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Introduction

This work is divided in two parts. The first part, on which the title of
the manuscript is based, is related to the motivation for adapting ideas and
methods from the theory of the model-based optimal design of experiments
in the context of Big Data while guarding against different sources of bias.
The second part is based on a project sponsored by Swiss Re Corporate
Solutions, commercial insurance division of the Swiss Re Group.

Chapter 1 is dedicated to the introduction of the theory of optimal de-
sign of experiments based on different criteria and the General Equivalence
Theorem. Furthermore, different exchange algorithms for the construction
of exact optimal designs are presented.

In Chapter 2 the main literature regarding recent model-based optimal
design algorithms for sampling an informative subset from a Big Dataset
is reviewed; in particular, a model which provides a general framework for
optimal experimental design with Big Data is proposed. The algorithms
presented in this chapter are implemented and compared on simulated data
and on real use cases.

Chapter 3 deals with the issue of guarding against bias from confounders
and how to use the theory of the design of experiment and randomization to
remove bias depending on the constraints in the design. Starting with A/B
experiments, largely used by major Tech Companies in online marketing,
the theory of circuits is introduced and an algebraic methods which gives a
wide choice of randomization schemes is presented.

In Chapter 4 a robust exchange algorithm to deal with the problem of
outliers in a Big Dataset is proposed. The standard exchange algorithms
presented in Chapter 1 are combined with the theory of robust regression in
order to obtain a D-optimal design which does not contain outliers.

Chapter 5 is a Marine Insurance use case. The goal is to leverage internal
databases with public available information in order to obtain a well curated
dataset, which can be used as the basis for forecasting the trend of marine
losses in upcoming years and possibly adjust baseline cost of the in-house
costing model. In particular, several temporal disaggregation methods for
dealing with time series collected at different time frequencies are reviewed
and applied to real data.
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Chapter 1

Model-based Optimal Design
of Experiments

The Design of Experiments (DoE) is a procedure for selecting experiments
that are maximally informative when random variation in the measured re-
sponses is appreciable compared with the effects to be investigated. The
relationship between a response variable and explanatory variables, which
is to be determined by the experiment, is affected by the presence of un-
observable random noise, often called random errors. Furthermore, usually
additive and independent errors of constant and finite variance are assumed.
The word experiment is used to mean an investigation where the system un-
der study is under the control of the investigator. By contrast in an obser-
vational study some of these features are outside the investigator’s control.
Usually investigations done in a laboratory are experimental, while studies
of social science issues are observational. In Chapter 2 Big Data will be
considered as an example of information collected usually without a proper
design.

Another key feature of DoE is that an underlying statistical model is
usually considered [69, 167] (e.g. linear regression model), so that the im-
portant aspects of the investigated system are represented by the use of
explanatory variables (or factors) and responses. Furthermore, there may
be several objectives of an experiment, for instance the estimation of the
unknown parameters in the above mentioned model or the investigation of
the values of factors which give the best response. Then, according to the
objective, one has to choose values of the explanatory variables at which the
experiment must be conducted in order to gain maximal possible information
on model parameters/phenomenon.

11
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1.1 Optimal DoE for Linear Models
The theory of Optimal Designs is built on solid foundations developed mainly
by Kiefer [115], who considers the planning of an experiment as a decision
problem, prior to observing data, which requires the specification of a loss
function reflecting the aims of the experiment [114]. Different types of loss
functions define different optimality criteria. The goal is to choose the ex-
periment whose design is optimal in the sense that it minimizes the specific
expected loss. In this section we will summarize the main results in the
theory of optimal designs for linear models, considering only the case n > p
(i.e. the number of observations greater than the number of parameters).
We first establish some notation.

We are interested in carrying out an experiment in order to measure the
influence of k factors on a response variable Y . Let x = (x1, . . . , xk) be a
potential observation. Then an experimental design (or n-trial design) is a
collection of n such observation points {x1, . . . ,xn}, possibly with repeti-
tions, in a design space X expressing the range of value of the factors. We
assume X to be a compact set in Rk. We assume a linear model for the
response Yx at a generic observation point x ∈ X such that

E(Yx) =
p∑
j=1

fj(x)θj , (1.1)

where the fj ’s denote continuous function applied on the variables x and we
assume that the variance V(Yx) = σ2 for all x ∈ X and that the Yx’s are
uncorrelated. Let f>(x) = (f1(x), . . . , fp(x)) be the vector function from X
to Rp and θ = (θ1, . . . , θp) the parameter vector.

Consider a design with n observations and let Yxi be the outcome at point
xi, so that E(Yxi) = f>(xi)θ for i = 1, . . . , n. Denote Y> = (Yx1 , . . . , Yxn)
and X = {fj(xi)}j=1,...,p ,i=1,...,n, i.e. a n× p matrix, then

E(Y) = Xθ and V(Y) = σ2I. (1.2)

If the matrix X has full rank, i.e. rank(X) = p, then the least square
estimator (LSE) of θ is defined as follow

θ̂ = arg min
θ

n∑
i=1

[ 1
σ2

(
Yxi − f>(xi)θ

)2
]

=
(
X>X

)−1
X>Y. (1.3)

The LSE θ̂ has the following properties:

E
(
θ̂
)

= θ , (1.4)

V
(
θ̂
)

= σ2
(
X>X

)−1
. (1.5)
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By Gauss-Markov Theorem (see Appendix A.1), the LSE θ̂ is known to
have minimum variance within the class of linear unbiased estimators of θ.
Furthermore, at a generic point x0 ∈ X for which the response has not been
observed yet, it holds

Ŷx0 = f>(x0)θ̂. (1.6)
There are several experimental n-trial designs that might be chosen, the
"goodness" of which is measured by a certain optimality criterion (see Sec-
tion 1.1.1). For instance, one may wish to choose a design which minimizes
the variance of the LSE of θ or find the one which minimizes the prediction
error of Ŷx0 .

1.1.1 Optimality Criteria

In this section we outline some of the design criteria most used in practice.
The covariance matrix of the LSE θ̂ in Equation (1.5) depends on the

matrix (XTX)−1, the inverse of which, i.e. XTX is called the informa-
tion matrix of the design (see also Section 1.1.2). Designs can be discrimi-
nated through criteria based on functions of (XTX)−1 and designs for which
(XTX)−1 is small in some sense are desirable as they correspond to precise
estimate of θ. The most used criteria are listed next.

Parameter based criteria

L-optimality (see [69]): the goal is to estimate some linear functions
of the parameters, sayK>θ, withK a real valued matrix with k < p columns
and p rows. By Gauss-Markov theorem (see Appendix A.1), the best linear
unbiased estimator is K>θ̂, with variance

V
(
K>θ̂

)
= σ2K>

(
X>X

)−1
K.

An L-optimal design is defined as

min
X

tr
(
K>

(
X>X

)−1
K

)
= min

X
tr
((
X>X

)−1
KK>

)
= min

X
tr
((
X>X

)−1
A

)
(1.7)

with A = KK> a p × p non-negative definite matrix. Here tr(·) stands for
the trace of a matrix.

C-optimality: In Equation (1.7), if K is a p × 1 vector called c, then
the interest is in estimating a linear combination (e.g. a contrast) of the pa-
rameters, and the design which minimizes Equation (1.7) is called c-optimal.

A-optimality (see [6, 69]): In Equation (1.7), if A = Ip, i.e. A is
the p×p identity matrix, then the design which minimizes Equation (1.7) is
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called A-optimal, and corresponds to minimize the average variance of the
parameter estimates of θ̂.

D-optimality (see [6, 69]): a design is called D-optimal if it minimizes
the determinant of the inverse of (X>X), i.e.

min
X

det
(
(X>X)−1

)
(1.8)

where det(·) is the determinant, or equivalently maximizes det
(
X>X

)
. Fur-

thermore, a D-optimal design minimizes the entropy of the least square esti-
mates of the unknown parameters (see [24]) and, from a geometrical point of
view, minimizes the volume of the ellipsoidal confidence interval under Gaus-
sian errors. Note that it is a common practice to minimize − log det

(
X>X

)
since it has the nice property of being a convex function (see Appendix A.2).

Ds-optimality (see [6, 69]): this criterion is a generalization of the
D-optimality. Here, the interest is in estimating the first s ≤ p parameters
considering all the others as nuisance parameters. Let A = (Is : 0p−s) of
order p× s, so that A>θ = (θ1, . . . , θs). We define a design to be Ds-optimal
if it satisfies

min
X

det
(
A>(X>X)−1A

)
(1.9)

Here, the ellipsoid of D-optimality is replaced by a cylinder.

E-optimality (see [58]): the objective is the estimation of all linear
functions of the parameters. A design is E-optimal if it satisfies

min
X

max
||c||=1

c>(X>X)−1c = min
X

max
λ

λ
[
(X>X)−1

]
= min

X
λmax

[
(X>X)−1

]
(1.10)

where λ[·] denotes the eigenvalues of a matrix. Hence, the criterion consists
in minimizing the largest eigenvalue of the matrix (X>X)−1 or, equivalently,
maximizing the smallest eigenvalue of the information matrix.

Response-based criteria

G-optimality (see [115]): if the interest is in predicting E(Yx) for
x ∈ X , one can choose a design that minimizes the variance of the expected
response. A G-optimal design is a minimax criterion such that

min
X

max
x∈X

V
(
Ŷx
)

(1.11)

or equivalently
min
X

max
x∈X

σ2f>(x)(X>X)−1f(x). (1.12)
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I-optimality (see [69]): this criterion is similar to G-optimality, but
here the objective is to minimize the average variance of the expected re-
sponse so that

min
X

∫
x∈X

f>(x)
(
X>X

)−1
f(x) dx. (1.13)

In general, different optimality criteria lead to different designs. The
only exception is proved in the General Equivalence theorem, which will be
presented in Section 1.2, where it is stated that D-optimal continuous design
is also G-optimal. D-optimality is the most common used criterion because
it is the most computationally efficient for constructing a design, as it will
be shown in Section 1.3. Another advantage is that the D-optimal design
for quantitative factors does not depend on the scale of the variables which
is not, in general, the case for other criteria (see [48]).

1.1.2 The Information Matrix and Exact Design

All the optimality criteria presented in Section 1.1.1 can be thought of as
loss functions Φ of the information matrix X>X, more precisely its inverse
(X>X)−1, which we want to minimize over the class of all possible designs.

Definition 1.1 (Loewner ordering [167]). Non-negative definite matrices
are ordered through the Loewner ordering, denoted by ≤L, of symmetric
matrices A and B, namely A ≤L B if and only if B −A is positive semidef-
inite.

Theorem 1.1.1. The following hold (see [166, 167])

a) Φ is decreasing with respect to the Loewner ordering ≤L, i.e.

if X>1 X1 ≤L X>2 X2 then Φ
(
X>1 X1

)
≥ Φ

(
X>2 X2

)
(1.14)

b) Φ is matrix convex, i.e.

Φ
(
αX>1 X1 + (1− α)X>2 X2

)
≤ αΦ

(
X>1 X1

)
+ (1− α)Φ

(
X>2 X2

)
(1.15)

c) Φ is invariant with respect to any permutation of the rows and the
columns of X>X.

The information matrix X>X can be written as the sum of the n rank 1
matrices, each representing the information coming from one single obser-
vation:

X>X =
n∑
i=1

f(xi)f>(xi). (1.16)
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From the above equation and by point a) in Theorem 1.1.1 it is clear that
the information increases with the sample size: let X>n Xn be the information
matrix of n observations and add a new observation at point xn+1, then we
have

X>n+1Xn+1 = X>n Xn + f(xn+1)f>(xn+1). (1.17)

In order to make comparisons independent of the design size, we consider
1
nX
>X.
A design can be expressed as a set of distinct points {x1, . . . ,xn}. Al-

lowing repetitions of some observations, we can define a design as a set of
distinct points {x1, . . . ,xm} each taken r1, . . . , rm times respectively, ri ∈ N,
with

∑m
i=1 ri = n and the information matrix can be written as

X>X =
m∑
i=1

ri
n

f(xi)f>(xi) (1.18)

where ri
n is the proportion of the total number of observations to be taken

at point xi for i = 1, . . . ,m.
Under the above notation, a design can be thought as a discrete proba-

bility measure ξn on X with density function

ξn(x) =
{
r
n if r observations are to be taken at x
0 otherwise

(1.19)

The collection of points {x1, . . . ,xm} with the corresponding proportions
ri
n is known as support of the design, i.e.

Supp(ξn) =
{

x1 · · · xm
r1
n · · · rm

n

}
. (1.20)

Then, a Φ-optimal design is found by minimizing the function

Φ
(

m∑
i=1

ri
n

f(xi)f>(xi)
)

(1.21)

subject to the constraints that ri ∈ N, for all i = 1, . . . ,m and
∑m
i=1 ri = n,

with n fixed. The optimal design that solves this minimization problem is
known as exact design.

1.1.3 Continuous (approximate) Designs

The computation of an exact design is often an hard problem as it is the
solution of a discrete optimization problem with the constraint that the
number of trials at any design point must be an integer number. A mathe-
matical solution for dealing with the problem of finding exact designs is to
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consider a generalization of the discrete measure in (1.19) to a continuous
measure [6, 113].

Let Ξ denote the convex set of all probability measures on the Borel
σ-field in X , thus a measure ξ satisfies

ξ(x) ≥ 0 ∀x ∈ X ,
∫
X
ξ(dx) = 1. (1.22)

Generalizing the definition of discrete measure in (1.19) to the continuous
case, any measure ξ on X with finite support can be considered a design. In
particular, the continuous design ξ is found by replacing the fractions ri/n
in (1.20) by weights wi, for i = 1, . . . ,m, with wi any positive real number
and

∑m
i=1wi = 1 so that

Supp(ξn) =
{

x1 · · · xm
w1 · · · wm

}
. (1.23)

Then, the associated information matrix becomes

M(ξ) =
∫
X

f(x)f>(x) ξ(dx). (1.24)

Note that M(ξ) exists for each ξ ∈ Ξ due to the compactness of X and the
assumption that function f(·) is continuous. Thus, the optimal continuous
design measure ξ∗ can be defined as follow

ξ∗ = arg min
ξ∈Ξ

Φ(M(ξ)). (1.25)

A continuous design has not a direct interpretation in terms of exper-
iments but, as already mentioned at the beginning of this section, it is a
useful mathematical tool for dealing with the problem of finding optimal
designs. It can be also shown [191] that for large samples, the discrete de-
sign found as approximation of the continuous design ξ∗ which minimizes
Φ(M(ξ)) is very close to the exact solution. The details of approximation
rules are considered in [167, 168].

The optimality criteria presented in Section 1.1.1 in terms of the infor-
mation matrix given in Equation (1.24) are defined in Table 1.1.

If the optimality function Φ(·) is positive, convex and homogeneous, then
a measure of the goodness of a generic design ξ with respect to the Φ-optimal
design ξ∗ defined as in Equation (1.25) is the Φ-efficiency of ξ (see [6, 156])
defined as follows

0 ≤ EffΦ [M(ξ)] = Φ(M(ξ∗))
Φ(M(ξ)) ≤ 1. (1.26)

For example, for the D-optimality criterion the D-efficiency is

EffD[M(ξ)] = det
(
M−1(ξ∗)

)
det (M−1(ξ)) = det (M(ξ))

det (M(ξ∗)) . (1.27)
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Criterion ξ∗ = minξ Φ(M(ξ))
L-optimality ξ∗ = arg minξ tr

(
A>M−1(ξ)A

)
A-optimality ξ∗ = arg minξ tr

(
M−1(ξ)

)
D-optimality ξ∗ = arg minξ det

(
M−1(ξ)

)
Ds-optimality ξ∗ = arg minξ det

(
A>M−1(ξ)A

)
with A = (Is : 0p−s)

E-optimality ξ∗ = arg minξ λmax[M−1(ξ)]
G-optimality ξ∗ = arg minξ maxx∈X f>(x)M−1(ξ)f(x)
I-optimality ξ∗ = arg minξ

∫
x∈X f>(x)M−1(ξ)f(x) dx

Table 1.1: Optimality Criteria for Continuous Designs.

1.1.4 Properties of the Information Matrix M(ξ)
In this section we present some properties of the information matrix M(ξ)
defined in Equation (1.24).

Property 1.1.2. M(ξ) is non-negative definite, i.e. z>M(ξ)z ≥ 0, ∀z ∈ Rp.

Proof.

z>M(ξ)z = z>
∫
X

f(x)f>(x)ξ(dx)z

= tr
(

z>
∫
X

f(x)f>(x)ξ(dx)z
)

= tr
(∫
X

f(x)f>(x)zz>ξ(dx)
)

=
∫
X

tr
(
f(x)f>(x)zz>

)
ξ(dx)

=
∫
X

z>f(x)f>(x)zξ(dx)

=
∫
X

(
f>(x)z

)2
ξ(dx) ≥ 0.

Property 1.1.3. M(ξ) becomes singular if the support of ξ is less than p
points, where p is the number of the model parameters.

Proof. Let M(ξ) =
∑
i f(xi)f>(xi)ξ(xi), where i = 1, . . . ,m, m < p and∑

i ξ(xi) = 1. Since rank
(
f(xi)f>(xi)

)
= 1 ∀i, the rank of the sum is ≤ m,

thus M(ξ) is singular.

Property 1.1.4. The set of all information matrices defined in Equation (1.24),
i.e. M = {M(ξ)|ξ ∈ Ξ} is a convex and compact set.
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Proof. The convexity follows from the linearity of the integral in Equa-
tion (1.24). Indeed, if we let ξ be a design which is a linear combina-
tion of two design ξ1 and ξ2 with weights, respectively, α and (1 − α), i.e.
ξ = αξ1 + (1− α)ξ2, then we have the following

M (αξ1 + (1− α)ξ2) =
∫
X

f(x)f>(x) [αξ1 + (1− α)ξ2] (dx)

= α

∫
X

f(x)f>(x)ξ1(dx) + (1− α)
∫
X

f(x)f>(x)ξ2(dx)

= αM(ξ1) + (1− α)M(ξ2)

The compactness follows from the assumption that f is continuous and X is
compact.

By Property 1.1.4, since for all non-negative definite matrices M1 and
M2 we have that (αM1 + (1− α)M2)−1 ≤L αM−1

1 +(1−α)M−1
2 , then ∀ 0 ≤

α ≤ 1

M−1 (αξ1 + (1− α)ξ2) ≤L αM−1(ξ1) + (1− α)M−1(ξ2) . (1.28)

Thus, it can be shown that with respect to all optimality criteria Φ satisfying
Equations (1.14) and (1.15), a combination (or mixture) of two equivalent
designs - namely two designs with the same Φ-value - is always better. In-
deed, assume that two designs ξ1 and ξ2 give the same information with
respect to a given criterion Φ, i.e. Φ

(
M−1(ξ1)

)
= Φ

(
M−1(ξ2)

)
, and let

M(ξ1) = M1 and M(ξ2) = M2. Then, by Equation (1.28)

Φ
(
M−1 (αξ1 + (1− α)ξ2)

)
≤ Φ

(
αM−1

1 + (1− α)M−1
2

)
≤ αΦ

(
M−1

1

)
+ (1− α)Φ

(
M−1

2

)
= Φ

(
M−1

1

)
Property 1.1.5. For any continuous design ξ, there exists a (discrete) de-
sign obtained observing only a finite number of points which gives the same
information, i.e. ∀ξ ∈ Ξ, ∃ξF ∈ Ξ with finite support of size I ≤ p(p+1)

2 + 1
points such that M(ξ) = M(ξF ).

Proof. The proof is based on the fact that the set of all information matrices
M is the convex hull of

{
xx>|x ∈ X

}
⊆ R

p(p+1)
2 . The result follows from

the Caratheodory’s theorem.

1.2 The General Equivalence Theorem (G.E.T.)
In this section we recall a result which establishes the equivalence of D-
optimality and G-optimality and which is the basis of various results on
optimal designs. Let d(x, ξ) be the variance function defined as

d(x, ξ) = f>(x)M−1(ξ)f(x). (1.29)
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Recall that for an exact design it holds f>(x)M−1(ξ)f(x) = n
σ2V

(
Ŷx
)
, thus

d(x, ξ) is proportional to the variance of the expected response at x.

Theorem 1.2.1 (General Equivalence Theorem (G.E.T.) [116]). The fol-
lowing conditions on a design ξ∗ are equivalent:

1. ξ∗ maximizes det (M(ξ)) over all continuous designs on X (D-optimality).

2. ξ∗ minimizes maxx∈X d(x, ξ) over all continuous designs on X (G-
optimality).

3. maxx∈X d(x, ξ) = p, where p is the number of parameters.

4. ∂
∂x log det (M((1− α)ξ∗ + αξ′)) |α=0 ≤ 0.

5. d(x, ξ∗) ≤ p, for all x ∈ X .

Proof. 1. ⇒ 4. is trivial.
4. ⇒ 5. We use the following result for a non-negative definite matrix A

∂

∂α
log det(A) = tr

(
A−1∂A

∂α

)
.

