The blue line is the reconstruction over the
i-th cell with the limiter: the reconstructed value at the interface wL

i` 1
2

produces the negative

value of the thickness hL
i` 1

2

.

L L~

~

~

~

~

~

Figure 3.4: Correction of h. The green lines represent the piece-wise linear continuous recon-
struction of the bottom rBpxq, the black dots are the cell values of w “ B ` h and the blue lines
are the linear reconstruction of w in the i-th cell. Left: the current reconstruction of w shows a
problematic value of wL

i` 1
2

that must be corrected. Right: the reconstruction of w was corrected.

• if wL
i` 1

2

ă rBi` 1
2
, then set wL

i` 1
2

“ rBi` 1
2
ùñ wR

i´ 1
2

“ 2wi ´ rBi` 1
2
;

• if wR
i´ 1

2

ă rBi´ 1
2
, then set wR

i´ 1
2

“ rBi´ 1
2
ùñ wL

i` 1
2

“ 2wi ´ rBi´ 1
2
.

The solution reconstruction is a key point to guarantee the well-balancing property
of a numerical scheme. In §3.1.1, we show that the method introduced here continues to
guarantee this property, even if the equations are modified and the linear reconstruction
is computed for a different set of variables with respect to [158].

(2) Values of the conservative variables at the interfaces. From the values PL
i` 1

2

and PR
i` 1

2

of our variables at the interfaces, we compute QL
i` 1

2

and QR
i` 1

2

, namely the values
of the conservative variables at the interfaces:

Qp1q
“
`

mPp3q
` ρ0

˘

loooooomoooooon

ρ

`

Pp1q
´B

˘

looooomooooon

h

, Qp2q
“ Qp1qPp2q, Qp3q

“
`

Pp1q
´B

˘

Pp3q.
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(3) Estimation of the local speed through the interfaces. The reconstructed
solution propagates with right-sided and left-sided local speeds a˘

i` 1
2

, which are estimated
in terms of the eigenvalues of the Jacobian of f . We denote the Jacobian as f 1 and it is
as follows:

f 1pqq “

»

—

—

–

0 1 0

´βuU
2 ` gh 2βuU 0

´βTUT {ρ βTT {ρ` p1´ βT qT˚{ρ βTU

fi

ffi

ffi

fl

.

This Jacobian has three eigenvalues, that are the elements of this spectrum:

Sp pf 1q “

"

βu U ˘
a

βupβu ´ 1qU2 ` gh, βTU

*

. (3.8)

The velocities of propagation of the reconstructed solution at the interfaces depend on
the maximum and minimum eigenvalues of the Jacobian evaluated at Q

R{L

i` 1
2

:

a`i`1{2 “ max

"

λmax

´

f 1
´

QR
i` 1

2

¯¯

, λmax

´

f 1
´

QL
i` 1

2

¯¯

, 0

*

,

a´i`1{2 “ min

"

λmin

´

f 1
´

QR
i` 1

2

¯¯

, λmin

´

f 1
´

QL
i` 1

2

¯¯

, 0

*

.

(3.9)

The computation of U is requested also here, but in this occasion the de-singularization
is not necessary: we did it previously passing to the set of variables P, with those values
we have done the linear reconstruction, and since we have used geometric limiters, then
all the velocities are limited at the interfaces.

(4) Computation of the numerical flux. We adopt the numerical flux expression
used in [158], that is:

Fi` 1
2
ptq “

a`
i` 1

2

f
`

QL
i` 1

2

q
˘

´ a´
i` 1

2

f
`

QR
i` 1

2

q
˘

a`
i` 1

2

´ a´
i` 1

2

`

a`
i` 1

2

a´
i` 1

2

a`
i` 1

2

´ a´
i` 1

2

”

QR
i` 1

2
´QL

i` 1
2

ı

(3.10)

where the first term on the right side is an average of the evaluated fluxes weighted with
the speeds of propagation, because the total flux at the interface depends both on the
left-going and on the right-going fluxes, each weighted with the maximum speed in that
direction. Notice that the time dependence of the right term, although it is omitted
explicitly, belongs to both a˘

i` 1
2

and Q
R{L

i` 1
2

.

Summarizing the differences with respect to [158], the model equations (3.1) we refer
to are richer, since we have an additional equation for the temperature transport, corrector
coefficients βu and βT inside the flux terms, more source terms and also a variable density.
From the numerical point of view, a major difference between our scheme and the original
KP scheme is that we pass forward and backward to the set of variables P to compute
the solution reconstruction of the conservative variables at the interfaces. Moreover, the
presence of the corrector coefficients βu and βT impacts over the scheme by affecting the
local speed of propagation.
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3.1.1 Well-balancing property

As stated before, the modifications introduced here to the numerical scheme presented in
[158] continue to guarantee the well-balancing property for stationary steady states. We
provide a sketch of proof of this property.

One recalls that the stationary steady-state solutions of our system consist of null
velocity and constant conditions for both free surface height, temperature and density
(see equations (2.43)). In such cases, from the system of equations (3.2) we obtain:

Bx

ˆ

1

2
ρgh2

˙

“ ´ρghBx. (3.11)

By proving that the equality (3.11) is preserved also by the numerical discretization fo
the two terms, we confirm the well-balancing of the numerical scheme.

The flux term on the left side is discretized with the numerical fluxes F
p2q

i´ 1
2

and F
p2q

i` 1
2

defined in Eq. (3.10). Since velocity is null, the conservative variable Qp2q “ ρhU is null
too, therefore the numerical flux at the right interface of the cell i reduces to:

F
p2q

i` 1
2

“

a`
i` 1

2

f p2q
`

QL
i` 1

2

˘

´ a´
i` 1

2

f p2q
`

QR
i` 1

2

˘

a`
i` 1

2

´ a´
i` 1

2

, (3.12)

where the flux values at the sides of the interfaces are given by f p2q
`

Q
L{R

i` 1
2

˘

“ 1
2
ρ
L{R

i` 1
2

g
`

h
L{R

i` 1
2

˘2.
According to the numerical scheme, the linear reconstruction is applied to the free surface
w “ h`B to find its interface values wL

i` 1
2

and wR
i` 1

2

, from which we derive the interface
values of h as

hL
i` 1

2
“ wL

i` 1
2
´ rBi` 1

2
, hR

i` 1
2
“ wR

i` 1
2
´ rBi` 1

2
.

As the total thickness w “ h`B is constant, its reconstructed values on the left and right
sides of each interface are equal, hence the same condition descends for h:

wL
i` 1

2
“ wR

i` 1
2
ñ hL

i` 1
2
“ hR

i` 1
2
.

From the assumption of constant density, we also have ρL
i` 1

2

“ ρR
i` 1

2

“ ρ and from now
we neglect the L{R notation for the interface values of h and ρ. According with these
considerations, the numerical flux simplifies its expression

F
p2q

i` 1
2

“

a`
i` 1

2

”

1
2
ρg
`

h
i` 1

2

˘2
ı

´ a´
i` 1

2

”

1
2
ρg
`

h
i` 1

2

˘2
ı

a`
i` 1

2

´ a´
i` 1

2

“
1

2
ρg
`

hi` 1
2

˘2

and the complete discretization of the flux term on the LHS of the stationary state Eq.
(3.11) becomes

F
p2q

i` 1
2

´ F
p2q

i´ 1
2

∆x
“

1

2∆x
ρg
”

`

hi` 1
2

˘2
´
`

hi´ 1
2

˘2
ı

“ ρghi
hi` 1

2
´ hi´ 1

2

∆x
, (3.13)

where, because of the linearity of the interface reconstruction, hi is the average of the
interface values.



3.1. SPATIAL DISCRETIZATION 127

We observe that the discretization of the right term of Eq. (3.11), given by Eq. (3.3),
can be written in the following equivalent way

´ gρihi

rBi` 1
2
´ rBi´ 1

2

∆x
“ ´gρhi

´

wi` 1
2
´ hi` 1

2

¯

´

´

wi´ 1
2
´ hi´ 1

2

¯

∆x
. (3.14)

Because of the constant condition on the free surface, we have that wi´ 1
2
“ wi` 1

2
and,

by canceling these terms in the previous equation, we find the same expression as in Eq.
(3.13), so we conclude the proof.

3.1.2 Positivity-preserving property

Kurganov and Petrova [158] proved that, for their model, an explicit temporal discretiza-
tion of the central-upwind scheme with an appropriate choice of the time step, is not only
well-balanced, but also positivity preserving for h. Despite the differences from them, for
our modified scheme their result is still valid, but with an additional condition over the
β coefficients in the flux terms of Eq. (3.1).

We premise in a specific lemma the nontrivial adjustments to the proof of the corre-
sponding result in [158].

Lemma 3.1. If the condition maxpβu, βT q ě 1 is verified, then for each interface the
following inequalities hold:

paq a´
i` 1

2

ď UR
i` 1

2
, pbq a´

i` 1
2

ď UL
i` 1

2
, pcq a`

i` 1
2

ě UR
i` 1

2
, pdq a`

i` 1
2

ě UL
i` 1

2
.

Proof 3.1. (a) We start by distinguishing the different cases of positive or negative
velocities. In the first case 0 ď UR

i` 1
2

, and by definition a´
i` 1

2

ď 0, therefore the thesis

follows. Instead when UR
i` 1

2

ă 0 it is sufficient to show that λmin

´

f 1
´

QR
i` 1

2

¯¯

ď UR
i` 1

2

.
A simple check shows that, for any q, the matrix f 1pqq is block lower triangular; if

f 1upqq denotes its leading (full) 2ˆ 2 principal submatrix, then the relations

λmin

´

f 1pqq
¯

“ min

"

λmin

´

f 1upqq
¯

, βTU

*

, λmax

´

f 1pqq
¯

“ max

"

λmax

´

f 1upqq
¯

, βTU

*

hold.
Now we suppose by contradiction that λmin

´

f 1
´

QR
i` 1

2

¯¯

ą UR
i` 1

2

, so that on one hand
βTU

R
i` 1

2

ą UR
i` 1

2

which implies βT ă 1 because the velocity is assumed negative. On

the other hand, at the same time we must have λmin

´

f 1u

´

QR
i` 1

2

¯¯

ą UR
i` 1

2

so that every
eigenvalue of f 1u is greater than the velocity; this would imply

tr
´

f 1u

´

QR
i` 1

2

¯¯

ą 2UR
i` 1

2
,

where trp¨q denotes the trace of a matrix which equals the sum of its eigenvalues. A direct
computation of the diagonal entries in the Jacobian shows that

tr
´

f 1u

´

QR
i` 1

2

¯¯

“ 2βuU
R
i` 1

2
, (3.15)

but since we are considering a negative velocity this is equivalent to βu ă 1, which conflicts
with the lemma hypothesis since we have proved that βT ă 1.
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(b) The proof is the same as the previous one, with the difference that λmin

´

f 1
´

QL
i` 1

2

¯¯

must be compared with UL
i` 1

2

.
(c) Again we distinguish the cases of positive and negative velocity. In the case where

UR
i` 1

2

ď 0, the thesis immediately follows by the definition of the propagation speed, for
which a`

i` 1
2

ě 0. Instead if UR
i` 1

2

ą 0, we apply the same argument as in (a): suppose by

contradiction that λmax

´

f 1
´

QR
i` 1

2

¯¯

ă UR
i` 1

2

so that both the conditions βTUR
i` 1

2

ă UR
i` 1

2

(from which βT ă 1 follows) and λmax

´

f 1u

´

QR
i` 1

2

¯¯

ă UR
i` 1

2

hold. On one hand,

tr
´

f 1u

´

QR
i` 1

2

¯¯

ă 2UR
i` 1

2
;

on the other hand, from (3.15) the positive sign of velocity yields βu ă 1, which contradicts
the condition on the β coefficients.

(d) The proof is the same as the previous one, with the difference that we must
compare λmax

´

f 1
´

QL
i` 1

2

¯¯

with UL
i` 1

2

.

Now consider the system of ODEs (3.4) and the central-upwind semi-discrete scheme
described above. Assume, as a first instance, that the system is solved by the forward
Euler method, which produces a time sequence tQn

i ui of approximations (from which the
current value of the height hni is retrieved).

Theorem 3.2. Suppose that, for all i, hni ě 0. Then, for all i, hn`1
i ě 0, provided that

(i) maxpβu, βT q ě 1,

(ii) ∆t ď
∆x

2a
, where a :“ maxi

"

max
!

a`
i` 1

2

, ´ a´
i` 1

2

)

*

and a˘
i` 1

2

are the local speeds

estimated at step 3.

Proof 3.2. We report only a brief sketch of the proof because it is mainly similar to that
presented in Kurganov and Petrova [158] under the same premises, where further details
are offered.

Since we are interested in the behaviour of hn`1
i , we focus on the first equation of

the system discretized by the forward Euler method; then we rearrange the expression by
using the definition (3.10) of the numerical flux at the interfaces and by considering the
value of hni as the average of the reconstructed values at the interfaces. We obtain the
following expression for hn`1

i , where λ “ ∆t{∆x

hn`1
i “ hR

i´ 1
2

«

1

2
`
`

λa´
i´ 1

2

˘

˜

a`
i´ 1

2

´ UR
i´ 1

2

a`
i´ 1

2

´ a´
i´ 1

2

¸ff

` hL
i` 1

2

«

1

2
´
`

λa`
i` 1

2

˘

˜

UL
i` 1

2

´ a´
i` 1

2

a`
i` 1

2

´ a´
i` 1

2

¸ff

`hL
i´ 1

2

`

λa`
i´ 1

2

˘

˜

UL
i´ 1

2

´ a´
i´ 1

2

a`
i´ 1

2

´ a´
i´ 1

2

¸

` hR
i` 1

2

`

´ λa´
i` 1

2

˘

˜

a`
i` 1

2

´ UR
i` 1

2

a`
i` 1

2

´ a´
i` 1

2

¸

(3.16)

where all the RHS terms are considered at time tn, but, in order to simplify the notation,
we have omitted the superscripts n. Thus hn`1

i is a linear combination of the previous
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values at the interfaces hR{L
i˘ 1

2

with suitable coefficients. The special reconstruction proce-

dure at the interfaces guarantees that all hR{L
i˘ 1

2

ě 0. From the definition of the propagation
speeds (3.9) it follows that a`

i´ 1
2

ě 0, a´
i` 1

2

ď 0, a`
i˘ 1

2

´ a´
i˘ 1

2

ě 0. Thanks to assumption
(i), we apply Lemma 3.1 which implies

0 ď
a`
i˘ 1

2

´ UR
i˘ 1

2

a`
i˘ 1

2

´ a´
i˘ 1

2

ď 1 and 0 ď
UL
i˘ 1

2

´ a´
i˘ 1

2

a`
i˘ 1

2

´ a´
i˘ 1

2

ď 1.

By adding the further CFL condition λa ď 1{2 ensured by assumption (ii), we conclude
that all the coefficients in (3.16) are non-negative, therefore the fluid depth computed
at the next time level hn`1

i is a sum of non-negative terms for all i, and the proof is
completed.

Remark 3.1. In the 2D case, assumption (ii) becomes ∆t ď min
!∆x

4a
,
∆y

4b

)

, where ∆x,∆y

are the spatial steps along the two horizontal directions whereas a, b are the maximum
local speeds of propagation at interfaces along the x- and y-axis respectively. Assumption
(i) does not change and the proof of the analogous of Lemma 3.1 is essentially the same:
the Jacobians are 4ˆ4 matrices but keep a block triangular structure (up to permutation
as H1pqq is concerned), according to the spectra displayed in (2.45).

Moreover, our derivation of βu from a velocity profile never leads to a value less than
1, so that assumption (i) is always true. In fact, for any arbitrary profile upx, z, tq the
equality

ż B`h

B

u2
px, z, tq dz “ βu hU

2

must be imposed, as we have seen in (2.9) for the parabolic profile. If we consider for
each px, tq the L2 space over the set tz : B ď z ď B ` hu, the left side of the equation
sees the squared L2 norm of u; by Schwarz inequality,

}u}2L2 ě
|xu, 1yL2 |2

}1}2L2

where the inner product in the numerator corresponds to
şB`h

B
upx, z, tqdz “ hUpx, tq

whereas the denominator equals h. Therefore βu hU2 ě phUq2{h so that βu ě 1.
The proposal in literature by Costa and Macedonio [55] for lava flows considered all

the correction factors in the range 0.5–1.5, independently on their derivation. A value of
βu ă 1 makes the PDE system non-hyperbolic, but our theorem is still valid provided
that such a choice is balanced by a parameter βT ě 1 in order to verify assumption (i),
even though this is not the case for the particular temperature profile we have assumed.

Theorem 3.2 is stated assuming the forward Euler method for the time discretization
of hyperbolic terms; instead, we use higher-order methods belonging to the family of
Strong Stability Preserving (SSP) Runge-Kutta (R-K) schemes, see §3.2. However, a
similar positivity preserving property is proved for all these methods, since any SSP R-K
method is expressible as a convex combination of intermediate Forward Euler steps, see
Gottlieb et al. [108]. Hence, Theorem 3.2 can be applied to each step of the combination
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provided that ∆t is sufficiently small (in order to satisfy the theorem assumption (ii)
for each intermediate Euler method), ensuring the positivity preserving property for the
whole SSP R-K method.

Remark 3.2. It is important to observe that, for each Euler term in the combination, the
time step condition required by Theorem 3.2 depends on a, i.e., the maximum propagation
velocity of the solution at interfaces evaluated at the considered term. Therefore the
explicit determination of a global restriction for ∆t (valid for the whole combination) is
not so simple since we should estimate the evolution of a values during the intermediate
steps of the R-K method.

3.2 Time discretization

In this section we present an Implicit-Explicit (IMEX) Runge-Kutta schemes to solve the
system (3.4). These methods have been proposed by Pareschi and Russo [204] to solve
stiff systems of differential equations written in this general form:

d

dt
Q “ FpQq ` SpQq, (3.17)

where SpQq is the “stiff term”. We write our problem in the same way by defining FpQq
as the spatial discretization of ´Bxfpqq ` Epqq in (3.2). In our situation the stiffness of
SpQq is due to the high viscosity, when γ " 1 in the momentum equation. In fact, the
characteristic time of the source term is much smaller than the characteristic time of the
advective part of the equations, hence the problem is said to be stiff and these kind of
problems are generally difficult to solve numerically in an efficient way. A trivial solution
is treating all the system explicitly and using a very small time step to ensure the stability
of the scheme, but this approach results in long computational times.

In our scheme this limit has been overcome by applying an Implicit-Explicit method.
An IMEX ν-stage Runge-Kutta scheme consists of applying an implicit discretization to
the stiff term and an explicit one to the non stiff terms. Applying the scheme to the
system (3.17) we obtain

Qplq
“ Qn

`∆t
l´1
ÿ

k“1

ãlkFpQpkq
q `∆t

ν
ÿ

k“1

alkSpQ
pkq
q, l “ 1, . . . , ν (3.18)

Qn`1
“ Qn

`∆t
ν
ÿ

k“1

ω̃kFpQpkq
q `∆t

ν
ÿ

k“1

ωkSpQ
pkq
q. (3.19)

The choice of the ν ˆ ν matrices Ã “ pãlkq, where ãlk “ 0 for l ě k, and A “ palkq and of
the vectors ω̃ “ pω̃1, . . . , ω̃νq

T and ω “ pω1, . . . , ωνq
T characterizes the different schemes.

The IMEX Runge-Kutta schemes is presented by a double tableau in the usual Butcher
notation,

c̃ Ã

ω̃T

c A

ωT
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where the coefficients c̃ and c, used for the treatment of non autonomous systems (which
is not our case), are given by the usual relations

c̃l “
l´1
ÿ

k“1

ãlk, cl “
l
ÿ

k“1

alk.

In all these schemes the implicit tableau corresponds to an L-stable scheme, that is
ωTA´1e “ 1, where e is a vector whose components are all equal to 1. Tables 3.1 and 3.2
report examples of schemes, taken from Russo [238], adopted for the proposed numerical
simulations in §3.4. Even though we choose couples with the same number of stages ν for
both schemes according to Eqs. (3.18)–(3.19), it is possible to use schemes with different
stages. For this reason in these Tables the classical notation ps, σ, pq is adopted, where
s indicates the number of stages of the implicit scheme, σ the number of stages of the
explicit scheme and p is the order of the IMEX scheme.

Table 3.1: Tableau for the Explicit (left) Implicit (right) IMEX-SSP(2,2,1) R-K scheme.

0 0 0
1 1 0

1 0

0 0 0
1 0 1

0 1

Table 3.2: Tableau for the Explicit (left) Implicit (right) IMEX-SSP(3,3,2) R-K scheme.

0 0 0 0
1/2 1/2 0 0
1 1/2 1/2 0

1/3 1/3 1/3

1/4 1/4 0 0
1/4 0 1/4 0
1 1/3 1/3 1/3

1/3 1/3 1/3

The algebraic equations obtained at each step (which must be solved implicitly)
are treated simply and efficiently by adopting diagonally implicit Runge-Kutta (DIRK)
schemes (alk “ 0, for k ą l), which lead to a sequence of equations for a single Qplq and,
in addition, guarantee that F is always evaluated explicitly.

3.2.1 IMEX Runge-Kutta schemes

When using DIRK schemes, at each internal Runge-Kutta step we have an implicit prob-
lem for all the cells of the domain. In fact, by applying a DIRK scheme to the ordinary
differential equations (3.4) we obtain

Q
plq
i “ Qn

i `∆t
l´1
ÿ

k“1

ãlk

˜

´

F
pkq

i` 1
2

´ F
pkq

i´ 1
2

∆x
`E

pkq
i

¸

`∆t
l
ÿ

k“1

alkSpQ
pkq
i q, l “ 1, . . . , ν (3.20)

Qn`1
i “ Qn

i `∆t
ν
ÿ

k“1

ω̃k

˜

´

F
pkq

i` 1
2

´ F
pkq

i´ 1
2

∆x
` E

pkq
i

¸

`∆t
ν
ÿ

k“1

ωkSpQ
pkq
i q. (3.21)
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Furthermore SpQ
pkq
i q depends only on the solution in the cell i, thus, for each Runge-

Kutta step, we have to solve n independent implicit problems, one for each cell of the
domain.

All the implicit problems are solved by using a functional iterative method. For
simplicity, we rewrite the equation (3.20) as follows:

Q
plq
i “ Qn

i `∆t
l´1
ÿ

k“1

ãlk

˜

´

F
pkq

i` 1
2

´ F
pkq

i´ 1
2

∆x
` E

pkq
i

¸

`∆t
l´1
ÿ

k“1

alkSpQ
pkq
i q `∆t ¨ allSpQ

plq
i q,

which is simply expressible as

Q
plq
i ´ Λi ´∆t ¨ allSpQ

plq
i q “ 0 ðñ ΓpQ

plq
i q “ 0

where the term Λi contains the explicit part of the equation (3.20), which can be evaluated
once during the iterative computation of the solution Q

plq
i .

We apply the Newton-Raphson method [200] to the problem Γpxq “ 0 obtaining
#

xp0q “ Qn
i

xpk`1q “ xpkq ´ J
´1
|xpkq

¨ Γpxpkqq
(3.22)

where J´1
|xpkq

is the inverse of the Jacobian of the function Γ evaluated at xpkq. The Newton-
Raphson method is second order convergent, its computational cost depends on the cost
of computing derivatives in the entries of the Jacobian and on the cost of the Jacobian
inversion, in addition Newton-Raphson method suffers for a bad choice of the initial guess
for the iterations (this motivates our choice given by the variables computed at the pre-
vious time). We underline here that the inversion of the Jacobian is not computationally
expensive, since J is a m ˆ m matrix, where m is the number of the equations having
terms treated implicitly, for example in the 2D case m “ 3.

3.3 Derivative approximation through complex num-
bers

The solution of the linear system appearing in (3.22) requires an accurate numerical
evaluation of the Jacobian matrix J , i.e. the partial derivatives of Γ with respect to
the components of x. Due to the strong non-linearity of SpQq, it is not convenient to
determine analytically the derivatives.

A common method to estimate the first derivative is the first-order forward-difference
formula and higher order extensions which increase the stencil by using Taylor series
expansion. However, when estimating sensitivities using finite-difference formulas we are
faced with the “step-size dilemma”, that is the desire to choose a small step size to minimize
truncation error while avoiding the use of a step so small that errors due to subtracted
cancellation become dominant.

A way to overcome this problem is to use complex functions. The first use of complex
variables to estimate derivatives starts with the work of Lyness [180], Lyness and Moler
[181]. They introduced a reliable method for computing the derivatives of an analytic
function, and later Squire and Trapp [248] obtained a very simple expression for estimating



3.3. DERIVATIVE APPROXIMATION THROUGH COMPLEX NUMBERS 133

the first derivative. It has been shown that this estimation is very accurate, extremely
robust and easy to implement, with a reasonable computational cost. Recently it has
been used for sensitivity analysis in computational fluid dynamics and further research
on the subject has been carried out [3, 185, 186].

Let’s see more in detail the theory behind the estimation of derivatives using complex
variables. Consider a function gpxq : C Ñ C, g P C1pCq and assume that upx ` iyq “
Rpgpx ` iyqq and vpx ` iyq “ Ipgpx ` iyqq so that gpzq “ upx ` iyq ` ivpx ` iyq, where
i denotes the imaginary unit and Rp¨q, Ip¨q stand for the real or imaginary part of a
complex number respectively.

Then the Cauchy-Riemann equalities hold:

Bu

Bx
“
Bv

By
,

Bu

By
“ ´

Bv

Bx
; (3.23)

thanks to these equalities we can write for instance

Bu

Bx

ˇ

ˇ

ˇ

ˇ

px`iyq

“ lim
hÑ0

vpx` ipy ` hqq ´ vpx` iyq

h
, (3.24)

where h is a real number.
When a function f P C1pRq can be extended to a new f̃ : C Ñ C, f̃ P C1pCq such

that f̃pxq “ fpxq, @x P R, by using the relation (3.24) we have

BRpf̃q
Bx

ˇ

ˇ

ˇ

ˇ

px`iyq

“ lim
hÑ0

Ipf̃px` ipy ` hqqq ´ Ipf̃px` iyqq
h

(3.25)

and finally by posing y “ 0 we obtain

BRpf̃q
Bx

ˇ

ˇ

ˇ

ˇ

pxq

“ lim
hÑ0

Ipf̃px` ihqq ´ Ipf̃pxqq
h

ùñ
Bf

Bx

ˇ

ˇ

ˇ

ˇ

pxq

“ lim
hÑ0

Ipf̃px` ihqq
h

.

For a small discrete h, this can be approximated by

Bf

Bx

ˇ

ˇ

ˇ

ˇ

pxq

« pf 1pxqqCS “
Ipf̃px` ihqq

h
.

This is called the complex-step derivative approximation. This estimation is not subject
to subtractive cancellation errors, since it does not involve a difference operation. To see
the improvements with respect to the finite differences, we try to approximate the first
derivative of the analytic function

fpxq “
x2

1` x4

at x “ 0.25. We compare the complex-step derivative approximation with the first order
forward differences

pf 1pxqqF1 “
fpx` hq ´ fpxq

h
,
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the first order backward differences

pf 1pxqqB1 “
fpxq ´ fpx´ hq

h
,

the second order central differences

pf 1pxqqC2 “

f
´

x` h
2

¯

´ f
´

x´ h
2

¯

h
,

the second order forward differences

pf 1pxqqF2 “
´fpx` 2hq ` 4fpx` hq ´ 3fpxq

2h
,

the second order backward differences

pf 1pxqqB2 “
3fpxq ´ 4fpx´ hq ` fpx´ 2hq

2h
,

and finally the fourth order central differences

pf 1pxqqC4 “
´fpx` 2hq ` 8fpx` hq ´ 8fpx´ hq ` fpx´ 2hq

12h
.

In Figure 3.5 we report the normalized relative error

ε “

ˇ

ˇ

ˇ

ˇ

pf 1pxqqest ´ f
1pxq

f 1pxq

ˇ

ˇ

ˇ

ˇ

of all the estimations presented above with respect to the exact value f 1pxq calculated
at x “ 0.25. As we can see, at the beginning the relative error of all the estimations
decrease with the step-size, but at a certain point, for the finite differences, the subtractive
cancellation errors become significant, and thus the relative error increases. With the
complex step derivative approximation, instead, this does not happen, and the relative
error continues to decrease until it reaches the machine working precision. Then, even
decreasing the step size, the error remains almost constant. Thus, with the complex step
derivative approximation we do not have anymore the “step-size dilemma” and we can
choose a step-size close to the machine working precision obtaining the highest accuracy
for the approximation of the first derivative.

Through the complex-step derivative approximation we compute the Jacobian J ,
needed for the Newton-Raphson method, with an error of the same order of the ma-
chine working precision. All we have to do is to extend the function Γ to the complex
plane, by introducing the new function Γ̃ : C Ñ C and to compute each column of the
Jacobian at x as

Jpxq ¨ ej «
IpΓ̃px` i h ejqq

h
(3.26)

where pejqj“1,...,m are the canonical basis vectors.

3.4 Numerical simulations
The Fortran 90 numerical code developed is a variant of the solver IMEX_SfloW2D and
it has been tested and validated with some literature examples and other tests to ver-
ify: (i) the well-balancing and the positivity preserving properties of the scheme; (ii) the

https://doi.org/10.5281/zenodo.2553101
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Figure 3.5: Normalized relative error of the derivative approximations with respect the exact
value.

consequences of using different limiters; (iii) the various behaviours when adopting con-
stant vertical profiles of the variables or not. One recalls that in our scheme the linear
reconstruction at interfaces is computed over the set of variables P (see §3.1) whereas in
the scheme proposed by Kurganov and Petrova [158] it is computed over the variables
rw, hU, hV s, hence we will stress over differences or similarities of such different computa-
tions; in the following, we indicate them with PVR and CVR respectively. Furthermore,
we underline that our code adopts a uniform grid for spatial discretization.

When the outputs of simulations done with different parameters or methods are com-
pared, a metric is needed to compute the difference between two numerical solutions.
Here, if yA and yB are vectors containing solution values on the same grid, the following
expression is used

diffpyA,yBq :“

«

∆x
ÿ

i

ˆ

|yAi ´ y
B
i |

maxp|yAi |, |y
B
i |q

˙p
ff1{p

(3.27)

with p “ 2. This expression is a combination of the p-norm, recalled also by LeVeque
[168], and the relative distance proposed by Ziv [284].

The numerical tests are presented increasing complexity ordered so that a more accu-
rate evaluation of the single performances of each implemented feature can be achieved.
Also, those tests that we address as “BM*” originate from the paper Cordonnier et al.
[52] that proposes benchmark tests for lava-flow models. The first test, in §3.4.1, is a pre-
liminary test of a Riemann problem that is necessary to check the wave propagation and
a good treatment of discontinuities, both in solution and bottom. The second and third
tests, in §3.4.2 and §3.4.3 respectively, are 1D dam-break simulations of viscous fluids over
flat and inclined plane. We have doubled the experiments to present simulations both
with high and low viscosity, in order to check the sensitivity of the scheme to the values
of βu, namely the sensitivity to constant or parabolic velocity profile. We remark that we
use the terms high viscosity and low viscosity to distinguish between the two cases, but in
all the examples the values of viscosity are large enough to result in laminar flows. In fact,
the fluid simulated in the examples are representative of lava, silicone gum and silicone oil
(both used in analog experiments as benchmarks for models of lava flow emplacement).
Moreover, the test case in §3.4.2 sees also a temperature-dependent density simulation.
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These first three tests presented so far are 1D (while the remaining four are 2D), moreover,
their spatial domains was considered closed by fixed walls, hence homogeneous Dirichlet
conditions have been imposed for the velocity (in this case zero velocity in correspondence
to the walls) and homogeneous Neumann conditions for h`B (zero gradient). The fourth
test, §3.4.4, consists of the spreading of a viscous and isothermal fluid over an inclined
plane and its aim is to check the fluid spreading correctness with respect to three direc-
tions. The fifth test, see §3.4.5 is a 2D simulation of a hot viscous fluid, and its focus
is on the effects of a temperature-dependent viscosity. The sixth test, in §3.4.6, sees the
spreading of a hot viscous fluid over a flat plane that cools during the axisymmetric prop-
agation because of radiative, convective and conductive heat loss. We also underline that
viscosity is not temperature-dependent hence the dynamics are not influenced by that.
The aims of the test are to check both the fluid propagation and temperature changes.
The seventh and last test §3.4.7 is a 2D simulation of a real lava flow in the context of a
realistic effusive eruption, hence we modeled a Bingham plastic hot fluid and accounted
for the thermal heat exchanges with the environment and soil, the temperature-dependent
viscosity, and the viscous heating. We adopted the Fogo topography and data from the
2014–2015 eruption to test the impact of the rheological parameters on the simulations.
In the last four test cases, we have modeled an open domain by imposing zero-gradient
Neumann conditions both for velocities, h`B and temperature.

In order to preserve the positivity of the solution and the stability of the explicit
scheme, associated with the CFL condition, a variable time step is used, which has been
set to the following values:

∆t “

#

k∆x
a

for the 1D simulations, with k “ 0.45,
kmin

 

∆x
a
, ∆y
b

(

for the 2D simulations, with k “ 0.24,
(3.28)

where we recall that a, b are the maximum local speeds of propagation at interfaces (see
§3.1.2). In all tests, the initial time-step is set as ∆t “ 10´4 s.

3.4.1 Riemann problem with discontinuous bottom

In this first test for an inviscid fluid, we want to check the correct treatment of discontinu-
ities both in the initial state and in the topography, compare the PVR and CVR and the
limiters effects. This is a very common test (for example see [188]), with a step function
for the topography B and a discontinuous initial state

Bpxq “

#

0, x ď 6,

1, x ą 6,
hpx, 0q “

#

5, x ď 6

1, x ą 6
, and upx, 0q “ 0, (3.29)

whereas the gravitational constant is g « 9.81, as usual. The exact solution of this
initial value problem consists of a left-going rarefaction wave followed by a stationary
wave in correspondence to the bottom step and then by a right-going shock. Since we
are simulating an inviscid fluid, we have to consider βu “ 1, namely a uniform velocity
along the vertical direction. We show solutions computed over the horizontal interval
r0, 12s with different grid sizes, ∆x “ 0.08, ∆x “ 0.02 and ∆x “ 0.0003125, which
correspond respectively to 150, 600 and 38400 cells. For the computation of the interface
values in the formula (3.5) we have used both the generalized minmod limiter and also
a piecewise constant reconstruction (namely no-limiter). We recall that the generalized
minmod limiter is given by Eq. (3.6), where we have chosen the parameter value θ “ 1.3.



3.4. NUMERICAL SIMULATIONS 137

For the temporal discretization we have used the SSP R-K scheme with 3 stages reported
in Table 3.2.

In Figure 3.6 the solutions at time t “ 0.5 s are obtained by the interface reconstruc-
tions computed through the P set of variables (PVR), on the opposite for Figure 3.7 we
have done it through the conservative variables (CVR) and the difference between these
solutions computed with (3.27), has magnitude 10´3. When comparing solutions obtained
with and without limiter, it is clear that the ones computed with the use of the generalized
minmod limiter have a remarkably high accuracy achieved even for low-resolution simu-
lations, in particular the solution computed with 150 cells and the generalized minmod
limiter is better than the one obtained with 600 cells and no limiter.
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Figure 3.6: Riemann problem with discontinuous bottom. Water surface h ` B, on the left,
and discharge hu at time t “ 0.5 s. Simulations computed by different grid size and by PVR
at interfaces. Top: No limiter adopted, i.e. constant piecewise reconstruction. Down: linear
reconstruction at interfaces done by the generalized minmod limiter.

For the simulation on 600 cells with PVR and with the generalized minmod limiter,
we needed 473 time steps with a total execution time of 2.26 s, whereas the time-step size
has rapidly reached the value of 1.11 ¨ 10´3 s. See Table 3.6 on page 158 that reports this
information and that of the other tests.

3.4.2 BM1: Dam-break of viscous fluids over a flat bottom

We start from the simulations of viscous fluids with constant density. We explore the
results focusing on some aims: piq check the correct treatment of wet/dry states and
of low/high viscosity; piiq compare results (by computing the relative difference through
Eq.(3.27)) obtained with PVR and CVR, 2 and 3 stages Runge-Kutta schemes reported in
Tables 3.1-3.2 and constant and parabolic velocity profile; piiiq study the limiters effects.
We conclude this section with the simulations of a temperature-dependent variable density
fluid.
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Figure 3.7: Riemann problem with discontinuous bottom. Water surface h ` B, on the left,
and discharge hu at time t “ 0.5 s. Simulations computed by different grid size and by CVR
at interfaces. Top: No limiter adopted, i.e. constant piecewise reconstruction. Down: linear
reconstruction at interfaces done by the generalized minmod limiter.

The dam-break test simulates the rupture of a dam: the viscous fluid is initially con-
fined in a box and then, after the abrupt removal of one box sides, it starts to flow into a
channel. This is a classical fluid mechanics problem, widely used because of its mathemat-
ical tractability and numerous applications, from hydraulic engineering, to food science,
from geophysical science, to industrial problems [6]. This test is also considered as a stan-
dard measurement when characterizing fluid rheology, and it is a common benchmark for
the shallow-water numerical codes too [240].

For our simulations, we consider a viscous fluid with a Newtonian rheology (§1.1.5.3)
and a dam L “ 6.6 m long and h “ 1 m high over a horizontal domain of length LTOT “
75 m, as suggested in [52] where the dam-break test is recommended as an isothermal
benchmark for lava-flow numerical codes. When the flow is slow enough to neglect inertia,
the evolution of the front can be associated with the scaling law proposed by Saramito
et al. [240] that describe the front evolution xf ptq by a power-law with exponent 0.5, for
short times, and 0.2 for long times:

xf ptq

L
«

$

’

’

&

’

’

%

0.284
´ t

tc

¯1{2

if t ă 2.5tc,

1.133
´ t

tc
` 1.221

¯1{5

´ 1 otherwise,
(3.30)

with the characteristic time tc depending both on geometry of the initial condition and on

fluid rheology: tc “
ˆ

L

h

˙2
µ{ρ

gh
. In particular, the fluid collapse that occurs immediately

after the dam rupture influences the short-term flow regime, and the fluid takes more time
in propagating in this regime with the increase in viscosity. On the opposite, this sort of
dynamics is almost instantaneous for a low viscosity fluid, and the gravity waves affect
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the propagation so that the equation (3.30) is no more able to describe such a case.
We perform this test both with high and low viscosity, classifying the regime through

the Froude number Fr defined by Eq. (2.47). For this application, we compute Fr using
the front velocity of propagation and the mean thickness over the flow extent, as the front
thickness is comparable with the mean value.

High viscosity For the high-viscosity test, we model a silicone gum, following the
laboratory dam-break experiment presented by Saramito et al. [240] where a transparent
synthetic polymer SGM 36 manufactured by Dow Corning (USA) was employed. In this
test temperature is not considered and we have used a constant kinematic viscosity value
ν “ µ{ρ “ 3.7 m2{s (as suggested in Example 1, Cordonnier et al. [52]).

The relative differences after t “ 100 s, anyway the velocity profile is chosen, between
solutions computed by the PVR or CVR are very small („ 10´4) and the same happens
if we use R-K schemes with 2 or 3 stages („ 10´7). In addition there are no appreciable
differences in the solutions when using βu “ 1 or βu “ 1.2, i.e. constant or parabolic
velocity profile, because the flow is in a strict subcritical regime with Fr « 0.018. This
condition is mainly due to the high viscosity which, by opposing to the motion, keeps
the flow velocity very low. Because of this, our results are comparable with the analytic
solution of Eq. (3.30), see below.

In order to see the convergence behaviour, we compare results obtained with 200, 400,
800 and 3600 cells (using a 3-stages R-K, βu “ 1 and by PVR at interfaces) in Figure
3.8. We distinguish three different cases of computation of the interface values (see Eq.
(3.5)): we have used both the minmod limiter, the generalized minmod limiter and also a
piecewise constant reconstruction (namely no-limiter). By using the generalized minmod
with θ “ 2 a very accurate solution is obtained with 400 cells whereas, with the minmod
limiter, similar results are obtained with 800 cells and, in the case of no limiter, with
3200 cells. On the opposite, by using the generalized minmod limiter a less refined grid
is sufficient to obtain a very good solution.
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Figure 3.8: Dam-break of a viscous fluid over a flat bottom. Solution at t “ 100 s of a high-
viscosity fluid. Solutions computed by different grid size over a domain 75 m long. Left : no
limiter. Center : minmod limiter. Right : generalized minmod limiter.

Figure 3.9 shows the convergence of the front position to the scaling law of Eq. (3.30).
Three different grid resolutions have been used: 400, 800, and 1600 cells, and the gener-
alized minmod limiter has been adopted. The front position of the numerical solutions is
determined by a threshold value h “ 10´3 m.

