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Abstract

For many years it is known that the population of older persons is on the rise. A recent

report estimates that globally, the share of the population aged 65 years or over is expected

to increase from 9.3 percent in 2020 to around 16.0 percent in 2050 [1]. This point has

been one of the main sources of motivation for active research in the domain of human

activity recognition in smart-homes. The ability to perform ADL without assistance from

other people can be considered as a reference for the estimation of the independent living

level of the older person. Conventionally, this has been assessed by health-care domain

experts via a qualitative evaluation of the ADL. Since this evaluation is qualitative, it can

vary based on the person being monitored and the caregiver’s experience. A significant

amount of research work is implicitly or explicitly aimed at augmenting the health-care

domain expert’s qualitative evaluation with quantitative data or knowledge obtained from

HAR. From a medical perspective, there is a lack of evidence about the technology readiness

level of smart home architectures supporting older persons by recognizing ADL [2]. We

hypothesize that this may be due to a lack of effective collaboration between smart-home

researchers/developers and health-care domain experts, especially when considering HAR.

We foresee an increase in HAR systems being developed in close collaboration with caregivers

and geriatricians to support their qualitative evaluation of ADL with explainable quantitative

outcomes of the HAR systems. This has been a motivation for the work in this thesis. The

recognition of human activities – in particular ADL – may not only be limited to support

the health and well-being of older people. It can be relevant to home users in general. For

instance, HAR could support digital assistants or companion robots to provide contextually

relevant and proactive support to the home users, whether young adults or old. This has also

been a motivation for the work in this thesis.

Given our motivations, namely, (i) facilitation of iterative development and ease in collab-

oration between HAR system researchers/developers and health-care domain experts in ADL,

and (ii) robust HAR that can support digital assistants or companion robots. There is a need

for the development of a HAR framework that at its core is modular and flexible to facilitate

an iterative development process [3], which is an integral part of collaborative work that
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involves develop-test-improve phases. At the same time, the framework should be intelligible

for the sake of enriched collaboration with health-care domain experts. Furthermore, it

should be scalable, online, and accurate for having robust HAR, which can enable many

smart-home applications. The goal of this thesis is to design and evaluate such a framework.

This thesis contributes to the domain of HAR in smart-homes. Particularly the contribu-

tion can be divided into three parts. The first contribution is Arianna+, a framework to develop

networks of ontologies - for knowledge representation and reasoning - that enables smart

homes to perform human activity recognition online. The second contribution is OWLOOP,

an API that supports the development of HAR system architectures based on Arianna+. It

enables the usage of Ontology Web Language (OWL) by the means of Object-Oriented

Programming (OOP). The third contribution is the evaluation and exploitation of Arianna+

using OWLOOP API. The exploitation of Arianna+ using OWLOOP API has resulted in four

HAR system implementations. The evaluations and results of these HAR systems emphasize

the novelty of Arianna+.
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Chapter 1

Introduction

1.1 Human Activity Recognition (HAR)

Human activity recognition (HAR) has been a very active research topic in the past two

decades for its applications in various fields such as health care, sports, security and surveil-

lance, and human-computer interaction. Activity recognition can be defined as the ability to

recognize/detect current activity based on of information received from different sensors [4].

Activities can be categorized at multiple granularity levels. In [5], to define human activities

at different complexity levels and durations, the authors distinguish Activities of Daily Living

(ADL) from actions - in a smart home. An action is an atomic activity that is performed by a

single subject and lasts for a relatively short time. Some examples of action are “pouring”

and “drinking”. An ADL is usually defined as a more complex activity, which lasts for a

longer time than an action. Often ADL consist of an orderly succession of simpler activities.

For instance, “Cleaning home” may consist of: “Taking cleaning tools”, “Walking”, and

“Putting back cleaning tools”. The ordering of simple activities may depend on an individual’s

preferences or habits, thus leading to several variants of an activity. Furthermore, activities

may have time-related connections to each other, to form a composite activity. With respect

to this, we may distinguish three situations: sequential activities, concurrent activities, and

interleaved activities [6].

Human activity recognition (HAR) is a highly dynamic and challenging research topic.

It aims at determining the activities of a person or a group of persons based on visual and

non-visual sensory data [7], as well as, based on knowledge about the context (environmental,

spatial, temporal, etc.) within which the observed activities take place. These sensors can be

cameras, wearable devices, sensors attached to objects of daily use, or sensors deployed in

the environment. With the advancements in technology and the reduction in device costs,
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particularly of smartphones and smartwatches, the logging of daily activities has also become

very popular and practical. People are logging their daily life activities, such as drinking

water, cooking, eating, sleeping, walking, etc. Nonetheless, challenges still exist in order to

recognize these activities automatically.

Within the domain of smart-home environments, researchers have developed and investi-

gated HAR systems with various applications in mind. We divide them roughly into four cat-

egories: namely, health-oriented [8], security-oriented [9], comfort/safety-oriented [10, 11],

and energy-oriented [12]. Health and well-being-oriented systems are those that monitor

the status of the user (e.g. weight, heart-rate, ADL, etc.). Security-oriented systems de-

tect distress or hazardous situations, for instance, smoke detection, intrusion detection, etc.

Comfort-oriented systems monitor user activities and context to provide classical home

automation that allows them to manage home appliances easily, and safety oriented systems

detect emergencies such as detecting falls. Finally, energy-oriented systems analyze electric-

ity consumption to approximately recognize user activities and make recommendations such

that the home user can save electricity and costs.

1.1.1 Motivation

It is estimated that there will be an increase in the size of the older population between 2020

and 2050. Globally, the share of the population aged 65 years or over is expected to increase

from 9.3 percent in 2020 to around 16.0 percent in 2050 [1]. The same report highlights that

for older persons to live independently, some universal needs must be met, which include

health care services. This particular point is not new and has been relevant for many years.

Furthermore, it has been one of the motivations for smart home research - particularly in the

past decade - due to advances in sensing, networking, and ambient intelligence technologies.

To support healthy and active aging, to maintain and improve the quality of life of

older persons, and to respond to the needs of the rapidly aging population – researchers

are developing smart-home environments that can recognize Activities of Daily Living

(ADL). The ability to perform ADL without assistance from other people can be considered

as a reference for the estimation of the independent living level of the older person [2].

Conventionally, this has been assessed by the caregivers and geriatricians – i.e., the domain

experts – via a qualitative evaluation of the ADL [13]. ADL are usually decomposed into

sub-activities, which can be analyzed in terms of gestural movements, poses, and postural

transitions, as well as using a series of cognitive dimensions such as activity planning.

Since this evaluation is qualitative, it can vary based on the person being monitored and
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the caregiver’s experience. A significant amount of research work is implicitly or explicitly

aimed at augmenting the health-care domain-expert’s qualitative evaluation with quantitative

data or knowledge obtained from HAR.

From a medical perspective, there is still a lack of evidence about the technology readiness

level of smart home architectures supporting older persons by recognizing ADL [2]. We

hypothesize that this may be due to a lack of effective collaboration between smart-home

researchers and health-care domain experts, especially when considering HAR. We foresee

an increase in HAR systems being developed in close collaboration with caregivers and

geriatricians to support their qualitative evaluation of ADL with explainable quantitative

outcomes of the HAR systems. This has been a motivation for the work in this thesis. The

recognition of human activities – in particular ADL – may not only be limited to support

the health and well-being of older people. It can be relevant to home users in general. For

instance, HAR could support digital assistants or companion robots to provide contextually

relevant and proactive support to the home users, whether young adults or old. This has also

been a motivation for the work in this thesis.

1.1.2 Challenges and problem description

Depending on the application or motivation, researchers would like to have a certain set

of features in the HAR systems they develop. In the literature, one can see researchers

attempting to incorporate features such as (i) scalability of the HAR system in terms of

accommodating more number of heterogeneous sensors and more variety of activities that

can be recognized, (ii) online activity recognition which means computational performance

must be taken into consideration, (iii) accuracy of activity recognition, part of which is also

the ability to deal with uncertainty-of and noise-in sensory data, (iv) intelligibility in terms of

explainable results and inner-workings of the system, (v) learning ability in order to improve

HAR accuracy over time, and (vi) considerate to privacy. It is noteworthy that within the

literature each feature is a research problem [6].

Given the motivations described in Section 1.1.1, namely, (i) facilitation of iterative

development and ease in collaboration between HAR system researchers/developers and

health-care domain experts in ADL, and (ii) robust HAR that can support digital assistants or

companion robots. There is a need for the development of a HAR framework that at its core

is modular and flexible to facilitate an iterative development process [3], which is an integral

part of collaborative work that involves develop-test-improve phases. At the same time,

the framework should be intelligible for the sake of enriched collaboration with health-care
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domain experts. Furthermore, it should be scalable, online, and accurate for having robust

HAR, which can enable many smart-home applications. The goal of this thesis is to design

and evaluate such a framework.

1.2 Contributions

In this section, all research contributions of this thesis are introduced. Note that these contribu-

tions have been achieved in collaboration with my research group, which is TheEngineRoom 1

at the University of Genova (Italy). Nonetheless, in this section, I also list my specific sig-

nificant contributions although the proposed contributions are the result of teamwork. In

this thesis, three contributions are made to the field of HAR. The first contribution is Ari-

anna+, a knowledge-based framework for contextualized HAR. The second contribution is

OWLOOP, an Application Programming Interface (API) that supports the implementation

of HAR systems based on Arianna+. The third contribution is the evaluation of a set of

HAR systems based on Arianna+ and developed using OWLOOP API. The results of the

evaluations emphasize the novelty of Arianna+.

1.2.1 First contribution

Chapter 3 presents Arianna+, a framework to develop networks of ontologies - for knowl-

edge representation and reasoning - that enables smart homes to perform human activity

recognition online. In the network, nodes are ontologies that represent different contexts and

allow data contextualization, while edges are computational procedures that process data.

The framework allows orchestration of data within a network of ontologies such that the

orchestration results in contextualized HAR.

Being a knowledge-based framework, Arianna+ is intrinsically intelligible and we fur-

ther argue that a network of small ontologies is even more intelligible. The framework

allows to integrate within the same architecture heterogeneous data processing techniques

as computational procedures. Thus, with Arianna+, we do not propose a new algorithmic

approach to HAR, instead, we present a modular knowledge-based architectural approach

to accommodate knowledge-based and data-driven activity models in a context-oriented

way. This is a novelty of Arianna+ as compared to other works in the literature. Chapter 3,

presents in a detailed manner Arianna+ and its core components. Later, chapter 5 evaluates

Arianna+. It showcases the scalability of systems based on Arianna+, their ability of online

1https://theengineroom.dibris.unige.it/
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activity recognition, intelligibility, and potential for good HAR accuracy. This chapter is

based on the following publication, which is currently – at the time of writing this thesis –

already published. The Table 1.1 clarifies the contribution of each author with respect to the

publication.

“L. Buoncompagni, S. Y. Kareem and F. Mastrogiovanni,"Human Activity Recognition

models in Ontology Networks", in IEEE Transactions on Cybernetics, (2021). DOI:

https://doi.org/10.1109/TCYB.2021.3073539”

Authors Contributions Keywords

Luca Buoncompagni

Writing (original draft)

Conceptualization

Experiments

Investigation

Introduction

Formalism

Experimental design

Implementation

Evaluation

Syed Yusha Kareem

Writing (original draft)

Conceptualization

Investigation

Formalism

Related work

Evaluation

Discussion

Fulvio Mastrogiovanni

Writing (review/editing)

Conceptualization

Supervision

Discussion

Reviewing

Table 1.1 Human Activity Recognition Models in Ontology Networks.

1.2.2 Second contribution

Chapter 4 presents OWLOOP, an API that supports the development of HAR system archi-

tectures based on Arianna+. It enables the usage of Ontology Web Language (OWL) by

the means of Object-Oriented Programming (OOP). OWLOOP allows to construct and use

Descriptors, which are Java classes that interface OOP objects with knowledge structured

in program-memory as an ontology. Descriptors encapsulate boilerplate code to simplify

the development and maintenance of a system that exploits knowledge representation and

reasoning using ontologies. The Descriptors’ methods allow to read, write, update, delete,

and reason on axioms in ontology files. Furthermore, flexibility in Descriptor construction

allows to avoid drawbacks in computational performance. This chapter is based on the
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following publication, which is currently – at the time of writing this thesis – under review.

The Table 1.2 clarifies the contribution of each author with respect to the publication.

“L. Buoncompagni*, S. Y. Kareem* and F. Mastrogiovanni, "OWLOOP: A modular API to

describe OWL axioms in OOP objects hierarchies", in SoftwareX, (2021).*Equal

contribution.”

Authors Contributions Keywords

Luca Buoncompagni

Writing (original draft)

Conceptualization

Experiments

Implementation

Maintenance

Syed Yusha Kareem

Writing (original draft)

Investigation

Experiments

Evaluation

Refactoring

Maintenance

Fulvio Mastrogiovanni
Writing (review/editing)

Supervision
Reviewing

Table 1.2 OWLOOP: A modular API to describe OWL axioms in OOP objects hierarchies.

1.2.3 Third contribution

Chapter 5 presents the evaluation and exploitation of Arianna+ using OWLOOP API. It

has four sections. Each section presents a HAR system based on Arianna+ and developed

using OWLOOP API. Section 5.1 evaluates the computational performance of a HAR system

based on Arianna+. Preliminary results show that HAR done in a contextualized manner

using a network of ontologies is computationally better compared to HAR done in a non-

contextualized manner. Results, therefore, highlight a HAR system that is intelligible, online,

and scalable.

Section 5.1 in Chapter 5, is based on the following publication, which is currently – at

the time of writing this thesis – already published. The Table 1.3 clarifies the contribution of

each author with respect to the publication.

“S. Y. Kareem, L. Buoncompagni and F. Mastrogiovanni,"Arianna +: Scalable Human

Activity Recognition by reasoning with a network of Ontologies", in proceeding of the 17th

International Conference of the Italian Association for Artificial Intelligence (AIxIA),

Springer Cham, pages 83-95, (2018). DOI: https://doi.org/10.1007/978-3-030-03840-3_7”
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Authors Contributions Keywords

Syed Yusha Kareem

Writing (original draft)

Conceptualization

Experiments

Investigation

Introduction

Related work

Experimental design

Implementation

Evaluation

Luca Buoncompagni
Writing (review/editing)

Supervision

Discussion

Reviewing

Fulvio Mastrogiovanni

Writing (review/editing)

Conceptualization

Supervision

Discussion

Reviewing

Table 1.3 Arianna +: Scalable Human Activity Recognition by reasoning with a network of

Ontologies.

Section 5.2 in Chapter 5 evaluates a HAR system (based on Arianna+) that has a network

of ontologies wherein the spatial context is shared among all activities and temporal context

is specialized for each activity. Activity models are developed to recognize activities being

performed in the CASAS dataset. Results show that contextualized activity recognition

has accuracy comparable with non-contextualized state-of-the-art data-driven and hybrid

approaches. Results, therefore, highlight a HAR system that has good accuracy (for the

particular CASAS dataset), is intelligible, and is online. This section is based on the same

publication mentioned in Section 1.2.1 as the first contribution. This publication is currently –

at the time of writing this thesis – under review after a second revision. This section presents

all the practical aspects of that publication, i.e., experimental design, evaluation, results

and discussion. The Table 1.1 clarifies the contribution of each author with respect to the

publication.

“L. Buoncompagni, S. Y. Kareem and F. Mastrogiovanni,"Human Activity Recognition

models in Ontology Networks", in IEEE Transactions on Cybernetics, (2021). DOI:

https://doi.org/10.1109/TCYB.2021.3073539”

Section 5.3 in Chapter 5 exploits Arianna+ to develop a real-world HAR system that

can recognize the routine morning hygiene activity and having breakfast activity. Both are

composite activities. In the network of ontologies for this HAR system, there is an ontology

in which the results of HAR are saved. These results can be queried in an intelligible manner

using SPARQL protocol and Query Language (SPARQL). Results highlight the intelligibility

of the HAR system. This Section is based on work that has not been published yet. My
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contribution in this work has been the following: conceptualization, literature research,

experimental design, implementation, and evaluation.

Section 5.4 exploits Arianna+ to develop a real-world HAR system that can recognize

having breakfast activity. The HAR system is integrated with a dialogue management system

and a digital assistant. Once the user’s having breakfast activity is detected, the digital

assistant reminds the user to take medication. The user experiences this scenario with two

kinds of assistants, i.e., one with a robot body and one without a robot body. A comparison is

made between the UX when a user interacts with the two kinds of digital assistants. Results

show that the digital assistant with a robot body is comparatively perceived as more attractive,

stimulating, and novel. With this preliminary result, we argue that by providing a robot as

a companion digital assistant the acceptance of a smart home system could be positively

affected. This Section is based on the following article, which is soon to be submitted to the

International Journal of Social Robotics. Table 1.4 clarifies the contribution of each author

with respect to the article.

“T. Elia, S. Y. Kareem and F. Mastrogiovanni,"A smart home system with a digital assistant

- Comparison between a vocal-assistant and a robot-assistant", in the International Journal

of Social Robotics, (2021)”

Authors Contributions Keywords

Tommaso Elia

Writing (original draft)

Experiments

Investigation

Experimental design

Implementation

Dialogue management

Digital assistants (vocal/robot)

Survey and Evaluation

Syed Yusha Kareem

Writing (original draft)

Experimental setup

Supervision

Implementation

Arianna+ and OWLOOP API

Dialogue management

Evaluation and Reviewing

Fulvio Mastrogiovanni

Writing (review/editing)

Conceptualization

Supervision

Experimental design

Reviewing

Table 1.4 A smart home system with a digital assistant - Comparison between a vocal-

assistant and a robot-assistant.
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1.3 A brief guide to reading this thesis

This section outlines the structure of this thesis and presents the flow between all the chapters.

Chapter 1: Introduction

Introduces the reader to the domain of HAR in smart environments. It presents particular

motivations for HAR in smart-homes. It then briefly describes the challenges of doing HAR.

Then, based on the motivations and challenges, it presents the goal and contributions of this

thesis.

Chapter 2: Related work

Presents the background that is necessary for understanding the approach taken in this thesis.

The background includes an introduction to the key terminologies in the domain of HAR for

health and well-being in smart-homes. Furthermore, the chapter presents the state of the art

on sensing and modeling approaches for HAR. Also, the benefits and drawbacks of these

approaches are clarified. Then, based on the challenges within the state of the art and the

motivations mentioned in Chapter 1, the research problems that are particularly addressed by

this thesis are highlighted.

Chapter 3: Arianna+

Presents Arianna+, a framework that has been designed taking into account the research

problems highlighted in Chapter 2. The first contribution of this thesis is Arianna+, a modular

and intelligible framework for robust HAR. This chapter presents the preliminaries that are

necessary for understanding the core components of Arianna+. The chapter then highlights

the novelty of Arianna+ and describes it before presenting in detail all its core components.

Chapter 4: OWLOOP API

Presents the second contribution of this thesis that is the OWLOOP API. It is an API that is

designed to ease the development of HAR systems, which are based on Arianna+. It maps

OWL axioms into OOP objects called Descriptors. This chapter presents the preliminaries

that are necessary for understanding the core components of OWLOOP API. The chapter then

highlights the novelty of OWLOOP API and describes its OWL to OOP mapping approach

before presenting in detail all its core components and its usage in HAR system development.

Chapter 5: Evaluating and exploiting Arianna+ using OWLOOP API

Presents four implementations of HAR systems that are based on Arianna+ and are devel-

oped using OWLOOP API. Each implementation is evaluated and its results are presented

highlighting how they address one or more of the research problems described in Chapter 2.

Thus affirming the novelty of Arianna+. In this chapter, each implementation is presented as
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a section with its own introduction, description of the methodology, experimental evaluation,

and summary.

Chapter 6: Conclusion

Finally, presents a summarized cohesive conclusion by recapping the three contributions of

this thesis with respect to the initial research problems presented in Chapter 2. The chapter

then presents limitations of the HAR approach proposed in this thesis and opportunities of

future work, i.e., the open issues and promising research directions.



Chapter 2

Related work

2.1 HAR for health and well-being in smart homes

Scientific and technological progression has progressively improved the standard of living

for the people. Research findings have shown that in recent years, due to a decrease in birth

rates and an increase in life expectancy, a demographic shift will occur. The population

of the elderly is predicted to grow between the years 2020 to 2050. In 2020, 9.3% of the

population is aged 65 or older, and by 2050, that figure is predicted to be closer to 16.0% [1].

To protect and improve the quality of life of older people, and to respond to the needs of the

increasingly aging population, the problem of facilitating stable and active aging must be

addressed. Advances in modern technology have provided new opportunities to enhance the

standard of independent living for older people. Ambient Assisted Living (AAL) services

are being built to help residents track and protect their safety and well-being. The aim of

AAL systems is therefore to provide sufficient support to allow older people to live in their

homes as independently as possible for as long as possible. The AAL system needs to

understand a person’s behaviour to be able to provide such assistance, so it relies on HAR

systems to identify and interpret sensory data. A smart home is characterized in [14] as an

environment equipped with sensors to track the activities of residents and their interactions

with the environment by analyzing the data from the sensors.

HAR Literature indicates that the term activity was used with minor variations. There is,

however, a notion that emerges from the widespread usage of the word. The terms action

and activity are also used interchangeably in the literature. However, a distinction is made

between action and activity based on granularity [15]. On the basis of such granularity,

complex activities (e.g. "preparing tea") are hierarchically organized into simpler activities or

actions (e.g., " enter the kitchen", "near water kettle", "pouring "). Activities can be classified
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into composite activities, sequential activities, concurrent activities and interleaved activities,

taking into account the complexity, duration and order of the sub-units. For instance, in the

case of sequential activity, the following sequence of sub-units can make up the sleeping

activity: open the door, lie on the bed, and turn off the light. In the case of interleaved

activities, a person prepares a meal, then takes a break and goes to the bathroom, then returns

to the preparation of the meal. Lastly, in the case of concurrent activities, activities such as

watching TV and eating may be carried out concurrently by the user.

Context data, such as location, time, frequency, and object interaction, are also essential

to the identification of activities in smart home settings. Location refers to a physical region

where a given activity is often carried out. Taking a shower, for example, takes place in

the bathroom. Human posture is almost always related to the location of the person and

often to furniture. Some primary postures, such as sitting and lying, are used to recognize

other activities, such as resting or sleeping. Time, which involves the start and end times (or

duration), is another key feature for defining activities. For example, long sleep typically

happens in the evening and in a semi-regular period of time within a typical daily routine.

Finally, when monitoring human activities, contact with objects is generally considered,

where the object may signify the relevant activity being conducted. For example, the use of a

broom as an object can imply ongoing housekeeping activity. Other contextual dimensions,

such as temperature and humidity, may also be considered for activity detection. These

features are useful for identifying the activities and determining the health status of older

people in accordance with health domain experts.

Many interpretations of the term context have been proposed in other studies within

the literature. Context is, as it is described by [16], any information that can be used to

characterize an entity’s situation. An entity shall include a person, a place, or an object.

The authors of [17]: “raw data and background information”, make a distinction between

two forms of information. On the one hand, raw data, also called low-level context data,

are unprocessed data taken directly from the source, such as a sensor. Such data can

reflect a person’s vital signs or movements or environmental parameters (e.g., temperature,

humidity, and sound). Context information, on the other hand, is information produced by

the processing of raw data. It refers to the extraction of high-level data such as the activity

patterns of a person. Context plays a vital role in the monitoring of health and wellbeing. In

the case of smart environments delivering health care services, the assessment of the health

status of monitored individuals and their success in achieving their day-to-day activities

relies on knowing their surroundings. For example, changes in the data on vital signs of

the subject should be correlated with the current situation of the subject to gain a better
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understanding of the condition of the subject. In a smart environment, data regarding the

person’s context (physiological, temporal and spatial) is often collected using a variety of

sensors and devices. To ensure the efficiency of the smart environment, it is necessary to

ensure that the appropriate sensors are properly selected and that the data is appropriately

and accurately analyzed [18].

2.1.1 Activities of Daily Living (ADL)

Recognition of Activities of Daily Living (ADL) is the recognition of day-to-day activities in

an indoor environment such as a home. These activities include eating, cooking, sleeping,

sitting, bathing, dressing, grooming, etc. Recognition of such activities is of high significance

for their implementation in a number of fields, such as smart homes. Recognizing the

daily activities of older people living independently at home will help caregivers track their

wellbeing and provide adequate treatments. In addition, a smart home may provide contextual

and constructive assistance to home users if it identifies their activities. ADL is categorized

as two [2], basic ADL (BADL) and instrumental ADL (IADL). BADL includes tasks such as

grooming, eating, climbing up and down the stairs, dressing and mobility (walking), while

IADL includes activities such as ironing, sweeping, washing dishes and recreational activities

(e.g., watching TV). IADL is somewhat different in that it needs a certain level of planning

capability and sometimes social skills, such as housekeeping, cleaning and cooking.

A variety of solutions have been suggested to identify ADL over the last decade. Some

strategies use surveillance cameras to capture images or video, and then use computer vision

techniques to identify the activities conducted [19, 20]. Other techniques are based on

wearable sensors and object-tagged sensors such as accelerometers, motion sensors, pressure

sensors, and Radio Frequency Identification (RFID) tags for the detection of everyday

activities. The authors of [21] suggested a technique focused on wrist-worn sensors to

identify the behaviors of older people to support independent living. Three types of sensors

are attached to the user’s wrist-worn watch: accelerometer, temperature sensor and altimeter.

A similar technique was developed in [22] for the identification of housekeeping activities,

using accelerometer and gyroscope as wrist-worn sensors. In [23], a technique was proposed

that uses an accelerometer as a wrist-worn sensor, and items of everyday use are marked with

RFID tags. The authors tested their methodology in three ways: using data only from the

accelerometer, using data only from RFID tags, and using data from both the accelerometer

and RFID tags. The findings show that the hybrid approach (i.e. integrating data from both

accelerometer and RFID tags) produces better results compared to separate approaches. A
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similar solution has been presented by [24], in which the user has to wear a system consisting

of an accelerometer, a gyroscope, a magnetometer and an RFID antenna. Various items of

everyday use are also tagged with RFID tags. The authors tested the proposed framework in

two scenarios: breakfast (preparing and having breakfast, washing dishes, etc.) and home

care.

In addition, several other techniques have used dense sensing and utilized various sensors,

such as motion sensors, pressure sensors, temperature sensors and proximity sensors, have

been deployed in the environment [25]. When a user conducts any activity in the vicinity of

these sensors, relative information can be collected by means of these sensors, which can

then be used for activity recognition purposes. In [26], the authors proposed a technique

called SmartWall that uses passive RFID tags attached to a wall. When users perform some

activity in front of this wall, the changes induced by the reflected signal capture information

about the activity performed. The machine learning algorithm used is based on a multivariant

Gaussian algorithm that uses the maximum likelihood estimation to identify activities. The

proposed system can identify 10 daily activities and can also detect falls. The authors carried

out a prototype of the proposed solution and carried out various experiments to evaluate the

performance. Apart from recognizing activities, in [27], the authors present a methodology

to represent the habits of users based on the sequence and duration of their activities. The

uniqueness of their approach is that they identify human habits using the assessment of sensor

signals by clustering.

2.1.2 Ambient Assisted Living (AAL)

It is up to society to provide for the health and well-being of older people as the population

grows older. Many elderly people prefer to live peacefully in their own homes. A con-

siderable amount of research has been undertaken in recent years to provide home health

monitoring and healthcare services. Researchers have developed a range of emerging tech-

nology to support people with day-to-day activities, dubbed ambient intelligence. One of

these technologies is called Ambient Assisted Living (AAL). It aims to provide services

such as remote health tracking, medication management, prescription reminder, exercise

management, and constructive support for independent living. Over the last decade, a variety

of solutions have been proposed under the umbrella of AAL to promote the independent

living of older people [28–30]. HAR plays a preliminary and important role in most of

the solutions. As described in [31, 32], depending on the type of sensors used in the smart
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home, HAR may be performed using data from, vision, wearable or distributed sensors, or a

combination of these.

A vision-based approach uses a surveillance camera to gather information on the activities

of residents [33]. Several other solutions are also suggested using different sensors. The

authors of [34] suggested a multi-sensor strategy for the identification of day-to-day activities

in robot-assisted living. In [35], the authors proposed an RFID-based framework to track the

activities of Alzheimer’s patients at home. The basic concept of this work is to monitor a

user’s movement from one room to another and to report any irregular circumstance (e.g.,

staying in the washroom for a longer time). Some solutions have tried to incorporate robotics

into smart home for AAL. Domestic assistance has been a driving force in the area of mobile

robotics so that robots can support people in their everyday environment. Mobile robots can

be very useful to help elderly people live independent lives. Over the decades, several mobile

robots have been built by academics and research groups. Their findings and observations,

obtained through their studies, would certainly shape tomorrow’s care robots. Among all

mobile robots for the health care and well-being of older people, there are many notable

robots mentioned in [36].

2.2 Sensing approaches for HAR

2.2.1 Visual sensor-based

This section presents some works that concentrate on based visual sensor based solutions

for HAR. In [37], the authors presented a survey of current research work that uses a

visual sensor-based approach for activity detection and divided the literature into two major

categories: uni-modal and multi-modal approaches. Unimodal methods use data from a

single modality and are further classified into stochastic, rule-based, space-time-based, and

shape-based methods. Multimodal techniques use data from various sources and are further

categorized into behavioral, effective and social networking methods. In addition, the authors

of [38] presented a detailed description of the research conducted in the field of action

recognition using vision-based approaches. This survey categorizes the overall work into

two main categories: representation-based solutions and deep neural network solutions.

Representation-based solutions are further categorized in Holistic and Local Representations.

Deep neural network solutions are subclassified as multiple stream networks, temporal

coherency networks, generative models, and spatiotemporal networks. One of the problems

with conventional cameras is the reliance on light, i.e. they can’t function in the dark.



2.2 Sensing approaches for HAR 16

Developing a depth camera like Kinect has solved this problem because it can operate in the

dark. It is possible to obtain different data streams from Kinect, such as RGB, depth, and

audio [39]. Kinect data can collect details about the human body and create a virtual 3D

skeleton. Using this information, activities can be identified since different body (skeletons)

movements are connected to different activities. Apart from complex computing, the cost

of depth sensing cameras is high, which is a drawback of this method. While some sensors

(e.g. cameras) have high precision for activity or action recognition, simpler sensors (e.g.

Passive Infrared (PIR), light, and RFID) are commonly used in smart home environments

due to privacy concerns.

2.2.2 Non-visual sensor-based

Non-visual sensors are often wearable sensors, or object-tagged sensors, or ambient/dis-

tributed sensors. Wearable sensors and object-tagged sensors are typically accelerometers,

gyroscopes, magnetometers, and RFID readers and tags. Whereas ambient sensors are com-

monly motion sensors, pressure sensors, and proximity sensors. Wearable sensors typically

refer to sensors that are directly or indirectly mounted on the human body. They produce

signals when the user conducts an activity. As a result, they will track features that are

descriptive of the physiological state or movement of the individual. Wearable sensors may

be mounted in clothing, eyeglasses, belts, shoes, wristwatches, mobile devices or placed

directly on the body. They can be used to gather information such as body position and

movement, pulse, and skin temperature.

