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Abstract

In this thesis we investigate the problem of motion planning under environment uncertainty.
Specifically, we focus on Task-Motion Planning (TMP) and probabilistic collision avoidance
which are presented as two parts in this thesis. Though the two parts are largely self-contained,
collision avoidance is an integral part of TMP or any robot motion planning problem in
general. The problem of TMP which is the subject of Part I is by itself challenging and hence
in Part I, collision computation is not the main focus and is addressed with a deterministic
approach. Moreover, motion planning is performed offline since we assume static obstacles
in the environment. Online TMP, incorporating dynamic obstacles or other environment
changes is rather difficult due to the computational challenges associated with updating the
changing task domain. As such, we devote Part II entirely to the field of online probabilistic
collision avoidance motion planning.

Of late, TMP for manipulation has attracted significant interest resulting in a proliferation
of different approaches. In contrast, TMP for navigation has received considerably less
attention. Autonomous robots operating in real-world complex scenarios require planning
in the discrete (task) space and the continuous (motion) space. In knowledge-intensive
domains, on the one hand, a robot has to reason at the highest-level, for example, the
objects to procure, the regions to navigate to in order to acquire them; on the other hand, the
feasibility of the respective navigation tasks have to be checked at the execution level. This
presents a need for motion-planning-aware task planners. In Part I of this thesis, we discuss a
probabilistically complete approach that leverages this task-motion interaction for navigating
in large knowledge-intensive domains, returning a plan that is optimal at the task-level. The
framework is intended for motion planning under motion and sensing uncertainty, which is
formally known as Belief Space Planning (BSP). The underlying methodology is validated in
simulation, in an office environment and its scalability is tested in the larger Willow Garage
world. A reasonable comparison with a work that is closest to our approach is also provided.
We also demonstrate the adaptability of our method by considering a building floor navigation
domain. Finally, we also discuss the limitations of our approach and put forward suggestions
for improvements and future work.
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In Part II of this thesis, we present a BSP framework that accounts for the landmark
uncertainties during robot localization. We further extend the state-of-the-art by computing
an exact expression for the collision probability under Gaussian motion and perception
uncertainties. Existing BSP approaches assume that the landmark locations are well known
or are known with little uncertainty. However, this might not be true in practice. Noisy
sensors and imperfect motions compound to the errors originating from the estimate of
environment features. Moreover, possible occlusions and dynamic objects in the environment
render imperfect landmark estimation. Consequently, not considering this uncertainty can
result in wrongly localizing the robot, leading to inefficient plans. Our approach incorporates
the landmark uncertainty within the Bayes filter framework. We also analyze the effect
of considering this uncertainty and delineate the conditions under which it can be ignored.
Furthermore, we also investigate the problem of safe motion planning under Gaussian motion
and sensing uncertainties. Existing approaches approximate the collision probability using
upper-bounds that can lead to overly conservative estimate and thereby suboptimal plans.
We formulate the collision probability process as a quadratic form in random variables.
Under Gaussian distribution assumptions, an exact expression for collision probability is
thus obtained which is computable in real-time. Further, we compute a tight upper bound
for fast online computation of collision probability and also derive a collision avoidance
constraint to be used in an optimization setting. We demonstrate and evaluate our approach
using a theoretical example and simulations in single and multi-robot settings using mobile
and aerial robots. A comparison of our approach to different state-of-the-art methods are also
provided.
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Chapter 1

Introduction

Inference, perception and planning form the key components for autonomous navigation.
Inference is concerned with estimating the state of the robot or other variables of interest
given the information thus far, that is, sensor measurements and controls. Perception deals
with what the robot observers through its various sensors and planning involves choosing the
next best actions to realize a given task. In this work we are concerned mainly with planning.
In the fields of Artificial Intelligence and Robotics, planning in the broad sense cover a wide
spectrum of approaches. In this thesis, we focus on two facets of planning– Task-Motion