For the 400 cells grid, the simulation with PVR, generalized minmod limiter and
k “ 0.45 for the time step condition (3.28), took 3432 time steps with a total execution
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Figure 3.9: Dam-break of a viscous fluid over a flat bottom. Front position over time of a high-
viscosity fluid: scaling law given by Eq. (3.30) and simulation results obtained with different
grid size.

time of 7.91 s, whereas the time-step size grew slowly up to 3.2 ¨ 10´2 s. See Table 3.6 on
page 158 that reports this information and that of the other tests.

Low viscosity For the low-viscosity test, we model a silicone oil, the material used by
Lister [172] in his laboratory experiments for the spreading of isothermal viscous fluids on a
plane. This silicone oil is characterized by a kinematic viscosity ν “ µ{ρ “ 1.16 ¨10´3 m2{s
(taken from Example 2, Cordonnier et al. [52]). Also for this test, temperature is not
considered.

One observes a low sensitivity to most numerical parameters. Regardless of the as-
sumption about the velocity profile, the relative differences between solutions obtained
through R-K schemes with 2 or 3 stages and PVR or CVR are about 10´3. As we will see,
the results are also independent from the limiter adopted. On reverse, the assumption
of constant or parabolic velocity profiles leads to different dynamics, as shown in Figure
3.10. The main outcome of the two simulations is that solutions with different vertical
profiles have distinct shapes and temporal evolution, indeed initially the flow front of the
simulation with βu “ 1.2 (parabolic profile) proceeds faster, after 12 s the solutions are
equal merit and then they reverse positions.

The sensitivity to the velocity vertical profile emerges because, in this case, the flow
regime is supercritical, therefore the inertial forces control the flow dynamics and the in-
fluence of the βu coefficient becomes notable, as seen in the discussion at the end of §2.1.6.
In this case we are not aware of any analytical solution or scaling law for comparison and
Eq. (3.30) is not applicable.

Figure 3.11, representing the front position and the Froude number, shows that dif-
ferences in the Froude numbers between the two simulations result in diverse velocities of
propagation of the flow front.

With respect to the high-viscosity case, the low-viscosity test highlights a lower sen-
sitivity of the numerical solution to the choice of the limiter, as shown by Figure 3.12.
In addition, there is no necessity to refine too much the discretized domain since the
solutions computed with only 400 cells are all close to the convergence solution.

Using a 400 cells grid for the simulation with PVR, with the generalized minmod
limiter and with k “ 0.45 for the time step condition (3.28), in the case of βu “ 1
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Figure 3.10: Dam-break of a viscous fluid over a flat bottom. Evolution: top t “ 8 s, center
t “ 12 s, bottom t “ 16 s of a low-viscosity fluid, computed by PVR at interfaces with the
minmod limiter, 3 stages IMEX R-K scheme. Comparison between βu “ 1.0 and βu “ 1.2
(constant and parabolic velocity profile).

Figure 3.11: Dam-break of a viscous fluid over a flat bottom. Evolution of the front position
(blue) and the Froude number (red) of a low-viscosity fluid. Comparison between constant
velocity profile with βu “ 1.0 (solid line) and parabolic velocity profile βu “ 1.2 (dashed line).

(constant velocity profile) we needed 597 time steps with a total execution time of 1.9 s
whereas the time-step size grew slowly up to 2.1 ¨10´2 s; in the case of βu “ 1.2 (parabolic
velocity profile), we needed 757 time steps with a total execution time of 2.44 s whereas
the time-step size grew slowly up to 1.9 ¨ 10´2 s.

Low viscosity with temperature dependent density Silicon oil, the material em-
ployed in the previous low-viscosity test, is characterized by a linear dependence of density
on temperature in the range of 300´ 380 K, as supported from Lecuna et al. [163]. That
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Figure 3.12: Dam-break of a viscous fluid over a flat bottom. Solutions at t “ 10 s of a low-
viscosity fluid computed without limiter, with the minmod and the generalized minmod limiter.
Top: βu “ 1.0. Bottom: βu “ 1.2.

work presented some experimental data about mineral oil and silicone oil and we have ex-
trapolated from it the values for the linear relation between density and temperature, Eq.
(2.41), ρpT q “ 1200´0.75T . We set the maximum temperature on the surface T1 “ 338 K
and the initial depth-averaged temperature T “ 330 K with the thermal boundary layer
thickness δT “ h{4. In Figure 3.13 we present the results of the simulation at times
t “ 8 s and 20 s computed with 400 cells by PVR at interfaces with the minmod limiter, 3
stages IMEX R-K scheme, βu “ 1.2 (parabolic velocity profile). Since we consider a lam-
inar flow, the co-presence of velocity profile and thermal profile implies that the top layer
with the highest temperature moves faster than the lower part and it rapidly constitutes
a large portion of the front. For this reason the front has the highest temperature and
consequently the lowest density; conversely, the tail average temperature decreases and
then density grows. See Table 3.6 on page 158 that reports this information and that of
the other tests.

The relative difference between the variable-density and the constant-density solutions
increases with time reaching the maximum value „ 10´1 at t “ 10s. The simulation results
highlight that, in this circumstance, density variations do not affect significantly nor the
front position neither the global shape of the flow, therefore in the following tests we
neglect density variations.

Laboratory test of a low viscosity fluid in supercritical regime In the absence of
an analytic solution or a scaling law to compare the low viscosity dam-break case results,
we decided to validate our model with a laboratory test. Our primary interest is the
confirmation that the adoption of a parabolic profile (βu “ 1.2) produces better results in
the case of supercritical regimes, that is, the situation when the simulations present the
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Figure 3.13: Dam-break of a viscous fluid over a flat bottom. Thickness and density for solutions
of a low-viscosity fluid with temperature-dependent variable density and constant density. Sim-
ulation computed over 400 cells by PVR at interfaces with the minmod limiter, 3 stages IMEX
R-K scheme, βu “ 1.2 (parabolic velocity profile). Top: t “ 8 s. Bottom: t “ 20 s.

most prominent differences (see Figure 3.12).
The laboratory test was done during the visit at the Lamont-Doherty Earth Obser-

vatory (at the Columbia University, New York), with the supervision of Prof. Einat Lev
and the assistance of Janine Birnbaum, and has been repeated twice. We can present
only preliminary results because the worldwide pandemic emergency prevented us from
pursuing the experiments.

The canola oil was employed because it has low viscosity and it is easily available,
moreover its kinematic characteristics are well documented in the literature. Two cameras
recorded the dynamics, one was placed above the channel and the other sideways. The
experimental data were collected thanks to the use of a software developed by Birnbaum
that extrapolates the information from the camera frames. Figure 3.14 shows one frame
of a video recorded by the lateral camera: the yellow line on the left was set manually
to represent the position of the dam, instead the blue line on the right is produced
automatically by the software and refers to the advancing of the front.

Figure 3.14: Dam-break of a viscous fluid over a flat bottom. Side view of the laboratory
experiment with canola oil.

Our simulations tried to reproduce the laboratory experiment. The dam is L “ 0.2 m
long and h “ 0.1 m high, the entire horizontal channel has length LTOT “ 1.6 m, while the
kinematic viscosity of canola oil is ν “ 5 ¨ 10´5. The domain is discretized with a cell-size
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∆x “ 5 ¨ 10´3, and we used the PVR with the generalized minmod limiter (θ “ 2), the
R-K scheme with 3 stages and the usual condition k “ 0.45 for the CFL condition (3.28).
Figure 3.15 shows the front advancement and compares the results of our simulations with
those obtained with two laboratory experiments.

Figure 3.15: Dam-break of a viscous fluid over a flat bottom. Front advancing of the two
laboratory experiments and of two different simulations, one obtained with the constant velocity
profile (βu “ 1.0) and the other with the parabolic velocity profile (βu “ 1.2).

The results of the laboratory tests need some additional comments. After 0.6 s they
present a slowdown, but such data are not reliable because they are related to the extreme
of the visual field of the camera and hence are affected by several errors. Similarly, errors
affect also the evolution at the initial time so that the data are not reported. Therefore
we must limit ourselves to observe and compare results till 0.6 s and, from the plot of
Figure 3.15, one can conclude that the simulation with the parabolic profile (βu “ 1.2)
fits better the laboratory data. In summary, this comparison is incomplete: more tests
had to be done and, if we could have continued to work in the laboratory, we would have
had to make changes and use precautions to improve data collection: coloring the oil with
a dark color to facilitate the software in identifying the front of the fluid, use a camera
with a higher frame rate per second, and finally use two lateral cameras in order to have
a correct identification of the front along the entire length of the channel. Since now
the laboratory is open and functional, we hope to have the opportunity to conduct new
experiments in the near future.

3.4.3 Dam-break of viscous fluids over an inclined bottom

The purposes of this test are analogous to those of the previous one: piq check the cor-
rect treatment of wet/dry states and low/high viscosity; piiq compare the solutions (by
computing the relative difference with Eq.(3.27)) obtained with constant and parabolic
velocity profile, PVR and CVR and 2 and 3 stages Runge-Kutta schemes, as reported in
Tables 3.1–3.2; piiiq study the limiters effects.

The dam-break setting is like that of the former case §3.4.2, but the plane is inclined
at a slope of 2.5˝ from horizontal. Unfortunately, to our knowledge, there is no reference
solution with whom to compare our results.

High viscosity For the high-viscosity test we have considered again a silicone gum in
isothermal condition, with a kinematic viscosity ν “ µ{ρ “ 3.7 m2{s (as suggested in [52]).
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After t “ 100 s, for both the constant and parabolic velocity profiles, the relative
difference between results computed with PVR and CVR is small („ 10´4) and that
calculated between solutions obtained with 2 and 3 R-K stages is even smaller („ 10´7).
In Figure 3.16 the high sensitivity to different limiters is very clear, and once more the
generalized minmod limiter with θ “ 2 is confirmed to produce better approximations
even with a less refined grid.

As in the previous test with high-viscosity conditions, the Froude number is very small
Fr « 0.023. In such subcritical regime situation, the inertial forces are minor compared
to gravitational and viscous forces and the effect of the vertical velocity profiles on flow
dynamics is negligible. Indeed, results obtained with βu “ 1 or βu “ 1.2 are similar, with
a relative difference of the order of 10´6. In this test, the value of Fr is obtained again by
using the front velocity propagation and the mean thickness over the flow extent, since
the front thickness is comparable with the mean value.

Figure 3.16: Dam-break of a viscous fluid over an inclined bottom. Solution at t “ 100s for
a high-viscosity fluid. Comparison between solutions computed with different grid size over a
domain 75m long. Left : no limiter. Center : minmod limiter. Right : generalized minmod limiter.

Using a 400 cells grid, for the simulation with PVR, the generalized minmod limiter
and k “ 0.45 for the time step condition (3.28), we needed 3265 time steps with a
total execution time of 7.95 s, whereas the time-step size grew up slowly and reached the
maximum value of 3.4 ¨ 10´2 s.

Low viscosity For the low-viscosity test, we model again a silicone oil with the kine-
matic viscosity ν “ µ{ρ “ 1.16 ¨ 10´3 m2{s (taken from Cordonnier et al. [52]). Also for
this test, temperature is not considered.

At t “ 10 s, regardless of the assumption about the velocity profile, the relative dis-
tance between simulations computed with R-K scheme with 2 and 3 stages is about 10´3;
whereas, comparing CVR and PVR, the relative distance is one order of magnitude larger;
moreover, there is no sensitivity to the limiter adopted.

For a fixed limiter and a fixed number of Runge-Kutta stages, there is a great difference
in solutions with constant and parabolic velocity profile, βu “ 1 and βu “ 1.2 respectively,
as shown in Figure 3.17. In particular, at t “ 5 s the runout of the simulation with βu “ 1.2
is larger than that obtained with βu “ 1, whereas at t “ 10 s the opposite occurs. The
sensitivity to the velocity profile assumption finds correspondence in the supercritical
regime situation, shown by the Froude number reported in Figure 3.17. Indeed, in such
cases, after the initial collapse, the inertial force dominates the dynamics and then the
effects of different values of βu are considerable, as already observed in the former low-
viscosity case in §3.4.2. In this case, the value of Fr is computed using the front velocity
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of propagation and the flow thickness averaged over the 10 m close to the front, avoiding
the thin tail.

Figure 3.17: Dam-break of a viscous fluid over an inclined bottom. Evolution: top t “ 5 s,
center t “ 10 s, bottom t “ 15 s of a low-viscosity fluid, computed by PVR at interfaces with the
minmod limiter, 3 stages IMEX R-K scheme. Comparison between βu “ 1.0 and βu “ 1.2, i.e.
constant and parabolic velocity profile. The Froude number Fr points out a supercritical regime
in both conditions; its trend increases for βu “ 1.0, while it is decreasing for βu “ 1.2.

Furthermore, one observes that the tail does not move down the slope with time. This
happens because of the rheological model adopted, with the friction force in Eq. (2.11)
inversely proportional to h; for this reason, when the tail thickness decreases, the viscosity
increases and hence the velocity tends to zero. Looking at the momentum equation in Eq.
(3.1), it is also evident that on an inclined plane (∇B ‰ 0), when a stationary condition
with constant flow thickness is approached (i.e. when the terms on the right hand side
of the momentum equation tend to zero), also flow thickness has to go to zero. This
fact depends on the choice of a Newtonian rheology (see §1.1.5.7, where the friction force
depends linearly on flow velocity. In a Binghamian rheology or a Voellmy-Salm rheology
model (see de’ Michieli Vitturi et al. [67] for details), where a yield slope term (velocity
independent) is considered in the friction forces, a critical thickness for which flows do
not move on an inclined plane may be found.

Using a 400 cells grid, the simulation with PVR, generalized minmod limiter and with
k “ 0.45 at the time step condition (3.28), in the case of βu “ 1 (constant velocity profile)
took 751 time steps with a total execution time of 2.65 s whereas the time-step size has
grown up to 1.4 ¨ 10´2s; in the case of βu “ 1.2 (parabolic velocity profile) the simulation
took 972 time steps with a total execution time of 2.65 s whereas the time-step size grew
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increased till 1.2 ¨10´2s. See Table 3.6 on page 158 that reports this information and that
of the other tests.

3.4.4 BM2: Inclined viscous isothermal spreading

The origin of this 2D benchmark test comes from a laboratory experiment seeing silicon
oil spreading on an inclined plane of slope α, injected through a point hole at a constant
flow rate Q as represented in Figure 3.18. Such experiment was used by Lister [172]
to test numerical results and furthermore he derived analytical solution for this, and
nowadays it is considered an important benchmark to test numerical models used on a
simple geometry. The set-up parameters we have used follow those used by Lister [172]:
the source point has circular area with radius r “ 10´3 m, the plane is inclined at a
slope of α “ 2.5° from horizontal, the fluid supply rate is R “ 1.48 ¨ 10´6 m3 s´1 and the
kinematic viscosity is ν “ 11.3 ¨ 10´4 m2 s´1; a Newtonian viscosity is assumed and none
thermal phenomena accounted.

For our simulation, we considered a rectangular domain r´35, 115s ˆ r´45, 45s, where
all the lengths are expressed in cm, and we discretized it with two different grid resolutions:
the rough discretization has 150ˆ 90 cells, the finer one has 300ˆ 180 cells. We used the
PVR with the generalized minmod limiter (θ “ 1.3) and a 3 stages IMEX R-K scheme for
the time discretization (see Table 3.2), with k “ 0.24 for the time step condition (3.28).
In every plot reported, we consider only values of h greater than 10´3 which is rather
reasonable since they correspond to the 95% of the total values computed (in particular,
the averaged value of h is 1.44 ¨ 10´3).

Downslope extent
Up-slope

extent

Side view

R α

Cross-slope
extent yPLd

Top view

Figure 3.18: BM2: Inclined viscous isothermal spreading. Set up of the benchmark.

Figure 3.19 reports the flow contours as a function of time. On the left there are
the results presented in Lister [172] that come from laboratory experiment and numerical
simulation, while on the right there are the results obtained with our numerical model
with the fine spatial discretization. It is immediate to note that, for all results represented,
the up-slope extent rapidly reaches a steady state, whereas the flow continues to advance
down-slope with time.

We extrapolate from the laboratory results (namely from the original graph of Lister
[172] that is pictured in Figure 3.19) the data of the down-slope and cross-slope extents
because they are useful for the arguments that follow; we report them in Table 3.3 and
denote them as Ld and yP respectively.

Lister determined a characteristic time t˚ that separates two different behaviours of
the spreading. Initially, for the so said “short time", fluid spreads radially from the source,
as it would be on a horizontal plane, because the thickness h at the interfaces is much
greater than that of the inclined plane, after that the opposite occurs for the so said “long
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Figure 3.19: BM2: Inclined viscous isothermal spreading. Representation at various times of
the flow front. Left: results from Lister [172], where lines describe the evolution of laboratory
experiment while symbols the predicted results obtained from numerical simulations. Right:
results obtained with our code with the high-resolution discretization; by “front" we mean the
position where h becomes less than 10´3.

Table 3.3: BM2: Inclined viscous isothermal spreading. Down-slope Ld and cross-slope yP
extents extrapolated from the laboratory experiment results (Figure 3.19 on the left) that come
from [172].

time (s) 32 59 122 271 486 727

Ld (cm) 9.5 14.5 23.5 42.5 65.5 88.5
yP (cm) 7.0 9.4 13.0 18.4 23.3 27.2

time", and the flow is predominantly down-slope, with some cross-slope spreading. This
behaviour is due to the pressure terms, see Eq. (2.10), that can be rearranged as

ż B`h

B

∇ppzqdz “ ∇
ˆ

1

2
ρgh2

˙

` ρgh∇B “ ρgh∇h` ρgh∇B,

for the short time, the term with ∇h is bigger than the other, whereas, for the long time,
the term with ∇B becomes dominant and then the flow follows mostly the topography.
The first situation is referred to as “density current”, the second is named “avalanche” [67].

The characteristic time depends on the physical parameters of the test:

t˚ “

«

pcotαq5

R

ˆ

3ν

g sinα

˙3
ff1{4

, (3.31)

and in our case its value is « 38 s. Figure 3.20 presents the evolution of the fluid extent
in the three directions, namely down-slope, cross-slope and up-slope, to confirm that also
the dynamic of our simulation is almost symmetric before the characteristic time.

The convergence study for the down-slope and cross-slope extents is presented in
Figures 3.21 and 3.22: the results of our simulations obtained with the high and low-
resolutions are compared with the data collected from the laboratory experiments (see
Table 3.3). One observes that our simulations have a good agreement with the experi-
mental results.

The simulations presented for this benchmark were obtained with a parabolic velocity
profile adoption (βu “ 1.2), but the assumption of constant velocity profile (βu “ 1.0)
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Figure 3.20: BM2: Inclined viscous isothermal spreading. Time evolution of the down-slope
extent, the cross-slope propagation and the up-slope extent. The dashed line refers to the
characteristic time t˚, defined in Eq. (3.31). The results illustrated were computed with the
high-resolution spatial discretization.
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Figure 3.21: BM2: Inclined viscous isothermal spreading. Time evolution of the down-slope
extent Ldptq. The extrapolated data refer to Table 3.3. The dashed line refers to the characteristic
time t˚, defined in Eq. (3.31).

produces similar results. The maximum value reached by h is 5 ¨ 10´3 m, while the rela-
tive distance between solutions obtained with different velocity profiles is about 10´6 m,
therefore the relative distance between the two solutions is of 1%, which is quite negligi-
ble. This behaviour is not surprising, in fact, even though the fluid has a low viscosity, it
moves very slowly and the dynamics is driven by the gravity force and not by inertia.

Lister derived the asymptotic scaling behaviors of the flow front advance Ldptq and of
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Figure 3.22: BM2: Inclined viscous isothermal spreading. Time evolution of the cross-slope
extent yP ptq. The extrapolated data refer to Table 3.3. The dashed line refers to the characteristic
time t˚, defined in Eq. (3.31).

the cross-slope extent yP ptq for the “long time” dynamics:

Ldptq „

„

´ g

3ν

¯3 R4 sin5 α

cos2 α

1{9

t7{9, t " t˚ (3.32a)

yP ptq „

ˆ

R cosα

sinα

˙1{3

t1{3, t " t˚. (3.32b)

In an effort to compare our results with the theoretical functions derived by Lister [172]
Eqs. (3.32), we search for a qualitative agreement with the dimensionless extents. We use
the characteristic time t˚ defined in Eq. (3.31) and the characteristic lengths defined as

x˚ “ y˚ “

ˆ

R cos3pαq3ν

g sin4pαq

˙
1
4

« 10.9 cm. (3.33)

In Figure 3.23 both the theoretical solutions and our simulation results are represented,
but they compare as dimensionless variables computed as:

T :“
t

t˚
, X :“

Ld
x˚
, Y :“

yP
y˚
. (3.34)

The theoretical and the experimental results show a qualitative agreement for the last
times, confirming a decent asymptotic agreement. However, not negligible quantitative
differences rise and there are not enough elements in the work of Lister that help us to
understand the reasons behind them.

For the high-resolution simulation, where we used 300 ˆ 180 cells, we needed 144165
time steps with a total execution time of 60170 s, whereas the time-step grew up quite
quickly and reached the maximum value of 0.01 s and then decreased slowly settling at a
constant value 0.005 s (see Table 3.6 on page 158 that reports this information and that
of the other tests).
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Figure 3.23: BM2: Inclined viscous isothermal spreading. Time evolution of the dimensionless
downslope X and cross-slope extent Y , as defined in Eq. (3.34), against the dimensionless time
T . Only the “long time” results are represented.

3.4.5 Temperature-dependent viscosity

This test is a 2D simulation of a temperature-dependent viscous fluid. Our aim is to check
the coupling between momentum and temperature equations of the system (2.40), and
the effects of a Newtonian rheology.

The fluid is initially concentrated in a hemispherical shape over a 35˝ inclined flat
plane, then it slides down over such plane which merges continuously into a horizontal
plane, passing through a smooth transition zone. The initial conditions and the topog-
raphy of this test are similar to that used in Example 4.1 from Wang et al. [269]. The
computational domain is a rectangle 30 m long and 20 m wide and the inclination angle
is defined as

αpxq “

$

’

&

’

%

35˝, 0 ď x ă 17.5,

35˝p1´ px´ 17.5q{4q, 17.5 ď x ă 21.5,

0˝, 21.5 ď x ď 30.

In this test we use viscosity and temperature values representative of lava flows. We
also consider a temperature-dependent viscosity in the last term of the momentum equa-
tion (2.40b), adopting an exponential relationship as the one suggested by Costa and
Macedonio [55]

γ “
3 νpT q

h
, νpT q “ νr expr´bpT ´ Tref qs,

where b is an appropriate rheological parameter and νr is the reference kinematic viscosity
that the fluid has at the reference temperature Tref . Initially, the depth-averaged temper-
ature and the reference temperature are set equal (T “ Tref “ 1353 K), hence viscosity
coincides with the reference viscosity.

The domain is discretized by 80 ˆ 54 cells. The PVR is used at the interfaces with
the generalized minmod limiter (θ “ 1.3) and with a 3 stages IMEX R-K scheme for time
marching, see Table 3.2. For the characteristic thermal boundary-layer (see §2.1.3), we
adopt two thickness values δT “ h{n with n “ 4 and n “ 10, which lead to different
values for βT :

βT “

#

0.234375, n “ 4,

0.0975, n “ 10.
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One reminds that the presence of non trivial values for βT and βT1 depends on the fact
that we have considered a parabolic velocity profile, therefore in these cases βu “ 1.2 must
be set, otherwise the model would lose its consistency.

High viscosity We have adopted again the value νr “ 3.7 m2{s (taken from Example
1, Cordonnier et al. [52]) for the kinematic viscosity. In Figure 3.24 we compare, for
n “ 4, results obtained at time t “ 600 s with constant and variable temperature profiles,
respectively, while in Figure 3.25 we present the time evolution of their contour. For this
viscosity value, the differences between solutions obtained with n “ 4 or 10 are negligible,
thus the results of the latter case are not shown.
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Figure 3.24: 2D Simulation of a temperature-dependent viscous fluid. Comparison of high-
viscosity fluid simulations computed with different thermal profiles, at t “ 600 s: left constant
with T1 “ 1353 K, right piecewise linear with T1 “ 1400 K.

When a constant temperature profile is assumed (T1 “ T “ Tref ), T is simply advected
with the flow and the kinematic viscosity equals the reference value νr. If the piecewise
linear temperature profile is considered, the maximum temperature is set higher than
the averaged temperature (T1 “ 1400 K) and then T changes (both in space and in time)
during the simulation. In the latter case, due to velocity and thermal profiles, the top layer
has the highest temperature and moves with a speed larger than the lower part, hence it
propagates faster arriving soon to constitute the front; on the contrary, the fluid at the
upper part of the plane becomes, on average, colder. In this situation, at time t “ 600 s,
the depth-averaged temperature reaches the minimum T “ 1247 K at the upper part of
the plane, approximately at x « 4.5 m; such minimum leads to a kinematic viscosity value
higher than the reference one, and in this situation an amount of fluid is accumulated at
the upper part of the plane, whereas in the case of constant thermal profile this little pile
does not remain.

For 600 s of simulation, with k “ 0.24 for the time step condition (3.28), in the constant
temperature profile case the computation needed 9583 time steps, a total execution time
of 547.06 s, while the time-step size reached the maximum value of 7.3 ¨ 10´2 s. Whereas,
the case of piecewise linear temperature profile needed 8804 time steps, a total execution
time of 522.83 s, and the time-step size reaches the maximum value of 7.9 ¨ 10´2 s.

Low viscosity For the low-viscosity test, we used again the value νr “ 1.16 ¨ 10´3 m2{s
for the kinematic viscosity (taken from Cordonnier et al. [52]).

We start comparing solutions obtained by different characteristic thermal boundary
layers δT {n, with n “ 10 and n “ 4, and with the maximum temperature on the surface
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Figure 3.25: 2D Simulation of a temperature-dependent viscous fluid. Evolution of high-viscosity
fluid simulations computed with different thermal profiles: left constant profile with T1 “ 1353 K,
right piecewise linear profile and T1 “ 1400 K. The section between the two dotted lines is the
transition zone from the inclined plane to the horizontal plane.

Table 3.4: 2D Simulation of a temperature-dependent viscous fluid. Performance of the solver
for 600 s of simulation of the high viscosity case.

Test Performance

δx cells ν execution time velocity temperature
(m) (m2{s) time (s) step profile profile

0.375 80ˆ 54 3.7 522.83 8804 parabolic piecewise (n “ 4, 10)
547.06 9583 parabolic constant

as T1 “ 1400 K, see Figure 3.26. When n “ 10 the fluid propagates faster because the top
layer with the maximum temperature is thicker, therefore the averaged temperature is
greater and the kinematic viscosity lower. However, as in the former high-viscosity case,
there is a little pile of matter in the upper part of the plane. In addition, in both cases,
at the last time steps there is a loss of mass from the computational domain since the
fluid reaches the boundary and goes on propagating outside. The computation of 3 s of
simulations in both cases of n “ 4 and n “ 10, with k “ 0.24 for the time step condition
(3.28), required 552 time steps and 28.89 s, while the time step size reached the maximum
value 1.1 ¨ 10´2 s.

In order to underline how big may be the difference in considering or not a tempera-
ture dependent viscosity, we conclude with simulations with a temperature independent
viscosity and a simple transport of temperature. We compare again solutions with differ-
ent velocity profiles (as in the previous 1D tests §3.4.2, §3.4.3). A constant temperature
profile and a constant kinematic viscosity are assumed by setting T1 “ T “ Tref “ 1353 K.
We find, once more, that with a constant profile the fluid propagates faster and the front
is thicker, see Figure 3.27. For 3 s of simulation, with k “ 0.24 for the time step condition
(3.28), the case of a parabolic velocity profile needed 502 time steps with a total execu-
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Figure 3.26: 2D Simulation of a temperature-dependent viscous fluid. Evolution of a low-
viscosity fluid with temperature-dependent viscosity computed with different characteristic ther-
mal boundary layer δT “ h{n: left n “ 10, right n “ 4. The section between the two dotted
lines is the transition zone from the inclined plane to the horizontal plane.

tion time of 24.18 s, whereas the time-step size has reached the maximum value of 10´2 s;
instead, the case of a constant velocity profile took 353 time steps with a total execution
time of 16.69 s, whereas the time-step size has reached the maximum value of 1.2 ¨ 10´2 s.
See Table 3.6 on page 158 that reports this information and that of the other tests.
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Figure 3.27: 2D Simulation of a temperature-dependent viscous fluid. Evolution of a low-
viscosity fluid with viscosity not temperature dependent with different vertical velocity profile:
left parabolic profile, hence βu “ 1.2, right constant profile, hence βu “ 1.0. The section between
the two dotted lines is the transition zone from the inclined plane to the horizontal plane.
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3.4.6 BM3: Axisymmetric cooling and spreading

This benchmark concerns the spreading of a warm viscous fluid, onto a flat plane, which
cools down during the dynamics due to heat exchanges with the environment. This
is the intermediate test proposed by Cordonnier et al. [52] between the spreading-only
benchmarks, such as BM1 and BM2, and the most complex lava flow case, that follows.
The viscosity is still assumed Newtonian and temperature-independent, therefore there is
no relation between rheology and thermal structure.

This test refers to an analog experiment reported in Garel et al. [99], denoted as C14,
where a hot silicone oil (Rhodorsil® 47V 5000 or 47V 12500, dyed red) is injected, at a
constant supply rate R “ 2.2 ¨ 10´8rm3s´1s, onto a horizontal plane of polystyrene from a
point source of 2–4 mm of radius. Table 3.5 shows the values of the physical parameters
involved into the experiment, most of them are reported in Cordonnier et al. [52], the
others are available only on the original paper Garel et al. [99]. There is a difference in
the density value indicated in the two papers, so we adopted the value reported in the
original work Garel et al. [99].

Table 3.5: BM3: Axisymmetric cooling and spreading. Physical parameters of the hot silicon oil
simulation. The symbol * refers to the parameters available in Garel et al. [99] and not provided
in Cordonnier et al. [52].

Symbol Value Definition Unit

ρ 954 fluid density kg m´3

µ 3.4 dynamic viscosity Pa s
cp 1500 specific heat of fluid m2 s´2 K´1

k 0.15 thermal conductivity of fluid W m´1 K´1

κ 10´7 thermal diffusivity of fluid * m2 s´1

λ 2 convective heat transfer coeff. W m´2 K´1

ε 0.96 emissivity -
Tenv 293.15 temp. of environment K
Tvent 315.15 temp. of fluid at the vent K
Tsoil 293.15 temp. of soil K
ksoil 0.03 thermal conductivity of soil * W m´1 K´1

κsoil 6 ¨ 10´7 thermal diffusivity of soil * W m´2 J´1

R 2.2 ¨ 10´8 effusion rate m3s´1

In this simulation the system of equations (2.42) is solved, coupled with the condition
of constant density. The square r´12, 12s ˆ r´12, 12s, where all the lengths are expressed
in cm, determines the domain, discretized with two different grid resolutions, a coarse one
with ∆x “ 2 ¨ 10´3 and a fine one with ∆x “ 10´3. The circular vent of the experiment
is located in the center of the domain and it is approximated by the squares of the
discretization grid. From the modeling point of view, we adopted the parabolic velocity
profile, with βu “ 1.2, and the piecewise linear temperature profile, with βT defined in
Eq. (2.30). The parameters introduced in §2.1.5 related with the temperature are: n “ 4
and M “ 12 for the thermal boundary layers of the oil and of the polystyrene surface
respectively, the fraction of the exposed inner core f “ 1 because the fluid is completely
melt (see §2.1.5.3), the rheology parameter of Eq. (2.13) is b “ 0. For the numerical
schemes, the PVR is used for the interfaces with the generalized minmod limiter (θ “ 1.3)
and the 3 stages IMEX R-K scheme (reported in Table 3.2) for the time marching.
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The dynamics of the experiment is completely symmetric with a “radial” flow advance
described by the analytic expression

xptq « 0.715

„

gR3

3ν

1{8

t1{2, (3.35)

determined in the theory of Huppert [131]. We use the analytic expression of xptq for
a convergence study with the high and low resolution simulations, see Figure 3.28. The
threshold used to define the fluid front is the thickness h “ 10´4 m, differently from the
other tests where it was h “ 10´3 m. Such different choice is related to the particularly
tiny thickness of this test: as shown in Figure 3.29, neglecting thicknesses less than
a millimeter means to completely neglect what happens in the first 20 seconds and to
neglige an important part of the fluid for the rest of time.
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Figure 3.28: BM3: Axisymmetric cooling and spreading. Convergence study, comparing the
theoretical front position, Eq. (3.35), with the results of simulations obtained with low and high
resolution grids.
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Figure 3.29: BM3: Axisymmetric cooling and spreading. Thickness of the simulated fluid at
different time.

Figure 3.28 highlight the good convergence of the solutions computed with the simu-
lations to the analytic solution. For a further investigation, we computed the simulations
by setting the constant velocity profile (i.e. βu “ 1.0). The results of the front extent
do not change, conversely from what happened in the BM1 test case, §3.4.2. The reason
is that, despite the low viscosity of the oil (which is of the same order of magnitude as
the low viscosity case of BM1 test, §3.4.2), the velocity is so slow that the dynamics are
driven by gravity force, instead of inertial force, resulting in a subcritical regime.
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Figure 3.30 exhibits the time evolution of the surface temperature, in particular the
dimensionless surface temperature is accounted, namely pT ´Tenvq{pTvent´Tenvq, and the
figure reports both the graph with the results of our simulations (right) and the original
graph with the laboratory results of Cordonnier et al. [52] (left). Our graph represents
the surface temperature of the oil obtained with our simulation, while the original graph
in Cordonnier et al. [52] reports the temperatures detected by an infrared camera located
over the plane that takes measurements of both oil and plate that is not covered yet
of oil. The big difference between the two graphs is the “tail” that appears in the first
three-measurements in the original graph and that in our graph is completely missing.
Such “tail” is due to the natural phenomenon of the thermal diffusion for which the plate
and the air close to the oil are warmed by it resulting in a temperature higher than the
ambient.
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Figure 3.30: BM3: Axisymmetric cooling and spreading. Evolution in time of the dimensionless
surface temperature profile, defined as pT ´ Tenvq{pTvent ´ Tenvq. Left: original graph from the
benchmarks article Cordonnier et al. [52]. Right: results of our model.

In Figure 3.31 is shown a further comparison with our results about the surface tem-
perature with experimental and theoretical temperatures of the original paper Garel et al.
[99]. The temperature is again represented normalized, and the same is for the radial dis-
tance from the source, therefore x “ 1 corresponds to the fluid front. The agreement of
our results is better with the experimental outcomes than with the theory.

The computation of 632 s of simulations with the high resolution grid, δx “ 10´3 m,
took a total execution time of 96653.57 s, it required 409432 time steps and the time step
size stabilized around 0.0015 (see Table 3.6 on page 158 that reports this information and
that of the other tests).

3.4.7 Natural case: the Pico do Fogo 2014–2015 Eruption

In this test, we apply our model to the conditions of real effusive eruption. As a reference
case, we consider the Fogo volcano at Cape Verde, West Africa, and its last eruption
started on 23 November 2014 and ended on 8 February 2015. We use the actual topogra-
phy of Fogo and the data characteristic of such event, as the vent location, the effusion
rate, and the effusive temperature, to perform simulations of the first day of the erup-
tion. The present test is not meant to try to reproduce as best as possible to real event
but to analyze the rheological parameters’ impact on the lava flow emplacement. Once
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Figure 3.31: BM3: Axisymmetric cooling and spreading. Comparison of experimental, theoret-
ical and simulated normalized surface temperatures, defined as pT ´ Tenvq{pTvent ´ Tenvq, over
the normalized radial distance. t˚ “ 5 corresponds to t “ 156 s and t˚ “ 20 to t “ 620 s. In the

original work Garel et al. [99], t˚ is defined as t˚ “
t

τ
where τ “

0.715
4
3

κ

ˆ

3µR

ρg

˙
1
2

.

Table 3.6: The Table reports the performances of the solver for each previous test in a little
selection of cases associated with the parameters written. Test 1: Riemann problem with discon-
tinuous bottom, §3.4.1. Test 2: BM1, dam-break of viscous fluids over a flat bottom, §3.4.2. Test
3: Dam-break of viscous fluids over an inclined bottom, §3.4.3. Test 4: BM2, inclined viscous
isothermal spreading, §3.4.4. Test 5: temperature-dependent viscosity, §3.4.5. Test 6: BM3,
axisymmetric cooling and spreading, §3.4.6.

Test parameters Performance

test ∆x cells ν velocity temp. simulated execution time
(m) (m2{s) profile profile time (s) time (s) steps

1 0.02 600 0 constant no temp. 0.5 2.26 473

2 0.1875 400 3.7 constant no temp. 500 7.91 3432
2 0.1875 400 1.16¨10´3 constant no temp. 20 1.9 597
2 0.1875 400 1.16¨10´3 parabolic no temp. 20 2.44 757

3 0.1875 400 3.7 parabolic no temp. 100 7.95 3265
3 0.1875 400 1.16¨10´3 constant no temp. 100 2.65 751
3 0.1875 400 1.16¨10´3 parabolic no temp. 100 2.65 972

4 0.5 300ˆ180 11.3¨10´4 parabolic no temp. 727 60170.01 144165

5 0.375 80ˆ54 3.7 parabolic piecewise 600 522.83 8804
5 0.375 80ˆ54 3.7 parabolic constant 600 547.06 9583
5 0.375 80ˆ54 1.16¨10´3 parabolic piecewise 3 28.89 552
5 0.375 80ˆ54 1.16¨10´3 parabolic constant 3 24.18 502
5 0.375 80ˆ 54 1.16¨10´3 constant constant 3 16.69 353

6 0.001 160ˆ160 3.56¨10´3 parabolic piecewise 632 96653.57 409432
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we obtained and analyzed the results of this sensitivity analysis, we choose rheological
parameters that produce a result with a good fit with the real event. By keeping fixed
such parameters, we investigate the impact of other factors on the simulation, namely:
(i) different vent positions; (ii) different grid resolutions; (iii) different viscosity mod-
els. Finally, by using the same choice of rheological parameters, we simulate two days of
eruption and compared the result with the emplacement of the real event.

Cape Verde Archipelago is located west of the Western Atlantic coast of Africa and has
volcanic origins [65], see Figure 3.32. Fogo Island rises between Brava and Santiago islands
and is the fourth largest island of the archipelago and the highest with 2829 m above the
sea level of Pico do Fogo. An active volcano stands in the island’s center, presents a 9
km wide caldera, Chã das Caldeiras (“Plain of the Calderas”), and has a summit at Pico
do Fogo. An enormous crater rim, called Bordeira and up to 1 km high, encircles the
caldera on its western side. Fogo volcano is the youngest and most active volcano of the
archipelago [59, 71]. A violent eruption occurred in 1680, which was remembered because
it could be admired even from hundreds of kilometers. During this eruption, the island
took the actual name Fogo (that means “Fire”). In the twentieth century, only two effusive
eruptions occurred (1951 and 1995), and in both cases lava invaded Chã das Caldeiras
threatening and damaging farmings and the villages present of Bangaeira, Portela, and
Ilhéu de Losna. The penultimate last but one eruption in 1995 formed a new crater called
Pico Pequeno and developed an eruptive fissure close to that. In the last eruption, which
began in November 2014 and lasted until February 2015, the eruptive fissure where the
eruption started was on the southwest flank of Pico do Fogo, and it was almost in the
same position as the fissure of the previous eruption of 1995, which is a rare behavior
[239].