Researchers have found that different types of sensor information are effective in clas-

sifying different kinds of activities. Accelerometer sensors are perhaps the most widely

used wearable sensors for activity tracking. They are especially successful in tracking acts

involving repetitive body movements such as walking, running, sitting, standing, ascend-

ing stairs. In [40], the authors include a description of the research work that recognizes

human behaviors using acceleration data. In [41], a network of 3-axis accelerometers is

distributed around the body of the user. Each accelerometer provides detailed information

on the orientation and movement of the corresponding body part. [42] identifies human

ambulation and posture using acceleration data obtained from the hip. Researchers have also

collected multi-sensory datasets for everyday life activities [43, 44]. Wearable sensor-based

activity tracking suffers from limitations. Most wearable sensors need to run continuously

and work hands-free. This may have difficulties in the real-world situations of application.

Practical concerns include the acceptability or willingness to use wearable sensors and their
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viability and ability to wear them. Real-world technological issues include size, ease of

use, battery life, and the approach’s effectiveness. In order to fix these problems, extensive

research on smart garments has been carried out, which is focused on embedding sensors in

clothing for HAR [45]. Another ongoing research thread seeks to use common consumer

products that people carry everyday, such as smartphones, as intelligent sensors for activity

tracking, identification, and assistance. This has been in effect for some time and is expected

to increase dramatically as a result of the latest growth and cost reduction of palm-held

electronic devices.

Wearable sensors are inappropriate for complex bodily movements and/or multiple

interactions with the environment. Data from sensors worn by the consumer may not be

adequate in some cases to distinguish activities that are simply physical movements (e.g.,

brushing teeth and washing dishes). As a consequence of this, dense sensing or ambient

sensing has arisen. Dense sensing-based activity tracking requires the use of multiple sensors

to connect to various objects in an area, and then activities are tracked by detecting when

the sensors sense user-object interactions. This strategy is focused on evidence from the

real world, which demonstrate that activities are defined by the artifacts used during their

execution. A clear sign that an item is being used may also be an invaluable clue to the

activity that is going on. As such, it is believed that behaviors can be identified from sensor

data that tracks human interactions with objects in the environment. By dense sensing, we

are referring to the way and scale in which the sensors are used. Using dense sensing, a large

number of sensors, typically low-cost low-power and miniaturized, are deployed in a variety

of objects or positions within an area to track the movement and activity of a person. As

dense sensing-based monitoring embeds sensors in environments, this makes it more suitable

for building smart environmental applications such as smart environments. As such, dense

sensing-based activity tracking has been widely implemented in AAL via the smart home

framework. Sensors in a smart home can track a person’s movements and environmental

events in such a way that the smart home HAR system can infer ongoing activities based

on sensor observations, thereby providing just-in-time context-aware ADL assistance. For

example, a switch sensor in the bed may strongly indicate sleeping.

It is worth noting that wearable sensors and dense sensing are not mutually exclusive.

They have to work together in some applications. For example, RFID (Radio Frequency

Identification) based activity monitoring requires items to be tagged and users to wear an

RFID reader attached to a glove or bracelet. In [46, 47], the authors created two devices,

iGlove and iBracelet, acting as wearable RFID readers to detect when users communicate

with unobstrusively tagged objects. The authors of [48] performed fine-grained activity
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recognition (i.e. not only recognizing that a person is cooking, but deciding what they

are cooking) by aggregating the use of items. In [49], authors identify indoor day-to-day

activities by using an RFID sensor network. In most cases, wearable sensors and dense

sensors are complementary and can be used in combination to achieve optimum recognition

performance. For example, [50] combines wearable sensors and object sensors for the

collection of multimodal sensor information. They identify sequential, interleaved, and

concurrent activities via a pattern-based approach. Although a large amount of research

has been done and advances have been made, the research is still very active when using

wearable sensors and dense sensing techniques.

2.3 Modeling approaches for HAR

There are two major types of ADL recognition methods: data-driven methods and knowledge-

based methods [51]. Data-driven approaches are more versatile regarding implementation,

and they are more resilient to noisy and ambiguous sensory data. Additionally, since they

do not depend on a static specification of how ADL should be done, they may theoretically

account for more variations of the different activities considered. A good example is when

preparing a meal, a person may begin by turning on the stove and then retrieve the food

items from the cabinets or vice versa. The person can choose to skip or add some steps to

the activity, depending on the recipe. Therefore Data-driven approaches are more flexible in

terms of how activities or actions are executed. However, obtaining a robust annotated dataset

is costly and often infeasible. It is also difficult to provide the domain knowledge about the

activity using data-driven methods. Knowledge-driven approaches, on the other hand, are

more capable of reflecting the semantics of sensor events. These techniques exploit domain

knowledge to model a real-world activity. An activity can be modeled this way, removing

the need for a broad training dataset. Such strategies, however, lack the advantage of system

versatility in terms of the range of variability in the activities performed. Besides the methods

described above, another alternative that has been suggested is to combine data-driven and

knowledge-based approaches to form hybrid approaches. In the following, we go through

these categories in greater depth.

2.3.1 Data-driven

Data-driven approaches use sensor data, labeled with previously performed activities, as a

training set, and machine learning algorithms to create a model for inferencing activities.
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These models can be created u sing sensory data streams [52] or event-based data [53]. A

discriminative (i.e., Support Vector Machines [53] and Artificial Neural Networks [54])

data-driven approach is utilized in situations with complex, multi-modal data streams, for

example, data originating from cameras [55] and accelerometers [56], for posture recognition

and fall detection. A generative (e.g., Hidden Markov Models [57] and Dynamic Bayesian

Networks [58]) data-driven approach is used in circumstances where simple data is at play

(e.g., while using distributed sensors such as pressure sensors, PIRs, etc.)." Observations

concerning the surrounding environment of an individual (in particular the use of objects),

possibly coupled with body-worn sensor data, become the basis for HAR systems [23, 59].

In [60], the authors have proposed a time series data analysis approach to classify ADL using

sensor events as a series. The application of Hidden Markov Model inference is proposed

in [61] to identify activities based on features extracted from recent sensor events using

a sliding window. Another method for detecting sequential, interleaved, and concurrent

activities is Conditional Random Fields proposed in [62]. To specifically model complex

temporal dependencies over time intervals, the authors in [63] combine Bayes Networks with

Allen’s interval algebra [64]. In [65], the authors introduce a supervised learning classifier

that dynamically updates its model in response to dynamically discovered context. However,

as training data is difficult to obtain in practical settings, systems that rely on supervised

learning are vulnerable to scalability problems as more events and more background data are

considered. Datasets of complex ADL are coupled closely to the context in which they are

obtained (i.e., the home environment and sensor setup), as well as to the manner in which

the activities are conducted by a particular individual. Because of this, portability of activity

datasets is still an open issue [66].

2.3.2 Knowledge-driven

Knowledge-based approaches are based on specification-based definitions of the characteris-

tics and semantics of complex activities. Matched with available sensor data, these are used

to classify the current activity. Such definitions are described by logical axioms, rules, or

description logics [67–69]. Much research has also gone into accommodating time related

domain knowledge into the reasoning process [70–73]. Some research has also employed

concepts drawn from constraint-based planning in conjunction with temporal reasoning

techniques [74, 75] for activity recognition. In the following paragraphs, we particularly

deeply explore various knowledge representation and reasoning frameworks that have been

built to model complex human activities using description logic (DL) based ontologies.
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In a knowledge-based approach to reasoning on contextualized data (i.e. sensor events)

correlated with a priori defined knowledge (i.e., schema, collection of axioms, laws, etc.), the

Ontology Web Language (OWL) standard has been widely proposed for HAR, as discussed

in [76]. In particular, description logic [77] has appeared, among other symbolic formalisms,

mainly because it offers a complete justification (i.e. any true well-formed formula can

be derived) backed by reasoning tools. Description Logic (DL) [77] is a state-of-the-art

formalism that allows representation and reasoning of symbolically organized knowledge.

DL is part of a decidable fragment of languages that are based on first-order logic and has

been standardized as OWL-DL by the World Wide Web Consortium (W3C). In order to

accommodate temporal representations of knowledge, both probabilistic and logic-based

methods utilize Allen’s Interval Algebra [64]. OWL [78] enables the creation of ontologies,

which are semantic corpora containing knowledge encoded as logically specified symbols

intended to be readable by humans and machines. An ontology is described in a context, i.e.

a coherent corpus of knowledge representing a domain of interest [16]. Within a context,

a reasoner can assess the consistency of knowledge by performing subsumption, instance-

checking and inference on the basis of well-defined rules [79]. Several reasoners have been

proposed, some of which are discussed in [76]. Deterministic DL reasoners (e.g., Pellet [80])

do not reflect ambiguity, whereas fuzzy [81] or probabilistic [82] OWL reasoners do.

Various research works relied on description logic languages to formally express activity

definitions [68, 69]. Context information of ADL was used to construct activity models used

to identify ADL based on the similarity of the sequences of sensor events to the general mod-

els [60]. Ontological reasoning has also been proposed for performing dynamic segmentation

of sensor data [83–85] or for refining the output of supervised learning methods [86]. Defea-

sible reasoning has been adopted to improve current sequential activity recognition systems

by detecting interleave activity and managing consistent or conflicting information [87]. A

further framework to segment activities based on their semantic definition is proposed in [83];

this method also supports the recognition of concurrent activities. However, these works are

based on static assumptions regarding simpler components (i.e. sub-units) of activities. Thus,

while the specification-based approach is successful for activities defined by a few standard

execution patterns, it is hardly scalable for the extensive specification of complex ADL in

various real-world contexts. In addition, DL is computationally costly, and this restricts its

online use, particularly when the context is information rich. In particular, computing scales

exponentially with the amount of information encoded in ontology [77].

While we are discussing the subject of knowledge-based approaches it is worth under-

standing the differences and similarities in the words ’ontology’, ’knowledge-base’, and
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’knowledge-graph’. In [88], the authors attempt to clarify these words based on an extensive

literature review. They highlight that ontological representations allow semantic modeling of

knowledge, and are therefore commonly used as knowledge bases in artificial intelligence

(AI) applications, for example, in the context of knowledge-based systems. Furthermore,

the authors explicitly emphasize that an ontology does not differ from a knowledge base, al-

though ontologies are sometimes erroneously classified as being at the same level as database

schemas [89]. This is because in fact, an ontology consists not only of classes and properties

(e.g., owl:ObjectProperty and owl:DatatypeProperty), but can also hold instance data (i.e., the

population of the ontology). Regarding the terms knowledge-graph and ontology, the authors

point out that the difference between a knowledge graph and an ontology could be interpreted

either as a matter of quantity (e.g., a large ontology), or of extended requirements (e.g., a

built-in reasoner that allows new knowledge to be derived). They highlight that the second

interpretation leads to the assumption that a knowledge graph is a knowledge-based system

that contains a knowledge base (e.g., an ontology) and a reasoning engine. Based on these

aspects, the authors define knowledge-graph as follows: ’A knowledge graph acquires and

integrates information into an ontology and applies a reasoner to derive new knowledge.’.

2.3.3 Hybrid

In view of the limitations of both data-driven and knowledge-based methods, a few hybrid

behavior recognition systems have been proposed in the literature that differ on the adopted

reasoning techniques and their interaction mechanisms. An interesting example of these

methods is Markov Logic Networks (MLN), a probabilistic first-order logic method [90].

Given a training set and the set of probabilistic formula, with MLN it is possible to learn

weight for each grounded formula by iteratively optimizing a pseudo-likelihood measure.

These weights are the confidence value of the formula. Deterministic formulae can be applied

to probabilistic formulae to express deterministic knowledge of the domain of interest.

Various reasoning tasks can be carried out in order to infer additional knowledge on the basis

of formulas and facts [91]. A similar approach was adopted in [92] to model and identify

activities at various levels of complexity using probabilistic description logic.

The benefit of using probabilistic logic is that it allows the definition of complex

knowledge-based constraints that can capture the inherent uncertainty of sensor measure-

ments. Learning the weights of these constraints makes it possible to combine a strong point

of knowledge-based and data-driven approaches, thereby improving the recognition rate.

However, these hybrid methods also involve the acquisition of a labelled data set. Hybrid



2.3 Modeling approaches for HAR 22

logic-statistical frameworks have been suggested in the literature. For example, activities

are defined with a combination of probabilistic models and semantic constraints in [92–94].

Other contextualization strategies use a hybrid solution through augmentation of ontologies

with specific ML-based algorithms, which are based on patterns of activity [95, 96], or by

inferring concepts through a learning approach [97]. In [98], an ontology is used to classify

features that are useful for the training of human activity models, while probabilistic ontology

is used for the same task in [92]. MLN is extended by Allen’s Algebra in [99] and is adopted

in [100] for the purpose of refining structures designed through knowledge engineering.

In [101] the authors suggested that ontologies be used to extract semantic similarity between

sensor events. This similarity is then used for segmenting sensor data, obtaining sequential

activities’ patterns that are then used to train a clustering model. Semantic segmentation of

sensor data enables accurate individuation of transitions between activities without supervised

techniques. The main downside of this approach is that it involves a comprehensive dataset

of activities (even if not labelled) obtained from the tracked subject to create an accurate

activities’ model. Hybrid ontological and statistical rationale is also proposed in [102] to

continuously assess the risk of falling of an older person at home by combining data acquired

from various fall detection systems and environmental sensors. Semantic reasoning, given

the context, is then used to minimize the number of false positives obtained by the statistical

fall-detection system.

Context-aware methods have shown to be successful in assessing human activities if they

are carried out on data semantically organized in an ontology. Effectiveness depends on the

prior information that is used to organize data, and this contributes to a significant effort in

knowledge engineering. Indeed, seeking a conceptualization that perfectly represents the

context to support the recognition of human activity is far from trivial. Several ontology-

based representations have been evaluated in [97] based on the context they describe, e.g.

sensor events, sensor hierarchies, human postures, or locations. In [94], the context is

described in terms of affordances, and is based on relevant knowledge of space, time and

human attitudes. In these methods, the need for efficient reasoning on data generally leads

to ontologies that are built either for computational efficiency or for high expressivity, i.e.

they accurately describe human activity in detail. For example, the work in [103] reports

an ontology with restricted expressivity, based on OWL-EL, which has been implemented

in a real-world use case. That work exhibits the trade-off between the computational effort

required for reasoning and the expressivity of knowledge representation.
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2.4 Research problems addressed by this thesis

In this section, we outline the research questions (RQs) tackled in this thesis. For each

question, we introduce the research problem and indicate the specific chapter of the thesis

where the problem is addressed.

RQ1. How can one have a HAR system that at its core is modular and intelligible – to

support an iterative development process of such a system and for an enriched collaboration

between HAR researchers and health-care domain experts?

As highlighted in Section 1.1.1, there is still a lack of evidence about the technology

readiness level of smart home architectures supporting older persons by recognizing ADL [2].

We hypothesize that this may be due to a lack of effective collaboration between smart-home

researchers and health-care domain experts, especially when considering HAR. As can be

seen in Section 2.3, whether data-driven, knowledge-based, or hybrid, most researchers have

taken an algorithmic approach towards activity recognition. Some researchers have taken

an architectural approach towards health monitoring and a survey categorizes them into

centralized architectures and distributed architectures [31]. Nonetheless, modularity remains

an open issue in the domain of HAR.

Hence, to support an iterative development process and an effective collaboration between

HAR researchers and health-care domain experts, Chapter 3 presents Arianna+, a framework

for developing modular and intelligible HAR systems. Intelligible because the framework is

designed based on the knowledge-based approach. Particularly utilizing Description Logic

(DL) of Ontology Web Language (OWL) and Semantic Web Rule Language (SWRL) rules.

Modular because the framework takes an architectural approach that allows contextualized

knowledge representation and allows to incorporate data-driven and knowledge-based rea-

soning techniques, and consequently it can incorporate heterogeneous sensors. Chapter 3

highlights these aspects while presenting the core components of Arianna+.

Often, the development and programming aspects, which are associated with the research

in HAR systems, are neglected. They play an important role in an iterative development

process [3], which is an integral part of collaborative work. Hence, chapter 4 presents

OWLOOP, an API that supports the development of HAR system architectures based on

Arianna+. It enables the usage of Ontology Web Language (OWL) by the means of Object-

Oriented Programming (OOP). Chapter 4 presents OWLOOP’s novelty and core-components.



2.4 Research problems addressed by this thesis 24

RQ2. If a knowledge-based approach is taken for ADL recognition then how can it be

done in a scalable and online manner?

It is known in the literature that DL-based reasoning is computationally expensive, and

this limits its online usage, especially when the context is information-rich. In particular, the

computation scales exponentially with the amount of knowledge encoded in an ontology [77].

Furthermore, it is also known that context-aware approaches are effective in evaluating human

activities if such evaluation is performed on data semantically structured in an ontology. Its

effectiveness depends on how prior (i.e., domain) knowledge is used to structure data [31].

As shown in Section 2.3.3, many hybrid approaches are context-aware approaches.

The work done in this thesis extends context-aware architectures for HAR. Chapter 3

presents how Arianna+ uses its core components that are based on OWL-DL to reason on a

set of ontologies interconnected in a network. Wherein, each ontology represents a certain

specific context, e.g., an ontology could represent the context of an activity such as preparing

a meal, and another ontology could represent the context of an activity such as watching TV.

In chapter 5, sections 5.1 and 5.2, present systems based on Arianna+. The evaluation of

these systems highlights that by having multiple ontologies - each with a dedicated reasoner

– one can reduce the overall reasoning load compared to an approach wherein all relevant

knowledge is encoded in a single ontology. Therefore, enabling a knowledge-based HAR

system to be online in activity recognition and scalable in terms of accommodating more

granular contexts or activities. This is especially relevant when each ontology is related to a

detailed – but very partial, i.e., contextualized – representation of the application domain.

Furthermore, chapter 5, section 5.4, presents a real-world HAR system based on Arianna+

that uses its online activity recognition capability to provide proactive support to the home

user.

RQ3. How can data-driven and knowledge-based approaches be integrated and used

together such that their results are accurate and intelligible?

As described in Section 2.3, on the one hand, data-driven methods are more flexible as

compared to knowledge-based methods in terms of recognizing complex activities when

there exists variability in the execution of sub-activities/actions. Furthermore, data-driven

methods are robust against the intrinsic noise and uncertainty of sensor measurements. But

they lack the capability of capturing important semantic relationships between sensor events

and contexts or activities. Moreover, data-driven methods often need large annotated training
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data. On the other hand, knowledge-based methods capture very well the above-mentioned

complex semantic relationships. These methods use the domain knowledge to conceptually

model an activity. In this way, an activity can be modeled without the need for large training

data. But their specification is often too rigid to cope with the variability in execution of

sub-activities/actions and to handle noise and uncertainty. Furthermore, knowledge-based

methods may require extensive knowledge engineering effort.

Chapter 3 presents Arianna+ as a framework for developing a HAR system that can be

architecturally hybrid. This in terms of being able to combine the strong points of both

data-driven and knowledge-based approaches. Sections 3.3.3 and 3.3.4 highlight how

data-driven and knowledge-based approaches work together for accurate and intelligible

HAR. In chapter 5, sections 5.3 and 5.4, present real-world HAR systems based on

Arianna+ that incorporate knowledge generated from data-driven methods to more accurately

recognize composite activities.

RQ4. How can a HAR system accommodate heterogeneous sensors and process sensors’

data and at the same time be intelligible in its results and inner-workings?

There are three major categories of data processing approaches, i.e., data-driven,

knowledge-based and hybrid. As mentioned in the response of RQ3, Arianna+ can be

architecturally hybrid. Hence it is able to combine the strong points of both data-driven

and knowledge-based approaches. As it can accommodate different approaches for data

processing – consequently it can accommodate heterogeneous sensors.

During the development of a HAR system, a developer may use APIs for processing

sensors’ data and/or may use pre-trained activity models for activity recognition. A developer

programming in Java can easily integrate OWL ontologies into their architecture by using

OWLOOP API . Chapter 4 presents OWLOOP. In chapter 5, sections 5.3 and 5.4, present

real-world HAR systems - based on Arianna+ and programmed using OWLOOP API - that

incorporate knowledge generated from heterogeneous sensors, while at the same time being

intelligible in its results and inner workings.

RQ5. Activities may be executed sequentially, concurrently, or in an interleaved manner.

How can a HAR system recognize activities executed in any manner?
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As described in Section 2.1, complex (or composite) activities can be composed of a set

of actions or activities. Depending on the duration and order of these sub-units, activities can

be divided into sequential, concurrent, and interleaved activities.

In chapter 3, sections 3.3.3 and 3.3.4 present core components, namely, computational

procedures, events, and conditions. Using these core components an arbitrary data process-

ing technique can be concurrently interfaced with a predefined knowledge structure (i.e.,

ontology) to recognize an activity. Using Arianna+ framework knowledge in each ontology

can be hierarchically structured and concurrently evaluated hence enabling recognition of

sequential or concurrent or interleaved activities.



Chapter 3

Arianna+

Based on the motivations presented in Section 1.1.1 and taking into account all the research

problems described in Section 2.4, this chapter presents Arianna+. The chapter is structured

as follows. Section 3.1 gives a background in Description Logic (DL) and Ontology Web

Language (OWL). Section 3.2 highlights the novelty and gives a description of Arianna+.

Section 3.3 describes in detail the core components of Arianna+. Finally, Section 3.4

summarizes the chapter.

3.1 Preliminaries

3.1.1 Description Logic (DL) and Ontology Web Language (OWL)

One of the earliest definition of a computational ontology is that it is a specification of a

conceptualization [104]. Hence, an ontology is a formal description of a domain of interest.

The Web Ontology Language (OWL) is a semantic language standardized by the World Wide

Web Consortium (W3C) [105]. It is used to represent knowledge about things, groups of

things, and relations between things in a particular domain. An OWL ontology is a structured

set of axioms, i.e., symbolic statements that specify what is true in the domain of interest.

OWL has three increasingly-expressive sub-languages, namely OWL-Lite, OWL-DL, and

OWL-Full. Among them, the Description Logic (DL) formalism lies within the decidable

fragment of the family of languages based on First-Order Logic, and it is one of most used

OWL sub-language [106]. The languages in the OWL family use the open world assumption.

Under the open world assumption, if a statement cannot be proven to be true with current

knowledge, we cannot draw the conclusion that the statement is false.
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An OWL-DL ontology represents knowledge using axioms based on concepts (also

known as classes), roles (also known as relationships), and instances (also known as individ-

uals). Hence an ontology is considered to be divided into three boxes, i.e., a Terminological-

box (T-box), a Role-box (R-box) and an Assertion-box (A-box). The T-box, R-box contains a

hierarchy of classes and properties, respectively. The A-box contains instances of the classes

in T-box.

Throughout this chapter, concepts are denoted by capitalized words, e.g., ROOM, roles

are denoted by camel-case words, e.g., connectsWith, whereas instances are denoted by

uppercase letters, e.g., A or B, or words starting with an uppercase letter. Examples of axioms

within an ontology include: (𝑖) A:ROOM, that indicates classification of A as an instance of

the concept ROOM, (𝑖𝑖) ROOM ⊑ LOCATION, indicating that all the instances of the concept

ROOM are also instances of the concept LOCATION, (𝑖𝑖𝑖) (A,B):connectsWith, denoting a

binary relation between the two instances A and B, and finally (𝑖𝑣) connectsWith.ROOM,

which defines a concept containing each instance that connectsWith other instances of the

concept ROOM. In the last example we can also include the cardinality restriction used

to define at least, at most, or exact number of instances (e.g., ≥ 2 connectWith.ROOM �

CORRIDOR, or =1 has.DOOR � CABINET). Furthermore, axioms can have conjunctions ⊓

and disjunctions ⊔ between each other.

An ontology can be coupled with an OWL-based reasoner, such as Pellet, Hermit,

etc., which can check for consistency among the axioms. The reasoners also derive facts

(axioms) - making implicit knowledge explicit - by the reasoning mechanism [107] based

on subsumption of concepts and instance checking. OWL-based reasoners can also process

the Semantic Web Rule Language (SWRL) rules [108], such that it is possible to generate

axioms based on the conjunction of other axioms.

Additionally, an OWL-based reasoner can process a query posed as incomplete axioms

(e.g., formalised with the SPARQL language), and can provide a solution involving sets of

instances, roles or concepts that consistently complete the given incomplete axioms. A more

thorough description of the functionalities of DL-based ontologies can be found in [77].

3.2 Arianna+

3.2.1 Novelty

Section 1.1.1 presents two motivations for the design of Arianna+. Firstly, to facilitate an

iterative development and ease in collaboration between HAR system researchers/developers
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and health-care domain experts in ADL. Secondly, to have robust HAR that can support

smart-home applications. The first motivation demands two key requirements, i.e., modularity

and intelligibility. The second motivation demands three key requirements, i.e., to be scalable,

online and accurate.

To meet these requirements while taking into account all the research problems high-

lighted in Chapter 2, this chapter presents the design of Arianna+, a framework to develop

networks of ontologies for knowledge representation and reasoning that enable smart homes

to perform human activity recognition online. In the network, nodes are ontologies that

represent different contexts and allow data contextualization, while edges are computational

procedures that process data. The framework allows orchestration of data within a network

of ontologies such that the orchestration results in contextualized HAR. Being a knowledge-

based framework, Arianna+ is intrinsically intelligible. The framework allows integrating

within the same architecture heterogeneous data processing techniques as computational

procedures. Thus, with Arianna+, we do not propose a new algorithmic approach to HAR,

instead, we present a modular knowledge-based architectural approach to accommodate

knowledge-based and data-driven activity models in a context-oriented way. This is a novelty

of Arianna+ as compared to other works in the literature.

3.2.2 Description

Arianna+ supports the design of smart home architectures for recognising ADL. It is based

on a general-purpose definition of symbolic statements, which define the atomic knowledge

that Arianna+ can process. Statements have an associated Boolean state and a timestamp.

They can be classified in ontologies over time based on a priori knowledge as encoded

in ontologies themselves. In Arianna+ , each relevant piece of knowledge is modelled as

a statement. For instance, a statement can represent the fact that that a cabinet’s door is

open, whereas before it was closed, which might lead to different conclusions for different

activities.

Arianna+ allows to design and maintain a network of ontologies, where nodes in the

network are OWL ontologies, and edges therein are computational procedures. Each com-

putational procedure implements an arbitrary algorithm that combines statements with the

purpose of generating new statements. To this aim, we need to formalise a (communication)

interface between computational procedures and ontologies. The more such an interface does

not constrain the behaviour of algorithms encoded as computational procedures, the better is

in view of an iterative development process. In particular, we assume that a computational
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procedure implements an algorithm that (𝑖) is triggered based on events occurring in an on-

tology, (𝑖𝑖) retrieves statements from given ontologies, (𝑖𝑖𝑖) performs a computable sequence

of steps to aggregate knowledge in the form of statements, and (𝑖𝑣) generates statements

– possibly – to be stored in other ontologies. If these conditions are met, we consider that

the algorithm satisfies the knowledge interface of Arianna+ . It is noteworthy that Arianna+

by design does not distinguish basic statements generated directly using sensory data from

aggregated statements generated by (a possibly long sequence of) computational procedures.

Arianna+ implements a scheduler to contextualise statements using the prior knowledge

encoded in different ontologies of the network and triggering corresponding computational

procedures. A detailed account of how the scheduler works is out of the scope of this

chapter. However, it would suffice to say that its behaviour is based on how events are

classified as statements in a given ontology of the network. A procedure is not only defined

in terms of input and output statements, but also with the semantic associated with events

characterising the particular context where it is computed, i.e., an ontology. As a consequence,

statements are subject to contextualisation, which in turn can generate events triggering

further computational procedures.

Arianna+ is provided with an upper ontology defining ontologies and procedures that

would be bootstrapped in the nodes and the edges of the network. In this paper, we present

and discuss a network of ontologies able to spatially relate sensory data streams with the

topological locations where the activities generating those data are supposed to be performed.

Spatial information about the environment of interest is maintained within a purposely

design ontology in the network. When an assisted person is in a given area or location,

an event occurs and a procedure is scheduled to (𝑖) select relevant spatially contextualised

statements from such an ontology, (𝑖𝑖) use these statements to aggregate new, procedure-

specific statements, and (𝑖𝑖𝑖) store the results in an activity ontology, i.e., a temporal context.

When a new statement is introduced in the temporal representation, an event might be

detected and a procedure would be triggered to evaluate a fluent model and, eventually,

recognise the activity.

Using this computational workflow, technology and domain experts can prototype, in-

tegrate, and evaluate heterogeneous techniques to activity modelling and recognition in a

modular, flexible, intelligible and computationally efficient way.
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3.3 Core components

3.3.1 Statements

We define a set X of statements, where each statement 𝑋 ∈ X represents atomic knowledge

about a context of interest. A statement 𝑋 is characterised by a Boolean state 𝑠𝑋 ∈ B

observed at a time instant 𝑡𝑋 . Therefore, a statement 𝑋 can be defined as a tuple such that

𝑋 = ⟨𝑠𝑋 , 𝑡𝑋⟩, where 𝑡𝑋 ∈N
+ is a timestamp. In the notation we adopt, the name of a statement

is always expressed in both the elements of the tuple, although we will discuss state and

time independently if necessary. However, it is important to highlight that in Arianna+ one

element of the tuple cannot exist without the other, since each statement is considered as

atomic knowledge in each node of the ontology network.

We evaluate combinations of statements using a higher-order function 𝑓𝑓𝑓 , which is

composed of a logic function 𝑠𝑠𝑠 and an algebraic function 𝑡𝑡𝑡. The function 𝑓𝑓𝑓 maps a set of

statements 𝜒 = {𝑋1, . . . , 𝑋𝑛} to a new aggregated statement 𝑍 . Please note that we always

denote statements with Roman uppercase letters and functions with italic Roman lowercase

letters. The higher-order functional 𝑓𝑓𝑓 can be defined as

𝑓𝑓𝑓 = ⟨𝑠𝑠𝑠, 𝑡𝑡𝑡⟩ : X𝑛→ X

𝜒 ↦→ 𝑍,




𝑠𝑠𝑠 : X
𝑛→ B

𝜒 ↦→ 𝑠
𝑍
,

𝑡𝑡𝑡 : X𝑛→ N+

𝜒 ↦→ 𝑡
𝑍
.

(3.1)

In (3.1), 𝑓𝑓𝑓 is treated as an aggregator function, where 𝑍 is a new statement having state

𝑠
𝑍
= 𝑠𝑠𝑠(𝜒), and time instant 𝑡

𝑍
= 𝑡𝑡𝑡 (𝜒). In the special case when 𝑛 = 1, we reduce the function

to a single statement’s definition, i.e., 𝑠𝑠𝑠(𝑋1) = 𝑠𝑋1
, and 𝑡𝑡𝑡 (𝑋1) = 𝑡𝑋1

, and therefore 𝑓𝑓𝑓 (𝑋1) = 𝑋1.

In Arianna+ , the set of statements 𝜒 is considered to be the solution of a query to an

OWL reasoner associated with an ontology in the network, i.e., the ontology returns a set of

statements contextualized with a common semantic (e.g., all the statements related to the

sensors attached to the refrigerator in a day period). The result of applying 𝑓𝑓𝑓 is a statement

in an ontology, which belongs to X. In order to clearly distinguish raw statements from

aggregated ones, we denote aggregated statements with a tilde symbol above them, as in 𝑍 .

We consider raw statements to originate from real physical sensors, and therefore a statement

that is a result of 𝑓𝑓𝑓 on a set of raw statements is considered to be an aggregated statement.

The function 𝑓𝑓𝑓 aggregates statements based on the kind of operators used between them.

As an example, assuming 𝑛 = 2, i.e., 𝜒 = {𝑋,𝑌 }, we present the logical and operator in (3.2),
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and the precedence operator in (3.3)

𝑍 ⊨ 𝑋 ∧𝑌 ⇐⇒ 𝑓𝑓𝑓 :




𝑠𝑠𝑠 : 𝑠
𝑍
= 𝑠𝑋 ∧ 𝑠𝑌 ,

𝑡𝑡𝑡: 𝑡
𝑍
= max{𝑡𝑋 , 𝑡𝑌 }.