Planning and collision avoidance planning.
Autonomous robots operating in real-world complex scenarios require planning in the

discrete (task) space and the continuous (motion) space. In knowledge-intensive domains, on
the one hand, a robot has to reason at the highest level, for example the regions to navigate
to; on the other hand, the feasibility of the respective navigation tasks have to be checked
at the execution level. This entails the need for TMP– an approach that integrates planning
from Artificial Intelligence and motion planning from Robotics. TMP essentially involves
combining discrete and continuous decision-making to facilitate an efficient interaction
between the two domains. Starting from an initial state, TMP synthesizes a plan to a goal
state by a concurrent or interleaved set of discrete actions and continuous collision-free
motions. Over the past few years, TMP for manipulation has received considerable interest
among the research community, resulting in a proliferation of approaches [99, 28, 52, 13]. In
comparison, TMP for robot navigation introduces different challenges and has not received
much attention, albeit being pervasive in most real-world scenarios. TMP for navigation
essentially involves (a) selecting discrete/high-level actions to navigate to different regions,
objects or locations of interest in the environment and (b) deciding the order of these
visits. Selecting the best set of discrete actions for a given objective requires computing the
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navigation costs for each of these actions. Hence motion planning should be interleaved with
task planning to compute the motion costs for each of the discrete actions.

However, current TMP approaches for navigation [77, 112, 70] do not take into account
the uncertainties arising out of real-world conditions. Real-world scenarios often induce
uncertainties that transpire due to insufficient knowledge about the environment, inexact
robot motion or imperfect sensing. In such scenarios, the robot poses or other variables
of interest can only be dealt with in terms of probabilities. Planning is therefore done in
the belief space, which corresponds to the set of all probability distributions over possible
robot states. The corresponding problem, BSP is an instantiation of a Partially Observable

Markov Decision Processes (POMDPs) [50]. We develop a probabilistically complete TMP
framework for mobile robot navigation in partially-observable state-spaces with motion and
sensing uncertainty. This is the topic of Part I of this thesis.

Robots are becoming more pervasive and are increasingly used in close proximity to
humans and other objects in factories, living spaces, elderly care, and robotic surgery, plan-
ning for collision free trajectories in real-time is imperative for safe and efficient operation.
Further, the nature of uncertain environments are such that they often preclude the existence
of collision free trajectories [3]. In the presence of noisy sensors, both the robot and world
state cannot be estimated precisely. Moreover, in the case of dynamic obstacles, their fu-
ture states have to be predicted and they are not known exactly due to the lack of perfect
knowledge of their motions. As such, for safe navigation, both the robot state uncertainty
and the uncertainty in obstacle estimates need to be considered while computing collision
probabilities.

Localization is also a key aspect for safe and efficient navigation as it is a precursor
to solving the problems “where to navigate to" and “how to reach there". However, most
approaches assume that landmarks are known with high certainty. For example, given the
map of the environment, while planning for future actions the standard Markov localization
does not take into account the map uncertainty (that is, landmark locations are assumed to
be perfect). However, this might not be true in practice. For example, let us consider the
map of an environment obtained from a Simultaneous Localization and Mapping (SLAM)
session. Due to the dynamic nature of the environment the objects of interests could be
occluded when viewed from the set of viewpoints which would have otherwise produced a
full observation. Moreover, an erroneous localization could lead to wrongly estimated object
poses. This object pose uncertainty directly translates to the fact that the viewpoints from
which the object can be observed are uncertain. Therefore, one can only reason in terms of
the probability of observing the object from the considered pose or the viewpoint. This results
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in a probability distribution function for the viewpoints. Consequently, not considering this
uncertainty can wrongly localize the robot, leading to inefficient plans causing catastrophes.