Figure 3.32: (a) Map of Fogo Island. The settlements (red areas) were downloaded from
the Copernicus Emergency Management Service (2014), the little settlement of Ilhéu de
Losna was added manually to the map. (b) Archipelago of Cape Verde, of which Fogo
is a part of. (c) Altimeter profile of the cut A–A’ displayed in (a). Images from Richter
et al. [231].
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Topography and vent location have primary impact in the simulation of real events
and all codes, even those that do not consider the rheology and temperature influence
on the final flow emplacement have to use these data. Therefore, the more accurate the
topography and the vent position, the more reliable the results are. The topography used
in our simulations is a DEM (Digital Elevation Model) generated from SAR satellite with
data acquired in 2011–2013. It has a horizontal resolution of 12 meter (the DEM of Fogo is
a TanDEM-X WorldDEM1 data [232] provided by the German Aerospace Center (DLR)
through data proposal DEM_GEOL_1522, PI Nicole Richter). As stated previously,
the eruptive source was a fissure. Richter et al. [231] estimated the lava flow hazard
at Fogo by using the probabilistic code DOWNFLOW [83, 252] and used a single vent
that corresponds to the highest end of the fissure (DMS coordinates: 14°56140.562 N
- 24°21112.282 W; UTM coordinates: East 784689.69 - North 1653895.03, zone 26N).
Cappello et al. [30], in their work for the modeling of lava flow hazard at Fogo, observed,
instead, that the other end of the fissure, the lowest, was actually the main source of lava.
Having this discordant information, we decided to take into account both the vents, using
the following position for the second, DMS coordinates: 14°56127.152 N - 24°21122.962
W; UTM coordinates: East 784375.00 - North 1653479.0, zone 26N. Cappello et al. [30]
used HOTSAT, which is a satellite thermal monitoring system, to retrieve details about
the eruption, such as the lava thermal flux and the effusion rate. For the first day of
eruption (whose lava flow emplacement is represented in Figure 3.33), they registered a
mean effusion rate of 10.5 m3 s´1, with peaks between 24–27 m3 s´1. In addition, they
estimated the extrusion temperature to be 1265°C (1538 K). For our simulations, based
on their estimate, we used this temperature coupled with a constant effusion rate equal
to the mean value since there is no information about the time variations. Moreover, we
adopted their suggested values for density (2600 kg m´3) and specific heat capacity (1150
J kg´1 K´1); these values are typical of basaltic magma, which is a proper choice because
it respects the characteristics of the magma for Fogo.

For the tests presented here, we adopted a Bingham plastic rheology model with
temperature-dependent viscosity, and for this reason, we considered the thermal heat
exchanges and solved the system of Eqs. (2.42). We report in Table 3.7 the physical
parameters we adopted that do not change in the simulations. The values of the emissivity,
exposed area inner fraction, atmospheric heat transfer, and environmental temperature
are those suggested by Costa and Macedonio [55] for the eruptions of Etna; since both the
lava of Etna and that of Fogo are basaltic, this choice of values is consistent. The value for
the thermal conductivity of the soil is a mean value extrapolated from Proceedings World
Geothermal Congress 2010 [220]. In the table, we also reported the values characterizing
the temperature profile we used for this test case (n, M and Tsoil).

For the preliminary results concerning the sensitivity analysis to the rheological pa-
rameters, we used a spatial discretization grid with 40 mˆ 40 m cells, whereas in the next
we studied also the effect of different grid resolutions on the results. The PVR (physi-
cal variable reconstruction) is used at the interfaces with the generalized minmod limiter
(3.6) (with θ “ 1.3) and with a 2 stages IMEX R-K scheme for time marching, see Table
3.1. We specify that the simulations computed for this real case test were obtained with
a slightly different code with respect to that described above. Differences are related to

1The TSX/TanDEM-X mission is for the creation of a global, consistent, and high-resolution Digital
Elevation Model (DEM) obtained by exploiting the interferometric capabilities of the two twin SAR
satellites TerraSAR-X and TanDEM-X, which fly in a close orbit formation. The work for the creation
of this global DEM lasted from December 2010 to September 2016.
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Figure 3.33: Lava flow emplacement of the real event after one day of the eruption, the 24
November 2014. The red area corresponds to the outlines of actual flow fields based on field
mapping and satellite images, as reported in [30].

Table 3.7: Parameters of lava flow simulation.

Symbol Value Definition Unit

ρ 2600 density of lava kg m´3

cp 1150 specific heat of lava J kg´1 K´1

kfl 4.0 thermal conductivity of lava W m´1 K´1

ksoil 2.0 thermal conductivity of soil W m´1 K´1

Tvent 1538 temp. of lava at the vent K
Tenv 300 temp. of environment K
Tsoil 300 temp. of soil K
ε 0.8 emissivity of lava m´2

f 0.5 fract. area of exposed inner core –
λ 70 atmospheric heat transfer coeff. W m´2 K´1

n 4 param. of the lava temp. profile –
M 12 param. of the soil temp. profile –

optimizations and to the choice of the variables used for the reconstruction at the cell
interfaces. In our future works, we will validate this new version of the code.

Sensitivity study to rheological parameters. In this test of lava simulation, since
we adopted a Bingham plastic rheology model with a temperature-dependent viscosity,
the friction coefficient γ of the momentum equation writes as follows (from Eqs. (2.12)
and (2.13)):

γ “
1

ρ

ˆ

3

h
rµ`

τ0

‖U‖

˙

, with rµ “ µref exp r´b pT ´ Tref qs ,
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and the viscous heating term in the temperature equation (see Eq. (2.39)) is

KpU2
` V 2

qe´bpT´Tref q.

Such model requires to choose the values of the yield stress τ0, of the parameter b, and
of the reference values of temperature and viscosity, Tref and µref . We notice that when
b “ 0 K´1 the temperature equation is decoupled from the others: the friction coefficient
of the momentum equation does not depend on temperature and the same is for the
viscous heating term in the temperature equation.

In the following, we show the effects of viscosity, yield stress and temperature on the
flow propagation. We assumed that lava dynamic viscosity µref is of the order of 102–
104 Pa s upon eruption, namely at the effusion temperature, as suggested in [39, 120, 151,
229] for basaltic magma as the Fogo’s. We considered the temperature at the vent as the
reference value for the temperature-dependent viscosity model, Tref “ Tvent “ 1538 K,
and produced three sets of simulations respectively with the viscosity at the vent µref
equal to 100, 1000, and 10000 Pa s. The yield stress τ0 for basaltic lava is assessed in the
range 102–104 Pa, see Bernabeu et al. [13], so we chose to adopt the three values 100 Pa,
1000 Pa, and 10000 Pa. In addition, we also made simulations for the Newtonian case that
consists of τ0 “ 0 Pa. The value 2 ˆ 10´2 K´1 is adopted for the parameter b in Costa
and Macedonio [55], in a simulation of Etna volcano. A similar value, 1.6 ˆ 10´2 K´1, is
used in [13], and both situations are relative to basaltic lava. Here, we tested the values
10´2 K´1 and 10´3 K´1 for b and also considered the decoupled case, namely b “ 0 K´1.
In the future, we want to compare our results with those descending from the use of the
rheological model defined by the VFT equation and discussed, for example, in [102].

Figures 3.34, 3.35, 3.36 show thickness and temperature of lava flow after 24 hours of
eruption for three different sets of simulations, with reference dynamic viscosity µref “
102, 103, 104 Pa s respectively. In these Figures (as in all the Figures for this test case),
we plotted simulation results by applying a 1 cm threshold to the flow thickness to be
visualized. The choice of a small threshold for the representations has an impact (however
negligible) only on those simulations obtained using small yield stresses, in fact, the higher
the yield stress and the thicker the lava front. In the different panels of Figures 3.34, 3.35,
3.36, we present the results obtained by varying yield stress τ0 and rheological parameter b.
Comparing results, we notice that increasing values of the yield stress reflects on narrower
and taller lava flow emplacements. For b “ 10´2 K´1 there is the strongest coupling
between temperature and velocity, and the temperature has the greatest influence on
viscosity. In this case, independently from the other parameters, we observe that the
lava flow emplacement is not much affected by the topography and remains close to the
vents. The case τ0 “ 104 Pa is to consider a little exception, in fact, even though the flow
propagation is much limited, it is evident that lava follows the topography. Simulations
with b “ 0 K´1 (decoupled equations and constant viscosity) show results far different from
those obtained with b “ 10´2 K´1, whereas the case with b “ 10´3 K´1 is similar to the
decoupled case (b “ 0 K´1) since the coupling is more weakened with respect to case with
b “ 10´2 K´1. The largest emplacement areas of each figure for all the three reference
viscosity considered realize in the decoupled Newtonian case (b “ 0 K´1, τ0 “ 0 Pa),
because the lower the viscosity the larger the surface area inundated, so that Figure 3.34
presents the largest final emplacement among all simulations.

Our further attempt was to determine ranges for the values of b, µref , and τ0 that
produce simulations compatible with the observed event and to study their effects on the
runout. By comparing results of Figures 3.34 – 3.36 with the emplacement of the real event
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Figure 3.34: Simulations after 24 hours of eruptions computed with a grid size of 40 m, con-
sidering µref “ 102 Pa s, varying the yield stress τ0 pPaq and the parameter b pK´1q. Top: the
thickness (in logarithmic scale) and the outline of the actual emplacement. Bottom: temperature.
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Figure 3.35: Simulations after 24 hours of eruptions computed with a grid size of 40 m, consid-
ering µref “ 103 Pa s, varying the yield stress τ0 pPaq and the parameter b pK´1q. Top: thickness
(in logarithmic scale) and the outline of the actual emplacement. Bottom: temperature.
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Figure 3.36: Simulations after 24 hours of eruptions computed with a grid size of 40 m, consid-
ering µref “ 104 Pa s, varying the yield stress τ0 pPaq and the parameter b pK´1q. Top: thickness
(in logarithmic scale) and the outline of the actual emplacement. Bottom: temperature.
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(see Figure 3.33, Map, and Cappello et al. [30]), we observed that simulations obtained
with b “ 10´3 K´1, 102 ď τ0 ď 103 Pa and 102 ď µref ď 103 Pa s present more similarities
with a real case, so we did a further investigation. By fixing the parameter b, we let τ0 and
µref assume some values in the interval r102, 103s obtaining a more accurate description of
the solution dependence on such parameters. Figure 3.37 depicts thickness in logarithmic
scale and Figure 3.38 reports temperature. As observed previously, we can confirm that
the higher the yield stress and the narrower (and taller on the average) the flow, moreover,
the lower the viscosity and the farther the lava propagates. Being viscosity temperature
dependent, we also plotted its value in Figure 3.39, with the same reference scale for
all the panels (that range between the minimum value of 102 Pa s, that corresponds to
the viscosity at the vent when µref “ 100 Pa s, and the maximum value of 3448 Pa s,
reached when the fluid is at the environment temperature in the case of µref “ 1000 Pa s).
From this Figure, it is evident (and highlighted by the use of the logarithmic scale) that
viscosity values strongly depend on the reference viscosity considered. Hence, we passed
to consider, for each reference viscosity, the respective range of temperature-dependent
viscosity and plotted the results in Figure 3.40 where the maximum values scale in relation
to the reference value of viscosity.

Comparing the results shown in Figures 3.37 and 3.38 with the real lava flow emplace-
ment after one day of eruption in Figure 3.33, we noticed that the simulation obtained
with µref “ 100 Pa s and τ0 “ 500, 750 Pa are those more similar to the real event. Since
more than one simulation shows a good agreement with the observations, we fix one choice
of parameters to continue with further analysis: namely µref “ 100 Pa s and τ0 “ 750 Pa.
In future works, we plan to evaluate the quality of fit between each simulation and the
real emplacement by using the measurements defined in [52] based on the area of overlap,
over-extent, and under-extent between the footprints of the observed and simulated lava.

Figure 3.41 shows the story of the first 24 hours of eruption with the previous choice
of parameters: b “ 10´3 K´1, µref “ 100 Pa s and τ0 “ 750 Pa. The main north and
south branches developed meanwhile (fact that happened also in the real eruption) and
the propagation velocity of them was similar (at least for the first 24 hours). After 12
hours of eruption, the north lobe extended for „ 1200 m and the south lobe for „ 800 m.
A third lobe developed after 15 hours of eruption west going from the north branch and
reached a maximum length of „ 500 m. The north-lobe extended till a maximum length
of „ 2400 m in 24 hours, instead the south-lobe reached Bordeira after 21 hours and a
final extension of „ 1800 m

As previously stated, in the simulations presented so far, we assumed the flow is feeded
by two vents to compute our simulations. In order to analyze the effect of this assumption,
in Figure 3.42 we compare the results of simulations obtained considering both the vents
or only one of them. Even if the final lava flow emplacements are not so different, we can
appreciate that in the cases where only one vent is adopted the final front propagates more
towards north or south alternatively, showing that a proper choice of the vent location
(and its changes during an eruption) are important for an accurate description of lava
flow emplacement.

We also tested the sensitivity of numerical results to the grid resolution by comparing
simulations obtained with three different cell sizes (see Figure 3.43): coarse with 80 m ˆ

80 m cells, medium with 40 mˆ40 m cells, and fine with 20 mˆ20 m cells. Result obtained
with the coarse mesh is far from what obtained with the fine mesh, instead the runout
computed with the medium mesh is comparable to that, therefore we can conclude that
simulations produced using a mesh 40 m ˆ 40 m are quite reliable. Table 3.8 show the

https://unitar.org/maps/map/2111
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Figure 3.37: Thickness (in logarithmic scale). Simulations after 24 hours of eruptions computed
with a grid size of 40 m, fixing b “ 10´3 K´1 and varying both the yield stress τ0 and the reference
viscosity µref in the interval r100, 1000s. The outline represents the actual lava flow emplacement.

execution time of the three simulations computed with the processor Intel® Core™ i7-
6500U CPU, 2.50GHzˆ4. The short execution times allow using our model also for hazard
quantification and for the production of probabilistic maps because many simulations can
be performed in a short time.
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Figure 3.38: Temperature. Simulations after 24 hours of eruptions computed with a grid size of
40 m, fixing b “ 10´3 K´1 and varying both the yield stress τ0 and the reference viscosity µref
in the interval r100, 1000s.

cells 80ˆ 80 m 40ˆ 40 m 20ˆ 20 m
time 100 s 539 s 2606 s

Table 3.8: Elapsed time for the execution of simulations with different grid sizes; simulations of
24 hours of eruptions computed using reference viscosity µref “ 100 Pa s, rheological parameter
b “ 10´3 K´1, and yield stress τ0 “ 750 Pa. Processor specifications: Intel® Core™ i7-6500U
CPU, 2.50GHzˆ 4.



3.4. NUMERICAL SIMULATIONS 169

0 1 2 3
N

km 0 1 2 3
N

km 0 1 2 3
N

km 0 1 2 3
N

km 0 1 2 3
N

km

0 1 2 3
N

km 0 1 2 3
N

km 0 1 2 3
N

km 0 1 2 3
N

km 0 1 2 3
N

km

0 1 2 3
N

km 0 1 2 3
N

km 0 1 2 3
N

km 0 1 2 3
N

km 0 1 2 3
N

km

0 1 2 3
N

km 0 1 2 3
N

km 0 1 2 3
N

km 0 1 2 3
N

km 0 1 2 3
N

km

0 1 2 3
N

km 0 1 2 3
N

km 0 1 2 3
N

km 0 1 2 3
N

km 0 1 2 3
N

km

μ
re

f=
10

00
μ

re
f=

75
0

μ
re

f=
50

0
μ

re
f=

25
0

μ
re

f=
10

0

τ =1000 τ =2500 τ =5000 τ =7500 τ =10000

3448

2000

1000

500

200

100

Pa s

Figure 3.39: Temperature dependent viscosity (unique logarithmic scale). Simulations after 24
hours of eruptions computed with a grid size of 40 m, fixing b “ 10´3 and varying both the yield
stress τ0 and the reference viscosity µref in the interval r100, 1000s.
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Figure 3.40: Temperature-dependent viscosity (each logarithmic scale depends on the reference
viscosity). Simulations after 24 hours of eruptions computed with a grid size of 40 m, fixing
b “ 10´3 K´1 and varying both the yield stress τ0 and the reference viscosity µref in the interval
r100, 1000s.
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Figure 3.41: History simulation of one day of eruption. Grid size of 40 m, reference viscosity
µref “ 100Pa s, rheological parameter b “ 10´3 K´1, and yield stress τ0 “ 750 Pa.
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Figure 3.42: Sensitivity to the vent position. We call V1 and V2 the two vents we employed
in our simulations: V1 (DMS coordinates: 14°56140.562 N - 24°21112.282 W; UTM coordinates:
East 784689.69 - North 1653895.03, zone 26N), and V2 (DMS coordinates: 14°56127.152 N -
24°21122.962 W; UTM coordinates: East 784375.00 - North 1653479.0, zone 26N). Left: both
vents were adopted. Center: we used V1, the highest vent. Right: the lower vent V2 was
adopted. Simulations after 24 hours of eruptions computed with a grid size of 40 m, reference
viscosity µref “ 100 Pa s, rheological parameter b “ 10´3 K´1, and yield stress τ0 “ 750 Pa. The
outline represents the actual lava flow emplacement.
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Figure 3.43: Sensitivity to the numerical grid size. Left: grid size 80 ˆ 80 m. Center: grid
size 40 ˆ 40 m. Right: grid size 20 ˆ 20 m. Simulations of 24 hours of eruptions computed
with reference viscosity µref “ 100 Pa s, rheological parameter b “ 10´3 K´1, and yield stress
τ0 “ 750 Pa.



Chapter 4

Numerical discretization of the 3D
model

3D models permit an accurate description of fluid dynamics processes, in the first place,
and of thermophysical and rheological processes, as a consequence. Vertical distribution
of the variables (as velocity, temperature, and viscosity) is directly treated. In the context
of the description of the free-surface fluids, most 3D models result in a multiphase model
(accounting also the overlying air) as ours, and this feature produces a further increase
in the numerical and computational efforts necessary for solving the governing equations.
The sum of these difficulties slowed the development and popularity of 3D models in the
past. Thanks to the technology development and increase in the computational power
that happened in the latest decades, such as the possibility of parallelizing the code
execution, CFD software for 3D models evolved and spread. Engineers and researchers
commonly use tools for 3D CFDmodeling, which range from commercial software packages
to community-driven or government-supported open-source libraries. We quote below four
advanced CFD tools, three commercial and one open-source, that can be used for lava
flow simulations. The application of such tools to lava flow simulations may require the
implementation of additional capabilities that might not be built-in, like the rheology and
thermodynamics models and the possibility to employ topography.

ANSYS® FLUENT is a CFD commercial software oriented to engineering use that
implements 3D models and adopts a cell-centered numerical approach to the FVM. That
software makes use of pre- and post-processing and also visualization programs. The
codes are parallelized with MPI standard. The company of engineering simulation AN-
SYS® takes care of the software maintenance. Such a company was founded in 1970
in Canonsburg, Pennsylvania, and FLUENT is only one of the numerous products they
develop.

FLOW-3D® is a commercial software devoted primarily to engineering with a partic-
ular focus on 3D CFD. Multiphase modeling bases on the VOF method applied in com-
bination with the level-set formulation (both belong to the family of interface-capturing
methods we have seen in §2.2). This software, used for free-surface flows, can model all
types of heat transfer, flows on porous media, and viscous fluids. Hence, FLOW-3D lends
itself to be also used for 3D lava flow modeling. The code parallelization relies on the
OpenMP paradigm. FLOW-3D is produced and distributed by Flow Science Inc. and is
a popular choice for a wide range of industrial applications. The two main disadvantages
of FLOW-3D are the slowness and the high price. In return, users get a fully developed
and tested modeling environment with a graphical user interface and product support.
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COMSOL® Multiphysics is a simulation commercial software, developed by COM-
SOL Inc., that provides an IDE and unified workflow for electrical, mechanical, fluid,
acoustics, and chemical applications, which is why it is referred to as “Multiphysics”. The
numerical base-core of COMSOL is the finite element method (FEM).

OpenFOAM [137] is an open-source software package produced by OpenCFD Ltd.
devoted mainly to CFD (we already introduced OpenFOAM in §1.3; here, we remind its
main features and compare it to the other software for 3D modeling to motivate our de-
cision of using it for our work). The OpenFOAM solvers are based on FVM schemes and
can deal with complex fluids, chemical reactions, turbulence, heat transfer, solid mechan-
ics, and electromagnetics. Codes are parallelized with OpenMPI, and the software uses
pre- and post-processing tools. Being open-source software, users can modify solvers and
applications present besides using them directly as they are. So, even though OpenFOAM
does not have a solver that precisely models lava flows with their complex physics, the
user can create that according to his needs.

We decided to develop our work in the OpenFOAM framework because of its mod-
eling features and open-source nature. In particular, we identified interFoam solver as
the starting point of our work. interFoam solves the dynamics for two incompressible,
isothermal, and immiscible fluids using the Volume Of Fluid method, and its performances
are analyzed in Deshpande et al. [69]. Our work consisted of modifying such a solver by
adding the energy equation that accounted for diffusion and the radiative and convective
heat exchanges with the environment. Heat conduction with soil is instead implemented
as a boundary condition. In our new solver that is called interThermalRadConvFoam,
we also implemented a temperature-dependent viscosity, the possibility to import a DEM
(Digital Elevation Model) file (in order to compute simulation over real topography), the
dynamic mesh refinement, and the parallelization.

We recall here the system of PDEs we derived in §2.2 to describe the dynamics of two
immiscible multiphase fluids with Newtonian viscosity, in incompressible flow condition,
that accounts also the evolution of the thermal energy caused by heat exchanges:

∇ ¨ u “ 0 (4.1a)
Bpρuq

Bt
`∇ ¨

`

ρuuT
˘

“ ´∇p`∇ ¨ τ ` ρg ` fΣ (4.1b)

Btα `∇ ¨ puαq “ 0, (4.1c)
BpρcpT q

Bt
`∇ ¨ pρcpTuq ´ χ̄Σ∆pkT q “ ´

εσSBfAfs
V ol

`

T 4
´ T 4

env

˘

´
λfAfs
V ol

`

T ´ Tenv
˘

.

(4.1d)

Eq. (4.1a) refers to the mass conservation principle and consists in a kinematic constraint
on the velocity field u (because of the incompressible flow assumption, see §1.1.5.6). Eq.
(4.1b) is the momentum conservation equation, and its non hyperbolic terms are, respec-
tively: the opposite of the gradient of the pressure field p, the divergence of the viscous
stress tensor τ (defined in Eq. (1.47)), the gravity force with the gravity acceleration g,
and finally the surface tension fΣ (defined in Eq. (2.57)). Eq. (4.1c) is the transport
equation for the liquid volume fraction α, the variable that takes the trace of the two
fluids described, derived in §2.2.1.1. Eq. (4.1d) for energy (derived in §2.2.2) has the
hyperbolic and diffusive terms on the left hand side, and the terms for radiative and
convective heat exchanges on the right. T is the temperature variable, instead the re-
maining parameters that appear in the equation are: cp the specific heat, k the thermal
conductivity, χ̄Σpx, tq a function that suppresses the thermal diffusion between the fluids,

http://www.comsol.com/products/multiphysics/
http://www.openfoam.com
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ε the emissivity, σSB the Stefan-Boltzmann constant, f the fractional area of the exposed
inner core, Tenv the environmental temperature, λ the heat transfer coefficient. Since
the radiative and convective phenomena happen on the fluid free surface, the two terms
describing them activate only in correspondence of that and so are both proportional to
the Afs that is the area of the free surface.

The unknowns of the system of Eqs. (4.1) are velocity u, pressure p, temperature
T , and the liquid-phase volumetric fraction α, whereas density ρ is assumed constant (in
each phase). From a numerical point of view, the system presents several problems and
frailties:

• The continuity equation is expressed by a kinematic constraint; consequently, an
explicit condition for pressure is missing. Such a problem is overcome by adopting a
scheme that belongs to the segregated methods family, exposed in §4.1, that consists
of deriving and solving a Poisson equation for pressure.

• The momentum equation is non-linear in the advective term, hence in the cases
of implicit treatment, some sort of linearization becomes fundamental, as shown in
§4.1.

• At the initial time, the indicator function of the liquid-phase volumetric fraction
presents a discontinuity at the interface between the two phases and assumes val-
ues zero or one. Similarly, the numerical schemes employed to solve the transport
equation for α must preserve the values of α bounded, between zero and one, and at
the same time must maintain the interface as sharp as possible. For these reasons,
the choice of the scheme for the advective term discretization is of paramount im-
portance. Moreover, since adopting a fine computational grid helps to describe the
interface accurately, one could think of playing with the numerical grid resolution.
A common method used to keep a sharp interface is a sub-grid level reconstruction
of the interface using linear or quadratic polynomials. However, the choice of a good
grid resolution does not guarantee boundedness of α, nor sharpness of the interface
through time. Furthermore, the use of a finer grid has the drawback to increases
a lot the computational cost. The method implemented in interFoam is different,
it follows the Flux Corrected Transport (FCT) approach described by Boris and
Book [22] adopting the Multidimensional Universal Limiter for Explicit Solution
(MULES) scheme depicted by Márquez Damián [196], and we will present such a
scheme in §4.3 and §4.4.

In addition, we underline that our solver interThermalRadConvFoam (but also the original
interFoam) does not solve exactly the Eqs. (4.1), but a slightly modified version. One
difference is in the transport equation for α and consists in the introduction of an artificial
term useful to maintain the interface between the fluids sharper, described in §4.2. The
other difference is in the right-hand side terms of the momentum equation, which sees a
rearranging of the pressure and gravitational terms, as discussed in detail in §4.5.

The outline of the Chapter is as follows: the segregated approach employed to solve
the mass-momentum system of equations is described in §4.1; in §4.2 we describe FCT
discretization technique adopted for the discretization of the α equation; in §4.3 and §4.4
the MULES scheme is described; the design of our solver interThermalRadConvFoam is
presented in §4.5; in §4.6 we give a brief sketch of numerical approaches different from
the segregated approach adopted here, and, finally, in §4.7 we presents the results of our
simulations.
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4.1 Segregated Method

To solve a system of coupled PDEs, like the Navier-Stokes Eqs. (1.37) numerically (or
even the incompressible case of Eqs. (1.49) or the system of our incompressible multiphase
model of Eqs. (4.1)), there are two possible ways. One option is to follow the fully
coupled approach: all the equations are discretized and linearized together by producing
a single large linear system (where the unknowns are all the flow variables), which is solved
as a whole (usually through iterative methods for linear systems). The other possibility to
solve the system is to adopt the segregated approach as most of the OpenFOAM solvers
do: the equations are solved one at time and the coupling is obtained by an iterative
procedure (see the original works of Harlow and Welsh [115], Chorin [41], Patankar and
Spadling [208], Caretto et al. [33], Issa [134]). In this thesis, we adopt the latter choice to
solve our incompressible and multiphase model of Eqs. (2.59).

From a mathematical point of view, this approach allows using different solution meth-
ods by choosing those that better suit the mathematical feature of each equation. The
most important thing to understand in the segregated algorithms is the physical motiva-
tions behind each mathematical coupling between the equations because such motivations
drive the construction of the coupling algorithms.

In order to introduce the strategies to couple the equations of our system of Eqs.
(4.1), we start by describing the simpler case of single-phase dynamics in which just the
mass and momentum equations are considered. The algorithm that is adopted to solve
the entire system of Eqs. (2.59), which will be exposed in §4.5, is based on a similar
approach, where the solution of additional equations is nested in the procedure. So, the
equations for the mass and momentum conservation are recalled here:

∇ ¨ u “ 0, (4.2a)
Bpρuq

Bt
`∇ ¨ pρuuT q “ ´∇p`∇ ¨ τ ` ρg. (4.2b)

Since density is constant, then the unknown fields are velocity u and pressure p. With
respect to the compressible formulation, the continuity equation does not have a transient
term and it reduces to a kinematic constraint on the velocity. We recall also that, being
the flow incompressible (and also the density constant), there is no any state equation
linking the pressure with density and p is the mechanical pressure. Because of that,
the absolute value of pressure is of no significance and only its gradient is necessary (in
the momentum equations). In some sense, the pressure in the incompressible Navier-
Stokes equations is entirely mathematical, thus an expression for it should be derived
from mathematical relationships. By taking the divergence of the momentum equation
and by imposing the kinematic condition of the continuity equation, a Poisson equation
for pressure is derived, as shown in the following. It is important to underline that, even
in the derived Poisson equation, only the gradient of pressure is involved and not the
absolute value of pressure. The discretization of the derivatives in the Poisson equation
requires particular attention in order to guarantee consistency with the discretizations
applied in the momentum equation, as is stressed in the next paragraphs.

The numerical algorithm to solve the system of PDEs (4.2) starts by moving the
advective term of the momentum Eq. (4.2b) on the right-hand side, then a spatial
semi-discretization is first applied to the equation. Moreover, we highlight that different
schemes may be used for each term. The choice of the numerical discretization scheme
of the spatial derivatives is not of interest here, so the generic symbol δ{δx is used to
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represent such arbitrary schemes. The momentum equation for the i-th component of the
velocity in each cell of the computational grid is represented as

Bpρuiq

Bt
“ ´

3
ÿ

j“1

δpρuiujq

δxj
´
δp

δxi
`

3
ÿ

j“1

δτij
δxj

` gi, i “ 1, . . . , 3;

here δ{δx may be a different kind of spatial approximation for each term. Furthermore,
we recall that, being N the number of cells that constitute the discretized domain, the
total number of equations to solve is proportional to 3N , and that any equation involves
also contiguous cells because of the discretization schemes of the differential terms (see
what described in §1.3.2.1).

The right-hand side terms, with the exception of the pressure term, are collected
together in the H-operator:

Hi :“ ´
3
ÿ

j“1

δpρuiujq

δxj
`

3
ÿ

j“1

δτij
δxj

` gi, i “ 1, . . . , 3, (4.3)

which acts also as a shorthand notation since here there is no interest in the numerical
treatment of the corresponding terms. With this notation, the semi-discretized form of
the momentum equation for the i-th component of the velocity is

Bpρuiq

Bt
“ Hi ´

δp

δxi
, i “ 1, . . . , 3. (4.4)

For a full-discretized form of the momentum equation, we also need a discretization in
time. To this aim, we first introduce the superscript notation n to denote the numerical
approximation of the variables at the time step tn “ n∆t.

A fast overview is given to the pro and cons that meet in treating in an explicit or
implicit way the two source terms of Eq. (4.4), the H-operator and the pressure gradient.
Also, the strategies that try to overcome the possible problems are exposed. This analysis
provides the basic ideas that are implemented and then used in an iterative fashion in the
popular SIMPLE and PISO algorithms, as we see in the following.

Case A. When we apply the first-order forward Euler scheme for the time discretization
of the Eq. (4.4), we obtain the following full-discretized form of the momentum equation
for the i-th component of the velocity:

ρun`1
i ´ ρuni

∆t
“ Hn

i ´
δpn

δxi
, i “ 1, . . . , 3,

where the velocity at time n is used in the computation of Hn
i . Once a numerical scheme

for the computation of the pressure gradient δpn{δxi is chosen, it is possible to determine
un`1
i at the new time step. Generally, the velocity field computed in this way does

not satisfy the continuity equation, namely it does not guarantee the divergence-free
condition, and thus it does not satisfy the mass conservation. It results that, to overcome
this problem and enforce this constrain, the velocity and pressure fields used on the right-
hand term cannot be both treated explicitly.



178 CHAPTER 4. NUMERICAL DISCRETIZATION OF THE 3D MODEL

Case B. Let consider now an implicit discretization of the pressure term, while retaining
the explicit discretization of the operator H.

ρun`1
i ´ ρuni

∆t
“ Hn

i ´
δpn`1

δxi
, i “ 1, . . . , 3, (4.5)

In this case, if we take the numerical divergence of the full-discretized momentum equation
(4.5), we have

3
ÿ

i“1

δun`1
i

δxi
´

3
ÿ

i“1

δuni
δxi

“
∆t

ρ

«

3
ÿ

i“1

δ

δxi

ˆ

Hn
i ´

δpn`1

δxi

˙

ff

. (4.6)

We observe that, because the continuity is respected at the time step tn, the second term
on the left-hand side is zero. If also the term in square brackets is null, then it follows
that even the first term on the left-hand side will be null, resulting in the divergence-free
condition at the new time step. By considering this, we have derived the desired condition,
which is called the Poisson equation for pressure, written in the discretized form as

3
ÿ

i“1

δ

δxi

ˆ

δpn`1

δxi

˙

“

3
ÿ

i“1

δHn
i

δxi
(4.7)

where the outer differential operators on both sides correspond to the numerical divergence
just applied and hence they must be discretized in the same way (that would be the same as
that used for the numerical discretization of the continuity equation (4.2a)). The pressure
pn`1 that satisfies the Poisson equation makes the velocity field un`1 divergence-free in
terms of the discrete divergence operator.

The algorithm for time-advancing the Navier-Stokes equations descending from this
scheme is:

• Start at time tn with the velocity field un that is assumed to be divergence-free.

• Assemble the term Hn
i (defined in Eq. (4.3)) and compute its numerical divergence

3
ÿ

i“1

δ
Hn
i

δxi
.

• Solve the discrete Poisson equation (4.7) to determine pn`1.

• Compute the divergence-free velocity field un`1 from the momentum equation at
the new time step tn`1:

un`1
i “ uni `

∆t

ρ

ˆ

Hn
i ´

δpn`1

δxi

˙

, i “ 1, . . . , 3.

• Pass to the next time step.

Observe that the final pressure and velocity fields, pn`1 and un`1
i , respect both the mass

and momentum equations (4.5). However, this scheme has the disadvantage that the
H-operator is evaluated explicitly imposing severe limitations on the maximum time-step
guaranteeing the stability of the numerical scheme.
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Case C. Let adopt, instead, an explicit discretization for the pressure term and an
implicit discretization for theH-operator (defined in Eq. (4.3)) in the momentum equation
(4.4). The full-discretized form of the momentum equation for the i-th component of
velocity is written as follows

ρun`1
i ´ ρuni

∆t
“ Hn`1

i ´
δpn

δxi
, i “ 1, . . . , 3, (4.8)

where the velocity at the new time tn`1 is used in the computation of Hn`1
i . Since the

unknown is only the velocity field un`1, it is possible to find the solution. However, the
implicit discretization of the H-operator introduces another problem: the H-operator is
quadratic with respect to the unknown velocity field because it contains the discretized
advective terms (see the definition in Eq. (4.3)). As a consequence, the H-operator must
be linearized (namely the advective term is linearized) and the Eq. (4.8) must be solved
with an iterative procedure. To linearize the advective term inside Hn`1

i , we consider the
advected quantity, namely the momentum, as the unknown at the new time step and we
retain at the previous time step the advective velocity:

3
ÿ

j“1

δpρun`1
j un`1

i q

δxj

plineariz.q
ÝÑ

3
ÿ

j“1

δ
`

pρunj qu
n`1
i

˘

δxj
, i “ 1, . . . , 3 (4.9)

In addition, we observe that also in this case, as for Case A, the new velocity field
computed in this way may not satisfy the condition of null divergence.

Case D. We consider, for the last case, a fully implicit treatment. The full-discretized
form of the momentum equation we have to solve is

ρun`1
i ´ ρuni

∆t
“ Hn`1

i ´
δpn`1

δxi
, i “ 1, . . . , 3. (4.10)

We get a system of three equations in the four unknowns of pressure and three velocity
components, hence we need an additional constraint to fully determine the solution, which
is given by the divergence-free condition. To solve this system of equations, we first try
to repeat the same steps done in Case B analyzed above. By taking the numerical
divergence of the momentum equation (4.10), we obtain something similar to Eq. (4.6),
but with the H-operator computed at the time n` 1 in place of Hn

i :

3
ÿ

i“1

δun`1
i

δxi
´

3
ÿ

i“1

δuni
δxi

“
∆t

ρ

«

3
ÿ

i“1

δ

δxi

ˆ

Hn`1
i ´

δpn`1

δxi

˙

ff

.

Assuming that the velocity field un is divergence-free, then it descends that the velocity
field un`1 has null divergence when the divergence of the right-hand side term is null.
From these considerations, we derive a new Poisson equation for pressure:

3
ÿ

i“1

δ

δxi

ˆ

δpn`1

δxi

˙

“

3
ÿ

i“1

δHn`1
i

δxi
.

We observe that this equation cannot be solved for the pressure, because the velocity
field required to compute the H-operator on the right hand side is still unknown. So
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it is necessary to define a strategy, and a sort of predictor-corrector procedure is intro-
duced. One idea might be, for example, to predict the velocity field from the momentum
equation (4.10) neglecting the pressure term (this velocity field usually does not respect
the divergence constraint), then the new pressure field is computed such that it corrects
the predicted velocity and makes it divergence-free. The algorithmic steps related to this
scheme are:

• Start at time tn with the velocity field un assumed to respect the null-divergence
constrain.

• Let u˚ be the predicted velocity field which would result by neglecting the pressure
contribute in the momentum equation:

ρu˚i ´ ρu
n
i

∆t
“ H˚

i ùñ u˚i “ uni `
∆t

ρ
H˚
i , i “ 1, . . . , 3. (4.11)

Notice that here the H-operator (defined in Eq. (4.3)) H˚
i is quadratic in the

unknown u˚ because it contains the advective flux term. A linearization similar to
the one adopted in Case C, Eq. (4.9), is applied

3
ÿ

j“1

δpρu˚ju
˚
i q

δxj

plineariz.q
ÝÑ

3
ÿ

j“1

δ
`

pρunj qu
˚
i

˘

δxj
, i “ 1, . . . , 3. (4.12)

• Assume that the correct velocity field un`1 respects the following equation

ρun`1
i ´ ρuni

∆t
“ H˚

i ´
δpn`1

δxi
, i “ 1, . . . , 3

ðñ un`1
i “ uni `

∆t

ρ

ˆ

H˚
i ´

δpn`1

δxi

˙

, i “ 1, . . . , 3

p4.11q
ðñ un`1

i “ u˚i ´
∆t

ρ

δpn`1

δxi
, i “ 1, . . . , 3. (4.13)

One notes that requiring the velocity field un`1 to be divergence-free means com-
puting the new pressure field that satisfies the Poisson equation

∆t

ρ

3
ÿ

i“1

δ

δxi

δpn`1

δxi
“

3
ÿ

i“1

δu˚i
δxi

p4.11q
ðñ

∆t

ρ

3
ÿ

i“1

δ

δxi

δpn`1

δxi
“

3
ÿ

i“1

δ

δxi

ˆ

uni `
∆t

ρ
H˚
i

˙

.

(4.14)
Since the velocity field un was assumed divergence free, and because of the linearity
of the divergence operator, the previous equation is equivalent to the next one:

3
ÿ

i“1

δ

δxi

δpn`1

δxi
“

3
ÿ

i“1

δH˚
i

δxi
. (4.15)

For consistency of the numerical scheme, the outer differential operators on both
sides (that correspond to the numerical divergence applied to the momentum equa-
tion) must be discretized in the same way, that should be the same used for the
numerical discretization on the continuity equation (4.2a).
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• By using the new pressure field pn`1 computed from the Poisson equation (4.14) or
(4.15), the divergence-free velocity field un`1 is obtained in a straightforward way
from Eq. (4.13).

• Pass to the next time step tn`1.

Observe that the final fields un`1 and pn`1 may not respect the original fully-implicit mo-
mentum equation (4.10) with the consequence that the pressure and velocity are not cou-
pled properly and that the linearization is not properly resolved. More accurate schemes,
like those described in the next section, overcome to this problem by using iterations.
Algorithms like this, where the first velocity field computed (namely u˚) does not satisfy
the continuity equation and hence it is corrected by subtracting something, like the pres-
sure gradient, are called projection methods . The idea behind this name is that the
divergence-producing part of the field is projected out.

We make some further observations about the cases just exposed and we highlight good
and bad points of them. The schemes that adopt an explicit discretization of the pressure
term, cases A and C, do not guarantee the new velocity to be divergence-free, neither
they have an equation to move the pressure field forward in time. The implicit treatment
of the pressure field, as done in cases B and D, requires an additional equation for it,
which is a Poisson equation, derived by taking the divergence of the momentum equation.
According to this, the resulting new velocity field respects the kinematic constrain. The
advantages of having a divergence-free velocity and an equation to compute pressure make
the schemes B and D better than A and C. From a further comparison, case B has the
pro that the original full-discretized momentum equation is solved perfectly, but, being
the H-operator treated in an explicit way, there is a strict condition on the time step. The
fully implicit treatment is preferred because, being unconditionally stable, it allows using
larger time steps, hence the schemeD is the best. Moreover, the algorithmic difficulty that
rises from the fully implicit treatment is fixed by applying a predictor-corrector strategy to
the velocity computation. Finally, the fact that the velocity and pressure fields computed
may not verify the original momentum equation, which results in a loss of coupling, is
overcome by introducing iterations, as described in the next section.

4.1.1 Implicit method with pressure correction

We pass from the intuitive notation adopted in the previous section to the notation
introduced in Section §1.3, widespread in the OpenFOAM context. We recall that the
spatial domain is discretized in N cells, in each cell a governing equation is numerically
solved (by applying the discretization procedures explained in §1.3.2) and the equations
form a system Ax “ b (as exposed in §1.3.3). Each equation may be written as in Eq.
(1.143):

APxP `
ÿ

N

ANxN “ bP ,

where the subscripts highlight whether the variables are evaluated in the centroid of
the considered cell P , or in the centroids of the neighboring cells N . Since we solve
the momentum equation, the unknowns xP are ui,P , namely the i-th component of the
velocity vector referred to the centroid of the cell P . Moreover, we take apart the pressure
term. In the framework of this notation, the discretized momentum equation referred to
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the P -th control volume and to the i-th velocity component writes as follows:

APui,P `
ÿ

N

ANui,N “ bP ´

ˆ

δp

δxi

˙

P

, i “ 1, . . . , 3.