(3.2)

𝑍 ⊨ 𝑋 ⩽ 𝑌 ⇐⇒ 𝑓𝑓𝑓 :




𝑠𝑠𝑠 : 𝑠
𝑍
= ⊤ ⇐⇒ 𝑡𝑋 ⩽ 𝑡𝑌 ,

𝑡𝑡𝑡: 𝑡
𝑍
= max{𝑡𝑋 , 𝑡𝑌 }.

(3.3)

In (3.2) and in the following discussion we use the symbols ⊤ to indicate true, and ⊥ to

denote false, as it is customary in DL-based formalisms. Given a set 𝜒 = {𝑋}, a Boolean

state 𝜙 ∈ B, and a time instant 𝛿 ∈ N+, we observe in (3.4) a specification of the logical and

(∧), and a definition of the mathematical operator + for time computation purposes in (3.5):

𝑍 ⊨ 𝑋 ∧𝜙 ⇐⇒ 𝑓𝑓𝑓 :




𝑠𝑠𝑠 : 𝑠
𝑍
= 𝑠𝑋 ∧𝜙,

𝑡𝑡𝑡: 𝑡
𝑍
= 𝑡𝑋 .

(3.4)

𝑍 ⊨ 𝑋 + 𝛿 ⇐⇒ 𝑓𝑓𝑓 :




𝑠𝑠𝑠 : 𝑠
𝑍
= 𝑠𝑋 ,

𝑡𝑡𝑡: 𝑡
𝑍
= 𝑡𝑋 + 𝛿.

(3.5)

It is noteworthy that it is possible to represent the logical or operator (∨) similar to (3.2)

and (3.4), whereas (3.3) can be used to define other comparison operators. Moreover, other

mathematical operators like multiplication, division and subtraction can be defined as in (3.5).

Other definitions of operators are legitimate (such as those inspired by the Allen’s Interval

Algebra), as long as they consistently provide a statement in X represented with a Boolean

state 𝑠𝑠𝑠, and a time instant 𝑡𝑡𝑡, as shown in (3.1).

3.3.2 Fluent models

Using the formalism briefly drafted in the previous Section, we can design fluent models

representing human activity. As a first example, let us consider an activity consisting of

picking two objects from a cabinet, using them for a while and placing them back in the

cabinet. In particular, let us consider a smart environment where those objects are associated

with sensors able to generate statements 𝐼4 and 𝐼6 with state ⊤ if the objects are in the cabinet,

and ⊥ otherwise. Likewise, let us assume that a sensor is attached to the cabinet door 𝐷7

with state ⊤ if it is open and ⊥ otherwise. We define an activity model 𝐴1 that uses two

aggregated statements, namely object taken 𝑇 , and object released 𝑅, such that the activity is

considered to be accomplished when those statements hold true after a minimum delay 𝛿1
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between each other. The model is as follows:

𝐴1 ⊨
( (
𝑇 ∧⊤

)
+ 𝛿1

)
⩽
(
𝑅∧⊤

)
. (3.6)

It must be noted that the model in (3.6) is represented as an aggregated statement 𝐴1, which

holds true when the statement 𝑅 becomes true after a 𝛿1 interval of time since 𝑇 was true.

For the sake of simplification, we denote using 𝑋𝜙 the result of the and operator applied to a

statement 𝑋 and a Boolean state 𝜙 of (3.4). Therefore, we may define

𝑇 ⊨ 𝐷⊤
7
⩽
(
𝐼⊥
4
∧ 𝐼⊥

6

)
, (3.7)

where the statements 𝐼4 and 𝐼6 indicate that the objects were not present after the cabinet

door was opened. We also define

𝑅 ⊨
(
𝐼⊤
4
∧ 𝐼⊤

6

)
⩽ 𝐷⊥

7
, (3.8)

where the statements 𝐼4 and 𝐼6 indicate that the objects were present before the cabinet door

was closed.

Figure 3.1 Graphical representation of the fluent model of activity 𝐴1.

More generally, the fluent models that can be designed in Arianna+ are fully compliant

with the Allen’s Interval Algebra, and it is possible to design complex activity recognition

models composed of sub-models since 𝑓𝑓𝑓 is a bijective function, which makes our repre-

sentation modular and flexible. Although in this chapter we consider examples wherein

statements are generated by simple Boolean sensors, it is nonetheless possible to obtain

statements as a result of complex computational processes, for example, a classification of

hand gestures recognised by neural networks or other methods that take inertial data from a

wearable device. Nevertheless, in order to present the framework clearly, in this chapter we

will rely on simple models like the one in the example introduced above. The fluent model
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related to the example in (3.6) is shown in Figure 3.1, which uses a graphical formalism

based on the statement’s algebra.

As a second example, let us consider the problem of modelling an activity assumed to be

accomplished if the person spends some amount of time in a specific location, e.g., cleaning.

Similarly to the previous example, let us consider the statement 𝐷⊤
11

when the door of the

cabinet containing cleaning tools is open, and 𝐷⊥
11

otherwise. We assume that presence

sensors generate statements 𝐿̃ and 𝐾 , when the person is located in the living room and in the

kitchen, respectively. For this example, we can design a model that generates a ⊤ aggregated

statement, when the door of the cabinet with cleaning tools has been opened, closed and, in

the meanwhile, the person spent some time in the two rooms. For the fluent model of this

example, we can define an operator for 𝑓𝑓𝑓 that counts the number of statements in a given

time interval. To this aim, the convolution operator ◦ counts statements 𝑋 𝑗 ∈ 𝜒 occurring

within an time interval 𝛿 starting from the first statement in 𝜒, such as

(
𝜒𝜙 ◦ 𝛿

)
=
{
𝑋 𝑗 : ∀ 𝑗 ∈ [1,𝑚], 𝑠𝑋 𝑗

= 𝜙, 𝑡𝑋 𝑗
∈ [𝑡0, 𝑡0+𝛿]

}
, (3.9)

where 𝑡0 = min
𝑚
𝑗 (𝑡𝑋 𝑗

) and 𝑚 is the total number of statements in 𝜒. Therefore, the aggregator

function 𝑓𝑓𝑓 using the convolution operator holds true when at least ℎ elements are generated

through convolution, i.e.,

𝑍 ⊨ 𝜒⊤ ◦
ℎ
𝛿 ⇐⇒ 𝑓𝑓𝑓 :




𝑠𝑠𝑠 : 𝑠
𝑍
= ⊤ ⇐⇒ 𝑚 ⩾ ℎ,

𝑡𝑡𝑡: 𝑡
𝑍
= max

𝑚
𝑗
(𝑡𝑋 𝑗
).

(3.10)

Figure 3.2 Graphical representation of the fluent model of activity 𝐴7.

Given a set of statements representing the location of the person in different rooms, e.g., 𝜒𝐿

and 𝜒𝐾 , it is possible to define the cleaning activity fluent model as

𝐴7 ⊨ 𝐷
⊤
11
⩽
( (
𝜒⊤𝐿 ◦ℎ3

𝛿3

)
∧
(
𝜒⊤𝑅 ◦ℎ4

𝛿4

) )
⩽ 𝐷⊥

11
, (3.11)
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wherein ℎ3, ℎ4 ∈ N
+ are the minimum number of observations of the person in each room that

are assumed to be required for the recognition of the cleaning activity, whereas 𝛿3, 𝛿4 ∈ N
+

are the time intervals within which the minimum number of observations should take place,

and all this should occur before placing back the cleaning tools into the cabinet and closing

its door, i.e., 𝐷11 becomes ⊥. A graphical representation of this fluent model is shown in

Figure 3.2.

3.3.3 Computational procedures

The network of ontologies is based on the DL formalism and is implemented using the

OWL language. A statement 𝑋 ∈ X represents an instance X of a concept Ω ⊑ STATE-

MENT, i.e., X:Ω. Moreover, each statement is associated with a Boolean state by

a role, i.e., (X,𝑠𝑋):hasState, and it is also associated with a time instant by a role,

i.e., (X,𝑡𝑋):hasTime. It is noteworthy that we specify only a subset of the roles the X

instance must be involved in to logically describe it as an instance of STATEMENT. How-

ever, X might also be described through other DL-based axioms that further specify it as an

instance of a generic concept Ω, which can be used to retrieve contextualised statements. For

instance, in the second example proposed in Section 3.3.2, a sensor might generate a set 𝜒 of

statements 𝑋𝑖 representing the person’s location in the environment over time. In this case,

each X𝑖 might be classified as an instance of the LIVINGROOM or the KITCHEN concepts,

and it would be possible to query an OWL-based reasoner to retrieve the person’s location in

a contextualised manner, e.g., to obtain 𝜒𝐿 or 𝜒𝐾 , respectively.

Based on such a contextualised representation of statements, we can develop activity

recognition models using a combination of 𝑓𝑓𝑓 operators formalised through SWRL rules.

In particular, we apply SWRL rules to select statements based on the context, and we use

the logic function 𝑠𝑠𝑠 as well as the algebraic function 𝑡𝑡𝑡 to define fluent models for activities.

However, SWRL-based models assume the open-world assumption and monotonic reasoning

entailed by OWL. On the one hand, the open-world assumption does not allow to compute

the maximum value of a set required by (3.2), (3.3) and (3.9), as the reasoner assumes that

other unknown elements might exist. On the other hand, monotonic reasoning forbids the

reasoner to generate new statements, but it allows to change the roles of existing statements,

i.e., change their Boolean state 𝑠𝑋 and time instant 𝑡𝑋 . Arianna+ relies on its computational

procedures to overcome these limitations through an imperative programming language that

the developer can use to design activity models based on a combination of logic-based and

imperative-language based paradigms. Since it is not possible for an external procedure to
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access and modify the knowledge in an ontology during the execution of the OWL-based

reasoner, the framework synchronises the scheduling of procedures and the execution of the

reasoning process.

SWRL Rules and Arianna+ Statements

A SWRL rule is an expression made by a conjunction of logic atoms, and if the expression is

satisfied, then an implication is deduced.

𝑎∧ 𝑏∧ 𝑐 =⇒ 𝑑. (3.12)

Therefore, if all the atoms {𝑎, 𝑏, 𝑐} are satisfied in an ontology, 𝑑 is deduced, i.e., the atom 𝑑

will exist in the ontology.

SWRL atoms can represent the classification of an instance X in a concept of the ontology,

e.g., the DL expression X:KITCHEN is addressed as KITCHEN(X). Furthermore, an atom

may be concerned with the properties beyween two instances X,Y, e.g., the DL expression

(X,Y):isIn is identified as isIn(X,Y). Atoms can be also used to perform basic algebraic com-

putations and comparisons, and they support the definition of variables, which are indicated

with the ‘?’ symbol. To simplify the notation, we replace the atoms greaterThan(?g,k) with

(?g ≤ 𝑘), and sum(?r,k,?d) with (?r← 𝑘 + ?d), where the arrow identifies an assignment,

and 𝑘 ∈ N+ might be a variable.

Those types of atoms are evaluated by some OWL reasoner (e.g., Pellet) to compute fluent

models. In particular, SWRL rules are computed by checking all symbols’ permutations that

are consistent within the classes and properties encoded in an ontology.

3.3.4 Contextualized reasoning using multiple ontologies

Ontology Network

We represent all the knowledge relevant to a certain application domain by spreading it

over a network of ontologies. More formally, we refer to such a network as a tuple

N = ⟨𝜔, 𝜌⟩, where 𝜔 ⊃ {O1, . . .O𝑖, . . . ,O𝑑} is a set of at least 𝑑 nodes encoding ontolo-

gies, and 𝜌 ⊃ {P1, . . .P 𝑗 , . . . ,P𝑏} is a set of at least 𝑏 computational procedures. It is to be

assumed that the nodes in the network are connected in any combinations among themselves

through a set of computational procedures, which retrieve and provide statements from/to a

combination of ontologies using high-order functions 𝑓𝑓𝑓 .
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The number of ontologies and procedures in a network depends on the application, but

the upper ontology U ∈ 𝜔, and the schedulerH ∈ 𝜌 (i.e., a special type of procedure) are

always involved in N. On the one hand, U must contain instances Oi and Pj that refer

to each ontology O𝑖 and procedure P 𝑗 in the network respectively. On the other hand,

H gets bootstrapped automatically by Arianna+ , it loads in memory a node O𝑖 for each

ontology Oi in U , and initialises the associated OWL-based reasoners. Afterwards, Arianna+

continuously observes the state of the O𝑖 ontologies and, based on the events defining each

Pj in U , related P 𝑗 procedures are scheduled to pull, aggregate, and push statements for

evaluating activity models.

The Upper Ontology

The upper ontology contains definitions pertaining to domain ontologies, procedures, and

events.

In the network N, 𝜔 is the set of nodes that are initialised while bootstrapping an instance

of Arianna+ . Each node O𝑖 is represented with an instance Oi of the ONTOLOGY concept,

that is defined in the upper ontology U as

=1 represents.IRI⊓⩾1checkedBy.OWLREASONER

�ONTOLOGY.
(3.13)

The instance Oi:ONTOLOGY is defined by the represents role, which relates Oi to the Inter-

nationalised Resource Identifier (IRI) of the ontology file containing DL axioms that define a

context. Furthermore, (3.13) holds knowledge about a reasoner that processes the ontology

based on OWL specifications for consistency checking, e.g., PELLET⊑OWLREASONER.

As discussed above, 𝜌 in N is a set of procedures directly defined by implementations,

which indicate how procedures themselves get computed. We simply refer to an implementa-

tion as an algorithm developed using some imperative language, which is associated with

an activation event triggered on the basis of the context. Each procedure P 𝑗 exists in the

network and it could be scheduled if a relative instance Pj is classified as an instance of the

PROCEDURE concept, which is defined as follows in the upper ontology U ,

=1 implements.IRI⊓⩾1 requires.EVENT

� PROCEDURE.
(3.14)

In (3.14), the implements role associates an instance Pj with an identifier pointing to an

algorithm, i.e., the implementation of the procedure P 𝑗 . The requires role, instead, associates
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to Pj one or more instances E of the EVENT concept that the scheduler must check before

activating the P 𝑗 procedure.

Events are defined in the upper ontology U , and are associated with each PROCEDURE

as shown in (3.14). Events represent situations when a statement 𝑋 , within an ontology in 𝜔,

assumes a given state 𝑠𝑋 . As a matter of fact, in U , each instance E:EVENT is defined as a

collection of conditions

⩾1observes.CONDITION�EVENT. (3.15)

Each condition is in turn defined in U as an instance C of the concept CONDITION, defined

as

=1checks.STATEMENT ⊓ =1 in.ONTOLOGY⊓

=1hasTarget.BOOLEAN ⊓ =1outcome.BOOLEAN⊓

=1 rate.HZ � CONDITION.

(3.16)

In (3.16), the checks role specifies a STATEMENT 𝑋 to be evaluated in the ONTOL-

OGY O𝑖, e.g., (C,X):checks where X:STATEMENT and (C,Oi):in where Oi:ONTOLOGY.

A C:CONDITION would have a ⊤ outcome if and only if the value specified through the

hasTarget role is equivalent to the state 𝑠𝑋 at certain instants of time, which are based on a

rate specified in Hz.

Scheduling and Network Management

For each condition C available in the upper ontology U , the system evaluates one or more

logic rules at a given rate to classify C as one of the two disjoint concepts {⊤CONDITION,

⊥CONDITION}⊑CONDITION, depending on whether C’s Boolean state outcome is ⊤ or

⊥, respectively. Similarly, we use logic rules to define if an event E is an instance of

⊤EVENT⊑EVENT. The event E is related to the condition C via the role (E,C):observes.

Hence, every time C has a change in its outcome, the system applies the rules to classify

E:⊤EVENT when E is related to C:⊤CONDITION only. When an instance E is classified in

the ⊤EVENT concept, we assume it to be satisfied and, if it holds ⊤ that (Pj,E):requires, then

the scheduler runs the algorithm that such a Pj implements. It is noteworthy that, through

appropriate combinations of conditions, we can specify logical and operators among checked

outcomes, whereas via a combination of events we can specify logical or operators for

triggering a procedure.

While a procedure performs computation to aggregate statements, conditions and events

semantically identify the context in which such a procedure should be performed. In particu-
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lar, conditions are evaluated through simple computations, e.g., check the state of a given

statement. Hence, the evaluation of an event (i.e., a Boolean expression of conditions) is

in qualitative terms much simpler than the execution of a procedure. As a consequence,

the overall reasoning complexity is expected to be less as compared to the case where the

corresponding procedures and contextualised representations are evaluated frequently in a

single ontology.

Arianna+ relies on a generic definition of a statement, which can be used not only

to represent the knowledge required by activity recognition models via procedures, but

also to define the events activating those procedures. Therefore, all the ontologies in 𝜔

depend on the upper ontology U . In particular, on the definition of the STATEMENT

concepts (Section 3.3.1), which is shared among all the O𝑖 ontologies. In addition, also

the procedures in 𝜌 depend on U since it specifies context-relevant algorithms, the input

and output statements they concern, and activation events. Also, procedures can depend on

other ontologies in 𝜔 because their algorithm may require access to certain context-specific

statements at runtime.

An ontology network developed with Arianna+ undergoes two temporal phases, namely

bootstrapping and running. The first phase involves the scheduler activation, which retrieves

concept instances represented in the upper ontology U , and generates three maps (shown in

Figure 5.8). The first map contains all the ontologies O𝑖, which are initialised in accordance

with (3.13). The second map specifies the algorithm that each procedure P 𝑗 implements

and their associated EVENT instances (3.14). The third map spans out a periodic task C𝑘

with a specified rate for each C:CONDITION, which is initialised as ⊥ in the upper ontology.

Such a task is used to schedule procedures based on the outcome of each event, which is

determined on the basis of all the C conditions that each event observes (3.15). In the second

phase, the scheduler waits for notifications of condition changes from the periodic tasks.

Based on these notifications, the scheduler eventually classifies some events as ⊤EVENT,

and runs the relative procedures. When a procedure related to E is scheduled, E will not be

an instance of ⊤EVENT anymore until consistent conditions re-occur. Finally, when P 𝑗 is

active, the scheduler provides it with the map containing the ontology O𝑖, and P 𝑗 begins to,

pull, aggregate and push statements among ontologies in 𝜔 for evaluating activity models in

a synchronised manner.
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3.4 Summary

The motivations for designing Arianna+ are mentioned in Section 1.1.1. There are two moti-

vations. Firstly, to facilitate an iterative development process and an enriched collaboration

between HAR researchers/developers and health-care domain experts in ADL. Secondly, to

have robust HAR that can support many smart-home applications with contextual knowledge.

Hence, based on the first motivation, the key requirements of a HAR system are modularity

and intelligibility. Furthermore, based on the second motivation, the key requirements of a

HAR system are scalability, online HAR, and accurate HAR.

Hence, Arianna+ is a framework for HAR that adopts the nodes-and-edges design. Where

the nodes are ontologies and edges are computational procedures. The ontologies are a priori

defined contextual knowledge structures that can be updated with statements (i.e., axioms)

based on sensor data. The computational procedures transfer or generate statements. A

transfer of statements takes place from one ontology to another based on pre-defined events

and conditions. New statements are generated by reasoning on the fluent models (i.e., rules)

present in the ontologies. These statements are mapped from event-based sensor data. In

order to exploit sensors providing a continuous data stream (e.g., inertial data or video)

computational procedures can accommodate data-driven techniques, which can process the

continuous data stream and provide an event as a result. Thus, in this manner, an ontology

network is intrinsically modular due to its nodes-and-edges design and intelligible due to its

knowledge-based approach.

The ability to accommodate both knowledge-based and data-driven techniques for the

generation of statements (i.e., by reasoning on activity models) makes Arianna+ architec-

turally hybrid. Moreover, also scalable in terms of being able to accommodate more activity

models within the network and data from heterogeneous sensors. This is because the activity

models could be knowledge-based or data-driven hence they can deal with heterogeneous

sensor data (i.e., event-based like data from PIR, pressure-mats, etc., or continuous-stream

like data from accelerometers, gyroscopes, videos, etc.). Arianna+ is designed for online

HAR. Although it is known that OWL-based reasoning is exponentially complex with re-

spect to the number of axioms in the ontology [77], Arianna+ deals with this issue as it

distributes knowledge over a network of ontologies and reasons only on contextually relevant

knowledge. Arianna+ is designed for accurate HAR. Due to its modularity and scalability,

one could design a redundant network, wherein multiple activity models (using different

approaches) can be used to recognize the same activity and the most accurate HAR result

can be selected based on a heuristic. A limitation of the Arianna+ framework is that the
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reasoning is deterministic. The framework in its current state (i.e., with knowledge based on

DL, and reasoning based on rules that are deterministic) is not robust to missing or noisy

sensor data. This limitation can be overcome by further developing the framework to easily

accommodate reasoning using fuzzy[81] or probabilistic [82] OWL reasoners.



Chapter 4

OWLOOP API

This chapter presents OWLOOP, an API that supports the development of HAR system

architectures based on Arianna+. It enables the usage of Ontology Web Language (OWL)

by the means of Object- Oriented Programming (OOP). It addresses the research problems

RQ1, RQ2, and RQ4 as described in Section 2.4. The chapter is structured as follows.

Section 4.1 gives a background in Ontology Web Language (OWL) Application Programming

Interface (API). Section 4.2 highlights the novelty and gives a description of OWLOOP API.

Section 4.3 describes in detail the core components of OWLOOP API. Finally, Section 4.4

summarizes the chapter.

4.1 Preliminaries

4.1.1 Background

The Web Ontology Language (OWL) is a semantic language standardized by the World Wide

Web Consortium (W3C) [105]. It is used to represent knowledge about things, groups of

things, and relations between things in a particular domain. An OWL ontology is a structured

set of axioms, i.e., symbolic statements that specify what is true in the domain of interest,

which can be asserted, retrieved and inferred by reasoning. The ability to reason on a

semantic and dynamic knowledge representation (e.g., involving relationships among sensory

data, goal and actions) is particularly important for applications involving autonomous

systems and human-machine interaction.

Ontologies are effective in many applications, which span in, but are not limited to, static

representations (e.g., to formalise the contents of a dataset [109] and the components of

an architecture [110]), qualitative and quantitative models (e.g., for biological [111] and
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cognitive [112] systems), context-based systems (e.g., to recognise human activity in a smart

home [79] and for driving assistance [113]).

It is noteworthy that intelligent agents typically require a complex software architecture to

support and implement their capabilities, e.g., perceiving the surrounding environment, being

aware of the context, understanding user intentions, taking decisions, and acting accordingly.

In such scenario, an ontology should represent knowledge able to support each required

functionality in a modular and flexible manner, since there could be different, alternative

models and implementations for each component of the architecture that would be worthy of

comparison and integration. Ontology-based data structures can help in the development of

such architectures via a knowledge-centred design.

Moreover, a structured, formal and consistent representation of knowledge is expected

to support incremental design and the thorough testing of individual system functionalities

better than a more trivial data structure. If an ontology consistently defines each system

functionality, it becomes progressively easier to integrate and compare different approaches

to support the design of modular architectures, which can therefore be further integrated and

extended. However, such a design is suitable only if the effort for developing a knowledge-

centred architecture is lower than the one required to develop a simpler architecture using

minimalist and ad hoc data structures for each functionality.

Conventionally, OWL-based API [114] and Jena [115] can be used to design and develop

software that manipulates and queries ontology-based data structures, whereas the SPARQL

Protocol and RDF Query Language [116] is a powerful query engine, and the Semantic

Web Rule Language (SWRL) [117] can encode in the ontology queries having effects in the

representation itself. Typically, OWL-based APIs support many deterministic reasoners, such

as Pellet [118] and Hermit [119], as well as reasoners based on probabilistic inference [120]

and fuzzy logic [121]. Several standard representations for different domains have been

proposed and validated in the literature, with the purpose of being reused in different

application scenarios [122]. Furthermore, specialised frameworks for particular domains have

been developed (e.g., for Robotics [123], Ambient Assisted Living [124], and Biology [125]),

some of which allow representation learning in a data-driven fashion [126]. Last but not the

least, graphical editors [127] and visualisers [128] are available.
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4.2 OWLOOP API

4.2.1 Novelty

As described by the research problem in RQ2 of Section 2.4, often, the development and

programming aspects, which are associated with the research in HAR systems, are neglected.

They play an important role in an iterative development process [3], which is an integral

part of collaborative work. Hence, chapter 4 presents OWLOOP, an API that supports

the development of HAR system architectures based on Arianna+. It enables the usage of

Ontology Web Language (OWL) by the means of Object- Oriented Programming (OOP). The

features of OWLOOP API are (𝑖) to implement a general-purpose and modular OWL to OOP

mapping, which can improve flexibility, reusability and maintainability of the HAR system,

and (𝑖𝑖) to be performance-oriented since OWL reasoning is a resource-demanding task. To

provide these features, OWLOOP defines flexible OOP interfaces that a developer can use to

easily implement descriptors for a specific application. These interfaces enable a developer

to choose the OWL axioms that are mapped into OOP objects and give the developer control

of the reasoning task.

4.2.2 Description

From a software architecture perspective, an ontology is meant to be used in synergy with

other software components [129]. Such components should be implemented through hierar-

chies of classes designed with the Object-Oriented Programming (OOP) paradigm, but issues

occur since OWL axioms are not structured in an ontology following the OOP formalism.

Although there are many similarities between the knowledge in an ontology and OOP’s

classes, objects and properties, there are also non-trivial differences, an exhaustive list of

which can be found in [130]. This is one of the reasons why software developers are typically

reluctant to use ontologies in their architectures [131].

As surveyed in [131], for accessing and integrating ontologies in an architecture, the

active and passive OWL to OOP mapping can be used. The active mapping transforms an

ontology from its syntactic form, e.g., based on the Extensible Markup Language (XML),

to code statements in a target programming language. With an active mapping, there is the

possibility of reasoning over the executable ontology at runtime [132–134], but this process

is limited to the amount of fitting between the OWL language and its OOP counterpart.

Instead, with the passive OWL to OOP mapping [131], an ontology is integrated with the

OOP language by the means of an external inference engine, i.e., a reasoner like Hermit [119]
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or Pellet [80], among others. The reasoner exploits the factory pattern to create immutable

OOP objects containing snapshots of the knowledge in the ontology, which is an OWL-based

data structure loaded in memory.

The passive mapping involves an API-based strategy, while the active mapping concerns

an ontology-oriented programming strategy [131]. The passive mapping focuses on per-

formance but it might lead to complex and voluminous source codes. Furthermore, with a

passive mapping, OWL axioms that are related among each other in the ontology are always

represented as independent OOP objects. Therefore, passive mapping allows to use of OWL

axioms through OOP objects but it does not exploit the benefits of OOP paradigms as active

mapping does. On the other hand, we are not aware of an active mapping that supports all

the reasoning mechanisms implemented by the OWL reasoners used with passive mapping.

This chapter presents the OWLOOP API, which implements a passive OWL to OOP

mapping for integrating ontologies and software architectures. Our objective is to entirely

support OWL reasoners as well as exploiting the benefits of the OOP paradigm by avoiding

the factory design pattern. The OWLOOP API maps OWL axioms into descriptors, which

are OOP classes that represent a fragment of the ontology but they are not immutable and

independent, i.e., they can be designed within an OOP-based hierarchy of descriptors. The

API’s code metadata can be found in Table 4.1.

C1 Current code version v2.1

C2 Permanent link to code/repository used

for this code version

https://github.com/

TheEngineRoom-UniGe/OWLOOP

C4 Legal Code License GNU General Public License v3.0

C5 Code versioning system used Git

C6 Software code languages, tools, and ser-

vices used

Code language: Java

C7 Compilation requirements, operating en-

vironments & dependencies

Java v1.8.0, Gradle v5.2.1,

Junit v4.12, aMOR v2.2,

OWL-API v5.0.5, openllet v2.5.1

C8 Link to developer documentation/man-

ual

github.com/TheEngineRoom-UniGe/

OWLOOP/wiki

Table 4.1 Code metadata of OWLOOP API.
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4.3 Core components

4.3.1 Definition of a Descriptor

Figure 4.1 A simple ontology used as an example throughout Chapter 4.

Figure 4.1 depicts an ontology used as an illustrative example throughout this chapter.

An OWL ontology is made of axioms O = {A1,A2, . . .}, and each axiom is based on an

expression1 E relating some entities, i.e., A 𝑗 = E𝑘 (𝑒1, 𝑒2, . . .). For instance, the illustrative

ontology contains, among others, the OWL axioms

Super
(
ROOM, LOCATION

)
,

Type
(
ROOM, Room1

)
,

ObjectLink
(
isLinkedTo, Room1, Corridor1

)
,

EquivalentRestriction
(
CORRIDOR, min 2, hasDoor, DOOR

)
.

(4.1)

OWL defines E𝑘 expressions with different semantics, and each of them is associated with

OWL entities of specific types. Table 4.2 shows the types of entity, i.e., an OWLClass

(e.g., ROOM) or an OWLNamedIndividual (e.g., Room1), or an OWLLiteral (e.g., 24), or

an OWLDataProperty (e.g., hasTemperature) or an OWLObjectProperty (e.g., isLinkedTo).

More details of the OWL formalisms are available in [135, 136].

The OWLOOP API enables interaction with OWL entities in an ontology by using

descriptors, i.e., Java-classes. We achieve a modular OWL to OOP map through descriptors

that encapsulate reusable pieces of code required while accessing an ontology, e.g., including

1OWLOOP provides an E counterpart for each OWL expression, e.g., an OWL ObjectPropertyAssertion is

an OWLOOP ObjectLink, while an OWL ClassAssertion is an OWLOOP Type. For simplicity, this chapter

directly considers the OWLOOP expression shown in Table 4.3.
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OWLEntity

OWLClass,

OWLDataType,

OWLNamedIndividual,

OWLLiteral,

OWLObjectProperty,

OWLDataProperty.

OWLOOPEntity (extends OWLEntity)

OWLOOPObject:
〈
OWLObjectProperty,OWLNamedIndividual

〉
,

OWLOOPData:
〈
OWLDataProperty,OWLLiteral

〉
,

OWLOOP

Restriction:

〈
OWLClass

〉
, or〈

C,OWLClass
〉
, or〈

C,OWLObjectProperty,OWLClass
〉
, or〈

C,OWLDataProperty,OWLDataType
〉
.

Table 4.2 The definition of OWL and OWLOOP entities. The cardinality C concerns an

OWL axiom among {some, only, min𝑛, max𝑛, exact𝑛} where 𝑛 ∈ N+.

textual constants and functions that usually lead to boilerplate code. This section presents

the structure of OWL axioms in a descriptor, while Section 4.3.3 focuses on the descriptor

functionalities to assert and retrieve knowledge subjected to reasoning.

The OWL to OOP mapping implemented by OWLOOP stores the axioms involving an

E𝑘 expression into a data structure 𝐷𝑘 = ⟨𝑥,𝑌𝑘⟩. In it, 𝑥 is an OWL entity called ground, and

𝑌𝑘 = 𝑘:[{𝑦1}, {𝑦2}, . . .] is an entity set such that the OWL axiom E𝑘 (𝑥, 𝑦𝑖) is derived for each

𝑦𝑖 ∈ 𝑌𝑘 . For example, we encode the OWL axioms in (4.1) as

𝐷1 =

〈
ROOM, Super:

[
{LOCATION}, {THING}

]〉
,

𝐷2 =

〈
ROOM, Instance:

[
{Room1}, {Room2}

]〉
,

𝐷3 =

〈
Room1, ObjectLink:

[
{isLinkedTo, Corridor1}

]〉
,

𝐷4 =

〈
Room1, DataLink:

[
{hasTemperature, 24}

]〉
,

𝐷5 =

〈
CORRIDOR, EquivalentRestriction:

[
{min2, hasDoor, DOOR}

]〉
.