In this work, we incorporate landmark or object uncertainties in BSP and derive the
resulting Bayes filter in terms of the Extended Kalman Filter (EKF) update equations. We then
contribute to the literature in collision avoidance planning by deriving from first principles
an exact expression for collision probability, given robot and obstacle state uncertainties.
We further derive fast and approximate upper bounds for collision probability such that the
probability of collision is guaranteed to be less than a specified bound while navigating to
the goal. This is the topic of Part II of this thesis.

Though the two parts are largely self-contained, the methods discussed in Part II may be
incorporated into Part I to provide a more efficient TMP approach. However, this is not the
main focus in Part I and we resort to a deterministic collision avoidance motion planning in
Part I.

1.1 Thesis Structure

The thesis is organized into 2 parts with 13 chapters as follows.

Part I

Chapter 2 introduces the concept of TMP, in the context both manipulation and robot
navigation. The related scientific literature is also covered.

Chapter 3 provides a brief overview of task planning and motion planning and then
formally define the TMP problem. We then define the TMP approach for navigation
that we consider in this thesis and state out the assumptions made while formulating
the problem.

Chapter 4 discusses our TMP approach, the main contribution of this part of the thesis.
We also derive the notion of task-level optimality and then prove the probabilistic
completeness of our approach.

Chapter 5 extends our TMP approach to multi-robot planning and incorporate multi-
robot constraints within the joint state estimation of the robots.

Chapter 6 presents the results for single robot scenarios. Validation is performed
on three different navigation domains and the scalability to increasing task level
complexity is also assessed. We later present the results for the multi-robot settings.
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Chapter 7 discusses the limitations of our approach and suggest directions for future
work. We also provide a discussion on the relationship to Multi-Goal Planning problem.
This chapter thus concludes Part I of the thesis.

Part II

Chapter 8 introduces the concept of object uncertainty and discuss related scientific
literature in the area of collision avoidance motion planning. We also formally define
the problem that we intend to tackle.

Chapter 9 provides the derivation of the Bayes filter for robot localization incorporat-
ing object uncertainty. We also discuss the conditions under which object uncertainty
can be ignored.

Chapter 10 explores the computation of exact collision probability between a robot
and an obstacle by formulating the collision constraint as a quadratic form in random
variables. The expression for collision probability is obtained as an infinite series and
we prove its convergence. An upper bound for the truncation error is also derived.
A comparison to other existing approaches is also presented and we also derive the
collision constraint for non circular geometries. Further, the approach is validated in
single and multi-robot setting.

Chapter 11 relaxes the spherical geometry assumption in Chapter 10 to formulate the
collision constraint as the distance between ellipsoids; ellipsoid representation forms a
much better approximation as compared to spheres. A tight upper bound for collision
probability is derived and the approach is validated in simulation.

Chapter 12 develops an accurate constraint for collision avoidance during motion
planning which is much faster when compared to the approaches discussed in Chap-
ter 10 and Chapter 11. This constraint can then be used in an online optimization
setting and is validated in simulation using mobile and aerial robots.

Chapter 13 concludes Part II and we discuss the limitations of the approaches devel-
oped and suggest directions for future work.

1.2 Thesis Contribution

The main contributions of this thesis are:
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Part I

C1 We develop a Motion-Planning-aware Task Planning (MPTP) approach provid-
ing an interface between task planning and motion planning for navigating in large
knowledge-intensive domains. The developed framework is intended for mobile robot
navigation under motion and sensing uncertainty.

C2 We show that MPTP is probabilistically complete and also derive the notion of
task-level optimality, that is, the plan synthesized is optimal at the task-level since the
overall action cost is less than that of other task plans generated.

C3 We also extend MPTP to incorporate multi-robot collaborative planning.

C4 We show that both single and multi-robot MPTP is scalable to increasing task-level
complexity.

Part II

C5 We incorporate object uncertainties in belief space planning and derive the resulting
Bayes filter in terms of the prediction and measurement updates of the EKF. We also
analyze the effect of incorporating object uncertainty while computing the posterior
robot belief state.