The pressure term retains the symbolic writing δ{δxi because it underlines that the solu-
tion method exposed here is independent of the specific discretization scheme chosen for
such term.

As observed previously, a direct solution of the equation is impossible, so the use of a
predictor-corrector strategy, the derivation of a Poisson equation and the linearization of
the quadratic term are applied. In the next sections we present three algorithms to solve
the discretized momentum equation which mainly differ for the problems that they solve.
In §4.1.1.1, we introduce the SIMPLE algorithm, used to solve steady-states problems,
which adopts an iterative procedure to improve the errors rising from the linearization
of the advective term. In §4.1.1.2 we present the PISO algorithm, that applies to the
transient problems, which focuses on the improvement of the coupling between pressure
and velocity. Even though PISO is usually referred to as an iterative method, the number
of necessary steps are few and most of the times 2 or 3 steps are enough to have a
good coupling. Both SIMPLE and PISO adopt the same predictor-corrector type
of procedure for velocity and pressure, the only difference is the context in which they
are applied: in the case of SIMPLE, the predictor-corrector computation happens in
each iterative step, whereas, in the case of PISO, it is applied for each time step. The
detailed derivation of the predictor-corrector scheme is exposed only once, within the
description of the SIMPLE algorithm. Finally, in §4.1.1.3 we describe an hybrid scheme,
implemented in OpenFOAM, that adopts the two strategies of SIMPLE and PISO, the
so called PIMPLE algorithm, which manages to solve both the problems of coupling and
linearization. PIMPLE applies to transient problems and considers each time step as a
steady-state problem to solve, whereby it applies the SIMPLE scheme to improve the
errors due to the linearization, and at each iteration the PISO scheme is employed to
improve the coupling between velocity and pressure.

4.1.1.1 SIMPLE

The SIMPLE algorithm was developed in the early 1970s by Prof. Brian Spalding and
his students [33]. The name stands for Semi-Implicit Method for Pressure Linked Equa-
tions, in fact the discretized momentum equation and the pressure correction equations
are solved implicitly, whereas the velocity correction is treated explicitly. The SIMPLE
algorithm was born to solve a steady-state problem for incompressible flows. The ma-
jor aim of the algorithm is to resolve the non-linearity present in the advective term of
the momentum equation, which is linearized in an iterative fashion. Being a method for
steady-state problems, there is no time dependence and the iterations are necessary to
reach the convergence to the solution for which the momentum equation is verified and
agrees with the boundary conditions. At each iteration, the quadratic term is linearized
with the velocity of the previous iteration step and a new divergence-free velocity and a
new pressure are determined in such a way that these verify the linearized momentum
equation.

At the m-th iterative step, we assume to know the velocity and pressure fields com-
puted at the previous iterative step, upm´1q and ppm´1q, and moreover velocity respects
the continuity equation so it is divergence-free. The velocity field at the m-th iterative
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step is predicted by using the last pressure field ppm´1q in the discretized momentum
equation:

APu
˚
i,P `

ÿ

N

ANu
˚
i,N “ bP ´

ˆ

δppm´1q

δxi

˙

P

. (4.16)

The advective flux term is linearized as follows

3
ÿ

j“1

δpρu˚i u
˚
j q

δxj

plineariz.q
ÝÑ

3
ÿ

j“1

δ
´´

ρu
pm´1q
j

¯

u˚i

¯

δxj
, i “ 1, . . . , 3,

so that the OpenFOAM discretization of the advective term (see Eqs. (1.130) and (1.131))
is:

ÿ

fPBVP

φ
pm´1q
f u˚i,f , with φ

pm´1q
f :“ ρu

pm´1q
i,f ¨ Sf,P ,

where the quantity φf denotes the volumetric flux of the advected momentum. The
coefficients φpm´1q

f that result from the discretization of the advective term are contained
in the matrices AP and AN (as shown in Section §1.3.3, in particular in Eq. (1.144)).
When we want to underline the evaluation step of the volumetric flux φf we abound with
the notation and write, for example, Apm´1q

P and Apm´1q
N . The predicted velocity u˚ solves

the Eq. (4.16). We rearrange this equation as follows:

u˚i,P “
1

AP

˜

´
ÿ

N

ANu
˚
i,N ` bP

¸

´
1

AP

ˆ

δppm´1q

δxi

˙

P

“: ru˚i,P ´
1

AP

ˆ

δppm´1q

δxi

˙

P

.

(4.17)

We look for two correction fields u1 and p1, for the velocity and pressure respectively,
in order to obtain the corrected velocity and pressure fields at the m-th iterative step:

u
pmq
i,P “ u˚i,P ` u

1
i,P , (4.18)

p
pmq
P “ p

pm´1q
P ` p1P (4.19)

(where the previous pressure field is considered as the predicted field) such that the
linearized momentum equation is respected:

A
pm´1q
P u

pmq
i,P `

ÿ

N

A
pm´1q
N u

pmq
i,N “ bP ´

ˆ

δppmq

δxi

˙

P

. (4.20)

Because of the linearity of the differential operators, of the discretization schemes, and of
the relations (4.18) and (4.19), it descends the next momentum equation

APu
˚
i,P ` APu

1
i,P `

ÿ

N

ANu
˚
i,N `

ÿ

N

ANu
1
i,N “ bP ´

ˆ

δppm´1q

δxi

˙

P

´

ˆ

δp1

δxi

˙

P

.

Since u˚ verifies Eq. (4.16), the previous equation is equivalent to the next relation
between the corrections u1 and p1

APu
1
i,P `

ÿ

N

ANu
1
i,N “ ´

ˆ

δp1

δxi

˙

P

. (4.21)
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By rearranging the terms, we find the following relation:

u1i,P “ ´
1

AP

ÿ

N

ANu
1
i,N ´

1

AP

ˆ

δp1

δxi

˙

P

“: ru1i,P ´
1

AP

ˆ

δp1

δxi

˙

P

.

(4.22)

Moreover we require that the corrected velocity is divergence free:

3
ÿ

i“1

δu
pmq
i,P

δxi

p4.18q
“

3
ÿ

i“1

δu˚i,P
δxi

`

3
ÿ

i“1

δu1i,P
δxi

“ 0,

and by using the relations in Eqs. (4.17) and (4.22) relative to the expression of u˚i,P and
u1i,P , we find

3
ÿ

i“1

δru˚i,P
δxi

´

3
ÿ

i“1

δ

δxi

„

1

AP

ˆ

δppm´1q

δxi

˙

P

`

3
ÿ

i“1

δru1i,P
δxi

´

3
ÿ

i“1

δ

δxi

„

1

AP

ˆ

δp1

δxi

˙

P

“ 0.

Because of the linearity of the discretized gradient operator, we may use the definition
of ppmq of Eq. (4.19) into the previous equation and find the next relation between the
known field ru˚i and the unknowns ru1i and ppmq:

3
ÿ

i“1

δru˚i,P
δxi

´

3
ÿ

i“1

δ

δxi

„

1

AP

ˆ

δppmq

δxi

˙

P

`

3
ÿ

i“1

δru1i,P
δxi

“ 0. (4.23)

At this point, the classic version of the SIMPLE algorithm neglects the contribution of
the field ru1i and solve the following Poisson equation to determine the pressure field ppmq:

3
ÿ

i“1

δ

δxi

„

1

AP

ˆ

δppmq

δxi

˙

P

“

3
ÿ

i“1

δru˚i,P
δxi

. (4.24)

By looking at the Eq. (4.17) of u˚i,P , we can interpret the right hand side term of Eq.
(4.24) as the continuity error of the velocity field u˚ without the pressure gradient; it is
given by the fluxes summed and interpolated through the faces. By solving this Poisson
equation, the new pressure field ppmq is determined. The new velocity field respects the
following relation

u
pmq
i,P

p4.18q
“ u˚i,P ` u

1
i,P

p4.17q
“ ru˚i,P ´

1

AP

ˆ

δppm´1q

δxi

˙

P

` u1i,P

p4.22q
“ ru˚i,P ´

1

AP

ˆ

δppm´1q

δxi

˙

P

` ru1i,P ´
1

AP

ˆ

δp1

δxi

˙

P

,

and by using the linearity of the discretized gradient operator and neglecting the contribu-
tion of the field ru1i as previously done, we find the final relation to compute the corrected
velocity field:

u
pmq
i,P “ ru˚i,P ´

1

AP

ˆ

δppmq

δxi

˙

P

. (4.25)
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The corrected fields respect the momentum Eq. (4.20) where the flux is linearized with the
velocity at the previous iteration. Then the fluxes are updated by using the new velocity
field (so the matrices AP and AN are updated too) and we must check the updated
momentum equation

A
pmq
P u

pmq
i,P `

ÿ

N

A
pmq
N u

pmq
i,N “ bP ´

ˆ

δppmq

δxi

˙

P

, (4.26)

that is only approximated due to the terms neglected so far. If the momentum Eq. (4.26)
is respected within a certain prescribed tolerance, then the algorithm has reached the
convergence and the problem due to the linearization is solved, otherwise the algorithm
must continue with at least another iteration.

To sum up, at each m-th iteration of the SIMPLE algorithm the following steps are
done:

1. the predicted velocity field u˚ is computed by Eq. (4.16),

2. the field ru˚ defined in Eq. (4.17) is computed,

3. the new corrected pressure field ppmq is computed by solving the Poisson Eq. (4.24),

4. the new corrected velocity field upmq is computed by Eq. (4.25),

5. the momentum matrix (namely A) is assembled and the advective terms are lin-
earized by using the last velocity field determined upmq, so that AP “ A

pmq
P and

AN “ A
pmq
N ,

6. check if the updated momentum Eq. (4.26) is verified within a certain tolerance
and check if the number of iterations done is less than the maximum number of
iterations fixed a priori; if it is not, continue with a new iterative step.

From the numerical point of view, remember to pay the usual attention to the dis-
cretization of the pressure equation (4.24): the inner derivative of pressure must be dis-
cretized in the same way it is treated in the momentum equation (4.16); the outer deriva-
tives (on both left and right hand sides of the equations) must be discretized by the same
scheme.

Further considerations. Even though the scheme derived makes use of the corrector
fields u1 and p1, from the practical point of view, they are never computed. Neglecting
the velocity correction ru1 in the SIMPLE algorithm (in the Poisson Eq. (4.23) for the
computation of pressure), despite it is a common practice, is almost a crudeness and
probably this is also the major reason why the method is slow to converge. Some variations
that treat more kindly ru1 or that improve the convergence are mentioned below, but
without entering in the details.

• The SIMPLEC (i.e. SIMPLE Consistent) method, by van Doormal and Raithby
(1984) [260], see the approximation of u1i,P as a weighted mean of the neighbor
values; this permits to approximate ru1i,P in terms of u1. In this way the Eq. (4.22)
changes its expression only in terms of u1 and p1.
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• The SIMPLER (i.e. SIMPLE Revised) method was proposed by Patankar in 1980
[207]. For it, the term ru1i,P is neglected, as in SIMPLE, but the pressure correction
p1 derived is used only to determine the correction u1 and to correct the velocity field
upmq, it is not used to correct pressure ppm´1q. In fact, having the new velocity field
upmq, the pressure field ppmq may be determined by Eq. (4.24) where ru˚ is replaced
by rupmq.

In OpenFOAM, the SIMPLE algorithm (together with the possibility to apply the
under-relaxation) and the SIMPLEC algorithm are implemented for solvers applicable
only to steady-states problems. Missing the transient term, the time step does not have
the usual meaning, then the under-relaxations are important to gain in stability and
convergence. Setting the time step equal to 1, the simulation time corresponds to the
number of iterations of the SIMPLE loop. Setting the relaxation coefficient very small
surely improves a lot the stability, but, on the other hand, it may greatly extend the time
required for convergence. Moreover, the solution may respect the convergence condition
even if the steady-state has not been reached.

4.1.1.2 PISO

The Pressure Implicit with the Splitting of Operators (PISO) is an algorithm introduced
by Issa [134]. The PISO algorithm is implemented in a solver devoted to transient prob-
lems and uses a predictor-corrector strategy similar to the SIMPLE scheme, but, unlike
that, PISO puts some effort into improving the velocity and pressure coupling by us-
ing multiple corrector steps. Even though PISO is usually considered as an iterative
scheme, just two or three corrective steps are recommended most of the time. We show
the procedure for the case of two corrective steps without entering in the details of the
predictor-corrector strategy because it was explained in the previous section §4.1.1.1. We
consider the pn ` 1q-st time step, then the fields un and pn derived at the previous time
step are known.

Predictor Step. The momentum matrix is assembled (and so even the vector of the
known terms bP ) and the advective quadratic term is linearized, then the volumetric flux
φf is calculated by using the known field un and we associate the superscript to the
matrices AP “ AnP and AN “ AnN . We notice that the fluxes φf are determined by a
velocity field un which is divergence-free (namely it respects the continuity equation).
The predicted velocity field u˚ (namely the prediction of un`1) is computed by solving
the following momentum equation

APu
˚
i,P `

ÿ

N

ANu
˚
i,N “ bP ´

ˆ

δpn

δxi

˙

P

.

The field ru˚ is determined again as

ru˚i,P :“
1

AP

˜

´
ÿ

N

ANu
˚
i,N ` bP

¸

,

and it is used to compute the first corrected pressure field.
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1st Corrector step. We search two correction fields u1 and p1 for velocity and pressure
in order to obtain the corrected fields

u
p1q
i,P “ u˚i,P ` u

1
i,P ,

p
p1q
P “ pnP ` p

1
P .

As we have seen in the previous section, the two correction fields u1 and p1 are not
determined explicitly, but these relations are useful to determine the corrected fields. The
first corrected pressure pp1q is obtained by solving the following Poisson equation

3
ÿ

i“1

δ

δxi

„

1

AP

ˆ

δpp1q

δxi

˙

P

“

3
ÿ

i“1

δru˚i,P
δxi

.

With this corrected pressure, we obtain the first corrected velocity field up1q as

u
p1q
i,P “ ru˚i,P ´

1

AP

ˆ

δpp1q

δxi

˙

P

.

The corrected velocity field up1q is divergence free by construction. We also notice that the
corrected pressure field was determined by using a pressure field that is not conservative
(in fact, u˚ may not respect the continuity equation with the divergence-free condition).
Moreover, from the previous equation it descends that the new corrected fields verify the
following momentum equation:

APu
p1q
i,P `

ÿ

N

ANu
˚
i,N “ bP ´

ˆ

δpp1q

δxi

˙

P

.

2nd Corrector step. We again look for two correction fields u2 and p2 for velocity and
pressure (which are not directly computed) in order to obtain the new corrected fields

u
p2q
i,P “ u

p1q
i,P ` u

2
i,P ,

p
p2q
P “ p

p1q
P ` p2P .

We pass to the second step of correction, therefore we need to calculate rup1q:

ru
p1q
i,P :“

1

AP

˜

´
ÿ

N

ANu
p1q
i,N ` bP

¸

,

which is used to compute the new corrected pressure by solving the Poisson equation

3
ÿ

i“1

δ

δxi

„

1

AP

ˆ

δpp2q

δxi

˙

P

“

3
ÿ

i“1

δru
p1q
i,P

δxi
.

Having the second corrected pressure, we compute the second corrected velocity up2q

u
p2q
i,P “ ru

p1q
i,P ´

1

AP

ˆ

δpp2q

δxi

˙

P

.
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Therefore the new corrected fields verify the following equation:

APu
p2q
i,P `

ÿ

N

ANu
p1q
i,N “ bP ´

ˆ

δpp2q

δxi

˙

P

.

We underline that, in this second corrector step, the corrected pressure pp2q was computed
on the basis of a conservative velocity field (because the velocity field up1q, used to form
rup1q, is divergence-free, hence it respects the continuity equation).

The PISO correction procedure may stop in two cases: if the number of iterations
reaches the maximum number of iterations fixed a priori, or if the continuity equation is
verified (within a certain tolerance) by the corrected pressure and velocity fields. In order
to understand the last statement, consider the last corrected fields that we determined
up2q and pp2q; we could say that these fields satisfy the continuity equation if they verify
(within a certain tolerance) the following Poisson equation

3
ÿ

i“1

δ

δxi

„

1

AP

ˆ

δpp2q

δxi

˙

P

“

3
ÿ

i“1

δru
p2q
i,P

δxi
, (4.27)

where

ru
p2q
i,P :“

1

AP

˜

´
ÿ

N

ANu
p2q
i,N ` bP

¸

.

Owning the transient term, the condition on the time step is necessary to ensure the
stability and the CFL condition c ă 1 must be respected (see §1.2.2.2).

4.1.1.3 PIMPLE

OpenFOAM offers another algorithm for transient problems that merges the two schemes,
SIMPLE and PISO, and for this reason it is called PIMPLE. At each time step, PIMPLE
uses the SIMPLE iteration, looking for a steady-state solution, and it moves on the next
time step when the convergence is achieved. Moreover, at every iteration of SIMPLE, inner
iterations for the pressure correction are applied by the adoption of the PISO algorithm.
Because of such nested iterations structure, the SIMPLE iterations are referred to as the
outer loop, whereas the PISO iterations are called inner loop. Figure 4.1 shows a
synthetic diagram of the loops.

Listing 4.1 reports an example of user defined instructions for the PIMPLE algo-
rithm. The nOuterCorrectors parameter defines the maximum number of outer loops
and nCorrectors the maximum number of the inner loops. The number of outer it-
erations recommended by the Guide is between 50 and 1000, whereas the default is 1
(namely a setting for which PIMPLE runs in PISO mode). In the case the mesh is
non orthogonal, the user can set the number of times the pressure equation is computed
and corrected in order to reduce the influence of a bad computational mesh by using
nNonOrthogonalCorrectors. In addition to the maximum number of iterations, there is
a stop criterion based on the residuals. It is possible setting a specific value of tolerance
for each equation. The absolute tolerance is by default 10´5, but the user can change
it. In fact, the user can specify whether to use a condition on the relative residuals (by
setting a non-zero value for the parameter relTol) or the absolute residuals (by setting a
non-zero value for the parameter tolerance); an example is reported in Listing 4.1 lines
94–101, where a control on the absolute tolerance is set to 10´2 for both pressure and
velocity equations.

https://openfoamwiki.net/index.php/OpenFOAM_guide/The_PIMPLE_algorithm_in_OpenFOAM
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87 PIMPLE
88 {
89 momentumPredictor yes;
90 nOuterCorrectors 50;
91 nCorrectors 2;
92 nNonOrthogonalCorrectors 0;
93

94 residualControl
95 {
96 "(p|U)"
97 {
98 tolerance 1e-2;
99 relTol 0;

100 }
101 }
102 }

Listing 4.1: Example of setting parameters for the PIMPLE algorithm, written in the
fvSolution file.

For steady-state problems, SIMPLE is preferred to PISO because, in such case, it is
not necessary to solve the pressure-velocity coupling. For transient problems, both PISO
and PIMPLE may be used, but PIMPLE ensures a better stability (when the outer loop is
effectively computed). PIMPLE permits to have multiple outer and inner iterations and
it takes the benefits of the other two schemes, allowing to use the CFL condition c ě 1
(whereas PISO requires c ă 1 for stability).We also highlight that the SIMPLE part of
the PIMPLE algorithm may be computed in the SIMPLEC (SIMPLE consistent) mode.

The solver that we adopt in our tests of §4.7 is a modification of interFoam, which is
a scheme already available in OpenFOAM to solve the incompressible multiphase prob-
lems and implements exactly the PIMPLE scheme. In §4.5 we give a wide overlook at
our scheme called interThermalRadConvFoam, underlining the structure of the PIMPLE
algorithm adopted. In the next sections, instead, we focus on the schemes to solve the
equation for the transport of the phase volumetric fraction which is characteristic of the
VoF method.

4.2 Multiphase flows: VOF method and Flux-Corrected
Transport scheme

The multiphase dynamics of our model is treated by the Volume of Fluid method that
considers the variable describing the phase volumetric fraction α and derives a transport
equation for that. The liquid phase corresponds to α “ 1, whereas the gaseous phase to
α “ 0, and the phase interface between liquid and gas is determined by the gradient of
α, therefore the numerical schemes that discretize the α equation must keep the values
bounded between 0 and 1 and the phase interface sharp. Our model numerically solves a
modified version of this transport equation by using the Flux-Corrected Technique that
was introduced by Boris and Book [22] in order to manage the steep gradients well.
The idea behind this technique is to take advantage of the good properties of both low
and high order schemes (that we discussed in §1.2), alleviating the problems that both
of them entail. In fact, the low order schemes, like the upwind scheme, guarantee the
boundedness of the solutions, but, on the other hand, lead to the smearing of the phase
interface because they are diffusive. Vice versa, by employing high order schemes there are
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Calculate the time-step value

according with the CFL condition

CHECK CONTINUITY
check nCorrectors and the

residual of the pressure equation

CHECK MOMENTUM
check nOuterCorrectors and the

residual of the momentum equation

VELOCITY CORRECTION
correct the velocity field using

the corrected pressure field

PRESSURE CORRECTION
solve the discretized Poisson equation for pressure

by using the last velocity field computed

MOMENTUM PREDICTOR
solve the discretized momentum equation

to compute a predicted velocity field

with the contribution of the known pressure field

Assemble the momentum matrix
and the vector of the known terms

(of the linearized system)

inner
loop

outer
loop

Advance in time

time
loop

Figure 4.1: Scheme of the inner and outer loops in PIMPLE.

no longer problems of diffusion, but they carry the risk of introducing new maximum and
minimum; for this reason, flux limiters are adopted passing to the use of TVD schemes.
Besides, high order schemes require a greater computational cost with respect to the low
order schemes. The flux-corrected technique proposes a mix of both kinds of schemes,
breaking down their problems and combining their benefits. We pass to describe how
the FCT technique is applied in the discretization of the α equation in the framework of
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OpenFOAM.
The semi-discretization of α-equation is considered, where the spatial discretization of

the advective term is obtained by using the Gauss Theorem and an interpolation scheme
(see the details of the space discretization in the OpenFOAM framework in §1.3.2.1),
hence we have to solve, for any cell VP of the discretized domain, the following equation
for αP (where αP is the volume integral of α over VP ):

BαP
Bt

“ ´
1

|VP |

ÿ

fPBVP

Ff ,

where Ff denotes the total flux related to the f -face. The key steps required for the
computation of the numerical flux adopted by FCT technique are:

1. Compute the numerical flux Ff,U by a low order scheme,

2. Compute the numerical flux Ff,H by a high order scheme,

3. Define the anti-diffusive flux

Af :“ Ff,H ´ Ff,U , (4.28)

4. Compute the corrected flux:

Ff,C “ λMFf,H ` p1´ λMqFf,U

“ Ff,U ` λMAf , λM P r0, 1s,
(4.29)

The corrected flux is a low order flux modified by a high order anti-diffusive flux
limited by the weighting factor λM (we had introduced this procedure of flux limiters
in §1.2.7). The weighting factor λM is active only at the interface, taking the value
λM “ 1, so that the high order scheme works at the interface to preserve the sharp-
ness, whereas λM “ 0 otherwise and the advection is treated in a straightforward
way with the upwind scheme; this trick not only reduces the numerical diffusion at
the interface but also permits to lower the computational cost of the scheme [69].

5. Solve the equation:
BαP
Bt

“ ´
1

|VP |

ÿ

fPBVP

Ff,C . (4.30)

The FCT scheme is determined when the interpolation schemes for steps 1 and 2 above
are fixed and once decided how to compute the limiter λM . In OpenFOAM, the corrected
flux and the weighting factor λM are computed iteratively using the MULES algorithm
(as we will show in section §4.3).

4.2.1 Low order, anti-diffusive, and compressive fluxes

We explore closely the different fluxes introduced before. First of all, we recall that the
total flux at the face Ff is, according to Eq. (1.131), the product of the volumetric flux
through the face φf and the value of the advected variable interpolated on the face αf ,
i.e.:

Ff “ φfαf , with φf :“ uf ¨ Sf ,
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where Sf is the surface area vector, and uf and αf are obtained with interpolation schemes
for the velocity and for α.

The low order flux FU adopts the upwind scheme to determine the values αf , so we
write it as follows

Ff,U “ φfαf,upwind. (4.31)

Instead, the high-order flux FH uses a scheme that can be set by the user and hence we
refer to it as αf,div. Since this term is active at the interface and the interface must be as
sharp as possible, a fictitious term forcing the compression of the interface is added. The
complete expression of Ff,H is then

Ff,H “ φfαf,div ` φrfαrf p1´ αrf q, (4.32)

where φrf refers to the so-called compressive flux and αrf is the value of the face inter-
polation of α. The term φrfαrf p1 ´ αrf q in Eq. (4.32) is an artificial flux added to keep
the interface sharp since it pushes perpendicularly to the interface following the gradient
of α. The compressive flux φrf is defined as follows:

φrf “ Cα
|φf |

|Sf |
nf . (4.33)

The coefficient Cα in Eq. (4.33) is a parameter whose aim is to limit the interface smearing.
Cα assumes values greater than or equal to zero and when it is set to zero means that
the high order flux of Eq. (4.32) neglects the additional artificial term for the interface
compression:

Cα “ 0 ùñ Ff,H “ φfαf,div.

The term nf in Eq. (4.33) is the unit flux normal to the face Sf

nf “ n̂f ¨ Sf “
p∇αqf

|p∇αqf ` δN |
¨ Sf (4.34)

where n̂f gives the compressive direction and δN is a desingularization factor to avoid the
division by zero:

δN “
10´8

´

1
N
ř

i |Vi|
¯1{3

,

being N the number of computational cells Vi.
Finally, we write the complete expression of the corrected flux:

Ff,C
p4.29q
“ Ff,U ` λMAf

“ Ff,U ` λMpFf,H ´ Ff,Uq

“ φfαf,upwind ` λM rφfαf,div ` φrfαrf p1´ αrf q ´ φfαf,upwinds .

The user can select the interpolation schemes for αf,div and αrf by modifying the case
file case/system/fvSchemes as shown in the following example (referring the reader to
the Listing 1.1 for another example of file fvSchemes enriched by comments and to §A.1
for an overview on the organization and structure of OpenFOAM and its folders for the
simulation tests)
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divSchemes
{

div(phi,alpha) Gauss Gamma 1;
div(phirb,alpha) Gauss linear;
...

}

where

phiÐÑ φf ,

phirbÐÑ φrf .

Also, we observe that when the scheme chosen for αf,div is exactly upwind, the anti-
diffusive flux (defined in Eq. (4.28)) reduces only to the compressive flux, in fact:

Af “ Ff,H ´ Ff,U

“ φfαf,upwind ` φrfαrf p1´ αrf q ´ φfαf,upwind

“ φrfαrf p1´ αrf q.

In addition, the user can set the value for the compression coefficient Cα that is used in Eq.
(4.33) by modifying the value attributed to cAlpha in the case file case/system/controlDict.

The unsteady term of Eq. (4.30) can be discretized only by implicit Euler or Crank-
Nicolson differencing schemes, and solving the ODE equation BtαP “ FpαP q with those
schemes leads to the next discretizations:

Implicit Euler:
αn`1
P ´ αnP

∆t
“ Fpαn`1

P q,

Crank-Nicolson:
αn`1
P ´ αnP

∆t
“

1

2
Fpαn`1

P q `
1

2
FpαnP q.

When employed for complex flows in complex geometries, the Crank-Nicolson scheme can
suffer of instability, hence an “off-centering” procedure is adopted to stabilize it. Thanks
to this shrewdness, the Crank-Nicolson scheme maintains greater accuracy than the first-
order Euler scheme. The solver interFoam offers the possibility to use a generalization
of the Crank-Nicolson scheme (that is known as Theta method in the context of ODEs),
which is implemented as a temporal blending with the coefficient θCN :

αn`1
P ´ αnP

∆t
“ θCNFpαn`1

P q ` p1´ θCNqFpαnP q. (4.35)

The blending coefficient depends on the “off-center” coefficient, denoted as ocCoeff, that
the user can set by modifying the number next to Crank-Nicolson specification in the
temporal discretization schemes (that are written in the case file case/system/fvSchemes)
as in the example reported below:

ddtSchemes
{

ddt(alpha) CrankNicolson 0.9;
default Euler;

}
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where the Crank-Nicolson scheme, with ocCoeff = 0.9, is selected for α-equation, and the
Euler scheme is the default choice for the remaining equations. The blending coefficient
θCN , that is denoted as cnCoeff, is related to the off-center coefficient according to the
following expression:

cnCoeffÐÑ θCN ,

cnCoeff “
1

1` ocCoeff
, ocCoeff P r0, 1s.

If ocCoeff “ 1, the blended scheme written in Eq. (4.35) is centered and consists of the
classic Crank-Nicolson, instead, if ocCoeff “ 0, the blended scheme coincides with im-
plicit Euler. We highlight that, when the Euler scheme is used for the time discretization
of the α equation, the off-centering coefficient is set equal to 0 by default to be used inside
the solver file VoF/alphaEqn.H.

The latest thing that misses in order to have a completely determined numerical scheme
for the α equation is the computation of the limiter λM through the use of the MULES
scheme. The first version of the MULES scheme that has been presented in literature is
an explicit algorithm that satisfies the following equation

αP
n`1

“ αnP ´
∆t

|VP |

ÿ

fPBVP

F n
f,C

“ αnP ´
∆t

|VP |

ÿ

fPBVP

”

F n
f,U ` λMA

n
f

ı

“ αnP ´
∆t

|VP |

ÿ

fPBVP

!

φnfα
n
f,upwind

` λM

”

φnfα
n
f,div ` φ

n
rfα

n
rf p1´ αq

n
rf ´ φ

n
fα

n
f,upwind

ı)

,

and where the limiter λM is computed by a inner iteration. Such a factor has to limit the
whole anti-diffusive flux, details are shown in §4.4. This version is explicit and, for this
reason, it imposes restrictions on the CFL conditions and, as a consequence, limits on the
time step.

Instead, the latest variant of the algorithm proposed in literature follows a semi-
implicit predictor-corrector approach where the operator splitting is coupled with the
application of the MULES limiter to the explicit correction, rather than to the complete
flux. An implicit predictor step is executed by considering only the low-order flux term,
which ensures the boundedness, and then an explicit correction is built on which the
MULES limiter is applied. According to this procedure, the predictor step is defined by
the following expression:

Predictor: rαn`1
P “ αnP ´

∆t

|VP |

ÿ

fPBVP

rF n`1
f,U

“ αnP ´
∆t

|VP |

ÿ

fPBVP

φnf rα
n`1
f,upwind,

and we remark that the values at the cell faces of the volume fraction function αf are
actually expressed in terms of the cell-centered values αP and αN (as seen in §1.3.2.2),
leading to a system of equations in the unknowns rαn`1

P over all the control volumes. The
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predicted values rαn`1
P are used by the schemes div(phi,alpha) and div(phirb,alpha)

to compute the values at the cell faces rαn`1
f,div and rαn`1

rf necessary for the explicit correction
step:

Corrector: αn`1
P “ αnP ´

∆t

|VP |

ÿ

fPBVP

rF n`1
f,C

“ αnP ´
∆t

|VP |

ÿ

fPBVP

”

rF n`1
f,U ` λM rAn`1

f

ı

“ αnP ´
∆t

|VP |

ÿ

fPBVP

!

φnf rα
n`1
f,upwind

` λM

”

φnf rα
n`1
f,div ` φ

n
rf rα

n`1
rf p1´ rαn`1

rf q ´ φ
n
f rα

n`1
f,upwind

ı)

“ rαn`1
P ´

∆t

|VP |

ÿ

fPBVP

λM

”

φnf rα
n`1
f,div ` φ

n
rf rα

n`1
rf p1´ rαn`1

rf q ´ φ
n
f rα

n`1
f,upwind

ı

.

According with this predictor-corrector scheme, the MULES limiter is computed on the
anti-diffusive flux, but with an iterative procedure, details are shown in §4.3.

The user can decide to switch from the latest semi-implicit MULES method to the
old explicit one by simply setting the variable MULESCorr as true instead of false inside
the test case file case/system/fvSolutions. In the following two sections, we present in
details both algorithms, in particular we go through the alphaEqn.H file located inside
the multiphase/VoF solver folder. Moreover, we will see how the Crank-Nicolson time
blending adoption is used in both cases and the different implementations of the diffusive
flux inside the anti-diffusive flux Af .

4.3 MULES limiter to explicit correction
We analyze the algorithm obtained by activating the MULESCorr procedure which adopts
the predictor-corrector semi-implicit strategy by going through the alphaEqn.H file that
contains the implementation (at a high level) of the scheme that solves α-equation.

4.3.1 Initial setting

Initially, some background variables are set. The names alphaScheme and alpharScheme
are introduced to indicate the schemes that compute the values at the faces of the volume
fraction variables in the Eq. (4.32)

2 word alphaScheme("div(phi ,alpha)");
3 word alpharScheme("div(phirb ,alpha)");

The off-centering coefficient ocCoeff is initialized, according to the temporal scheme
chosen by the user: if Euler was selected, ocCoeff=0, otherwise the value of ocCoeff is
specified by the user. After, the off-centering coefficient ocCoeff is used to compute the
Crank-Nicolson blending coefficient cnCoeff.

5 // Set the off -centering coefficient according to ddt scheme
6 scalar ocCoeff = 0;
7 {
8 tmp <fv::ddtScheme <scalar >> tddtAlpha
9 (
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10 fv::ddtScheme <scalar >:: New
11 (
12 mesh ,
13 mesh.ddtScheme("ddt(alpha)")
14 )
15 );
16 const fv::ddtScheme <scalar >& ddtAlpha = tddtAlpha ();
17

18 if
19 (
20 isType <fv:: EulerDdtScheme <scalar >>(ddtAlpha)
21 || isType <fv:: localEulerDdtScheme <scalar >>(ddtAlpha)
22 )
23 {
24 ocCoeff = 0;
25 }
26 else if (isType <fv:: CrankNicolsonDdtScheme <scalar >>(ddtAlpha))
27 {

41 {
42 ocCoeff =
43 refCast <const fv:: CrankNicolsonDdtScheme <scalar >>(

ddtAlpha)
44 .ocCoeff ();
45 }
46 }
47 else
48 {
49 FatalErrorInFunction
50 << "Only Euler and CrankNicolson ddt schemes are

supported"
51 << exit(FatalError);
52 }
53 }
54

55 // Set the time blending factor , 1 for Euler
56 scalar cnCoeff = 1.0/(1.0 + ocCoeff);

A new field called phic is introduced which refers the first argument of the min function
used in Eq. (4.33) for the definition of the compressive flux φrf , namely:

phicÐÑ Cα
|φf |

|Sf |
. (4.36)

58 // Standard face -flux compression coefficient
59 surfaceScalarField phic(mixture.cAlpha ()*mag(phi/mesh.magSf ()));

We recall that the user can set a value for the coefficient Cα (denoted as cAlpha), otherwise
a default value is considered. Next, the boundary conditions of phic are checked because
there must not be interface compression at non-coupled boundary faces like inlets and
outlets. This check is facilitated by the use of a pointer phicBf to the boundary faces of
the phic field.

76 surfaceScalarField :: Boundary& phicBf =
77 phic.boundaryFieldRef ();
78

79 // Do not compress interface at non -coupled boundary faces
80 // (inlets , outlets etc.)
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81 forAll(phic.boundaryField (), patchi)
82 {
83 fvsPatchScalarField& phicp = phicBf[patchi ];
84

85 if (!phicp.coupled ())
86 {
87 phicp == 0;
88 }
89 }

A new variable named phiCN is created to host the time-blended volumetric flux and
it is initialized as the current volumetric flux phi. Since the volumetric flux is always
computed explicitly, then its time blending is done over the previous time step (so we
introduce another notation):

If C-N: phiCNÐÑ φnf,CN “ θCNφ
n
f ` p1´ θCNqφ

n´1
f

If Euler: phiCNÐÑ φnf,CN “ φnf .

91 tmp <surfaceScalarField > phiCN(phi);
92

93 // Calculate the Crank -Nicolson off -centred volumetric flux
94 if (ocCoeff > 0)
95 {
96 phiCN = cnCoeff*phi + (1.0 - cnCoeff)*phi.oldTime ();
97 }

4.3.2 Predictor step

The predictor implicit step is computed when MULESCorr = true by solving the equation

rαn`1
P “ αnP ´

∆t

|VP |

ÿ

fPBVP

φnf,CN rα
n`1
f,upwind ` Su` Sp ¨ rαn`1

P ,

where Su and Sp refers to the source terms to be treated explicitly and implicitly re-
spectively (and we eventually refer the reader to §1.3.2.1 and to Eq. (1.133) for the
discretization of the source terms). In the case of the interFoam solver (and even for our
interThermalRadConvFoam solver) the α equation does not have any source term, there-
fore the terms Su, Sp that are initialized to zero from the module alphaSuSp.H remain
null. The linear system to solve is called alpha1Eqn because the two phases are referred
respectively as

alpha1ÐÑ α,

alpha2ÐÑ 1´ α.

101 #include "alphaSuSp.H"
102

103 fvScalarMatrix alpha1Eqn
104 (
105 (
106 LTS
107 ? fv:: localEulerDdtScheme <scalar >(mesh).fvmDdt(alpha1)
108 : fv:: EulerDdtScheme <scalar >(mesh).fvmDdt(alpha1)
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109 )
110 + fv:: gaussConvectionScheme <scalar >
111 (
112 mesh ,
113 phiCN ,
114 upwind <scalar >(mesh , phiCN)
115 ).fvmDiv(phiCN , alpha1)
116 // - fvm::Sp(fvc::ddt(dimensionedScalar ("1", dimless , 1), mesh)
117 // + fvc::div(phiCN), alpha1)
118 ==
119 Su + fvm::Sp(Sp + divU , alpha1)
120 );
121

122 alpha1Eqn.solve ();

After that, the implicit equation is solved and the predicted value rαn`1
P is determined

and stored in the alpha1 field. Meanwhile, the flux calculated with the upwind scheme
is stored inside a new variable called alphaPhi10. In our case, since the source terms of
the α equation are null, we have simply:

alphaPhi10ÐÑ φnf,CN rα
n`1
f,upwind “

rF n`1
U . (4.37)

We highlight that the surface scalar field alphaPhi10 is a global variable because it
is defined inside the module VoF/createAlphaFluxes.H called from the interFoam main
function.

130 tmp <surfaceScalarField > talphaPhi1UD(alpha1Eqn.flux());
131 alphaPhi10 = talphaPhi1UD ();

With the predicted field of the liquid phase fraction stored in alpha1, the gaseous phase
fraction field called alpha2 is updated and then also the fields of the transport properties
are corrected, which means that the density field is updated according to the fields alpha1
and alpha2, and the same is for the other fields associated to the transport properties of
the two fluids, such as viscosity.

152 alpha2 = 1.0 - alpha1;
153

154 mixture.correct ();

4.3.3 Compression MULES corrector iterations

After the predictor step, a for-cycle loop starts on the counter variable aCorr if the user
(or the default setting) gives a value greater than zero to the parameter nAlphaCorr which
is located in case/system/fvSolution. Every cycle begins by updating the source terms Su
and Sp because they might depend on the predicted values and also on the corrected
values, but in our case nothing changes because the source terms are null. After that, the
compressive flux φrf (defined in Eq. (4.33)) is assembled by multiplying the compression
coefficient phic (refer to Eq. 4.36) by the term nf , which depends on the gradient of α
according to Eq. (4.34).

158 for (int aCorr =0; aCorr <nAlphaCorr; aCorr ++)
159 {
160 #include "alphaSuSp.H"
161

162 surfaceScalarField phir(phic*mixture.nHatf ());
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We underline that the compression coefficient phic has been initialized at the initial
setting §4.3.1 so it is evaluated at the current time step tn, whereas the term nHatf,
that depends on the alpha1 gradient, is evaluated at every cycle because initially the
alpha1 variable hosts the predicted value and then, after every for-cycle ν, it hosts the
updated/corrected value.

aCorrÐÑ ν,

nHatfÐÑ n
pν´1q
f “

p∇αpν´1qqf

|p∇αpν´1qqf ` δN |
¨ Sf .

As a consequence of what stated, the compressive volumetric flux at the ν-cycle is

phirÐÑ φ
pn,ν´1q
rf “ Cα

|φnf |

|Sf |
n
pν´1q
f . (4.38)

We specify that for ν “ 0, namely at the first iteration, αpν´1q is considered as the
predicted value rαn`1.

The high order flux Ff,H defined in Eq. (4.32) is computed explicitly and stored inside
the variable talphaPhi1Un according to the following equation

talphaPhi1UnÐÑ F
pν´1q
f,H “ φnf,CN

”

θCNα
pν´1q
f,div ` p1´ θCNqα

pν´2q
f,div

ı

` φ
pn,ν´1q
rf α

pν´1q
rf p1´ αq

pν´1q
rf

“ φnf,CNα
pν´1q
f,div,CN ` φ

pn,ν´1q
rf α

pν´1q
rf p1´ αq

pν´1q
rf .