(4.2)

Each 𝑖-th element of the entity set 𝑌𝑘 is an OWLOOP entity, which can either be an OWL

entity (as in 𝐷1 and 𝐷2) or a structure of OWL entities, i.e., as specified in Table 4.2, an

OWLOOPObject (in 𝐷3), an OWLOOPData (in 𝐷4) or an OWLOOPRestriction (in 𝐷5). The

latter is used to define OWL classes through a cardinality, e.g., with a minimum number of

hasDoor properties involving an individual classified as CORRIDOR.

OWLOOP represents the data structure 𝐷 in the OOP interface named Descriptor,

which is implemented as shown in Figure 4.3 through the Unified Modelling Language

(UML), whose notation is summarised in Figure 4.2. From (4.2) it is possible to deduce

that descriptors with the same type of ground might be merged to encode different axioms,

e.g., 𝐷1 and 𝐷2 can be represented in a compound descriptor 𝐷𝑐 = ⟨𝑥,𝑌1,𝑌2⟩, where 𝑌1 and

𝑌2 concern the Super and Instance expressions. Hence, OWLOOP provides four different
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Ground (𝑥) Expression (E𝑘) Entity set element (𝑦𝑖)

OWLClass

(Class

Descriptor)

Equivalent

Disjoint

Super

Sub

Instance

EquivalentRestriction

OWLClass

OWLClass

OWLClass

OWLClass

OWLNamedIndividual

OWLOOPRestriction

OWLNamedIndividual

(Individual

Descriptor)

Type

Equivalent

Disjoint

ObjectLink

DataLink

OWLClass

OWLNamedIndividual

OWLNamedIndividual

OWLOOPObject

OWLOOPData

OWLObjectProprty

(ObjectProperty

Descriptor)

Equivalent

Disjoint

Sub

Super

Inverse

Domain

Range

OWLObjectProperty

OWLObjectProperty

OWLObjectProperty

OWLObjectProperty

OWLObjectProperty

OWLOOPRestriction

OWLOOPRestriction

OWLDataProperty

(DataProperty

Descriptor)

Equivalent

Disjoint

Sub

Super

Domain

Range

OWLDataProperty

OWLDataProperty

OWLDataProperty

OWLDataProperty

OWLOOPRestriction

OWLOOPRestriction

Table 4.3 The expressions which the current version of OWLOOP can map and their structure

in descriptors.

Figure 4.2 The UML notations used in Chapter 4.
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descriptors based on their ground, i.e., ClassDescriptor, the IndividualDescriptor,

the ObjectPropertyDescriptor, and the DataPropertyDescriptor.

4.3.2 Construction of Descriptors

To address an application, developers should design suitable compound descriptors with

sets of axioms based on Table 4.3. Four steps should be followed to design a compound

descriptor based on the functionalities that an OOP class can inherit from OWLOOP inter-

faces. (𝑖) Assign a ground entity by inheriting from one of the interfaces provided by the

★.descriptorGround package. (𝑖𝑖) Inherit from extensions of the Descriptor interfaces

(available in the package ★.descriptorExpression) the representation of some expres-

sions E𝑘 . (𝑖𝑖𝑖) Consistently for each E𝑘 expression, instantiate an empty entity set based

on the ★.descriptorEntitySet package. (𝑖𝑣) For each E𝑘 , specify a descriptor to build

(addressed in the next Section).

Figure 4.3 The general-purpose definition of OWLOOP Descriptor. Colours identify

packages, i.e., related classes, and they are also used in Figures 4.4–4.6.

Figure 4.4 shows the implementation of the FullClassDescriptor, which is a com-

pound descriptor involving all the class expressions shown in the first row of Table 4.3.

Therefore it requires as EntitySet four sets of Classes, a set of Individuals and a set

of Restrictions. Remarkably, any OWLOOP compound descriptors with a ClassGround

concerns a subset of expressions involved in the FullClassDescriptor. Figures 4.5 and

4.6 respectively show the implementation of the FullIndividualDescriptor, and the
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FullObjectPropertyDescriptor, from which it is possible to derive the implementation

of the FullDataPropertyDescriptor. Indeed, since our mapping exploits the same struc-

ture 𝐷 for all OWL axioms, OWLOOP always relies on the same pattern to address different

OWL expressions. Hence, OWLOOP is modular, and this also facilitates the implementation

of the OWL axioms not considered in the current version.

Figure 4.4 The implementation of the FullClassDescriptor.

4.3.3 Usage of Descriptors

Software functionalities

A descriptor derived from Table 4.3 can be instantiated given (𝑖) a ground, i.e., the identifier

to an OWL entity (e.g., “Corridor1”), and (𝑖𝑖) the reference to an ontology as required by

aMOR2, i.e., an OntologyReference. For instance, Listing 1 shows at Line 1 a function

to create the ontology with an associated reasoner, which should be manually invoked. As

an example, Line 7 constructs a LinkIndividualDesc, which is a compound descriptor

grounded on Corridor1 and is concerned with the expressions E inherited from the descriptors

addressing ObjectLink and DataLink.

2OWLOOP is interfaced with the ontology through the aMOR library, which wraps the OWL-API and

provides useful helper classes and functions.
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1 private OntologyReference createEmptyOntology() {

2 OntologyReference.activateAMORlogging(false); // Disable logs.

3 return OntologyReference.newOWLReferencesCreatedWithPellet(

"robotAtHomeOnto", // Ontology refeference name.

"src/test/resources/robotAtHomeOntology.owl", // File path.

"http://www.semanticweb.org/emaroLab/robotAtHomeOntology", // IRI.

true // Synchronize the Pellet reasoner manually.

);

4 }

5 private LinkIndividualDesc newCorridorDescriptorr() {

6 OWLReferences ontoRef = createEmptyOntology();

7 LinkIndividualDesc cd = LinkIndividualDesc("Corridor1", ontoRef);

8 return cd; // Compound descriptor concerning E: {ObjectLink, DataLink}.
9 }

Listing 1 Example showing the instantiation of an OWLOOP descriptor.

More generally, an OOP interface D that extends Descriptor for an expression E𝑘

inherits the OOP methods addressed in the following paragraphs. These functionalities

are based on the internal state of a descriptor (i.e., the ground 𝑥 and the entity set 𝑌𝑘) that

can be synchronised with the ontology. A compound descriptor is an OOP object cd that

realises some Descriptor interfaces, whose functionalities can be accessed with cd.E𝑘 .

For instance, the interfaces implemented by the object cd returned at Line 7 are accessible

with cd.ObjectLink or cd.DataLink3.

D.getGround(): This method returns the ground entity 𝑥. For a compound descriptor,

cd.E𝑘.getGround() returns the same entity for all the implemented expressions E𝑘 .

D.getEntities(): It returns the entity set 𝑌𝑘 associated to the E𝑘 expression. To

allow the definition of compound descriptors, each descriptor D defines this method

with a different name, e.g., cd.getObjects() for the ObjectLink expression, and

cd.getEquivalentIndividuals() for Equivalent associated to an individual ground.

These methods are used to access entities 𝑦𝑖, as well as manipulate them, e.g., through

the cd.removeObject() function.

D.query(): This method returns the knowledge related to the 𝑘-th expression that

involves the ground entity in the ontology. It returns a set structured as 𝑌𝑘 but it does not

affect the internal state of the descriptor. It is mainly used by the Descriptor interface itself.

D.readAxioms(): It relies on D.getEntities() and D.query() to compare the in-

ternal state of the descriptor with the state of the ontology. It changes the entity set of the

descriptor such to be equal to the ontology. It returns a list of intents containing all the

3In this chapter, we slightly simplify the syntax. See the ★.articleExamples package for the runnable

version of the illustrated examples.
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10 OWLReferences ontoRef = this.createEmptyOntology();

11 // Assert OWL Individual Expression Axioms in the ontology.

12 ObjectLinkIndividualDesc corrdor1 = // E: {ObjectLink, DataLink}.
new ObjectLinkIndividualDesc("Corridor1", ontoRef);

13 corrdor1.addObject("isLinkedTo", "Room1"); // Add to ObjectLink EtitySet.

14 corrdor1.addObject(new OWLOOPObject("isLinkedTo", "Room2"));

15 corrdor1.writeAxioms(); // Synchronise changes to the ontology.

16 // Add OWL Class Expression Axioms to the ontology.

17 DisjointClassDesc robotClass = // E: {Disjoint}.
new RestrictionClassDesc("ROBOT", ontoRef);

18 robotClass.addDisjointClass("LOCATION"); // Add to Disjoint EntitySet.

19 robotClass.addDisjointClass(ontoRef.getOWLClass("DOOR"));

20 corrdor1.writeAxioms(); // Synchronise changes to the ontology.

21 // Add OWL ObjectProperty Expression Axioms to the ontology.

22 DomainRangeObjectPropertyDesc hasDoor = // E: {Domain, Range}.
new DomainRangeObjectPropertyDesc("hasDoor", ontoRef);

23 hasDoor.addDomainClassRestriction("LOCATION"); // Add to Domain EntitySet.

24 hasDoor.addRangeClassRestriction(new OWLOOPRestriction("DOOR"));

25 corrdor1.writeAxioms(); // Synchronise changes to the ontology.

26 // Synchronise changes to the entity sets based on the ontology.

27 ontoRef.synchroniseReasoner(); // Invoke OWL reasoning.

28 corrdor1.readAxioms();

29 hasDoor.readAxioms();

30 robotClass.readAxioms();

31 // Remove an axiom from the internal state of a descriptor.

32 corridor1.removeObject("isLinkedTo"));

33 corridor1.writeAxioms(); // Synchronise changes to the ontology.

Listing 2 Example showing how to manipulate axioms through descriptors.

performed changes, which can be used to recover from possible inconsistencies. A compound

descriptor provides the method cd.readAxioms(), which invokes cd.E𝑘.readAxioms()

for each 𝑘-th expression concerned by cd.

D.writeAxioms(): It is similar to readAxioms() but it changes the ontology to become

equal to the entity set.

D.build(): It allows the use of a descriptor in an OOP manner since it returns a new

compound descriptor nd grounded in each entity 𝑦𝑖. While designing compound descriptors,

developers should specify the type of nd with a ground consistent with the elements in

the entity set of D. Then, the entity set of the new descriptors is populated through the

nd.readAxioms() method. Similarly to D.getEntities(), each descriptor D defines

building methods with different names to allow the definition of compound descriptors.

Remarkably, if entities 𝑦𝑖 are not OWL entities, the build() method would have multiple

definitions, e.g., for an ObjectLink it is possible to return descriptors nd grounded on an

object property or on an individual.
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34 // Load the ontology shown in Figure 4.1 similarly to Line 1.

35 OWLReferences ontoRef = this.loadOntology();

36 // Retrieve the robot location (robotLoc) by assuming that it is unique.

37 LinkIndividualDesc robot1 = new LinkIndividualDesc("Robot1",ontoRef);

38 robot1.addObject("isIn", true); // Set to read only the isIn property once.

39 robot1.readAxioms();

40 OWLNamedIndividual robotLoc = robot1.getIndividualFromObject("isIn");

41 // Ground an individual descriptor on robotLoc concerning E: {Type}.
42 TypeIndividualDesc locIndiv = new TypeIndividualDesc(robotLoc, ontoRef);

44 locIndiv.readAxioms(); // read the classes of robotLoc.

46 // Build descriptors grounded on the classes of robotLoc.

48 Set<SubClassDesc> locClasses = locIndiv.buildTypes(); // E: {Sub}
50 for(SubClassDesc locClass : locClasses)

52 // A class of robotLoc that only subsumes owl:NOTHING is a leaf.

54 if(locClass.getdSubClasses().size() == 1)

56 // Print, e.g., "Robot1 is in Corridor1, which is a CORRIDOR".
58 System.out.println(robot1.getGround() + " is in " + robotLoc

+ ", which is a " + locClass.getGround());

Listing 3 Example showing the usage of the descriptor build method.

There are also other useful functionalities implemented by aMOR, e.g., to get OWL

entities or save the ontology. Moreover, the function ontoRef.synchroniseReasoner()

performs OWL reasoning, which involves all the OWL expressions. Remarkably, OWL

querying is a time consuming task if reasoning is required. Hence, the reasoning process

should only be used when required, i.e., to affect the results of query() and, consequently,

the outcomes of readAxioms() and WriteAxioms(). In addition, to be compatible with

other software using ontologies, aMOR provides access to factory-based OWL to OOP

mapping implemented with OWL-API.

Illustrative examples

Listing 2 shows how to use compound descriptors to manipulate an ontology by creat-

ing an ontology with some of the axioms shown in Figure 4.1. At Line 13 the axiom

ObjectLink(isLinkedTo,Corridor1,Room1) is added to the relative entity set, and the same

operation is performed at Line 14 with a different type of input. At Line 15, the ontology

changes such that Corridor1 is linked to Room1 and Room2. In addition, Lines 18–19 define

axioms concerning the disjoint classes, and at Line 20, the ontology is changed to contain

them, i.e., Disjoint(ROBOT,LOCATION) and Disjoint(ROBOT,DOOR). Lines 23–24 de-

fine axioms Domain(hasDoor,LOCATION) and Range(hasDoor,DOOR), which are applied

to the ontology at Line 25. Furthermore, Line 27 updates the reasoner to infer new knowledge

in the ontology, which is then synchronised with the internal states of the descriptors at
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Lines 28–30. Finally, Line 32 shows a way to remove an element from the internal state of a

descriptor, and Line 33 applies those changes to the ontology.

The example in Listing 3 has the objective of finding the type of room where the robot is

located, e.g., CORRIDOR. The example shows the retrieval of the individual related to the

isIn property, e.g., Corridor1, that we store in a variable named robotLoc. Then, the example

shows how to find the OWL classes that classifies robotLoc such that they are a leaf of the

class tree in the ontology. Within Lines 37–40 the robot location is retrieved by assuming

in the ontology that only an isIn axiom involving Robot1 exists. Lines 42–44 initialise a

descriptor grounded on robotLoc that it is used to map OWL classes concerning the Type

expression. Line 48 builds the Type of robotLoc, i.e., it computes a set of descriptors that

are grounded in a class representing the robot location (e.g., CORRIDOR, LOCATION and

owl:THING), and concerns Sub expressions. For each class of robotLoc, Line 54 checks

whether it has only one subclass, i.e., owl:NOTHING, which implies that it is a leaf class

in the ontology. This example shows that OWLOOP allows for getting the OWL classes

and subclasses in an OOP fashion, and a similar approach can also be used for the other

expressions. Remarkably, Lines 40–44 show a less general implementation of the build()

method. For instance, to retrieve locIndiv from robot1 directly through building, the

descriptor LinkIndividualDescr should be designed to build new TypeIndividualDesc objects.

Figure 4.5 The implementation of the FullIndividualDescriptor.
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Figure 4.6 The implementation of the FullObjectPropertyDescriptor.

4.4 Summary

OWLOOP API is designed to support and ease the development of HAR systems based on

Arianna+. It enables the usage of Ontology Web Language (OWL) by the means of Object-

Oriented Programming (OOP). OWLOOP API performs a passive OWL to OOP mapping

that allows to manipulate knowledge in ontology files and perform inference by using

OWL reasoners. OWLOOP allows to construct and use Descriptors, which are Java classes

that interface OOP objects with knowledge structured in program-memory as an ontology.

Descriptors encapsulate boilerplate code to simplify the development and maintenance

of a system that exploits knowledge representation and reasoning using ontologies. The

Descriptors’ methods allow to read, write, update, delete, and reason on axioms in ontology

files. Furthermore, flexibility in Descriptor construction allows to avoid drawbacks in

computational performance. OWLOOP is suitable for complex applications requiring the

management of dynamic ontologies.

The current version of OWLOOP concerns only with the expressions shown in Table 4.3,

which do not encompass all the OWL axioms. For instance, it does not allow the represen-

tation of classes through structured disjunctions and conjunctions of class restrictions as
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defined by OWL. Instead, it considers all the restrictions to be in conjunction with each other

without a specific order. For most applications, this is not a limitation because it is possible

to use an ontology editor (e.g., Protégé [127]) to design static semantics. Then, the ontology

can be loaded and subjected to runtime operations through OWLOOP descriptors. In the

future, OWLOOP can be modularly extended to support all OWL axioms by designing new

types of OWLOOPEntity and related Descriptors. Current limitations of OWLOOP are the

following: (i) the effect on the computational performance (due to the overhead by the use

of Descriptors, which are encapsulating Java-interfaces, classes, and methods in the OWL

API) has not been quantitatively measured and (ii) based on the API design we hypothesize

that flexibility in Descriptor construction allows to avoid drawbacks in computational perfor-

mance - this also remains to be quantitatively confirmed. Nonetheless, these limitations can

be overcome with further research into the API and they do not hinder the practical use of

the API while building HAR systems - as will be seen in Chapter 5.
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Evaluating and exploiting Arianna+ using

OWLOOP API

In this chapter, the following sections present HAR capable smart-home systems - as part of

the work done in this thesis - that are developed based on Arinna+ (which was described with

detail in Chapter 3) using OWLOOP API (which was described with detail in Chapter 4).

Each section is divided into four subsections. The first subsection introduces the motivation,

research problems the work resolves, and some background. The second subsection presents

the methodology of experimentation. The third subsection presents the experimental setup,

experiment, and results and evaluation. The final subsection summarizes the work and

highlights how it addresses one or more of the research problems that were presented in

Section 2.4. Furthermore, it highlights limitations (if any).

Moreover, on the one hand, the first two sections (5.1 and 5.2) present HAR systems that

are evaluated in the laboratory using datasets. Work presented in Section 5.1 used a dataset

based on a simple in-the-lab experimental-setup. Work presented in Section 5.2 used the

publicly available CASAS dataset. On the other hand, the remaining two sections (5.3 and

5.4) present HAR systems evaluated with data from an experimental-setup at a volunteer’s

home. This evaluation at-home was the contingency plan. Originally, the plan was to collect a

dataset from an assisted-living facility based on the work done by Teseo 1. But the execution

of this plan was not possible due to the Covid-19 pandemic [137, 138]. Hence instead, the

contingency plan was executed to proceed with the thesis work.

1https://www.teseo.tech/
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5.1 Evaluating computational performance of a network of

ontologies

5.1.1 Introduction

This work presents a preliminary evaluation of a HAR system based on Arianna+ and

developed using OWLOOP API. The evaluation showcases Arianna+’s scalability and online

activity recognition. A positive evaluation of both these aspects highlights modularity of

Arianna+. This work explores the research problems highlighted under RQ2 and RQ5, which

are presented in Section 2.4.

Learning (or development) of activity models, in data-driven approaches, happens by

training over datasets, whereas in knowledge-driven approaches it is done by explicitly

encoding knowledge, typically in the form of a set of axioms, used for HAR based on sensor

data. In terms of facilitating an iterative development process, the feasibility of the former

approach is questionable since, if a new activity is to be introduced into the system, a new

dataset has to be collected and the entire training process has to be performed. Whereas, the

latter approach is more feasible as a new activity model’s knowledge can simply be added as

a set of axioms and rules.

In a real-world environment, robust HAR systems must guarantee scalability and online

activity recognition. On the one hand, scalability can be achieve when (i) the system is

modular with respect to activity models and (ii) types of sensors, as well as. On the other

hand, online activity recognition depends on the design of the activity models.

This section presents a HAR system developed based on Arianna+. This system uses a

hierarchy of ontologies, that decouple logic operations for semantically describing the context

and support modular composition of reasoning behaviors for online activity recognition.

The HAR system is presented from a software architecture perspective, and a use case is

implemented, which is tested based on simulated data from distributed sensors.

5.1.2 Methodology

A network of ontologies

In Chapter 3, an ontology network is defined as a graph 𝐺, wherein the set of nodes 𝑁 are

ontologies (each with an independent DL reasoner) containing statements of the form (5.1),
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i.e., having a Boolean state 𝑠 and a generation timestamp 𝑡:

Statement � ∃=1hasState(𝑠) ⊓∃=1hasTime(𝑡) (5.1)

and are used to describe a specific part of the context, while the set of directed edges 𝐸 are

communication channels used for sharing statements between the nodes. Hence 𝐺 is of the

form:

𝐺 = {𝑁,𝐸} (5.2)

where, 𝑁 = 𝑛1, 𝑛2, . . . , 𝑛𝑛, such that each node specializes in reasoning within a particular

context, and 𝐸 = 𝑒12, 𝑒13, . . . , 𝑒1𝑛, 𝑒21, 𝑒23, . . . , 𝑒2𝑛, . . . , 𝑒𝑚𝑛, such that the index of each edge

signifies the direction of flow of statements, e.g., in 𝑒12 statements flow from 𝑛1 to 𝑛2.

Consider an event, indicating that water is flowing from the sink in the kitchen. It can

have different interpretations for a system aimed at recognizing activities such as cooking

or cleaning. Instead of recognizing them actively from the same representation, with an

ontology network it is possible to decouple their models in order to reason upon them based

on an event or set of occurring events. Where, an event occurs based on rules that aggregate

statements by logical conjunction. We show in the following Sections that this approach

enforces system’s modularity with respect to activity models, and if the network is such

that it evaluates only the models related to a specific part of the overall context, then it also

decreases the computation time.

The system checks the statements in the network with a given frequency and, when an

event is detected, specific external procedures are executed in order to: (i) move statements

from one node to another via edges, and (ii) evaluate models for activity recognition. For

instance, statements could be generated from distributed sensors (e.g., detecting that Adam is

in the kitchen at 8:00 am), then the system aggregates this information with prior knowledge

to detect events (e.g., Adam is in the kitchen in the morning). When such an event occurs,

the model for detecting that Adam is having breakfast gets evaluated by checking statements

and their temporal relations within the model.

Moreover, activity models can generate statements, e.g., indicating that Adam had (or did

not have) breakfast at a certain time, and hence can trigger new events, which can further be

used to describe the context and evaluate models via procedure executions. A formal algebra

of statements, used for defining events that execute procedures based on the context, has

been proposed in 3.3.1.
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Figure 5.2 Visual representation of statements that make up the A2 model: statements are

shown as vertical arrows where dashed arrows indicate information from P, and solid arrows

indicate statements generated by this model. Statement indexes indicate sensors influencing

the state of that statement, while the temporal restrictions are shown as black lines.

Contextualized activity recognition

The ontology network developed in this work is represented as O as shown in Figure 5.1. In

it there are 6 nodes; 𝑛1 is a location-based contextualizing model called Place Ontology P

and 𝑛2, . . . , 𝑛6 are called activity ontologies A𝑖, where 𝑖 = 1, . . . ,5 respectively. Nodes are

designed such that statements within P take into account the spatial aspect, and statements

within A𝑖 take into account the spatial and temporal aspects of AR. A𝑖 are listening for

particular events that P generates, and the edges that link them are the following 𝐸 =

𝑒12, 𝑒13, 𝑒14, 𝑒15, 𝑒16. The nodes communicate and statements flow between them via edges,

such that, A𝑖 get activated and then evaluated by their independent reasoners, when a

particular event occurs, as depicted by the graph in Figure 5.1. If the evaluation of an activity

model gets satisfied, its procedure generates a new statement to notify the recognition of an

activity, e.g., WatchingTV.{hasState(True), hasTime(19:28)}.



5.1 Evaluating computational performance of a network of ontologies 61

Within activity models, particular statements and temporal relations, must get satisfied for

successful activity recognition. These are shown forA2, which recognizes the activity Watch-

ingTV, in Figure 5.2. In it, statements are vertical arrows pointing upwards to indicate a True

state and downwards for False. These statements are either transferred from another node

(e.g., dashed arrows represent statements coming from P), or are generated by this node (e.g.,

solid arrows are the statements generated byA2) and are indicated along with a name and an

index or a range of indexes. A name is denoted by a capital letter and the sensors related to it

are shown as the index. Statements are annotated along a relative 𝑥-axis, in order to restrict

their temporal relations through black lines ending with a circle. In the Figure, we can see 4

statements: (i) statement 𝑅𝑝2, which is a dashed arrow of green color, is information coming

from P; it signifies isIn_LivingRoom.{hasState(True), hasTime(19:25)}, where the

index 𝑝2 indicates that the sensor PIR2 influences the state of this statement; (ii) statement

𝑆𝑝2, which is a dashed arrow of orange color, is information coming from P; it signifies that

there is some motion in the living room after 𝛿2 time units, naively representing the idea that,

if Adam is sitting on the sofa then he is not sitting still; this statement can be replaced by

a much robust statement, for instance, sitting.{hasState(True), hasTime(19:26)},

given that there may be other sensors in the system (e.g., wearable sensors, pressure sensors

in the sofa); (iii) statement 𝑆𝑏, which is a dashed arrow of blue color, is information coming

from P; it signifies highBrightnessTV.{hasState(True), hasTime(19:28)}, where

the indexes 𝑏 indicates that brightness sensor influences the state of this statement; (iv)

statement𝑊 , which is a solid arrow of red color, is generated when the overall model is satis-

fied, it signifies WatchingTV.{hasState(True), hasTime(19:28)}; this happens when

statements 𝑆𝑝2 and 𝑆𝑏 are generated after 𝛿2 time units with respect to the 𝑅𝑝2 statement.

In this system, when A𝑖 receive statements from P the values of old instances get

updated, if they are available. This has the effect of not accumulating statements in A𝑖, i.e,

the procedure related to it is in charge of updating and evaluating it, without accumulating

time-related instances. Secondly, events are queries that return Boolean value when certain

statements are satisfied, or not, in an ontology of the network. In the framework presented

in Chapter 3, events are semantically defined in an upper-ontology that schedules related

procedures if their query is verified. Whereas in this HAR system rather than having an upper-

ontology, we have designed a system’s architecture that incorporates the object-oriented

programming (OOP) paradigm to execute A𝑖 procedures with an event-listener pattern.
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Figure 5.3 The system’s architecture for the work presented in Section 5.1. Where, the link

rsd signifies the flow of raw sensor data, asds signifies the flow of aggregated sensor data in

the form of statements, ias signifies inferred activity statements and 𝑓 signifies frequency.

5.1.3 Experimental evaluation

Experimental Setup

Figure 5.3 shows the system’s architecture. It recognizes activities with O as described above;

it comprises of the sensing, aggregation, reasoning and application layers. In this Section,

we focus on the interfaces between those layers, which highlight the modularity aspect of

Arianna+. Firstly, in the reasoning layer, O is used over time for recognizing activities based

on data taken from the database (DB), which is getting accumulated with the latest sensor

values and timestamps by the aggregation layer, which in turn is connected to the physical

sensory layer. Finally, the application layer is used to easily interface geriatricians, other

medical staff with the system’s HAR results.

The reasoning layer is the system’s core. It is made up of O and its internal working is as

described in Section 5.1.2. There are two components in the working of this layer. The first

is the initialization of O (i.e, TBox of ontologies are defined as nodes. While procedures and

events are defined as edges). The second is the frequency 𝑓𝑜 with which, in O, the procedure

of P takes in aggregated sensor data statements (link asds) from the database, updates the

ABox, reasons (spatially) with knowledge within P, and declares occurrence of an event, if

any. If the declared event is being listened for by one or many A𝑖, then their procedures get

activated. Once an activity model’s procedure is active, it takes in statements from P and
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updates its own ABox, then reasons (spatially and temporally) with knowledge within the

model and declares the recognition of a user activity. This completes a chain of reasoning

processes (i.e., P plus an activity model), and if an activity is recognized in the process,

then the procedure associated with the model saves the inferred activity statement (link ias)

back in the database. As the reasoning process has not negligible computational time, if it

is simply performed every time new sensor data statements arrive in the database, and if

the frequency with which the new data arrives is faster than the reasoning process, then the

system would not meet the near real-time constraint. Hence, we need 𝑓𝑜 to have control over

such a process. It deals with the computational complexity issue of the DL reasoner which

performs the reasoning in O.

From the application layer, on the one hand, geriatricians could visualize statistics related

to the activities performed and explore further details in terms of statements (link ias), if

necessary. On the other hand, the elderly individual could be stimulated with suggestions

based on activity recognition, for instance, through dialogue-based interfaces via virtual

coaches. Furthermore, the database also contains detailed logs of statements that were in O,

and therefore assistive or medical staff can access those statements to provide online services

to the assisted individuals. For instance, a future scenario of in-home healthcare would be

such that, if Adam is asked by his doctor about the number of times he visits the bathroom

during the night, Adam’s reply can be augmented by quantitative data from the smart home,

which can help the doctor in making healthcare-related decisions.

The aggregation layer takes raw sensor data (link rsd) from heterogeneous sensors in the

sensing layer and by using dedicated perception modules, processes the raw data to generate

statements of the form (5.1). Then, it stores aggregated sensor data statements (link asds)

in the database. This layer relies on a communication middleware module to channel all

the Boolean data the sensors generate, and stores them in the database, if simple distributed

sensors are considered. Furthermore, it relies on classification modules (e.g., obtained via

machine learning approaches) that can provide statements with semantics (e.g., sitting down,

lying down, etc), and stores them in the database, i.e, if sensors generating more complex

data streams are considered. Remarkably, having a formal structure for a statement not only

assures a modular evaluation of activity models, but also enables the overall AR system to

take heterogeneous sensors into account. Statements are stored in the database at a frequency

𝑓𝑠, and moreover each perception module in this layer can have its own frequency at which it

processes the raw sensor data to generate statements and store them in the database.

It is noteworthy that the frequencies 𝑓𝑠 and 𝑓𝑜 are independent of each other, such that,

(i) the aggregation layer stores latest aggregated sensor data statements in the database at a
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frequency 𝑓𝑠, which can be unique for different perception modules, and (ii) the reasoning

layer reasons based on the latest statements that are available to it from the database, with a

frequency 𝑓𝑜.

Experiment

The use case presented in this HAR system utilizes all A𝑖 in O, as shown in Figure 5.1.

Their description is as follows. A1 infers Making breakfast, lunch or dinner. It is listen-

ing for the event ∃ Human.isIn(Kitchen). It generates one of the statements, Making

breakfast or Making lunch or Making dinner, when the assisted person uses furniture

(e.g., the kitchen cabinet), after being present in the kitchen for a minimum time period

of 60 seconds, and if that time period is inside one of the a priori defined intervals of the

day, i.e., morning, afternoon or evening. A2 infers Watching TV. It is listening for the

event ∃ Human.isIn(LivingRoom). It generates the statement Watching TV when the

occupant uses furniture (e.g., the TV), after being present in the living room for a minimum

time period of 60 seconds, during any time of the day. A3 infers Taking a nap in morning,

afternoon or evening. It is listening for the event ∃ Human.isIn(BedRoom). It generates

one of the statements Taking a nap in morning or Taking a nap in afternoon or

Taking a nap in evening, when the assisted person uses furniture (e.g., the bed), after

being present in the bedroom for a minimum time period of 60 seconds, and if that time

period is inside one of the intervals of the day, i.e., morning, afternoon or evening. A4 infers

Movement during nap. It is listening for the event ∃ Human.isIn(BedRoom). It generates

the statement Movement during nap when the person uses furniture (e.g., the bed) and the

PIR associated with the bed remains active even after 60 seconds have passed on the bed,

during any time of the day. A5 infers Bathroom visit in morning, afternoon, evening or night.