C6 We derive an expression (infinite series) for collision probability under robot and
obstacle state uncertainty; robot and obstacles assumed to be spheres. Unlike previous
approaches that compute an upper bound or derive conservative estimates for the
probability of collision, we derive an exact expression for computing it.

C7 We prove the convergence of the infinite series and an upper bound for the truncation
error is also derived.

C8 We derive the collision constraint for convex shaped polygonal objects using their
2D convex footprints.

C9 We do away with the spherical assumption for robot and obstacle shapes and
derive the collision probability for robot and obstacles approximated by their minimum
volume enclosing ellipsoids. We also derive a tight upper bound for fast approximation
of the collision probability for 3D motion planning.

C10 We further derive an accurate constraint for collision avoidance which is fast and
can be used for online Model Predictive Control (MPC) based motion planning.
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Part I

Task-Motion Planning for Navigation





We investigate the problem of integrating task planning and motion planning for mobile
robot navigation in large knowledge-intensive domains. In such domains the robot has to
reason about different discrete tasks that need to be achieved. Executing each of these
discrete tasks require appropriate robot motions. To this end, we assume that the envi-
ronment the robot operates upon is known a priori and that it does not change during its
execution. We therefore pre-sample robot poses that do not collide with the environment
which are then used for motion planning. In that sense, we perform a deterministic col-
lision checking during motion planning since the sampled poses are collision free. It is
to be noted that we are mainly concerned with the interaction between the task planning
domain and the motion planning domain which is achieved by means of an external library.
This library is basically a motion planner and is called by the task planner whenever the
motion feasibility of a task needs to be checked. As such, collision avoidance is not the
main concern and any such approach can be incorporated within the motion planner. Plan-
ning is currently performed offline, however to be robust to various uncertainties arising
during execution, we incorporate robot motion and sensing uncertainties during planning.



Chapter 2

Task and Motion Planning

2.1 Introduction

Autonomous robots operating in complex real world scenarios require different levels of
planning to execute the assigned tasks. High-level (task) planning helps break down a
given set of tasks into a sequence of sub-tasks. Actual execution of each of these sub-tasks
would require low-level control actions to generate appropriate robot motions. In fact, the
dependency between logical and geometrical aspects is pervasive in both task planning and
execution. Hence, planning should be performed in the task-motion or the discrete-continuous
space [63].

In recent years, combining high-level task planning with low-level motion planning has
been a subject of great interest among the Robotics and Artificial Intelligence (AI) communi-
ties. Traditionally, task planning and motion planning have evolved as two independent fields.
AI planning frameworks such as the Planning Domain Definition Language (PDDL) [75]
mainly focus on high-level task planning supposing that the geometric preconditions (e.g.,
grasping poses for a pick-up task [99]) for the robot motion to carry out these tasks are
achievable. In reality, such an assumption can be catastrophic as an action or sequence
of actions generated by the task planner might turn out to be unfeasible at the controller
execution level.