(4.39)

We underline that the first term of the high order flux, that was called φfαf,div, is now
calculated with the Crank-Nicolson time blending (so we denoted it as αpν´1q

f,div,CN); at the
first iteration, when aCorr “ 0 “ ν, αpν´1q

f,div coincides with the predicted value rαn`1
f,div

whereas αpν´2q
f,div is the value αnf,div.

164 tmp <surfaceScalarField > talphaPhi1Un
165 (
166 fvc::flux
167 (
168 phiCN(),
169 cnCoeff*alpha1 + (1.0 - cnCoeff)*alpha1.oldTime (),
170 alphaScheme
171 )
172 + fvc::flux
173 (
174 -fvc::flux(-phir , alpha2 , alpharScheme),
175 alpha1 ,
176 alpharScheme
177 )
178 );

MULES correction

When MULESCorr = true the anti-diffusive flux Af is stored into a local variable tal-
phaPhi1Corr and the current alpha1 field is stored in a support variable.

talphaPhi1CorrÐÑ A
pν´1q
f “ F

pν´1q
f,H ´ F

pν´1q
f,U .
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After that, the function MULES::correct() is called to compute the limiter λpνqM and then
update the variable alpha1 according to the following equation:

α
pνq
P “ α

pν´1q
P ´

∆t

|VP |

ÿ

fPBVP

λ
pνq
M A

pν´1q
f .

At the first cycle with ν “ 0, the flux F
pν´1q
f,U is exactly the upwind flux evaluated

with the predicted variable, Eq. (4.37); at the next cycles the flux F
pν´1q
f,U hosts the

corrected flux computed at the previous step. In the predicted step, the upwind flux can
be interpreted as the first approximation of the corrected flux. According to this, the
limitation of λM on the anti-diffusive flux concerns only the corrected flux instead of the
total flux. We guess that the reason why this kind of computation has been associated
with a variable named MULESCorr is because the MULES limiter is related to the corrected
flux.

180 if (MULESCorr)
181 {
182 tmp <surfaceScalarField > talphaPhi1Corr(talphaPhi1Un () -

alphaPhi10);
183 volScalarField alpha10("alpha10", alpha1);
184

185 MULES:: correct
186 (

195 );

The function MULES::correct() is implemented in MULES/CMULESTemplates.C (lines
139–191) and not reported here. This function modifies two variables: the anti-diffusive
flux that is limited and whose value is stored again in talphaPhi1Corr, and the alpha1
field

talphaPhi1CorrÐÑ λ
pνq
M A

pν´1q
f ,

alpha1ÐÑ α
pνq
P .

Inside the variable alphaPhi10, that originally stored the diffusive flux computed by the
upwind scheme — see Eq. (4.37), the new anti-diffusive limited contribution is added,
therefore the variable alphaPhi10 hosts the corrected flux that will be used, at the next
for-cycle, as the low order flux that needs to be compressed and corrected:

alphaPhi10ÐÑF pν´1q
f,U ` λ

pνq
M A

pν´1q
f

“ F
pν´1q
f,C

“ F
pνq
f,U .

(4.40)

If the current for-cycle is not the first one, then an under-relax evaluation is applied to
the updated variables.

197 // Under -relax the correction for all but the 1st corrector
198 if (aCorr == 0)
199 {
200 alphaPhi10 += talphaPhi1Corr ();
201 }
202 else
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203 {
204 alpha1 = 0.5* alpha1 + 0.5* alpha10;
205 alphaPhi10 += 0.5* talphaPhi1Corr ();
206 }

Finally, the gaseous phase fraction field and the transport properties are updated (such
as the density and viscosity fields).

225 alpha2 = 1.0 - alpha1;
226

227 mixture.correct ();

4.3.4 Final assignments

When the for-cycle ends, namely when aCorr“nAlphaCorr, the fields alpha1 and alpha2
contain the new values of the phase fraction fields, and the global variable alphaPhi10
stores the final corrected flux Ff,C . The last thing to compute is the mass flux due to the
new phase fraction flux.

250 rhoPhi = alphaPhi10 *(rho1f - rho2f) + phiCN*rho2f;

4.4 MULES limiter to explicit solution

When MULESCorr = false no predictor-corrector procedure is done, instead a simpler ex-
plicit iterative algorithm is performed. We go again over the alphaEqn.H file to comment
on the implementation of such an algorithm.

The initial setting presented in §4.3.1 is the only part of the previous procedure valid
even for this algorithm, therefore, before entering in the details of the iterations of the
MULES scheme, we remark that we have the following variables initialized:

phicÐÑ Cα
|φnf |

|Sf |
,

phiCNÐÑ φnf,CN “ θCNφ
n
f ` p1´ θCNqφ

n´1
f ;

that is, the compression coefficient and the volumetric flux blended with the Crank-
Nicolson coefficient.

4.4.1 Compression MULES iterations

The for-cycle starts on the counter variable aCorr and lasts until it reaches the nAlphaCorr
value. Initially, we find the same assignments presented before for the compressive flux
phir, Eq. (4.38), and the high order flux talphaPhi1Un, Eq. (4.39):

aCorrÐÑ ν,

phir “ phic ˚ nHatfÐÑ Cα
|φnf |

|Sf |
n
pν´1q
f “ φ

pn,ν´1q
rf ,

talphaPhi1UnÐÑ F
pν´1q
f,H “ φnf,CNα

pν´1q
f,div,CN ` φ

pn,ν´1q
rf α

pν´1q
rf p1´ αq

pν´1q
rf .
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In this case with MULESCorr = false, the global variable alphaPhi10 hosts the high
order flux talphaPhi1Un and the function MULES::explicitSolve() is called to find the
limiter λpνqM that must be used in the following equation:

α
pνq
P “ α

pν´1q
P ´

∆t

|VP |

ÿ

fPBVP

”

F
pν´1q
f,U ` λ

pνq
M A

pν´1q
f

ı

“ α
pν´1q
P ´

∆t

|VP |

ÿ

fPBVP

”

F
pν´1q
f,U ` λ

pνq
M

´

F
pν´1q
f,H ´ F

pν´1q
f,U

¯ı

.

(4.41)

208 else
209 {
210 alphaPhi10 = talphaPhi1Un;
211

212 MULES:: explicitSolve
213 (
214 geometricOneField (),
215 alpha1 ,
216 phiCN ,
217 alphaPhi10 ,
218 Sp ,
219 (Su + divU*min(alpha1 (), scalar (1)))(),
220 oneField (),
221 zeroField ()
222 );
223 }

We remark that all the fluxes in Eq. (4.41) are evaluated with the current value αpν´1q
P ;

therefore, if the user chooses the Euler scheme for the time discretization of the α equation
and the upwind scheme for div(phi,alpha), then αf,div,CN coincides with αpν´1q

f,upwind and
it descends a cancellation inside the anti-diffusive flux, which globally reduces to the
compressive flux alone:

A
pν´1q
f “ F

pν´1q
f,H ´ F

pν´1q
f,U

“
��������
φnf,CNα

pν´1q
f,upwind ` φ

pn,ν´1q
rf α

pν´1q
rf p1´ αq

pν´1q
rf ´

��������
φnf,CNα

pν´1q
f,upwind.

Moreover, if in this situation the user assigns cAlpha=0, the anti-diffusive flux is identi-
cally zero and hence the MULES iterations have no effect. In such case, the α-equation
is solved by the upwind scheme.

The function MULES::explicitSolve() is implemented inside MULES/MULESTem-
plates.C, lines 153–181, and is not reported here. Within the MULES::explicitSolve()
function, the missing fields are built, namely the low order flux, the anti-diffusive flux,
and afterwards the corrected flux. Furthermore, this function modifies the fields alpha1
and alphaPhi10: the first one has the updated values αpνqP that are used again to compute
all the fluxes at the next cycle and to apply the new equation (4.41), meanwhile, the other
modified variable, alphaPhi10, contains the corrected flux F pν´1q

f,C , but this value is not
directly used at the next iteration; on the contrary, the variable is immediately redefined.

After the call to the function MULES::explicitSolve(), both the gaseous phase frac-
tion field and the transport properties (like viscosity and density) are updated.

225 alpha2 = 1.0 - alpha1;
226

227 mixture.correct ();
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When the for-cycle stops, the same final assignments described in §4.3.4 are executed,
namely, the fields alpha1 and alpha2 store the new values of the liquid and gaseous
fraction fields, and the global variable alphaPhi10, which contains the final corrected
flux, is used to compute the mass flux rhoPhi that is caused by the new phase fraction
flux.

250 rhoPhi = alphaPhi10 *(rho1f - rho2f) + phiCN*rho2f;

4.5 interThermalRadConvFoam design and structure
The governing equations solved from our solver interThermalRadConvFoam are the fol-
lowing:

∇ ¨ u “ 0

Bpρuq

Bt
`∇ ¨

`

ρuuT
˘

“ ´∇p˚ ` g ¨ x∇ρ`∇ ¨ τ ` fΣ, (4.42)

Bα

Bt
`∇ ¨ puαq `∇ ¨ rurαp1´ αqs “ 0, (4.43)

BpρcpT q

Bt
`∇ ¨ pρcpTuq ´ χ̄Σ∆pkT q “ ´

εσSBfAfs
V ol

`

T 4
´ T 4

env

˘

´
λfAfs
V ol

`

T ´ Tenv
˘

.

The mass, momentum, and phase volumetric fraction equations are the same as in the
original interFoam solver, whereas the energy equation is our contribution, and its im-
plementation inside the software is described in a Tutorial reported in the Appendix §A.

The previous equations (actually solved) have little differences from those equations
we derived in §2.2 (and recalled in Eqs. (4.1)) in the right-hand side of the momentum
equation and in the α-equation. We notice that the differences in the momentum eq.
(4.42) with respect to Eq. (4.1b) are referred to the pressure and gravitational terms. It
is a common practice, when adopting the VOF method, to use a modified pressure p˚
defined as follows

p˚ :“ p´ ρgz “ p´ ρg ¨ x, (4.44)

because this is convenient when declaring and applying the boundary conditions for pres-
sure. Such a modified pressure does not contain the hydrostatic component, which is the
problematic part in the multiphase model since it takes into account density and therefore
it requires particular attention as long as the fluids have two different values of that. In
fact, for a system with a shared pressure field, the vertical component of pressure must
be different for each phase because of the hydrostatic component ρg that depends on the
densities of fluids. We show how the pressure and gravitational terms in the standard
momentum Eq. (4.1b) changes because of the introduction of p˚:

´∇p` ρg p4.44q
“ ´∇p˚ ´∇pρgzq ` ρg
“ ´∇p˚ ´ gz∇ρ´ ρ∇pgzq ` ρg
“ ´∇p˚ ´ gz∇ρ´��ρg `��ρg

“ ´∇p˚ ´ gz∇ρ,

where we assumed that the gravitational acceleration does not change vertically. We also
notice that, since each fluid has constant density, ∇ρ “ 0 everywhere except at the phase
interface.
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Furthermore, the α-equation (4.43) presents an additional term with respect to Eq.
(4.1c), i.e. ∇ ¨ rurαp1´ αqs, that is not accounted in the natural derivation obtained in
§2.2.1.1. In fact, it is an artificial term active only on the phase interface, namely where
α ‰ 0, 1. The velocity ur that appears is called relative (or compression) velocity and we
defined it in the framework of the Flux-Corrected Technique, in §4.2. Such a term acts
to compress the interface between the phases, avoiding its spread over multiple cells.

Our solver interThermalRadConvFoam is constituted by several files gathered in a
unique folder interThermalRadConvFoam located in applications/solvers/multiphase (the or-
ganization and structure of the OpenFOAM folders is described in §A.1). The directory
interThermalRadConvFoam shares its location with other solvers for multiphase simula-
tions (such as the original interFoam) and with the folder VoF that contains files for the
implementation of the VOF method. Inside the interThermalRadConvFoam folder there
are the following main files:

• interThermalRadConvFoam.C

• createFields.H

• alphaSuSp.H

• UEqn.H

• pEqn.H

• TEqn.H

The file interThermalRadConvFoam.C contains the main code of the solver which in-
vokes the modules *.H. The module createFields.H initializes the fields, whereas the others
UEqn.H, pEqn.H, and TEqn.H implement the momentum, pressure, and energy equation
respectively. The main structure of the interThermalRadConvFoam solver is presented in
the following Listing 4.2 (neglecting those lines that refer to topics that we do not deal
with in the present work) and works as stated next:

• Initialize the fields p˚, u, T , φ, α, ρ, cp (among others), line 74.

• Set the initial time step ∆t, lines 83-84.

• Start runtime loop, line 90.

– Check the CFL condition to set the time step ∆t, lines 100-102.

– Advance in time, line 105.

– Start the PIMPLE loop for outer iterations nOuterCorrectors times, line 110.

∗ Solve the α-equation and update the fields α, ρ, and cp, lines 151-152.
∗ Solve the momentum equation, line 161.
∗ Start the PISO loop for the inner iterations nCorrectors times, line 164.

· Solve the Poisson equation for pressure, line 166.

– Solve the energy equation, line 182.

26 Application
27 interThermalRadConvFoam

56 int main(int argc , char *argv [])

74 #include "createFields.H"

83 #include "CourantNo.H"
84 #include "setInitialDeltaT.H"
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87 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
88 Info << "\nStarting time loop\n" << endl;
89

90 while (runTime.run())
91 {

100 #include "CourantNo.H"
101 #include "alphaCourantNo.H"
102 #include "setDeltaT.H"

105 ++ runTime;

109 // --- Pressure -velocity PIMPLE corrector loop
110 while (pimple.loop())
111 {

151 #include "alphaControls.H"
152 #include "alphaEqnSubCycle.H"

161 #include "UEqn.H"
162

163 // --- Pressure corrector loop
164 while (pimple.correct ())
165 {
166 #include "pEqn.H"
167 }

173 }
174

175 #include "TEqn.H"

180 }
181

182 Info << "End\n" << endl;
183

184 return 0;
185 }

Listing 4.2: Main structure of interThermalRadConvFoam.C file.

4.6 Other solution schemes
As presented in the previous section §4.1, the segregated approach is a possibility for
the numerical solution of a system of coupled PDEs; we have seen that the equations are
solved one at time and the coupling is obtained by an iterative procedure, applying this
technique in the incompressible limit (namely when the continuity equation reduces to a
kinematic constraint).

The other option is the fully coupled approach: all the equations are discretized and
linearized together by producing a single large system which is solved as a whole. In the
incompressible limit, this approach was developed according with two strategies.

1. Without introducing a pressure equation, the momentum and continuity equations
are discretized in a straightforward manner, see Caretto et al. [32], Braaten [26],
Vanka [261], Karki and Mongia [140]. Because of the lack of a pressure equation,
the main diagonal of the matrix associated to the discretized continuity equation
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has zeros producing an ill-conditioned system of equations. This problem has been
fixed in different ways, for example:

• by adopting a proper interpolation function that considers the neighboring
pressure effect on the velocities, as done by Rhie and Chow [227] and Schneider
and Raw [242],

• by passing through algebraic manipulations, as in Galpin and Raithby [96],

• by the penalty formulations, as proposed by Hanby and Silvester [113],

• by using the pre-conditioning technique, like Hanby et al. [114].

2. A pressure equation is derived and joins the momentum equation, see Patankar
[207], Lonsdale [175]).

Since the numerical solution refers to the computational domain, the number of equa-
tions to solve depends on the number of the cells, as well as on the number of the constitu-
tive equations that form the PDE system. So, despite the advantage of the fully coupled
approach that manages to preserve the coupling between the unknowns, the amount of
memory necessary for storage and the computational capabilities have been important
limitations to its diffusion and evolution.

Instead, the segregated methods require the solution of systems smaller than those
solved by the coupled methods, being referred to only one variable. In addition, is one
decides to enrich a model by adding one more differential equation, in the segregated
approach the new equation is treated separately so that the size of the whole algebraic
system linearly grows; on the other hand, in the fully coupled approach the size growth
is quadratical.

For these reasons, the segregated methods had the biggest development and diffusion
for more than thirty years. In the last years, the enormous increment of computational
capabilities finally allowed extensive use and progress even of fully coupled algorithms,
[79].

Both methods cope with non-linear systems with iterations. The fully coupled algo-
rithm might converge more robustly and in fewer iterations with respect to the segregated
approach because of its intrinsically coupled nature. Anyway, each iterative step might
require more memory and time for the computations, for these reasons the segregated
methods can be faster overall. However, in the CFD community and in literature the
debate about the performance of both types of methods is still open, and nowadays many
CFD programs, such as OpenFOAM [137], ANSYS® FLUENT, and COMSOL® Mul-
tiphysics, have both approaches implemented and the user can switch between them.

4.7 Numerical simulations
In this section we present some preliminary results of numerical tests performed with
interThermalRadConvFoam. These tests are based on two of the benchmarks proposed
in [52] for lava flow simulations (BM1 and BM3) and already presented for the depth-
averaged case in §3.4, hence we will not report all their details here. We remind that,
differently from the depth-averaged case, where only the fluid is modeled, here we have
to simulate the full 3D domain, and thus both the fluid of interest and the surrounding
air. In any simulation presented, the air was modeled as a Newtonian fluid with density
ρ “ 1 kg m´3 and kinematic viscosity ν “ 1.48 ¨ 10´5 m2s´1. Furthermore, the regime was

http://www.openfoam.com
http://www.ansys.com/products/fluids/ansys-fluent
http://www.comsol.com/products/multiphysics/
http://www.comsol.com/products/multiphysics/
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set to laminar (no turbulence effects are modeled), and the solver run in PISO mode with
3 inner loops (nCorrectors 3). Moreover, we underline that in the presented tests we
assume constant viscosity, and further analysis on the temperature-dependent viscosity
will be object of the future studies.

In addition, we present simulations executed with the use of a dynamic mesh with
adaptive refinement, which means that the mesh may change during computation and
that it might be locally refined according to some parameters given by the user. The
dynamic and adaptive mesh refinement permits to select the portion of the domain to
refine dynamically, increasing the level of discretization where the simulated processes
require greater accuracy. In our case, we choose to refine those cells that host the phase
interface, in particular, the cells with 0.01 ď α ď 0.99 because a good description of it is
of paramount importance. The user can set the conditions for the dynamic and adaptive
refinement inside the dictionary dynamicMeshDict located inside the folder case/constant
related to the test case of interest.

In OpenFOAM the starting grid is hexahedral and each level of refinement divides
each original cell into 8 subcells. Thus, a cell of the original coarser grid with n levels of
refinement results in 8n subcells. Besides, since the CFL condition (presented in §1.2.2.2)
depends on the size of the spatial discretization, the use of the refinement leads to a
reduction of the time step determined by the CFL condition.

4.7.1 BM1: Dam break of viscous fluids over a flat bottom

The first test is a classic dam-break simulation that starts with a fluid initially confined in
a box and then, after the abrupt removal of one box side, it starts to flow into a channel.
We described in details this benchmark in §3.4.2, so we recall here only some necessary
information. For this test, we consider a Newtonian and isothermal fluid (with kinematic
viscosity ν “ 3.7 m2 s´1 and density ρ “ 2700 kg m´3), initially confined in a region with
length 6.6 m and height 1 m. The 3D computational domain has a total length 72.6 m,
total height 3.3 m, and total width 6.6 m. We remark again that, with respect to the
depth-averaged simulations, here the specification of the domain height is required, and
the atmospheric air surrounding the fluid of interest is also simulated by the model.

In this test, we focused on the capability of the model to reproduce a sharp interface
between the fluid and the surrounding atmosphere. We adopted both static meshes and
meshes with dynamic refinements and compared the results both in terms of computation
time and in terms of the quality of the outputs obtained. The aspect ratio ∆x{∆z (where
we are assuming that x refers to the horizontal orthogonal direction and z to the vertical
direction) has been chosen as close as possible to unity. Otherwise, there is the risk that
the free surface of the fluid is badly described on the horizontal-upper side if ∆x ! ∆z,
or at the front position if ∆x " ∆z.

First of all, in Figures 4.2, 4.3, 4.4, we show the three dimensional representation of
the liquid free surface (represented by a contour of α) at t “ 10, 100, 500 s respectively,
for a simulation using a dynamic and adaptive mesh with 3 levels of refinement. These
figures clearly show the grid refinement in the regions with large gradients of flow variables
(as at the liquid/gas interface) and a 2D nature of the dynamics of flow propagation in
the sense that the fluid behavior is invariant with respect to the y axis (this is consistent
with the specifics of the benchmark BM1). Consequently, thanks to the 2D nature of the
dynamics, we study and compare the performances of simulations computed with a static
uniform 2D grid with those obtained with the dynamic mesh refinement over a 3D grid
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(of which we will show only a cross-section of the 3D computational domain on the x-z
plane in the following plots).

t = 10 s 

Figure 4.2: Dam break of a viscous fluid over a flat bottom. Free surface of the liquid phase.
Simulation at t “ 10 s obtained using dynamic mesh refinement with 3 levels of refinement.

t = 100 s 

Figure 4.3: Dam break of a viscous fluid over a flat bottom. Free surface of the liquid phase.
Simulation at t “ 100 s obtained using dynamic mesh refinement with 3 levels of refinement.

t = 500 s 

Figure 4.4: Dam break of a viscous fluid over a flat bottom. Free surface of the liquid phase.
Simulation at t “ 500 s obtained using dynamic mesh refinement with 3 levels of refinement.

The first part of our analysis is on the use of the static 2D mesh with uniform dis-
cretization, Figures 4.5, 4.6, and 4.7 represent results obtained at t “ 10, 100, 500 s
respectively. In each Figure, simulations obtained with four different grid resolutions are
compared. The coarsest mesh was obtained with ∆xC “ ∆zC “ 1.1 m, and the others
with ∆x “ ∆z “ 0.55, 0.275, 0.1375 m (corresponding to ∆xC{2, ∆xC{4, and ∆xC{8)
respectively.
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Figure 4.5: Dam break of a viscous fluid over a flat bottom. Comparison of results obtained
using a static mesh and uniform 2D discretization. α-field at t “ 10 s (liquid: α “ 1, air: α “ 0).
The dashed lines represent the initial condition. (a) cell size ∆xC “ 1.1 m, (b) cell size ∆xC{2,
(c) cell size ∆x{4, (d) cell size ∆xC{8.
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Figure 4.6: Dam break of a viscous fluid over a flat bottom. Comparison of results obtained
using a static mesh and uniform 2D discretization. α-field at t “ 100 s (liquid: α “ 1, air:
α “ 0). The dashed lines represent the initial condition. (a) cell size ∆xC “ 1.1 m, (b) cell size
∆xC{2, (c) cell size ∆x{4, (d) cell size ∆xC{8.

We analyze the results obtained by the simulations with a focus on the interface. The
simulations obtained with the coarsest discretization grid (panels (a) of Figures 4.5, 4.6,
4.7) show a high diffusion of the interface, especially in correspondence of the front. In
fact, even though at t “ 10 s the front presents a quite good agreement with those of the
simulations obtained with finer meshes and at t “ 100 s the result is still not too far from
others (even though the interface at the front is smeared almost over 8 cells, between
„ 12 m and „ 16 m), the description of the fluid front is completely lost at t “ 500 s. The
results obtained with ∆xC{2 (panels (b) of Figures 4.5, 4.6, 4.7) show that the description
of the fluid interface suffers of less diffusion with respect to the case of the coarsest mesh
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Figure 4.7: Dam break of a viscous fluid over a flat bottom. Comparison of results obtained
using a static mesh and uniform 2D discretization. α-field at t “ 500 s (liquid: α “ 1, air:
α “ 0). The dashed lines represent the initial condition. (a) cell size ∆xC “ 1.1 m, (b) cell size
∆xC{2, (c) cell size ∆x{4, (d) cell size ∆xC{8.

previously examined, so that at t “ 500 s the interface occupies almost 10 cells, between
„ 15.5 m and „ 18.5 m (see also Figure 4.8, panel (b)). In addition, this makes it difficult
to identify the exact position of the front, which also remains over-estimated compared
to other simulations. Simulations computed with ∆xC{4 and ∆xC{8 (panels (c) and (d)
of Figures 4.5, 4.6, 4.7) show comparable results and both describe the interface between
fluid and air sharply. The interface at the front at time t “ 500 s is constituted by 3 cells
and 1 cell respectively for these two simulations (see also Figure 4.8, panels (c) and (d)).

Lastly, we see from Figure 4.8 that the upper horizontal interface is described by just
one layer of cells, hence the case with the finest discretization grid is the only one that
succeeded in keeping the interface sharp even at the propagation front (the simulation
with the coarsest mesh is not considered because at time t “ 500 s the solution is not
reliable).

The computational time required for simulations of 500 s are reported in Table 4.1.
All these simulations are serial runs (not parallel) on a single core. Theoretically, the
computational time should increase by a factor 8 when the cell size is decreased by a factor
2. This is because for a 2D simulation the number of computational cells increase of a
factor 4 and the time step decrease by a factor 2 (in accordance with the CFL condition).
Here, we see that the computational time increases by a factor with is substantially
smaller than 8, probably due to a smaller number of internal iterations required to reach
the convergence in a single time step, when the time step decreases.

∆x cells time
1.1 m 66ˆ6 3.39 s
0.55 m 132ˆ12 7.69 s
0.275 m 264ˆ24 25.72 s
0.1375 m 528ˆ48 139.08 s

Table 4.1: Dam break of a viscous fluid over a flat bottom. Elapsed execution time for the
simulations of 500 s over different discretization grids.
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Figure 4.8: Dam break of a viscous fluid over a flat bottom. Comparison of the description of
the front zone with results obtained using a static mesh and uniform 2D discretization. α-field
at t “ 500 s (liquid: α “ 1, air: α “ 0). (b) cell size ∆xC{2, (c) cell size ∆x{4, (d) cell size
∆xC{8 (with ∆x “ 1.1 m).

The second part of our analysis uses the dynamic mesh refinement of the cells close to
the interface between air and liquid on a 3D mesh. The domain was initially discretized
with a uniform 3D mesh made of 66ˆ 6ˆ 3 cells, and we produced results with 2, 3, and
4 levels of refinement. Since having a cell aspect ratio close to one is often a necessity, we
adopted the same length for the discretization step along the three directions. It is worth
also underlying that the mesh refinement, in OpenFOAM, consists of dividing a cell into
8 sub-cells, therefore such a procedure always produces a 3D grid, even if the initial one
was not. Figures 4.9, 4.10, 4.11 report the results at t “ 10, 100, 500 s respectively and
in Figure 4.9 (on the right panels), we highlighted in addition the edges of the meshes in
order to appreciate the adaptive refinement.

By comparing Figures 4.9, 4.10, 4.11, that show simulations obtained using the adap-
tive 3D mesh refinement, with Figures 4.5, 4.6, 4.7, that report simulations computed
over 2D static and uniform meshes, we notice a correspondence between them. Results
obtained using the dynamic mesh with 2 refinement levels are similar to those computed
over the uniform mesh with ∆x “ ∆xC{4; the simulation resulting from the use of the
dynamic mesh with 3 refinement levels is comparable with that obtained with the uni-
form mesh ∆x “ ∆xC{8; finally, the outputs computed with the dynamic mesh with 4
refinement levels are very similar to those obtained using the finest uniform mesh with
∆x “ ∆xC{16. Despite the comparable descriptions of the fluid runout and of the phase
interface, there is a huge gap between the simulations computed over a 2D mesh and
those obtained with the 3D adaptive mesh refinement that is the execution time to run
the code. In fact, whereas the 2D simulations are very fast to run (see Table 4.1), the
3D codes are definitely slower, see Table 4.2 that reports the execution times for the 3D
cases.

We notice, for comparison, that the 2D simulation computed over the finest mesh
grid took 139.08 s and that the same time 139.47 s was necessary for the case of adaptive
mesh with 2 levels of refinement. However, we lastly stress over the great advantage
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Figure 4.9: Dam break of a viscous fluid over a flat bottom. Comparison of results obtained using
dynamic mesh refinement and different levels of refinement; the mesh was initially composed of
66 ˆ 6 ˆ 3 cells. α-field is represented at t “ 10 s (liquid: α “ 1, air: α “ 0). The dashed lines
represent the initial condition. (a) 2 levels of refinement, (b) 3 levels of refinement (c) 4 levels of
refinement. The right panels highlight the discretization grid refinement.
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Figure 4.10: Dam break of a viscous fluid over a flat bottom. Comparison of results obtained
using dynamic mesh refinement and different levels of refinement; the mesh was initially composed
of 66 ˆ 6 ˆ 3 cells. α-field is represented at t “ 100 s (liquid: α “ 1, air: α “ 0). The dashed
lines represent the initial condition. (a) 2 levels of refinement, (b) 3 levels of refinement (c) 4
levels of refinement.

ref. level time
2 139.47 s
3 1695.45 s
4 15367.60 s

Table 4.2: Dam break of a viscous fluid over a flat bottom. Elapsed execution time for the
simulations of 500 s computed with the dynamic mesh refinement of the discretization grid which
is initially composed of 66ˆ 6ˆ 3 cells.

offered by the use of the dynamic refinement with respect to the use of a static 3D mesh.
The simulation executed using the adaptive mesh with 3 refinement levels (where the
smallest cell size is ∆x “ 0.1375 m) took 1695.45 s, whereas, a simulation obtained by
using uniformly ∆x “ 0.1375 m (producing a mesh with 528 ˆ 48 ˆ 24 cells) required
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Figure 4.11: Dam break of a viscous fluid over a flat bottom. Comparison of results obtained
using dynamic mesh refinement and different levels of refinement; the mesh was initially composed
of 66 ˆ 6 ˆ 3 cells. α-field is represented at t “ 500 s (liquid: α “ 1, air: α “ 0). The dashed
lines represent the initial condition. (a) 2 levels of refinement, (b) 3 levels of refinement (c) 4
levels of refinement.

twice the time, i.e. 3367.54 s. In addition, we depict in Figure 4.12 the results obtained
using the uniform, static 3D mesh (represented in Figure 4.13) which are definitely equal
to those obtained using the adaptive refinement shown in Figures 4.9, 4.10, 4.11 (panels
(b)). Therefore, we can conclude that for this test the use of the adaptive refinement
technique allows reducing the computational time by a factor two, with respect to the
time needed to obtain a solution with a comparable accuracy but using a uniform mesh.
The advantage of the mesh refinement is not only in the computational time but also in
the amount of data to save for each output, because of the reduced total number of cells:
in fact, whereas the uniform and static mesh has 608256 cells, the mesh in the dynamic
case has in total 43656 cells at time t “ 10 s, 54810 cells at time t “ 100 s, and 64436
cells at time t “ 500 s, hence has at most one tenth of the cells of the uniform case. We
remark that for large simulations also the amount of data saved (or the amount of data
to transfer from one computer to another) could potentially put a constraint on the size
of the simulation.
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Figure 4.12: Dam break of a viscous fluid over a flat bottom. Simulation computed with a
uniform, static 3D mesh with ∆x “ 0.1375 m. α-field is represented at time t “ 10, 100, 500 s
(liquid: α “ 1, air: α “ 0). The dashed lines represent the initial condition.
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Figure 4.13: Dam break of a viscous fluid over a flat bottom. Uniform, static 3D mesh with
∆x “ 0.1375 m. α-field represented at time t “ 10 s.

4.7.2 BM3: Axisymmetric cooling and spreading

The second test is the simulation of a hot viscous fluid injected on a horizontal plane that
starts spreading and cooling in an axisymmetric fashion. This benchmark was already
described in §3.4.6, hence here we remind only some necessary information. For this test
we consider a Newtonian fluid (with kinematic viscosity ν “ 3.56 ¨10´3 m2 s´1 and density
ρ “ 954 kg m´3) injected onto the plane with an effusion rate of 2.2 ¨ 10´8 m3 s´1 from
a hole of 4 ¨ 10´3 m radius at the temperature Tvent “ 42°C while the environment is at
Tvent “ 20°C (the complete set of physical parameters is reported in Table 3.5). The 3D
computational domain that we adopted is 16 ¨ 10´2 m long and wide, and only 10´2 m
high because the fluid propagates in a very thin layer. Once again, we remind that the air
surrounding the fluid of interest is also simulated by the model, and that, with respect to
the depth-averaged model, here the specification of the domain height is also necessary.

The main aim of the suite of simulations performed for this test is to study the per-
formance obtained by using the adaptive mesh refinement (that helps to keep a sharp
interface and to reduce the computation time with respect to a uniform, static, fine mesh).
In addition, we discuss the scalability performance of the parallel execution, and, finally,
we test the capability of the terms implemented in the energy equation of the model to
properly describe the fluid heat loss through radiation, convection, and conduction.

Before a more quantitative analysis of our results, and reminding that this test has
its origin in an analog laboratory experiment described in Garel et al. [99], we show a
qualitative comparison between the results of our simulations with those of the experiment
putting them alongside in Figure 4.14. Even though the pictures that represent the
experiment and the simulation are not directly comparable, we appreciate that both of
them show that the temperature gradient, from the center to the front of propagation, is
more diffused at time t “ 160 s with respect to time t “ 60 s.

Whereas in the previous figure we presented a 2D view from the top of simulation
results, the simulations are fully 3D, and in Figures 4.15, 4.16, 4.17, 4.18, we present a
three dimensional view of the liquid free surface (represent by a contour of α) at time
t “ 20, 60, 160, 380 s respectively, obtained from a simulation that uses an adaptive mesh
with up to 4 levels of refinement, starting from a uniform grid with ∆x “ 0.005 m. The
3D plots clearly show that the grid refinement dynamically follows the liquid/air interface.
A specification is necessary: because of the very small thickness of the surface, in Figures
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(a) Picture taken from Garel et al. [99].

t = 60 s t = 160 s 

20° C 42° C31° C

5 cm 5 cm 

(b) Results of our simulation.

Figure 4.14: Axisymmetric cooling and spreading. (a) Optical (top row) and infrared (bottom
row) images taken during an analog laboratory experiment at time t “ 60, 160 s. The dashed
rectangle in the optical image corresponds to the field of view of the infrared image below.
(b) Top views of the fluid free-surface, represented as a contour of α (top row), and of the
temperature (bottom row) at time t “ 60, 160 s. The figures depict the top view of the whole
domain r´8; 8s cm ˆr´8; 8s cm. Please note that the domain size represented in the two pictures
are different.

4.15, 4.16, 4.17, 4.18 we used a vertical scale increased by a factor 3, in order to better
appreciate the three-dimensional nature of the flow surface.

Figure 4.15: Axisymmetric cooling and spreading. Free-surface of the fluid phase, grid refinement
of the horizontal plane, and computational domain outline. Simulation at time t “ 20 s obtained
with adaptive mesh refinement up to 4 levels of refinement.

In Figures 4.19, 4.20, 4.21, we show and compare results and mesh refinements for
simulations using different computational grids, at two times t “ 20, 380 s. Figures 4.19,
4.20 show the results of simulations obtained with adaptive mesh that use up to 3 and
4 levels of refinement respectively, but that initially started with the same uniform mesh
discretized with a grid resolution of 5 ¨ 10´3 m. As one might expect, the interface is
described more sharply in the simulation with the highest level of refinement, i.e. 4,
represented in Figure 4.20. Figure 4.21 depicts results of a simulation computed with the
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Figure 4.16: Axisymmetric cooling and spreading. Free-surface of the fluid phase, grid refinement
of the horizontal plane, and computational domain outline. Simulation at time t “ 60 s obtained
with dynamic mesh refinement up to 4 levels of refinement.

Figure 4.17: Axisymmetric cooling and spreading. Free-surface of the fluid phase, grid refinement
of the horizontal plane and computational domain outline. Simulation at time t “ 160 s obtained
with dynamic mesh refinement up to 4 levels of refinement.

Figure 4.18: Axisymmetric cooling and spreading. Free-surface of the fluid phase, grid refinement
of the horizontal plane, and computational domain outline. Simulation at time t “ 380 s obtained
with dynamic mesh refinement up to 4 levels of refinement.

use of dynamic refinement up to level 3 and with an initial uniform mesh discretized with
a grid resolution of 2.5 ¨ 10´3 m (half the resolution of the previous simulations). The
results of this last case are comparable to those obtained with an initial grid resolution
of 5 ¨ 10´3 m and 4 refinement levels, in terms of sharpness of the phase interface, and
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execution time of the code (see Table 4.3).

initial ∆x ref. level time
0.005 m 3 8112.01 s
0.005 m 4 31486.70 s
0.0025 m 3 32348.10 s

Table 4.3: Axisymmetric cooling and spreading. Elapsed execution time for the simulations of
380 s with different mesh refinements.

t = 380 s t = 20 s 

Figure 4.19: Axisymmetric cooling and spreading. Simulation computed with the dynamic
mesh refinement up to 3 refinement levels over an initial uniform mesh defined by ∆x “ 0.005 m
represented at time t “ 20, 380 s. Top row: bottom view of the discretization grid. Middle row:
side view of the discretization grid on the plane x “ 0. Bottom row: side view of the α-field on
the plane x “ 0.

In every case depicted in Figures 4.19, 4.20, 4.21, we appreciate both the refinement
of the meshes (which occurs as phase interface propagates), and the subsequent mesh
coarsening. Furthermore, we also notice that in Figure 4.21 there is a refinement in
correspondence of the origin that does not coarse. This is caused by the fact that, for
this simulation, we used a finer initial grid in correspondence of the inlet hole, namely
centered in p0, 0, 0q and with radius 4 ¨ 10´3 m, in order to better capture the circular
shape of the hole. By comparing the results, we see that such imposed refinement does
not affect the results.

In addition, we have further investigated the effect of the grid size, by comparing
a simulation using a uniform and static mesh with a grid resolution of 6.25 ¨ 10´4 m,
corresponding to the minimum cell size obtained using a dynamic mesh with an initial
grid resolution of 5 ¨ 10´3 m and 3 refinement levels. From Figure 4.22 we can see that
results of the two simulations are very similar, both in terms of runout and sharpness of the
interface. It is important to notice that in this case also the computational time required is
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t = 20 s t = 380 s 

Figure 4.20: Axisymmetric cooling and spreading. Simulation computed with the dynamic
mesh refinement up to 4 refinement levels over an initial uniform mesh defined by ∆x “ 0.005 m
represented at time t “ 20, 380 s. Top row: bottom view of the discretization grid. Middle row:
side view of the discretization grid on the plane x “ 0. Bottom row: side view of the α-field on
the plane x “ 0.

t = 20 s t = 380 s 

Figure 4.21: Axisymmetric cooling and spreading. Simulation computed with the dynamic mesh
refinement up to 3 refinement levels over an initial uniform mesh defined by ∆x “ 0.0025 m
represented at time t “ 20, 380 s. Top row: bottom view of the discretization grid. Middle row:
side view of the discretization grid on the plane x “ 0. Bottom row: side view of the α-field on
the plane x “ 0.
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similar, since the simulation over the uniform static mesh required 5994.02 s and the other
8112.01 s. This is due to the fact that the 3rd refinement level occupies a big part of the
computational domain (see Figure 4.19) because the fluid is very thin and the refinement
is still relatively coarse, therefore there is no time saving in the use of the dynamic
refinement; on the contrary, the opposite happens (and probably the computations for the
adaptive refinement are relatively time-consuming). However, this phenomenon should
be analyzed more deeply by further investigation and more simulations.

Figure 4.22: Axisymmetric cooling and spreading. Comparison between simulations computed
with static (top) and dynamic (bottom) mesh. Side view of the α-field at time t “ 380 s on the
vertical plane x “ 0.

The second part of this section focuses on the parallel computation and the scalability
performances of this test. For our parallel calculations, we used the High Performance
Computing Super Micro cluster laki (16 nodes and 256 core Intel Xeon 2.40GHz, in-
terconnection infiniband 40 Gbps at low latency) hosted at INGV, Section of Pisa. We
parallelized the test that uses the adaptive mesh up to 4 refinement levels starting from an
initial uniform grid with ∆x “ 5 ¨ 10´3 m (Figure 4.20). OpenFOAM parallelization relies
on the domain decomposition and on the subsequent distribution of the fields. For our
tests, we divided the domain (along the horizontal directions) into 2, 4, 8, and 16 pieces
respectively. Table 4.4 reports the elapsed time needed to compute the simulations for
each decomposition, and also the execution time necessary for the serial computation. As
one would expect, the serial computation required the biggest amount of time with respect
to the other cases. Moreover, the execution distributed on 4 cores used half of the time
that took the computation to run over 2 cores. However, the reduction in the execution
time does not continue increasing the cores, and the use of 8 and 16 cores requires more
time than from the use of 4, even if this time is still less than that necessary for the serial
computation. This limit in the scaling process is probably due to two factors. On one side,
by increasing the number of cores, the number of cells per core decreases, whereas the
communication between them increases. Other studies showed that with OpenFOAM the
optimum cell count per core ranges from approximately 10,000 to approximately 50,000,
and is highly dependent on the solver being used (the reader can refer to the study in
Keough [146]). On the other side, the dynamics of this test is not distributed over all the
domain, in particular in the first phases, and thus the computational load, with our choice
for the domain decomposition, could not be optimal. OpenFOAM provides other options
for the domain decomposition, that could possibly improve the parallel performance for
this test.