Thus we have

∂

∂x log det
(
M((1− α)ξ∗ + αξ′)

)
|α=0

= tr
(
M−1((1− α)ξ∗ + αξ′) · ∂

∂α
M((1− α)ξ∗ + αξ′)|α=0

)
= tr

(
M−1((1− α)ξ∗ + αξ′) · ∂

∂α

(
−M(ξ∗) +M(ξ′)

)
|α=0

)
= tr

(
−Ip +M−1(ξ∗)M(ξ′)

)
= tr

(∫
x∈X

d(x, ξ∗)ξ′ (dx)
)
− p

so that 4. ⇔
∫

x∈X d(x, ξ∗)ξ′ (dx) ≤ p for all ξ′, and in particular when ξ′

put mass 1 at x, i.e. it is enough that it holds for all such ξ′. But this is
d(x, ξ∗) ≤ p for all x ∈ X .
3. ⇒ 4. It is enough to show that maxx∈X d(x, ξ∗) ≥ p for all x. This
follows from the fact that a maximum is always greater than of equal to an
average. Thus we have

max
x∈X

d(x, ξ∗) ≥
∫

x∈X
d(x, ξ∗) ξ∗(dx) = tr

(
M−1(ξ∗)M(ξ∗)

)
tr(Ip) = p
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Since the set ofM(ξ) is closed and bounded, ξ∗ actually achieves the bound.
3. ⇔ 1. Suppose that 3. holds, then

p = max
x∈X

d(x, ξ∗) ≥
∫

x∈X
d(x, ξ∗)ξ′ (dx)

= tr
(
M−1(ξ∗)M(ξ′)

)
≥ p

( det(M(ξ′))
det(M(ξ∗))

) 1
p

From this 1., which is det(M(ξ∗)) ≥ det(M(ξ′)) ⇔ 3.

The equality in point 3. holds for all the support points of the optimal
design ξ∗. Theorem 1.2.1 can also be used to check if a given design is
optimal verifying if condition 3. holds.

The General Equivalence Theorem holds for continuous designs repre-
sented by the measure ξ. It does not hold in general for exact designs. For
instance, for D-optimality the implication is that there will be some values of
n for which one design will be D-optimum and another G-optimum (see [6]),
i.e. the two optimum designs will not be identical.

Some linear models can be thought of as products of other models
(see [184]), for example, given two linear models

Model I E(Yx) =
∑
i

fi(x)θi x ∈ X i = 1, . . . , p

Model II E(Yz) =
∑
j

gj(z)γj z ∈ Z j = 1, . . . , q

then their product becomes

E(Y) =
pq∑
k=1

hk(t)ψk, with h(t) = f(x)⊗ g(z) = {fi(x)gj(z)}

(1.30)
with x⊗ z = {xizj}.

The optimal designs for product models can be found in terms of optimal
designs for their components. Given two designs, say ξ1 on design space X1
and ξ2 on Z, we can define the product ξ1 ⊗ ξ2 on the space X × Z by the
product measure

ξ1 ⊗ ξ2(A,B) = ξ1(A)ξ2(B) (1.31)
where A ⊆ X and B ⊆ Z are measurable with respect to ξ1 and ξ2 respec-
tively. Note also that∫

X×Z
ξ1 ⊗ ξ2(d(x, z)) = ξ1(X )ξ2(Z) = 1 .

Theorem 1.2.2. If ξ∗1 is D-optimal for Model I and ξ∗2 is D-optimal for
Model II, then ξ∗1 ⊗ ξ∗2 is D-optimal for the product model I⊗II.
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Proof. Let {f∗i (x)}pi=1 be orthonormal polynomials for Model I with respect
to ξ∗1 and

{
g∗j (z)

}q
j=1

be orthonormal polynomials for Model II with respect

to ξ∗2 . Then
{
f∗i (x)g∗j (z)

}
for i = 1, . . . , p and j = 1, . . . , q are orthonormal

polynomials with respect to ξ∗1 ⊗ ξ∗2 for model I⊗II, since∫
f∗i (x)g∗j (z)f∗h(x)g∗k(z) ξ∗1 ⊗ ξ∗2(d(x, z))

=
(∫

f∗i (x)f∗h(x) ξ∗1(dx)
)(∫

g∗j (z)g∗k(z) ξ∗2(d z)
)

= δihδjk =
{

1 if i = h, k = j

0 otherwise
.

Calculating

d ((x, z), ξ∗1 ⊗ ξ∗2) =
∑
i

∑
j

(
f∗i (x)g∗j (z)

)2

=
∑
i

(f∗i (x))2∑
j

(
g∗j (z)

)2

= d (x, ξ∗1) d (z, ξ∗2)

and computing the maximum we have

max
(x,z)∈X1×Z

d ((x, z), ξ∗1 ⊗ ξ∗2) = max
x∈X

d (x, ξ∗1) max
z∈Z

d (z, ξ∗2)

= pq by G.E.T. (3.).

But pq is the number of parameters in the product model, thus by G.E.T.
ξ∗1 ⊗ ξ∗2 is optimal on X × Z.

1.3 Algorithms for the Construction of Exact Op-
timal Designs

The construction of a design that is optimal with respect to a chosen cri-
terion is an optimization problem where the objective function is defined
by the specific criterion of optimality. In this section, only algorithms for
the construction of exact D-optimum designs will be described (see [6]), but
the general idea can be extended to other optimality criteria. The search is
usually carried out over a grid of candidate points and for a specific design
size. Most of the algorithms [6, 67, 218] that will be presented in the next
subsections consist of three (sequential) phases:

1. generation of an initial design of n0 trials,

2. augmentation of the initial design to n trials (sequential),
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3. iterative improvement of the design (exchange).

Because the design criteria for exact designs do not lead to convex opti-
mization problems, the algorithms may converge to local optima. One can
increase the probability of finding the global optimum design by running the
search repeatedly from different starting points, possibly chosen at random.

The n exact D-optimum design measure ξ∗n maximizes

det(M(ξn)) = det(X>X). (1.32)

where X is the design matrix. Note that, since the design is exact, the
quantities nwi from Equation (1.20) are integer numbers at all design points
and, because the design may also include replications, the number of distinct
design points may be less than n.

The optimum exact design is found by searching over the design region X .
As the dimension of the problem increases, the time needed to search over
the continuous region for the exact design becomes unacceptable, so that
the search over the continuous region X is often replaced by a search over a
list of candidate points. The problem then becomes the selection of n points
out of a list of Nc candidate points (see [56, 92, 147] for the selection of
candidate points).

1.3.1 Basic Formulation of Exchange Algorithms

Algorithms for the construction of exactD-optimum designs involve the iter-
ative improvement of an initial design. The initial design can be constructed
sequentially from a starting design of size n0 (chosen randomly from the can-
didate points Nc), either by the addition or deletion of points. Then, the
n-design can be improved by an exchange in which points in the design are
replaced by those selected from the candidate list Nc, with the number of
points n remaining fixed.

The common structure is that, at each iteration, the algorithm adds a
point x` to the design, deletes a point xk from it, or replaces a point xk from
the design with a point x` from the list of candidate points. In particular, for
D-optimality the choice of the points xk and x` depends on the variance of
the predicted response at these points, the determinant of the information
matrix and the values of elements of its inverse. Below, a single formula
combining the sequential and the exchange steps is provided, which gives
updated information at each iteration (see also [6]).

Let i ≥ 0 be the number of iterations already performed and let ck and
cl be constant such that

c` = 1
N+1 , ck = 0 if the point x` is added to the design

ck = 1
N+1 , c` = 0 if the point xk is deleted from the design

ck = c` = 1
N+1 if the x` is exchanged with xk

(1.33)
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Let f>k = f>(xk) and f>` = f(x>` ), then the updated information matrix, its
determinant and its inverse at iteration i+1 are written in function of those
at iteration i as follows:

M(ξi+1) = 1− c`
1− ck

M(ξi) + 1
1− ck

(
c`f`f>` − ckfkf>k

)
(1.34)

det(M(ξi+1)) =
({

1 + c`
1− c`

d(x`, ξi)
}
·
{

1 + ck
1− ck

d(xk, ξi)
}

+ ckc`
(1− c`)2d

2(xk,x`, ξi)
)( 1− c`

1− ck

)p
det(M(ξi)) (1.35)

M−1(ξi+1) = 1− ck
1− c`

{
M−1(ξi)−

M−1(ξi)AM−1(ξi)
qz + ckc`d2(x`,xk, ξi)

}
(1.36)

where

d(x`,xk, ξi) = f>` M−1(ξi)fk
q = 1− c` + c`d(x`, ξi)
z = 1− c` + ckd(xk, ξi)

and

A = c`zf`f>` + ckc`d(x`,xk, ξi)(f`f>k + fkf>` )− ckqfkf>k . (1.37)

For example if a point x` is added to an n-point design with information
matrix M(ξn) then

det(M(ξn+1)) = (1 + d(x`, ξn))
(

n

n+ 1

)p
det(M(ξn)).

Note that updating the design and the inverse of its information matrix,
in addition to recalculation of the variance functions at the design points can
consume computer time and space, so a careful implementation is required.

1.3.2 Sequential Algorithms

An exact design for n trials can be derived either by the sequential addi-
tion (forward procedure) or deletion (backward procedure) of trials using the
formulas in Section 1.3.1.

Forward procedure. Starting with a n0-trial design, the n-trial exact
design with n > n0 is found by sequential addition of the point x` at which
the variance of the predicted response is a maximum, i.e.

d(x`, ξn) = max
x∈NC

d(x, ξn). (1.38)
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Note that as n→∞ the D-optimum continuous design ξ∗ is reached, so that
the exact n-trial design can be regarded as an approximation to ξ∗ which
improves as n increases.

Backward procedure. Starting with a n0-trial design (n0 >> p), the n-
trial exact design with n < n0 is found by sequential deletion of the point
xk at which the variance of the predicted response is a minimum, i.e.

d(xk, ξn) = min
x∈NC

d(x, ξn). (1.39)

A common feature of both procedures is that they do not usually lead
to the best exact n-trial design (see [6]). However, the performance of the
forward procedure can be improved by using different starting design, so
that different runs of the algorithm will produce a variety of exact n-trial
designs, the best of which will be selected.

1.3.3 Non-sequential Algorithms

Non sequential algorithms are intended for the improvement of an n-trial
exact design by deleting, adding or exchanging points according to a specific
criterion. Because the procedures are non-sequential, it is possible that the
best design of n trials might be quite different from the ones obtained for
n− 1 or n+ 1 trials.

Author in [219] proposes to add the point x` which gives a maximum
increase of the determinant of the information matrix, thus satisfying (1.38)
for i = n − 1. Then the point xk which cause the minimum decrease in
the determinant, thus satisfying (1.39), is deleted from the design. The
procedure ends when the same point is added and then removed. In the
DETMAX algorithm [147] a chosen number of points (up to a maximum of
six) is sequentially added and then deleted.

The addition and deletion of points are considered together in the ex-
change algorithm in [67] in which at each iteration of the algorithm all pos-
sible exchanges of pairs of points xk from the design and x` from the set of
candidate points are evaluated. The exchange giving the greatest increase in
the determinant of the information matrix is chosen and the procedure con-
tinues as long as an interchange increases the determinant (authors in [216]
prove convergence of the algorithm for more general design criteria). In the
literature some modifications of this exchange algorithm to speed up the
procedure can be found in [39, 107]. In particular authors in [107] suggest
to reduce the number of points to be considered for exchange by searching
over only the k < n design points with lowest variance of the predicted
response. An extension is that the points most likely to be exchanged are
design points with relatively low variance and candidate points for which
the variance is relatively high. This is the idea underlying the KL exchange
algorithm in [10].
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1.3.4 Existing Software and Packages

In this Section the goal is to provide a very general overview of the existing
tools for generating optimal design. Note that in this thesis only the R
software has been used.

Author in [76] provides an extensive collection of the main R packages for
experimental design and analysis of data from experiments. Among all those
mentioned, there are a few packages for creating and analyzing experimen-
tal designs for general purposes. In this work the package OptimalDesign
(see [87]) has been used for finding D-optimal designs. It may be used for
computing also A- or I-optimal designs, exactly or approximately, treat-
ing quantitative variables only and using different algorithms (e.g. [6, 86]).
Package AlgDesign creates D-, A-, or I-optimal designs exactly or approxi-
mately using the algorithm in [67], while package acebayes calculates opti-
mal Bayesian designs using an approximate coordinate exchange algorithm.

The OPTEX procedure in SAS is used to calculate optimum exact design,
while for optimum continuous designs one can use SAS/IML software, in
particular the IML procedure (see [6, 177]).

The most used Python package for computing optimal designs is dexpy
(see [169]), based on the Design-Expert software from Stat-Ease Inc, while
in MATLAB one can use the functions cordexch or rowexch to compute a
D-optimal design (see [144]).

Summary
This chapter sets the theoretical framework for the next three chapters. The
theory of optimal design of experiments, including different types of opti-
mality criteria, and the General Equivalence Theorem have been described.
In the second part of the chapter several algorithms for the construction
of exact optimal designs, in particular for the D-optimality, have been pre-
sented.



Chapter 2

A comparison of Algorithms
for Model-based Optimal
DoE Sampling of Big Data

In the Big Data era, massive volumes of data are collected from a variety
of sources at an extraordinary speed. Nowadays, the data produced are es-
timated by zettabytes and are growing 40% every day [65]. Although it is
not unique, a widely accepted definition of Big Data is in terms of volume
(amount of data), variety (range of data types and sources) and velocity
(frequency at which data has being collected) [130]. High variety brings non
traditional or even unstructured data types, such as social network senti-
ments, while high volume and high velocity may bring noise accumulation
and spurious correlation, creating issues in computational feasibility and
algorithmic stability [63, 74, 207]. Furthermore, the analysis of Big Data
might be computationally prohibitive and, in some cases, it might also be
not advisable [74, 85]. In addition, if the inferential goal is to test the effect
of an explanatory variable, even small effects may result to be statistically
significant because of the increased power due to the huge amount of data.
This motivates the development of tailored statistical methods in order to
deal with these challenges.

Two major strategies have emerged to address the challenging in curat-
ing, modeling and analyzing Big Data: divide-and-recombine [207] and sub-
sampling based methods [50]. The former divides the Big Dataset in many
small datasets that are assigned to different processors, analyzed separately
and re-combined at the end, while the latter selects the most informative
subset of data with respect to a specific measure.

On one hand, divide-and-recombine approaches use parallel and dis-
tributed computing systems and are based on subdivision in subsets of the
data that are analyzed in parallel by different processors and the results are
then recombined (see for example [15, 79, 222]). The most popular methods

27
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are the so-called consensus Monte Carlo [186], which operates by running
a separate Monte Carlo algorithm on each processor and then averaging
individual Monte Carlo draws across processors, and the bag of little boot-
strap [109, 119]. Authors in [135] propose an approach for approximating
the estimating equation estimator using a first order Taylor expansion, while
authors in [33] consider a divide-and-conquer approach for generalized linear
models where both the number of observations and the number of covariates
are large. The divide-and-recombine approach gains efficiency mainly from
the implementations on parallel computing, but it may not reduce computa-
tional time if implemented with a single processor. Furthermore, the division
in subsets is usually done randomly which might lead to noise and spurious
correlation problems.

On the other hand, sub-sampling based approaches reduce the data vol-
ume by selecting an informative sub-sample such that it maintains as much
information as possible. The analysis is then based on this sub-sample with
reduced noise and less potential for spurious correlations relative to a ran-
domly selected sub-sample of the same side as for the divide-and-recombine
approaches. Authors in [51] propose to make a randomized Hadamard trans-
form on data and then use uniform sub-sampling to take random sub-samples
to approximate ordinary least square estimators in linear regression mod-
els. Another approach is to use normalized statistical leverage scores of the
covariate matrix as non-uniform sub-sampling probabilities (see [142, 143]
for linear regression models and [104] for generalized linear models). An
advantage of sub-sampling based approaches is that once a subset of data
has been identified, thorough analysis can often been performed on a reg-
ular computer, so that the problem here becomes how to select the most
informative sub-sample.

Although it is not the main topic of this work, it is important to mention
some scalable techniques for dealing with high dimensionality (large number
of covariates). The most popular methods are based on dimension reduc-
tion such as principal components analysis [60, 112], clustering [19], variable
selection via independence screening [62, 64], LASSO [145, 203], Dantzig
selector [27] and least angle regression [57]. Other methods have been de-
veloped for specific data types, such as sequential updating for streaming
data [183] or sketching [134]. Furthermore, traditional estimation methods
have been overshadowed by optimization algorithms such as gradient descent
and stochastic approximations [133, 204] and a wide variety of extensions
and alternatives [37, 63, 199, 205]. Many algorithms also exploit sparsity in
high-dimensional data [63, 89, 90, 206].
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2.1 Motivation for applying Optimal DoE on Big
Data

Despite the advantages of the above methods, authors in [63] identify three
main challenges: (i) dealing with accumulation of errors (noise) and spu-
rious patterns in high-dimensional data, (ii) improving computational and
algorithmic efficiency, (iii) dealing with heterogeneity, experimental varia-
tions and statistical biases. Furthermore, many authors (e.g. in [176]) point
out that analysis of Big Data is affected by issues of bias and confounding,
selection bias and other sampling problems (e.g. [190] for electronic health
records). Often the causal effect of interest can only be measured on the
average and great care has to be taken about the background population,
for example, even if it were possible to consider and analyse every message
on Twitter in a reasonable computational time and use them to drawn con-
clusions about the public opinion, it is known that Twitter users are not
representative of the whole population. Indeed, while usually data can be
collected in scientific studies via active or passive observation, Big Data are
often collected in a passive way and rarely their collection is the result of
a designed process. This might generate sources of bias which either we do
not know at all or are too costly to control, nevertheless they will affect the
overall distribution of the observed variables [55]. To recall just one example,
authors in [146] report that the simple sample proportion of a self-reported
big dataset of size 2, 300, 000 units has the same mean squared error as the
sample proportion from a suitable simple random sample of size 400 and
authors in [146] also define Law of Large Population in order to qualify this.

Recently some researchers argued on the usefulness of utilizing methods
and ideas from Design of Experiments (DoE) for the analysis of Big data,
more specifically from model-based optimal experimental design. They ar-
gue that special models are useful, or even needed, to guard against hidden
sources of bias and that a well-chosen subset of the big dataset can deliver
equivalent answers compared to the full dataset at considerably less effort.
As a matter of fact, the connection between the sampling approach and ex-
perimental design, not considering a Big Data framework, had been explored
by authors in [68, 164, 217, 220, 221].

The remainder of the chapter is organized as follows. In Section 2.2,
the main literature on model-based optimal DoE sampling methods is re-
viewed, differentiating models without bias (Section 2.3), which have been
already applied on Big Data, and models with bias (Section 2.4). Finally,
the performance of reviewed algorithms will be compared in 2.5. The ma-
jor contribution of this work is given to models with confounders terms for
which new results are provided in Chapter 3 [160, 161].
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2.2 Model oriented selection of sub-samples: Gen-
eral Formulation

The most general form of the considered model is that of a linear model for
a response variable Y

Yx,z = f>(x)θ+ h>(x)ψ+ g>(z)φ+ ε (2.1)

with θ ∈ Rp, ψ ∈ Rm and φ ∈ Rq and with x ∈ X , z ∈ Z. The observed
values are on the x, while the z are assumed to be unknown. Both X
and Z spaces are assumed to be compact in the Euclidean topology as in
Section 1.1. Furthermore, the usual assumptions are taken on the random
errors, i.e. they are homoskedastic independent errors with mean equal to
zero and constant variance σ2. In Equation (2.1) there are three terms:
the first corresponds to a classical linear model, the second to a bias term
related to the variables x and the last term models a bias that may result
from confounders, sources of bias which either we do not know at all or
are too costly to control. Nonlinear models, generalizing Equation (2.1),
could be considered but the computational burden might make them very
inefficient for Big Data. Furthermore, often f , h and g are linear functions
of their arguments.

Recently, authors in [45, 52, 209] proposed methods of data selection
from large datasets in a DoE context, as a response to the more and more
frequent need to analyze Big Data. However, they do not guard against
different sources of bias in the model. Special cases of the model in Equa-
tion (2.1) have been addressed in order to adapt ideas from classical model-
based optimal DoE: authors in [214] considers models of the type f>(x)θ+
h>(x)ψ, while in Chapter 3 we consider models of type f>(x)θ + g>(z)φ
(see also [159, 161]).

2.3 Model oriented selection of sub-samples with-
out bias

In this section, three algorithms based on a model of type

E(Yx) = f>(x)θ (2.2)

are considered where an optimal retrospective sub-sample of the whole big
dataset is drawn in accordance with a sampling plan or experimental de-
sign [45, 52, 209]. They are targeted towards applications of regression
models with large number of observations and relative small number of pre-
dictors, otherwise the problem of finding the best subset of data becomes
computationally hard or unfeasible due to the curse of dimensionality.
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The three algorithms take as input a tall dataset D ∈ X with typical
rows {f(xi), Yxi}

N
i=1 and the sample size of the sub-sample to be returned

n � N . While algorithm in [209] considers D-optimum designs, the ones
in [45, 52] can be applied to any optimality criterion or utility function.
The output is always a subset of n data points from D with specific prop-
erties. In the next section, we will consider each algorithm separately to
highlight the differences and in Section 2.5 we will compare their efficiency
and performance on several examples.

Note that all these algorithms require full trust in the model of Equa-
tion (2.2). It is worth mentioning that, although these algorithms do not
consider bias on the model, they can still be used to evaluate the quality
of the data, including the presence of potential biases and data gaps, since
this will become apparent if the required optimal design points cannot be
extracted from the data [52]. This particular issue will be further explored
in Chapter 4.