It is listening for the event ∃ Human.isIn(BathRoom). It generates one of the statements

Bathroom visit in morning or Bathroom visit in afternoon or Bathroom visit

in evening or Bathroom visit in night, when the assisted person uses furniture (e.g.,

the toilet seat), after being present in the bathroom for a minimum time period of 60 seconds,

and if that time period is inside one of the intervals of the day, i.e., morning, afternoon,

evening or night.

The use case is implemented by generating a simulated dataset with values and timestamps

of a set of PIR sensors and a brightness sensor. It depicts a scenario where a person performs

stereotypical activities that are held for eight minutes. The dataset is kept small so as to

do extensive in-depth performance testing. The simulation is performed by updating the

database with simulated sensor data in the form of statements (mimicking the link asds
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Figure 5.4 The simulated dataset used with the HAR system presented in Section 5.1.

connecting the aggregation layer and the database). As shown in Figure 5.4, Adam enters the

kitchen, and after spending a minute in the kitchen, he opens the door of the kitchen cabinet

and then closes it. He is in the kitchen for a total duration of 2 minutes. Next, he goes to the

living room. After a minute in the living room, he switches on the TV and then switches it

off after 30 seconds. He is in the living room for a total duration of 2 minutes. Next, he goes

to the bedroom and simulates sleeping on the bed. He does not stay still in the bed, rather

is constantly in motion. He is in the bedroom for a total duration of 2 minutes. Finally, the

person goes to the bathroom. He is in the bathroom for a total duration of 2 minutes.

Among open source ontology reasoners that exist, e.g., Fact++, Pellet, Hermit and ELK.

We use Pellet as it has more features in comparison [76] and is able to pinpoint the root

contradiction or clash when inconsistency occurs. Experiments have been performed on a

workstation with the following configuration: Intel® Core™ 𝑖7 2.6 GHz processor and 8 GB

of memory. For assessing the system’s performance, two types of evaluations are performed

and compared. The first is the Contextualized Activity Evaluation (CAE), and the second

is the Parallel Activity Evaluation (PAE). The CAE case represents the working of O as

described in Section 5.1.2, where P behaves as a contextualizer such that an activity model

gets activated based on the context. In the PAE case, P is no longer made to behave as a

contextualizer, hence A𝑖 are active in all contexts.

An evaluation (CAE or PAE) is performed as an experiment by setting a particular

frequency 𝑓𝑜 (of the reasoning layer). An experiment is performed with 5 iterations, with

each iteration an extra activity model is added to O to increase the system’s complexity.

Each iteration is repeated 10 times to assess the reasoner’s average computational time, and
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are the number of ontologies, where 2 means (P +A1), 3 means (P +A1 +A2), etc.

the maximum and minimum variance, from among 10 values. In total four experiments are

performed, their process and results are described in the following Section.

Results

Performance results are shown in Figure 5.5, where 𝑥-axis shows the increasing number of

ontologies in O (i.e., the number of activities the system attempts to recognize), with each

iteration of an experiment. In relation to this, the 𝑦-axis shows the reasoner’s computational

time (i.e, the sum of the reasoning time spent in the ontologies of O). A thread with a

unique color represents a unique experiment conducted with a particular scheduled frequency

𝑓𝑜. A black dot on a thread marks the reasoner’s average (10 repetitions of an iteration

for an experiment) computational time, and vertical lines in the positive/negative direction

(from a black dot) show the maximum/minimum variance, respectively, from the average
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computational time. The simplest network has two ontologies, the Place Ontology P andA1,

while the most complex network we tested has six ontologies, i.e., P and A1,A2, . . . ,A5.

Considering the CAE case, the reasoning layer is set to run with a time period of 500

milliseconds (i.e., 𝑓𝑜 is 2 Hz), with the hypothesis that recognizing activities within 500

milliseconds is satisfying soft real-time constraint. Represented by the blue thread, the

reasoner’s computational time is high and increases linearly with the increase in system’s

complexity. Following the success of the previous test, and considering the PAE case, 𝑓𝑜 is

kept the same, i.e, 2 Hz. However, this case is not represented by any thread, as an undefined

amount of time was being taken by the reasoner to finish the reasoning process. Following

the drawback in the previous case, and considering the same case, i.e., PAE, the reasoning

layer is set to run with a higher time period of 3000 milliseconds (i.e, 𝑓𝑜 is 0.3̄ Hz), to make

sure that the reasoning process completes within the frequency 𝑓𝑜, a condition which is

satisfied with that time period. Represented by the red thread, the reasoner’s computational

time is initially low but then behaves exponentially, with the increase in system’s complexity.

Finally, following the success of the previous case, and considering the CAE case, 𝑓𝑜 is kept

the same, i.e, 0.3̄ Hz. Represented by the green thread, the reasoner’s computational time is

initially low and remains low, as it increases linearly with the increase in complexity of the

system.

More in the discussion of the results:

1. Comparing the two CAE cases with frequencies 2 and 0.3̄ Hz, respectively, against

each other, and against the PAE case with frequency at 2 Hz, we see that, with the

approach described in Section 5.1.2 (i.e., represented by the CAE cases), it is possible

to have activity recognition with a high frequency. This shows the system’s ability to

support near real-time applications.

2. In case of PAE, when there are 6 ontologies in O, a high variance is seen with

the reasoner’s average computational time on the higher end, thus confirming an

exponential behavior. In case of CAE when there are 5 ontologies in O, a high

variance is seen with the reasoner’s average computational time on the lower end, thus

confirming a linear behavior.

3. The PAE case (wherein, even if multiple smaller ontologies are used, all their reasoners

are running in parallel), represented by the red thread; shows an evident exponential

behavior and can be compared to using one large ontology in the system. It is known

in the literature that with an increase in the number of axioms in an ontology the search

space increases exponentially [77]. Therefore in comparison, the CAE case, with its
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linear behavior, shows clearly the advantage of Arianna+’s modularity with respect

to activity models and their contextualized evaluation. Furthermore, such claim is

supported by the fact that our system does not accumulate instances within ontologies

as it uses an external reasoner to deal with temporal aspects of reasoning (as described

in Section 5.1.2) and stores the recognized activities in a database.

5.1.4 Summary

In this work, we present a HAR system based on Arianna+. The objective of this work is to

perform a preliminary evaluation of the computational performance while reasoning using

a network of ontologies. Hence, a system was developed whose core is a reasoning layer

based on a network of ontologies. The network is grounded on activity models, statements,

computational procedures, and events-listeners.

An experimental setup is designed with a use case scenario comprising of five activity

models. Experiments were performed using a simulated dataset for evaluating the behavior

of the network and its computational performance. Results with CAE (contextualized activity

evaluation) indicate that a HAR system that performs contextualized-reasoning using a

network of ontologies has better computational performance as compared to a HAR system

that performs reasoning in a non-contextualized manner, i.e., in case of PAE (parallel activity

evaluation), wherein all activities are evaluated together at the same time. As the complexity

of the system increases (i.e., number of axioms in the system) the overall reasoning time is

less for the case of CAE as compared to the case of PAE. However, we restrain from making

conclusive statements about the comparison, because of the presence of high variability in

the result of the CAE case (as can be seen in Figure 5.5).

Limitations of this evaluation are that it considers a single occupant in the environment

and although tested extensively, a small and simulated dataset is used. Hence, future work

could involve testing long-term computational performance with data arriving from a real-

world smart-home setup. Furthermore, in the future, data-driven techniques that can process

inertial data can be incorporated into computational procedures such that the network of

ontologies can have sensor statements related to human actions and postures.
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5.2 A HAR system based on Arianna+ evaluated using the

CASAS dataset

5.2.1 Introduction

This work is an evaluation of a system based on Arianna+. The evaluation highlights

scalability, online and accurate activity recognition. A positive evaluation of these aspects

highlights modularity and robustness of Arianna+. Furthermore, the evaluation highlights

intelligibility in the inner-workings of the system, i.e., intelligibility of activity models. This

work explores the research problems highlighted under RQ1, RQ2 and RQ5, which are

presented in Section 2.4.

This work shows that a system based on Arianna+ can be modular with respect to

reasoning within multiple contexts, i.e., for different activities. It also shows that if each

ontology in the network is concerned with a well-defined, small context, then the benefits

are two-fold. (𝑖) The knowledge intelligibility increases since each ontology addresses a

limited and self-contained portion of knowledge that is affected by the reasoning process.

Thus, domain experts can focus on specific aspects of the application, e.g., modelling a given

activity independently from the others. (𝑖𝑖) The reasoning load for data contextualisation

is limited, and the architecture can be used online. This is because each ontology has a

dedicated reasoner that evaluates only the data relevant for a certain context, e.g., a particular

activity. In addition, if the reasoners (and the other procedures) are invoked only when

required by the means of well contextualised events, the computation would benefit and the

flow of statements among ontologies would be of immediate comprehension.

For a scenario based on simple fluent models of ADL and a popular dataset involving

event-based sensory data (presented in Section 5.2.3), this HAR system shows how Arianna+

can be flexibly used to develop an ontology network. Also, it reports the recognition and

classification rates obtained through logically represented symbols, and compares it with

other state of the art activity models validated with the same dataset. The comparison is done

between systems that use a single representation domain (symbolic, probabilistic or hybrid)

to encode the whole knowledge required to recognise human activities in the dataset, and an

ontology network that involves distributed symbolic domains, i.e., contexts. The comparison

shows that on an ontology network can have recognition and classification performance that

is comparable to state of the art techniques that are most often (to the best of our knowledge)

based on a one size fits all approach to represent data



5.2 A HAR system based on Arianna+ evaluated using the CASAS dataset 70

5.2.2 Methodology

Based on the timestamps available in the dataset, we simulate the streaming of data encoded

as statements. The statements are used in an ontology network developed for the scenario

described above and detailed in the next Section. We develop the network to show the design

supported by Arianna+ and to assess its intelligibility and computational load.

The ontology network is designed to reduce the complexity of each context, i.e., ontology.

The results of such a design are discussed from three different perspectives in Section 5.2.3.

(𝑖) We observe the magnitude in reduction of the computational load. The computational load

is a focus because logic-based reasoning is exponentially complex with respect to the amount

of knowledge encoded in an ontology. (𝑖𝑖) We discuss the intelligibility level provided by

Arianna+ through the examples. (𝑖𝑖𝑖) We analyse the differences between human activity

recognition performance in an ontology network and in approaches exploiting a unique

paradigm and/or data representation corpus, the main difference being that an ontology

network allows to evaluate each activity in a purposely designed, specialised context.

With this experimental setup, we stress again that we do not want to compare our activity

recognition models with other techniques validated in the literature, e.g., upper ontologies

for ADL [97] or MLN [139], but rather we want to emphasise the unique traits of the

architectural aspects of Arianna+ . At the same time, we do not aim to investigate the

recognition performance for specific activities, e.g., meal preparation. Instead, we want to

evaluate an ontology network in terms of its modularity, flexibility and intelligibility while it

manages concurrent and interconnected contexts for recognising ADL.

Since Arianna+ enables an iterative development of human activity models, we showcase

its modularity using a simple and engineered implementation of such models. In future

Arianna+ iterations, we aim at comparing the recognition performance for specific activ-

ities and validating activity models. Such a validation phase might involve the adoption

of computational procedures that are different from the ones used in this system. Further-

more, the validation phase may involve semantic representations – for describing ADL

in ontologies – different from the spatial and temporal representations we propose here.

Nonetheless, Arianna+ allows to flexibly integrate different procedures and ontologies since

the only requirement is the proper use of statements (to represent data) and events (to trigger

computation), as discussed in Sections 3.3.1–3.3.4.
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5.2.3 Experimental evaluation

Experimental setup

We evaluate Arianna+ using the well-known CASAS dataset from Washington State Univer-

sity2, as it is customary in ambient assisted living research. The dataset is presented in [140],

and it contains data that was collected in an apartment with distributed sensors as shown in

Figure 5.6. When a sensor generates Boolean information at some specific time instants,

then statements are produced in the form of (3.1). The following sensors are present and

considered in this scenario, (𝑖) motion sensors generate 𝑠𝑠𝑠(𝑀𝑖) = ⊤ when the presence of a

person is detected by the related sensor, (𝑖𝑖) item presence sensors generate 𝑠𝑠𝑠(𝐼𝑖) = ⊥ when

the related sensor detects that the item is absent, (𝑖𝑖𝑖) flow detectors generate 𝑠𝑠𝑠(𝐹𝑖) = ⊤ when

water or gas is flowing, (𝑖𝑣) door state detectors generate 𝑠𝑠𝑠(𝐷𝑖) = ⊤ when the related door is

open, and (𝑣) phone usage detector generates 𝑠𝑠𝑠(𝑃𝑖) = ⊤ when the phone is being used.

Data have been acquired when residents in the apartment were performing a set of

activities in an unscripted manner, and therefore data contain interruptions and concurrency

in their execution. In total, 19 volunteers performed the following activities, which are

enumerated as (𝛼1) filling the medication dispenser, (𝛼2) watching a DVD, (𝛼3) watering

plants, (𝛼4) conversing on the phone, (𝛼5) writing a card, (𝛼6) preparing a meal, (𝛼7) cleaning

the apartment, and (𝛼8) selecting an outfit from the wardrobe.

Figure 5.6 The sensors of a smart home, i.e., motion detectors 𝑀𝑖, item-presence sensors 𝐼𝑖,

flow sensors 𝐹𝑖, door sensors 𝐷𝑖, and phone 𝑃𝑖. Sensors are contextualized in a topological

map concerning areas and furniture.

2Available at ailab.wsu.edu/casas/datasets/adlinterweave.zip
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Configuring ontologies of the ontology network: Figure 5.7 shows relevant prior knowledge

encoded inside the ontologies of the network, and it shows two disjoint sets of classes

and sub-classes. The left-hand side concerns the localisation of a person in a room and

their proximity to furniture. Instead, the right-hand side represents a hierarchy of classes

concerning sensors and the type of activity they are supposed to monitor in a particular

installation. If not explicitly stated, sub-classes are not disjoint, e.g., we allow the presence

sensor D7:DOOR to be an instance of the MEDICINE and COOKING classes at the same

time.

Figure 5.8 shows two types of ontologies, i.e., the spatial ontology L and the activity

ontology T𝑎, which is instantiated for each activity 𝑎 ∈ [1,8]. In the L ontology, we

encode both hierarchies of classes shown in Figure 5.7, while each T𝑎 shares with L

only a part of the hierarchy on the right-hand side. In particular, T𝑎 encodes only the

part related to the statements provided by I𝑎, as shown in Table 5.1 (and detailed further

in the next Section). Remarkably, each ontology T𝑎 also contains other prior knowledge,

e.g., an UPDATE concept to classify events for synchronising computational procedures, or

a dedicated representation of TIME based on Allen’s Algebra [64].

In L , we spatially contextualise knowledge by defining

PERSON � isIn.LOCATION⊓ isNearTo.FURNITURE,

STATEMENT � hasState.B⊓hasTime.N+,

SENSOR � STATEMENT⊓⩾1 isIn.LOCATION

⊓ ⩾0 isNearTo.FURNITURE,

LOCATION¬FURNITURE, SENSOR¬PERSON. (5.3)

Here, B represents the Boolean concrete concept, while N+ represents integer positive num-

bers in accordance with Section 3.3.1. Based on this representation, we consider an instance

P:PERSON having properties (P,X):isIn and (P,Y):isNearTo and an instance S:SENSOR,

which can have a high state, i.e., (S,⊤):hasState. In other words, given sensors with a ⊤

state, we spatially localise a person based on the properties (S,X):isIn and (S,Y):isNearTo.

The INSTALLED class describes sets of sensors that are related to a particular activity,

and it is used to interface computational procedures as shown in Table 5.1. The sets of

sensors are the following,

{D7, I4, I6, I7}:MEDICINE,

{I5, I3}:TV,
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{D11, F2, F3, M6, M7, . . ., M14}:WATERING,

{I8, Iß}:WRITING,

{D8, Dß, D10, I1, I2, I7}:COOKING,

{D11, M6, M7, . . ., M10, M16, M17, M18}:CLEANING,

{D12, M3, M4, . . ., Mß, M21, M22, M23}:OUTFIT. (5.4)

We denote SENSOR instances as D𝑖:DOOR, I𝑖:ITEM, M𝑖:MOTION, F𝑖:FLOW and

H:PHONE, as shown in Figure 5.6. The activity of answering the phone is not listed

in (5.4) because it is based on a single sensor, i.e., H.

PERSON

LOCATION
KITCHEN

LIVINGROOM

CORRIDOR

CABINET
CABINET1

CABINET2
. . .

FURNITURE
SINK

TABLE
TABLE1

TABLE2

SOFA
. . .

STATEMENT
SENSOR

DOOR

ITEM

MOTION

FLOW

PHONE
. . .

INSTALLED
MEDICINE

TV

WATERING

WRITING

COOKING

CLEANING

OUTFIT
. . .

Figure 5.7 This figure partially shows the hierarchies of classes and sub-classes in the

ontologies. They represent the prior knowledge used to address the scenario presented in

Section 5.2.3.

Configuring computational procedures of the ontology network: The computational proce-

dures are interfaced with the ontologies as shown in Table 5.1, i.e., based on a scheduling

event and given some required statements the computation of procedures are triggered, in

accordance with Section 3.3.3.

Figure 5.8 shows three types of procedures. D creates instances of the SENSOR class in

the L ontology, therefore simulating a stream of data. D updates the reasoner of the spatial

ontology L each time it creates a new sensor statement in the ontology. Since L represents
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Edge

Name

Scheduling

Events.

Required

Statements.

Provided

Statements.

D At bootstrap. None.
X:SENSOR
in L .

I1

(P,K):isIn

in L , where

K:KITCHEN,

P:PERSON.

D𝑖:MEDICINE
⊓ DOOR,

I𝑖:MEDICINE
⊓ ITEM

in L .

the Required

Statements and,

N:UPDATE
in T1.

I2

(P,L):isIn

in L , where

L:LIVINGROOM.

I𝑖:TV
⊓ ITEM,

in L .

the Required

Statements and,

N:UPDATE
in T2.

I3

(L,C):isNearTo
∨(P,S):isNearTo
∨(P,L):isIn

in L , where

C:CABINET1,

S:SINK.

D𝑖:WATERING
⊓ CABINET1,

M𝑖:WATERING
⊓MOTION,

F𝑖:SINK
in L .

the Required

Statements and,

N:UPDATE
in T3.

I4

(P,T2):isNearTo

in L , where

T2:TABLE2.

H𝑖:PHONE
in L .

the Required

Statements and,

N:UPDATE
in T4.

I5

(P,T1):isNearTo

in L , where

T1:TABLE1.

I𝑖:WRITING
⊓ ITEM

in L .

the Required

Statements and,

N:UPDATE
in T5.

I6
(P,K):isIn

in L .

D𝑖:COOKING
⊓ DOOR,

I𝑖:COOKING
⊓ ITEM

in L .

the Required

Statements and,

N:UPDATE
in T6.

I7

(P,L):isIn
∨(P,K):isIn

in L .

D𝑖:CLEANING
⊓ DOOR,

M𝑖:CLAENING
⊓MOTION

in L .

the Required

Statements and,

N:UPDATE
in T7.

I8

(P,R):isIn
∨(P,T1):isNearTo
∨(P,O):isNearTo

in L , where

R:CORRIDOR,

O:SOFA.

D𝑖:OUTFIT
⊓ DOOR,

M𝑖:OUTFIT
⊓MOTION

in L .

the Required

Statements and,

N:UPDATE
in T8.

M𝑎

𝑎∈[1,8]

N:UPDATED
in T𝑎.

X:SENSOR
in T𝑎.

𝐴𝑎 in T𝑎.

Table 5.1 The design of the interface among computational procedures and ontologies for the

network shown in Figure 5.8.
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a context that does not involve time, old statements generated by a sensor are overwritten

when the sensors provide new statements.

I𝑎 reacts to events related to the position of the person in accordance with Table 5.1.

When I𝑎 is scheduled, it moves statements that are relevant for the 𝑎-th activity from L to

T𝑎. The statements moved by I𝑎 are retrieved by means of a sub-class of the INSTALLED

concept that is relevant for a specific activity, as shown in (5.4) and Figure 5.7. I𝑎 also

creates a statement N⊤ (in T𝑎) with the purpose to generate an event that would trigger the

computation ofM𝑎. In order to generate this event we encode in T𝑎 prior knowledge such

that N:UPDATE if 𝑠𝑠𝑠(N) = ⊤, while if it is ⊥, N would not be an instance of the UPDATE

class.

M𝑎 is scheduled when in T𝑎 it does exist a statement N classified as UPDATE. When

M𝑎 starts, it resets N, i.e., it sets 𝑠𝑠𝑠(N) =⊥ in T𝑎, and N is not be an instance of the UPDATE

class anymore. Then,M𝑎 computes the 𝑎-th activity model based on SENSOR statements

in T𝑎, which are collected over time. If the model recognises the activity, the aggregated

statement 𝐴𝑎 will be stored in T𝑎, and all the old statements are removed from that ontology.

Since the models to recognise activities are based on SWRL rules (which are discussed

in Section 3.3.3), M𝑎 can update the reasoner of T𝑎 to evaluate whether an activity is

performed. However, SWRL rules do not support certain operations required to implement

the statement’s algebra, as discussed in Section 3.3.1. Therefore, we designM𝑎 to perform

some computation before evaluating the SWRL rule.

Configuring activity models in the ontology network: This section details the implementa-

tion of activity models shown in Figure 5.9. The models are specifically designed for the

scenario presented in this Section and depicted in Figure 5.8.

Section 3.3.3 introduces SWRL rules, and it discusses some of their aspects related to

Arianna+ . For each activity model shown in Figure 5.9, we provide (𝑖) a formalisation

with statement’s algebra, (𝑖𝑖) an explanation with respect to prior knowledge, and (𝑖𝑖𝑖) an

implementation based on logic and rules.

SWRL rules are applied to activity ontologies T𝑎 that are not concerned with all the

sensory data in the considered scenario. Instead, ontologies are concerned with only those

sensor statements that are selected by I𝑎 based on spatial contextualisation (Table 5.1). For

clarity, in the models formalised with the statement’s algebra, we explicitly indicate the

sensor with respect to Figure 5.6, but this is not true in the notation of the SWRL rule. This is

due to the fact that T𝑎 represents a temporal context and not a spatial one, therefore, it does

not encode the position of the sensors as it is done in L . In other words, we assume that T𝑎
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encodes only sensor statements that are relevant for the 𝑎-th activity model. Consequently,

there is the need to contextualise knowledge only in terms of sensors type and time intervals.

Activity Model 𝛼1: The first activity concerns filling the medical dispenser. An

implementation based on statement’s algebra, and applied to the ontology T1, is3

𝐴1 ⊨
( (
𝑇 ∧⊤

)
+ 𝛿1

)
⩽
(
𝑅∧⊤

)
, where

𝑇 ⊨ 𝐷⊤
7
⩽
( (
𝐼⊥
4
∧ 𝐼⊥

6

)
∨
(
𝐼⊥
4
∧ 𝐼⊥

7

)
∨
(
𝐼⊥
6
∧ 𝐼⊥

7

) )
,

𝑅 ⊨
( (
𝐼⊤
4
∧ 𝐼⊤

6

)
∨
(
𝐼⊤
4
∧ 𝐼⊤

7

)
∨
(
𝐼⊤
6
∧ 𝐼⊤

7

) )
⩽ 𝐷⊥

7
. (5.5)

The activity 𝛼1 is recognised based on a statement 𝐴1 that can be expressed as

“two objects were taken (𝑇),

then after 𝛿1 time units, they were released (𝑅).”

Here, 𝑇 and 𝑅 can be expressed respectively as

“the door was opened, then the objects were absent.”,

“the objects were present, then the door was closed.”

The two objects are associated on the basis of prior knowledge, (5.4) and Table 5.1, i.e., as

“medicinal items are in a cabinet of the kitchen.”

The SWRL-based implementation of (5.5) is the following rule

DOOR(?O)∧hasState(?O,⊤)∧hasTime(?O, ?t𝑂) ∧

ITEM(?I)∧hasState(?I,⊥)∧hasTime(?I, ?t𝐼) ∧

ITEM(?J)∧hasState(?J,⊥)∧hasTime(?J, ?t𝐽) ∧

(I ≠ J) ∧ (?t𝑂 ⩽ ?t𝐼) ∧ (?t𝑂 ⩽ ?t𝐽) ∧

DOOR(?C)∧hasState(?C,⊥)∧hasTime(?C, ?t𝐶) ∧

ITEM(?W)∧hasState(?W,⊤)∧hasTime(?W, ?t𝑊) ∧

ITEM(?Q)∧hasState(?Q,⊤)∧hasTime(?Q, ?t𝑄) ∧

(W ≠ Q) ∧ (?t𝑊 ⩽ ?t𝐶) ∧ (?t𝑄 ⩽ ?t𝑂) ∧

(?t← ?t𝑂 + 𝛿1) ∧ (?t ⩽ ?t𝐶)

=⇒ (𝐴1,⊤):hasState∧ (𝐴1,?t𝐶):hasTime. (5.6)

3In (3.7) we had considered a simplified case wherebe statements related to the object 𝐼⊥
7

do not exist in the

T1 context.
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Activity Model 𝛼2: The second activity is watching a DvD, and an implementation

based on statement’s algebra involving T2 is shown in (5.20). The statement 𝐴2, which

represents the recognition of the 𝛼2 activity, can be expressed as

“an object was taken, then after 𝛿2 time units,

it was released,”

where the object is associated to prior knowledge concerning TV, ITEM, LIVINGROOM and

related furnitures, e.g., SOFA, in accordance with (5.4) and Table 5.1. The implementation

of (5.20) based on SWRL is a rule

ITEM(?T)∧hasState(?T,⊥)∧hasTime(?T, ?t𝑇) ∧

ITEM(?R)∧hasState(?R,⊤)∧hasTime(?R, ?t𝑅) ∧

(?t← ?t𝑇 + 𝛿2) ∧ (?t ⩽ ?t𝑅)

=⇒ (𝐴2,⊤):hasState∧ (𝐴2,?t𝑅):hasTime. (5.7)

Activity Model 𝛼3: The third activity concerns watering plants, it involves T3, and

(5.22) shows its definition with statement’s algebra. The statement related to this model

(i.e., 𝐴3) can be expressed as

“the door was opened and the sink was used, then the person stayed near a plant for 𝛿3 time

units, and near another plant for 𝛿4 time units, then the door got closed.”

Here the furniture involved is represented with respect to prior knowledge representing a

CABINET door, the SINK and two areas in the LIVINGROOM where the two plants are

supposed to be. All those sensor statements are classified in L through the class WATERING

shown in (5.4) and Table 5.1. With respect to Figure 5.7, we consider additional prior

knowledge

{M6, . . . ,Mß}:PLANT1 ⊑ (WATERING⊓MOTION),

{M10 . . . ,M14}:PLANT2 ⊑ (WATERING⊓MOTION). (5.8)

The SWRL-based implementation of (5.22) is

DOOR(?O)∧hasState(?O,⊤)∧hasTime(?O, ?t𝑂) ∧

DOOR(?C)∧hasState(?C,⊥)∧hasTime(?C, ?t𝐶) ∧

FLOW(?F)∧hasState(?F,⊤)∧hasTime(?F, ?t𝐹) ∧
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(?t𝑂 ⩽ ?t𝐶) ∧ (?t𝑂 ⩽ ?t𝐹) ∧

WATERED(?𝐺)∧hasState(?𝐺,⊤)∧hasTime(?𝐺, ?t
𝐺

) ∧

WATERED(?𝐸)∧hasState(?𝐸 ,⊤)∧hasTime(?𝐸 , ?t
𝐸
) ∧

(𝐺 ≠ 𝐸) ∧ (?t𝐹 ⩽ ?t
𝐺
) ∧ (?t𝐹 ⩽ ?t

𝐸
) ∧

(?t
𝐺
⩽ ?t𝐶) ∧ (?t

𝐸
⩽ ?t𝐶)

=⇒ (𝐴3,⊤):hasState∧ (𝐴3,t𝐶):hasTime. (5.9)

Since SWRL respects the open-word assumption, we used further computation to perform

the statements convolutions (3.9). This computation is performed byM3 before applying

the above rule. In particular,M3 queries all the timestamps associated with the statements

𝑀𝑖:PLANT1⊑SENSOR in T3, which contain the visits to locations of the plants; as imported

by I𝑎. Then, M3 computes the minimum (𝑡−) and maximum (𝑡+) values of the queried

statements, and it counts their number (𝑛). If 𝑡− + 𝛿3 ⩽ 𝑡
+ and 𝑛 ⩽ ℎ3, thenM3 generates a

statement 𝐺 with a ⊤ state and a timestamp equal to 𝑡+. With an equivalent approach based

on 𝑀𝑖:PLANT2 but with different parameters 𝛿4 and ℎ4,M3 also generates a statement 𝐸 .

M3 generates 𝐺 and 𝐸 in T3 as instances of the WATERED⊑WATERING⊑SENSOR class,

which represents that some water has been given to a plant. Then,M3 computes the activity

model by updating the reasoner of T3, which evaluates (5.9).

Activity Model 𝛼4: The fourth activity is answering to the Phone, which we define

with statement’s algebra in T4 as

𝐴4 ⊨
(
𝐻⊤

1
+ 𝛿5

)
⩽ 𝐻⊥

1
. (5.10)

In 𝐴4, the object is associated with prior knowledge concerning H:PHONE. The SWRL-based

implementation of (5.10) is the rule

PHONE(?T)∧hasState(?T,⊤)∧hasTime(?T, ?t𝑇) ∧

PHONE(?R)∧hasState(?R,⊥)∧hasTime(?R, ?t𝑅) ∧

(?t← ?t𝑇 + 𝛿5) ∧ (?t ⩽ ?t𝑅)

=⇒ (𝐴4,⊤):hasState∧ (𝐴4,t𝑅):hasTime. (5.11)

Activity Model 𝛼5: The fifth activity concerns writing a card, it involves T5, and

(5.21) shows the related model based in statement’s algebra, which outcome (i.e., 𝐴5) can be

expressed as
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“two objects were taken,

then after 𝛿6 and 𝛿7 time units, they were released.”