Differently for the tests of the previous section, here we also modeled the cooling of
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cores decomposition time
1 ´ 31486.72 s
2 2ˆ 1 28184.20 s
4 2ˆ 2 14115.90 s
8 4ˆ 2 26704.01 s
16 4ˆ 4 26682.20 s

Table 4.4: Axisymmetric cooling and spreading. Elapsed time for the sequential and parallel
executions of simulations of 380 s.

the fluid while it spreads. For this reason, we conclude this section with an analysis on the
temperature evolution of the flow, discussing the impact of the thermal heat loss processes
on the final distribution of temperature inside the liquid. We considered once again the
simulation obtained with adaptive mesh and that uses up to 4 refinement levels (results
are shown in Figure 4.20), and we observed how the temperature distribution inside the
liquid at time t “ 380 s varies when considering all the heat loss processes (radiation and
convection with the environment and conduction with the soil) or not. Figure 4.23 shows
the fluid temperature with side views at x “ 0 in the following circumstances, from top
to bottom: (i) all the energy heat loss processes are active; (ii) radiation is suppressed,
convection and conduction are active; (iii) radiation and convection are suppressed, only
conduction is active; (iv) zoom at the front of the liquid in order to better appreciate the
effects of conductive heat loss. We observe that conduction has the minor impact of the
thermal heat loss with respect to the other processes. We remark that the viscosity is not
temperature dependent, therefore the dynamics are not affected by different temperature
distributions.

20° C 42° C31° C

ZOOM

Full model

No radiation

Conduction only

Figure 4.23: Axisymmetric cooling and spreading. Temperature distribution inside the liquid
at time t “ 380 s, side view at x “ 0. A vertical larger scale was used to better see the vertical
distribution.



Chapter 5

Conclusions, comparisons and future
developments

The work presented in this thesis focused on developing mathematical and numerical
models for viscous fluids, with particular attention on the application to the simulation
of lava flows. With this aim in mind, we assumed the fluid of interest to be a hot and
viscous fluid in a laminar regime that cools because of radiative and convective heat loss
from the surface through the environment and because of conduction with the soil. Then,
following two approaches, i.e., the depth-averaged (or shallow-water) approach and the
3D multiphase description, we obtained different systems of partial differential equations,
requiring different numerical techniques, both based on the finite-volume method, to be
solved. These numerical methods were exposed in detail in the thesis, together with the
discussion of a comprehensive set of numerical simulations showing their effectiveness.

Unlike the classical shallow water equations, where a constant velocity profile is as-
sumed, we developed a model that accounts for the possibility of having the velocity
varying with the flow depth. In particular, we assumed a parabolic profile for the ve-
locity to model a laminar viscous fluid over a topography, where a no-slip condition is
prescribed. The model has also been enriched with an additional transport equation for a
quantity whose values vary with the vertical flow coordinate. That quantity can be parti-
cle concentration in sediment-laden flows, where a high-concentration basal layer affects
the transport dynamics or the temperature when a thermal boundary layer develops close
to the bottom because of conduction. For this latest case, we assumed a piecewise-linear
profile, and we added in the transport equations the appropriate terms describing radia-
tive, convective, and conductive heat exchanges, together with viscous heating. From the
assumptions of non-constant vertical profiles for velocity and temperature, we have shown
that two coefficients appear in the hyperbolic term of velocity and temperature equations
called shape factors (or Boussinesq factors). An in-depth study of the resulting partial
differential equations was carried out through the characteristic analysis of the system,
namely by computing the eigenvalues of the Jacobian matrices of the system (correspond-
ing to the characteristic speeds of the flow) and showing the relationship between them
and the shape factors.

The spatial discretization of the system of equations was achieved by using a modi-
fied version of the central-upwind Finite Volume Method scheme introduced by Kurganov
and Petrova [158], originally developed to solve the classical shallow-water equations. We
based the development of our numerical scheme on this method because of its relative
simplicity of the implementation, the fact that, being a high-order scheme, presents a low
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numerical diffusion, the positivity-preserving property, and its well-balancing property,
which guarantees that the numerical scheme correctly describes steady-state solutions.
Here, we have proven that for our modified system of equations and our modified numer-
ical scheme, the well-balancing property and the positivity-preserving property are still
guaranteed, but with an additional condition on the shape factors.

The temporal discretization has been obtained by an Implicit-Explicit Diagonally Im-
plicit Runge-Kutta scheme that treats the hyperbolic terms explicitly and implicitly the
viscous term in the momentum equation and the heat transfer terms of the temperature
equation. We checked that this scheme accurately describes the wave propagation and
treats well discontinuities, both of the solution and the topography. We have shown that a
geometrical limiter adoption produces accurate results for all the tests performed and that
high-viscosity fluids are more sensitive to the limiter chosen in terms of diffusive behavior.
When considering constant or parabolic velocity profiles, the main differences have been
observed for supercritical regimes (mainly associated with simulations of low-viscosity
fluids); in particular, over long simulated times, the fluid propagates faster, assuming a
constant velocity profile than assuming a parabolic profile. Similar differences have been
found for the simulation of a fluid with a temperature-dependent viscosity so that the
combined effects of temperature and velocity profiles are evident. Also, we have shown
that using the set of variables P “ rw,U, V, T s to compute the interface reconstructions
(related to our formulation of the spatial scheme) produces results very similar to those
obtained using the variables rw, hU, hV s (as in the original formulation of the scheme).
In addition, there is the advantage of no need to adopt desingularization techniques when
computing the flow velocities from the momentum components. We have also checked the
proper description of the thermal processes by comparing our simulations with a labora-
tory experiment. Finally, we tested the impact of the rheological parameters of a Bingham
temperature-dependent viscosity on the simulations of a realistic lava flow over the Fogo
volcano topography. This last application of the model showed promising results, both
in terms of real event description and of computational time required for the simulation
(approximately 40 minutes for a run of 1 day with a grid with a horizontal resolution of
20 meters).

As regards the 3D modeling approach, a multiphase approach for immiscible and
incompressible viscous fluids has been adopted. Even in this case, we based our model
on an existing solver to which we added the relevant features (as a transport equation for
the temperature with heat loss processes), adapting it to the flows of interests. This new
model has been implemented within the well-established CFD tool OpenFOAM. Thanks
to the open-source nature of the framework, this choice allowed us to take advantage
of the solvers and libraries already available for multiphase flows and modify them to
add the desired features. In addition, OpenFOAM fully supports parallel computing, and
thus any new solver can take advantage of this capability. Within OpenFOAM, the spatial
discretization of the governing equations system, still relying on the Finite Volume Method
schemes, follows the segregated strategy for which the equations are solved sequentially.
Because of the assumption of incompressibility, the conservation mass equation reduces
to a kinematic constrain, so an additional equation for pressure is derived. Pressure is
treated implicitly, and iterations are adopted to enforce the coupling between pressure
and velocity fields.

The 3D approach requires solving the conservation equations in the whole domain, and
thus both in the regions occupied by the viscous fluid and the surrounding air. For this
reason, it was essential to choose an approach that could guarantee an accurate description
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of the interface between the two fluids. The Volume of Fluid technique, based on the
Interphase Capturing strategy, was used in this thesis to model the multiphase dynamics:
an equation for the transport of the volumetric phase fraction is introduced, and the two
fluids are treated as a single fluid whose properties (namely, density and viscosity) vary in
space according to the volumetric fraction of each phase. The Multidimensional Universal
Limiter for Explicit Solution (MULES) method was then used to help in keeping the phase
interface sharper.

As previously stated, an energy equation has been implemented in the 3D model
to describe both the transport and diffusion of thermal energy throughout the fluids,
together with the radiative and convective heat loss at the interface between the phases.
In addition, the heat conduction with the ground was instead modeled as a boundary
condition. Finally, a library for the dynamic mesh refinement has been added to the solver,
allowing to start a simulation with a relatively coarse mesh and refine it dynamically
during the simulation in regions where smaller cells are needed (for example, close to the
interface between the two phases).

For this model, some tests have been performed to look at the capability of the nu-
merical model to keep a sharp interface, at the efficiency of the dynamic mesh refinement
adapted to refine the cells straddling the phase interface and to analyze the performances
of parallelization and scalability. The preliminary tests did so far highlight that, with a
mesh appropriately fine, the numerical scheme manages to maintain an accurate descrip-
tion of the phase interface. Furthermore, we saw that by using the dynamic refinement,
we obtained results that are perfectly comparable to those obtained with a uniform static
mesh defined by the finest size of spatial discretization of the dynamic mesh, but with the
critical difference of a sensible reduction in the computational time for the dynamic mesh
case. However, even though this advantage on the execution time is true in most cases,
we saw this might not occur for simulations where the cells involved by the refinement
occupy a significant part of the domain.

By comparing the two physical and numerical models presented in this thesis, some
differences may be highlighted and discussed. First of all, as it is evident, the use of a
depth-averaged model does not allow a complete description of the vertical distribution of
the flow variables, but it is based on assumptions for the vertical profiles. For example, we
used a parabolic profile for the horizontal velocity in our model, based on the assumption
of a well-developed laminar flow. However, more complex flow conditions and transient
regimes (not resulting in a well-developed profile) could result in different velocity profiles.
In these cases, a 3D approach is better suited to simulate the process of interest dynamics
properly. The same is true for the temperature profile, which could differ substantially
from the piecewise-linear profile assumed for our depth-averaged model. In addition, a
3D model can also better simulate the vertical variations in flow rheology, which can be
important when the viscosity depends on temperature, for example. Generally, in depth-
averaged models, the vertical distribution is not tied to the internal viscous forces but, as
stated above, to pre-established model assumptions. We observe here that, in principle, it
is possible to improve the description of the vertical profiles also used with depth-averaged
models. Our next aim is to consider for them a dynamic evolution, allowing them to vary
as a function of the local flow regime. For example, different velocity profiles can be
designed as a function of the local Reynolds number, distinguishing between laminar and
turbulent regions of the flow. The thermal boundary layer thickness discussed above could
be related to the velocity boundary layer thickness, with the ratio of the two thicknesses
governed by the Prandtl number (the ratio of momentum to thermal diffusivity). A similar
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technique can also be used when modeling by a depth-averaged approach a sediment-laden,
by defining the particle concentration profile as a function of the Rouse number [235, 262].
However, these modifications require not only a rewriting of the set of equations, since the
depth-averaging of non-constant profiles gives rise to new shape factors in all the terms
of the governing equations, but also further studies on the properties of the numerical
schemes (well-balancing and positivity-preserving), which are not obvious when we modify
the model.

Another difference between the models concerns the other hypotheses of the shal-
low water model that consist of assuming a negligible vertical velocity and hydrostatic
pressure distribution. Under those conditions, the model cannot entirely capture fast
dynamics that develop over terrain with high gradients. Natural processes that present
those features are, for example, avalanches, landslides, and debris flow, but even lava
flows may develop over steep terrain and flow fast. Hergarten [123] proposed a modified
shallow water model that introduces a correction factor for the friction term in order to
better capture dynamics over a steep slope. Xia and Liang [276] proposed another mod-
ified model that takes into account both the effects of the vertical acceleration and the
effects of curvature due to a complex morphology of the terrain, introducing inside the
momentum equation correction factors for the pressure and friction terms. As a future
development, we plan to modify our model by introducing correction factors of this kind
to make our model more flexible and applicable to a broader spectrum of cases.

Despite all the differences presented so far, depth-averaged models have proven to
be accurate enough for many geophysical applications (landslides, tsunamis, lava flows,
lahars) to keep being a still convenient simplification in terms of computational cost
with respect to 3D models. In fact, at present, the computational time required for 3D
simulation remains prohibitive for real-time applications and for the use of numerical
simulations in rapid hazard assessment and quantification. From the computational point
of view, one of the advantages of the depth-averaged approach is that the friction/viscous
forces are not modeled through a second-order differential term but through a simpler
(and non-differential) term. The implicit treatment of the viscous forces, in the 3D case,
requires instead the solution of a large coupled system of equations resulting from the
implicit spatial discretization of the second-order differential term, whereas, in the depth-
averaged case, there is no coupling between the equations associated to these terms. That
allowed us to adopt the IMEX scheme, where the implicit viscous terms are integrated
cell by cell, significantly reducing the complexity of the problem. On the other hand,
the OpenFOAM approach to reduce the complexity of the solution of the implicit terms
is based on a segregated procedure, where the different governing equations are solved
sequentially in an iterative way. We also observe that both the models are based on a
finite-volume discretization of the spatial differential terms, which is an optimal choice
for the solution of equations based on conservation laws, because it enforces conservation
of quantities also at the discretized level.

Finally, as previously stated, we notice that the 3D model we developed can employ
both the dynamic mesh refining and the parallelization capabilities already available in
OpenFOAM, which at present are not implemented in the depth-averaged model that
has been developed in a different framework. We remark that this is not an intrinsic
advantage of the 3D approach with respect to the depth-averaged approach but comes
from the particular choices we made so far on the numerical codes for our models.

In addition to the differences associated with the different modeling approaches, some
model-specific limits are associated with the particular implementation of the numerical
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model.
For the depth-averaged model, the numerical scheme is based on a time step controlled

by the CFL condition, where the relevant velocity is the maximum (in magnitude) eigen-
value of the flux Jacobian, i.e., the maximum characteristic velocity. For high-viscosity
flows (for example, lava flows), this can be a lot larger than the flow velocity, resulting
thus in time steps much smaller than those obtained with numerical schemes for which the
CFL condition is applied to the flow velocity. The PISO scheme adopted by the 3D model
represents an example of this latter approach, allowing the adoption of larger time steps
than the depth-averaged model. In addition, whereas the choice of the Kurganov-Petrova
scheme is well suited for the discretization of conservative terms, the generalization to non-
conservative differential terms could arise for more complex models (for example, when
considering multi-layer depth-averaged models) is not obvious.

For the 3D numerical model we developed, even though the preliminary results ob-
tained are acceptable, some modifications could be made to increase its flexibility and
capability to better capture the effects of thermal processes on the dynamics. In this
regard, a first limit comes with the mesh: the user should pay attention to have grid cells
with an aspect ratio as close as possible to 1 in order o have both a good description
of the phase interface and proper modeling of the heat loss processes occurring at the
interface between the phases. The radiative and convective terms computation requires
the surface area of the phase interface, which translates into knowing the surface area of
each interface cell. At present, we use approximation to compute the surface area from
the volume, which is based on the assumption of an aspect ratio close to 1, as suggested
by Almeland [2]. When the cell aspect ratio is smaller or larger than 1, the surface area
measure could be overestimated or underestimated, with a consequent error in the com-
putation of the heat loss. Further work needs to be done to better estimate the interface
surface area with different strategies, independent from the cells aspect ratio, but based
on the gradients of the volumetric phase fraction field, for example.

Lastly, we touch on a further problem related to the 3D solver that we did not mention
before but has received considerable attention: the development of spurious velocities in
the low-density fluid near the phase interface. In the first place, such phenomenon was
related to the surface tension [190, 218]; instead, more recently, it was demonstrated that
the development of spurious velocities takes place even in situations where the surface
tension is suppressed [265, 271]. In particular, the work by Eltard Larsen et al. [78] at-
tributed the growth of the spurious velocities to the high ratio liquid/gas density, whereby
even small erroneous transfers of momentum across the interface from the heavier to the
lighter fluid cause a considerable acceleration of the lighter fluid, as described and dis-
cussed also by Vukcevic [264]. Even though the spurious currents represent an undesirable
and unphysical process, it does not affect the dynamics of the fluid of interest that is often
the heavier one. Instead, in the case that an accurate description of the velocity field of
the lighter fluid is of interest, the spurious currents represent a non-negligible problem.

We end this section by considering one of the initial objectives of this thesis: the
development of depth-averaged and 3D models for the simulation of lava flows. For the
depth-averaged model, we have shown an application to the simulation of the first day of
the 2014-2015 Fogo eruption. We used a real topography and a Bingham rheological model
with temperature-dependent viscosity for this simulation, obtaining a good agreement
with the observations. Instead, for the 3D model, we have presented only preliminary
results from standard benchmarks, and we need to deepen the study and test the model
on more cases. Concerning the simulations presented here, the model already allows the
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use of a temperature-dependent viscosity model and simulates a flow over topography, but
a complete simulation of a lava flow accounting for these features, with a source, and with
the dynamic mesh, still needs some work. Finally, remaining in the context of lava flows,
we observe that the process of crystallization induced by fluid cooling has a high impact
on flow dynamics because it leads to a viscosity increase and a possible flow stopping.
This phenomenon can be treated by including the transport of an additional dispersed
phase, that represents crystals, in our model, together with a source term modeling the
crystallization rate as a function of flow temperature and magma composition. Our future
plan is to include this process in our models, both in the depth-averaged and in the 3D,
together with a rheological model capable of taking into account both temperature and
crystal content.

To conclude, we remark that to evaluate our models’ capabilities better to describe
properly the physical processes treated, we would need to compare the results of our sim-
ulations with more analog laboratory experiments, for which the flow conditions are well
constrained. In this context, a collaborative relationship with a research group that works
on laboratory experiments or large-scale experiments for lava flows would be desirable.
A close collaboration could result in a better identification of the parameters to measure
during the experiments that could be compared with the outputs of the numerical simu-
lations. In addition, this collaboration would help better understand the main processes
governing the dynamics of the flows of interest, and thus on the terms to be introduced
in the models.



Appendix A

OpenFOAM tutorial: add energy
equation with radiative, convective and
conductive heat loss to interFoam

This tutorial walks the reader through all the steps to create a new solver based on
interFoam (OpenFOAM-v1912) by adding thermal properties and an energy equation
to model a hot fluid that exchanges energy with the environment. The theoretical bases
behind the solver are described in §2.2 as far as the physical model concerns, in Chapter §4
for the numerical contents, whereas the basics of the computational setting of OpenFOAM
are described in §1.3. Our work is founded on a tutorial for OpenFOAM 4.1 by Hannah
Dietterich taken at IAVCEI 2017, OpenFOAM Workshop, and on the work of Almeland
[2].

interFoam is a multiphase, transient solver for two immiscible, incompressible, isother-
mal, viscous fluids and performs both in laminar and turbulent regime. The different
fluid properties are arranged by the libraries for the transport models, i.e. incompress-
ibleTwoPhaseMixture and immiscibleIncompressibleTwoPhaseMixture. The incom-
pressible Navier-Stokes equations are solved together with an equation for the volumetric
phase fraction. The momentum-pressure system of coupled equations is solved in a segre-
gated fashion using the PIMPLE algorithm. The multiphase model adopts the Volume of
Fluid method to capture the interface between the fluids. The numerical scheme MULES
(Multidimensional Universal Limiter for Explicit Solution) is a Flux-Corrected Transport
technique adopted to reduce the numerical diffusion of the interface between the phases.

Our work fits and starts into this context. The energy equation that we add presents
radiative and convective heat loss terms referred at the free surface meanwhile the con-
ductive heat exchange with the soil is implemented as a boundary condition. Instead of
presenting in a single moment all the changes necessary to obtain the new solver, the pro-
cess is divided into different, sometimes disjointed, steps. So, starting from interFoam,
we will produce the following solvers:

• interThermalFoam;

• interThermalRadFoam;

• interThermalRadConvFoam.

This strategy should help the reader to understand better the description and motivation
behind any modifications. Besides, this facilitates the reader that is interested in specific
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steps to focus only on them. Furthermore, after the implementation of each solver, it is
tested with the dam break (damBreak) simulation which is a classic test case for inter-
Foam, already available to use. We modify the original test into damBreakAddT in order
to test our solvers. We also highlight that in the rest of the work the symbol $ indicates
commands in the terminal, while Courier font indicates text within files.

The Tutorial is structured as follows. OpenFOAM is devoid of a graphical interface,
and both data and settings are saved as text files which are named and located in a very
precise way based on a predefined structure. Hence, before starting with the Tutorial
instructions, we spend some words in §A.1 to describe the structure of the main folders
and files constituting the software. §A.2 has preliminary instructions about how to install
OpenFOAM by the Docker container. In §A.3, a basic energy equation with the hyperbolic
transient terms and the diffusion term is added to the solver and the transport models are
modified in order to take into account also the necessary parameters bounded to the energy
model. In §A.4 and §A.5 we introduce radiative and convective terms respectively into
the energy equation; these sections could be independent, but they share some contents
exposed only in §A.4. Finally, §A.6 describes how to implement the boundary conditions
for the conduction between the fluid and the surface on which flows.

A.1 OpenFOAM structure
The main folders are organized as represented in Figure A.1. OpenFOAM is used primarily
to create executables, known as applications, that fall in two categories: the solvers, that
are designed to solve continuum mechanics problems, and the utilities, that perform data
manipulation, meshing creation, case setup, solution monitoring, data export and data
visualization. The fact that OpenFOAM is accompanied by pre- and post-processing
environments ensures consistent data handling across all environments. The directory
run/tutorials has the same structure as the folder applications/solver, but it contains the
directories devoted to the simulations.

Each simulation have a directory, say it case, with some sub-directories, as those
reported in Figure A.2. Originally the case directory contains only the sub-directories
0, constant and system. The folder 0 has got the initial and boundary conditions of the
variables involved into the dynamics, whereas the other time directories are created at
run time to store the fields computed by the solver at those time steps. The constant
directory initially contains the definition of the gravity acceleration and the dictionaries
for the kinematic and viscous transport properties. At run time, after the mesh creation,
the folder contains also polyMesh, a folder in which all the elements of the mesh are defined
and stored (points, cells, faces, ...). The system directory contains: the settings for the
run in the file controlDict, the dictionary blockMeshDict to create the mesh, the settings
for the discretization schemes fvSchemes and for the solution procedure fvSolution. At
run time, the solver that is called to compute the solution reads these files in the case
directory and runs the simulation according with those settings.

From a mathematical point of view, OpenFOAM solves a system of PDEs by using
the Finite Volume Method on unstructured meshes and it reduces the problem to a linear
system of equations that solves iteratively.

Even though OpenFOAM offers solvers for different systems of PDEs, the user may
not find e perfect match with the problem he aims to solve, this was also our situation.
However, the open-source nature of the code allows the user to overcome this difficulty
permitting to build a new solver for the application one wish, and meanwhile, take advan-
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Figure A.1: Structure of the main folders of OpenFOAM.
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Figure A.2: Structure of the case folder.

tage both of the huge numbers of schemes and methods already implemented and ready
to use and also of the good properties of the software. The user can set up easily almost
every kind of computational domain of arbitrary geometry, from the simplest uniform
grids to the most complicated unstructured polyhedral meshes. The basic mesh genera-
tor is blockMesh, whereas the utility snappyHexMesh allows modifying an already existing
mesh into a more sophisticated one guaranteeing a minimum mesh quality. The dictio-
naries that the user can set to create the mesh are blockMeshDict and snappyHexMeshDict
respectively, both located in the case/system folder.

A.2 Getting started with OpenFOAM

OpenFOAM-v1912 can be installed with Docker on Linux by following the instructions
at the link openfoam.com/download/install-binary-linux.php. After that, a new folder

https://www.openfoam.com/download/install-binary-linux.php
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named OpenFOAM should be present in your home.

(1) Start OpenFOAM in your terminal window, by the Docker container, with the script:
$ cd ~/ OpenFOAM/installation1912
$ ./ startOpenFOAM

This will open a new shell with the OpenFOAM environment fully installed and ready to
use.

(2) Create a directory for the user modifications (if not already present) which reflects
the same structure and directory subdivisions as in OpenFOAM:
$ mkdir OpenFOAM/username -v1912
$ cd OpenFOAM/username -v1912
$ mkdir applications/solvers src run/tutorials

The user has some shortcuts, written in capital letters, to access some main folders from
the terminal, as we will see.

A.3 Add Energy Equation

A.3.1 Modifying the transport model to include thermal param-
eters

The so called transportModel is a base-class for all the transport models used by the
incompressible and turbulence models. The classes derived from this one can deal with
both multiphase or single phase conditions. The transportModel class owns some public
member functions, defined as virtual and therefore implemented by its derived classes,
that are: nu(), returning the laminar viscosity, correct(), that makes a correction on
the laminar viscosity, and read() that reads the transportProperties dictionary located
inside the folder of the test case case/constant.

In order to add the thermal parameters to our solver, we modify only two classes:
incompressibleTwoPhaseMixture, which is derived from the transportModel class, and
immiscibleIncompressibleTwoPhaseMixture class, that is derived from the previous
one.

(3) Copy the transportModels directory into your personal src folder.
$ cp -r $FOAM_SRC/transportModels/incompressible src/.
$ cp -r $FOAM_SRC/transportModels/

immiscibleIncompressibleTwoPhaseMixture src/.

(4) Inside the directory incompressible, modify the files related to the class incompress-
ibleTwoPhaseMixture starting from editing the names of the header.
$ cd $WM_PROJECT_USER_DIR/src/transportModels/incompressible
$ mv incompressibleTwoPhaseMixture addTIncompressibleTwoPhaseMixture
$ cd addTIncompressibleTwoPhaseMixture
$ mv incompressibleTwoPhaseMixture.H addTIncompressibleTwoPhaseMixture.H
$ mv incompressibleTwoPhaseMixture.C addTIncompressibleTwoPhaseMixture.C
$ sed -i s/incompressibleTwoPhaseMixture/

addTIncompressibleTwoPhaseMixture/g addTIncompressibleTwoPhaseMixture
.*
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Edit Make/files: open it and update the names of files and directories, and indicate the
library created by the user instead of the default one
// End add
LIB = $(FOAM_USER_LIBBIN)/libaddTIncompressibleTransportModels

Edit Make/options: open it and change the link to twoPhaseMixture:
-I$(LIB_SRC)/transportModels/twoPhaseMixture/lnInclude

(5) Edit immiscibleIncompressibleTwoPhaseMixture class (pay attention to ‘i’ and ‘I’):
change the name to the folder, to the files, and to all the occurrences.
$ cd $WM_PROJECT_USER_DIR/src/transportModels
$ mv immiscibleIncompressibleTwoPhaseMixture

addTImmiscibleIncompressibleTwoPhaseMixture
$ cd addTIncompressibleTwoPhaseMixture
$ mv immiscibleIncompressibleTwoPhaseMixture.H

addTImmiscibleIncompressibleTwoPhaseMixture.H
$ mv immiscibleIncompressibleTwoPhaseMixture.C

addTImmiscibleIncompressibleTwoPhaseMixture.C
$ sed -i s/immiscibleIncompressibleTwoPhaseMixture/

addTImmiscibleIncompressibleTwoPhaseMixture/g
addTImmiscibleIncompressibleTwoPhaseMixture .*

$ sed -i s/incompressibleTwoPhaseMixture/
addTIncompressibleTwoPhaseMixture/g
addTImmiscibleIncompressibleTwoPhaseMixture .*

Edit Make/files: open it, update the names of files and directories, and indicate the library
created by the user instead of the default one.
addTImmiscibleIncompressibleTwoPhaseMixture.C

LIB = $(FOAM_USER_LIBBIN)/libaddTImmiscibleIncompressibleTwoPhaseMixture

Edit Make/options: change the relative link to incompressible folder in EXE_INC.
-I$(WM_PROJECT_USER_DIR)/src/transportModels/incompressible/lnInclude \

-I$(WM_PROJECT_DIR)/src/transportModels/interfaceProperties/lnInclude \
-I$(WM_PROJECT_DIR)/src/transportModels/twoPhaseMixture/lnInclude \

Finally, add to LIB_LIBS the next lines.
-L$(FOAM_USER_LIBBIN) \
-laddTIncompressibleTransportModels \

(6) Inside the header file addTIncompressibleTwoPhaseMixture.H, add the declarations of
new variables. We introduce the heat capacity cp and the Prandtl number Pr for both
phases and then the face-interpolated conductivity field kappaf.
dimensionedScalar rho1_;
dimensionedScalar rho2_;
// Add
dimensionedScalar cp1_;
dimensionedScalar cp2_;
dimensionedScalar Pr1_;
dimensionedScalar Pr2_;
// End Add

AND
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const dimensionedScalar& rho2() const
{

return rho2_;
};

// Add
// Return const -access to phase1 heat capacity
const dimensionedScalar& cp1() const

{
return cp1_;

}
// Return const -access to phase2 heat capacity
const dimensionedScalar& cp2() const

{
return cp2_;

};
// Return const -access to phase1 Prandtl number
const dimensionedScalar& Pr1() const

{
return Pr1_;

}
// Return const -access to phase2 Prandtl number
const dimensionedScalar& Pr2() const

{
return Pr2_;

};
// End Add

AND
tmp <surfaceScalarField > nuf() const;

// Add
// Return the face -interpolated conductivity
tmp <surfaceScalarField > kappaf () const;
// End Add

(7) Add the initialization of the thermal parameters and the implementation of the new
member functions to the source file addTIncompressibleTwoPhaseMixture.C.
rho2_("rho", dimDensity , nuModel2_ ->viscosityProperties ()),

// Add
cp1_("cp", dimensionSet (0, 2, -2, -1, 0, 0, 0), nuModel1_ ->

viscosityProperties ()),
cp2_("cp", dimensionSet (0, 2, -2, -1, 0, 0, 0), nuModel2_ ->

viscosityProperties ()),

Pr1_("Pr", dimensionSet (0, 0, 0, 0, 0, 0, 0), nuModel1_ ->
viscosityProperties ()),

Pr2_("Pr", dimensionSet (0, 0, 0, 0, 0, 0, 0), nuModel2_ ->
viscosityProperties ()),

// EndAdd

AND
Foam::tmp <Foam:: surfaceScalarField >
Foam:: incompressibleTwoPhaseMixture ::nuf() const
{
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...
}

// Add
Foam::tmp <Foam:: surfaceScalarField >
Foam:: incompressibleTwoPhaseMixture :: kappaf () const
{

const surfaceScalarField alpha1f
(

min(max(fvc:: interpolate(alpha1_), scalar (0)), scalar (1))
);

return tmp <surfaceScalarField >
(

new surfaceScalarField
(

"kappaf",
(

alpha1f*rho1_*cp1_ *(1/ Pr1_)
*fvc:: interpolate(nuModel1_ ->nu())

+ (scalar (1) - alpha1f)*rho2_*cp2_
*(1/ Pr2_)*fvc:: interpolate(nuModel2_ ->nu())

)
)

);
}
// End Add

AND

nuModel1_ ->viscosityProperties ().readEntry("rho", rho1_);
nuModel2_ ->viscosityProperties ().readEntry("rho", rho2_);

// Add
nuModel1_ ->viscosityProperties ().readEntry("cp", cp1_);
nuModel2_ ->viscosityProperties ().readEntry("cp", cp2_);

nuModel1_ ->viscosityProperties ().readEntry("Pr", Pr1_);
nuModel2_ ->viscosityProperties ().readEntry("Pr", Pr2_);
// End Add

(8) With the previous steps, the libraries of both classes have been updated, so now it
is necessary to compile them. Navigate to the incompressible directory and then compile
creating the library for addTIncompressibleTransportModels.

$ cd $WM_PROJECT_USER_DIR/src/transportModels/incompressible
$ wclean
$ wmake libso

After, navigate back to the addTImmiscibleIncompressibleTwoPhaseMixture directory and
compile also that library.

$ cd ../ addTImmiscibleIncompressibleTwoPhaseMixture
$ wclean
$ wmake libso

The new libraries are located in $FOAM_USER_LIBBIN, while new folders lnInclude has
been created in each directory in which the compiling processes have been executed.
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A.3.2 Modifying the interFoam solver

At point (2), the path for the directory solvers was created, and we continue to establish
the correct path to append the new solver interThermalFoam. Furthermore, also the
folder VoF, concerning the implementation of the Volume of Fluid (VoF) method, must
be copied there and then modified.
$ cd $WM_PROJECT_USER_DIR/applications/solvers
$ mkdir multiphase
$ cd multiphase
$ cp -r $FOAM_SOLVERS/multiphase/VoF .
$ mkdir interThermalFoam
$ cd interThermalFoam
$ cp -r $FOAM_SOLVERS/multiphase/interFoam/ .

We remove the extraneous solvers, namely those we do not use, that are present inside
the interFoam folder, and then we modify the solver itself starting from its name and all
the occurrences of its name inside the code.
$ rm -r overInterDyMFoam
$ rm -r interMixingFoam
$ mv interFoam.C interThermalFoam.C
$ sed -i s/interFoam/interThermalFoam/g interThermalFoam.C
$ sed -i s/immiscibleIncompressibleTwoPhaseMixture/

addTImmiscibleIncompressibleTwoPhaseMixture/g interThermalFoam.C

(10) Edit the file Make/files: open and update it by renovating the solver name and the
position in which locate the executable.
interThermalFoam.C
EXE = $(FOAM_USER_APPBIN)/interThermalFoam

(11) Edit the file Make/options: open and update it. First, update in EXE_INC:
-I$(WM_PROJECT_USER_DIR)/applications/solvers/multiphase/VoF \
-I$(WM_PROJECT_USER_DIR)/src/transportModels/incompressible/lnInclude \
-I$(WM_PROJECT_USER_DIR)/src/transportModels/

addTImmiscibleIncompressibleTwoPh
aseMixture/lnInclude \

Second, modify EXE_LIBS by adding and updating the file with the following lines:
-L$(FOAM_USER_LIBBIN) \
-laddTIncompressibleTransportModels \
-laddTImmiscibleIncompressibleTwoPhaseMixture \

(12) Inside the folder interThermalFoam, modify the module createFields.H file by adding
a scalar field for temperature and the others thermal variables. The temperature field
added is called T, and is related to the cell centroids since it is defined as a volume scalar
field. Also, it is an input/output object that must be read at the initial time and that must
be written at every output time. The specific heat of each phase is denoted as cp1 and cp2,
and are both read from the transport properties dictionary; these values are important
for the creation of other two fields rhoCp and rhoCpPhi used for the discretization of the
transient term and of the advective term, respectively, that are located inside the energy
equation.
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Info << "Reading field U\n" << endl;
volVectorField U
( ... );

// Add
Info << "Reading field T\n" << endl;
volScalarField T
(

IOobject
(

"T",
runTime.timeName (),
mesh ,
IOobject ::MUST_READ ,
IOobject :: AUTO_WRITE

),
mesh

);
// End Add

AND
const dimensionedScalar& rho1 = mixture.rho1();
const dimensionedScalar& rho2 = mixture.rho2();
// Add
const dimensionedScalar& cp1 = mixture.cp1();
const dimensionedScalar& cp2 = mixture.cp2();
// End Add

AND
// Need to store rho for ddt(rho , U)
volScalarField rho
(

IOobject
(

"rho",
runTime.timeName (),
mesh ,
IOobject :: READ_IF_PRESENT

),
alpha1*rho1 + alpha2*rho2

);
rho.oldTime ();

// Add
// Need to store rhoCp for ddt(rhoCp , T)
volScalarField rhoCp
(

IOobject
(

"rhoCp",
runTime.timeName (),
mesh ,
IOobject :: READ_IF_PRESENT

),
alpha1*rho1*cp1 + alpha2*rho2*cp2

);
rhoCp.oldTime ();
// End Add
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AND
// Mass flux
surfaceScalarField rhoPhi
(

IOobject
(

"rhoPhi",
runTime.timeName (),
mesh ,
IOobject ::NO_READ ,
IOobject :: NO_WRITE

),
fvc:: interpolate(rho)*phi

);

// Add
// Need to store rhoCpPhi for div(rhoCpPhi ,T)
surfaceScalarField rhoCpPhi
(

IOobject
(

"rhoCpPhi",
runTime.timeName (),
mesh ,
IOobject ::NO_READ ,
IOobject :: NO_WRITE

),
fvc:: interpolate(rhoCp)*phi

);
// End Add

AND
// MULES compressed flux is registered in case scalarTransport FO needs

it.
surfaceScalarField alphaPhiUn
( ... );

// Add
// global for TEqn use
tmp <surfaceScalarField > tPhiAlpha;
// End Add

(13) Move into the folder VoF and modify the files concerning the Volume of Fluid
method.
$ cd ../ VoF

We need to edit alphaEqn.H which contains the implementation of the numerical scheme
that solves the α-equation. Add these lines to alphaEqn.H.

if
(

word(mesh.ddtScheme("ddt(rho ,U)"))
== fv:: EulerDdtScheme <vector >:: typeName
|| word(mesh.ddtScheme("ddt(rho ,U)"))
== fv:: localEulerDdtScheme <vector >:: typeName

)
{
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rhoPhi = alphaPhi10 *(rho1f - rho2f) + phiCN*rho2f;
// Add
rhoCpPhi = alphaPhi10 *( rho1f*cp1 - rho2f*cp2) + phiCN*rho2f*cp2;
// End Add

}

AND
else
{

if (ocCoeff > 0)
{

// Calculate the end -of-time -step alpha flux
alphaPhi10 =

(alphaPhi10 - (1.0 - cnCoeff)*alphaPhi10.oldTime ())/
cnCoeff;

}

// Calculate the end -of-time -step mass flux
rhoPhi = alphaPhi10 *(rho1f - rho2f) + phi*rho2f;
// Add
rhoCpPhi = alphaPhi10 *( rho1f*cp1 - rho2f*cp2) + phi*rho2f*cp2;
// End Add

}

(14) Modify also the file alphaEqnSubCycle.H by adding the following line:
rho == alpha1*rho1 + alpha2*rho2;
// Add
rhoCp = alpha1*rho1*cp1 + alpha2*rho2*cp2;
// End Add

(15) Go back to the folder of our solver interThermalFoam and create a new file for the
temperature equation called TEqn.H.
$ cd ../ interThermalFoam
$ touch TEqn.H

Fill the file with the following lines.
surfaceScalarField kappaf = mixture.kappaf ();

fvScalarMatrix TEqn
(

fvm::ddt(rhoCp ,T)
+ fvm::div(rhoCpPhi ,T)
- fvm:: laplacian(kappaf ,T)

);
TEqn.relax ();
TEqn.solve ();

(16) Update the solver itself, namely edit the file interThermalFoam.C, to include the
new thermal parameters and to solve the energy equation. Add the call to the energy
equation just before the call to the function runTime.write()
// Add
#include "TEqn.H"
// End Add
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runTime.write ();

(17) Compile it from inside the folder interThermalFoam.
$ wclean
$ wmake

A.3.3 Run a test case: dam break with temperature

The dam break case is a classical test for interFoam and we adopt its 2D frame for our
preliminary tests.

(18) Copy the damBreak folder case from the original location into the directory run by
creating the necessary path that reproduces the original position.
$ cd $FOAM_RUN/tutorials
$ mkdir multiphase/interFoam/laminar/damBreak/damBreakAddT
$ cd multiphase/interFoam/laminar/damBreak/damBreakAddT
$ cp -r $FOAM_TUTORIALS/multiphase/interFoam/laminar/damBreak/damBreak/

.

(19) The folder 0 of the test case contains files that specify the initial and boundary
conditions of the variables. Therefore, create the file with the conditions for the temper-
ature, called T, by copying and modifying an already existing file, for example, the file
with the conditions for velocity, named U.
$ cd 0
$ cp U T

Open the file T and do what stated in the following.

• Change the class name to volScalarField.

• Change the object name to T.

• Specify that temperature is expressed in Kelvin [0 0 0 1 0 0 0].

• Set the internalField to uniform 293.

• Make all the boundary conditions zeroGradient except for the empty one.