2.3.1 Retrospective optimal design sampling (RODS)

Authors in [52] open the exploration into the potential of optimal DoE meth-
ods to improve the analysis of Big Data through retrospective designed sam-
pling based on a pre-defined goal of the analysis (e.g. parameter estimation)
and corresponding utility function. As stated in the paper, this allows to
consider an ideal experiment and then "lay" that experiment over the (big)
data that have been collected. This approach can also be considered as an
active learning framework in which a given design is applied to incoming
data until the question of interest is answered with sufficient precision or a
pre-determined criterion is reached. For the rest of the chapter this algo-
rithm will be referred to as Retrospective Optimal Design Sampling, RODS
for simplicity. The RODS Algorithm returns a subset of the whole dataset
D via an optimal, sequential and response adaptive procedure, which is
sketched in Algorithm 1.

As already mentioned in the previous section, the model in Equation (2.2)
is considered for the analysis of a tall dataset (p� N). RODS is based on a
generic procedure inspired by sequential experimental design approach and
at each step it does two main things: (i) iteratively gains information to
extract more informative data in subsequent iterations, and (ii) solves the
design problem for a single observation at each iteration. The algorithm
requires as input also a grid G of observations in the theoretical design space
based on X with rows {gi}Ni=1, i.e. it represents some or all values of the
covariates (see [56, 92, 147] for the construction of the grid). Furthermore,
a distance function in X (e.g. the Euclidean distance) and the number nt
of initial points to be sampled randomly needs to be specified. The output
of the algorithm is a subset of D of size n which maximizes a given utility
function U to be provided as input of the algorithm.
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Starting from a random subset of size nt, at each step the key idea
behind Algorithm 1 is to determine which point of the grid G maximizes U
and search for its nearest observations in the whole dataset D, then update
the estimates of the parameters or the prior distribution (see Appendix B
for a brief overview of a fully Bayesian DoE framework). This is repeated
until the desired sample size n is obtained.

The initial training sample size nt is likely to depend on the quality of
the data available. In general, the more data used in the training sample,
the more precise parameter estimates can be determined; however, one may
want to limit the size because the training sample is not optimally extracted
from the data. To overcome this issue, authors in [52] suggest to select the
training data on the basis of a design with good properties, e.g. balance and
orthogonality.

Algorithm 1: Pseudocode for RODS [52]
Input: D, G, f , U , distance function || · ||, nt, n
Output: subset of n data points from D

1 Sample randomly a subset of size nt < n from D and obtain θ̂ or form
a prior p(θ)

2 Set the current sample size nc = nt
3 while nc ≤ n or when a certain criterion is not met do
4 Find the optimal design g∗ such that

g∗=argmax
gi∈G

E[U(gi, θ̂)] or g∗=argmax
gi∈G

E[U(gi, p(θ))]

5 Find f(xi) in D not already sampled, which minimizes the
distance ||f(xi)− g∗||

6 Add {f(xi), Yxi} into the data subset and remove the observation
from D

7 Set nc ← nc + 1
8 Re-estimate θ̂ or update the prior distribution p(θ)
9 Obtain an estimate θ̂ with the selected n data points

Line 4 of Algorithm 1 is the most challenging and computationally inten-
sive. If the number of covariates is small enough, then a simple discrete grid
search might be sufficient to obtain a near-optimal design. But, if the design
space is complex it is necessary to perform some numerical optimization, for
example an exchange algorithm [69], numerical quadrature [141], MCMC
simulation [151], or sequential Monte Carlo methods [4, 127]. Note that
Line 5 of Algorithm 1 might be parallelized using a divide-and-recombine
approach to improve the computational time. As already anticipated at the
beginning of the section, the major drawbacks of Algorithm 1 are that it
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requires full trust in the model and it is efficient only for tall datasets.
In Section 2.5, Algorithm 1 will be applied to simulated and real data

in order to compare the results and the performance with respect to other
algorithms proposed in this chapter.

2.3.2 Information-based Optimal Subdata Selection (IBOSS)

The second algorithm presented in this work appears in [209] and it is called
IBOSS (Information-Based Optimal Subdata Selection). Unlike random sub-
sampling approaches, the main idea of IBOSS is to select the most informa-
tive data points deterministically so that subdata of a small size preserves
most of the information contained in the whole big dataset.

Analysizing existing sub-sampling based methods like uniform sub- sam-
pling [143], leverage-based sub-sampling [50], shrinkage leveraging estima-
tor [94, 142] and unweighted leveraging estimator [143], authors in [209]
proved that, considering the linear model in Equation (2.2), the covariance
matrices of the estimators based on these sub-sampling methods converges
to zero at a rate proportional to the inverse of the subdata size [35], i.e. 1/n.
In other words, this means that the information contained in a subdata is
related to the size of the subdata and not to the full data. From here the
idea of developing a deterministic approach for which the covariance matrix
of the resultant estimator converges at zero at a rate proportional to 1/N
and does not depend on 1/n.

The output of the algorithm is a subset of D of size n which maximizes
the univariate D-optimality criterion function Φ(·), that is the determinant
of the information matrix in Equation (1.16), i.e.

ξ∗ = arg max
ξ

det (M(ξ)) = arg max
ξ

det
(

N∑
i=1

ξif(xi)f>(xi)
)

(2.3)

subject to
∑N
i=1 ξi = n, where ξi = 1 if point i ∈ D is selected and ξi = 0

otherwise. Due to the computational issues of obtaining an exact solution,
in order to get an approximate solutions to the optimization problem in
Equation 2.3, authors in [209] derive the following upper bound for the
determinant of the information matrix M(ξ) in Equation (2.3)

det (M(ξ)) ≤ 4
(
n

4σ2

)p+1 p∏
j=1

(
f(x(N)j)− f(x(1)j)

)2
(2.4)

where f(x(N)j)− f(x(1)j) is the observed range of the jth covariate and σ2 is
the model variance. This result suggests the rationale behind IBOSS, that
is, since D-optimal designs tend to be on the boundary of the design space,
the algorithm selects data points that are on the boundary of the observed
range of each covariate. The procedure is outlined in Algorithm 2.
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Algorithm 2: Pseudocode for IBOSS [209]
Input: D, n
Output: subset of n data points from D

1 Let r = bn/(2p)c
2 Initialise ξi = 0 for i = 1, . . . , N
3 for j = 1, . . . , p do
4 Find the r data points with the smallest f(xij) values and set

ξi = 1
5 Find the r data points with the largest f(xij) values and set ξi = 1
6 Obtain an estimate θ̂ with the selected n data points with ξi = 1

Algorithm 2 is very simple to understand, computationally efficient and
can be also easily parallelized dividing the full dataset into partitions [208].
The major drawbacks is that it requires full trust not only in the model
formulation but also on the representativeness of the response Y in D since
it is not response adaptive in contrast to Algorithm 1. Furthermore, it
is not robust with respect to permutation order of the covariates, so that
according to different order, one may obtain different sub-samples (Line 3 of
the algorithm). Author in [208] provides additional practical details for the
implementation of Algorithm 2, e.g. if some data points have been already
included in the subdata by some covariates, IBOSS needs to exclude them
from consideration when using other covariates to select data points.

It is also important to outline another issue regarding the presence of
outliers in the big dataset; Algorithm 2 selects subdata according to extreme
values of each covariate which may include outliers. Authors in [209] propose
to use outliers diagnostic methods to identify them directly before applying
Algorithm 2; in Chapther 4 we propose a modified exchange algorithm to
deal with this problem.

In Section 2.5, Algorithm 2 will be applied to simulated and real data
in order to compare the results and the performance with respect to other
algorithms proposed in this chapter.

2.3.3 Optimal Design Based (ODB)

The last algorithm that we present for the analysis of model without bias
is the so called ODB (Optimal Design Based) method proposed by authors
in [45], which has the goal to make inferences about the parameters of the
super-population model that is supposed to have generated the big dataset.
The main idea is first to identify the theoretical most informative values of
covariates according to some optimality criterion and then to select from the
observed big dataset data points that are closer to these theoretical optimal
values.
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Here D is assumed to have been generated by a super-population model
as in Equation (2.2). Furthermore, the authors consider only non-informative
sampling methods (i.e. the resulting design does not depend on the re-
sponses) to have the same likelihood in the subsample as in the whole
dataset. This is different from Algorithm 1, which proposes a response
adaptive procedure as shown in Section 2.3.1. The rational behind Algo-
rithm 3 is that, given a super-population model, one can always compute
the ideal continuous optimum design with respect to a specified optimality
criterion Φ as in Equation (1.25) and support defined as in Equation (1.23).
Then search for the observations in the given big dataset closer to the ideal
optimal design points.

Algorithm 3: Pseudocode for ODB [45]
Input: D, F , Φ(·), n
Output: subset of n data points from D

1 Compute the design ξ∗ = arg minξ Φ[M(ξ)] as in Equation (1.25) and
the corresponding ideal design matrix F ∗ = F (x∗)

2 if nw∗j for j = 1, . . . ,m is not an integer number then
3 Apply the rounding multiplier rule proposed in [168] and obtain

n̈j the updated weight for j = 1, . . . ,m
4 for j = 1, . . . ,m do
5 Compute the distance ||f>(xj)− f>(x∗j )||
6 Let {d1, d2, . . . , dN} be the ranks of ||f>(xj)− f>(x∗j )|| arranged

in ascending order
7 Select from F the rows d1, . . . , dn̈j

Algorithm 3 is flexible in the sense that it could be implemented for many
optimality criteria and with respect to Algorithm 2 is robust given the per-
mutation order of the covariates. The main drawbacks are the computational
time and the fact that it does not take into account misspecification in the
super-population model.

In Section 2.5, Algorithm 3 will be applied to simulated and real data in
order to compare the results and the performance with the other algorithms
proposed in this chapter.

2.3.4 Extension to Nonlinear Models

In the previous sections, the main popular linear regression models of type
as in Equation (2.2) present in the literature have been presented. Although
nonlinear models have not been considered in this work, it is worthwhile to
provide a quick overview of these algorithms, especially in reference to the
extension of the IBOSS algorithm of Section 2.3.2 to logistic regression and
softmax regression models.
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Algorithm 2 (IBOSS) is extended to include the logistic regression by
authors in [35, 210]. Authors in [84] extend the idea of the local case control
sampling [71] for logistics regression to the softmax regression, while authors
in [226] extend IBOSS to the softmax regression via a two-stage adaptive
procedure to address the issue that the optimal sub-sampling probabilities
depend on the full data estimator. Optimal sub-sampling probabilities for
Generalized Linear Models (GLMs) have been considered in [2] and authors
in [165] recently proposed an algorithm for data streaming, i.e. data to be
analyzed on real-time basis, where the subdata is selected sequentially based
on the estimated quantile. For a complete review one can refer to [227].

2.4 Model oriented selection with bias term of sub-
samples

In this section model-robust optimality criteria based on the mean square
error for a model of the type

E(Yx) = f>(x)θ+ h>(x)ψ (2.5)

are considered, the so called approximate regression models (see [101, 148,
213]). One normally assumes a model like the one in Equation (2.2) to de-
scribe the relationship between a specified response variable Y and covariates
f(x). However, it might be the case that the model is misspecified, so that it
is necessary to rely on the approximate regression model of Equation (2.5),
i.e. the true (or ideal) model (see Appendix C for a brief overview on robust
designs for approximate regression models). Note that these methods are
not suitable for large datasets, still they provide useful food for thought for
the development of new methodologies in the Big Data framework.

Author in [214] considers models of the form

E(Yx) = f>(x)θ+ ψ(x) (2.6)

with a more specific (unknown) bias term ψ(x) with respect to the one
in Equation (2.5), where the function ψ quantifies the experimenter’s lack
of faith in the fitted model of Equation (2.2). The author’s main idea is
to impose a neighborhood structure on the standard regression response
function, maximize a function of the mean square error (MSE) over this
neighborhood and then seek robust designs that minimize this maximum
loss.

A pseudocode of the algorithm used to sequentially construct the optimal
design is given in Algorithm 4. The inputs are a theoretical design space
G = {x1, . . . ,xN} based on X , a value ν ∈ (0, 1) chosen by the experimenter
that corresponds to how much emphasis one wants to place on bias reduction,
a loss function which embeds the goal of the analysis, and the desired final
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size of the design n or certain stopping criteria. The output is an exact
n-point robust design ξn on G. The pseudocode is sketched in Algorithms 4.

The rationale behind the algorithm is that the experimenter will compute
estimates assuming that ψ(·) ≡ 0, and search for protection against the bias
through a minimax robust design. For a given n and a control parameter τ ,
the bias term ψ is restricted to the following class of function Ψ

Ψ =

ψ
∣∣∣∣∣∣
∑
x∈G

f(x)ψ(x) = 0 and
∑
x∈G

ψ2(x) ≤ τ2/n

 (2.7)

in order to ensure, respectively, the identifiability of the parameters θ and
that, asymptotically, the bias of the LSEs remains of the same magnitude as
the variance (see [101] and Appendix C). Note that ν is defined by author
in [214] as ν = τ2/(τ2 + σ2), where τ is the control parameter and σ2 is the
variance.

The classical notions of D- and I- optimality presented in Section 1.1.1
are extended to D- and I-robustness to incorporate a bias into the loss
function. Letting θ̂ be the LSE of θ on a design ξ, author in [214] proves
that the maximum of the two associated loss functions

D(ψ, ξ)=
(
detE

[
(θ̂− θ)(θ̂− θ)>

])1/p

I(ψ, ξ)=
∑
x∈G

E
[(

f(x)>θ̂− E[Y (x)]
)2
]

can be factorized as follows

max
ψ
D(ψ, ξ)=σ2

n

(
σ2 + τ2

σ2 det[F>F ]

)1/p

×Dν(ξ)

max
ψ
I(ψ, ξ)=σ2 + τ2

n
× Iν(ξ)

where Dν and Iν depend only on the sought design and on known quantities.
Here F = [f(x)]x∈G is the full design matrix. The final objective is to find

ξ∗ = min
ξ

max
ψ
L(ψ, ξ)

with L(ψ, ξ) = I(ψ, ξ) or D(ψ, ξ). Then given a design ξ, the sequential
choice of new design points is made so that it corresponds to the maximum
diagonal element of the matrix T Lν (ξ), which derives from the computation
of the derivatives of Lν(ξ) (see [214] for details).

Note that in Algorithm 4 the optimal design is constructed, sequentially
one point at a time, before any data is collected (prospectively), while algo-
rithms in Section 2.3 are implemented in order to select n data points from
an observed dataset (retrospectively).
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Algorithm 4: Pseudocode for RA [214]
Input: G, ν ∈ (0, 1), loss function Lν , n
Output: Minimax robust design

1 Let ei be the i-th column of the IN identity matrix
2 Sample randomly a point xi from G, set the current sample size

nc = 1 and let ξnc,x be such that ξi = 1 and ξj = 0 for j 6= i
3 while nc ≤ n or a certain criteria is not met do
4 Compute the matrix TLν (ξnc,x)
5 Take the largest diagonal element and assume it is in entry (i, i)
6 Update the weights of ξnc,x to ξnc+1,x =

(
nc
nc+1

) (
ξnc,x + 1

nei
)

As already mentioned, Algorithm 4 is not suitable for large datasets,
especially because it requires lot of matrix multiplications, but the main
feature for the purpose of this work is that it accounts for bias. Notwith-
standing, authors in [154] address problems of model misspecification in
an active learning framework, when full knowledge of the predictors is eas-
ily acquired, but determining the responses is expensive. Indeed, active
learning for regression problems might be viewed as optimal experimental
design [188]. Here the assumption is that the experimenter will sample train-
ing data points from a sub-population model of the type in Equation (2.2),
possibly different from the model in Equation (2.6) generating the underlying
whole population. They achieved significant reductions in the loss relative
to passive learning or to previously proposed methods of active learning.
These results also provide strong motivation for the application to DoE to
Big Data. For a review on the literature on the robustness of active learning
and applications to machine learning see [117, 139, 188].

In Section 2.5, Algorithm 4 will be applied to a simulated data in order to
compare the results and the performance with the other algorithms proposed
in this chapter. We will refer to this algorithm as Robust Algorithm (RA).

2.5 Simulations and Results
In this section we compare the algorithms presented in this chapter on four
examples: the first two are simulations, while the others are real case studies.
In order to have a measure of the goodness of the selected designs of the
simulated data, we compute for each one the Φ-efficiency of Equation (1.26).
In the following examples we consider the D-optimality criterion in order to
compare all the algorithms on the same criterion, thus Φ is the determinant
of M−1(ξ), and the theoretical optimal design is computed by the od_KL
function in the R package OptimalDesign [87].
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2.5.1 Example 1

We consider the following model

Y (x) = θ0 + θ1x1 + θ2x2 + ε

where θ = (θ0, θ1, θ2) = (0.5,−3, 4), x1 and x2 are independent and gener-
ated from a Uniform[−1, 1] and ε ∼ N (0, 0.12). We simulate N = 103 values
and the goal is to select n = 12 design points from the initial dataset. We
do not use a Big Dataset in order to compare all the presented algorithms,
otherwise the computational time for Algorithm 4 (RA) would have been
too large. For Algorithms 1 (RODS) and 3 (ODB) we choose to use a grid
of all candidate points for x1 and x2 of 31 equally space points in the interval
[−1, 1]. For Algorithm 2 (IBOSS) no other inputs are needed. In Figure 2.1
blue points corresponds to data points in the original dataset, while green
points are from the grid. For comparison reasons, also a simple random
sample (SRS) has been implemented; as expected, SRS provides the worst
results with respect to all the other algorithms. The D-efficiencies of the

Figure 2.1: Optimal design points selected according to each algorithm with N =
103.

selected designs and the computational times of each algorithm are reported
in Table 2.1. The algorithm with the best efficiency is the ODB, but it is
also the one with the worst computational time. Excluding the SRS, the
IBOSS has the best computational time, but the worst efficiency.

Now, set N = 105 and simulate new observations under the same model
in order to select an optimal sub-sample of size n = 1000. The results are
shown in Figure 2.2 and in Table 2.2. As in the previous case, the ODB
algorithm is the one with the best value of efficiency, but the computational
time is much higher with respect to the IBOSS algorithm.



CHAPTER 2. ALGORITHMS FOR MODEL-BASED SAMPLING 40

Algorithm Efficiency Timing (sec)
SRS 0.5508843 0.00
RODS 0.9361647 0.40
IBOSS 0.8042624 0.09
ODB 0.9584127 8.25
RA 0.9563650 0.86

Table 2.1: Efficiencies and computational times of each algorithm

Figure 2.2: Optimal design points selected according to each algorithm with N =
105.

2.5.2 Example 2

We consider the following model

Y (x) = θ0 + θ1x1 + θ2x2 + ψ(x) + ε

where θ = (θ0, θ1, θ2) = (0.5,−3, 4), x1 and x2 are independent and gen-
erated from a Uniform[−1, 1] and ε ∼ N (0, 0.12). The bias term has been
set to be ψ(x) = 2.22 ∗ x2

1 in order to satisfy Equation (2.7). We simulate
N = 103 values and the goal is to select n = 12 design points from the ini-
tial dataset. As above, we do not use a Big Dataset in order to compare all
the presented algorithms, otherwise the computational time for Algorithm 4
(RA) would have been too large. For Algorithms 1 (RODS) and 3 (ODB)
we choose to use a grid of all candidate points for x1 and x2 of 31 equally
space points in the interval [−1, 1]. For Algorithm 2 (IBOSS) no other in-
puts are needed. In Figure 2.3 blue points corresponds to data points in
the original dataset, while green points are from the grid. For compari-
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Algorithm Efficiency Timing (sec)
SRS 0.5480268 0.00
RODS 0.9994232 653.20
IBOSS 0.8574462 0.17
ODB 0.9994457 616.40

Table 2.2: Efficiencies and computational times of each algorithm

son reasons, also a simple random sample (SRS) has been implemented; as
expected, SRS provides the worst results with respect to all the other al-
gorithms. The D-efficiencies of the selected designs and the computational

Figure 2.3: Example 2: Optimal design points selected according to each algorithm
when a bias term is present.

times of each algorithm are reported in Table 2.3. The algorithm with the
best efficiency is RA, as expected since there is a bias in the model, but we
need to consider that this algorithm is not based on the observed value. The
final considerations made in Section 2.5.1 are exactly the same here.

2.5.3 Case Study - Mortgage Default

In this case study, we consider a dataset of N = 1, 000, 000 records regarding
mortgage defaults data for the year 2000 [171]. It contains information
about if the mortgage holder defaulted on the loan (response variable), a
credit rating score (x1), the number of years the mortgage holder has been
employed at their current job (x2), the amount of credit card debt (x3) and



CHAPTER 2. ALGORITHMS FOR MODEL-BASED SAMPLING 42

Algorithm Efficiency Timing (sec)
SRS 0.5316592 0.00
RODS 0.9576251 0.36
IBOSS 0.8042624 0.24
ODB 0.9584127 8.14
RA 0.9781698 1.14

Table 2.3: Efficiencies and computational times of each algorithm.

the age of the house (x4). We consider the following model

Y (x) = θ0 + θ1x1 + θ2x2 + θ3x3 + θ4x4 + ε

where, in this case study, the parameters are unknown. For Algorithms 1
(RODS) and 3 (ODB) the grid of candidate points is based on all combina-
tions of the scaled covariate levels in Table 2.4 obtained by inspecting the
full dataset. The goal is to select a subset of n = 1000.

Covariate Scaled levels
x1 -4, -3, -2, -1, 0, 1, 2, 3, 4
x2 -2, -1, 0, 1, 2, 3, 4
x3 -2, -1, 0, 1, 2, 3, 4
x4 -2, -1, 0, 1, 2

Table 2.4: Scaled values of covariates of mortgage default case study.