Here, the two objects are associated with prior knowledge that spatially describes WRITING

in L , as shown in (5.4) and Table 5.1. The implementation of (5.21) based on SWRL is the

rule

ITEM(?I)∧hasState(?I,⊥)∧hasTime(?I, ?t𝐼) ∧

ITEM(?J)∧hasState(?J,⊤)∧hasTime(?J, ?t𝐽) ∧

(?t← ?t𝐼 + 𝛿6) ∧ (?t ⩽ ?t𝐽) ∧

ITEM(?W)∧hasState(?W,⊥)∧hasTime(?W, ?t𝑊) ∧

ITEM(?Q)∧hasState(?Q,⊤)∧hasTime(?Q, ?t𝑄) ∧

(?f← ?t𝑊 + 𝛿7) ∧ (?f ⩽ ?t𝑄) ∧

(?t𝐽 ⩽ ?t𝑄) ∧ (I ≠ W) ∧ (J ≠ Q)

=⇒ (𝐴5,⊤):hasState∧ (𝐴5,t𝑄):hasTime. (5.12)

Activity Model 𝛼6: The sixth activity concerns the preparation of a meal, and it is

defined with statement’s algebra in T6 as

𝐴6 ⊨
(
𝐷⊤

8
∨𝐷⊤

ß
∨𝐷⊤

10

)
⩽
(
𝐶 ∧𝐶

)
⩽
(
𝐷⊤

8
∨𝐷⊤

ß
∨𝐷⊤

10

)
,

where 𝐶 ⊨
( (
𝐼⊥
1
∨ 𝐼⊥

2
∨ 𝐼⊥

7

)
+ 𝛿8

)
⩽
(
𝐼⊤
1
∨ 𝐼⊤

2
∨ 𝐼⊤

7

)
. (5.13)

𝐴6 can be expressed as

“doors were opened, two objects were taken,

then after 𝛿8 time units the objects were released,

then the doors got closed,”

where the two objects are associated to prior knowledge concerning sensors related to

COOKING and their locations, i.e., (5.4) and Table 5.1. The implementation of (5.13) based

on SWRL rules is the following

DOOR(?O)∧hasState(?O,⊤)∧hasTime(?O, ?t𝑂) ∧

DOOR(?C)∧hasState(?C,⊥)∧hasTime(?C, ?t𝐶) ∧

(?t𝑂 ⩽ ?t𝐶) ∧
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ITEM(?I)∧hasState(?I,⊥)∧hasTime(?I, ?t𝐼) ∧

ITEM(?J)∧hasState(?J,⊤)∧hasTime(?J, ?t𝐽) ∧

(?t← ?t𝐼 + 𝛿8) ∧ (?t ⩽ ?t𝐽) ∧

ITEM(?W)∧hasState(?W,⊥)∧hasTime(?W, ?t𝑊) ∧

ITEM(?Q)∧hasState(?Q,⊤)∧hasTime(?Q, ?t𝑄) ∧

(?f← ?t𝑊 + 𝛿7) ∧ (?f ⩽ ?t𝑄) ∧

(I ≠ W) ∧ (J ≠ Q) ∧ (?t𝑂 ⩽ ?t𝐼) ∧ (?t𝑂 ⩽ ?t𝑊 ) ∧

(?t𝐽 ⩽ ?t𝐶) ∧ (?t𝑄 ⩽ ?t𝐶)

=⇒ (𝐴6,⊤):hasState∧ (𝐴6,t𝑅):hasTime. (5.14)

Activity Model 𝛼7: The seventh activity is cleaning the apartment, which is defined

using statement’s algebra in T7, as

𝐴7 ⊨ 𝐷
⊤
11
⩽
(
𝐻∧𝑄

)
⩽ 𝐷⊥

11
, where

𝐻 ⊨ 𝑀{6:10} ◦ℎß
𝛿ß,

𝐻 ⊨ 𝑀{16:18} ◦ℎ10
𝛿10, (5.15)

𝐴7 can be expressed as

“the door was opened, then the person stayed 𝛿ß time units in the leaving room and 𝛿10 time

units in the kitchen,

then the door got closed.”

Here, the door is associated with prior knowledge concerning a CABINET, while 𝑀{6:10} are

related to the LIVINGROOM, and 𝑀{16:18} to the KITCHEN. All those sensors are represented

by the class CLEANING in L , in accordance with (5.4) and Table 5.1. The SWRL-based

implementation of (5.15) applied to T7 is

DOOR(?O)∧hasState(?O,⊤)∧hasTime(?O, ?t𝑂) ∧

DOOR(?C)∧hasState(?C,⊥)∧hasTime(?C, ?t𝐶) ∧

(?t𝑂 ⩽ ?t𝐶) ∧

CLEANED(?𝐻)∧hasState(?𝐻,⊤)∧hasTime(?𝐻, ?t
𝐻

)∧

CLEANED(?𝑄)∧hasState(?𝑄,⊤)∧hasTime(?𝑄, ?t
𝑄

)∧

(?t𝑂 ⩽ ?t
𝐻
) ∧ (?t

𝐻
⩽ ?t𝐶) ∧ (?t𝑂 ⩽ ?t

𝑄
) ∧ (?t

𝑄
⩽ ?t𝐶)
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=⇒ (𝐴7,⊤):hasState∧ (𝐴7,t𝐶):hasTime. (5.16)

Similarly to the model 𝐴3, we compute the convolution through a computation performed by

M7 before applying the rule. Such operations are used to generate statements 𝐻 and 𝑂 in T7

as instances of the class CLEANED, which represent that a location has been cleaned.

Activity Model 𝛼8: The eighth activity is choosing an outfit, and it involves T8. The

implementation based on statement’s algebra of the related model is

𝐴8 ⊨
(
𝐷⊤

12
+ 𝛿11

)
⩽
(
𝑀⊤

21
∨𝑀⊤

22
∨𝑀⊤

23

)

⩽
(
𝑀⊤

3
∨𝑀⊤

4
∨ . . .∨𝑀⊤

ß

)
. (5.17)

𝐴8 can be expressed as

“a door was opened, then after 𝛿11 time units, the person was in 𝑀{21:23} and then in 𝑀{3:ß},”

where the door is associated with prior knowledge concerning the CABINET2 (shown in

Figures 5.6 and 5.7), and we consider

{M21, . . . ,M23}:CHOOSE ⊑ (OUTFIT⊓MOTION),

{M3, . . . ,Mß}:LEAVE ⊑ (OUTFIT⊓MOTION). (5.18)

All those sensors concern the class OUTFIT, which is defined in L in accordance with (5.4)

and Table 5.1. Similarly to activity 𝛼3, we specify sub-areas in the corridor and in the living

room, i.e., where the person should CHOOSE the outfit and LEAVE it. The latter classes are

not further specified as chosen and left since 𝐴8 do not involve convolution, i.e., no extra

computation apart from OWL reasoning is required to compute. The implementation of

(5.17) based on SWRL is the rule

DOOR(?O)∧hasState(?O,⊥)∧hasTime(?O, ?t𝑂) ∧

CHOOSE(?U)∧hasState(?U,⊤)∧hasTime(?O, ?t𝑈) ∧

LEAVE(?V)∧hasState(?V,⊤)∧hasTime(?O, ?t𝑉) ∧

(?t𝑂 ⩽ ?t𝑈) ∧ (?t𝑂 ⩽ ?t𝑉 ) ∧ (?t𝑈 ⩽ ?t𝑉 )

=⇒ (𝐴8,⊤):hasState∧ (𝐴8,t𝑉):hasTime. (5.19)
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Figure 5.8 On the right hand side is the ontology network for the HAR system presented

in Section 5.2 and developed based on Arianna+ for recognizing activities in the CASAS

dataset. This network is bootstrapped from the upper ontology shown on the left hand side.

Experiment

To model the scenario outlined above, we configure the network as shown in Figure 5.8

through a specific configuration of the upper ontology U . In particular, we configure

U with an instance L:ONTOLOGY representing an ontology that describes a topologi-

cal map as shown in Figure 5.6. We configure U with instances T𝑎:ONTOLOGY, with

𝑎 = 1, . . . ,8, each representing an ontology describing statements over time, i.e., based on

Allen’s Algebra, specifically for each activity 𝛼1, . . . , 𝛼8. Consequently, we define in U eight

M𝑎:PROCEDURE instances, which implement computational procedures evaluating a fluent

model for each 𝑎-th activity. Each M𝑎 is coupled with another instance I𝑎:PROCEDURE,

which imports statements from L to T𝑎 when particular events occur. In this scenario, we also

define in U an instance D:PROCEDURE, which reads the datasets and creates statements in

the spatial ontology L, thus simulating an event-based data stream as it would be generated

by sensors.

Figure 5.9 A graphical representation of the fluent models to classify the activities in the

CASAS dataset.
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During bootstrapping, the scheduler generates a network made with the ontologies

L and T𝑎, respectively specified by the instances L and T𝑎 in U . Therefore, the

set of ontologies is 𝜔 = {U ,L ,T1,T2, . . . ,T8}, whereas the set of procedures is 𝜌 =

{H ,D,I1,I2, . . . ,I8,M1,M2, . . . ,M8}, which includes the schedulerH itself, and the pro-

cedures associated with the instances D, I𝑎 and M𝑎 respectively. The procedures also specify

events, which are associated with C𝑘 conditions (3.14), (3.15), (3.16).

The following paragraphs introduce the spatial ontology L , the computational procedures

M𝑎 (which implements fluent models), the activity ontologies T𝑎, and the scheduling events.

Working of the spatial ontology: L contextualises spatial information, and it contains only

the most up to date statements generated by each sensor in the smart home since it overwrites

previous values for those statements. Therefore, the number of axioms does not grow over

time. This is a crucial feature since it allows to synchronise the procedures in the network,

as it is possible to identify a priori a reasoning time limit for the spatial classification of

statements. In L are defined such spatial roles as isIn and isNearTo, which stand for sensory

STATEMENTS related to concepts referring to locations (e.g., KITCHEN) and furniture

(e.g., TABLE). When a sensor generates new data, D creates a new statement in L , and it

updates the corresponding OWL reasoner, which thus infers the person’s location and the

furniture that he (she) might be using. As we will see in later paragraphs, each computational

procedure I𝑎 is scheduled based on the locations and furniture that we define to be relevant

for the 𝑎-th activity.

Working of the fluent model: fluent models are based on the formalism presented in Sec-

tion 3.3.2, which is also graphically shown in Figure 5.9, where statements are depicted as

vertical arrows pointing upwards to indicate a ⊤ state and downwards to indicate ⊥ state. The

Figure shows the statements with respect to a relative and qualitative temporal axis, which

defines the restriction making a fluent model generate an aggregated statement 𝑠𝑠𝑠(𝐴𝑎) = ⊤,

thus indicating that the 𝑎-th activity has been performed at time 𝑡𝑡𝑡 (𝐴𝑎). Solid arrows repre-

sent raw sensor statements, whereas dashed arrows indicate aggregated statements, i.e., the

results of the aggregation of other statements from a procedure. Colours indicate sub-models,

i.e., statements in the sub-models respect the precedence operators in 𝑓𝑓𝑓 . Figure 5.9 shows

time intervals of a specified span 𝛿 with grey boxes and denotes with ℎ the minimum number

of statements expected to be in an interval. Through horizontal lines, the Figure depicts

restrictions over time among the statements that must hold for satisfying a model, where the

cycled statement is required to be always after the other.
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As an example, Figure 5.9b represents the model

𝐴2 ⊨
(
𝐼⊥{5,3} + 𝛿2

)
⩽ 𝐼⊤{5,3}, (5.20)

which is satisfied when the item observed by sensors 𝐼5 or 𝐼3 has a ⊥ state and, after a 𝛿2 span

of time, it becomes ⊤, which means that the objects needed for watching a DVD have been

used for a while. Figure 5.9d shows the same model applied to the 𝑃1 sensor for identifying

the activity of conversing using the phone, and Figure 5.9h shows a similar model for outfit

selection. In this case, we assume that an outfit is chosen when the wardrobe door is open,

and after a 𝛿11 time interval, the person is still in the corridor, i.e., the region associated with

sensors 𝑀21, 𝑀22 and 𝑀23. We assume that the person places the selected outfit on the sofa,

therefore we specify that in order to perform the activity the person should visit the region

monitored by 𝑀3 up to 𝑀ß. In Section 3.3.2, as examples, we discussed the models 𝐴1

and 𝐴7, which are related to medical dispenser filling and the cleaning activity, respectively.

Similarly to the case of 𝐴1, Figure 5.9e represents 𝐴5, which is related to the activity of

writing a card. 𝐴5 involves using two objects related to sensors 𝐼8 or 𝐼ß from some time, i.e.,

𝐴5 ⊨𝑈 ∧𝑉 ⊨
( (
𝐼⊥
8
+ 𝛿6

)
⩽ 𝐼⊤

8

)
∧
( (
𝐼⊥
ß
+ 𝛿7

)
⩽ 𝐼⊤

ß

)
. (5.21)

Furthermore, 𝐴3 is recognised if the person remains in some particular location based on the

convolution operator, i.e.,

𝐴3 ⊨ 𝐷
⊤
11
⩽ 𝐹⊤{2,3} ⩽

(
𝐺 ∧𝐸

)
⩽ 𝐷⊥

11
, (5.22)

where 𝐺 ⊨ 𝑀{6:ß} ◦ℎ3
𝛿3 and 𝐸 ⊨ 𝑀{10:14} ◦ℎ4

𝛿4.

𝐴3 represents the activity of watering the plants, which can be graphically shown to domain

experts as in Figure 5.9c or be expressed in natural language as

“𝐷11 was opened and 𝐹{2,3} was used, then the person stayed in 𝑀{6:ß} for 𝛿3 time units,

and in 𝑀{10:14} for 𝛿4 time units, then 𝐷11 got closed,”

where 𝐷11, 𝐹{2,3}, 𝑀{6:ß} and 𝑀{10:14} are statements in L and T3, which are based on a

priori knowledge about the sensors. In L , they are contextualised in terms of locations and

furniture, i.e., respectively CABINET, SINK, PLANT1 and PLANT2, which are involved

while watering the plants. In T3, sensor statements are contextualised with the prior knowl-

edge required only to evaluate 𝐴3 (5.22), i.e., sensor types as {DOOR,FLOW,WATERED}

and time intervals 𝛿3 and 𝛿4.
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For all the eight activities, this section highlights intelligibility of the prior knowledge

and of the statement’s algebra, as it is presented above for 𝐴3. It is noteworthy that Arianna+

contextualises statements based on a general-purpose hierarchy of DL concepts, and it is

possible to further specify their semantics within a context, e.g., that “a person is near

PLANT1”, or that “a plant has been WATERED”, based on locations or time, respectively.

As long as an ontology remains small, a detailed classification of statements is intelligible

and simple; also, the reasoning complexity is limited.

Working of events: they are bootstrapped from the upper ontology into a set of tasks that

periodically evaluate the outcome of each condition C𝑘 . The upper ontology describes the D

procedure using an instance represented with a role (D,ED):requires, where ED is an event

occurring once after the bootstrap phase.

The events activating a procedure I𝑎 depend on the knowledge required by the 𝑎-th

activity model. For the 𝐴1 model, I1 maps statements from L to T1 when the person is

in the kitchen. For this to happen, the event EI1 is triggered based on the spatial ontology

L . In other words, I1 depends only on an event composed of a C1:CONDITION, which

has a ⊤ outcome if a number of sensors placed in the living room have a ⊤ state. When I1

is activated, it retrieves statements 𝐷7, 𝐼4, 𝐼6, 𝐼7 from L , and maps them into T1, whose

purpose is to contextualise knowledge over time to eventually generate a ⊤ outcome for the

aggregated statement 𝐴1 (Figure 5.9a). Remarkably, we used the same modular approach

for all the eight activities in the dataset, where the set of statements retrieved from L and

mapped into T𝑎 change with respect to the knowledge strictly required to evaluate the 𝑎-th

activity model (Figure 5.9).

We rely on similar events for all the I𝑎 procedures but, since each activity model requires

different contextualised statements, their spatial semantics vary. In particular, the scheduler

activates the procedure I𝑎 based on a EI𝑎 :EVENT such that there is a ⊤ outcome when

the person is (EI2) in the LIVINGROOM, (EI3) near to CABINET1, or to the SINK, or in the

LIVINGROOM, (EI4) near to TABLE2, (EI5) near to TABLE1, (EI6) in the KITCHEN, (EI7) in

the LIVINGROOM, or in the KITCHEN, and (EI8) in the CORRIDOR, or near the SOFA or

TABLE1, where the person should leave the selected outfit (Figure 5.6).

The procedureM𝑎 is based on synthetic events that I𝑎 generates after importing new

statements from L to T𝑎. In particular, I𝑎 generates that event by storing in T𝑎 a specific ⊤

statement4, which is reset to ⊥ byM𝑎 at the beginning of its computation. This and other

similar approaches can always be used to synchronise two procedures in a network.

4The statement is expressed as N in Table 5.1.
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Result

Figure 5.10 The following figures show behaviour of the system. Graph (a) shows the

experiment and the associated activity recognitions. Graphs (b) and (c) show the reasoning

performance. Graph (d) shows the events in the network and the statements 𝑋 propagated

from the spatial ontology L to the relevant activity ontology T𝑎.
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Computational performance: Figure 5.10 shows the behaviour of the network of ontolo-

gies presented previously. They are running on an Intel i5 2.53 GHz powered workstation

with 4 Gb of memory. The Figure shows four graphs with the same timestamp on the 𝑥

axis and a colour map whereby each colour indicates an activity. The 𝑦 axis of the first plot

represents the activity labels given in the dataset with a horizontal line, i.e., the time spent in

performing an activity, and the * symbol indicates the time instant when Arianna+ notifies

that the activity has been executed, i.e., 𝑡𝑡𝑡 (𝐴𝑎) when 𝑠𝑠𝑠(𝐴𝑎) = ⊤. The second and the third

sub-plots present the reasoning performance for each activity ontology T𝑎 on a logarithmic

scale. Specifically, the plots show the computation time in nanoseconds, and the ontology

complexity (i.e., the number of axioms in the ontology), respectively. Figure 5.10d shows

the number of statements propagated from the spatial ontology L to T𝑎 via the importing

procedure I𝑎.

From a comparison of the four sub-plots, we can analyse the reasoning behaviour with

respect to the statements contextualised in the spatial ontology L . The scheduler evaluates

statements to detect events and trigger a procedure I𝑎, which in turn retrieves other statements

from L and adds them to T𝑎. The number of mapped statements are shown with a × point in

Figure 5.10d, while the complexity of T𝑎 is shown in Figure 5.10c. Figure 5.10b shows the

computation time required to process the statements. Figure 5.10a shows when the models

are satisfied with respect to the activity’s ground-truth, from which we can also notice the

interruptions occurring in the activities.

Figure 5.10b shows a frequent pattern as the conditions are evaluated at a rate of 50 Hz,

which drives the event evaluation and, consequently, the scheduling of all the I𝑎 andM𝑎

procedures. Depending on the context over time, not all events generate statements that get

evaluated with the procedureM𝑎, and this leads to the spikes shown in Figure 5.10b. In

particular, the scheduler synchronously activatesM𝑎 when a statement is mapped by I𝑎.

As a consequence,M𝑎 calls the reasoner associated with the T𝑎 ontology, which evaluates

activity models 𝛼𝑎 based on a temporal representation.

Since we used stream reasoning techniques [141, 142], the reasoning complexity depends

on an ontology’s previous state, and the time required to check whether statements in

T𝑎 satisfy an activity model is dependent on the context over time. For this reason, the

characterisation of the reasoning complexity for an ontology is far from trivial, and we use

the number of axioms that it contains as an approximation. However, this issue is limited

to the spatial ontology L , whose reasoner (invoked by the D procedure) evaluates all the

sensor statements over time. Figure 5.11 shows that the reasoning complexity of the spatial

ontology is similar to the one characterising activity ontologies, although with a smaller
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variance. Also, Figure 5.11 shows that the number of axioms used to represent prior spatial

knowledge without any sensor statements is 273, i.e., the lower complexity bound of L .

Instead, the upper bound of 353 axioms shows the maximum complexity of L , and it cannot

increase due to the overwriting policy of D.

Figure 5.11 The spatial ontology L reasoning time against ontology complexity.

In Figures 5.10c, we observe an exponential increase of the complexity over time for not

well contextualised activities. For instance, 𝛼3 relies on a model that requires statements from

many locations in the apartment, i.e., the spatial context related to the model 𝐴3 (Figure 5.9)

is not well-separated enough from other activities as far as its definition is concerned. Instead,

for activities characterised by a more distinct context, e.g., 𝛼2 and 𝛼4, the complexity remains

limited. In this experiment, we delete all the statements from T𝑎 when the 𝑎-th activity

has been recognised. The effect of this can be seen by noticing the drop of the curves

in Figure 5.10c with respect to the instants when an activity is recognised, as shown in

Figure 5.10a. This statements’ cleaning procedure is associated with tackling the issue of

continuous reasoning that often leads to an exponential increase in the complexity [143, 144].

Due to an increase in the amount of knowledge to process, reasoning becomes expo-

nentially complex, and this can also be noticed by comparing the activities 𝛼3 and 𝛼6 in

Figure 5.10. In this case, 𝛼6 requires less computation time than 𝛼3, since the former has a

well-defined spatial contextualisation, while the latter occurs in a not well determined area.

Therefore, having a small and well contextualised ontology T𝑎 decreases the computational

load, and it is more likely that the related model is processed only when required. We tested

the performance of the network by accelerating the simulation 4× faster than its original

speed, and we did not observe notable changes in the activity recognition rate. Instead, for

higher speeds, the recognition performance drastically decrease due to the overwriting policy

of D.
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𝛼1 𝛼2 𝛼3 𝛼4 𝛼5 𝛼6 𝛼7 𝛼8

𝛼1 0.95 0 0 0 0 0 0 0

𝛼2 0 0.95 0.05 0 0 0 0.05 0

𝛼3 0 0 0.7 0 0 0 0.05 0

𝛼4 0 0 0 1 0 0 0.05 0

𝛼5 0 0 0 0 0.8 0 0 0

𝛼6 0 0 0 0 0 0.7 0.05 0

𝛼7 0 0 0.25 0 0 0 0.8 0

𝛼8 0 0 0 0 0 0 0 0.95

unclassified 0.05 0.05 0 0 0.2 0.3 0 0.05

Table 5.2 Confusion matrix of the activity recognition rate obtained with the ontology

network.

We attempted to test an ontology network made of a single node such that it encodes

time intervals, spatial knowledge, and all the activity models. Our objective was to compare

the reduction of computational load between an approach that uses a single ontology and

the ontology network we develop. Unfortunately, we cannot report the comparison because

we experienced out of memory issues with our machine. In the HAR system evaluated in

Section 5.1, we used Arianna+ to develop another ontology network designed for a scenario

similar to the one presented in this work but involving less activities and sensors. In that

evaluation, we observed that the reasoning time scales exponentially when a single ontology

becomes more complex, whereas the overall reasoning time scaled linearly with that network.

Although, that evaluation requires more extensive testing to fully characterise the complexity

of a general ontology network designed with Arianna+ , with the HAR system’s evaluation

presented in this section we can confirm a reduction of the computational load. Indeed,

with a network of small contexts we could recognise activities with soft real-time constrains,

whereas if the same knowledge is encoded in a single ontology, we could not process the

data stream.

Activity recognition accuracy: Table 5.2 shows the activity recognition confusion matrix.

Table 5.3 whose last column is deduced from Table 5.2 shows the F-measure of the activity

recognition rates compared among ours and other approaches for the same dataset. The

other techniques are based on ML and probabilistic approaches, as well as on context-based

systems exploiting hybrid OWL-statistical reasoning. As mentioned above, Table 5.3 does

not indicate that the activity models we developed in Section 5.2.3 are expected to outperform

other approaches in a less controlled scenario. Our aim is to ground the possibility that

having multiple ontologies does not jeopardise, in principle, the possibility of obtaining

results comparable to other methods. These techniques approach the problem with a different

paradigm, i.e., they are inclined towards designing a single context to ground all the activity
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[145] [140] [146] [147] [148] [139] [94] [97] Arianna+

𝛼1 .66 .66 .77 .77 .85 .95 .68 .89 .97

𝛼2 .69 .86 .73 .78 .81 .97 .98 .91 .92

𝛼3 .68 .29 .75 .79 .72 .94 .30 .72 .80

𝛼4 .66 .59 .75 .78 .72 .95 .87 .34 .98

𝛼5 .61 .83 .72 .79 .81 .98 .98 .78 .89

𝛼6 .65 .83 .75 .79 .88 .97 .74 .98 .80

𝛼7 .64 .88 .72 .78 .57 .96 .76 .84 .78

𝛼8 .66 .67 .72 .79 .88 .95 1.0 1.0 .97

[145] Artificial Neural Network, [140] Hidden Markov Model,

[146] Support Vector Machine, [147] Bayesian network,

[148] MLN with numerical constraints, [139] MLN extended with OWL,

[94] Hybrid OWL-statistical system, [97] OWL Class Expression Learning.

Table 5.3 F-measure of activity recognitions shown for the ontology network developed with

Arianna+ and approaches using a single context to represent data.

models in the dataset. Instead, our paradigm involves hierarchical data representations aimed

to accommodate each activity model within a purposely-tailored context.

Table 5.3 shows that, in this scenario, symbolic reasoning based on hierarchical and

concurrent contexts can exhibit results comparable with other state of the art approaches.

However, our activity models require an engineering process that is hard to generalise,

especially due to the limited size of the dataset. Hence, we cannot use the comparison to

evaluate the recognition rate of specific activities. Nevertheless, considering that Arianna+

has been designed to support an iterative development process, and that the network presented

in this section has been implemented with simple heuristics, Table 5.3 confirms that managing

hierarchical and concurrent contextualisations of data could be effective for human activity

recognition. This is true if suitable a priori knowledge is encoded in Arianna+ , which

highlights the need for undertaking a development process guided by domain experts.

5.2.4 Summary

This work evaluates a HAR system based on Arianna+ using the CASAS dataset. The

motivation for this evaluation is to assess the modularity, intelligibility and robustness of a

system based on Arianna+. Hence a system is developed with an ontology network wherein

there are nine core ontologies. One ontology called the place ontology is used to spatially

relate sensory data and trigger (based on events) temporal reasoning on one or more of

the remaining eight activity ontologies. Hence, the reasoning is concurrent and based on

a hierarchy of contexts, which are represented as small ontologies. Due to contextualized

reasoning computations are performed on minimum relevant data and only when required.
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As ontologies can be evaluated concurrently, even concurrent activities can be recognized.

Due to these reasons, activity recognition is online. Furthermore, this work highlights

intelligibility in the inner-workings of the system by fluent models of all the eight activities

and their representation in natural language. This emphasizes the point that modular and

intelligible systems can enable ease in an iterative development process in collaboration with

health-care domain experts in ADL.

In this implementation, we do not consider the challenging issues related to multi-

occupancy, and in this scenario, which uses the CASAS dataset, the system is developed by

considering that there is a single person in the smart home. To be able to perform activity

recognition with multiple persons, the system would require sensory data tagged with a

person’s unique identification. If this kind of data is present then the system could do

HAR for each new person by instantiating a new network dedicated to each unique person.

Nonetheless, the feasibility and computational performance of such an approach is yet to be

evaluated. Furthermore, the current implementation of the system does not take into account

uncertainties, i.e., it is not robust to missing or noisy information in input data. In order

to overcome this limitation, in the future, Arianna+’s design could be further developed

for reasoning using fuzzy[81] or probabilistic [82] OWL reasoners. Else instead, a simpler

approach could also be applied by having redundant activity models, i.e., multiple activity

models that use different techniques to recognize the same activity. For instance, ML could

effectively be used to generate discrete events by processing a sensory data stream, e.g., the

occurrence of actions using wrist-related inertial data [18]. Based on a predefined heuristic

the most accurate result (between multiple activity models recognizing the same activity)

can be considered as the true one. Nonetheless, dealing with missing or noisy sensor data

would require incorporation of fuzzy or probabilistic reasoners.

Moreover, this work also does not deal with the issue of variability in the execution of

sub-activities or actions of a composite ADL. In this work, the system’s accuracy of activity

recognition - for half of the activities in the CASAS dataset (i.e., 𝛼1, 𝛼2, 𝛼4, 𝛼8) - is better

than the accuracy of state of the art approaches (see Table 5.3). For the remaining half of the

activities, the accuracy of this system is comparable to the accuracy of the state of the art

approaches. The reason for the overall good accuracy is that the fluent models are developed

precisely by a knowledge engineer to recognize the activities being performed in the dataset.

This can be considered as evaluating the system in a controlled environment. Hence, in a

less controlled environment, i.e., in the real-world, data-driven approaches may prove to

be more accurate than fluent models. Although this is a limitation of the system presented

in this Section, it is not a limitation of Arianna+ framework itself as it can accommodate
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the outcomes of both knowledge-based and data-driven models in a context-oriented and

concurrent way. Finally, although the results of our approach are compared with other state of

the art hybrid approaches (see Table 5.3), we restrain from making any conclusive statements

about the comparison, because in terms of the approach, all the state of the art approaches are

algorithmically hybrid whereas our approach is hybrid in an architectural-sense. Furthermore,

the fluent models (i.e., activity models) in our approach are hand-crafted and the activity

models in the state of the art approaches are learnt from the dataset.

5.3 A real-world HAR system showcasing explainable re-

sults using SPARQL queries

5.3.1 Introduction

This work exploits Arianna+ using OWLOOP API to develop a simple real-world HAR

system that saves all activity recognition results in a purposefully designed ontology for

querying. This work particularly highlights that given a well-designed knowledge-base,

querying is a simple and efficient way to retrieve and explain HAR results. This is particularly

relevant to one aspect of the first motivation presented in Section 1.1.1, i.e., to enable

enriched collaboration between HAR researchers and health-care domain experts by having

an intelligible system. Furthermore, this work explores the research problems highlighted

under RQ1, RQ3, and RQ4, which are presented in Section 2.4.

The W3C’s initiative of having a semantic web introduced some very well known and

established knowledge representation standards, namely, Resource Description Framework

(RDF), Resource Description Framework Schema (RDFS) and Ontology Web language

(OWL). RDF is a graph-based data model. It represents information as a labeled, directed

multi-graph with vertices and labeled edges (multiple edges with different labels between the

same nodes are allowed). Vertices consist of Internationalized Resource Identifiers (IRIs)

(representing abstract “things”), literals (concrete data values) and blank nodes (dummy

“convenience” nodes without explicit IRI). And edges consist of IRIs. An RDF graph is

expressed as a set of <subject, predicate, object> triples, each interpreted as an edge labelled

with “predicate” going from the “subject” node to the “object” node. RDF data is stored

in a native purpose-built database called triplestore. SPARQL is the language dedicated to

querying RDF graphs.

RDFS extends RDF with the most basic ontological constraints and semantics: class and

property subtypes, along with property range and domain restrictions. These constructs allow
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for building very simple type hierarchies over RDF data, which are also represented within

RDF graphs. OWL is a family of description-logic-based ontology languages. It adds further

ontological constructs on top of those introduced by RDFS. Hence, as OWL is based on

RDFS, which is based on RDF, SPARQL can also be used to query knowledge represented

using OWL.

As SPARQL is supported by the majority of RDF-compliant frameworks and reasoners,

HAR researchers have also attempted to implement systems and frameworks that make use

of SPARQL and OWL for activity recognition [79, 149]. The work presented in this chapter,

simply uses SPARQL queries to retrieve HAR results in an explainable way. The work also

highlights the importance of carefully designing an ontology wherein the knowledge is saved.

5.3.2 Methodology

The methodology of this work has three main components: heterogeneous sensor data

observation, development of an ontology network based on Arianna+ and using OWLOOP

API, knowledge querying using SPARQL to show intelligibility of HAR results. The HAR

system developed in this work is designed to be functional for multiple users. The activities

recognized by this system are enumerated as (𝛼1) having breakfast and (𝛼2) routine morning

hygiene. For simplicity, we consider that having breakfast activity (𝛼1) occurs when the

user is in the kitchen in the morning, is near the kitchen-table, does the pouring action

and drinking action at least once, and spends some user-defined amount of time near the

kitchen-table. Similarly, we consider that routine morning hygiene (𝛼1) occurs when the user

is in the bathroom in the morning, is near the washbasin, does brushing action, and spends

some user-defined time amount of time near the washbasin.

The sensors used in this work are Bluetooth-based Estimote beacons 5 and a smart-watch,

for proximity based human localization. Furthermore, accelerometer data streaming from the

smart-watch is used for action recognition. Note that a data-driven technique is suitable for

training a model or models for recognizing actions such as pouring, drinking, and brushing.

In this work we do not train action recognition models as it was out of the main scope of this

work. Instead while the volunteer performs the experiment, the system designer simulates the

action recognition. While human localization is working based on the volunteers proximity

to the Bluetooth beacons.