Over the past few years, TMP for manipulation has received considerable interest among
the research community [99, 28, 52, 13, 29]. Robot-based manipulation domain calls for
discrete and continuous reasoning to execute the required action reliably. For example,
a simple table top domain requires the robot to reason at the discrete level to decide the
objects to be picked up and also the order of these high-level actions. The execution of
these discrete actions require continuous reasoning in the configuration space of the robot to
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generate appropriate motions. Yet, a discrete action might turn out to be unfeasible due to the
end-effector’s reachability workspace. This might be due to the availability of a partial map
leading to unmodeled objects or occlusions leading to unobserved objects or simply because
the robot is too close the target object, rendering a grasp action impossible. This presents the
need for a tight coupling between task planning and motion planning, enabling an interface
for efficient interaction between the symbolic and geometric layers. TMP for navigation
presents different challenges in comparison to TMP for manipulation. As such, TMP for
navigation has not yet received much attention and therefore lacks sufficient literature. TMP
for navigation essentially involves reasoning about different objects and their properties,
deciding which objects to procure, selecting high-level actions that satisfy the low-level
continuous motion constraints to navigate to the objects or other locations of interest, and
finally procuring the objects and delivering it to the respective goal locations subject to
task and motion constraints. For example, consider a robot in an office environment where
it needs to deliver documents for evaluation to the respective project managers. At the
task level, it is required that the robot first identifies the project in order to navigate to the
respective sections, collect the documents and then deliver them to the project manager.
A task planner computes a plan in terms of these symbolic actions, subject to minimizing
a certain metric. This metric, for example, might correspond to different types of action
costs or the number of actions. Since we are concerned with navigation, in this thesis we
associate the symbolic actions to their associated motion costs. Certain symbolic actions
may not require robot motions. For example, for collecting a document, the robot may have
to stay at a particular location for a given amount of time waiting for a human to place the
document. Such actions are assigned a fixed cost. Selecting the best set of discrete actions
for a given objective requires computing the navigation costs (and other fixed costs) for
each of these actions. Hence motion planning should be interleaved with task planning
to compute the motion costs for each of the respective discrete actions. Though it can be
argued that the motion costs can be approximated a priori and fed to the task planner, in large
knowledge-intensive domains such an assumption can be harder to justify, especially in the
presence of localization and map uncertainty. Moreover, real-world scenarios often induce
uncertainties. Such uncertainties arise due to insufficient knowledge about the environment,
inexact robot motion or imperfect sensing. In such scenarios, the robot poses or other
variables of interest can only be dealt with, in terms of probabilities. Planning is therefore
done in the belief space, which corresponds to the probability distributions over possible
robot states. Consequently, for efficient planning and decision making, it is required to reason
about future belief distributions due to candidate actions and the corresponding expected
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Figure 2.1 The discrete actions available to the planner are denoted by A = {a1,a2,a3, . . . ,an}.
Different motion plans are generated for the action that requires appropriate robot motion via an
external module. This module is essentially a motion planner. The optimal path among the feasible
motion plans is then selected, returning the optimal cost to the task planner. The corresponding action
and the optimal path is the task-motion plan for changing the task state of the robot from si to si+1.

observations. Such a problem falls under the category of POMDPs [50]. Our motion planner
is therefore equipped to perform planning in partially-observable state-spaces with motion
and sensing uncertainty.

Specifically, this thesis contributes to the literature with a Motion-Planning-aware Task

Planning approach providing an interface between task and motion planning for navigating in
large knowledge-intensive domains. Such domains require a robot to reason about different
objects and locations to navigate to, subject to minimizing (or maximizing) the navigation
cost (objective function). Our task-motion interface layer facilitates this reasoning by
communicating the motion feasibility and the corresponding planned motion costs to the task
planner, synthesizing an optimal plan. To this end, we develop a probabilistically complete
TMP framework for mobile robot navigation under partial-observability, embedding a motion
planner within a task planner through an interface layer. We would like to stress the fact that
our implementation is independent of any particular form of cost function. In this thesis, we
use a standard cost function (see Chapter 4) as the MPTP cost and compare it with different
cost functions in Chapter 6.

An overview of our MPTP approach is shown in Fig. 2.1. We define A = {a1, ...,an}
as the finite set of symbolic/discrete actions available to the task planner. For example, let
us again consider an office setting where a robot is tasked with collecting and delivering
documents. In such a setting, some of the actions include, collect_document– which might
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correspond to a human placing the document on the robot and therefore the robot waiting at a
specific location for a certain duration, deliver_document– similar to collect_document

action but a human picks up the document, goto_region– corresponds to navigating through
the environment. Once an action that require appropriate robot motions to be generated
is expanded by the task planner, a call to an external library is triggered. The symbolic
parameters are then converted to their corresponding geometric instantiations. For example,
for an action that takes the robot to a particular cubicle/region, the instantiations would be
the different sampled poses in that cubicle. Once the map of the environment is obtained, the
geometric instantiations can be pre-sampled. The instantiations give rise to different motion
plans and the best among them is chosen according to a certain metric. The cost of the
selected motion plan cost is then returned to the task planner as the cost of the corresponding
action. The task-motion plan for changing the task state of the robot from the state si to si+1