The results are shown in Table 2.5. Overall, all algorithms have relative
high and similar efficiency and, as expected, the SRS has the worst efficiency.
IBOSS may be preferred in this case because of the low computational time
even if the ODB algorithm has the highest efficiency.

Algorithm Efficiency Timing (sec)
SRS 0.251 0.00
RODS 0.728 4671.53
IBOSS 0.732 3.61
ODB 0.7400 6584.40

Table 2.5: Efficiencies and computational times of each algorithm.

2.5.4 Case Study - Used Cars

In this case study, we consider a dataset on N = 94, 327 used cars [110],
which contains information on the price at which the car was sold (response
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variable), the mileage (x1), the road tax (x2), the miles per gallon (x3) and
the engine size (x4). Also in this case, we consider the following model

Y (x) = θ0 + θ1x1 + θ2x2 + θ3x3 + θ4x4 + ε

where the parameters are unknown.
For Algorithms 1 (RODS) and 3 (ODB) the grid of candidate points is

based on all combinations of the scaled covariate levels in Table 2.6 obtained
by inspecting the full dataset. The goal is to select a subset of n = 1000.

Covariate Scaled levels
x1 -2, -1, . . ., 6, 7
x2 -1, 0, . . ., 13, 14
x3 -3, -2, . . ., 24, 25
x4 -3, -2, . . ., 8, 9

Table 2.6: Scaled values of covariates of used cars case study.

The results are shown in Table 2.7. Overall, all algorithms have relative
low efficiency. The reasons for the low efficiency are mainly two: (i) through
a preliminary descriptive analysis some outliers have been identified which
have an influence on the set of candidate points, and (ii) the fact that the
observed covariates are not sufficient to predict the price of used cars, indeed
the price of a car might depend also on its aesthetics and no covariates
are related directly to the aesthetics. The IBOSS algorithm in this case
outperforms the others because not only has the highest efficiency but also
the lowest computational time.

Algorithm Efficiency Timing (sec)
SRS 0.047 0.00
RODS 0.11471258 1392.50
IBOSS 0.302 0.36
ODB 0.251 692.57

Table 2.7: Efficiencies and computational times of each algorithm.

Summary
In this chapter, we presented the motivation for adapting ideas and methods
from the theory of the optimal design of experiments in the context of Big
Data, anticipating the issue of guarding against different sources of bias
that is investigated in Chapter 3. We reviewed the main literature on model-
based optimal design algorithms for sub-sampling an informative subset from
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a big dataset. We proposed a general model in Equation (2.1) constituted by
a classical linear model, a bias term on the observed values and a bias term
that may results from confounders and linked each algorithm to this general
formulation. We implemented and tested these algorithms on simulated
and real datasets and made an extensive comparison of their results and
computational performances, highlighting their strengths and weaknesses.

This chapter is based on [160].



Chapter 3

Model-based Optimal DoE:
The Question of Bias

In Chapters 1 and 2, we have already discussed the importance of the design
of experiments in physical and socio-medical fields. A concern that may arise
in applying the theory of experimental design to a Big Data framework is
that systems under consideration are becoming more complex, so it may not
be possible to perform a carefully controlled experiment. Furthermore, the
tradition of DoE differs to account for the main distinction between passive
and active observation: while in physical field it is possible to do a control
experiment, in the social-medical case the information on what would have
happen to patients if they had not received a drug is missing (missing con-
terfactual). Foundation work on these issues is by authors in [172]. Roughly,
the causal effect can only be measured on the average, with great care taken
about the background population, with more reluctance than in the physical
sciences to extend the conclusions outside the population under study. The
aim is to produce causal models while guarding against different sources of
bias like hidden confounders, sampling bias, incomplete models, feedbacks
and so on.

In the first part of this chapter, we cover a few ideas from the theory of
causation in Section 3.1 and then suggest that the double activity of build-
ing causal models while at the same time guarding against bias has features
of a cooperative game. We then suggest to import the theory of Nash equi-
librium and provide a simple example motivated by the theory of optimum
experimental design under a heading of optimal bias design. In the second
part, starting from the definition of classical entities such as contrasts and
then building on the idea of using randomized control trials (e.g. AB test-
ing, see Section 3.5), the main objective is to be able to measure parameters
and contrasts while guarding against biases from hidden confounders. An
algebraic method based on circuits is briefly introduced, which gives a wide
choice of randomization schemes.

45
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The first part of the chapter is based on [161], while the second part
on [159].

3.1 Causal Graphical Models
A major critique of passive analysis of the machine-learning type is the lack
of attention in building causal models. In this section, we discuss briefly the
main theory of causal graphical models, in particular we consider directed
acyclic graphs (see Appendix D for a brief review), and their implications in
experimental design [174].

A causal model is often described via a directed acyclic graph (DAG),
G(E, V ), where each vertex i ∈ V holds a random variable Xi. DAGs are
vehicles for describing all conditional independence structures; indeed, the
natural intuition that the edge i→ j means Xi causes Xj is not correct, at
least not without much qualification. Nevertheless, often i→ j is interpreted
as i is a cause of j. DAGs can include variables which are never observed
as latent or also hidden. There is a slight difference: hidden may be that
one do not know it is there but it might be, while latent may also express
prior information. Thus, a latent layer in machine-learning context may
be included in a DAG to allow a more complex model, such as a mixture
model [153].

As mentioned in the introduction, the conundrum with causal models is
based on the distinction between passive observation and active experimental
design. Experimental design can be thought as an (active) intervention: one
can apply a treatment at node i to obtain a special Xi (e.g. give a patient
i a drug) or may even set high and low levels of a variable Xi. The act of
setting has the advantage of considering some kind of classical or optimal
design framework, but has also the disadvantage of destroying the ability to
learn about the population from which Xi comes [161].

Next, we make evident some assumptions, based on basic principles, and
motivate them through simple examples. Consider the DAG given by the
following Markov chain

X1 −→ X2 −→ X3 −→ X4 (3.1)

and its corresponding univariate linear version

X1 = θ0 + ε1

X2 = θ1X1 + ε2

X3 = θ2X2 + ε3

X4 = θ3X3 + ε4

where {ε}i=1,...,4 are error variables. Suppose we are interested in the last
causal parameter θ3. Ideally we would like to carry out a controlled ex-
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periment, setting the levels of X3 and observing X4. Then, an important
assumption is stated in Principle 1:

Principle 1 The distribution of X4 conditional on setting the values of
X3 is the same as if the same values were passively observed.

One can also passively observe X1, X2, X3 and X4. Note that the model
is nonlinear in the parameters as

X4 = θ3θ2θ1θ0 + θ3θ2θ1ε1 + θ3θ2ε2 + θ3ε3 + ε4

and also that X4 is Gaussian if εi, for i = 1, . . . , 4, are Gaussian. This means
that under the Gaussian assumption, we may not have to choose between a
controlled experiment and passive observation. This leads to Principle 2:

Principle 2 A mixture of passive observation and active experimenta-
tion may be optimal (see also [82]).

Most effort has been put into identifiability of DAGs (see [54] for a re-
view). A useful tool is the so called Backdoor Theorem stated in Theo-
rem 3.1.1. In the above DAG of Equation (3.1), suppose there is an extra
arrow from X1 to X4, i.e. X1 −→ X4 as in Figure 3.1. Such an arrow is
referred to as a backdoor path. Note that if the variables are indexed by
time, then the extra arrow of this type is like having a direct path from the
past to the future.

X1 X2 X3

X4

Figure 3.1: Example of a DAG with a backdoor pathway.

Now, in an experiment where X3 is fixed and X4 is observed, θ3 cannot
be simply estimated, because the distribution of X4 is corrupted by the new
path; indeed, in the observational case it holds the following

X4 = θ3X3 + θ4X1 + ε4 (3.2)

so that there are too many parameters for the observations even if we re-
peatedly observe X4.

The Backdoor Theorem in [157] establishes how to obtain the identifia-
bility of parameters when the interest is in understanding whether Xi causes
Xj .

Definition 3.1 (Backdoor Criterion). A set of variables S satisfies the back-
door criterion relative to an ordered pair of variables (nodes) (Xi, Xj) in a
DAG G if:
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1. No node in S is a descendant of Xi;

2. S blocks every path from Xi to Xj that contains an arrow into Xi.

Theorem 3.1.1. [Backdoor Theorem] If a set of variables S satisfies the
Backdoor Criterion in Definition 3.1 relative to (Xi, Xj), then a causal effect
of Xi on Xj is identifiable.

Theorem 3.1.1 gives insights on the following: (i) whether there is con-
founding given a DAG, (ii) if it is possible to remove the confounding and
(iii) which variables to condition on to eliminate the confounding. For ex-
ample in the DAG of Figure 3.1, the backdoor path between X3 and X4 is
X3, X2, X1, X4, which is blocked by X1 that is not a descendant of X3 i.e.
S = {X1}. In addition, if there are any downstream (future) variables such
as an extra X5 with X4 −→ X5, then X5 will not interfere with the causal
analysis, i.e. it can be disregarded. In summary we can state Principle 3:

Principle 3 Guard against effects from nuisance confounders by suit-
able additional conditioning.

3.2 Model oriented selection with confounders term
of sub-samples

The conditioning argument of the Backdoor Theorem 3.1.1 is a way of avoid-
ing biases. In the example of Equation (3.2), θ4 gives a bias. The theorem
provides a strategy for conditioning in order to conduct the experiment by
setting the levels of X3 and observing how X4 changes. Sometimes this is
referred to as creating a Markov blanket (see Appedix D). But there are
sources of bias which either we do not know at all or are too costly to con-
trol. Indeed, biases range from those we really know about but simply do
not observe to those which are introduced to model additional variability;
these can be handled by the inclusion of additional latent layers or by ran-
domization. In either cases, this will affect the overall distribution of the
observed variables in a way similar to the classical factor analysis. This leads
to Principle 4:

Principle 4 Special models are needed to guard against hidden sources
of bias, for example, using randomization or latent variable methods.

Here, we discuss in details how optimal experimental design can guard
against hidden sources of bias [161]. From the general model in Equa-
tion (2.1), we consider the following

E(Yx,z) = f>(x)θ+ g>(z)φ. (3.3)

This separation is familiar from traditional experimental design where θ and
φ might be treatment and block parameters respectively [21, 148]. Here
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the goal is to protect the usual least square estimator θ̂ obtained from the
reduced model ignoring the bias term g>(z)φ (as in Equation (2.2)).

Let ξx,z be a design measure on X ×Z, so that the corresponding infor-
mation matrix M can be written as a blocked matrix

M =
∫
X×Z

(
f(x)
g(z)

)(
f>(x),g>(z)

)
ξx,z ( d (x, z)) =

[
M11 M12
M21 M22

]
. (3.4)

Then the MSE of the LSE of θ is equal to σ2N−1R (see [148]), where R
is defined as

R = M−1
11 +

(
N

σ2

)
M−1

11 M12φφ
>M21M

−1
11 = S1 + S2. (3.5)

From Equation (3.5), it is straightforward (see Section 1.1.1) to derive
the loss functions for the A- and D-optimality criteria, respectively, so that

tr(R) = tr(S1) + tr(S2) (3.6)

det(R) = det(S1)
(

1 +
(
N

σ2

)
φ>M21M

−1
11 M12φ

)
. (3.7)

When X and Z are direct product, then tr(R) includes a term which does
not depend on the bias term, likewise a factor in det(R). Note that the
same approach was introduced by authors in [148] with the difference that
the bias was on x and not on confounders z.

The most familiar example is from clinical trials where one compares a
treatment against a control.
Example 3.2.1. Consider the simple case

Y1i = θ1 + θ2 + φ(z1i − z̄) + εi

Y2j = θ1 − θ2 + φ(z2j − z̄) + εj ,

where the zi are unwanted confounders which may be a source of bias, z̄ is
the grand mean and N/2 points are allocated to each group. Adapting the
above analysis we obtain

M = X>X

N
=

 1 0 0
0 1 (z̄1 − z̄2)/2
0 (z̄1 − z̄2)/2 s

 ,
where the z̄i, i = 1, 2, terms are the group means and Ns =

∑N
i=1(z1i− z̄)2 +∑N

j=1(z2j− z̄)2. The bias term is tr(S2) = ψ2(z̄1− z̄2)2/4 which is zero when
z̄1 = z̄2 (see [41]).
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This is the simplest case of balance and extends easily to multivariate z.
Other balancing methods are stratification, distance matching and propen-
sity score. They are considered weaker versions of intervention with respect
to setting the levels of a covariate because a value of the covariate, which
has been already observed, is selected (e.g. select a subject of a particu-
lar age). In stratification, observations are divided into homogeneous strata
based on any possible confounders that may affect the outcome and then a
sample from each stratum is drawn (see [5]). Distance methods, also known
as distance matching, pair up treatment and control which are close in the z-
space with respect to some distance function, e.g. the Mahalanobis distance
(see [129]). For propensity score methods, the distribution of observed co-
variates, conditional on the propensity score, will be similar between control
and treatment group [172, 174]. For a very thorough review of experimental
design methodology, both as intervention and as selection, see [43]. For a
major review on the role of randomization in agriculture and social sciences
see [40].

3.3 A Game Theoretic Approach
Consider a game theoretic approach with two players, in which one selects
a causal model design ξ1 using {θ, f} and the other selects a design for
the bias removal ξ2 using {φ,g}. They can work separately if we consider
the product design case, i.e. ξ1 ⊗ ξ2. In other cases they may cooperate
like in a cooperative game to find the best design over the design space for
the pair (x, z). However, another possibility is to use a Nash equilibrium
approach [34, 75, 194].

We illustrate the presence of Nash equilibrium in a causation-bias setup,
considering a distorted design space but still a product-type design measure
in Example 3.3.1.
Example 3.3.1. Consider the following model

E(Yx,z) = θ0 + θ1x+ φz (3.8)

and let the design has four support points with corresponding design measure
as follows:{

(1, 1), (0, 1), (0,−1), (−1,−1)
αβ, (1− α)β, α(1− β), (1− α)(1− β)

}
,

where 0 ≤ α, β ≤ 1. Note that in this case M12 is a 2× 1 column vector and
tr(S2) = (N/σ2)φ2M21M

−1
11 M12. Then, the equilibrium takes the following

form:

Player 1 : α∗ = arg min
α

tr(S1),

Player 2 : β∗ = arg min
β

tr(S2).
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There are two Nash equilibria given by solving

∂

∂α
tr(S1) = ∂

∂β
tr(S2) = 0.

This gives two solutions: (α∗, β∗) with α∗ = 0.59 and β∗ = 0.08 computed
numerically and (1/2, 1/2).

Note that both solutions do not depend on (
√
N/σ)φ, and in fact scale

invariance of this kind is a well known feature of Nash equilibrium. We can
compare the solutions with an overall optimization by setting (

√
N/σ)φ = 1

and minimizing tr(S1) + tr(S2). The minimum is 4 and it is achieved at
(α, β) = (1/2, 1/2) with (tr(S1), tr(S2))=(3, 1). Whereas at (α∗, β∗) the
value of tr(S1) + tr(S2) is approximated to 5.17 with (tr(S1), tr(S2)) =
(4.48, 0.69).

Extending Example 3.3.1 to a more general framework, we propose two
approaches which depend on the knowledge about the bias.

Approach 1. Assume φ to be unknown. Then

tr(S2) = tr
((

N

σ2

)
M−1

11 M12φφ
>M21M

−1
11

)
=
(
N

σ

)2
φ>Q1φ

where Q1 = M21M
−2
11 M12.

Under the restriction ||
√
N/σφ|| = 1, where ||·|| is the L2-norm, this achieves

a maximum at the maximum eigenvalue: λmax(Q1). This criterion is close
to the E-optimality of optimum design theory (see Section 1.1.1).

Approach 2. Assume g>(z)φ to be unknown but belonging to some
function class and that for each x ∈ X there is an unobserved z ∈ Z. Let
G = {g>(z)} and Pz be a randomization distribution for z. In the language
of game theory, this is a mixed strategy to achieve a minimax solution, and
an optimal design measure is derived as

min
Pz

EPz

{
max

function class
GφFM−1

11 F
>φ>G>

}
.

The main reasons for using randomization are that (i) it supports classical
zero mean and equal variance arguments, (ii) it produces roughly balanced
samples and furthermore (iii) it helps support assumptions of exchangeabil-
ity in a Bayesian analysis [81, 187].

3.4 Constrained Design Measure
As shown in Section 3.3, two players may operate like in a cooperative game
and reach a Nash equilibrium. In particular, they can operate independently
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in a product design case and the problem becomes easier from a mathemat-
ical perspective. Unfortunately, there are cases in which constraints on the
design do not allow this approach.

To better understand what a constraint on a design means, first we
provide the definition of constrained design measure, then we present a sim-
ple motivating example for the approach that is presented in Sections 3.5
and 3.7.
Definition 3.2 (Constrained Design Measure [217]). Let (X ,A,Ξ) be a
probability space over a σ-field A with probability measure Ξ. A constrained
design measure ξ ∈ Ξ is a non-negative and σ-additive sub-measure on A
with the following properties:

1. ξ(A) ≤ Ξ(A) for all A ∈ A;

2. ξ(X ) = v, with 0 ≤ v ≤ 1.
Note that from property 1., ξ is absolutely continuous with respect to Ξ and
it is denoted as ξ � Ξ.

Motivating Example
Consider the same model as in Equation (3.8), and assume x ∈ X =

{−1, 1}, z ∈ Z = {−1, 1} and X ⊗ Z. Assume also that φ > 0. Let ξ be
a weighted and constrained 22 factorial design ξ � Ξ, such that, under the
model in Equation (3.8), the design matrix X is

X =


1 −1 −1
1 −1 +1
1 +1 −1
1 +1 +1

 . (3.9)

with the weighted constrained sub-measure ξ and the associated probability
measure Ξ, respectively,

ξ
z

−1 +1

x
−1 p q
+1 q p

Ξ
z

−1 +1

x
−1 P Q
+1 Q P

with constraints 0 ≤ p ≤ P ≤ 1 and 0 ≤ q ≤ Q ≤ 1. For convenience,
we define D(ξ) to be the diagonal matrix with diagonal elements the design
weights in ξ, so that

D(ξ) =


p 0 0 0
0 q 0 0
0 0 q 0
0 0 0 p

 ,
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and the full moment matrix M(ξ) as follows

M(ξ) = X>D(ξ)X =

 2(p+ q) 0 0
0 2(p+ q) 2(p− q)
0 2(p− q) 2(p+ q)


=
[
M11 M12
M21 M22

]
. (3.10)

From the formula derived in Equation (3.5), we compute the inverse of M11,
i.e.

M−1
11 =

[ 1
2(p+q) 0

0 1
2(p+q)

]
.

If the interest is in minimizing tr
(
MSE

(
θ̂, θ
))

in order to find the
A−optimal design, from Equation (3.6) and noting that φ ∈ R, we have in
particular

tr
(
MSE

(
θ̂, θ
))

= tr
(
M−1

11

)
+ φ2M21M

−2
11 M12

so that

M(p, q, φ) = tr
(
MSE

(
θ̂, θ
))

= 1
p+ q

+ φ2
(
p− q
p+ q

)2
. (3.11)

Suppose we have p ≤ P = 1
2 and q ≤ Q = 1. The minimization problem

then becomes

M∗ = min
p,q

M(p, q, φ) (3.12)

subject to 0 ≤ p ≤ 1
2 and 0 ≤ q ≤ 1 (3.13)

and we get the following solutions (unique global minimum)
(

1
2 , 1
)

if
{
q > 1

4 and φ2 ≤ 3
2

(
1+2q
4q−1

)}(
1
2 , q
∗
)

if
{
q > 1

4 and φ2 > 3
2

(
1+2q
4q−1

)}
or
{
q ≤ 1

4

}
where

q∗ = arg min
q∈(0,1]

M

(1
2 , q

)
= 2φ2 + 1

2(2φ2 − 1) .

Performing several simulations for different values of φ > 0, we obtain a
value ofM∗ always smaller than 1. We listed some results of the simulations
in Table 3.1 and the level curves of M(p, q, φ) for φ = 2 in Figure 3.2.

Another approach could be to impose the bias to be exactly zero and
search for a Nash solution. In order that the second term in Equation (3.11)
is equal to zero, p must be equal to q, leading to

tr
(
MSE[θ̂, θ]

)
= 1
p+ q

.
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φ φ2 p∗ q∗ M∗

1/2 1/4 1/2 1 25/36
1 1 1/2 1 7/9√
3/2 3/2 1/2 1 5/6
2 4 1/2 9/14 15/16
4 16 1/2 33/63 63/64

Table 3.1: Results based on several simulations for different values of φ.

Figure 3.2: Level curves of M(p, q, φ) for φ = 2.

Then search for the minimum such that the following conditions are satisfied:
0 ≤ p ≤ P , 0 ≤ q ≤ Q and p = q. In this case the solution is reached at
p∗∗ = q∗∗ = 1

2 , with M
∗∗ = 1. Notice that, in this simple example, imposing

zero bias does not lead to the global minimum, that is achieved through a
combined solution for any value of φ (see Table 3.1).

In the next sections, following the ideas of this motivating example, we
present a general methodology to derive a variety of valid randomization
schemes.

3.5 Randomized Control Trials
As it has already been mentioned in Sections 3.1 and 3.2, in most fields
a controlled experimental design is conceived as an intervention because
of setting the level of a variable X or applying a treatment. Nowadays,
randomization is used outside its traditional areas of clinical trials under the
generic term randomized control trials (RCT ), in particular the heading A/B
testing is used for social media and online marketing experiments (see [123])
and for smart metering in homes and transport (see [80]).