In this work, new activity ontologies are designed and placing ontology is used from

previous work presented in Section 5.1. Furthermore, to show the advantage of using

5https://estimote.com/
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SPARQL for querying HAR results, a special query ontology is designed. The following

subsections present the system’s architecture, the activity ontologies, the query ontology, the

working of the system, and its results.

5.3.3 Experimental evaluation

Experimental setup

The experimental setup is in a small apartment with a living room, bedroom, kitchen and

bathroom. This preliminary work showcases activity recognition in the kitchen and in the

bathroom. Figure 5.12 shows volunteer performing an activity in the bathroom (see left

image) and the kitchen (see right image). In the same figures, Bluetooth beacons and the

smartwatch, i.e., the distributed and wearable sensors, are circled in red.

Figure 5.12 Volunteer performing an experiment at the smart-home. Left image shows

volunteer in the Bathroom. Right image shows volunteer in the Kitchen.

The Figure 5.13 shows the system’s architecture. It is composed of five modules. The

first module simply depicts the physical sensors, which in our case are Bluetooth beacons

and smart-watch. The second module is associated with the computational procedures of

the ontology network. They process raw sensor data coming from the first module, generate

statements, and save them in the database. The computational procedures have their own

independent frequency at which they process raw sensor data to generate sensor events and

map them as statements. The raw sensor data is assumed to be post-processed to a point

where it is a binary value with its associated label and timestamp. For instance, consider that

IMU data from a smart-watch is processed by a computational procedure to a point where

a label such as ‘pouring’ is true or false and has a certain timestamp. This post-processed

data is saved in the database as a statement. The third module is the database, which in this

system is a real-time database known as Firebase from Google. A key feature of Firebase
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Figure 5.13 The system’s architecture for the work presented in Section 5.3.

is its event-listener design patter. By this feature, as soon as a statement gets updated in

the Firebase, the relevant ontology in the network consumes the relevant statements for

contextualized reasoning. The fourth module is the ontology network, composed of three

main ontologies in this system’s architecture. They are the kitchen ontology, bathroom

ontology, and query ontology. The frequency 𝑓3 associated with this module is 1 hertz,

i.e., every second the activity models in the network were getting updated with the current

time, and reasoning was performed. If an activity gets recognized by one of the activity

models then the result is saved in the query-ontology. The final and fifth module is called the

explainability module. This module basically refers to the ability to query the query ontology

with SPARQL.

As this work is intended to showcase the intelligibility of HAR results, we particularly

develop and highlight three ontologies. Namely, activity ontologies representing 𝛼1 and 𝛼2

activity models, and the query ontology for representing HAR results. Figure 5.14 shows

the contents of the kitchen ontology using the Protégé editor. The contents of the bathroom

ontology are exactly similar except for the SWRL rule that encodes the fluent model of the

activity. Figure 5.15 shows the contents of the query ontology using the Protégé editor. It

reuses the T-box of the activity ontology except for one difference, i.e., it has an extra class

called HumanActivityRecognition, whose instances are the activity recognition resulting

statements coming from activity ontologies.

Following are the required statements and fluent models describing the two activities

𝛼1, i.e., having breakfast and 𝛼2, i.e., morning routine hygiene. We also present a simple
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Figure 5.14 Kitchen ontology shown in Protégé editor.

Figure 5.15 Query ontology shown in Protégé editor.
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temporal model that is present in both activity ontologies, which infers the correct interval of

the current time instant.

Temporal Model: Consider that 𝑀 represents the statement (CurrentTimeInstant

isInInterval Morning), 𝐼̃ represents the statement (Morning hasBeginTime 6 : 00),

𝐽 is the statement that gets updated with the current time, and 𝐾 represents the statement

(Morning hasEndTime 12 : 00). According to the statement’s algebra, the temporal model

is as follows in both the activity models, i.e., 𝛼1 and 𝛼2:

𝑀 ⊨ 𝐼 ⩽ 𝐽 < 𝐾 (5.23)

Activity Model 𝛼1: Consider that 𝐴1 represents (Human(?h) didActivity

HavingBreakfast), 𝑀 represents (CurrentTimeInstant isInInterval Morning),

𝐴 represents (Human(?h) isIn Kitchen), 𝐵 represents (Human(?h) isNear

KitchenTable), 𝐶 represents (Human(?h) didAction Pouring), 𝐷 represents

(Human(?h) didAction Drinking), 𝐽 is the statement that gets updated with the current

time, and 𝛿1 is the statement that holds the user’s preference for the time to spend near the

KitchenTable. According to the statement’s algebra, 𝐴1 is as follows:

𝐴1 ⊨ 𝑀 ∧
(
𝐴 < 𝐵 < 𝐶 < 𝐷

)
∧
(
𝐵+ 𝛿1

)
< 𝐽 (5.24)

A visual representation of the statements - that make up the activity model 𝛼1 and the

temporal relationships between them - is shown in Figure 5.16.

Figure 5.16 Visual representation if the HavingBreakfast activity model, i.e., 𝐴1.

Activity Model 𝛼2: Consider that 𝐴2 represents (Human(?h) didActivity

MorningRoutineHygiene), 𝑀 represents (CurrentTimeInstant isInInterval

Morning), 𝑃 represents (Human(?h) isIn Bathroom), 𝑄 represents (Human(?h)

isNear Washbasin), 𝑅 represents (Human(?h) didAction Brushing), 𝐽 is the state-
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ment that gets updated with the current time, and 𝛿2 is the statement that holds the user’s

preference for the time to spend near the Washbasin. According to the statement’s algebra,

𝐴2 is as follows:

𝐴2 ⊨ 𝑀 ∧
(
𝑃 < 𝑄 < 𝑅

)
∧
(
𝑄 + 𝛿2

)
< 𝐽 (5.25)

Experiment

A video was recorded while the volunteer naturally performed the experiment 6. Link to the

video can be found in the footnote. The volunteer performed the activities in the following

way, (i) he enters into the kitchen then goes towards the attached bathroom, (ii) he enters

into the bathroom and goes neat the washbasin, (iii) he takes the brush and initiates brushing,

(iv) while brushing he goes to the kitchen near the sink and takes a cup, (v) goes near the

kitchen table and places the cup, (vi) goes back to the bathroom, spends few seconds near

the washbasin and finishes brushing the teeth, (vii) he enters the kitchen and starts to prepare

hot water, does pouring gesture, (viii) once the hot water is ready he sits at the kitchen table

and spends some time here, (ix) does drinking gesture a few times while eating, and the

experiment is over.

The morning routine hygiene activity gets recognized after the user spends more than

10 seconds near the washbasin while brushing his teeth, because that is the amount of time

the user prefers and has set in the database. The having breakfast activity gets recognized

after the user spends more than 2 minutes at the kitchen table while having done the pouring

and drinking actions. It is the amount of time the user prefers and has set in the database. In

total, the volunteer performed the activities for four days, which can be seen in the result of a

query in the next section.

Result

This section presents SPARQL queries, what they mean in natural language, and their proper

syntax and results from Protégé. The query language works by doing pattern matching on

the RDF triples that exist in the knowledge base. Before writing a query we define some

prefixes otherwise the queries would not be easy to naturally comprehend. The prefix that

starts with the ‘:’ belongs to the default namespace of the ontology. A basic query is a triple

pattern with one or more variables in place of the subject, predicate or object. After the

6https://youtu.be/c5TM4__nF8I
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SELECT keyword we mention the variables and after the WHERE keyword we mention the

triple patterns (containing the variables we are looking for) to match in the knowledge base.

Note that to query the ontology efficiently, one must be a aware of the terms in the

ontology, i.e., the T-box and R-box. The first query is to “select and list all the activities in

the knowledge base". Hence, Query 1 and its result are shown in Figure 5.17. The second

query is to “select and list all the users in the knowledge base". Hence, Query 2 and its

result are shown in Figure 5.18. The third query is to find out “which user did the activity

having-breakfast and at what time?". Hence, Query 3 and its result are shown in Figure 5.19.

The fourth query is to find out the reason for “why having-breakfast activity gets recognized?".

Hence, Query 4 and its result are shown in Figure 5.20. The fifth query is to “find out the

reasons for a particular HAR result and their time of occurrence. This query checks the

reason and the time at which a particular user performs a particular activity at a particular

time. The query also has the keyword ORDER BY ASC for the variable ?atDateTime, this

orders the result list with the oldest timestamp as the first element. Hence, Query 5 and

its result are shown in Figure 5.21. Finally, the sixth query is similar to the fifth, except

that it is for the morning routine hygiene activity. The Query 6 and its result are shown in

Figure 5.22.

Figure 5.17 SPARQL Query 1 and its result.

5.3.4 Summary

This work presents a real-world HAR system based on Arianna+ and developed using

OWLOOP API. The objective of this work is to showcase a prototype real-world HAR
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Figure 5.18 SPARQL Query 2 and its result.

Figure 5.19 SPARQL Query 3 and its result.
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Figure 5.20 SPARQL Query 4 and its result.

Figure 5.21 SPARQL Query 5 and its result.
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Figure 5.22 SPARQL Query 6 and its result.

system that saves its activity recognition results in a purpose-built query ontology. SPARQL

can then be used to query this ontology to retrieve results in an intelligible manner. Explain-

able results are particularly relevant for an enriched collaboration between HAR system

researchers/developers and health-care domain experts.

The HAR system in this work is able to recognize two activities, i.e., having breakfast

activity and the morning routine hygiene activity. An ontology network was developed

encoding fluent models for these two activities. The experimental setup was made at a

volunteers apartment. Bluetooth beacons, namely, the Estimote beacons, were installed as

the distributed sensors for human localization based on beacons’ proximity to the wrist-worn

smart-watch. Developing ML models for recognizing human actions, e.g., pouring, drinking,

and brushing, was out of the scope of this work. Hence, a system developer simulated

the human action recognition events while watching the volunteer perform the experiment.

The volunteer performed the experiment for four days and the results were saved in the

query ontology. Finally, this work presented the SPARQL queries, their meaning in natural

language, and their intelligible results. In the future, better ways to represent the query

ontology can be explored. As the representation of the ontology in which the results are being

saved is relevant to the intelligibility of the SPARQL queries and their results. A limitation

of this work is that the intelligibility feature of the framework could not be evaluated by

discussions with health-care domain experts as their availability was affected by the Covid-19

pandemic [137, 138].
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5.4 Online HAR enables a smart-home application with a

companion robot

5.4.1 Introduction

This work exploits Arianna+ using OWLOOP API to develop a simple real-world HAR sys-

tem that can provide online activity recognition knowledge to a companion robot. This work

highlights that robust HAR can enable or support many kinds of smart-home applications.

Furthermore, this work explores the research problems highlighted under RQ2, RQ3, and

RQ4, which are presented in Section 2.4.

In particular for health monitoring and care oriented smart home systems, the type of sen-

sors used and how the data is managed affects the users’ perception of privacy and trust [150–

152]. Furthermore, the ease of interaction with the system plays an important role in the

usability and acceptability of the system [153, 154]. More often than not, health-oriented

smart home systems for the elderly do not provide services that are directly-accessible or

under-control by the elderly users (for instance, recognized ADL and health insights are

intended to be used by care-takers or doctors [8]). Nonetheless, in recent years that has been

significant research activity in expanding the ways of interaction between the users and their

smart home. In particular, voice interfaces have been rapidly developed [155, 156].

In general AAL smart home systems use data coming from sensors that are installed

within the house, i.e., distributed environmental sensors, or sensors worn by the users, i.e.,

wearable devices. During the development of our smart home system, on the one hand, we

avoid sensors that are perceived as ‘intruding on privacy’ by choosing sensors other than

cameras. On the other hand, our smart home system has the ability to proactively interact

with the user. This feature is added not just for support and well-being of the user, but also

to give the user control and accessibility of the system. It is interesting to point out that

“in spite of privacy and security breaches, people frequently compromise their privacy in

exchange for certain benefits of a technology or a service" [157]. In this work, we present a

simple health-care oriented AAL smart home system developed keeping in mind the above

mentioned issues. We use this system to evaluate the user’s experience (UX) while s/he

interacts with two different interactive devices, i.e., a vocal-assistant or a robot-assistant. The

developed system is context-aware and multi-user, i.e., it is able to react according to the

context of the user and the reaction can be unique for each user.

Using the developed smart home system we evaluate the main hypothesis of this work,

i.e., ‘Is there a significant difference in the user experience if the interactive device is a
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robot-assistant instead of a vocal-assistant?’. In this work we focus particularly on evaluating

the human-robot-interaction (HRI) by surveying the users’ experience while they interact

with the smart-home when it is equipped with a robot-assistant and when it is equipped with a

vocal-assistant. There exist many different surveys for evaluating the UX. Some studies [158–

160] have tried to enumerate and describe how surveys can be used for evaluating the UX.

Other studies [161–163] have described different ways of designing own and unique UX

surveys. For analysing our system, we decided to use the one commonly used by the scientific

community, i.e., the user experience questionnaire (UEQ) [164–167]. Using UEQ the UX is

evaluated for the case when the smart-home system is equipped with a robot-assistant and

for the case when it is equipped with a vocal-assistant.

5.4.2 Methodology

Figure 5.23 The system’s architecture for the work presented in Section 5.4.

As shown in Figure 5.23, the system consists of many different and connected parts.

Specifically, the system is composed of three macro-layers connected to each other via a

database. Firstly, the sensing Layer that deals with the acquisition of sensory data coming

from a smart watch. Secondly, the HAR layer deals with modeling and recognizing activities.

Lastly, Human Computer Interaction (HCI) Layer that deals with providing interfaces for

human computer interaction.

As the system deals with data that is continuously changing, it is necessary that we use

a database that has near real-time processing capability. This kind of database is called

real-time database, and they are commonly used in IoT systems. All the relevant information
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are stored in the database, which provides the context regarding where the assisted people

are located to any application that requests it. In this way, all our modules are connected

with a shared knowledge but most of all it leaves the possibility, for future applications with

different purposes to hook on to that knowledge by providing different and new services.

In particular, the smart watch takes care of defining the user’s position, based on the

proximity to Bluetooth beacons, sending it to the database and sending the raw inertial data

to a smart watch which sends information back to a Machine Learning (ML) application

for action recognition. The Machine Learning module then receives raw inertial data and

detects whether the assisted person is performing the actions for which the neural network

has been trained. In this way, the information concerning the users’ position and action labels

along with the timestamp when they were recognized are sent and saved to the real-time

database. This information is then used by the HAR layer, which is an implementation based

on Arianna+ described in Chapter 3]. The HAR system infers the user’s activity by reasoning

over an activity model in an ontology. The products of this inference are then again saved in

the real-time database so that external applications can use them. In our case, the external

applications developed are the web Interface and the vocal interface. The Web interface to

allow the care home to monitor multiple users at the same time in a unique and user-friendly

way. In this Chapter, we won’t describe in detail this component because it’s not the focus of

this thesis. The vocal interface is instead an application for the home user. Indeed, on the

basis of the information on the database, it will initiate a conversation with the interlocutor.

Sensing layer: The smart watch plays a primary role in the collection of sensory data, as

shown in Figure 5.23. It deals with (i) establishing a connection with the nearest Estimote

Beacon 7, via Bluetooth protocol. By placing one or more Proximity Beacons in each room

of a house and knowing which room matches each beacon, it is possible to trace the user’s

position based on which beacon the smart watch has connected to.

This information is acquired and then published on the database by an Android application

installed on the smart watch. The application pings the beacons and, depending on the

Bluetooth signal strength, establishes the proximity to which beacon is closer. We set the

detection range of the beacons using a configuration file saved on the database and the android

application defines which beacon is nearby by publishing the numbered label corresponding

to the beacon detected on the real-time database.

A second application installed on the smart watch, takes care of (ii) acquiring the inertial

raw data from the smart watch worn on the user’s right wrist. The application acquires 3-axis

inertial data through the IMU embedded in the smart watch and sends the raw data via Wi-Fi

7https://estimote.com/
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to the ML module. The raw sensor data is assumed to be post-processed to a point where

it is a binary value with its associated label and timestamp. For instance, IMU data from a

smart-watch is processed by ML module to a point where a label such as ‘pouring’ is true or

false and has a certain timestamp. This post-processed data is then published to the database

as a statement.

Human Activity Recognition layer

We take a hybrid approach towards HAR. On the one hand, adopting a machine learning

approach (particularly supervised learning) for recognizing actions, e.g., (i) drinking and

(ii) pouring. On the other hand, adopting an ontology based approach for recognizing

contextual activity, e.g., (i) having breakfast. A real-time database sits between the machine

learning module and HAR (i.e., ontology and reasoner) module, see Figure 5.23. Moreover,

the database is a central module wherein all other modules save and access data. Hence,

Arianna+ allows to have a hybrid approach, i.e., at the level of the system’s architecture.

The machine learning module receives the IMU data stream from the smartwatch and

gives as output the recognized activity. At the same moment the smartwatch sends the

location of the user based on the smartwatch’s proximity to the bluetooth beacons that are

placed in all the house’s rooms. Therefore, the recognized activity and the user location are

received by the real-time database.

The real-time database in turn interacts the the HAR module. It is composed of a

network of ontologies. The ontology describes the smart-home environment using axioms

that are added to the ontology by hand using the Protégé [168] ontology editor, as shown

in Figure 5.24. As shown in the figure, the ontology is made up of classes (ontology’s T-

Box), object-properties and data-properties (ontology’s R-Box), and individuals (ontology’s

A-Box). Also for activity modeling the ontology contains SWRL rules.

After having developed the overall ontology using the Protégé editor, to be able to use the

ontology as part of an overall HAR system’s architecture, OWLOOP API 8 was used. The

API allows to read axioms from an ontology and write axioms to it, from an OOP (object

oriented programming) domain. As soon as there is new information in the real-time database,

regarding the user’s location and/or action, the ontology network takes this information as its

input and uses that information to make some assertions in the ontology and reason based

on the new assertions. The reasoner used is Pellet. If reasoning leads to the inference of a

contextual activity, e.g., having breakfast, then this information is saved back in the real-time

database. Lastly, when there is new information related to the recognition of the contextual

8https://github.com/TheEngineRoom-UniGe/OWLOOP
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Figure 5.24 Ontology as seen in the Protégé editor.
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activity (performed by the user) in the real-time database, the human computer interaction

layer becomes active.

Human Computer Interaction layer

The HCI layer interacts with the user through a vocal interface. It gets triggered by

the HAR layer and starts a conversation with the user. We distinguish two different user-

experience of interaction. Firstly, using a smart speaker, and secondly, using a robot assistant

named Sota, as shown in Figure 5.25. In practice, the HCI layer gets triggered by the

contextual user activity information present in the database and manages the dialogue with

the user through Google’s Dialogflow wherein the logical flow of the dialogues is defined.

Dialogflow is a natural language understanding platform offered by Google that makes

it easy to design and integrate a conversational user interface into our interactive voice

response system. With Dialogflow we developed a conversational-agent able to interpret

user’s sentences and give appropriate context-based response. Indeed a typical dialogue

agent has several Intents that represent a range of assisted person intentions. Whenever a

user says something to Dialogflow agent, the conversational-agent attempts to match the

utterance to a particular intent; then, the agent returns the response within that intent.

Figure 5.25 Figure on the left shows robot assistant (Sota) and figure on the right shows

vocal assistant.

Figure 5.25 shows the robot assistant and vocal assistant. The Sota manager module as

seen in Figure5.23 is connected to the Sota robot. Both the Sota manager module and the

Smart speaker module are connected to the real time database and Dialogflow. Both get

triggered based on the context-activity recognized in the HAR layer.
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5.4.3 Experimental evaluation

Experimental setup

The experimental setup was designed for a particular scenario that demonstrates the potential

of context-based proactive human-computer interaction.

Medication reminder - scenario: Consider that the HAR system detects the presence of the

user in the kitchen and recognizes that he/she is having breakfast. The HAR system

has the knowledge that the user must take particular medications in the morning on full

stomach. Therefore, the overall smart-home application reminds the user to take the

required medications with a glass of water. To do this, the smart-home application uses

the robot-assistant located on the kitchen table. It tries to recognize whether the user

takes the medications or not (for instance, by detecting whether the user has accessed

the medicine cabinet and recognizing whether the user does the pouring and drinking

actions). After some time passes, the smart-home application inquires with the user

whether he/she has taken the medications.

A close-knit interaction between different modules of the overall smart-home system

makes the scenario possible. The Bluetooth proximity beacons, i.e., Estimote beacons were

installed in a real home and with the support of a volunteer wearing a smart watch, an

experiment was performed. Since the Estimote beacons interfere with each other, proper

proximity-based user-localization requires beacons’ calibration. The calibration process

includes placing the beacons strategically and tuning the Bluetooth range of each beacon. The

same experiment is performed with two interfaces, as described in Section 5.4.2. This allows

the user to experience two kinds of interactions, i.e., an interaction with a vocal-assistant

and an interaction with a robot-assistant. While the experiment was being performed the

volunteer’s interaction with the smart-home was recorded from an egocentric point of view

(i.e., the camera is placed on the forehead of the volunteer). The volunteers interaction

with both the interfaces is recorded. Therefore, we developed two videos, one showing

user-interaction with the vocal assistant and another showing interaction with the robot

assistant.

The current Covid-19 pandemic [137, 138] has made it difficult to test the system on a

large number of volunteers. Therefore, the decision was made to video record the volunteer’s

experience from a ego-centric point of view to share the video with a large number of

volunteers and conduct an online survey. This way, at the end of watching a video, the

users were presented with the user experience questionaire (UEQ). Each user watched two
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(i) User is in the bed-

room

(ii) User gets out of bed (iii) User walks (iii) User enters in the

kitchen

(v) User sits at the table (vi) User pours water

into a glass

(viii) User drinks a glass

of water

(ix) User has breakfast

Figure 5.26 Different moments of the video recording from the ego-centric point of view -

for medication reminder scenario.

videos and hence filled two questionnaires. One video shows the medication reminder

scenario with the vocal assistant and another shows the scenario with the robot assistant.

Different moments of the video recording from the ego-centric point of view are shown in

the Figure 5.26. Two videos were recorded, one corresponding to the vocal 9 assistant and

one for the robot assistant 10.

Experiment

The choice to video record the experience of the volunteer allowed us to reach a large number

of virtual volunteers. Hence, guaranteeing us a sufficient population for our study. The

questionnaire consists of five sections:

1. acquiring personal information of the interviewee such as age or experiences in a

scientific/technological sector;

2. finding out if the interviewee had ever had an experience with a robot;

3. evaluating the simulated experience with the robot assistant;

4. finding out if the interviewee had ever had an experience with voice assistant;

5. evaluating the simulated experience with the vocal assistant;

9https://youtu.be/85BQhc87pqA
10https://youtu.be/w9-w5tZRZDE
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The questionnaire chosen to evaluate the UX of the system equipped with the vocal

assistant (section c) and system equipped with the robot assistant (section e) was created in

Germany in 2005 [166]. A data analytic approach was used in order to ensure a practical

relevance based on six scales where each them describes a distinct quality aspect of a system.

In brainstorming sessions with usability experts, an initial item set of 229 potential items

related to user experience was created. This item set was then reduced to an 80 items raw

version of the questionnaire by expert evaluation. In several studies focusing on the quality

of interactive products, including a statistics software package, cell phone address books, an

online-collaboration software or business software, data were collected with this 80 items

raw version. In total, 153 participants answered the 80 items of the raw version. Finally,

the six UEQ scales and the items representing each scale were extracted from this data set

by principal component analysis. The items have the form of a semantic differential, i.e.

each item is represented by two terms with opposite meanings. The order of the terms is

randomized per item, i.e. half of the items of a scale start with the positive term and the other

half of the items start with the negative term. It was used a seven-stage scale to reduce the

well-known central tendency bias for such types of items.

The UEQ contains six scales and listed below, with 26 items:

• Attractiveness: Overall impression of the system. Do users like or dislike the system?

• Perspicuity: Is it easy to get familiar with the system? Is it easy to learn how to use the

system?

• Efficiency: Can users solve their tasks without unnecessary effort?

• Dependability: Does the user feel in control of the interaction?

• Stimulation: Is it exciting and motivating to use the system?

• Novelty: Is the system innovative and creative? Does the system catch the interest of

users?

The consistency of the UEQ scales and their validity was investigated in 11 usability

tests with a total number of 144 participants and an online survey with 722 participants. The

results of these studies showed a sufficiently high scale consistency (measured by Cronbach’s

Alpha) [164]. In addition, the questionnaire is provided already translated and validated into

21 languages, including the languages used in this case, namely English and Italian.

The survey got compiled by 240 interviewers. But the compilations needed some filtering.

As the experiment was virtual and the survey was on the internet, it is possible that not all
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volunteers will answer all questions seriously. For this reason we used a simple heuristic

method to detect random or not serious answer. The UEQs are composed by 24 items, 4

for each scale and our method to detect suspicious responses is based on the following

questionnaire features:

• each of the 4 items associated to one scale should measure a similar User Experience

(UX) quality aspect;

• each item does a qualitative evaluation on a scale from 1 to 7 but only for half of the

items the number 7 corresponds to an extremely positive judgment because for the

other half of the items the positive judgment corresponds to 1;

On the basis of these characteristics, for each scale, it is possible to calculate the maximum

distance between the most positive and most negative judgment.

Figure 5.27 Example of the responses to the items of the scale Perspicuity.

In the Figure 5.27 is shown an example of the responses to the items of the scale

Perspicuity. Obviously, these answers are not very consistent. If they are transferred to the

order negative (1) to positive (7), then we can see that the ratings vary from 1 to 6, i.e. the

distance between the best and worst answer is 5. Thus, a high distance between the best and

the worst answer to all items in a scale is an indicator for an inconsistent or random answer

behaviour.

If such a high distance occur only for a single scale this is not really a reason to exclude

the answers of a participant, since such situations can also result from response errors or a

simple misunderstanding of a single item. If this occurs for several scales, then it is likely

that the participant has answered at least a part of the questionnaire not seriously. Thus, a

simple heuristic is to consider a response as suspicious if for 3 scales the distance between

best and worst response to an item in the scale exceeds 3.

In light of this criterion, we found 14 suspicious responses in the evaluation of the system

equipped with a robot assistant and 13 in the evaluation of the system equipped with a vocal

assistant. Once these preliminary filtering phases were completed, we proceeded to evaluate

the results.
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Result

Firstly, we analyzed the system equipped with the vocal assistant. In the table 5.4 are shown

the means and the variance for each scale evaluated. Values between -0.8 and 0.8 represent a

more or less neutral evaluation of the corresponding scale, while values > 0.8 represent a

positive evaluation and values < −0.8 represent a negative evaluation.

Scale Mean Variance

Attractiveness 1.186 0.97

Perspicuity 1.781 1.04

Efficiency 1.302 0.92

Dependability 1.291 0.84

Stimulation 1.004 1.07

Novelty 1.040 1.09

Table 5.4 Evaluation (mean and variance) of the system equipped with Vocal assistant.

Figure 5.28 Histogram shows evaluation (mean and variance on the six scales) of the system

equipped with Vocal assistant interface.

The same results presented in table 5.4 are shown in the Figure 5.28, where the range of

the scales is between -3 (extremely negative) and +3 (extremely positive).

The measured scale means are set concerning existing values from a benchmark data

set, which contains the data of 246 product evaluations with the UEQ (with a total of 9905

participants in all evaluations). The comparison of the results for the evaluated product

with the data in the benchmark allows to draw conclusions about the relative quality of the

evaluated product compared to other products.
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Scale Mean Benchmark Interpretation

Attractiveness 1.19 Below average 25% of results better, 50% of results worse

Perspicuity 1.78 Good 10% of results better, 75% of results worse

Efficiency 1.30 Above Average 25% of results better, 50% of results worse

Dependability 1.29 Above Average 25% of results better, 50% of results worse

Stimulation 1.00 Above Average 25% of results better, 50% of results worse

Novelty 1.04 Above Average 25% of results better, 50% of results worse

Table 5.5 Vocal assistant interface compared to benchmark.

As we can notice, the system equipped with the vocal assistant has achieved good results,

or at least above average for most of the scales. Therefore, the positive results, both in

the analysis of the means 5.28 and in the benchmark confirms us that the vocal assistant is

positively perceived, but it leaves us with a negative result for the scale of the attractiveness

for which it will be necessary to take action.

Secondly, the same considerations are made for the system equipped with the robot

assistant. First, the means and variances of the robotic assistant system were analyzed as

follows:

Scale Mean Variance

Attractiveness 1.440 0.95

Perspicuity 1.857 0.94

Efficiency 1.299 0.85

Dependability 1.331 0.77

Stimulation 1.320 1.11

Novelty 1.410 1.09

Table 5.6 Evaluation (mean and variance) of the system equipped with Robot assistant.

As we can see from Table 5.6 and Figure 5.29 the results are really good and very

promising. Indeed, all the means are far above threshold 0.8, and we can also notice a high

value of Perspicuity that say to us that the system is really easy, also without any explanations.

The benchmark analysis then confirmed this preliminary assessment of our means. In

fact, as in the vocal assistant case 5.5, we evaluated the means in relation to existing values

from a benchmark data set. The results shown in Table 5.7 are encouraging because all means
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Figure 5.29 Histogram shows evaluation (mean and variance on the six scales) of the system

equipped with Robot assistant interface.

are above average and two of the six scales are even in the range of 10% of the best results in

the reference data set. Indeed, these results tell us that, even more markedly than the vocal

assistant system, it is a system that is really simple to use and very innovative.

Scale Mean Comparison to benchmark Interpretation

Attractiveness 1.44 Above average 25% of results better, 50% of results worse

Perspicuity 1.86 Excellent In the range of the 10% best results

Efficiency 1.30 Above Average 25% of results better, 50% of results worse

Dependability 1.33 Above Average 25% of results better, 50% of results worse

Stimulation 1.32 Above Average 25% of results better, 50% of results worse

Novelty 1.41 Excellent In the range of the 10% best results

Table 5.7 Robot assistant interface compared to benchmark..

The two systems have therefore met with some success among the interviewees. Therefore

we also decided to evaluate which of the two systems can be considered the preferred one.

Already preliminary, we noticed higher means in the robotic system, but to verify they really

preferred the robotic system, we compared the two systems’ results.

Vocal assistant Robot assistant

Scale Mean Std. Dev. Mean Std. Dev.

Attractiveness 1,19 0,99 1,44 0,97

Perspicuity 1,78 1,02 1,86 0.97

Efficiency 1,30 0,96 1,30 0.92
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Dependability 1,29 0,92 1,33 0.88

Stimulation 1,00 1,03 1,32 1.05

Novelty 1,04 1,04 1,41 1.04

Table 5.8 Comparison between the interaction with Vocal assistant and Robot assistant.

Figure 5.30 •Vocal assistant system •Robot assistant system

From Figure 5.30 as from table 5.8, it is evident that the interaction with a robot assistant

always has a higher mean. This leads us to think that the interviewees actually prefer the

interaction with a robot assistant rather than the interaction with a vocal assistant. This is

further confirmed by the T-Test. From the T-Test (table 5.9) we can, in fact, note that the

interaction with a robot assistant is significantly better in 3 of the 6 scales of interest. The

T-Test is used to check if the mean values of products is significantly different. As suggested

in the literature [169], a p-value of less than 0.05 suggests significant difference. From this,

we can conclude with certainty that the robotic system is more attractive, stimulating and

innovative than the interaction with a vocal assistant.

Scale p-value Difference

Attractiveness 0.0061 Significant Difference

Perspicuity 0.4137 No Significant Difference

Efficiency 0.9721 No Significant Difference

Dependability 0.6356 No Significant Difference

Stimulation 0.0014 Significant Difference

Novelty 0.0002 Significant Difference
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Table 5.9 T-Test comparison between the interaction with Vocal assistant and Robot assistant.