is the ordered tuple of the action ai and the corresponding optimal path. For instance, in
the office setting where a robot navigates from one cubicle (si) to another (si+1), the tuple
is {goto_region,τi}. Here, goto_region is the task-level action ai and τi is the planned
trajectory for achieving this high-level action. This tuple is appended for all the task-level
actions to generate the complete task-motion plan. While our approach is applicable to any
domain that require task-motion interaction, we establish the key ideas in Chapter 4 through
two different navigation domains and further validate our approach in Chapter 6 using the
same.

2.2 Related Work

TMP has emerged as an active research area in the recent past, with particular focus on
robot-based manipulation. Manipulation tasks are often rendered infeasible due to the end-
effector’s reachability workspace. This calls for an integrated TMP approach to ensure
geometric feasibility of high-level tasks.

The genesis of TMP can be credited to Fikes and Nilsson for their work on STRIPS [24]
which further led to the Shakey project [78]. Initial works on TMP performed task planning
first, synthesizing a sequence of actions to be executed later by a motion planner. Shakey’s
planner performed a logical search first, assuming that the resulting robot motion plans
can be formulated. This assumption limits the capability of the robot as the high-level
actions may turn out to be non executable due to geometric limitations of the environment
or the robot or both. [17] interleaves task and motion planning by checking individual high-
level action feasibility using semantic attachments. [10] perform a combined search in the
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logical and geometric spaces using a state composed of both the symbolic and geometric
paths. The aSyMov planner described in [10] adopts a combination of Metric-FF [37] and a
sampling-based motion planner. In contrast, we use a temporal task planner, POPF-TIF [87]
with roadmap-based sampling, incorporating robot state uncertainty. Srivastava et al. [99]
implicitly incorporate geometric variables, performing symbolic-geometric mapping using a
planner-independent interface layer. Erdem et al.[21] leverage a boolean satisfiability (SAT)
solver, computing a task-level plan and then refining it until a feasible motion plan is found.

Kaelbling and Lozano-Péres [51] propose a hierarchical approach that tightly integrates
logical and geometric planning. The complexities arising out of long-horizon1 planning are
tackled to the extent that planning is done at different levels of abstraction, thereby reducing
the long-horizons to a number of feasible sub-plans of shorter horizon. This regression2-based
planner assumes that the actions are reversible while backtracking. This work is extended
in [52] to consider the current state uncertainty, modeling the planning problem in the belief
space. The hierarchical approach is also employed in [80, 14] to compute discrete actions
with unbounded continuous variables. A geometric backtrack search is used to instantiate
the symbolic actions in [64]. They also prune certain geometric instantiations, reducing
the complexity. FFRob [28] performs task planning by performing search over a sampled
finite set of poses, grasps and configurations. The authors of [28] extend the FF heuristics,
incorporating geometric and kinematic planning constraints that provide a tight estimate
of the distance to the goal. Our approach is similar to FFRob in the sense that we also
pre-sample robot configurations and then plans with them, incorporating motion constraints.

Toussaint [106] performs optimization over an objective function based on the final geo-
metric configuration (and the cost thereby), finding approximately locally optimal solutions
by minimizing the objective function. The planning problem is modeled as a constraint satis-
faction problem with symbolic states used to define the constraints in the optimization. This
logic-geometric programming is applied to a four manipulator setting in [107]. Lozano-Péres
and Kaelbling [72] model the motion planning as a constraint satisfaction problem over a
subset of the configuration space. Iteratively Deepened Task and Motion Planning (IDTMP)
is a constraint-based task planning approach that incorporates geometric information to
account for the motion feasibility at the task planning level [13]. In our architecture, the
motion costs are returned to the task planner, similar to the motion planner information that
guides the IDTMP task planner. IDTMP performs task-motion interaction using abstraction
and refinement functions whereas we use semantic attachments [16].