The removal of biases in modeling is a major reason to randomize. In
this chapter we use randomization only in the design for bias reduction, but
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another approach could be to use randomization in the analysis for making
probability statements. A compromise position is a minimax approach which
is closely related to the use of randomization in finite population sampling
(see [185, 194, 195, 220]).

In the next sections, we introduce a general randomization technique,
namely the theory of circuits, already studied in numerical analysis and
algebraic statistics which has a subtle relationship with combinatorial de-
sign [11].

3.5.1 A/B Experiments

Consider an A/B experiments in which we want to assess the difference
between the effect of two treatments A and B with effects θ1 and θ2, respec-
tively. Let γ be the parameter of interest defined as the difference between
θ1 and θ2, i.e. γ = θ1 − θ2. Assume that two subjects i and j receive,
respectively, treatments A and B. Then we have

Y1i = θ1 + δ1i, i = 1, . . . , n1,

Y2j = θ2 + δ2j , j = 1, . . . , n2

where n1 and n2 are the corresponding sample sizes and δ1i, δ2j be the er-
rors of measurement or other (hidden) factors. Then, the estimator of the
treatment difference is

γ̂ = θ̂1 − θ̂2 .

Here the estimates of θ1 and θ2 are given by the respective sample means,
i.e.

θ̂1 = Ȳ1· , θ̂2 = Ȳ2· ,

where Ȳ1· is the average of measurements over group A and Ȳ2· is the aver-
age of measurements over group B. If one randomizes, then the difference
between the mean values of the deviations due to other factors will cancel
out, i.e. the expected value of δ1−δ2 is zero. Note that if δ1i, δ2j are random
error terms with standard assumptions then γ̂ is both the LSE and the best
linear unbiased estimate of γ.

It is clear that using Big Data for commercial opportunities is very ap-
pealing but comes with a risk of bias arising from any number of demographic
and operations factors. Although describing the population of social media
users is challenging, if bias can be removed in a simple way, then the esti-
mates will be more robust.

Here, we introduce a special technique, based on circuits, to decompose
an experiment into mutually exclusive (randomization) blocks in each of
which randomization can be carried out separately. After a formulation of
the problem in the rest of this section, we formally define valid randomiza-
tion schemes in Section 3.6, followed by a short discussion on analysis in
Section 3.6.4. For more details see [159].
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3.5.2 Contrasts

Let {Yx1 , . . . , Yxn} be a random sample and consider a standard regression
model as in Equation (1.1), and let µ = E(Yx) = Xθ (see Equation (1.2)).
Then, we can define empirical and parametric contrasts.

Definition 3.3 (Empirical Contrast). A linear function T =
∑n
i=1 ciYxi

with fixed coefficients {ci} and data values {Yxi} is called an empirical con-
trast if

∑n
i=1 ci = 0.

Definition 3.4 (Parametric Contrast). For a standard regression model, a
parametric contrast is defined as the expectation of an empirical contrast.

The basic idea is to divide an experiment into disjoint blocks in each of
which we randomize, and then combine the results.
Example 3.5.1 (22 factorial design). Consider a 22 factorial design problem,
with ±1 levels and no replication (for simplicity) and a model without in-
teractions

E(Yx1,x2) = θ0 + θ1x1 + θ2x2 ,

so that design matrix is

X =


1 1 1
1 −1 −1
1 1 −1
1 −1 1

 .
If one randomizes a large population and uniformly applies the four combi-
nations of the design, {±1,±1}, the potential bias effect will be negligibly
small because the estimators of the θ-parameters are unbiased.

An alternative is to split the population into two groups, randomize each
separately and apply the controls (x1, x2) = {(1, 1), (−1,−1)} to the first
group and the treatments {(1,−1), (−1, 1)} to the second group. Then one
can estimate θ1 + θ2 from the first group and θ1− θ2 from the second group.
The combination of these estimates gives the same result, except for possible
small effect or confounders, as if one randomized over the whole 22 experi-
ment. Note that the parameters θ1 and θ2 and their estimates are already,
respectively, parametric contrasts and empirical contrasts. This can be seen
as splitting the 22 experiment into two (randomized) AB experiments.

Note that if we take x2 = z in Example 3.5.1, this is exactly the example
in Section 3.4.

3.5.3 Writing a Model in Contrast Form

In the case of orthogonal designs, the X matrix takes the form

X = [j : X1], (3.14)
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where j is a n-vectors of ones, for the constant (intercept) term, and X1 is
orthogonal to j.

Definition 3.5 (Matrix in Contrast Form). Let X be a design matrix de-
fined as in Equation (3.14). Then, X is said to be in contrast form if

j>X1 = 0.

Since all empirical and parametric contrasts are derived from X1, it is
possible to prove the following lemma.

Lemma 3.5.2. For a regression model with µ = E(Yx) = X̃θ, where the
matrix X̃ is written in contrast form X̃ = [j : X1], the set of all parametric
contrasts is {

c>µ : c>µ = c>X1θp−1 and c>j = 0
}
,

with c> = {ci, . . . , cn} and θ = (θ0, θp−1), where θ0 ∈ R and θp−1 ∈ Rp−1.

Proof. If
∑n
i=1 ci = 0, this follow since

E(c>Yx) = c>E(Yx) = c>X̃θ = c>[j : X1]θ
= c>jθ0 + c>X1θp−1 = c>X1θp−1.

Note that from any model with design matrix X defined as in Equa-
tion (3.14) it is always possible to derive a reparametrization with a design
matrix X̃ written in contrast form as stated in Lemma 3.5.3.

Lemma 3.5.3. A design matrix X with column space containing the vector
j> = (1, 1, . . . , 1) can be transformed to contrast form X̃ = [j : X1] with the
same column space as X, where j>X1 = 0.

Proof. The reparametrization which the transformation requires can be eas-
ily determined. Starting with

X̃θ̃ = Xθ

and solve for θ̃
θ̃ = (X̃>X̃)−1X̃>Xθ.

The term contrast is especially prevalent inAnalysis of Variance (ANOVA),
i.e. models for qualitative factors in which each level of each factor provides
a parameter for an additive model [182]. The classical notation for a two-
way I × J ANOVA with two factors is that the additive model would have
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parameters αi, (i = 1, . . . , I) and βj , (j = 1, . . . , J) and the model for the
observations Yij is

Yij = αi + βj + εij , (3.15)

where {εij} are the random errors with standard assumptions.
Example 3.5.4 (Two-way ANOVA). Consider the model in Equation (3.15)
and let I = J = 2. By using indicator variables and setting θ = (α1, α2, β1, β2)>,
write the model in regression form, E(Yx) = Xθ where

X =


1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1

 .
The X-matrix is not in contrast form yet, but it can be transformed to one
that is

X̃ =


1 1 1
1 1 −1
1 −1 1
1 −1 −1

 .
In this case the reparametrization is

θ̃0 = 1
2(α1 + α2 + β1 + β2) ,

θ̃1 = 1
2(α1 − α2) ,

θ̃2 = 1
2(β1 − β2) .

Note that here we have limited the analysis to the decomposition of X̃
into [j : X1] since for randomization we are interested in the decomposition
of the vector j, but the results in this section, and many results about the
circuit basis in the next sections, could be generalized to a decomposition of
X̃ into [X2 : X1] with X>2 X1 = 0.

3.6 Valid Randomizations
Starting for the representation of a matrix in contrast form, we introduce
and analyze randomization systems in order to describe the separation into
randomization blocks introduced in Section 3.5.1.

Definition 3.6 (Potential Randomization System). For observations Yxi ,
for i = 1, . . . , n, a potential randomization system R is a set partition of
N = {1, 2, . . . , n}, namely a decomposition of N into disjoint exhaustive
subsets, R1, . . . , Rk, called blocks, of size 2 or more, such that
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1. ∪k1=1Ri = N

2. Ri ∩Rj = ∅, 1 ≤ i < j ≤ k

3. |Ri| ≥ 2, i = 1, . . . , k

Definition 3.7 (Valid Randomization System). For a regression model and
experimental design ξn with sample size n and a design matrix in contrast
form [j : X1], a valid randomization system is a potential randomization
system for which all the associated binary vectors δ(i) = (δi,1, . . . , δi,n), where

δi,j =
{

1, i ∈ Rj
0, i ∈ N \Rj

,

are orthogonal to X1, i.e. (δ(i))>X1 = 0, for i = 1, . . . , n.

In the next sections we provide some examples of valid randomization
systems.

3.6.1 Factorial fractions

We consider a 23 factorial experiment for main effects [22, 23]. The standard
X matrix is already in contrast form:

X> = X̃> =


1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 1 −1 1 −1 1 −1

 (3.16)

In addition to a full randomization, there are two different randomization
systems and we list the Rj partitions for each:

1. {1, 4, 6, 7}, {2, 3, 5, 8} ;

2. {1, 8}, {2, 7}, {3, 6}, {4, 5} .

These two distinct randomizations correspond to familiar decomposition into
blocks based on abelian groups (see e.g. [23]). The first arrives from a 23−1

experiment with defining contrast sub-group in classical notation

I = ABC,

while the second corresponds to the 23−2 with sub-group

I = AB = BC = AC,

corresponding respectively to the solutions of

(1) : x1x2x3 = ±1, and (2) :
{
x1x2 = ±1
x2x3 = ±1 .
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3.6.2 Tables and Latin Squares

Consider a I×I table with the usual additive model. A Latin square [41, 111]
is a design method of placing I treatments and two blocking criteria each
with I levels, where each treatment appears once in each row and once
in each column, and then choose a design at random subject to those two
constraints. If I = 3 there are two mutually orthogonal Latin squares (in
traditional notation):

A B C
C A B
B C A

a b c
b c a
c a b

Each square gives a different valid randomization based on the letters. La-
beling the observations left-to-right and top-to-bottom the respective blocks
are

{159, 267, 348}, {168, 249, 357}.

Based on the above example, we state a more general result in Lemma 3.6.1.

Lemma 3.6.1. For an I × I additive Analysis of Variance model a set of
mutually orthogonal Latin squares provides a set of alternative valid ran-
domizations.

3.6.3 k-out-of-2k choice experiments

Choice experiments [25] are those in which subjects are asked to score a
selection of attributes from a portfolio of attributes. Models are fitted to
experimental data in an effort to discover subjects’ (hidden) preference order.

Suppose there are n = 4 attributes and to each subject are offered k = 2
attributes, labeled 1, 2, 3, 4. There are six selection pairs

{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}.

An additive preference model has (without replication) the six values Yi,j
with model

Yij = αi + αj + εi,j (i, j = 1, 2, 3, 4; i < j).

We are interested in contrasts αi − αj , because their estimates would yield
an estimated preference order. In this case the standard X matrix is

X =



1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1


.
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This gives a choice of X1 such that

X>1 =

 −1 0 0 0 0 1
0 −1 0 0 1 0
0 0 −1 1 0 0

 ,
and the respective randomization is {16, 25, 34}.

3.6.4 Analysis

The condition of orthogonality in the definition of valid randomization has
so far ignored the fact that in standard terminology blocks do not have to be
orthogonal. Indeed, there is rich theory of balanced incomplete blocks design
(BIBD) [106, 228] both from combinatorial and from optimal design theory.
For completeness, we note here some basic facts about orthogonal versus
non-orthogonal blocks:

1. For orthogonal designs, we set up a model in which for every j-vectors
is allocated a block parameter; then only under orthogonality is the
usual LSE of the θ-parameters and there is no bias of these estimates
from the block effects.

2. In the non-orthogonal blocks design case, if we use the LSE of the
θ-parameters assuming that the block parameters are zero, when they
are not, then the block parameters introduce a bias.

3. In the non-orthogonal blocks case, the “proper” LSE estimate of the θ-
parameters in the presence of the block parameters, will be unbiased
but will have higher variances than case 2. above (the covariance
matrix will be Loewner-dominated).

The reason for considering orthogonal designs is that models with non-
orthogonal blocks with a specified block effect require some effort to model,
or at least interpret, the block effect (e.g. the effect of day if the experiment
is conducted over days). In such cases a bias model is required. But where
bias is caused by hidden, unspecified, confounders, the effects of such a bias
model seem too artificial to model but sufficiently present, so that we prefer
orthogonality.

3.7 Circuit Basis for Randomization
In this section, we introduce the concept of circuits of a matrix to analyze
the problem of randomization. In particular, we consider a randomization
as the decomposition of the vector j = (1, . . . , 1)> into binary vectors, such
that

j = j1 + . . .+ jk (3.17)
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where each vector jh is a binary vector satisfying

j>hX1 = 0 , h = 1, . . . , k. (3.18)

Definition 3.8 (Binary Randomization Vectors). Binary vectors jh satisfy-
ing Equation (3.18) are called binary randomization vectors.

Note also that from Equation (3.18) we have

ker(X>1 ) =
{

jh : j>hX1 = 0
}
. (3.19)

Now, let A be an integer-valued matrix with d rows and n columns and
assume that A = X>1 . Let u ∈ Zn be an integer-valued vector and let u+ be
the positive part of u, namely u+

i = max(ui, 0) for i = 1, . . . , n, and u− be
the negative part of u, namely u−i = −min(ui, 0) for i = 1, . . . , n, so that
u = u+ − u−. Moreover, denote with Supp(u) the support of u, i.e.

Supp(u) = {i ∈ {1, . . . , n} : ui 6= 0} .

There are many definitions of circuit; here, we refers to the definition
specialized to the context of the design of experiments [73].

Definition 3.9 (Circuit). An integer-valued vector u is a circuit of a matrix
A if and only if

1. u ∈ ker(A);

2. there is no other integer vector v ∈ ker(A) such that Supp(v) ⊂
Supp(u) and Supp(v) 6= Supp(u).

Definition 3.10 (Circuit Basis). The set of all circuits of the matrix A is
called circuit basis of A, denoted with C(A), and it is always finite.

Note that one can compute the set C(A) using a specific software (e.g.
4ti2 [1]). In Proposition 3.7.1 we briefly provide some properties and fea-
tures of circuits and circuit basis (see [159, 198] for complete proofs and
further details) which will be useful for describing a class of experimental
designs for which every valid randomization is a circuit.

Proposition 3.7.1. Let A be an integer-valued matrix with dimensions d×n
and suppose that rank(A) = d. The following properties hold:

1. The circuit basis C(A) is subset compatible, i.e. if one considers a
matrix A′ by selecting n′ < n columns, then the circuit basis of A′ is
formed by the circuits in C(A) with support contained in the n′ columns.

2. A circuit u in C(A) has cardinality of the support at most d+ 1.
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3. Each vector v of ker(A) can be written as a rational non-negative linear
combination of circuits as follows

v =
n−d∑
h=1

qhuh qh ∈ Q+ (3.20)

with uh conformal to v, i.e. Supp
(
u+
h

)
⊂ Supp

(
v+) and Supp

(
u−h
)
⊂

Supp (v−).

Proof. For a detailed proof see [198].

1. Follows by the definition of circuits.

2. Suppose u ∈ ker(A) has cardinality r ≥ d + 2, i.e. it has r non-zero
coordinates. Let B be the d × r-submatrix of A given these column
indices. The kernel of B is then at least 2-dimensional and hence
contains a non-zero vector v′ with at least one zero coordinate. Extend
v′ to a non-zero vector v ∈ ker(A) by placing zero in the other n − r
coordinates. Then Supp(v) is a proper subset of Supp(u), which is a
contradiction because by hypothesis u is a circuit.

3. Fix d and proceed by induction on n. If n ≤ d + 1 then it is trivial.
If n ≥ d + 2, let v be a non-circuit in ker(A). We also assume that
Supp(v) = {1, . . . , n} without loss of generality. Let u = (u1, . . . , un)
be any circuit such that u1v1 > 0 and among all positive coordinate
ratios vi/ui, let λ denote the minimum. Then v−λu is conformal to v
and has zero i-th coordinate. By the induction hypothesis, the vector
v − λu can be written as a conformal rational linear combination of
n−d−1 circuits. The identity v = λu+(v−λu) completes the proof.

The first main results follow directly from the fact that a circuit lies in
ker(A).

Lemma 3.7.2. Any non-negative binary circuit of A = X>1 provides a
randomization vector.

As an example, if a non-negative binary circuit j1 gives a valid random-
ization, then also j2 = j− j1 (see Equation (3.17)) is a binary non-negative
vector in ker(A) so that the decomposition j = j1 + j2 is a valid randomiza-
tion. An important results is that if j2 is also a circuit, then j = j1 + j2 is a
non decomposable randomization. If it is not a circuit, j2 can be decomposed
into the sum of non-negative circuits.

Note that from the point 3. of Proposition 3.7.1, the circuit basis, and
in particular the set of non-negative circuits, is a tool to find valid non
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decomposable randomizations. In general, if the vector j can be written as
the sum of a binary non-negative circuits we have a valid randomization. The
main problem is to identify conditions for when the opposite holds too, that
is to say classes of experimental designs for which every randomization vector
jh is a circuit. Here we provide a sufficient condition, while in Section 3.8
an important class of experimental designs will be described.

Lemma 3.7.3. If j1 is a non-negative binary randomization vector with two
non-zero elements (i.e. the cardinality of Supp(j+

1 ) is 2), then it is a circuit
of XT

1 .

Note that for every j1-vector as in Lemma 3.7.3, there are two rows of
X>1 which have opposite signs. This is the case in Example 3.6.3. More in
general we have the following results.

Lemma 3.7.4 (k-out-of-2k). Any k-out-of-2k choice experiment is a valid
randomization with blocks of size 2.

This shows that if one has a valid randomization comprising binary vec-
tors each with two non-zero binary vectors then it will be found by inspecting
the list of all circuits.

Practically, to find the randomization systems from the circuit basis, the
procedure is to start from the design matrix X, write it in contrast form
X̃ and extract the contrast matrix X1 as described in Section 3.5.3. The
actual computation of the circuits of the matrix X1 can be done using the
software package 4ti2 [1]; see [159] for computational considerations and
other examples.
Example 3.7.5 (23 factorial design). Consider the same 23 factorial experi-
ment for main effects of Section 3.6.1. We extract the contrast matrix X1
from Equation (3.16), i.e.

X>1 =

 1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 1 −1 1 −1 1 −1

 .
We then compute the circuits using the software 4ti2 [1]. The output
consists of 20 circuits, 6 of which are non-negative:

0 0 0 1 1 0 0 0
0 0 1 0 0 1 0 0
0 1 0 0 0 0 1 0
1 0 0 0 0 0 0 1
0 1 1 0 1 0 0 1
1 0 0 1 0 1 1 0


.
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This yields the two randomization schemes already discussed in Section 3.6.1,
i.e.

{{1, 8}, {2, 7}, {3, 6}, {4, 5}} {{1, 4, 6, 7}, {2, 3, 5, 8}}.

Here, there is only one valid randomization based on 2-ers (i.e. entities of
size 2) and only one valid randomization based on 4-ers.

Note that with the aid of circuits we are able to analyze also more com-
plex models where the number of randomization systems is relatively large.
For example, in the case of a 24 design with contrasts on the main effects
there are 456 circuits, among which only 32 are non-negative binary circuits:
8 circuits with support on two points give a unique randomization based on
2-ers, while with the remaining 24 circuits on 4-ers we can construct 30 valid
randomizations because each circuits can be used in 5 possible randomiza-
tions.

The problem of which randomization to choose in the case of large choice
of valid randomization is briefly discussed in Section 3.9.

3.8 Totally Unimodular X1

In this section the main goal is to understand what are the properties of
X>1 for which the full valid randomization system can be found as a set of
circuits.

Definition 3.11 (Totally Unimodular Matrix). A totally unimodular matrix
A is one for which all square sub-matrices (including itself if square) have
determinant 0, 1, or −1. In particular, this implies that all entries are 0 or
±1 (see [93, 97]).

The key results of this section is presented in Theorem 3.8.1, which
provides the choice of a large variety of valid randomization schemes.

Theorem 3.8.1. Let A = X>1 be the design matrix of a regression model
in contrast form and suppose A is totally unimodular. Then every valid
randomization is based on circuits.

In order to prove Theorem 3.8.1, we first introduce Lemma 3.8.2, which
is based on known results of the theory of Gröbner basis (see Appendix E
and [159, 198]).

Lemma 3.8.2. For a totally unimodular matrix A all circuit vectors are
binary.

Proof. Consider the circuits as represented by binomials as xu+ −xu− , with
u = u+ − u−. These binomials generate a toric ideal I(A) as shown in
Appendix E. If A is totally unimodular then it is known that the initial
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ideal in≺(I(A)) is generated by square-free binomials for any given term-
order (see [198]). The initial ideal in≺(I(A)) of the ideal I(A) is the ideal
generated by the leading terms of the polynomials in I(A). Thus, all the
binomials in the universal Gröbner basis U(I(A)) have square-free leading
terms. Finally, the non-negative circuits are elements of U(I(A)), viewed as
binomials of the form xu−1. The leading term is always xu, it is square-free
and therefore u is binary.

We now complete the proof of Theorem 3.8.1 with Lemma 3.8.3.

Lemma 3.8.3. If the contrast matrix A = X>1 in a regression model is
totally unimodular then every non decomposable randomization vector j is a
circuit.