Based on results shown in the Evaluation Section, and based on literature review, this

research work propose proposes an alternative vision to the classic smart home systems for

monitoring human activities, showing how the integration of user-friendly interface elements

such as voice assistants or robotic assistants can guarantee a positive perception of the system.

In fact, what emerges from the results is that (i) in terms of functionality both robot assistant

and vocal assistant have been perceived equally well (Fig. 5.5, Fig. 5.7), (ii) whereas, in

terms of the appeal, the robot assistant is perceived as better compared to vocal assistant

(Fig. 5.30). We propose that, the scales perspicuity, efficiency, dependability capture the

perception of the ‘functionality’ of the system. The ‘functionality’ is the contextual and

proactive interaction provided by the digital assistant. The scales attractiveness, stimulation,

novelty capture the perception of the ‘appeal’ of the system. The ‘appeal’ is affected by the

morphology of the digital assistant. In summary both interfaces are perceived positively by

the users but the robot assistant is perceived better on the scale of attractiveness, stimulation

and innovation.
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5.4.4 Summary

This work presents a HAR system based on Arianna+ and developed using OWLOOP API. It

has been integrated with a dialogue management system and a digital assistant. This system

presents a scenario wherein, based on the HAR results, a digital assistant provides contextual

and proactive support to the home user. In this scenario, once the system recognizes that the

user is having breakfast, it triggers the dialogue management system and the digital assistant,

which thus reminds the user to take medication. With respect to the motivations presented

in Section1.1.1, this work highlights that robust HAR results can be useful for smart-home

applications. This is particular work, the HAR results provide contextual information to

a digital assistant. Apart from the original motivation, in this work, we evaluate a user’s

experiences while interacting with two different kinds of digital assistants, i.e., one with a

robot body and one without a robot body.

To evaluate the user experience with a large number of volunteers, we video-recorded an

experiment from an ego-centric point of view. Volunteers were then requested to watch the

video, experience the scenario virtually and answer the user experience questionnaire (UEQ).

Results of the survey, show that the digital assistant with a robot body is comparatively

perceived as more attractive, stimulating, and novel. With this preliminary result, we argue

that a smart-home application - such as a companion robot assistant providing contextualized

and proactive support to the home-users - could positively affect the acceptability of a smart-

home. The volunteers’ experiencing of the digital assistants virtually, i.e., by watching a

video, could be considered as a limitation of this work. Nonetheless, this is one way to

perform experiments when it is difficult for a large number of volunteers to experience

the real-world setup due to the Covid-19 pandemic [137, 138]. In the future, we intend to

perform the same evaluation in a real-world setup with more number of contextualized and

proactive support scenarios. Furthermore, with digital-assistants placed in multiple rooms of

the apartment.



Chapter 6

Conclusion and future work

6.1 Conclusion

Human activity recognition (HAR) has been a very active research topic in the past two

decades for its applications in various fields such as health-care, security and surveillance,

comfort and safety, and energy consumption. The work of this thesis particularly finds its

motivation in the health-care domain. It is estimated that there will be an increase in the

size of the older population between 2020 and 2050. Globally, the share of the population

aged 65 years or over is expected to increase from 9.3 percent in 2020 to around 16.0 percent

in 2050 [1]. The same report highlights that for older persons to live independently, some

universal needs must be met, which include health care services. This particular point is not

new and has been relevant for many years. Furthermore, it has been one of the motivations

for smart home research - particularly in the past decade - due to advances in sensing,

networking, and ambient intelligence technologies. To support healthy and active aging,

to maintain and improve the quality of life of older persons, and to respond to the needs

of the rapidly aging population - researchers are developing smart-home environments that

can recognize ADL. The ability to perform ADL without assistance from other people can

be considered as a reference for the estimation of the independent living level of the older

person. Conventionally, this has been assessed by health-care domain experts via a qualitative

evaluation of the ADL. Since this evaluation is qualitative, it can vary based on the person

being monitored and the caregiver’s experience. A significant amount of research work

is implicitly or explicitly aimed at augmenting the health-care domain expert’s qualitative

evaluation with quantitative data or knowledge obtained from HAR.

From a medical perspective, there is a lack of evidence about the technology readiness

level of smart home architectures supporting older persons by recognizing ADL [2]. We
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hypothesize that this may be due to a lack of effective collaboration between smart-home

researchers/developers and health-care domain experts, especially when considering HAR.

We foresee an increase in HAR systems being developed in close collaboration with caregivers

and geriatricians to support their qualitative evaluation of ADL with explainable quantitative

outcomes of the HAR systems. This has been a motivation for the work in this thesis. The

recognition of human activities – in particular ADL – may not only be limited to support

the health and well-being of older people. It can be relevant to home users in general. For

instance, HAR could support digital assistants or companion robots to provide contextually

relevant and proactive support to the home users, whether young adults or old. This has also

been a motivation for the work in this thesis.

Depending on the application or motivation, researchers would like to have a certain

set of features in the HAR systems they develop. In the literature, one can see researchers

attempting to incorporate features such as (i) scalability of the HAR system in terms of

accommodating more number of heterogeneous sensors and more variety of activities that

can be recognized, (ii) online activity recognition which means computational performance

must be taken into consideration, (iii) accuracy of activity recognition, part of which is

also the ability to deal with uncertainty-of and noise-in sensory data, (iv) intelligibility in

terms of explainable results and inner-workings of the system, (v) learning ability in order

to improve HAR accuracy over time, and (vi) consideration to privacy. It is noteworthy

that within the literature each feature is a research problem [6]. In terms of categorizing

HAR approaches, the literature can be divided based on sensing approaches and modeling

approaches. On the one hand, sensing approaches are divided into visual sensor-based

and non-visual sensor-based. On the other hand, modeling approaches are divided into

data-driven, knowledge-based and hybrid. For HAR within smart-homes, most research

work has used a non-visual sensor-based approach. Although cameras provide high accuracy

for activity or action recognition, within a smart home environment due to privacy issues

simpler sensors (e.g., Passive Infrared (PIR), light, RFID, wearables inertial sensors, etc.) are

largely used. In terms of modeling approaches, there has been rich and extensive research

in data-driven and knowledge-based approaches, and in the past few years very active

research in hybrid approaches. Most research that is related to hybrid modeling approaches

have algorithmic orientation and some research is oriented towards hybrid frameworks and

architectures.

Given our motivations, namely, (i) facilitation of iterative development and ease in collab-

oration between HAR system researchers/developers and health-care domain experts in ADL,

and (ii) robust HAR that can support digital assistants or companion robots. There is a need
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for the development of a HAR framework that at its core is modular and flexible to facilitate

an iterative development process [3], which is an integral part of collaborative work that

involves develop-test-improve phases. At the same time, the framework should be intelligible

for the sake of enriched collaboration with health-care domain experts. Furthermore, it

should be scalable, online, and accurate for having robust HAR, which can enable many

smart-home applications. The goal of this thesis is to design and evaluate such a framework.

The contributions of this thesis are divided into three parts. The first contribution is

Arianna+, a framework to develop networks of ontologies - for knowledge representation

and reasoning - that enables smart homes to perform human activity recognition online. The

second contribution is OWLOOP, an API that supports the development of HAR system

architectures based on Arianna+. It enables the usage of Ontology Web Language (OWL) by

the means of Object-Oriented Programming (OOP). The third contribution is the evaluation

and exploitation of Arianna+ using OWLOOP API. The exploitation of Arianna+ using

OWLOOP API has resulted in four HAR system implementations. The evaluations and

results of these HAR systems emphasize the novelty of Arianna+. This thesis is structured

in the following way. There are six chapters in total. Chapter 1 gives an introduction to the

domain of HAR, it presents the motivations for this thesis, the challenges and the problem

description. Chapter 2 presents the state of the art in HAR aimed at health and well-being in

smart-homes. Based on the literature review, this chapter also presents the research questions

addressed by this thesis. Chapter 3 presents the first contribution of this thesis, i.e. Arianna+.

Chapter 4 presents the second contribution of this thesis, i.e., OWLOOP API. Chapter 5

presents the third contribution of this thesis, i.e., HAR system implementations based on

Arianna+ and developed using OWLOOP API, whose evaluation and results address the

research problems highlighted in Section 2.4.

The first contribution - Chapter 3 presents Arianna+, a framework for HAR that adopts

the nodes-and-edges design. Where the nodes are ontologies and edges are computational

procedures. The ontologies are a priori defined contextual knowledge structures that can be

updated with statements (i.e., axioms) based on sensor data. The computational procedures

transfer or generate statements. A transfer of statements takes place from one ontology

to another based on pre-defined events and conditions. New statements are generated by

reasoning on the fluent models (i.e., rules) present in the ontologies. These statements are

mapped from event-based sensor data. In order to exploit sensors providing a continuous data

stream (e.g., inertial data or video) computational procedures can accommodate data-driven

techniques, which can process the continuous data stream and provide an event as a result.

Thus, in this manner, an ontology network is intrinsically modular due to its nodes-and-edges
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design and intelligible due to its knowledge-based approach. The ability to accommodate

both knowledge-based and data-driven techniques for the generation of statements (i.e.,

by reasoning on activity models) makes Arianna+ architecturally hybrid. Moreover, also

scalable in terms of being able to accommodate more activity models within the network and

data from heterogeneous sensors. This is because the activity models could be knowledge-

based or data-driven hence they can deal with heterogeneous sensor data (i.e., event-based

like data from PIR, pressure-mats, etc., or continuous-stream like data from accelerometers,

gyroscopes, videos, etc.). Arianna+ is designed for online HAR. Although it is known that

OWL-based reasoning is exponentially complex with respect to the number of axioms in the

ontology [77], Arianna+ deals with this issue as it distributes knowledge over a network of

ontologies and reasons only on contextualized relevant knowledge. Arianna+ is designed for

accurate HAR. Due to its modularity and scalability, one could design a redundant network,

wherein multiple activity models (using different approaches) can be used to recognize

the same activity and the most accurate HAR result can be selected based on a heuristic.

Considering all these aspects Arianna+ attempts to address all research questions presented

in Section 2.4, i.e., RQ1, RQ2, RQ3, RQ4, RQ5.

The second contribution - Chapter 4 presents OWLOOP API that is designed to support

and ease the development of HAR systems based on Arianna+. It enables the usage of

Ontology Web Language (OWL) by the means of Object-Oriented Programming (OOP).

OWLOOP API performs a passive OWL to OOP mapping that allows to manipulate knowl-

edge in ontology files and perform inference by using OWL reasoners. OWLOOP allows

to construct and use Descriptors, which are Java classes that interface OOP objects with

knowledge structured in program-memory as an ontology. Descriptors encapsulate boiler-

plate code to simplify the development and maintenance of a system that exploits knowledge

representation and reasoning using ontologies. The Descriptors’ methods allow to read, write,

update, delete, and reason on axioms in ontology files. Furthermore, flexibility in Descriptor

construction allows avoiding drawbacks in computational performance. OWLOOP is suit-

able for complex applications requiring the management of dynamic ontologies. With all

these aspects OWLOOP API attempts to address research questions RQ1, RQ2, and RQ4

presented in Section 2.4.

The third contribution - Chapter 5 presents in its four sections HAR systems based on

Arianna+ and developed using OWLOOP API. Their evaluation and results particularly

highlight the novelties of Arianna+ and the research questions they address in this thesis.

Section 5.1 presents a HAR system whose objective was to perform a preliminary

evaluation of the computational performance while reasoning using a network of ontologies.
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An experimental setup was designed with a use case scenario comprising of five activity

models. Experiments were performed using a simulated dataset for evaluating the behavior

of the network and its computational performance. As the complexity of the system increases

(i.e., number of axioms in the system) the overall reasoning time is less for the case of

CAE (contextualized activity evaluation) as compared to the case of PAE (parallel activity

evaluation). However, we restrain from making conclusive statements about the comparison,

because of the presence of high variability in the result of the CAE case (as can be seen in

Figure 5.5). The evaluation of this work addresses the research questions RQ2 and RQ5

presented in Section 2.4.

Section 5.2 presents a HAR system whose objective was to evaluate a HAR system using

the CASAS dataset. For this system, an ontology network is developed wherein there are

nine ontologies. One ontology called the place ontology is used to spatially relate sensory

data and trigger (based on events) temporal reasoning on one or more of the remaining eight

activity ontologies. Hence, the reasoning is concurrent and based on a hierarchy of contexts,

which are represented as small ontologies. Due to contextualized reasoning computations are

performed on minimum relevant data and only when required. Due to these reasons, activity

recognition is online. Furthermore, this work highlights intelligibility in the inner-workings

of the system by fluent models of all the eight activities and their representation in natural

language. This emphasizes the point that modular and intelligible systems can enable ease in

an iterative development process in collaboration with health-care domain experts in ADL.

The evaluation of this work addresses the research questions RQ1, RQ2, and RQ5 presented

in Section 2.4.

Section 5.3 presents a HAR system whose objective was to showcase a prototype real-

world HAR system that saves its activity recognition results in a purpose-built query ontology.

SPARQL can then be used to query this ontology to retrieve results in an intelligible manner.

Explainable results are particularly relevant for an enriched collaboration between HAR

system researchers/developers and health-care domain experts. This work presents the

SPARQL queries, their meaning in natural language, and their intelligible results. The

evaluation of this work addresses the research questions RQ1, RQ3, and RQ4 presented in

Section 2.4.

Finally, section 5.4 presents a HAR system whose objective was to integrate HAR results

with a dialogue management system and a digital assistant. This system presents a scenario

wherein, based on the HAR results, a digital assistant provides contextual and proactive

support to the home user. In this scenario, once the system recognizes that the user is

having breakfast, it triggers the dialogue management system and the digital assistant, which



6.2 Future work 124

thus reminds the user to take medication. This work highlights that robust HAR results

can be useful for smart-home applications. Particularly in this work, the results provide

contextual information to a digital assistant. Apart from the original motivation, in this

work, we evaluate a user’s experiences while interacting with two different kinds of digital

assistants, i.e., one with a robot body and one without a robot body. Volunteers experience

the experiment virtually and complete a survey called user experience questionnaire (UEQ).

Results of the survey, show that the digital assistant with a robot body is comparatively

perceived as more attractive, stimulating, and novel. In relation to the integration of the HAR

system with the dialogue management system and digital assistant, the evaluation of this

work addresses the research questions RQ2, RQ3, and RQ4 presented in Section 2.4.

6.2 Future work

Human activity recognition is an active and challenging research domain. Particularly with

respect to the development of hybrid solutions for HAR. The evaluations and preliminary

results of this thesis are encouraging, and we plan to further improve upon our contributions

by overcoming limitations in the present work and further investigating several interesting

research directions. Hence, with respect to the overall thesis conclusion presented in the

previous section, we highlight limitations of our work and interesting research directions.

Arianna+ is a modular and intelligible framework for developing HAR systems with key

features such as scalability, and online and accurate HAR. But a limitation of Arianna+ is the

requirement of an extensive knowledge engineering effort while developing HAR systems.

Hence, an interesting research direction to explore would be to organize all existing upper

ontologies that can be reused to reduce the knowledge engineering effort. This exploration

would also require careful thought over the relevancy of various upper ontologies. Another

limitation of the framework is that the reasoning is deterministic. The framework in its

current state (i.e., with knowledge based on DL, and reasoning based on rules that are

deterministic) is not robust to missing or noisy sensor data. This limitation can be overcome

by further developing the framework to easily accommodate reasoning using fuzzy[81]

or probabilistic [82] OWL reasoners. Apart from these aspects, an interesting research

direction would be to explore how active learning can be used to fine-tune or improve

existing knowledge-based activity models in the system.

OWLOOP API eases the development of HAR systems that are based on Arianna+.

The current version of the OWLOOP API concerns only with the expressions shown in

Table 4.3, which do not encompass all the OWL axioms. For instance, it does not allow the
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representation of classes through structured disjunctions and conjunctions of class restrictions

as defined by OWL. Instead, it considers all the restrictions to be in conjunction with each

other without a specific order. For most applications, this is not a limitation because it is

possible to use an ontology editor (e.g., Protégé [127]) to design static semantics. Then, the

ontology can be loaded and subjected to runtime operations through OWLOOP descriptors.

In the future, OWLOOP can be modularly extended to support all OWL axioms by designing

new types of OWLOOPEntity and related Descriptors. Current limitations of OWLOOP

are the following: (i) the effect on the computational performance (due to the overhead

by the use of Descriptors, which are encapsulating Java-interfaces, classes, and methods

in the OWL API) has not been quantitatively measured and (ii) based on the API design

we hypothesize that flexibility in Descriptor construction allows to avoid drawbacks in

computational performance - this also remains to be quantitatively confirmed. Nonetheless,

these limitations can be overcome with further research into the API and they do not hinder

the practical use of the API while building HAR systems - as could be seen in Chapter 5.

HAR system presented in Section 5.1 shows results of the comparison made between

contextualized activity evaluation (CAE case) and parallel activity evaluation (PAE case).

Results with CAE (contextualized activity evaluation) indicate that a HAR system that

performs contextualized-reasoning using a network of ontologies has better computational

performance as compared to a HAR system that performs reasoning in a non-contextualized

manner, i.e., in case of PAE (parallel activity evaluation), wherein all activities are evaluated

together at the same time. As the complexity of the system increases (i.e., number of axioms

in the system) the overall reasoning time is less for the case of CAE as compared to the case

of PAE. However, we restrain from making conclusive statements about the comparison,

because of the presence of high variability in the result of the CAE case (as can be seen in

Figure 5.5). Hence, future work could involve testing long-term computational performance

with data arriving from a real-world smart-home setup.

HAR system presented in Sections 5.1 and 5.2 does not consider the challenging issues

related to multi-occupancy. These systems are developed by considering that there is a

single person in the smart home. To be able to perform activity recognition with multiple

persons, the system would require sensory data tagged with a person’s unique identification.

Hence, systems presented in Sections 5.3 and 5.4 make use of wrist-worn smart-watches

and Bluetooth beacons placed in the environment. The smart-watches are able to localize

each person in the house and perform activity recognition of each unique person. But the

current implementations of the two systems were only tested with two occupants in the

smart-home. We speculate that as the number of occupants increases, if the same ontology
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network is used for all the occupants then the complexity of knowledge in the ontology

network increases, which might affect the computational performance and thus online HAR.

Therefore, at the level of system development, an interesting research direction to explore

would be to instantiate a new ontology network for each occupant in the house, such that

these ontology networks are being evaluated in parallel. This research direction may also

require further improvements in OWLOOP API and extensive testing.

Currently, all HAR systems presented in Chapter 5 are not robust to missing or noisy

input data. To circumvent this limitation a relatively easy solution would be to incorporate

redundant activity models, i.e., multiple activity models using different techniques to recog-

nize the same activity and based on a predefined heuristic the most accurate result (between

multiple activity models recognizing the same activity) can be considered as the true one.

Another solution could be further development of the framework to easily accommodate

reasoning using fuzzy[81] or probabilistic [82] OWL reasoners. Nonetheless, Section 5.3

shows a HAR system that gives good HAR results for the CASAS dataset. Although the

results of our approach are compared with other state of the art hybrid approaches (see

Table 5.3), we restrain from making any conclusive statements about the comparison, be-

cause in terms of the approach, all the state of the art approaches are algorithmically hybrid

whereas our approach is hybrid in an architectural-sense. Furthermore, the fluent models

(i.e., activity models) in our approach are hand-crafted and the activity models in the state

of the art approaches are learnt from the dataset. This highlights that Arianna+ framework

being hybrid in an architectural-sense is a novel approach.

The Covid-19 pandemic [137, 138] also had some affect on the planned research activities.

For instance, on the one hand, HAR systems presented in Sections 5.2 and 5.3 highlight

the intelligibility of the fluent models and activity recognition results in natural language.

But the intelligibility feature of the framework could not be evaluated by discussions with

health-care domain experts as their availability was affected by the Covid-19 pandemic.

On the other hand, HAR system presented in Section 5.4 shows that contextualized HAR

provides relevant knowledge to companion digital assistants. This system was evaluated by

providing a virtual experience (of interaction with the digital assistants) to the volunteers - as

it would be difficult for large number of volunteers to experience the real-world setup due to

the pandemic restrictions.

Another relevant research direction would be to explore better representations of an

ontology wherein HAR results are saved, such that the SPARQL queries and their results are

self-explanatory. This is particularly relevant for an enriched collaboration between HAR

system researchers/developers and health-care domain experts (see Section 5.3). Finally,
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two HAR systems (see Sections 5.1 and 5.2) presented in this work used datasets for their

evaluation, and the remaining two HAR systems (see Sections 5.3 and 5.4) were deployed in

a real-world setup but only preliminary tests were performed. Therefore, there is a need for

real-world long-term evaluation of a HAR system based on Arianna+ and developed using

OWLOOP API.

Lastly, as part of this thesis work, we also conducted preliminary exploration in a unique

research direction. By foreseeing a future wherein there exist complex system architectures,

particularly in the growing field of smart-homes, we posited a research question: "can tools

of network science be used to analyze complex system architectures? If yes, then what

exactly could be the advantages of such an analysis?". Preliminary research allows us to

present a hypothesis that smart-home systems considered as multi-agent systems can be

analyzed using tools of network science to gain insights into their complexity, robustness and

vulnerability, and modularity. This hypothesis needs to be critically tested and to the best of

our knowledge, it paves a unique research path. The path can be described as - adaptation

of network science methodologies to the smart-home system’s literature. The preliminary

research in this direction is presented in the Appendix-A of this thesis.
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Appendix A

Representing modules of complex HAR

system architectures as agents and

analyzing them from the lens of network

science

Complex HAR system architectures

Since a decade, there has been an active and rapid development in the domain of smart-

homes. The services that a smart-home provides, can be divided into four main categories,

namely, health-oriented [8], security-oriented [9], comfort/safety-oriented [10, 11], and

energy-oriented [12]. Furthermore, to support health and well-being of older people and

smart-home users in general, researchers and developers are actively working on companion

robots [36] - see Section 5.4 in Chapter 5. In terms of the services that a smart-home

provides, literature shows that some researchers focus on developing one particular service,

whereas some others have focused on integrating and providing multiple services at the same

time. Hence naturally, the software systems behind these smart-homes tend to be complex.

The complexity increases as the number of services that a smart-home provides increases.

Therefore, there are challenges that arise due to rising complexity of a software system.

These challenges are most often architectural, i.e., they are challenges related to complexity,

scalability, robustness, vulnerability (or fault-tolerance), etc.

Literature shows that, the above mentioned challenges are conventionally some of the

challenges addressed by researchers in the domain of multi-agent systems (MAS) [170] using
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the tools of network science [171]. For instance, in [172], the authors present a network

science approach to modelling the topology and robustness of supply chain networks wherein

agents are retailers, wholesalers, distributors and manufacturers. In [173], the authors evaluate

the complexity and robustness of metro networks. If methodologies of network science are

to be used for analyzing complex HAR systems then there is a need for certain remapping or

in other words knowledge representation. We propose that the modules in a complex HAR

system architecture can be represented as agents. For this, a knowledge-based approach can

be taken, and an ontology can be developed to describe the domain. For instance, the terms

agent, system, and the possible interactions between the agents can be described in the T-box

and R-box of the ontology. Instead, the A-box could contain data related to the system’s

modules as agents. Furthermore, if some sort of reasoning is also to be taken into account

then for computational benefit a multi ontology network could also be designed.

Representing modules of a system’s architecture as agents

Figure A.1 An example of a complex HAR system’s architecture.

In the previous section, we propose that if methodologies of network science are to be

used for analyzing complex HAR systems then there is a need for certain remapping or

in other words knowledge representation. In such a representation, modules of a complex

HAR system can be represented as agents in a multi-agent system. Hence, in Figure A.1,

we present an example of a complex HAR system architecture. It is an architecture that we

have developed as part of our previous work, which is described in Section 5.4 of Chapter 5.

In this system, HAR provides contextual information to digital assistants so that they can
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proactively and contextually support the smart-home users. The digital assistants in this

example are of two kinds, one is a robot-assistant and the other is a vocal assistant.

Figure A.2 A network developed using Gephi, where nodes represent agents and links

represent communication between the agents. The color of nodes represents different

communities and the color of links represents the type of communication between them.

Consider that the modules of the complex HAR system architecture presented in Fig-

ure A.1 are broken down into further smaller modules and represented as agents connected

to each other as can be seen in the network presented in the Figure A.2. The network is

designed using Gephi [174], which is an open-source network analysis and visualization

software tool. In the network, the nodes represent agents (i.e., small modules which are part

of a complex HAR system architecture) and links represents communication between the

agents. On the one hand, for the nodes, the color represents different communities. The

color is generated by running a community detection algorithm in Gephi and the size of a
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node is based on the betweenness-centrality measure calculated by running an algorithm

in Gephi. On the other hand, for the links, the color represents the type of communication

between them. The color is defined by the knowledge engineer. The pink-color link rep-

resents a publish-subscribe form of communication and the green-color link represents a

request-response form of communication.

Analyzing a multi-agent system from the lens of network science

Our preliminary research reveals that methodologies of network science can enable ex-

ploratory analysis of large and complex HAR systems, given that the modules of the system’s

architecture are represented as agents. Thus the representation makes the HAR system a

multi-agent system. As is done in the literature, a multi-agent system can then be analyzed

using methodologies of network science on three different levels of granularity.

Firstly, an analysis on the microscopic properties (e.g., in-degree, out-degree) of the

network can give insights into the multi-agent system’s complexity, robustness. Secondly, an

analysis on the macroscopic properties (e.g., scale-free [175], small-world phenomena [176])

of the network can give insights into the multi-agent system’s robustness to error propogation,

i.e., fault-tolerance. Thirdly, an analysis on the mesoscopic properties (e.g., betweenness-

centrality, community detection) of the network can give insights into the multi-agent

system’s abstraction, i.e., modularity.

Formally, lets consider the network of agents communicating with each other (shown in

Figure A.2), as a directed graph 𝐺 (𝑁, 𝐿), where 𝑁 represents the total number of nodes and

𝐿 represents the total number of links between the nodes. Nodes represent agents and links

represent communication between agents. Note that in scientific literature the terms network

and graph are used interchangeably [171]. The following equations enable us to analyze the

properties of the network in three layers of granularity, i.e. microscopic, macroscopic and

mesoscopic.

Microscopic level − at this level we analyse the properties of the nodes. A key property

of each node is its degree, which represents the number of links it has with other nodes. For

directed graphs, there is a difference between incoming degree 𝑘 𝑖𝑛
𝑖

, which represents the

number of links that point to node 𝑖, and outgoing degree 𝑘𝑜𝑢𝑡
𝑖

, which represents the number

of links that point from node 𝑖 to other nodes. Finally, for a node 𝑖, its total degree 𝑘 𝑡𝑜𝑡
𝑖

is

given by

𝑘 𝑡𝑜𝑡𝑖 = 𝑘 𝑖𝑛𝑖 + 𝑘
𝑜𝑢𝑡
𝑖 . (A.1)
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The total number of links in a directed graph 𝐺 is

𝐿 =

𝑁∑︁

𝑖=1

𝑘 𝑖𝑛𝑖 =

𝑁∑︁

𝑖=1

𝑘𝑜𝑢𝑡𝑖 . (A.2)

The average degree of a directed graph 𝐺 is

〈
𝑘 𝑖𝑛

〉
=

1

𝑁

𝑁∑︁

𝑖=1

𝑘 𝑖𝑛𝑖 =
〈
𝑘𝑜𝑢𝑡

〉
=

1

𝑁

𝑁∑︁

𝑖=1

𝑘𝑜𝑢𝑡𝑖 =
𝐿

𝑁
. (A.3)

An adjacency matrix is a mathematical representation of a network 𝐺, which allows to

keep track of all the links 𝐿 between all the nodes 𝑁 within the network. Considering that

we have a directed network 𝐺, the adjacency matrix of 𝐺 (with 𝑁 nodes) has 𝑁 rows and

𝑁 columns. The adjacency matrix 𝐴𝑖 𝑗 has its elements as 𝐴𝑖 𝑗 = 1, if there is a link pointing

from node 𝑗 to node 𝑖, and 𝐴𝑖 𝑗 = 0, if there is no link between nodes 𝑖 and 𝑗 . Furthermore,

for a directed network 𝐺 without self-loops (i.e., a node having a link pointing to itself),

𝐴𝑖 𝑗 ≠ 𝐴 𝑗𝑖 and 𝐴𝑖𝑖 = 0.

Based on the adjacency matrix of a directed network 𝐺, for a node 𝑖, the number of

incoming and outgoing degrees is the sum over the adjacency matrix’s rows and columns,

respectively

𝑘 𝑖𝑛𝑖 =

𝑁∑︁

𝑗=1

𝐴𝑖 𝑗 , 𝑘𝑜𝑢𝑡𝑖 =

𝑁∑︁

𝑗=1

𝐴 𝑗𝑖 . (A.4)

The total number of links 𝐿 in directed graph 𝐺 is

𝐿 =

𝑁∑︁

𝑖, 𝑗=1

𝐴𝑖 𝑗 . (A.5)

Macroscopic level − at this level we analyze properties of the whole network. A property

as simple as the degree distribution can give us a glimpse into the structure of a network and

allow us to distinguish different types of networks. In a directed network 𝐺, nodes can have

a value for incoming degree 𝑘 𝑖𝑛 and a value for outgoing degree 𝑘𝑜𝑢𝑡 . Therefore, the degree

distribution becomes a two-dimensional probability distribution

𝑃𝑑𝑒𝑔 (𝑘
𝑖𝑛, 𝑘𝑜𝑢𝑡) =

𝑁𝑘 𝑖𝑛,𝑘𝑜𝑢𝑡

𝑁
(A.6)
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where, 𝑁𝑘 𝑖𝑛,𝑘𝑜𝑢𝑡 represents the number of nodes with in-degree 𝑘 𝑖𝑛 and out-degree 𝑘𝑜𝑢𝑡 . A

two-dimensional histogram can be used to visualize a two-dimensional degree distribution,

e.g., a surface plot or a color plot.

Apart from considering the correlation between the in-degree and out-degree using the

degree distribution, we can also consider marginal degree distributions. One of the marginal

degree distributions is the in-degree distribution

𝑃𝑖𝑛𝑑𝑒𝑔 (𝑘
𝑖𝑛) =

𝑁𝑘 𝑖𝑛

𝑁
(A.7)

where, 𝑁𝑘 𝑖𝑛 represents the number of nodes with in-degree 𝑘 𝑖𝑛. The other is the out-degree

distribution

𝑃𝑜𝑢𝑡𝑑𝑒𝑔 (𝑘
𝑜𝑢𝑡) =

𝑁𝑘𝑜𝑢𝑡

𝑁
(A.8)

where, 𝑁𝑘𝑜𝑢𝑡 represents the number of nodes with out-degree 𝑘𝑜𝑢𝑡 . Another one-dimensional

distribution that could be useful to analyse is the total degree distribution

𝑃𝑡𝑜𝑡𝑑𝑒𝑔 (𝑘
𝑡𝑜𝑡) =

𝑁𝑘 𝑡𝑜𝑡

𝑁
(A.9)

where, 𝑁𝑘 𝑡𝑜𝑡 represents the number of nodes with total-degree 𝑘𝑜𝑢𝑡 .

Mesoscopic level − at this level we analyse properties that exist in between the micro-

scopic level and macroscopic level of the network. One could consider, the measure of

betweenness-centrality [177, 178] and communities [179, 180] in the network as properties

on a mesoscopic level of the network.
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