(20) Update the transportProperties file, located in the constant folder, by adding values
and units for the heat capacity and the Prandtl number of both phases.
$ cd ../ constant

• water
cp [0 2 -2 -1 0 0 0] 4190;
Pr [0 0 0 0 0 0 0] 10.0;

• air
cp [0 2 -2 -1 0 0 0] 1000;
Pr [0 0 0 0 0 0 0] 0.72;
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(21) Update the files inside the directory system.
$ cd ../ system

In the controlDict, file update the application name.
application interThermalFoam;

Inside the fvSchemes file, add a line in divSchemes that specifies the numerical schemes
to use for the advective term of the energy equation:
divSchemes
{

div(rhoPhi ,U) Gauss linearUpwind grad(U);
div(phi ,alpha) Gauss vanLeer;
div(phirb ,alpha) Gauss linear;
div ((( rho*nuEff)*dev2(T(grad(U))))) Gauss linear;
// Add
div(rhoCpPhi ,T) Gauss limitedLinear 1;
// End Add

}

In fvSolution, copy the solver for p_rgh and modify it:
// Add
T
{

solver PBiCG;
preconditioner DILU;
tolerance 1e-07;
relTol 0;

}
// End Add

In setfieldsDict, add the values for temperature:
defaultFieldValues
(

volScalarFieldValue alpha.water 0
volScalarFieldValue T 293 // Add

);

regions
(

boxToCell
{

box (0 0 -1) (0.1461 0.292 1);
fieldValues
(

volScalarFieldValue alpha.water 1
volScalarFieldValue T 400 // Add

);
}

);

(22) Run the case from the main folder damBreakAddT. The executable Allrun launches
three commands: first it creates the mesh with the utility blockMesh, then the utility
setFields modifies the initialization of the fields alpha and T, and finally the solver in-
terThermalFoam is executed.
$ cd ..
$ ./ Allrun
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(23) In the case folder, a number of new directories are created with files that store
fields for every output time, according to what was initially set inside the dictionary
system/controlDict. Use ParaView to see the results by launching this last command.
$ parafoam

A.4 Add the Radiative Heat Exchange term
With the previous modifications, we have added to the solver the equation for the trans-
port and diffusion of the heat per unit volume (we report also the unit in the form
expressed by OpenFOAM which consists of the sequence [kg m s K mol A cd])

BpρCpT q

Bt
`∇ ¨ pρCpTuq ´∆pkfT q “ 0, r1,´1,´3, 0, 0, 0, 0s,

where ρ kg m´3 is the density, Cp m2 s´2 K´1 is the specific heat, kf is the face-interpolated
conductivity. The term of the heat radiation we are going to add depends on the fourth
power of temperature and is proportional to several variables: the emissivity ε, the
Stephan-Boltzmann constant σSB “ 5.67 ¨ 10´8 kg s´3K´4, the fractional area of the
exposed inner core f , and the radiative free surface area Afs m2:

εσSBfAfs
`

T 4
´ T 4

env

˘

, r1, 2,´3, 0, 0, 0, 0s.

In order to add this kind of term to our equation, we have to divide it by the volume V ol
m3 because the equation is expressed per unit volume, then we get the next expression
for the energy equation:

BpρCpT q

Bt
`∇ ¨ pρCpTuq ´∆pkfT q “ ´

εσSBfAfs
V ol

`

T 4
´ T 4

env

˘

, r1,´1,´3, 0, 0, 0, 0s.

In order to include this source term into the implementation of the energy equation, we
edit the file TEqn.H which represents this equation, but the definition and implementation
of the source term are entrusted to the transport model addTImmiscibleIncompressibleT-
woPhaseMixture that will be modified as well.

A.4.1 Editing the transport model

The radiative source term is naturally implemented by modifying the class addTImmis-
cibleIncompressibleTwoPhaseMixture since this class is derived both from the addT-
IncompressibleTwoPhaseMixture class and interfaceProperties class and this last
one will be useful exactly because the radiative heat exchange is strictly confined at the
interface between the two phases.

Local copy of the new transport model

Start by copying the directory of the transport model to edit and by changing the file name
and of all its occurrences inside the file addTRadImmiscibleIncompressibleTwoPhaseMixture.
$ cd ~/ OpenFOAM/username -v1912/src/transportModels
$ mkdir addTRadImmiscibleIncompressibleTwoPhaseMixture
$ cp -r addTImmiscibleIncompressibleTwoPhaseMixture/

addTRadImmiscibleIncompressibleTwoPhaseMixture /.
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$ cd addTRadImmiscibleIncompressibleTwoPhaseMixture
$ mv addTImmiscibleIncompressibleTwoPhaseMixture.H

addTRadImmiscibleIncompressibleTwoPhaseMixture.H
$ mv addTImmiscibleIncompressibleTwoPhaseMixture.C

addTRadImmiscibleIncompressibleTwoPhaseMixture.C
$ sed -i s/addTImmiscibleIncompressibleTwoPhaseMixture/

addTRadImmiscibleIncompressibleTwoPhaseMixture/g Make/files
$ sed -i s/addTImmiscibleIncompressibleTwoPhaseMixture/

addTRadImmiscibleIncompressibleTwoPhaseMixture/g
addTRadImmiscibleIncompressibleTwoPhaseMixture .*

The library path is already set correctly in Make/files to that of the user, and also the
Make/options file got the paths corrected hence, everything should be correct, and the
process of compiling guarantees it.
$ wmake

Parameters: Tenv, ε, σSB and f

Since the radiative term expression is

´
εσSBfAfs

V ol

`

T 4
´ T 4

env

˘

, r1,´1,´3, 0, 0, 0, 0s,

we need to build all the pieces that constitutes this term and we start from the parameters
such as the emissivity ε, the Stephan-Boltzmann constant σSB (5.67 ¨ 10´8 kg s´3K´4),
the fractional area of the exposed inner core f , and the environmental temperature Tenv.
The values of those variables are supposed to be given by the user as input parameters,
like the value of the surface tension. We add them as private member variables of the
transport model class and declare them inside the header file addTRadImmiscibleIncom-
pressibleTwoPhaseMixture.H.
class addTRadImmiscibleIncompressibleTwoPhaseMixture
:

public addTIncompressibleTwoPhaseMixture ,
public interfaceProperties

{

public:
// Add Rad
// Private data

const dimensionedScalar emissivity_;
const dimensionedScalar sigma_SB_;
const dimensionedScalar fractionalAreaExposed_;
const dimensionedScalar T_env_;

// End add Rad

The instruction to initialize those parameters are written inside the function construc-
tor of the class, in addTRadImmiscibleIncompressibleTwoPhaseMixture.C, and in particular
the values for those are searched inside the transportPropertiesDict of the test case (as we
will see in §A.4.5).
Foam:: addTRadImmiscibleIncompressibleTwoPhaseMixture ::
addTRadImmiscibleIncompressibleTwoPhaseMixture
(

const volVectorField& U,
const surfaceScalarField& phi
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)
:

addTIncompressibleTwoPhaseMixture(U, phi),
interfaceProperties(alpha1 (), U, *this),

// Add Rad
emissivity_
(

"emissivity", dimensionSet (0,0,0,0,0,0,0), lookup("emissivity")
) ,
sigma_SB_
(

"sigma_SB", dimensionSet (1,0,-3,-4,0,0,0), lookup("sigma_SB")
) ,
fractionalAreaExposed_
(

"fractionalAreaExposed", dimensionSet (0,0,0,0,0,0,0),
lookup("fractionalAreaExposed")

) ,
T_env_
(

"T_env", dimensionSet (0,0,0,1,0,0,0), lookup("T_env")
)
// End add Rad

{}

The compiling of the library should ensure the correctness of the modifications done.
$ wmake

calcSourceRadiation

Finally, we introduce the function calcSourceRadiation that computes the radiative
heat transfer between the surface of the fluid and the environment. The declaration
of this new member function is in the header file, after the declaration of the member
function read.
// Add Rad
// Calculates the radiative source term
tmp <fvScalarMatrix > calcSourceRadiation(

const volVectorField& U,
volScalarField& T ,
volScalarField& RadiativeCoeff

);
// End add Rad

The vector-field of velocity U is used only to get access at the cell volumes values, while,
T is the temperature scalar field and RadiativeCoeff is a field described later, in §A.4.3,
useful for the visualization on ParaView of that part of the domain interested by this
thermal exchange.

From the numerical point of view, we need to split this term in two parts, an explicit
and an implicit one, and also to linearize the implicit term:

´
εσSBfAfs

V ol

`

T 4
´ T 4

env

˘

“
εσSBfAfs

V ol
T 4
env´

ˆ

εσSBfAfs
V ol

T 3

˙

˚ T (A.1)

The same kind of splitting and linearization is pursued also by the radiation models al-
ready implemented in OpenFOAM as thermophysical models. OpenFOAM offers names-
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paces of functions that automatically treat source terms: Foam::fvm::Sp() for implicit
treatment, Foam::fvm::SuSp() for implicit/explicit discretization and Foam::fvm::Su()
for explicit treatment (for more information about the namespaces, the user may consult
the Guide) and we discretize the implicit term in Eq. (A.1) exactly with the function
Foam::fvm::Sp() (in §1.3.2.1 in Eq. (1.133), we introduced the discretization of source
terms in explicit and implicit parts).

The function calcSourceRadiation is initialized inside the C-file, again after the
read() function. We use two textttvolScalarField variables for help: Afs to host the
surface area of the interface cells, and epsilonMatrix, a field that is zero everywhere
except on the interface where its value is εσSBfAfs{V ol.

// Add Rad
Foam::tmp <Foam:: fvScalarMatrix > Foam:: addTRadImmiscibleIncompressibleTwo
PhaseMixture :: calcSourceRadiation(

const volVectorField& U,
volScalarField& T ,
volScalarField& RadiativeCoeff

)
{

Info << "calcSourceRadiation" << endl;
// Initialize the radiative coefficient epsilon
// as 1 or 0 for on interface or not
volScalarField epsilonMatrix(nearInterface ());
// Initialize the field for the area of the interface surface
// as 1 or 0 for on interface or not
volScalarField Afs(epsilonMatrix);

// Estimate cell surface area as V^(2/3)
forAll(Afs , cellI) {

if ( Afs[cellI] > 0 )
Afs[cellI] = pow(U.mesh().V()[cellI ] ,0.67);

}
forAll(epsilonMatrix.boundaryField (), patchI) {

forAll(epsilonMatrix.boundaryField ()[patchI], faceI ) {
epsilonMatrix.boundaryFieldRef ()[patchI ][faceI] = scalar

(0.0);
}

}
// Calculate the volume fraction rate term
forAll(epsilonMatrix , cellI) {

if((T[cellI] > T_env_.value ())) {
epsilonMatrix[cellI] = emissivity_.value ()

* fractionalAreaExposed_.value()
* sigma_SB_.value () * Afs[cellI]
/ U.mesh().V()[cellI] ;

}else{
epsilonMatrix[cellI] = scalar (0.0) ;

}
}

dimensionedScalar dimCorr("dimCorr",dimMass /(pow4(dimTemperature)
*pow3(dimTime)*dimLength) ,1);
RadiativeCoeff = epsilonMatrix * dimCorr ;
return(

epsilonMatrix * dimCorr * pow4(T_env_)
- Foam::fvm::Sp( epsilonMatrix * dimCorr * pow3(T) , T)

);

https://www.openfoam.com/documentation/guides/latest/api/namespaceFoam_1_1fvm.html#details
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}
// End add Rad

Since the radiative term is applicable only to the cells belonging to the interface be-
tween the two fluids, the function nearInterface() helps us in this discernment. Such a
function, inherited from the interfaceProperties module, returns a volScalarField
object therefore, when we define a couple of volume scalar fields A and B as
volScalarField A(nearInterface ());
volScalarField B(A);

According to this, the entrances of both A and B are 1 in correspondence to the interface
cells and 0 everywhere else.

Compile the library.
$ wmake

A.4.2 Editing the solver

Local copy of the new solver

Start by copying the folder interThermalFoam and changing its name to interThermal-
RadFoam.
$ cd $WM_PROJECT_USER_DIR/applications/solvers/multiphase
$ mkdir interThermalRadFoam
$ cp -r interThermalFoam/ interThermalRadFoam /.
$ cd interThermalRadFoam
$ mv interThermalFoam.C interThermalRadFoam.C

Rename within the files.
$ sed -i s/interThermalFoam/interThermalRadFoam/g Make/files
$ sed -i s/interThermalFoam/interThermalRadFoam/g interThermalRadFoam.C

There is no need to change the name of the executable path, because it already coincides
with the user bin. Compile to obtain the local version of the interThermalRadFoam
and to be sure that everything works as expected.
$ wmake

The new solver has to call the new library:
$ sed -i s/addTImmiscibleIncompressibleTwoPhaseMixture/

addTRadImmiscibleIncompressibleTwoPhaseMixture/g createFields.H
$ sed -i s/addTImmiscibleIncompressibleTwoPhaseMixture/

addTRadImmiscibleIncompressibleTwoPhaseMixture/g interThermalRadFoam.
C

$ sed -i s/addTImmiscibleIncompressibleTwoPhaseMixture/
addTRadImmiscibleIncompressibleTwoPhaseMixture/g Make/options

$ sed -i s/immiscibleIncompressibleTwoPhaseMixture/
addTRadImmiscibleIncompressibleTwoPhaseMixture/g createFields.H

$ sed -i s/immiscibleIncompressibleTwoPhaseMixture/
addTRadImmiscibleIncompressibleTwoPhaseMixture/g interThermalRadFoam.
C

The link between the new solver and the new library should be done and the compile
of the solver ensure it: compile from inside the folder interThermalRadFoam
$ wmake
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Add the source radiative term to the temperature equation and new field

Inside the file for the temperature equation interThermalRadFoam/TEqn.H, we add the
radiation term as a call to the function implemented into our transportModel
fvScalarMatrix TEqn
(

fvm::ddt(rhoCp ,T)
+ fvm::div(rhoCpPhi ,T)
- fvm:: laplacian(kappaf ,T)

// Add Rad
==
// Radiative term
mixture.calcSourceRadiation(U,T,RadiativeCoeff)
// End add Rad

);

Moreover, we create the field for RadiativeCoeff into createFields.H (which helps to
visualize with ParaView where this source term is active.
// Add Rad
volScalarField RadiativeCoeff
(

IOobject
(

"RadiativeCoeff",
runTime.timeName (),
mesh ,
IOobject ::NO_READ ,
IOobject :: AUTO_WRITE

),
mesh ,
dimensionedScalar("RadiativeCoeff",dimMass /(pow4(dimTemperature)
*pow3(dimTime)*dimLength), 0)

);
// End add Rad

A.4.3 Visualization of additional field

We want to visualize two fields involved in the radiative computation. One is Ra-
diativeCoeff, already defined, which has great meaning since it should be equal to
zero everywhere except at the interface, and then the field describing the temperature
dependant part of the radiative term T 4 ´ T 4

env that we call T4mTenv4. First of all, we
define those fields into the file createFields.H located inside the folder of the solver, i.e.
interThermalRadFoam
// Add Rad
volScalarField RadiativeCoeff
(

IOobject
(

"RadiativeCoeff",
runTime.timeName (),
mesh ,
IOobject ::NO_READ ,
IOobject :: AUTO_WRITE
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),
mesh ,
dimensionedScalar("RadiativeCoeff",dimMass /(pow4(dimTemperature)*

pow3(dimTime)*dimLength), 0)
);

volScalarField T4mTenv4
(

IOobject
(

"T4mTenv4",
runTime.timeName (),
mesh ,
IOobject ::NO_READ ,
IOobject :: AUTO_WRITE // NO_WRITE

),
mesh ,
dimensionedScalar("T4mTenv4",pow4(dimTemperature), 0)

);
// end add Rad

#include "createMRF.H"
#include "createFvOptions.H"

These fields are both initialized equal to zero everywhere and their values are updated
during the simulation and we do that inside the file devoted to temperature equation
TEqn.H, in particular, the field RadiativeCoeff is defined simultaneously with the
call to the function computing the radiative source term calcSourceRadiation, while
the field T4mTenv4 is defined separately. Defining the RadiativeCoeff field within the
function calcSourceRadiation optimizes the execution time since that file is computed
and used in that function. Instead, the field T4mTenv4 is not used for the computations,
hence we create the new function calcT4mTenv4 to define it.

RadiativeTerm

We notice that in §A.4.2 the RadiativeCoeff field is already passed in input to the
function computing the radiative source term, while in §A.4.1 the definition of this field
is already written as RadiativeCoeff = epsilonMatrix*dimCorr, hence we don’t need
to write anything else. The function calcSourceRadiation receives in input velocity
U, temperature T, and RadiativeCoeff field. The velocity field is declared constant
because there is no need to change its value, it is only used to detach the cell volumes.
The temperature field is not constant because its values need to change since the
temperature equation is solved implicitly. Meanwhile, also the RadiativeCoeff field is
not constant because its values will be updated.

T4mTenv4

The new function calcT4mTenv4 is declared inside the header file addTRadImmisci-
bleIncompressibleTwoPhaseMixture.H immediately after the declaration of the member
function calcSourceRadiation.
// Calculates the difference between the fourth powers
// of temperature and environmental temperature
void calcT4mTenv4(

volScalarField& T4mTenv4
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);

In this case the temperature field doesn’t change, so it is passed as constant variable.
The instructions for this member function are to write inside the file addTRadImmisci-
bleIncompressibleTwoPhaseMixture.C, added after those of calcSourceRadiation.
void Foam:: addTRadImmiscibleIncompressibleTwoPhaseMixture :: calcT4mTenv4(

const volScalarField& T ,
volScalarField& T4mTenv4

)
{

Info << "calcT4mTenv4" << endl;
forAll(T,cellI){

T4mTenv4[cellI] = pow4(T[cellI]) - pow4(T_env_.value ());
}

}

Notice a small detail: in this case the assignment is done directly on the values of
the volScalarField T4mTenv4, hence we need to use the dimensionedScalar member
function value() to only access to the value of T_env_ without the dimensions, instead
in §A.4.1 we wrote pow4(T_env_) to consider both the value and the dimension of
T_env_.

A.4.4 Source term modification to improve the stability

The radiative source term formulation can be slightly modified to improve numerical
stability. In Eq. (A.1) we divided and linearized the radiative term. We define the
coefficient ε :“

εσSBfAfs

V ol
, add and subtract ˘4εT 3 ¨T , and rearrange the terms as follows:

´
εσSBfAfs

V ol

`

T 4
´ T 4

env

˘

“ ´ε
`

T 4
´ T 4

env

˘

˘ 4εT 3
¨ T “ ε

`

T 4
env ` 3T 4

˘

´4εT 3
˚ T (A.2)

where we find again an explicit term and a linearized implicit term. This procedure
redistribute the source terms and make the coefficient matrix more diagonally dominant.
Therefore, we modify the last command of calcSourceRadiation (previously described
in §A.4.1) into
return(

epsilonMatrix * dimCorr * pow4(T_env_)
- Foam::fvm::Sp( 4 * epsilonMatrix * dimCorr * pow3(T) , T)
+ epsilonMatrix * dimCorr * 3 * pow4(T)

) ;

A.4.5 Run the test Case

The test case of the dam break with temperature, namely the damBreakAddT test of
§A.3.3, is modified and to be used again. Inside the file system/controlDict, the call
to the function interThermalFoam must be substituted with the call to the function
interThermalRadFoam.
$ sed -i s/interThermalFoam/interThermalRadFoam/g system/controlDict

Inside the file constant/transportProperties, after the surface tension sigma, we add
// Add the Radiative transport properties
emissivity [0 0 0 0 0 0 0] 0.96 ;
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sigma_SB [1 0 -3 -4 0 0 0] 5.67e-8 ;
fractionalAreaExposed [0 0 0 0 0 0 0] 1.0 ;
T_env [0 0 0 1 0 0 0] 293.0 ;
// End

Inside the folder 0, add a file that define the initial conditions for the RadiativeCoeff
field: copy the temperature file T, change the name as RadiativeCoeff, and then modify
it by substituting the body of the listing with:
dimensions [1 -1 -3 -4 0 0 0];
internalField uniform 0;
boundaryField
{

".*"
{

type calculated;
value uniform 0;

}
}

Ready to execute the modified dam break test!
$ blockMesh
$ setFields
$ interThermalRadFoam | tee -a interThermalRadFoam.log

A.5 Add the Convective Heat Loss term

We add a term in the energy equation describing the supposed fluid heat loss due to
convection. This term will be active only on the fluid surface, exactly as the radiative
term, and even the general implementation is not so far from what was done for
the radiative term. There is an additional consideration to do: since we reserve the
description of the convective heat loss to a source term, the heat loss due to diffusion
through the interface must be suppressed.

The term describing the heat flux depends on the temperature difference between
the fluid and the air, it is proportional to the area of the fluid surface Afs m2, to the
heat transfer coefficient λ kgs´3K, and to the fractional area of the exposed inner core
f , in addition, since the energy equation is expressed per unit volume, we must divide
by the volume of the cell V ol m3

´
λfAfs
V ol

`

T ´ Tenv
˘

, r1,´1,´3, 0, 0, 0, 0s. (A.3)

We also introduce χ̄fs as a coefficient for the diffusion term, that prevents the diffusion
to verify at the interface between the phases. To add this last coefficient χ̄fs, we edit
the file TEqn.H of the energy equation, whereas the convective source term is again
implemented within the transport model.

A.5.1 Editing the transport model

The implementation of the convective heat flux term is very similar to that of the
radiative term, hence we will create a new transport model class by modifying the
previous one and call it addTRadConvImmiscibleIncompressibleTwoPhaseMixture.
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Local copy of the new transport model

As we have seen in the previous case of the radiative term, the first thing to do is copy
the directory of the transport model that we are going to modify and then change all
the repetitions of the original class name to the new name.
$ cd ~/ OpenFOAM/username -v1912/src/transportModels
$ mkdir addTRadConvImmiscibleIncompressibleTwoPhaseMixture
$ cp -r addTRadImmiscibleIncompressibleTwoPhaseMixture/

addTRadConvImmiscibleIncompressibleTwoPhaseMixture /.
$ cd addTRadConvImmiscibleIncompressibleTwoPhaseMixture
$ mv addTRadImmiscibleIncompressibleTwoPhaseMixture.H

addTRadConvImmiscibleIncompressibleTwoPhaseMixture.H
$ mv addTRadImmiscibleIncompressibleTwoPhaseMixture.C

addTRadConvmmiscibleIncompressibleTwoPhaseMixture.C
$ sed -i s/addTRadImmiscibleIncompressibleTwoPhaseMixture/

addTRadConvImmiscibleIncompressibleTwoPhaseMixture/g Make/files
$ sed -i s/addTRadImmiscibleIncompressibleTwoPhaseMixture/

addTRadConvImmiscibleIncompressibleTwoPhaseMixture/g
addTRadConvImmiscibleIncompressibleTwoPhaseMixture .*

The path of the library is already correctly set to the user library in Make/files, and
even the file Make/options sees the right paths. Compile the class.
$ wmake

Heat transfer coefficient λ

By observing both the radiative term ´
εσSBfAfs

V ol

`

T 4 ´ T 4
env

˘

and the convective terms
´
λfAfs

V ol

`

T ´ Tenv
˘

, one notices that they have in common some parameters, hence
we need only to introduce the heat transfer coefficient λ kgs´3K. The value of this
parameter is given from the user as input, since it changes according to simulations.
It is added as a private member variable of the new transport model. λ is declared
inside the header file addTRadConvImmiscibleIncompressibleTwoPhaseMixture.H, together
with the other parameters ε, σSB, Tenv, and it is named heatTransferCoeff.
public:
// Add Rad , add Conv
// Private data

const dimensionedScalar emissivity_;
const dimensionedScalar sigma_SB_ ;
const dimensionedScalar heatTransferCoeff_;
const dimensionedScalar fractionalAreaExposed_ ;
const dimensionedScalar T_env_;

// End add Rad , add Conv

The initialization of this new parameter is written inside the constructor function of
the class inside addTRadConvImmiscibleIncompressibleTwoPhaseMixture.C together with
the other parameters, and its value is searched inside the file transportPropertiesDict of
the test case.

heatTransferCoeff_
(

"heatTransferCoeff", dimensionSet (1,0,-3,-1,0,0,0), lookup("
heatTransferCoef

f")
) ,



250 APPENDIX A. OPENFOAM TUTORIAL

A compiling process of the library will ensure the correctness of these few modifications
done.
$ wmake

calcSourceForcedConvection

The function that compute the convective heat loss source term ´
λfAfs

V ol

`

T ´ Tenv
˘

is called calcSourceForcedConvection. This new member function of the class is
declared in the header file, such as the calcSourceRadiation function, after the dec-
laration of the member function read.
// Add Forced Convection
//- Calculates convective source term , returned as volume fraction rate
tmp <fvScalarMatrix > calcSourceForcedConvection(

const volVectorField& U,
volScalarField& T

);

U is the velocity vector field and we use it to access at the cell volumes values, T is
the temperature scalar field. From a mathematical point of view, the convective term
is linear, conversely from the radiative term (that required a linearization procedure).
From a numerical point of view, we need to split it in two parts, one treated explicitly
and the other implicitly with the function Foam::fvm::Sp() introduced in §A.4.1:

´
λfAfs
V ol

`

T ´ Tenv
˘

“
λfAfs
V ol

Tenv´
λfAfs
V ol

T .

The new function calcSourceRadiation is initialized inside the C-file after the read()
function. Inside the function, we introduce two variables volScalarField: Afs, that hosts
the area of the fluid surface cells, and WMatrix that is zero everywhere except on the
interface between the fluids where its value is λfAfs{V ol.
// Add Conv
Foam::tmp <Foam:: fvScalarMatrix >
Foam:: addTRadConvImmiscibleIncompressibleTwoPhaseMixture ::

calcSourceForcedConvec
tion(
const volVectorField& U,
volScalarField& T

)
{

Info << "calcSourceForcedConvection" << endl;
// Initialize the forced convective coefficient W
// as 1 or 0 for on interface or not
volScalarField WMatrix(nearInterface ());
// Initialize the field for the area of the interface surface
// as 1 or 0 for on interface or not
volScalarField Afs(WMatrix);

// Estimate cell surface area as V^(2/3)
forAll(Afs , cellI) {

if ( Afs[cellI] > 0 )
Afs[cellI] = pow(U.mesh().V()[cellI ] ,0.67);

}
forAll(WMatrix.boundaryField (), patchI) {

forAll(WMatrix.boundaryField ()[patchI], faceI ) {
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WMatrix.boundaryFieldRef ()[patchI ][faceI] = scalar (0.0) ;
}

}
// Calculate the volume fraction rate term
forAll(WMatrix , cellI) {

if((T[cellI] > T_env_.value ())) {
WMatrix[cellI] = heatTransferCoeff_.value()
* fractionalAreaExposed_.value()
* Afs[cellI] / U.mesh().V()[cellI] ;

}
else{

WMatrix[cellI] = scalar (0.0) ;
}

}

dimensionedScalar dimCorr(
"dimCorr",dimMass /( dimTemperature*pow3(dimTime)*dimLength) ,1);

// ConvectiveCoeff = WMatrix * dimCorr ;
/* activate this in case you create the volScalarField
ConvectiveCoeff

* to visualize it on ParaFoam */
return(

WMatrix * dimCorr * T_env_
- Foam::fvm::Sp( WMatrix * dimCorr , T)

);
}
// End add Conv

Compile the library.

$ wmake

A.5.2 Editing the solver

We create a new solver named interThermalRadConvFoam that accounts for both radia-
tive and convective processes, by coping and modifying the solver interThermalRadFoam
and create the new one, moreover we add the coefficient χ̄fs for the diffusion term and
the function computing the convective source term called calcSourceForcedConvec-
tion.

Local copy of the new solver

Start by copying the folder interThermalRadFoam and by changing its name in interTher-
malRadConvFoam.

$ cd $WM_PROJECT_USER_DIR/applications/solvers/multiphase
$ mkdir interThermalRadConvFoam
$ cp -r interThermalRadFoam/ interThermalRadConvFoam /.
$ cd interThermalRadConvFoam
$ mv interThermalRadFoam.C interThermalRadConvFoam.C

Rename within the files

$ sed -i s/interThermalRadFoam/interThermalRadConvFoam/g Make/files
$ sed -i s/interThermalRadFoam/interThermalRadConvFoam/g

interThermalRadConvFoam.C
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There is no need to change the name of the executable path, because it already coincides
with the user bin. The user can compile it to be sure that everything works as expected.
$ wmake

The new solver has to call the new library, then, from inside the folder interThermal-
RadConvFoam set:
$ sed -i s/addTRadImmiscibleIncompressibleTwoPhaseMixture/

addTRadConvImmiscibleIncompressibleTwoPhaseMixture/g createFields.H
$ sed -i s/addTRadImmiscibleIncompressibleTwoPhaseMixture/

addTRadConvImmiscibleIncompressibleTwoPhaseMixture/g
interThermalRadFoam.C

$ sed -i s/addTRadImmiscibleIncompressibleTwoPhaseMixture/
addTRadConvImmiscibleIncompressibleTwoPhaseMixture/g Make/options

$ sed -i s/addTRadImmiscibleIncompressibleTwoPhaseMixture/
addTRadConvImmiscibleIncompressibleTwoPhaseMixture/g createFields.H

$ sed -i s/addTRadImmiscibleIncompressibleTwoPhaseMixture/
addTRadConvImmiscibleIncompressibleTwoPhaseMixture/g
interThermalRadFoam.C

The linking between the new solver and the new library should be done correctly.
Compile the solver from inside the folder interThermalRadConvFoam.
$ wmake

Add the convective source term to the temperature equation

Inside the file TEqn.H, the heat equation is modified in order to add the convec-
tive source term and the coefficient χ̄fs for the diffusion term. Start by defining a
volScalarField named NoInterface, that plays the role of χ̄fs, before the declaration of
the TEqn.
// Add Conv
volScalarField NoInterface ( mixture.nearInterface () );
forAll ( mesh.C(), celli )
{

if ( NoInterface[celli] > 0) NoInterface[celli] = 0;
else

NoInterface[celli] = 1;
}
// End add Conv

Then go through the equation, add the coefficient for the diffusion term, and add the
convective source term.
fvScalarMatrix TEqn
(

fvm::ddt(rhoCp ,T)
+ fvm::div(rhoCpPhi ,T)
- NoInterface * fvm:: laplacian(kappaf ,T) // Add the coefficient
==
mixture.calcSourceRadiation(U,T,RadiativeCoeff)
+ mixture.calcSourceForcedConvection(U,T) // Add the convective term

);

Compile the solver.
$ wmake
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A.5.3 Run the test Case

Once again, we exploit the test case of the dam break with temperature relying on and
modifying the damBreakAddT test of §A.4.5. Inside the file system/controlDict, the call
to the function interThermalRadFoam must be substituted with the call to the function
interThermalRadConvFoam.
$ sed -i s/interThermalRadFoam/interThermalRadConvFoam/g system/

controlDict

Inside the file constant/transportProperties, after the surface tension sigma, we add
the convectiveHeatTransferParameter together with the radiative parameters already
introduced:
// Radiative and Convective transport properties
emissivity [0 0 0 0 0 0 0] 0.96 ;
sigma_SB [1 0 -3 -4 0 0 0] 5.67e-8 ;
fractionalAreaExposed [0 0 0 0 0 0 0] 1.0 ;
T_env [0 0 0 1 0 0 0] 293.0 ;
convectiveHeatTransferParameter [1 0 -3 -1 0 0 0] 2; // Add

Ready to execute the modified dam break test!
$ blockMesh
$ setFields
$ interThermalRadConvFoam | tee -a interThermalRadConvFoam.log

A.6 Add the Conductive Heat Transfer Boundary Con-
dition

The boundary condition for the conductive heat transfer with the lower wall is added
by modifying the file 0/T of the dam break test case damBreakAddT. Start by adding
some reference parameters (that must be coherent with those specified in constant/-
transportProperties):
dimensions [0 0 0 1 0 0 0]; // kg m s K mol A cd
// Add
T_env 293;
fluidDensity 1000;
Pr 10;
cp 4190;
internalField uniform $T_env;
// End add

Modify the boundary condition at the lower wall from zeroGradient to what follows:
lowerWall
{

type exprMixed;
value $internalField;
variables "Tinf=$T_env; rho=$fluidDensity; cp=$cp; DT=1/

$Pr;
k=DT*rho*cp; L_wall =0.002; k_wall =0.03";

valueExpr "Tinf";
fractionExpr "1.0/(1.0 + ( k/(mag(pos())) * (L_wall/k_wall)

))";
}
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Execute the program
$ blockMesh
$ setFields
$ interThermalRadConvFoam | tee -a interThermalRadConvFoam.log



Appendix B

Variational derivation of shallow-water
equations

The topics presented in this Appendix have been the subject of the final examination of
the reading course “Variational principles in fluid dynamics” taken by Prof. Pinamonti
at the University of Genova during the Ph.D. program.

In the first two sections, §B.1 and §B.2, some fundamental notions of calculus of
variations are introduced by taking inspirations from Carati and Galgani [31]. Into
the third section §B.3 we present the Lagrangian proposed by Luke [177] to derive
the water waves equations also showing the explicit computations for the derivation.
Luke’s Lagrangian is basilar for the works Clamond and Dutykh [45], Clamond and
Dutykh [46], in which it is used to derive several models for water waves, among
which shallow-water models, by adopting the “relaxed” variational principles. Section
§B.4 introduces the concept of relaxation in the context of variational principles and
presents the derivation of the relaxed Lagrangian density used by Clamond and Dutykh
[45]. The last section §B.5 shows two examples of the modified shallow water systems of
equations that are derived from relaxed variational principles by choosing appropriate
ansatz and also imposing some constraints. The modified shallow water model derived
with the use of relaxed variational principles is different from our modified model derived
in §2.1.

B.1 Introduction to the variational principles
In this section, we introduce the Hamilton Variational Principle for a mechanical sys-
tem, also referred to as Principle of least action or, more accurately, as Principle of
stationary action. The Hamilton Principle is essentially a substitute of the more famil-
iar mechanical principle which characterizes the “physical” movements as those satisfying
the Newton equations or the Lagrange equations. As it usually happens, the new point
of view may result to be more convenient for “heuristic” aims, namely when one wants
to extend old theories to new fields.

Variational principles became a central discussion argument inside the scientific com-
munity one century before Hamilton’s works (dated half ’800) and were accompanied by
considerable attention to their philosophical implications; their official birth year might
date 1744. Sometime earlier, a lot of discussions arose from the formulation given by
Maupertuis about the Fermat Principle for the geometric optics 1 and from his transpo-

1In optics, Fermat’s principle or the principle of least time, named after the French mathematician

255
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sition in purely mechanical formulation. Later, Euler brought back the problem to the
mathematical point of view stimulated by the Bernoulli discussion about the brachis-
tochrone problem 2. Euler formulated the problem of analytically characterizing the
geodetics (i.e. the minimum length curves on an assigned surface) and published the
solution to this problem inside the work of 1744 titled as “Methudus inveniendi lineas
curvas maximi minive proprietates gaudentes”. Furthermore, such a work contains the
solution of a more general problem (that is the core of this section), that is to charac-
terize as solutions of differential equations the functions that are stationary points of an
assigned integral functional (the meaning of these words are clarified in the following).
The method used nowadays to discuss the variational principles is substantially the
one introduced by Lagrange (1736–1813) in his first work, which gave him notoriety.
Hamilton added his contribution in three works: “On a general method of expressing
the paths of light and the planets, by the coefficients of a characteristic function” 3,
1833, “On a general method in dynamics”, 1834, “Second essay on a general method in
dynamics”, 1835.

From the Newtonian or Lagrangian point of view, a movement or a trajectory is
described by differential equations, whereas the fundamental idea at the basis of vari-
ational principles is to characterize the movement or the trajectory by the property of
being the minimum or maximum with respect to a family of movements or trajectories.
The most obvious example, thinking about trajectories, is the straight line on a plane.
In fact, on one hand, a straight line y “ ypxq satisfies the differential equation y2 “ 0
because it has null curvature, and, on the other hand, it is “represents” the minimum
length curve: fixed two points A and B on the plane and considered the set of all the
curves that connect the two points, the straight segment AB (laying on ypxq) is the
curve of minimum length connecting A and B, see Figure B.1.

Figure B.1: The straight line passing trough two points is the minimum length curve.

From a wider point of view, variational principles provide a global characterization
instead of a local characterization. In such a sense, the straight line characterization,

Pierre de Fermat, is the principle stating that the path taken between two points by a ray of light is the
path traversed in the least time. This principle is sometimes taken as the definition of a ray of light.

2In mathematics and physics, a brachistochrone curve (from Ancient Greek brákhistos khrónos means
‘shortest time’), or curve of fastest descent. Such a curve, lying on a plane, connects a point A to a lower
point B, where B is not directly below A, and a bead slides frictionlessly under the influence of a uniform
gravitational field to a given endpoint in the shortest time. The brachistochrone problem solution is not
a straight line nor a combination thereof, but a cycloid.

3The reference to light and planets, and so the correspondence between waves and corpuscles become
later the fulcrum for the passage from the classic to the quantum mechanics with the Schroedinger
procedure.
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as that curve that minimizes the distance between two points on a plane, is a global
property; in addition, this characterization involves the length notion, a property re-
garding the whole curve. Otherwise, the requirement that the second derivative y2

vanishes is applied for every single point x and, for this reason, the characterization
with the differential equation is seen as the union of local properties.

Another relevant aspect that differentiates the global and local characterization refers
to the property of invariance with respect to the coordinates. In fact, a curve may be
described analytically in different ways according to the chosen coordinates, therefore
also the characterization of local properties depends on the coordinates chosen. Instead,
the global properties, typically expressed by indefinite integrals, are independent of the
coordinates, and, for this reason, the global characterizations are more significant. We
could say that Newton or Lagrange (or Hamilton) equations constitute the local form
of the variational principle (of global type) that is the Hamilton variational principle.
In the next, the variational formulation of the dynamic is introduced.

B.1.1 Variational formulation of Lagrangian mechanics

Speaking about the mathematical environment in which we move, we consider a set of
curves U accompanied by a functional F , F : U Ñ R, which in the previous example
corresponds to the functional that associates each curve to its length between A and
B. The aim is to study the existence of possible local minima of the functional F .

We start by considering a Lagrangian system, that means a particular class of
systems of differential equations whose form is completely determined from a scalar
function. We fix a time interval I “ rt1, t2s Ă R and consider Ω an open set of Rn

named space of configurations of dimension n, in particular Ω is a variety and a
point on Ω is individuated by the coordinates q “ pq1, . . . , qnq P Rn called Lagrangian
coordinates. We introduce the function

L : I ˆ Ωˆ Rn
ÝÑ R,

pt, q, 9qq ÝÑ Lpt,qptq, 9qptqq

that is a function in C2 named Lagrangian function. The dimension n indicates the
degrees of freedom.

Two Lagrangian functions are said equivalent if they lead to the same system of
equations. Trivially, in the case they differ of a constant, then they are equivalent. In
general, given a function f : Rˆ Ω Ñ R, f P C2, the Lagrangian L is equivalent to

L̄pt,q, 9qq “ Lpt,q, 9qq `
d

dt
fpt,qq. (B.1)

We consider the movements q “ qptq that takes place into a fixed interval of
time rt1, t2s and that satisfy certain boundary conditions, for example those with fixed
extremes qpt1q “ q1, qpt2q “ q2 as represented in Figure B.2, so the functional space U
is defined by

U “ tq “ qptq : t1 ď t ď t2, qpt1q “ q1, qpt2q “ q2u . (B.2)

We define the functional of the Hamiltonian action L : U Ñ R as follows

L :“

ż t2

t1

Lpt,q, 9qq dt, (B.3)

where the integrand function is called density or Lagrangian density, and we formu-
late the principle
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Figure B.2: Domain of admissible functions.

Hamilton’s Principle: For a Lagrangian system with Lpt,q, 9qq, the natural
motions are the stationary points (which are functions) of the Hamiltonian
action L, i.e. they are the movements q “ qptq such that

δL “ δ

ż t2

t1

Lpt,q, 9qq dt “ 0

where by δ we denote the analogue of the differential operator for the func-
tional spaces (we discuss it briefly in the following).

The importance of this principle relies on the theorem:

Theorem B.1. The movements q “ qptq with domain defined in Eq. (B.2) that are the
stationary points of the Hamiltonian action L of Eq. (B.3) are all and only those that
satisfy the Lagrange equations

d

dt

BL

B 9q
´
BL

Bq
“ 0

and the assigned boundary conditions.

Thanks to this theorem, Hamilton’s principle is considered the fundamental principle
of mechanics.

B.2 Notes on calculus of variations
We spend some words speaking about the calculus of variations and, in particular, we
see the extension of differential and derivative notions to the functional spaces, which
is a classic topic of functional analysis. In order to extend the notion of differential for
functionals with domain in functional space, we recall known notions for functions with
domain in Rn.

Given a functional F : Rn Ñ R, we remind that it has a minimum or a maximum
in x P Rn if and only if x is a stationary point, and this condition coincides with a null
differential dF pxq “ 0, which, in turn, means that all the partial derivatives of F must

be equal to zero,
BF

Bxi
pxq “ 0, i “ 1, . . . , n. In order to define the differential of F , we

consider the increment of the functional when we move from a point x to a point x`h
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and we study how the increment of F depends on the movement h. The functional F
is differentiable if we have

F px` hq “ F pxq ` Apxqh`R,

where A is a linear operator and R a rest of the second-order (or even more) with
respect to the increment h; the part of the expression that is linear with respect to
the increment is called differential. From a formal point of view, this definition can be
easily extended to the case in which the domain is a functional space.