Proof. This is by contradiction. Let j1 be a non-negative binary non de-
composable randomization vector and suppose it is not a circuit. Since
j1 ∈ ker(A), by point 3. of Proposition 3.7.1, j1 has a representation as a
non-negative linear combination of circuits uh, for h = 1, . . . , n − d. The
support of one circuit uh is strictly contained in Supp(j1). Furthermore,
# Supp(j1) − # Supp(uh) > 1 with # denotes the cardinality of the sup-
port, because j1 is not a circuit and there are no circuits with support on
one point. Moreover, the circuit uh is binary by Lemma 3.8.2. So there
is a refinement given by j1 = uh + (j1 − uh), which contradicts j1 being
non decomposable. Thus, for A unimodular, the circuits and the universal
Gröbner basis are equal.

Example 3.8.4 (Directed Graph). An example of totally unimodular matrix
A is generated by a directed graph G(E, V ). The associated matrix is con-
structed such that the rows are indexed by vertices and the columns by
directed edges with the following rule for entries: if the edge is e = (i→ j)
then entries Ai,e = 1, Aj,e = −1 and all the other entries in column e are
zero. Finally, the A in order to be an X1 matrix should be row orthogonal to
j = (1, . . . , 1), i.e. it is required that for any vertex the number of in-arrows
and the number of out-arrows must be the same.

Let |V | = 5, |E| = 15 be, respectively, the number of vertices and the
number of edges of the directed graph in Figure 3.3. The corresponding
A = X>1 is

1 1 1 0 0 0 0 0 −1 0 −1 0 −1 0 0
−1 0 0 1 1 1 0 0 0 0 0 −1 0 −1 0

0 −1 0 −1 0 0 1 1 1 0 0 0 0 0 −1
0 0 −1 0 −1 0 −1 0 0 1 1 1 0 0 0
0 0 0 0 0 −1 0 −1 0 −1 0 0 1 1 1


The output of the software 4ti2 [1] consists of 198 circuits, 33 of which
are non-negative. Among these, there are 5 valid randomizations based on
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1

2

5

3

4

Figure 3.3: The directed graph on 5 points of Example 3.8.4.

Randomization r

5+5+5 1
5+5+3+2 5

5+3+3+2+2 5
5+2+2+2+2+2 1
4+4+3+2+2 10

4+3+2+2+2+2 5
3+3+3+2+2+2 5

Table 3.2: Valid randomization obtained from Example 3.8.4.

2-ers, 10 based on 3-ers, 10 based on 4-ers, and 8 based 5-ers. The obtained
valid randomizations are reported in Table 3.2 giving the cardinality of the
subsets and the number r of different choices.

3.9 Conclusions and next development
The class of design matrices of Section 3.8 provides, in appropriate cases,
the choice of a large variety of valid randomization schemes and under spe-
cial conditions all valid randomizations. An aspect that has not been taken
into account in this work, but it is also relevant and provide a reason to
consider the theory of circuits is the randomization cost: it may be that a
cost function, which is related to the structure of the randomization, could
lead to useful strategies in case where the choice of valid randomizations
is very large. For example, there is a considerable literature on sequential
randomization, in the A/B experiments case, on a model in which subjects
(or patients) are awarded treatments A or B on the equivalent of a toss of
a fair coin (biased coin design, see [7, 9, 59]). This is an example where
the method proposed in the second part of this chapter should be a cheaper
procedure administratively than randomizing over a fixed population in or-
der to conduct a more complex randomized block experiment. Also in the
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context of sequential and adaptive randomization this theory might be rele-
vant and costs should be traded with effectiveness (see for example the use
in CoViD-19 vaccination trial [120, 202]).

A major challenge is the computational effort required to compute all the
circuits, indeed there is the need to extend the theory and the technology
of randomization in order to allow fast computation. Finally, it is worth
mentioning work could have been extended to the theory of matroids and
permutation groups, see for example [26] for the relation between matroids
and permutation groups.

Summary
If we search for an optimal design in the presence of bias, what has been
presented in this chapter may be summarized as follows:

• If we look for complete removal of bias with no constraints we get an
orthogonal Nash solution.

• If we look at removal of bias with constraints in the design, it is neces-
sary to proceed with a local randomization, which gives more flexibility
to select optimal design, but leads to more difficult Nash solution.

• Use the theory of circuits to have the choice of a large variety of valid
randomizations schemes.

In particular, after a discussion of some issues related to the use of exper-
imental design to help establishing causation in complex models, the first
part of this chapter is dedicated to the use of optimal design methods to re-
move bias. This is important because bias can destroy the identification of
causation by corrupting or omitting counterfactuals. We also proposed pos-
sible solutions, including randomization. In the second part, we considered
randomized control trials, in particular we concentrate on A/B experiments,
largely used by major Tech Companies (e.g. Google and Microsoft) in online
marketing. After careful definitions of contrasts and valid randomizations,
an algebraic method based on circuits has been briefly sketched, which gives
a wide choice of randomization schemes.

The first part of the chapter is based on [161], while the second part
on [159].



Chapter 4

An Exchange Algorithm for
Sampling in the Presence of
Outliers

As already mentioned in Chapter 2, it may happen that some outliers
are present in a Big Data framework. For instance, suppose to use the
D−optimality criterion to select a sub-sample which is informative for es-
timation purposes; it is known that D−optimal designs tend to lie on the
boundary of the design region. In the algorithms presented in Chapter 2, all
the available data constitute the design region, thus if outliers are present,
they may be wrongly selected by applying the D-criterion.

In this chapter, the goal is to derive a procedure, computationally effi-
cient, to select from a Big Dataset a subset which contains the most infor-
mation about the inferential goal but avoids the outliers. To this aim, we
propose a modification of the Exchange Algorithm presented in Section 1.3.1
in order to obtain a design that is advantageous both for D-optimality and
robustness. Here, we assume the observed values of the response variable
to be known for each observation in the Big Dataset. In Section 4.1 we in-
troduce the problem of finding D-optimal designs in the presence of outliers
and we provide an example. In Section 4.2 we propose a sampling strategy
which derives a precise estimate of the model coefficients of Chapter 2 avoid-
ing outliers thanks to a robust loss function. In Section 4.3 we propose an
algorithm for the above method and an approach for its initialization. Fi-
nally, we perform some simulations which serve as motivation for the above
mentioned problem in Section 4.4.

69
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4.1 Motivation
Assume that the super-population model of Equation (2.2) has generated N
independent identically distributed random variables of the type (xi, Yxi)
of dimension k + 1 for i = 1, . . . , N , with k the dimension of xi. Let
D = {(f(x1), Yx1), . . . , (f(xN ), YxN )}, with f ∈ Rp, be the dataset under
consideration. In this chapter, we describe a new sampling method from a
give tall dataset D with the goal of selecting n observations (p < n � N)
in order to derive an efficient estimate of the model coefficients even in the
presence of outliers.

Given a population U = {1, . . . , N}, let sn ⊆ U be a collection of n
different indices from U , i.e. a sample without replications of size n. Let Sn
be the set of all possible samples without replications of size n that can be
formed from U and ξ denotes a conditional sampling design, i.e. a selection
probability law on Sn which depends on the given dataset D. Define Ξ as
the set of all the possible conditional sampling designs on Sn and note that
Ξ includes also the sampling designs which are independent on D (constant
functions of D). Given a sample sn, define X to be the n× p matrix whose
rows are f(xi), for i ∈ sn. Finally, let Y = (Yxi1 , . . . , Yxin )> be the n × 1
vector containing the dependent random variables corresponding to the x’s
present in the sample sn.

The LSE θ̂ of the coefficients of the linear model based on the sample sn
is:

θ̂ = θ̂(sn) = (X>X)−1X>Y

=
(

N∑
`=1

f(x`)f>(x`) i`

)−1 N∑
`=1

f(x`)Yx` i`

where

i` =
{

1 if ` ∈ sn
0 otherwise

, with ` = 1, . . . , N

is the sample inclusion indicator.
The aim is to select an optimal sample in order to maximize the precision

of the estimator for θ, that is we want to find an exact design that minimizes
some convex function of the information matrix defined in Equation (1.16),
or equivalently maximizes some concave function of the information matrix.
In this chapter, to improve the precision of the estimator, we suggest to
select a sample sn according to D-optimality. We denote the D-optimum
sample as

s∗n = arg sup
sn⊂{i1,...,iN}

det
(

N∑
`=1

f(x`)f>(x`)i`

)
. (4.1)

When the dataset D contains outliers, s∗n will also include them because
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Figure 4.1: D-optimal design in the presence of outliers of Example 4.1.1 (in red).

they maximize the determinant. This produces non-reliable estimates, as
shown in Example 4.1.1
Example 4.1.1. Consider the following super-population model

Yxi = θ0 + θ1xi + εi i = 1, . . . , N

where xi ∼ N (3, 4), εi ∼ N (0, 92) and with θ = (1.5, 2.7) and N = 1000.
Seven outliers are generated from the following model:

Yxout
i

= θ0 − θ1x
out
i + εout

i i = 1, . . . , 7

where xout
i ∼ N (3, 20), εout

i ∼ N (0, 202). Finally let D be the dataset
containing also the outliers. We want to select from D a sample of n = 100
observations under the D-optimality criterion. We compute the D-optimal
design using the function od_KL of the R package OptimalDesign [87]; the
resulting sample (in red) is shown in Figure 4.1. As expected, the outliers
are included in the sample because they maximize the determinant of the
information matrix.

Therefore, to avoid the selection of outliers when applying theD-optimality
sampling, we propose a modification of the well-known exchange algorithm.

4.2 Sampling Strategy
We propose to select the sub-sample maximizing the determinant of the
information matrix (i.e. D-criterion) under a constraint on a loss function
to avoid the selection of outliers. More precisely, we suggest to select two
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“complementary” samples: sn that is used to estimate θ and is chosen by
a sequential method based on D-optimality, and sm ⊂ {U \ sn} which does
not include outliers and is used to evaluate the prediction ability of the fitted
values Ŷxj = f>(xj) θ̂, j ∈ sm, which depends on sm through f>(xj) and on
sn through θ̂ = θ̂(sn). The idea is that if a sample sn yields to an estimate θ̂
that does not fit well the sm data, this means that sn contains some outliers
and thus it should be modified at the expense of the D-optimality. Note
that this approach is similar to divide the initial dataset into a training set
(sn) for estimating the parameters and a testing set (sm) for evaluating the
precision in the prediction.

To ensure that the sample sm does not include outliers we follow the
ideas in [95]; them units included in sm are randomly selected from {U \ sn}
under the following constraint

f>(xj)(X>X)−1f(xj) ≤ ν1p/n j ∈ sm, (4.2)

where ν1p/n is a threshold with a pre-defined tuning parameter ν1 (usually
ν1 = 2 [95]). A point xj for which f>(xj)(X>X)−1f(xj) > ν1p/n is called
high leverage point, which can be either good or bad [170]. Good lever-
age points may reduce the variance of the parameters’ estimates, while bad
leverage points will alter the fitted model. In this chapter we want to guard
specifically against bad leverage points. The constraint in Equation (4.2)
guarantees that observations in sm are not high leverage points with respect
to the sample sn, given the observed dataset D.

We compute a M-type measure of the prediction ability of the estimates
produced by sn evaluated with respect to sm as follows:

L(sn, sm,D) =
∑
j∈sm

L[Ŷxj , Yxj ], (4.3)

where L is a convex loss function. For instance, we might choose the
quadratic loss function L(z) = z2 or L(z) = |z|, or any other robust function
like the Huber, for example L(sn, sm,D) =

∑
j∈sm

(
Ŷxj − Yxj

)2
.

Given D and sn, this loss measure L is a random variable that depends
on the random sample sm. Let Sm be the set of all the possible samples of
size m without replicates from {U \ sn} and let η be a conditional (on sn
and D) distribution on Sm, such that, given sn and D, assigns null selection
probability to the samples sm that do not belong to {U \ sn} or do not
fulfil the constraint (4.2). We assume that η is chosen in advance by the
researcher. The average loss Eη[L(sn, sm,D)] is an overall measure of the
prediction ability.

Since the analytic expression of the average loss is in general not available
given sn and D, a stable estimate of Eη[L(sn, sm,D)] is herein obtained
through a Monte Carlo procedure: a number R of independent samples
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s
(r)
m (fulfilling constraint (4.2)) are extracted, L(sn, s(r)

m ,D) is computed for
r = 1, . . . , R, and finally a summary index (e.g. the sample mean) of these R
determinations L(sn, s(r)

m ,D) is considered. Let L̄(sn,D) be such an estimate
of Eη[L(sn, sm,D)], i.e.

L̄(sn,D) = 1
R

R∑
r=1

L(sn, s(r)
m ,D) .

In this work, the sample sn is sequentially updated according to D-
optimality and at each step of the iterative procedure in Section 4.3.1 the
average loss is computed. This sequential adaptation is carried on until a
specific balance between the improvement inD-optimality and the worsening
in the average loss is reached.

4.3 Proposed Algorithm
In the next two sections a modification of the exchange algorithm presented
in Section 1.3 and an initialization procedure are presented. In particular, we
introduce the constrains in Equation (4.4) to limit the choices and improve
the selection of the observations to be added to the current design.

4.3.1 Modified Exchange Algorithm

Our goal is to select a sample sn of n observations from U that guarantees
a precise estimate θ̂ in terms of D-optimality and also good predictions
in terms of average loss L̄(sn,D). In order to choose this sub-sample, we
propose a modified version of the well known exchange algorithm (see for
instance [6] and Section 1.3.1) where a given sample is improved by replacing
the observation with the smallest prediction variance with the observation
with the largest predicted variance.

Let s(0)
n be an initial sample (see Section 4.3.2 for an advantageous

method for choosing it). At step t = 0 of the exchange algorithm we have
the n × p matrix X0 whose rows are f>(xi) with i ∈ s(0)

n and L̄(s(0)
n ,D) is

computed as described at the end of Section 4.2. At step t ≥ 1, we proceed
as follows to update the available sample s(t−1)

n :

E.0 Compute the leverage scores for the current sample:

hii =
[
Xt−1(X>t−1Xt−1)−1X>t−1

]
ii
, i ∈ s(t−1)

n ,

where Xt−1 is the n × p matrix whose rows are f>(xi) and identify
unit im which corresponds to the minimum hii, i.e.

im = arg min
i∈s(t−1)

n

hii .
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E.1 To identify the set Ũ (t−1) of candidate points for the exchange with
f(xim), select randomly Ñ ≤ N − n units from

{
U − s

(t−1)
n

}
. Let

f(xj), with j = 1, . . . , Ñ , be the observations for the selected units.
Applying the formulae reported in Section 1.3.1, compute the leverage
scores himim(f(xj)) obtained exchanging f(xj) with f(xim). Then, the
set Ũ (t−1) of candidate points for the exchange is defined as

Ũ (t−1) =
{
j : himim < himim(f(xj)) < ν1

p

n

}
(4.4)

Note that the inequalities in Equation (4.4), ensure that Ũ (t−1) is
formed by units that are not in the “bulk" of the data and neither
have bad leverage points. Indeed, it is well known that D-optimal
support points are at the edges of the experimental domain, for this
reason the candidate points for the exchange are outside the core of
the data.
Let X̃t−1 be the matrix with rows f>(xj) for j ∈ Ũ (t−1).

E.2a Remove unit im (with the smallest leverage score) from s
(t−1)
n .

E.2b Add from Ũ (t−1) the observation i∗ with the largest

h̃ii =
[
X̃t−1(X>t−1Xt−1)−1X̃>t−1

]
ii
, i ∈ Ũ (t−1).

In other terms: i∗ = arg max
i∈Ũ(t−1)

h̃ii.

E.3 Let s(t)
n be the new proposed sample. Calculate the estimate L̄(s(t)

n ,D)
performing a Monte Carlo procedure as described at the end of Sec-
tion 4.2.

E.4 If L̄(s(t)
n ,D) < L̄(s(t−1)

n ,D) or if 0 < (L̄(s(t)
n ,D)−L̄(s(t−1)

n ,D))
L̄(s(t−1)

n ,D)
< c, where

c > 0 is a chosen constant (for instance, c = 0.2), then accept the
exchange and go to step E.0. Otherwise, reject the exchange and go
back to step E.1 to choose another Ũ (t−1). Set t = t+ 1.

E.5 The procedure stops, returning the final sample when the number of
iterations reaches a pre-specified value (e.g. t = 100).

Remark 1. Note that in step E.1 it is reasonable to consider the whole set{
U − s(t−1)

n

}
instead of Ũ (t−1) whenever its cardinality is not too large.
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4.3.2 Initialization step

The exchange algorithm should start from an initial sample s
(0)
n that is

already advantageous in terms of both D-optimization and robustness. A
procedure to select a suitable s(0)

n is as follows:

I.1 Select randomly a sub-population P0 of N0 = ν2(n+m) observations
from the full dataset (with ν2 of the order of 2 or 3).

I.2 Compute the leverage scores:

hii =
[
X̃0(X̃>0 X̃0)−1X̃>0

]
ii
, i ∈ P0,

where X̃0 be the N0 × p matrix whose rows are the vectors f>(xi),
with i ∈ P0.

I.3 Apply to X̃0 a robust linear regression in order to obtain a robust
MM-type estimate θ̂(0) (see [126]).

I.4 Compute the prediction of the response as Ŷxi = f>(xi)θ̂(0) for i =
1, . . . , N and the corresponding (1− α) prediction interval

CI
(0)
i = Ŷxi ± z1−α/2V̂(Ŷxi) i = 1, . . . , N .

Let P1 ⊆ P0 be

P1 =
{
i ∈ P0 | yi ∈ CI(0)

i , i = 1, . . . , N
}
,

where yi is the observed response in the dataset. Note that P1 by
construction, is formed by units that are not outliers. Let N1 be the
cardinality of P1.

I.5 From P1 select a D-optimal sample, i.e.

s(0)
n = arg sup

sn={i1,...,iN1}
det

N1∑
`=1

f(x`)f>(x`)i`

 , i` =
{

1 if ` ∈ sn
0 otherwise

with ` = 1, . . . , N1.

The derived sample s(0)
n may be used to initialize Algorithm 4.3.1 because

by construction does not contain bad high leverage points.
The most computational effort in this initialization procedure is step I.4

since it requires to compute the prediction of the response for all the points
in the datasets. One possible solution to speed up the process is to use a
divide-and-recombine approach discussed in Chapter 2: before step I.4, the
whole dataset can be divided in subsets to be assigned to different cores in
order to compute Ŷxi based on θ̂(0) and then combine the results before I.4.
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4.4 Simulations

4.4.1 Example 1

Both the modified exchange algorithm and the proposed initialization step
are applied to Example 4.1.1 of Section 4.2. We set the required parameters
as follows: n = 100, m = n/2 = 50, ν1 = 2, ν2 = 3, R = 20, Ñ = 150 and
c = 0.2. We perform 50 simulations with different starting point in step I.1.

In Figure 4.2 the results of 6 simulations are displayed: the points in
green corresponds to the initial sample s(0)

n , i.e. after the initialization step
described in Section 4.3.2, while in red the resulting design. The point on
the bottom right near the cloud of points is always selected, this is because
this point is not a high leverage point as defined in Section 4.2 and it does
not alter the parameter estimates. Table 4.1 summarizes the main results
based on all simulations; note that the efficiency has been computed with
respect to the optimal design obtained using the function od_KL excluding
the outliers. The average loss based on the estimates obtained from each
simulation is calculated on a test set of size N generated from the same super
population model. We can see that since the efficiency of the resulting sub-
samples are equal to 1, this means that our modified exchange algorithm
leads to the same optimal design obtained excluding the outliers.

Figure 4.2: Simulation results: optimal design obtained applying the modified ex-
change algorithm (in red) and the initial sample s(0)

n (in green).

4.4.2 Example 2

Consider the following super-population model

Yxi = θ0 + θ1x1i + θ2x2i + εi i = 1, . . . , N
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Mean Variance
Computational time (s) 32.64 1.51
Efficiency 1.00 0.00
θ̂0 (θ0 = 1.5) 1.39 0.01
θ̂1 (θ1 = 2.7) 2.47 0.00
Average Loss 87.98 0.01

Table 4.1: Summary of 50 simulations

where x1i ∼ N (3, 4), x1i ∼ Unif (−1, 1), εi ∼ N (0, 92) and with θ =
(1.5, 2.7,−5), c = 0.2 and N = 5000. The outliers have been generated
such that they can be considered bad leverage point. We set the required
parameters as follows: n = 200, m = n/2 = 100, ν1 = 2, ν2 = 3, R = 20,
Ñ = 500. We perform 50 simulations with different starting point in step
I.1.

In Figure 4.3 and Figure 4.4 the results of one simulation is displayed:
the points in green corresponds to the initial sample s(0)

n , i.e. after the
initialization step described in Section 4.3.2, while in red the resulting design.
Table 4.2 summarizes the main results based on all simulations; note that
the efficiency has been computed with respect to the optimal design obtained
using the function od_KL excluding the outliers. The average loss based on
the estimates obtained from each simulation is calculated on a test set of
size N generated from the same super population model. Also in this case
the efficiencies are very high.

Mean Variance
Computational time (min) 1.17 0.00
Efficiency 0.91 0.00
θ̂0 (θ0 = 1.5) 1.28 0.02
θ̂1 (θ1 = 2.7) 2.67 0.00
θ̂2 (θ2 = −5) -6.09 0.08
Average Loss 88.55 0.07

Table 4.2: Summary of 50 simulations

4.5 Conclusions and next developments
From the illustrative examples in Section 4.4, the potential of the proposed
modified exchange algorithm is clear. Furthermore, as already mentioned,
the algorithm can be easily parallelized to speed up the computational time,
especially having in mind to apply this methodology to a Big Dataset. The
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Figure 4.3: Optimal design obtained applying the modified exchange algorithm (in
red) and the initial sample s(0)

n (in green).

current major drawback is that many parameters need to be specified: if
for the parameter ν1 there are theoretical results supporting the choice of
a specific value [95] and for parameter n it is reasonable that is the experi-
menter to choose a proper value, for the other parameters one can perform
cross validation as it is usually done in Machine Learning for tuning hyper
parameters (see for example [89]).

Another important feature of this algorithm is that if a formula like
Equation (1.35) in Section 1.3.1 for the sequential updating of the determi-
nant is available for other loss functions, then the algorithm can be applied
modifying only step E.1.

The next developments are to test the performance of the algorithm
increasing the dimensionality of the super population model and the number
of observations.

Summary
In this chapter, we proposed a modified exchange algorithm in order to se-
lect the most informative sub-sample in the presence of outliers (also called
bad leverage points). To this aim, we propose a modification of the stan-
dard Exchange Algorithm presented in Section 1.3.1 in order to obtain a
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Figure 4.4: Simulation results: optimal design obtained applying the modified ex-
change algorithm (in red) and the initial sample s(0)

n (in green).

D-optimal design which is also robust. Although the procedure presented in
this chapter is still an heuristic procedure, the simulations carried out seem
to confirm the potential of the proposed approach, which will be further
developed.

This chapter is a joint work with Professor Claudio Agostinelli, Professor
Laura Deldossi and Professor Chiara Tommasi. The draft paper is available
upon request.
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Chapter 5

Temporal Disaggregation of
Time Series: Marine
Insurance Use Case

In this chapter we consider the problem of combining data from different
data sources, in particular time series collected at different time frequencies,
which is a problem arising in Marine Insurance. Here, the goal is to obtain
a well curated dataset of good quality which can be used as the basis for
forecasting marine losses global trends in upcoming years. Marine Hull and
Machinery losses correspond to the loss or damage of ships and are divided
into two categories: total and partial. A total loss occurs when a damage
to a vessel is beyond repair or salvage, while a partial loss occurs when a
damage can be repaired. As a matter of fact, marine losses global trend is
not constant, so that insurance companies are interested in evaluating not
only which are the factors that may have an influence on marine losses, but
also in predicting the future trend in order to adjust baseline cost produced
by the in-house costing model. For example, if the trend is predicted to be
increasing, an increase in the baseline cost of the insurance policy would be
recommended, and vice versa. Having this holistic view on different potential
sources of risks can help increase awareness, enhance decision making and
develop forward-looking models to forecast the trend of marine losses.

Marine traffic is a very complex system that includes ships, ports, routes,
equipment, people, cargo material and environmental issues, but also politi-
cal regulations. Since 2000, the value of intermediate goods traded globally
has tripled to more than $10 trillion annually due to the growth of the
economic development and trade between different countries. Furthermore,
despite nowadays the safety of ships and equipment have reached a very
high technological level, the number of amount of claims is not significantly
decreased as expected [3]. Careful analysis of the causes of accidents carried
out through accident causation theory/waterborne transport research (see
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e.g. [105]) shows that most accidents are not caused by a single event, but
by a series of interacting factors [3].

It is reasonable to study the relationship between marine losses and po-
tential sources of risks [99], some of which are known in the business and
some of which may be new, for example sustainability issues. One can con-
sider four different types of factors: those that are certainly influential whose
effect only needs to be measured (e.g. average age of vessels globally), those
for which one wants to evaluate if their measured effect is statistically sig-
nificant (e.g. CO2 emissions), not measurable factors that could possibly
be relevant or influential (e.g. crew composition) and hidden/undetected
factors (what in Chapter 3 we called confounders).

The number of covariates that can influence marine losses at a global
scale is huge, for example various indicators related to economical, social,
political, technological and environmental global phenomena are considered.
Both marine losses and factors/indicators taken into considerations in this
work are time series. The indicators have been collected from different
sources, both public and private databases and they have been collected
at different time frequencies, besides they may be incomplete, particularly
on the most recent time points. In Section 5.2 the most popular methods
for dealing with indicators at different time frequencies and for imputing
missing values in time series are introduced, starting from a set of indicators
gathered with the help of business experts. In Section 5.3 some of these
methods are applied to real data related to marine losses.

5.1 A Framework for Temporal Disaggregation
Important economic indicators are taken from official sources such as official
national and EU statistics. Often they are observed only on a yearly time
window (i.e. low sampling time frequency) and are measured after the end
of the year. But if one is interested in constantly evaluating the decisions in
order to identify preventively a potential new trend and, eventually, update
the business strategy, it is reasonable to adjust economic indicators to the
same sampling time frequency of the variable of interest, in this case marine
losses. The opposite approach is to simply aggregate all variables to yearly
totals, but the loss of observations would be of 75%. From now on the term
time frequency will be used instead of sampling time frequency for simplicity.

The problem of reliably disaggregating low frequency to high frequency
time series is known as temporal disaggregation. Temporal disaggregation
methods are widely used in official statistics and their main objective is to
construct a new high frequency series which is somehow consistent with the
low frequency one. Consistency could be of different types and depends on
the nature of the data: for example, in France, Italy and other European
countries, quarterly values of Gross Domestic Product (GDP) are computed
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using disaggregation [14, 61, 128, 193] such that, for each year, the sum of
quarterly values of GDP is equal to the annual value. For the case study in
this work, annual time series are disaggregated into quarterly time series.

Note that estimating a multivariate autoregressive model requires all
variables to have the same frequency. Since there is no way to fully make up
for the missing data, the accuracy of the resulting high frequency series may
be low but, despite this, having one bad high frequency series could still be
preferable to the switch to a lower frequency. There are useful alternative
solutions to improve the accuracy, for example through an high frequency
indicator [180].

It is necessary to distinguish between three types of time series: stocks,
flows and index series [31]. Stocks series measure the level of something at
a particular point in time (e.g. population, unemployment, public sector
debt) while flows series measure how much of something has happened over
a period of time (e.g. export, production, marine losses).

Creating higher frequency data points of a stocks series is essentially the
same as having a time series with missing data points. In this case, data is
interpolated by fitting a curve that is constrained to pass through the lower
frequency observations. For flows series the same properties of smooth-
ness and continuity are desirable including temporal additivity. Indeed, the
original series is not point-in-time observations, so temporal disaggregation
cannot simply be obtained by joining the data points. This means that the
higher frequency data must add (or average) to the lower frequency data.
Similarly, index series are treated as flows regardless of whether the series
relates to stocks or flows.

There is also another distinction to be made (see [32]): temporal dis-
tribution and interpolation. Temporal distribution is needed when the low
frequency series is either the sum or average of the high frequency data, i.e.
flows and index series. Interpolation, on the other hand, deals with esti-
mation of missing values of stock series; for instance, in the estimation of
quarterly variables, interpolation is used for all stock variables (e.g. popula-
tion) whose annual values equal to those of the fourth (or the first) quarter
of the same year.

Temporal disaggregation is closely related to benchmarking because they
are both used to remove discrepancies between annual benchmarks and cor-
responding sums of high frequency values [32]. But they are different because
the benchmarking problem arises when (two) time series for the same target
variable are measured at different frequencies, whereas temporal disaggre-
gation deals with the problem where the high frequencies data are not for
the same target variable as the low frequency one. Furthermore, when es-
timates are extended out of the period covered by the low-frequency series,
the problem is called extrapolation [32, 155], i.e. the goal is to forecast future
values of the high frequency series.
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5.2 Temporal Disaggregation Methods
In this section, several temporal disaggregation methods for deriving high
frequency data from lower frequency series are reviewed. The choice of a
method depends on the type of the series (flows or stocks) and on the avail-
ability of information [32]: (i) information is available on both low and high
frequency basis and (ii) information is only available on low frequency basis.
In the former case, one or more proxy indicators are used, which are high
frequency indirect measures that approximate a phenomenon measured by
the low frequency series to be disaggregated [32, 179]. Instead, the general
idea of the second case is to fit a smooth and continuous curve through the
lower frequency benchmark points [31]. From now on, without loss of gen-
erality, the terms annual and quarterly will be used instead of, respectively,
low time frequency and high time frequency.

Let Y` be the T×1 vector of the observed annual values and Y the 4T×1
vector of the unknown quarterly values. The goal is to estimate Y such that

Y` = A>Y (5.1)

where A is a 4T ×T matrix, called aggregation matrix of the following form

A> = IT ⊗ e>

where ⊗ denotes the Kronecker product, IT is the T × T identity matrix
and e = (1, 1, 1, 1) in the case of flows series and e = (1, 0, 0, 0) in the case
of stocks series if the first quarter is observed (or e = (0, 0, 0, 1) if the last
quarter is observed). A temporal disaggregation method then seeks for a
T × 4T matrix D, called disaggregation matrix, such that

Y = D>Y` . (5.2)

The disaggregation matrix changes depending on each different method.
Figure 5.1 summarizes the main categories into which the most popular
temporal disaggregation methods can be divided (see also [118]). Plausible
and Least Squares methods do not require a proxy indicator, while regression
methods need one or more proxy indicators. Benchmarking and ARIMA
methods are suitable for both cases. All disaggregation methods ensure
that either the sum, the average, the first or the last value of the resulting
high frequency series is consistent with the low frequency series. In the next
sections yearly time series (low time frequency) will be considered for which
one wants to derive quarterly values (high time frequency), but the same
approach can be applied if the high time frequency is an integer multiple of
the low frequency (e.g. weeks to days).

The methods implemented in the R [201] packages tempdisagg [181] and
imputeTS [150] are applied to real data and compared in Section 5.3.
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Figure 5.1: Diagram representing different methods for temporal disaggregation.

5.2.1 Plausible Methods

The most simple approach in the case of flows series is the dividing by 4
method, where the disaggregation matrix can be easily computed as D> =
1
4A. In the case of stocks series, a curve can be fitted with the constraint that
it must pass through the annual values: the curve can be a simple linear
interpolation between each two consecutive points, or a cubic spline [16].
The latter is one of the most common approach for economic variables.

The problem of deriving quarterly data values given annual time series
has been discussed by authors in [137], in case of no assumptions about
the pattern of the quarterly figures. They propose to use a smooth trend
following reasonable criteria, including a constraint for which the sum of
quarterly values, for each year, shoul be equal to the given yearly total,
symmetry, trend and cycle considerations. The main disadvantages are that
no quarterly values can be inferred for the first and the last year of the series
and it is quite arbitrary in the choice of some parameters [18].

5.2.2 Model-based Methods

In general, the main differences among the methods in this section can be
explained introducing a two-step framework [180]: first, a preliminary quar-
terly series has to be determined, then the differences between the annual
values of the preliminary series and the annual value of the observed series
need to be distributed among the preliminary quarterly series. The sum of
the preliminary quarterly series and the distributed annual residuals yields
the final estimation of the quarterly series.

As already mentioned in previous sections, the goal is to find an unknown
high time frequency series Y , whose sums, averages, first or last values are
consistent with the given/observed low time frequency series Y`. Let X be
the 4T × p matrix in which, if available, one or more high frequency (proxy)
indicators for the estimation of Y are collected.
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Consider the linear regression equation

Y = Xθ+ ε (5.3)

where θ is the p × 1 vector of coefficients and ε is the 4T × 1 vector of
random errors with zero mean and variance-covariance matrix σ2Ω. Note
that Ω differs according to the different methods that will be presented in
this section. From Equation 5.2, we also have

Y` = A>(Xθ+ ε) = A>Xθ+A>ε = X̃θ+ ε̃ (5.4)

where X̃ is the T × p aggregated matrix of proxy indicators, ε̃ the T × 1
vector of random errors with variance-covariance matrix σ2Ω̃ = σ2A>ΩA.
The quarterly series can be then estimated as follows:

Ŷ = Xθ̂+ ΩA>Ω̃−1
(
Y` − X̃θ̂

)
, (5.5)

where θ̂ is the BLUE of θ given by

θ̂ =
[
X̃>Ω̃−1X̃

]−1
X̃>Ω̃−1Y` . (5.6)

The above corresponds to the general procedure of model-based temporal
disaggregation. Each method differs with respect to the others depending
on the variance-covariance matrix Ω and the structure of the indicator ma-
trix X.

Benchmarking Methods
The most popular benchmarking method is the so called Denton [47],

which uses a single (proxy) indicator as preliminary series, i.e. X is a 4T ×1
vector. As already mentioned in Section 5.2, this method does not necessar-
ily require an indicator series, so that, as a special case, the indicator can
be a constant series consisting of only 1s in each quarter [180].

There are two types of the Denton method: one minimizing the squared
absolute deviations from a (differenced) indicator series (additive) and one
minimizing the square relative deviations (proportional), where a parameter
h defines the degree of differencing. The goal is to minimize the following

min
Yt

4T∑
t=1

[
∆h(Yt −Xt)

]2
= min

Yt

4T∑
t=1

[(Yt −Xt)− (Yt−h −Xt−h)]2 . (5.7)

For example, for the additive Denton method with h = 0, the sum of the
squared absolute deviations between the indicator and the final series is
minimized, while for h = 1 the deviations of first differences are minimized.
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Finally, the variance-covariance matrix ΩD of the additive Denton method
with h = 1 is as follows:

ΩD =
(
D>D

)−1
=


1 1 · · · 1
1 2 · · · 2
...

... . . . ...
1 2 · · · 4T

 (5.8)

where D is a 4T × 4T difference matrix with 1 on its main diagonal, −1 on
its first sub-diagonal and 0 elsewhere. For h = 0, ΩD is the identity matrix
of size 4T .

Regression Methods
The Denton-Cholette method [42], which is a modification of the Denton

approach, use again a single (proxy) indicator as preliminary series. It re-
moves spurious transient movement at the beginning of the resulting series
(see [42] for an extensive description).

The Chow-Lin method [36] assumes that quarterly residuals follow an
autoregressive process of order 1 (AR(1)), i.e. εt = ρεt−1 + ut, for t =
1, . . . 4T , where ut is white noise of mean zero and variance σ2 and |ρ| < 1.
Then, the resulting variance-covariance matrix ΩCL(ρ) has the following
form:

ΩCL(ρ) = σ2

1− ρ2 ·


1 ρ · · · ρn−1

ρ 1 · · · ρn−2

...
... . . . ...

ρn−1 ρn−2 · · · 1

 . (5.9)

The remaining methods deal with cases when the quarterly indicators
and the annual series are not co-integrated. The Fernandez [70] and Litter-
man [138] methods are similar to the Chow-Lin method, but assume that
quarterly residuals follow a non-stationary process, i.e. ε = εt−1 + vt, where
vt is an AR(1) such that vt = ρvt−1 + ut.

Fernandez methods is defined for ρ = 0, therefore ε follows a random
walk. This is a special case of Litterman method (in this case is a random
walk-Markov model), which defines the variance-covariance matrix ΩL(ρ) as
follows:

ΩL(ρ) = σ2
[
D>H>(ρ)H(ρ)D

]−1
, (5.10)

where D is the same 4T × 4T difference matrix as in the Denton method in
Equation (5.8), H(ρ) is a 4T ×4T matrix with 1 on its main diagonal, −ρ on
its first sub-diagonal and 0 elsewhere. In particular, the variance-covariance
matrix ΩF of the Fernandez method has the following form:

ΩF = ΩL(0) = σ2
[
D>D

]−1
= σ2ΩD . (5.11)
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ARIMA Methods
An autoregressive integrated moving average model is assumed to fit

quarterly data in [77, 78]. Consider an ARIMA(p, d, q) process where p
is the order of the autoregressive (AR) polynomial, d is the order of the
integration, and q is the order of the moving average (MA) polynomial, such
that

φ(B)(I −B)dYt = τ(B)εt ,

where B is the backshift operator such that Bj Ŷt = Ŷt−j , φ(B) = 1−φ1B−
. . .−φpBp represents the AR(p) process, τ(B) represents the MA(q) process,
and εt is a white noise with zero mean and constant variance. For details
see [77, 78, 96, 118].

5.2.3 Least Squares Methods

The BFL smoothing method [18] in the case of flows series, seeks to minimize
the sum of squares of the differences between the consecutive quarterly val-
ues, subject to the constraints that during each year the sum of the quarterly
totals should be equal to the given yearly value, i.e.

4T∑
t=2

(Yt − Yt−1)2

subject to
4∑̀

t=4`−3
Yt = Y` ` = 1, . . . , T.

The problem is solved by considering the Lagrangian expression

4T∑
t=2

(Yt − Yt−1)2 −
T∑
k=1

λk

 4∑̀
t=4`−3

Yt − Y`

 .
The same methodology can be applied for minimizing the squared second

differences, i.e.
4T∑
t=2

(∆Yt −∆Yt−1)2

where ∆Yt = Yt − Yt−1, subject to

4∑̀
t=4`−3

Yt = Y` ` = 1, . . . , T.

For details, see [18, 31].
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5.3 Disaggregation Methods for Marine Losses
In this section we review some of the methods introduced in Section 5.2, in
particular the ones already implemented in the R packages tempdisagg [181]
and imputeTS [150]. Note that the time series in this section are masked to
overcome the problem of violation of sensitive data.

For this use case, 30 time series have been considered, in addition to the
two response variables, total and partial losses, collected from 2006 to 2017.
These time series are collected (i) from internal databases containing clients
information in which data are collected with high time frequency (quarterly
in this case) and (ii) from annual reports and public available databases, in
which data are usually aggregated for privacy reason and collected on annual
basis. If the goal is to better predict the future trend of marine losses using
external data, it is clear that it is necessary to use temporal disaggregation
methods. Furthermore, since an insurance policy can be underwritten at
any time during the year, having the ability to possibly correct the baseline
cost every quarter has a business relevance.

The first use case considers the time series related to the sea temperature
of 12 years (i.e. 48 quarters). This is an example of stock series. The goal
is to estimate quarterly values of sea temperature from the annual time
series and then compare the disaggregated series with the true quarterly
values that in this case are provided. Since there is no indicator series
to be used, the methods implemented are Denton, Denton-Cholette (both
assuming constant indicator series), a linear interpolation and a cubic spline.
In Figure 5.2 the results of each method (in red) with respect to the real
quarterly time series are plotted.

In order to compare the methods we also compute the sum of the absolute
differences and the sum of the squared differences between the true quarterly
series Y and the estimated on Ŷ , i.e.

Sum of absolute differences:
48∑
t=1
|Yt − Ŷt|

Sum of squared differences:
48∑
t=1

(Yt − Ŷt)2

The results are reported in Table 5.1. The first three methods produce the
same estimates (indeed the Denton and Denton-Cholette methods without
an indicator series corresponds to the linear interpolation) while, as ex-
pected, the cubic spline method produces a more smooth curve, but gives
the worst estimates for the sum of differences.

The second use case considers the time series based on partial marine
losses, which is an example of flow series. As above, the goal is to estimate
quarterly values of partial losses from the annual time series, considering
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Figure 5.2: Disaggregation methods (in red) applied to sea temperature time se-
ries (in black): Denton (top left), Denton-Cholette (top right), linear
interpolation (bottom left) and cubic spline (bottom right).

Method Absolute difference Squared difference
Denton 2.539333 0.2762882
Denton-Cholette 2.539333 0.2762882
Linear Interpolation 2.539333 0.2762882
Cubic Spline 2.638922 0.3189553

Table 5.1: Absolute and squared differences for each temporal disaggregation
method applied to sea temperature time series.

also two indicator series (average age and average size of vessels) and then
compare the disaggregated series with the true quarterly values that in this
case are provided. In Figure 5.3 the time series under consideration are
plotted.

First, we apply the Denton and Denton-Cholette methods without con-
sidering any additional indicators, see Figure 5.4. The two disaggregated
series are similar except in the first years, when we can observe a completely
different trend. Then, we consider the average age and the average size of
vessels as proxy indicator series. In Figure 5.5 Denton-Cholette, Chow-Lin,
Litterman and Fernandez methods are applied to marine losses annual series
with average age of vessels as indicator series. The only clear difference is in
the Chow-Lin method, where the curve associated to the disaggregated se-
ries (in red) is less smooth. Finally, in Figure 5.6 Chow-Lin, Litterman and
Fernandez methods are applied to marine losses annual series considering
two indicator series, i.e. average age of vessels and average size. As before,
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Figure 5.3: Annual marine partial losses (top left), true quarterly partial losses
(top right), quarterly average age of vessels (bottom left) and quarterly
average size of vessels (bottom right).

Figure 5.4: Disaggregation methods (in red) with no indicator series with respect
to the true quarterly time series of partial losses (in black): Denton
(left) and Denton-Cholette (right).

the Chow-Lin method does not produce smooth curve for the disaggregated
time series. Furthermore, it is possible to observe that the additional in-
dicator series do not bring any additional improvement in the estimates.

The numerical results are reported in Table 5.2. The Chow-Lin method
with one indicator series has the lowest values for both the sum of absolute
differences and the sum of squared differences. It is evident that the inclu-
sion of the second indicator series does not lead to an improvement in the
estimates; this is due to the fact that the vessels’ average size might not be
highly correlated with the time series of the partial losses.