We consider, as example, the Hamiltonian action L “
şt2
t1
Lpt,q, 9qq dt defined on the

functional space U of Eq. (B.2). The increment of L is evaluated by passing from the
“point” qptq to another curve pq` hqptq, with h P C8prt1, t2sq:

Lpq` hq ´ Lpqq “
ż t2

t1

`

Lpt,q` h, 9q` 9hq ´ Lpq, 9q, tq
˘

dt. (B.4)

By using the Taylor expansion at the first order of the functional L, it descends that

Lpt, q` h, 9q` 9hq ´ Lpt, q, 9qq “
BL

Bq
h`

BL

B 9q
9h ` R (B.5)

where R is the rest of the second order (or even more) with respect to the norm of
the increments h and 9h; in addiction we can rearrange the second term on the RHS as
follows

BL

B 9q
9h “

BL

B 9q

dh

dt
“

d

dt

ˆ

BL

B 9q
h

˙

´

ˆ

d

dt

BL

B 9q

˙

h. (B.6)

By introducing the results of Eqs. (B.5,B.6) inside Eq. (B.4), we find that

Lpq` hq ´ Lpqq “
ż t2

t1

„

BL

Bq
h`

d

dt

ˆ

BL

B 9q
h

˙

´

ˆ

d

dt

BL

B 9q

˙

h`R



dt

“

ż t2

t1

ˆ

BL

Bq
´
d

dt

BL

B 9q

˙

h dt `
BL

B 9q
h

ˇ

ˇ

ˇ

ˇ

t2

t1

` R

therefore, the increment of the functional L is constituted of the sum of a part that
linearly depends on the increment h, and of a part that is the rest R of order higher
than one; in particular, the linear part is the sum of two terms: an integral term
and a boundary term, i.e. a term depending on the boundary values of h. Finally, the
differential of L is defined, for analogy, as the linear part of its increment. Traditionally,
when the domain is a functional space the differential of a functional is denoted by the
symbol δ instead of d and it is called variation, therefore we will speak about the
variation δL of the functional L; coherently, also the increment h of the point q will
be denoted as δqptq and called variation of q.

In conclusion, we saw that the functional of Hamiltonian’s action L “
şt2
t1
Lpt,q, 9qq dt,

admits differential (classic term: variation) δL which expression is:

δL “
ż t2

t1

ˆ

BL

Bq
´
d

dt

BL

B 9q

˙

δq dt ` p δq
ˇ

ˇ

ˇ

t2

t1
(B.7)

where we have used the definition of momentum p “ BL
B 9q
. Furthermore, we observe that

the quantities qptq and δqptq are vectors in Rn, therefore the integral inside Eq. (B.7)
must be intended as follows:

ż t2

t1

ˆ

BL

Bq
´
d

dt

BL

B 9q

˙

δq dt “

ż t2

t1

n
ÿ

i“0

ˆ

BL

Bqi
´
d

dt

BL

B 9qi

˙

δqi dt.
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The stationary point notion is introduced as analog to the finite-dimensional case.

Definition B.1. Considering the functional L “
şt2
t1
Lpt, q, 9qq dt, defined on the domain

U (B.2), a point q “ qptq is a stationary point of L if the differential ( variation) of L
is null in this point, namely when

δLpqq “ 0.

We also introduce a major Theorem that characterizes the stationary points of L.

Theorem B.2. The stationary points qptq of L are characterized by the following inde-
pendent properties:

i) they satisfy the differential equation (called Euler-Lagrange equation)

BL

Bq
´
d

dt

BL

B 9q
“ 0;

ii) at the edges of the time interval considered, they satisfy the condition

ppt1q δqpt1q “ ppt2q δqpt2q

for arbitrary variations δqpt1q, δqpt2q according to the temporal boundary conditions as-
signed in t1 and t2.

The second property introduced is generally used to determine, among all the pos-
sible solutions of the Euler-Lagrange equation, the one that is stationary. The simplest
situation that one may find is that one in which the temporal boundary conditions
are assigned, for example qpt1q “ q1, qpt2q “ q2, indeed in this case the boundary
conditions on the variations become trivial: δqpt1q “ δqpt2q “ 0.

Notice that the Hamilton principle extends the theory of the Lagrange equation
because the function qptq can be piece-wise C1 to make the functional of action well
defined, whereas the function qptq must be C2 in order to define the Lagrange equation.

B.3 Luke’s Lagrangian for water waves
Our interest is to apply the previous ideas to describe the dynamics of water waves
with a particular focus on the shallow water approximation. First of all, we report
the equations of motion for irrotational, incompressible, and inviscid fluids we refer to.
For simplicity, we consider a 2 dimensional channeled motion of an inviscid fluid (see
Figure B.3); the bottom is described by the function B “ Bpx, tq and the free surface is
expressed by the function h “ hpx, tq. Fixed a spatial point px, zq, velocity is u “ pu, vq,
where u, v : R3 ÝÑ R (since u “ upx, z, tq). The fluid density is denoted by ρ as usual.

The classical mathematical formulation of surface gravity waves involves five equa-
tions (since this topic is standard and well known, we report only the equations, but the
read can find details in Whitham [272, Chapter 13]). The assumptions on the physical
properties of the fluid determine the motion equations:

piq we consider an irrotational fluid then it exists the velocity potential Φpt, x, zq, that
is a primitive for the differential form associated with u, such that u “ ∇Φ;
therefore the irrotational condition expresses as follows

∇ˆ∇Φ “ 0; (B.8)
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Figure B.3: Example of the situation and main notations used in the discussion.

piiq the incompressible fluid condition, which translates the mass conservation equation
into the kinematic constraint ∇ ¨ u “ 0, writes in terms of velocity potential as
follows:

∇2Φ “ ∆Φ “ 0; (B.9)

piiiq the Euler equation for the momentum conservation of an irrotational, incompress-
ible, and inviscid fluid writes as follows

Φt `
1

2

`

Φ2
x ` Φ2

z

˘

`
p´ p0

ρ
` gz “ 0, (B.10)

(where we are neglecting the surface tension) and this equation also represents
the Bernoulli equation for unsteady potential flow, where the scalar p is the
mechanical pressure of water, p0 is the pressure in the undisturbed air (which we
can take to be zero), and g is the gravity acceleration;

pivq there are two boundary conditions at the free surface z “ h: one is a kinematic
condition that imposes the fluid to not cross the free surface hpx, tq, like a sort
of “impermeability” condition, for whom the velocity of the fluid normal to the
free-surface must be equal to the velocity of the free-surface normal to itself, and
the other condition is a dynamic boundary condition of “isobarity” for which the
pressure in the water must coincide with the pressure of air at the free surface,
namely the condition p “ p0 must be verified at the free surface z “ h:

Φz “ ht ` Φx hx, (B.11)

Φt `
1

2

`

Φ2
x ` Φ2

z

˘

` gh “ 0; (B.12)

pvq an “impermeability” free-slip boundary condition is set also at the bottom z “
´Bpx, tq for which the component of the fluid velocity normal to the bottom
must vanish:

Φz `Bt ` ΦxBx “ 0, (B.13)

and the term Bt is null when bathymetry does not change over time.

Analytic solutions of the system of Eqs. (B.8–B.13) (in the unknowns Φ, p) are for
special cases, as observed by Peregrine [211]. From a historical point of view, the
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water waves theory was developed by constructing several approximations, for example,
linearized equations, shallow water, finite depth, and deep water approximations. In
the framework of the variational principles for water waves, there are two variational
formulations for irrotational surface waves that are commonly used: the Lagrangian of
Luke [177] and the Hamiltonian of Petrov [214] and Zakharov [283]; we are interested
in the first one and we introduce it in the following.

The general problem of finding suitable Lagrangian functions does not have a sat-
isfactory solution. The traditional form of Lagrangian for the water wave problem is
equal to kinetic minus the potential energy

L˚ “

ż h

´B

„

1

2

ˆ

Φ2
x ` Φ2

z

˙

´ gz



dz.

Luke [177] proposed a definition of Lagrangian as density of the functional of the
Hamiltonian action (consider the analogy with the definition (B.3)) by using pressure
from Eq. (B.10), which means that the principle is one of stationary pressure:

L “
ż t2

t1

ż x2

x1

ρL dx dt, L “ ´

ż h

´B

„

1

2

ˆ

Φ2
x ` Φ2

z

˙

` Φt ` gz



dz. (B.14)

We prove that, by using the variational principles, it is possible to derive the five
equations of motion (B.8)–(B.13) with L defined in Eq. (B.14).

Notice that L in Eq. (B.14) is a functional depending on four different variables,
namely L “ LpΦ, ρ, h, Bq. For simplicity we define the functional spaces in which we
consider the variations; assuming that Ω :“ rt1, t2s ˆ rx1, x2s, then:

V :“
!

φ P C8C
`

Ω
˘

: φ
ˇ

ˇ

BΩ
“ 0

)

, (B.15)

U :“
!

φ P C8C
`

Ωˆ r´Bpx, tq, hpx, tqs
˘

: φ
ˇ

ˇ

BΩ
“ 0

)

. (B.16)

where C8C denotes the class of C8 functions with compact support.
Lastly, since the variations are present even inside the extremes of integration, we

report the useful Leibniz rule for the derivative of an integral function:

d

dx

ż βpxq

αpxq

fpx, tq dt “
dβ

dx
fpx, βpxqq ´

dα

dx
fpx, αpxqq `

ż βpxq

αpxq

B

Bx
fpx, tq dt. (B.17)

In order to have well-ordered and simple passages of computations, we consider the
variations of the variables one at a time.

Variations of ρ. We consider a variation of density ρ and define ρε :“ ρ` ε δρ, where
δρ P U , see Eq. (B.16), and ε ą 0, then the expression of the functional of the Hamilton
action (which is defined in Eq. (B.14)) in such a point follows:

LpΦ, ρε, h, Bq “
ż t2

t1

ż x2

x1

pρ` ε δρq

ż h

´B

„

1

2

ˆ

Φ2
x ` Φ2

z

˙

` Φt ` gz



dz dx dt

“

ż t2

t1

ż x2

x1

ρ

ż h

´B

„

1

2

ˆ

Φ2
x ` Φ2

z

˙

` Φt ` gz



dz dx dt

`

ż t2

t1

ż x2

x1

ε δρ

ż h

´B

„

1

2

ˆ

Φ2
x ` Φ2

z

˙

` Φt ` gz



dz dx dt.
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The limit of the quotient between the variation of L with respect to the variation ε is:

lim
εÑ0

Lpρεq ´ Lpρq
ε

“

ż t2

t1

ż x2

x1

ż h

´B

δρ

„

1

2

ˆ

Φ2
x ` Φ2

z

˙

` Φt ` gz



dz dx dt,

so we search for the point pΦ, ρ, h, Bq which is stationary for the variation δρ P U .
Therefore, by the Fundamental Lemma of calculus of variations [100, Lemma 1, page
9] we have that

δL pΦ, ρ, h, Bq “ 0, @ δρ P V ðñ
1

2

ˆ

Φ2
x ` Φ2

z

˙

` Φt ` gz “ 0

then we find that the Euler equation for non-viscous fluid, that is Eq. (B.10), except
for the pressure term, identifies a stationary point of L.

For the sake of simplicity, from here on, the fluid density ρ is assumed to be constant
and can thus be set equal to unity without any loss of generality; this is not a limitation
for our purpose.

Variations of h. We consider a variation of the function h that represents the free-
surface height defining it as hε :“ h ` ε δh, with h P V (B.15) and ε ą 0; then the
expression of the functional L in the point pΦ, hε, Bq is

LpΦ, hε, Bq “
ż t2

t1

ż x2

x1

ż h`ε δh

´B

„

1

2

ˆ

Φ2
x ` Φ2

z

˙

` Φt ` gz



dz dx dt

“

ż t2

t1

ż x2

x1

ż h`ε δh

´B

1

2
Φ2
x dz dx dt`

ż t2

t1

ż x2

x1

ż h`ε δh

´B

1

2
Φ2
z dz dx dt

`

ż t2

t1

ż x2

x1

ż h`ε δh

´B

Φt dz dx dt`

ż t2

t1

ż x2

x1

ż h`ε δh

´B

gz dz dx dt

We derive the functional with respect to the variation. Since the computations are
similar for each of the four terms written on the right-hand side of the previous equation,
we see the details only of the derivation of the first term:

d

dε

ˆ
ż t2

t1

ż x2

x1

ż h`ε δh

´B

1

2
Φ2
x dz dx dt

˙
ˇ

ˇ

ˇ

ˇ

ε“0

“

ż t2

t1

ż x2

x1

d

dε

ˆ
ż h`ε δh

´B

1

2
Φ2
x dz

˙
ˇ

ˇ

ˇ

ˇ

ε“0

dx dt

pB.17q
“

ż t2

t1

ż x2

x1

ˆ

δh
1

2

`

Φxph` ε δhq
˘2

˙
ˇ

ˇ

ˇ

ˇ

ε“0

dx dt

“

ż t2

t1

ż x2

x1

δh
1

2

`

Φxphq
˘2
dx dt.

The final result of the derivative of the four terms turns out to be
d

dε
LpΦ, hε, Bq

ˇ

ˇ

ˇ

ˇ

ε“0

“

ż t2

t1

ż x2

x1

δh

"

1

2

”

`

Φxphq
˘2
`
`

Φzphq
˘2
ı

` Φtphq ` gh

*

dx dt

and, for the Fundamental Lemma of the calculus of variations, this is equal to zero for
any variation δh P V if and only if the point pΦ, h, Bq verifies the dynamic boundary
condition of Eq. (B.12):

d

dε
LpΦ, hε, Bq

ˇ

ˇ

ˇ

ˇ

ε“0

“ 0, @ δh P C ðñ
1

2

”

`

Φxphq
˘2
`
`

Φzphq
˘2
ı

` Φtphq ` gh “ 0.
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Variations of Φ. Finally, we consider the variations of Φ so define Φε “ Φ ` εδΦ,
where δΦ P U (B.16) and ε ą 0. The functional L is derived with respect to the
variation of Φ obtaining the following expression:

d

dε
LpΦε, h, Bq

ˇ

ˇ

ˇ

ˇ

ε“0

“
d

dε

ż t2

t1

ż x2

x1

ż h

´B

"

1

2

”

pΦ` εδΦq2x ` pΦ` εδΦq
2
z

ı

` pΦ` εδΦqt

` gz

*

dz dx dt

ˇ

ˇ

ˇ

ˇ

ε“0

“
d

dε

ż t2

t1

ż x2

x1

ż h

´B

"

1

2

”

Φ2
x ` 2 εΦxpδΦqx ` ε

2
pδΦq2x ` Φ2

z ` 2 εΦzpδΦqz

` ε2
pδΦq2z

ı

` Φt ` εpδΦqt ` gz

*

dz dx dt

ˇ

ˇ

ˇ

ˇ

ε“0

“

ż t2

t1

ż x2

x1

ż h

´B

"

1

�2

”

�2 ΦxpδΦqx ` �2 εpδΦq
2
x ` �2 ΦzpδΦqz ` �2 εpδΦq

2
z

ı

` pδΦqt

*

dz dx dt

ˇ

ˇ

ˇ

ˇ

ε“0

“

ż t2

t1

ż x2

x1

ż h

´B

"

ΦxpδΦqx ` ΦzpδΦqz ` pδΦqt

*

dz dx dt

“

ż t2

t1

ż x2

x1

ż h

´B

ΦxpδΦqx dz dx dt
looooooooooooooooomooooooooooooooooon

(A)

`

ż t2

t1

ż x2

x1

ż h

´B

ΦzpδΦqzdz dx dt
looooooooooooooooomooooooooooooooooon

(B)

`

ż t2

t1

ż x2

x1

ż h

´B

pδΦqt dz dx dt.
looooooooooooooomooooooooooooooon

(C)

We start from computing the term (A). At the second passage of the following
claim, indicated with (˚), we introduce the Step Function also called Heaviside Function
(whose value is zero for negative argument and one for positive argument) in order to
change the integral interval, whereas at p˚˚q we use the hypothesis that the variation
δΦ P U (B.16) is null at x1 and x2; we also highlight that we denote by δpzq the well
known Dirac Delta function.

(A) pdef.q“
ż t2

t1

ż x2

x1

ż h

´B

BΦ

Bx

BpδΦq

Bx
dz dx dt

p˚q
“

ż t2

t1

ż x2

x1

ż

R

BΦ

Bx

BpδΦq

Bx
θpz ´ p´Bqq θph´ zq dz dx dt

“

ż t2

t1

ż

R

ż x2

x1

BpδΦq

Bx
loomoon

f

BΦ

Bx

´

θpz `Bq θph´ zq
¯

loooooooooooooomoooooooooooooon

G

dx dz dt

pint.by partsq
“

ż t2

t1

ż

R

"

δΦ
loomoon

F

BΦ

Bx

´

θpz `Bq θph´ zq
¯

loooooooooooooomoooooooooooooon

G

ˇ

ˇ

ˇ

ˇ

x2

x1

`
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´

ż x2

x1

δΦ
loomoon

F

„

B2Φ

Bx2

´

θpz `Bq θph´ zq
¯

`
BΦ

Bx

B

Bx

´

θpz `Bq θph´ zq
¯



loooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooon

g

dx

*

dz dt

p˚˚q
“ ´

ż t2

t1

ż

R

ż x2

x1

δΦ
B2Φ

Bx2

”

θpz `Bq θph´ zq
ı

dx dz dt`

´

ż t2

t1

ż

R

ż x2

x1

δΦ
BΦ

Bx

„

δpz `Bq
BB

Bx
` δph´ zq

Bh

Bx



dx dz dt

“ ´

ż t2

t1

ż x2

x1

ż h

´B

δΦ
B2Φ

Bx2
dz dx dt`

´

ż t2

t1

ż x2

x1

ż h

´B

δΦ
BΦ

Bx
δpz `Bq

BB

Bx
dz dx dt`

´

ż t2

t1

ż x2

x1

ż h

´B

δΦ
BΦ

Bx
δph´ zq

Bh

Bx
dz dx dt

“ ´

ż t2

t1

ż x2

x1

ż h

´B

δΦ
B2Φ

Bx2
dz dx dt`

´

ż t2

t1

ż x2

x1

δΦp´Bq
BΦ

Bx
p´Bq

Bh

Bx
p´Bq dx dt`

`

ż t2

t1

ż x2

x1

δΦphq
BΦ

Bx
phq

Bh

Bx
phq dx dt.

The term (B) needs only an integration by parts:

(B) pdef.q“
ż t2

t1

ż x2

x1

ż h

´B

BΦ

Bz

BpδΦq

Bz
dz dx dt

pint.by partsq
“

ż t2

t1

ż x2

x1

„

BΦ

Bz
δΦ

ˇ

ˇ

ˇ

ˇ

h

´B

´

ż h

´B

B2Φ

Bz2
δΦ dz



dx dt

“

ż t2

t1

ż x2

x1

„

BΦ

Bz
phq δΦphq ´

BΦ

Bz
p´Bq δΦp´Bq ´

ż h

´B

B2Φ

Bz2
δΦ dz



dx dt.

Before computing the term (C) we apply the Leibniz rule (B.17) to δΦ:

B

Bt

ż hpx,tq

´Bpx,tq

δΦpx, z, tq dz “
Bh

Bt
δΦpx, h, tq `

BB

Bt
δΦpx,´B, tq `

ż h

´B

B δΦ

Bt
dz. (B.18)

By rearranging the term (C), we get:

(C) pdef.q
“

ż t2

t1

ż x2

x1

ż h

´B

BpδΦq

Bt
dz dx dt

pB.18q
“

ż t2

t1

ż x2

x1

„

B

Bt

ˆ
ż h

´B

δΦ dz

˙

´
Bh

Bt
δΦphq ´

BB

Bt
δΦp´Bq



dx dt

“

ż t2

t1

ż x2

x1

B

Bt

ˆ
ż h

´B

δΦ dz

˙

dx dt´

ż t2

t1

ż x2

x1

ˆ

Bh

Bt
δΦphq `

BB

Bt
δΦp´Bq

˙

dx dt

“

ż t2

t1

B

Bt

ˆ
ż x2

x1

ż h

´B

δΦ dz dx

˙

dt´

ż t2

t1

ż x2

x1

ˆ

Bh

Bt
δΦphq `

BB

Bt
δΦp´Bq

˙

dx dt
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“

ż x2

x1

ż h

´B

δΦ dz dx

ˇ

ˇ

ˇ

ˇ

t2

t1

´

ż t2

t1

ż x2

x1

ˆ

Bh

Bt
δΦphq `

BB

Bt
δΦp´Bq

˙

dx dt

“

ż x2

x1

ˆ
ż hpt2q

´Bpt2q

δΦpt2q
loomoon

“0

dz ´

ż hpt1q

´Bpt1q

δΦpt1q
loomoon

“0

dz

˙

dx

´

ż t2

t1

ż x2

x1

ˆ

Bh

Bt
δΦphq `

BB

Bt
δΦp´Bq

˙

dx dt

“ ´

ż t2

t1

ż x2

x1

ˆ

Bh

Bt
δΦphq ´

Bp´Bq

Bt
δΦp´Bq

˙

dx dt.

Since in our applications the function B does not depend on time, the second term
above is negligible.

Finally, we gather the three terms (A), (B), and (C) and continue the computation
of the variations of L by rearranging some terms:

d

dε
LpΦε, h, Bq

ˇ

ˇ

ˇ

ˇ

ε“0

“ ¨ ¨ ¨ “ (A) + (B) + (C)

“

ż t2

t1

ż x2

x1

„

δΦphqΦxphqhxphq ´ δΦp´BqΦxp´Bqhxp´Bq ´

ż h

´B

δΦ Φxx dz



dx dt`

`

ż t2

t1

ż x2

x1

„

δΦphqΦzphq ´ δΦp´BqΦzp´Bq ´

ż h

´B

δΦ Φzz dz



dx dt`

´

ż t2

t1

ż x2

x1

δΦphqht dx dt

p˚q
“

ż t2

t1

ż x2

x1

δΦphq
´

Φxphqhxphq ´ Φzphq ` ht

¯

dx dt`

`

ż t2

t1

ż x2

x1

δΦp´Bq
´

Φxp´Bqhxp´Bq ` Φzp´Bq
¯

dx dt`

´

ż t2

t1

ż x2

x1

ż h

´B

δΦ
´

Φxx ` Φzz

¯

dz dx dt,

at (˚) we gather the terms where the functions are evaluated in h or in ´B and the
triple integrals. For the Fundamental Lemma of Calculus of Variations, the stationary
points of L with respect to the variations of Φ are those that nullify the three terms
multiplied by δΦ, therefore, are those that verify the following conditions

Φz “ ht ` Φx hx, z “ h,

Φx hx ` Φz “ 0, z “ ´B,

Φxx ` Φzz “ 0, ´B ă z ă h,

which correspond to the kinematic boundary conditions at the free surface (B.11) and
at the bottom (B.13) respectively, and to the incompressibility condition of the fluid
(B.9). In summary, we showed that the equations for the classical water waves problem
are the minimum of the Luke’s Lagrangian of Eq.(B.14).

We focus on the last two terms of the Lagrangian density L in Eq.(B.14). We
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rearrange the term
ş

Φt dz by using the Leibniz rule reported in Eq. (B.17)

B

Bt

ż h

´B

Φ dz “ ht Φphq `Bt Φp´Bq `

ż h

´B

Φt dz

ó
ż h

´B

Φt dz “
B

Bt

ż h

´B

Φ dz ´ ht Φphq ´Bt Φp´Bq.

We notice that the first term on the right-hand side is negligible, in fact, we observe
that

ż t2

t1

ż x2

x1

B

Bt

ˆ
ż h

´B

Φ dz

˙

dx dt “

ż x2

x1

ż t2

t1

B

Bt

ˆ
ż h

´B

Φ dz

˙

dt dx

“

ż x2

x1

B

Bt

ˆ
ż t2

t1

ż h

´B

Φ dz dt

˙

dx

“

ż x2

x1

ˆ
ż hpt2q

´Bpt2q

Φpt2q dz ´

ż hpt1q

´Bpt1q

Φpt1q dz

˙

dx

and the terms of the horizontal and temporal boundaries are negligible because they do
not contribute to variations of the functional. By using this observation, we approach
another expression of L:

L “ ht Φphq `Bt Φp´Bq ´
1

2
g z2

ˇ

ˇ

ˇ

ˇ

h

´B

´

ż h

´B

1

2

ˆ

Φ2
x ` Φ2

z

˙

dz

“ ht Φphq `Bt Φp´Bq ´
1

2
g h2

`
1

2
g B2

´

ż h

´B

1

2

ˆ

Φ2
x ` Φ2

z

˙

dz.

In order to simplify the notation, we introduce ‘tildes’ and ‘wedges’ to denote, respec-
tively, the quantities evaluated at the free surface z “ h and at the bottom z “ ´B,
for example

Φ̃ :“ Φphq, Φ̌ :“ Φp´Bq,

hence we write the Lagrangian density in a simpler way as follows:

L “ htΦ̃`Bt Φ̌´
1

2
g h2

`
1

2
g B2

´

ż h

´B

1

2

ˆ

Φ2
x ` Φ2

z

˙

dz (B.19)

We highlight that the term 1
2
gB2 might be omitted because, being B prescribed, it does

not contribute to the variational process.

Generally, variational formulations involving as few dependent variables as possible
are regarded as simpler [279]. It is understandably tempting to solve exactly (i.e.
analytically) as many equations as possible in order to ‘improve’ the solution accuracy,
however, this is not always a good idea. In the framework of numerical analysis and
scientific computing, there are many examples of efficient and most used algorithms
that do exactly the opposite. These are called relaxation methods and have proven
to be very efficient for stiff problems. When solving numerically a system of equations,
the exact solution of a few equations does not necessarily ensure that the overall error
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is reduced, and what really matters is that the global error is minimized. A similar
idea of relaxation might also be applied to analytical approximations.

In the following, we release the constraints of exact irrotationality and exact incom-
pressibility because approximations of these relations are sufficient in most practical
cases, illustrating the advantages of using a variational principle that involves as many
dependent variables as possible. First, we provide the framework in which the equations
for water waves are derived, second, we present two examples of the derivation of the
equations for shallow water approximations.

B.4 Relaxed variational principles
The variational formulation of Eq. (B.19) (or, equivalently Eq. (B.14)) imposes that
any approximation is exactly irrotational, i.e. the choice of an ansatz (that is, an
assumed expression to be verified a posteriori) for Φ necessarily implies an irrotational
motion. While keeping an exact formulation, the variational principle is relaxed in order
to incorporate explicitly more degrees of freedom, and this modification yields to the
Hamilton principle in its most general form. By explicitly introducing the horizontal
and vertical velocities pu, vq “ pΦx, Φzq, the Lagrangian density may be reformulated
as follows:

L “ htΦ̃`Bt Φ̌´
1

2
g h2

´

ż h

´B

„

1

2

´

u2
` v2

¯

` µpΦx ´ uq ` νpΦz ´ vq



dz (B.20)

We observe that this Lagrangian density is a first-degree equation in Φ, whereas Eq.
(B.14) is a second-degree equation in Φ. The two terms µpΦx ´ uq and νpΦz ´ vq in
(B.20) are conditions that force the velocity u to be the derivative of Φ, whereas µ
and ν, called Lagrange multipliers, are new variables to determine. By considering
variations with respect to u and v one finds the Lagrange multipliers definition. Since

d

dε
LpΦ, h, uε, vε, µ, νq

ˇ

ˇ

ˇ

ˇ

ε“0

“

ż t2

t1

ż x2

x1

d

dε
LpΦ, h, uε, vε, µ, νq

ˇ

ˇ

ˇ

ˇ

ε“0

dx dt

we reduce to study the variations of L:

d

dε
LpΦ,h, uε, vε, µ, νq

ˇ

ˇ

ˇ

ˇ

ε“0

“ ´
d

dε

ż h

´B

"

1

2

”

pu` ε δuq2 ` pv ` ε δvq2
ı

`

` µ
”

Φx ´ pu` ε δuq
ı

` ν
”

Φz ´ pv ` ε δvq
ı

*

dz

ˇ

ˇ

ˇ

ˇ

ε“0

“ ´
d

dε

ż h

´B

"

1

2

”

`

u2
` 2 ε u δu` ε2

pδuq2
˘

`
`

v2
` 2 ε v δv ` ε2

pδvq2
˘

ı

`

` µ
”

Φx ´ u´ ε δu
ı

` ν
”

Φz ´ v ´ ε δv
ı

*

dz

ˇ

ˇ

ˇ

ˇ

ε“0

“ ´

ż h

´B

"

1

2

”

`

2u δu` 2 ε pδuq2
˘

`
`

2 v δv ` 2 ε pδvq2
˘

ı

´ µ δu´ ν δv

*

dz

ˇ

ˇ

ˇ

ˇ

ε“0

“ ´

ż h

´B

!

u δu` v δv ´ µ δu´ ν δv
)

dz

“ ´

ż h

´B

!

δu pu´ µq ` δv pv ´ νq
)

dz;
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from this we conclude that
µ “ u and ν “ v. (B.21)

By using these definitions of the Lagrangian multipliers in Eq. (B.20), a new expression
of the Lagrangian density descends:

L “ htΦ̃`Bt Φ̌´
1

2
g h2

`

ż h

´B

„

1

2

´

u2
` v2

¯

´ µΦx ´ ν Φz



dz (B.22)

Anyway, keeping the most general form of the Lagrangian (B.20) is more advantageous
because it allows choosing ansatz for Lagrange multipliers different from the previ-
ous ones (B.21). Indeed, the Lagrangian (B.20) involves six variables tΦ, h, u, v, µ, νu
whereas the simplified Lagrangian (B.22) involves only four variables tΦ, h, u, vu and
the original Lagrangian of Eq. (B.14) depends only on two tΦ, hu. Extra variables
introduce additional freedom in the construction of approximations, thus allowing more
subordinate relations to be fulfilled 4. The more general Lagrange density of Eq. (B.20)
provides more flexibility to derive model equations.

The connection between the relaxed Lagrangian of Eq. (B.20) and the variational
formulation of the classical mechanics may be seen by applying Green’s theorem to
Eq. (B.20) (and by reminding the property of equivalence reported in Eq. (B.1)) that
yields to another equivalent variational formulation involving the Lagrangian density.
We make some computations starting from Eq. (B.20)

L “ ht Φ̃`Bt Φ̌´
1

2
g h2

´

ż h

´B

„

1

2

´

u2
` v2

¯

looooooooooooooooooooooooomooooooooooooooooooooooooon

‹

`µΦx ´µu
loomoon

‹

`νΦz ´νvloomoon

‹



dz

“ ‹ ´

ż h

´B

ˆ

µ BxΦ` ν BzΦ

˙

dz

piq
“ ‹ ´

ż h

´B

ˆ

BxpµΦq´pBxµqΦ
looomooon

♦

`Bzpν Φq´pBzνqΦ
looomooon

♦

˙

dz

“ ‹ ` ♦ ´

ż h

´B

BxpµΦq dz ´

ż h

´B

Bzpν Φq dz

piiq
“ ‹ ` ♦ ´

„

Bx

ż h

´B

µΦ dz
loooooomoooooon

negligible

´Bxh
´

`

µΦ
˘

phq
¯

` Bxp´Bq
´

`

µΦ
˘

p´Bq
¯



´
`

ν Φ
˘

ˇ

ˇ

ˇ

h

´B

“ ‹ ` ♦ ´

„

´ hxµ̃ Φ̃´Bxµ̌Φ̌



´ ν̃ Φ̃` ν̌ Φ̌

piiiq
“ ht Φ̃

loomoon

♥

` Bt Φ̌
loomoon

♣

´
1

2
g h2

´

ż h

´B

„

1

2

´

u2
` v2

¯

´ µu´ νv



dz

`

ż h

´B

´

Bxµ` Bzν
¯

Φ dz ` hxµ̃ Φ̃
loomoon

♥

` Bxµ̌Φ̌
loomoon

♣

´ ν̃ Φ̃
loomoon

♥

` ν̌ Φ̌
loomoon

♣

“

´

ht ` hx µ̃´ ν̃
¯

Φ̃
loooooooooomoooooooooon

♥

`

´

Bt `Bx µ̌` ν̌
¯

Φ̌
loooooooooomoooooooooon

♣

´
1

2
g h2

`

4The Lagrangian density of Eq. (B.22) was used by Kim et al. [149] to derive the ‘irrotational’
Green-Naghdi equations for long waves in shallow water conditions.
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`

ż h

´B

„

µu´
1

2
u2
` ν v ´

1

2
v2
`

´

µx ` νz

¯

φ



dz

where at piq we used the expression for the derivative of the product, at piiq we used
the Leibniz rule (B.17) and at piiiq we have explicited all the terms. From the previous
computations, the following Lagrangian density descends:

L “
`

ht ` µ̃hx ´ ν̃
˘

Φ̃`
`

Bt ` µ̌Bx ´ ν̌
˘

Φ̌´
1

2
gh2

`

ż h

´B

„

µu´
1

2
u2
` νv ´

1

2
v2
`
`

µx ` νz
˘

Φ



dz.
(B.23)

Note that the relaxed variational formulations involving Eq. (B.20) and Eq. (B.23) are
strictly equivalent, so one should use the most convenient depending on the problem
considered.

B.5 Relaxation in shallow-water regime
The potential of the relaxed variational principles is shown in the following deriving two
different models in the shallow-water regime, a classical one and another that allows
describing the effects of significant variations in topography.

We call the total depth H and we denote with ‘bars’ the quantity averaged over the
water depth, such as:

Hpx, tq :“ hpx, tq `Bpxq, ū “
1

H

ż h

´B

u dz.

For simplicity, in this section, we assume that bathymetry is constant in time.

B.5.1 Choice of a simple ansatz

We begin choosing some approximated, but still physically relevant, representations of
all the dependent variables enabling us to avoid the integral in the Lagrangian density
expression. To this end, we consider an ansatz of the polynomial type that consists of
a zeroth-order polynomial in z both for Φ and u and of a first-order polynomial for
v, namely we approximate flows that are almost uniform along the vertical direction.
According to that, our ansatz express as follows:

Φ « Φ̄px, tq, u « ūpx, tq, v «
z `B

H
ṽpx, tq, (B.24)

and these ansatz also mean that we are considering a laminar flow with a linear velocity
profile for v. The ansatz of Eq. (B.24) are the basis of most shallow-water approxima-
tions. Since for the exact solution µ “ u and ν “ v (we refer to Eq. (B.21)), natural
ansatz for the Lagrange multipliers are

µ « µ̄, ν «
z `B

H
ν̃px, tq (B.25)

With the ansatz in Eqs. (B.24–B.25), the Lagrangian density LpΦ, h, B, u, v, µ, νq of
Eq. (B.23) becomes

L “
`

ht ` µ̄hx `Bt ` µ̄Bx

˘

Φ̄´
1

2
gh2

`H

„

µ̄ū´
1

2
ū2
`

1

3
ν̃ṽ ´

1

6
ṽ2
` Φ̄µ̄x



. (B.26)
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By applying the formula of the derivative of the product

Φ̄Hµ̄x ` Φ̄µ̄Hx “
`

Φ̄µ̄H
˘

´ µ̄HΦ̄x,

and by using the property of equivalence of the Lagrangian for the total derivatives, we
finally get:

L “ Φ̄ht ´
1

2
gh2

`H

„

µ̄ ū´
1

2
ū2
`

1

3
ν̃ṽ ´

1

6
ṽ2
´ µ̄Φ̄x



. (B.27)

The two Lagrangian densities of Eqs. (B.26) and (B.27) lead to the same equations,
thus, depending on the constraints, we chose the Lagrangian density that leads to the
simplest expression.

B.5.2 Unconstrained approximation

Without imposing any further constraint, we investigate the equations of motion we
can obtain from Eq. (B.27) by applying the calculus of variations (we do not enter in
the details of these calculations because they are similar to those seen previously and
very simple):

δū : 0 “ µ̄´ ū ùñ µ̄ “ ū,

δṽ : 0 “ ν̃ ´ ṽ ùñ ν̃ “ ṽ,

δµ̄ : 0 “ ū´ Φ̄x ùñ ū “ Φ̄x “ µ̄,

δν̃ : 0 “ ṽ,

δΦ̄ : 0 “ ht `
`

Hµ̄
˘

x
,

δh̄ : 0 “ µ̄ ū´
1

2
ū2
`

1

3
ν̃ṽ ´

1

6
ṽ2
´ µ̄Φ̄x ´ Φ̄t ´ gh.

From the first four relations descends that the motion is irrotational, in fact, the vertical
component of velocity is null

v
pB.24q
«

z `B

H
ṽpx, tq “ 0 “

z `B

H
ν̃px, tq

pB.25q
« ν,

and the horizontal component of velocity is constant along the vertical direction

u
pB.24q
« ūpx, tq “ µ̄px, tq

pB.25q
“ µ,

therefore the rotors of the velocity fields are null. Instead, fluid incompressibility is not
satisfied identically because, even if vz “ 0 and νz “ 0, the partial derivatives of the
horizontal velocity fields, namely ux and µx, may not be negligible. Thanks to this four
relations, the last two conditions lead to the classical shallow water equations. In fact,
the fifth equation leads to the equation for the mass conservation

ht `
`

Hµ̄
˘

x
“ ph`Bqt `

`

Hµ̄
˘

x
“ Ht `

`

Hū
˘

x
“ 0

because we have a bathymetry constant in time and µ “ u. The sixth equation leads
to the momentum equation:

µ̄ ū´
1

2
ū2
`

1

3
ν̃ṽ ´

1

6
ṽ2
´ µ̄Φ̄x ´ Φ̄t ´ gh “ 0
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��̄u
2
´

1

2
ū2
`

1

3
ṽ2

loomoon

“0

´
1

6
ṽ2

loomoon

“0

´��̄u
2
´ Φ̄t ´ gh “ 0

Φ̄t `
1

2
ū2
` gh “ 0

BxΦ̄t `
1

2
Bxū

2
` ghx “ 0 (deriv. with respect to x)

BtΦ̄x `
1

2
Bxū

2
` ghx “ 0

Btū`
1

2
Bxū

2
` ghx “ 0.

B.5.3 Choice of shallow water ansatz

For the last example, we choose a different shallow water ansatz, in which both the
velocity field and the velocity potential are independent from the vertical coordinate z,
namely such that:

Φ « Φ̄px, tq, u “ µ « ūpx, tq, v “ ν « v̌px, tq (B.28)

where we assumed that the pseudo-velocities are equal to the velocity fields µ “ u,
ν “ v. Physically, the previous conditions correspond to a so-called columnar flow, which
is a model used for long waves in shallow water regimes as long as their amplitudes
are not too large. From a mathematical point of view, the ansatz of Eq. (B.28) imply
that the vertical variations of the velocity field do not contribute to the Lagrangian of
Eq. (B.23) and hence are negligible. Thus, by assuming the ansatz of Eq. (B.28), the
Lagrangian density written in Eq. (B.23) becomes:

L “
´

ht ` ūhx ` hūx

¯

Φ̄´
1

2
gh2

`
1

2
h
`

ū2
` v̌2

˘

. (B.29)

B.5.4 Constraining with impermeability condition

Since we are considering a columnar flow model, each vertical water column can be
considered as a moving rigid body. In presence of bathymetry variations, the columnar
flow paradigm then yields that the fluid vertical velocity must be equal to that at the
bottom because the bottom is impermeable. Thus, we require that the fluid particles
follow the bottom profile, i.e.

v̌ “ ´Bt ´ ūBx,

this identity being the bottom impermeability condition (see Eq. (B.13)) expressed
with the ansatz of Eq. (B.28).

After substituting the previous relation into the Lagrangian density of Eq. (B.29)
we obtain the following set of equations:

δū : 0 “ ū´ Φ̄x ´ v̌Bx,

δΦ̄ : 0 “ ht ` phūqx,

δh : 0 “ Φ̄t ` gh` ūΦ̄x ´
1

2

´

ū2
` v̌2

¯

.
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By taking the gradient of the last condition and by eliminating Φ̄ from the first equation,
we obtain the system of governing equations:

$

&

%

ht `
`

hū
˘

x
“ 0

`

ū´ v̌Bx

˘

t
`

ˆ

1
2
ū2 ` 1

2
v̌2 ` gh

˙

x

“ 0

together with the auxiliary relations

ū “ Φ̄x ` v̌Bx, v̌ “ ´Bt ` ūBx.

The surface waves moving on an irregular or steep bottom have always attracted
the particular attention of researchers. One of the first studies in this direction is due
to Dressler [74] that created a model which included the curvature effects, requiring
the computation of the second-order derivatives of the bottom’s profile; for irregular
shapes of the bottom, this becomes problematic. The previous approximation proposed
in §B.5.3 and §B.5.4 tries to improve the classical equations by including a better
representation of the bottom shape.
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