The last use case we consider is the time series related to the maritime
CO2 emissions, for which only the yearly time series of 12 years is available.
This is again an example of stock series. The methods implemented are
Denton, Denton-Cholette (both assuming constant indicator series), a linear
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Figure 5.5: Disaggregation methods (in red) with average age of vessels as indicator
series with respect to the true quarterly time series of partial losses (in
black): Denton-Cholette (top left), Chow-Lin (top right), Litterman
(bottom left), Fernandez (bottom right).

interpolation and a cubic spline. In Figure 5.7 the results of each method are
reported: the first three methods produce the same results while, as expected
the cubic spline produce a more smooth curve. In order to guarantee the best
reasonable estimates, we recommend to validate the results with business
experts.

Shiny App
As already anticipated, the use of temporal disaggregation methodology

is done before any predictive analysis in order to derive a well curated dataset
which can be used as the basis for forecasting the trend of marine losses in
upcoming years and possibly adjust baseline cost of the in-house costing
model.

In [28], we present a procedure which starting from a potentially large
number of indicators collected at different time frequencies, selects the most
relevant ones through Graphical Models [88, 131] and uses regressive models
to forecast loss trends. The use of graphical models makes the variable selec-
tion more understandable and interpretable even for not statisticians. Fur-
thermore, graphical models estimated from a dataset can be useful to con-
firm known independence relationships, to validate the dataset and mainly
to identify unexpected relationships.

An ad-hoc and interactive Shiny App [173] has been designed and imple-
mented in R for business experts, which collects the whole process pipeline.
The Shiny App receives as input annual or quarterly time series and as
output returns estimates of future number of marine losses produced by a
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Figure 5.6: Disaggregation methods (in red) with average age and average size of
vessels as indicator series with respect to the true quarterly time series
of partial losses (in black): Chow-Lin (top left), Litterman (top right),
Fernandez (bottom left).

combination of several regressive models, confidence intervals based on resid-
ual bootstrap and summary statistics. Another feature is also the possibility
of having a graphical representation of the dependency among the indicator
using the graphical models. The app is available upon request.

Summary
In Marine Insurance a common problem is to leverage internal databases
with public available data: usually, the former have very granular infor-
mation and are collected at high frequency in time (e.g. quarterly), while
the latter are mainly related to economic indicators and collected at low
frequency (yearly). The aim is to obtain a well curated dataset which can
be used as the basis for forecasting the trend of marine losses in upcoming
years and possibly adjust baseline cost of the in-house costing model. In
this chapter we reviewed several disaggregation and interpolation methods
and compared the results in the marine losses framework.

This chapter is a joint work with the PhD student Federico Carli. The
draft paper [28] is available upon request.
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Method Absolute difference Squared difference
Denton - no indicator 220.1905 1572.096
Denton-Cholette - no indicator 206.1646 1186.469
Denton-Cholette - one indicator 205.2366 1173.436
Chow-Lin - one indicator 199.9967 1081.979
Litterman - one indicator 209.5398 1226.945
Fernandez - one indicator 209.5398 1226.945
Chow-Lin - two indicator 201.3320 1095.828
Litterman - two indicator 209.5792 1224.759
Fernandez - two indicator 209.5792 1224.759

Table 5.2: Absolute and squared differences for each temporal disaggregation
method applied to the partial marine losses time series.
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Figure 5.7: Disaggregation methods (in red) applied to maritime CO2 emissions
(the true annual values are the black points): Denton (top left),
Denton-Cholette (top right), linear interpolation (bottom left) and cu-
bic spline (top right).
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Appendix A

Fundamental Results

In this appendix we prove well-known results about optimal designs. They
allow parameters to be estimated without bias and with minimum variance.
Furthermore they require less experimental runs than non-optimal designs
to achieve the same precision of parameter estimates, thus reducing the costs
of experimentation. They are defined in relationship to a statistical model
through the design matrix and their computability depends on its properties.

A.1 Gauss-Markov Theorem
Theorem A.1.1 (Gauss-Markov Theorem [108]). Let Y = Xθ + ε, where
E(ε) = 0, V(ε) = σ2Ip×p and assume X to be a column rank matrix. For
any c, the estimator

c>θ̂ =
p∑
j=1

cj θ̂j

of c>θ has the smallest possible variance among all linear estimators of the
form a>Y =

∑n
i=1 aiYi that are unbiased for c>θ.

Proof. For any fixed c, let a>Y be any unbiased estimator of c>θ. Then
E(a>Y) = c>θ, whatever the value of θ. Also, by assumption, E(a>Y) =
E(a>Xθ + a>ε) = a>Xθ. Equating the two expected value expressions
yields a>Xθ = c>θ, i.e. (c> − a>X)θ = 0 for all θ, including the choice
θ = (c>−a>X)>. This implies that c> = a>X for any unbiased estimator.

Now, c>θ̂ = c>(X>X)−1X>Y = a∗>Y, with a∗> = X(X>X)−1c.
Moreover, since E(θ̂) = θ, so c>θ̂ = a∗>Y is an unbiased estimator of
c>θ. Thus, fo any a satisfying the unbiased requirement c> = a∗X,

V(a∗Y) = V(a∗Xθ+ a∗ε) = V(a∗ε) = a∗Iσ2a
= σ2(a − a∗ + a∗)>(a − a∗ + a∗)
= σ2[(a − a∗)>(a − a∗) + a∗>a∗]

97



APPENDIX A. CONVEXITY 98

since (a − a∗)>a∗ = (a − a∗)>X(X>X)−1c = 0 from the condition

(a − a∗)>X = a>Z− a∗>Z = c> − c> = 0>.

Because a∗ is fixed and (a−a∗)>(a−a∗) is positive unless a = a∗, V(a>Y)
is minimized by the choice a∗>Y = c>(X>X)−1X>Y = c>θ̂.

A.2 Convexity of the logarithm of the determinant
of the inverse of the information matrix

Theorem A.2.1. The logarithm of the determinant of the inverse of the
information matrix, i.e. log det

((
X>X

)−1
)
, is a convex function.

Proof. (See [24]) Let f(A) = log det(A), with A = X>X positive defi-
nite matrix. Define g(t) = log det(A + tV ) such that A + tV is a positive
definite matrix. Since A is positive definite, there exists A1/2 such that
A = A1/2A1/2. Then

g(t) = log det
(
A1/2A1/2 + tA1/2A−1/2V A−1/2A1/2

)
= log det

(
A1/2

(
I + tA−1/2V A−1/2

)
A1/2

)
.

Recalling that det(BC) = det(B) · det(C) then it follows

g(t) = log
(
det(A) det

(
I + tA−1/2V A−1/2

))
= log det(A) + log det

(
I + tA−1/2V A−1/2

)
. (A.1)

Note that A and A + tV are positive definite, so are A−1/2 and I +
tA−1/2V A−1/2. Assume the eigenvalues of A−1/2V A−1/2 are λ1, . . . , λd, then

log det
(
I + tA−1/2V A−1/2

)
= log

d∏
i=1

(1 + tλi) =
d∑
i=1

log(1 + tλi).

Combining this with (A.1) gives

g(t) = log det(A) +
d∑
i=1

log(1 + tλi) .

Notice that the second order derivative of −g(t) is

−g′′(t) =
d∑
i=1

λ2
i

(1 + tλi)2 ≥ 0

thus, −g(t) is convex, so is−f(A). By definition−f(A) = − log det
(
X>X

)
=

log det
((
X>X

)−1
)
.



Appendix B

Bayesian Experimental
Design

In this appendix we provide a brief overview of the Bayesian experimental
design, because it is used as an alternative to the classical design theory
in Algorithm 1 in Chapter 2 (see also [52]). The Bayesian optimal design
problem has been studied by several authors (see for example [29, 30, 136])
and it is based on the idea of incorporating into the design process all the
design information about the parameters available a priori to achieve a better
optimization.

A Bayesian design problem can be thought of as a decision problem. A
design ξ is chosen from a set Ξ defined as in Section 1.1.3, an observation
Y from a sample space Y is observed, and suppose the unknown parameters
are θ. Based on the observation Y , a decision d will be made from the
decision set D. A decision consists of two parts: the selection of ξ and the
choice of a terminal decision d [229]. The utility function is then of the
form U(d, θ, ξ, Y ). Note that in this framework, instead of minimizing a loss
function of the information matrix as in 1.25, here Bayesian optimal design
will be found by maximizing the expected utility of the best decision of the
above utility function.

Denoting by p(·) a probability density function, the expected utility of
the best decision for any design ξ is given by

U(ξ) =
∫
Y

max
d∈D

∫
θ
U(d, θ, ξ, Y ) p(θ|Y, ξ) p(Y |ξ) dθdY. (B.1)

Following Savage axioms [178], the Bayesian solution to the experimental
design problem is then provided by the design ξ∗ maximizing Equation (B.1):

U(ξ∗) = max
ξ∈Ξ

∫
Y

max
d∈D

∫
θ
U(d, θ, ξ, Y ) p(θ|Y, ξ) p(Y |ξ) dθdY. (B.2)

Assuming that the goals of an experiment and the terminal decision can be
formally expressed through an utility function, the Bayesian solution is to
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find the best design and the best decision rule to maximize the expected
utility. More details can be found in [30].

In classical DoE, the utility is often a scalar function of the information
matrix defined in Chapter 1, which already considers the expectation with
respect to Y , so that the utility function can be written as U(d, θ, ξ) and the
integral over Y is no longer required. Furthermore, if the model parameter
θ is assumed known then the problem reduces to an optimization task over
the design space [30, 52]. In a fully Bayesian DoE, the utility function is
often some functional of the posterior distribution, p(θ|Y, ξ) and a widely
used utility function is

U(d, θ, ξ, Y ) = log p(θ|Y, ξ)− log p(θ)

which is the distance between the posterior and the prior distribution, i.e.
the expected gain in Shannon information [189]. Then, the design is cho-
sen to maximize the expected gain in Shannon information or, equivalently,
maximizes the expected Kullback-Leibler divergence [17, 44, 196, 229].

For a more recent literature on fully Bayesian methods for optimal DoE
see [4, 38, 83, 100, 152] and for a review of computational algorithms [53,
175].



Appendix C

Robust Designs for
Approximate Regression
Models

This appendix is motivated by Section 2.4. The first notion of robustness
appeared in [20] and was mainly developed in [101, 102, 103]. In the classical
optimal DoE theory (see Chapter 1), the experimenter makes the assump-
tions that the model used to fit the data is the correct one and measures
the quality of a design through a loss function. In robust design theory, the
experimenter assumes that the model to be fitted is not necessarily the true
one. The loss function will depends on some more general features such as
the mean squared error (MSE). The goal is then to seek a design which mini-
mizes some scalar quantity summarizing the increased loss. See [66, 212, 213]
for a complete review.

C.1 Robustness against a Misspecified Response
Function

We consider model in Equation (2.6). We slightly change the notation in
this appendix with respect to Section 2.4; let the true model be E(Y ∗x ) =
f>(x)θ+ψ(x), while let the fitted model be E(Yx) = f>(x)θ. We define the
parameter of interest as follows:
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θ = arg min
η

∫
X

(E(Y ∗x )− E(Yx))2 dx

= arg min
η

∫
X

(
f>(x)η+ ψ(x)− E(Yx)

)2
dx

= arg min
η

∫
X

(
(f>(x)η− E(Yx)) + ψ(x)

)2
dx

= arg min
η

∫
X

(
(f>(x)η− E(Yx))2 + ψ2(x)+

2ψ(x)(f>(x)η− E(Yx))
)
dx

= arg min
η

[∫
X

(
(f>(x)η− E(Yx))2 + 2ψ(x)f>(x)η

)
dx+(∫

X
ψ2(x) dx− 2

∫
X
ψ(x)E(Yx) dx

)]
.

Since only the first term of the function to be minimized depends on η, then
the above minimization problem is equivalent to the problem of minimizing
the following

arg min
η

∫
X

(
(f>(x)η− E(Yx))2 + 2ψ(x)f>(x)η

)
dx. (C.1)

Then, in order to obtain identifiability of the parameter θ, a unique solution
is necessary. This is implied by the orthogonality condition

∫
X ψ(x)f>(x) dx =

0 that is equivalent to ∫
X

f(x)ψ(x) dx = 0, (C.2)

i.e. the first term in Equation (2.7).

C.2 Properties of LSE θ̂

Let θ̂ be the LSE of the parameter θ. Similarly as in Equation (1.2), we
have that

E(Y ∗(x)) = f>(x)θ+ ψ(x) V(Y ∗(x)) = σ2I

Then, it is possible to derive the properties of θ̂ under the model in Equa-
tion (2.6). For simplicity of computation, we re-write the true and fitted
model in matrix form as{

Y ∗ = Fθ+ Ψ + ε
E(Y ∗) = Fθ+ Ψ

{
Y = Fθ+ ε
E(Y ) = Fθ.
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where Ψ is the column vector with elements ψ(xi) for i = 1, . . . , n. The
mean, variance and MSE of θ̂ are, respectively,

E
(
θ̂
)

= E
(
(F>F )−1F>Y ∗

)
= θ+ (F>F )−1F>Ψ = θ+A

V
(
θ̂
)

= V
(
(F>F )−1F>Y ∗

)
= (F>F )−1

MSE
(
θ̂, θ

)
= E

(
(θ̂− θ)(θ̂− θ)>

)
= V

(
θ̂− θ

)
+ E

(
θ̂− θ

)2

= V
(
θ̂
)

+A2 = (F>F )−1 +AA>

Now, let a generic x0 ∈ X be such that

Y ∗(x0) = f>(x0)θ+ ψ(x0) + ε ∈ R

Ŷ (x0) = f>(x0)θ̂

with ε(x0) ∼ N (0, σ2) and V[ε(x0), ε(xi)] = 0 for i = 1, . . . , n. Finally,
we can compute the mean, the variance, the MSE and the integrated MSE
(IMSE) of Ŷ (x0); note that author in [101] derived an upper bound for the
bias term ψ(x) from the IMSE.

E
(
Ŷ (x0)

)
= E

(
f>(x0)θ̂

)
= f>(x0)θ+ f>(x0)A

V
(
Ŷ (x0)

)
= V

(
f>(x0)θ̂

)
= σ2f>(x0)(F>F )−1f(x0)

MSE
(
Ŷ (x0), Y ∗(x0)

)
= E

(
(Ŷ (x0)− Y ∗(x0))2

]
= E

(
(f>(x0)(θ̂− θ)− ψ(x0)− ε(x0))2

)
=
(
σ2f>(x0)(F>F )−1f(x0) + σ2

)
+ ψ2(x0)

+
(
f>(x0)AA>f(x0)− 2f>(x0)Aψ(x0)

)
= H + J +K

where H is the same term as in classical linear regression model, J is the
squared bias term and K depends both on the f ’s and on ψ.

IMSE =
∫
X

MSE
(
Ŷ (x0), Y ∗(x0)

)
dx

=
∫
X
σ2f>(x)(F>F )−1f(x) dx +

∫
X
σ2 dx+∫

X
ψ2(x) dx +

∫
X

f>(x)AA>f(x) dx

= H + J +K
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where here, similar to above, H is the IMSE of the classical linear regression
model, J is the integrated squared bias and K is the integrated quadratic
form. From the derived IMSE, it is clear that one must bound the function
ψ(x) in order to force the bias of the estimates to decrease at the same
rate as the standard error, leading to the class of function Ψ defined in
Equation (2.7).



Appendix D

Directed Acyclic Graph and
Causal Models

A directed acyclic graph (DAG) is also known as a causal graph, because the
graph itself can display the causal relationships between a set of variables.
A causal graph informs for any ideal manipulation the experimenter might
consider, which other variables would expected to change in some way and
which would not.

In this appendix, a brief overview on DAGs is provided, with special
attention of the causal properties. Structural learning of causal networks is
applied to discover the causal mechanisms from observational data [140, 157,
192, 223] and from experimental data [91], while authors in [132] discussed
and compared both frameworks.

D.1 Notation and definition
A DAG consists of nodes, which represent variables, and edges (arrows) that
represent causal relationships. Formally, a structural causal model consists
of two sets of variables U and V , and a set of functions that assigns to each
variable in V a value based on the values of the other variables in the model.

Definition D.1 (Causation). A variable X is said to be a direct cause of a
variable Y if X appears in the function that assigns Y ’s value [157, 158].

Definition D.2 (Markov Condition). A variable X is independent of every
other variables (except X’s effects) conditional on all its direct causes.

From Definition D.2, ignoring a variable’s effect, all the relevant prob-
abilistic information about a variable that can be obtained from a system
are contained in its direct causes. Indeed, in a Markov process knowing a
system’s current state is relevant to its future, but knowing how it got there
it is not relevant.
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X Y1 Z

Y2

Figure D.1: Example of a DAG without a latent variable.

X Y1 Z

Y2

U

X Y2 Z

Y1

U

Figure D.2: Example of DAGs with a latent variable U .

Consider the DAG in Figure D.1 where X is the source variable, Y1 is
the intermediate variable, Z is the endpoint variable, and Y2 is the effect
variable of both X and Z [46]. The causal model can be represented as
follow:

X = fX(εX), Y1 = fY1(X, εY1)
Z = fZ(Y, εZ), Y2 = fY2(X,Z, εY2)

The joint distribution of (X,Y1, Y2, Z) can be factorized into

p(x, y1, y2, z) = p(x)p(y1|x)p(y2|x, z)p(z|y1) (D.1)

where p(·) is the probability or density function and p(·|·) is the conditional
probability or density. Here, X ⊥⊥ Z|Y1 and X 6⊥⊥ Z|Y2, and there are no
latent variables in the DAG.

Consider now the DAG on the left hand side in Figure D.2, with a latent
variable U . Then the join distribution of (X,Y1, Y2, Z, U) can be factorized
into

p(x, y1, y2, z, u) = p(x)p(u)p(y1|x, u)p(y2|x, z)p(z|y1, u) (D.2)

So X ⊥⊥ Z|(Y1, U) and X 6⊥⊥ Z|(Y2, U). The problem arises when one con-
siders the joint distribution of observed variables (X,Y1, Y2, Z), because one
can derive only the conditional independence Y1⊥⊥ Y2|(X,Z), but cannot get
any other independence or conditional independence to distinguish Y1 from
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Y2. Thus, it is not possible to distinguish the two DAGs in Figure D.2, i.e.
it is not possible to directly identify which one of Y1 and Y2 is the intermedi-
ate variable (see [46] for possible solutions to identifiability). The Backdoor
Theorem in Theorem 3.1.1 states how to tell if an effect is identifiable from
a graph [157].

D.2 D-separation and Markov Blanket
It is possible to define conditional independencies (or dependencies) of a set
of variables A with respect to another set of variables B given a third set C.

Definition D.3 (D-separation). If A, B and C are three disjoint subsets
of nodes in a DAG G, then C is said to d-separate A from B if along every
path between a node in A and a node in B there is a node v satisfying one
of the following two conditions [157]:

1. v has converging arcs (i.e. there are two arrows pointing to v from the
adjacent nodes in the path) and neither v nor any of its descendants
(i.e. the nodes that can be reached from v) are in C;

2. v is in C and does not have converging arcs.

Then, the Markov blanket is defined as follows:

Definition D.4 (Markov blanket). In a DAG G, the Markov blanket of a
node (variable) X is the union of all parents, children and other parents of
X’s children.

The Markov blanket defines the sets of nodes and effectively d-separates
a given node from the rest of the graph. For example the Markov blankets
for each node of Figure D.1 are MB(X) = {Y1, Y2}, MB(Y1) = {X,Z},
MB(Z) = {Y1, Y2, X} and MB(Y2) = {X,Z}.



Appendix E

Gröbner Basis

In this appendix we provide a brief introduction of the main properties and
the key results of Gröbner basis which serves as a prerequisite for the proof
of Lemma 3.8.2 in Section 3. See [198] for a thorough review.

Let F be any field and F[x] = F[x1, . . . , xn] be the polynomial ring in n
indeterminates. The monomials in F[x] are denoted as

xα = xα1
1 · . . . · x

αn
n (E.1)

and identified with lattice points α = (α1, . . . , αn) ∈ Nn, where N stands for
the non-negative integers.

Definition E.1 (Term Order). A total order ≺ on Nn is a term order if the
zero vector 0 is the unique minimal element, and a ≺ b implies a+c ≺ b+c
for all a, b, c ∈ Nn.

Given a term order ≺, every non-zero polynomial f ∈ F[x] has a unique
initial monomial, denoted in≺(f).

Definition E.2 (Ideal). A subset I ⊂ F[x] is an ideal if it satisfies the
following:

1. 0 ∈ I

2. f + g ∈ I for all f, g ∈ I

3. f · g ∈ I for all f ∈ I and for all g ∈ F[x]

Definition E.3 (Initial Ideal). If I is an ideal in F[x], then its initial ideal
is the monomial ideal

in≺(I) = {in≺(f) : f ∈ I} .

Definition E.4 (Gröbner Basis). A finite subset G ⊂ I is a Gröbner basis
for I with respect to ≺ if in≺(I) is generated by {in≺(g) : g ∈ G}.
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Theorem E.0.1. Every ideal I ⊂ F[x] has only finitely many distinct initial
ideals, that is it is finitely generated.

Theorem E.0.1 allows the definition of universal Gröbner basis.

Definition E.5 (Universal Gröbner Basis). A finite subset U ⊂ I is called
a universal Gröbner basis if U is a Gröbner basis of I with respect to all
term orders ≺ simultaneously. We denote it as U(I)

Definition E.6 (Toric Ideal). Let A be a p− 1× n integer matrix. A toric
ideal defined by A is the binomial ideal (i.e. an ideal generated by binomials)

I(A) =
{

xα − xβ : Aα = Aβ
}

where the monomials xα and xβ are written in vector notation as in Equa-
tion (E.1).
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