1Large environments require a robot to perform many actions to reach the goal, resulting in a long planning
horizon[61].

2Goal regression is the process of planning backwards from the goal [30].
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Though the approaches discussed above fall under the category of TMP for manipulation,
the scope of TMP is not limited to manipulation problems alone. TMP for navigation is
pervasive in most real world scenarios. For example, a mobile office robot may be tasked
with collecting documents and delivering them across multiple floors. Yet, TMP for robot
navigation has received less attention in the past. Real-world planning problems in large scale
environments often require solving several sub-problems. For example, while navigating
to a goal, the robot might have to visit other places of interests. Visiting these places of
interest are high-level tasks that can be addressed using traditional task planners. Yet, these
symbolic planners cannot compute the exact motion costs for these tasks, let alone perform
navigation and path planning. This calls for task plans that are motion planning aware, in
terms of motion costs and its feasibility.

Task planning for robot Navigation Among Movable Obstacles (NAMO) is introduced
in [100], where each object is displace at most once throughout the plan. Van Den Berg et

al. [110] provide a probabilistically complete algorithm for the NAMO class of problems.
However, the robot state is assumed to be known perfectly. In contrast, we plan in the belief
space, computing an estimate of the robot state at each instant. Hauser and Latombe [34, 35]
consider multi-model motion planning for manipulation and legged locomotion, wherein
the space of feasible configurations consists of intersecting spaces of different dimensions.
In [57] a TMP approach is presented in the context of Human-Robot Interaction (HRI).
They integrate probabilistic reasoning with symbolic reasoning by implementing a spoken
dialog system, enabling the robots to ask intelligent queries. Their task planner is based on
Answer Set Programming (ASP) [68]. Jiang et al. [47] focus exclusively on task planning
in robotics, assuming that a feasible motion plan exists for the synthesized task plan. They
provide a comparison between ASP-based and PDDL-based task planners using different
benchmark domains and conclude that PDDL-based planners perform better on tasks with
long solutions, and ASP-based planners tend to perform better on shorter tasks. In this thesis,
we employ a PDDL-based task planner. UP2TA [77] develops a unified path planning and
task planning framework for mobile robot navigation. In this approach, the robot is required
to perform a series of tasks at different locations before returning back to the initial location.
An interesting feature of UP2TA is its task planner heuristic, which is a combination of the
FF heuristic [37] and the Euclidean distance between the waypoints associated with locations.
The path planning layer computes the optimal path between each waypoint with the help
of a Digital Terrain Model (DTM). Wong et al. [112] develop a task planning approach
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that takes into account the optimal traversal costs3 to synthesize a plan. Similar to UP2TA,
they define tasks that are to be performed at different waypoints. However, the path planner
pre-computes an optimal path for all pairs of waypoints, which are then passed to the task
planner to find the optimal sequence of tasks. In contrast, we consider a general approach
where the robot has to reason at a high-level about different objects or locations or regions to
navigate to. The objects/locations/regions are instantiated to their geometric counterpart, by
considering a set of sampled poses. For example, if a robot has to reach a location close to a
chair, the geometric instantiations of this symbolic goal would correspond to a set of poses
around the chair.

Jiang et al. [46] introduced a framework that integrates TMP with reinforcement learning
that is robust to changes in the environment. The inner loop of their dual layer architecture is
a TMP planner that generates task-motion plans to be sent to the outer loop. The outer loop
executes the generated plans to learn from rewards. In contrast MPTP is a purely planning
approach. Lo et al. [70] introduced PETLON, a purely planning approach for navigation
that is task-level optimal and is the work closest to our approach. The inner loop in [46]
uses a TMP planner that is similar to PETLON. However, in PETLON, the action costs
returned by the motion planner is the trajectory length and complete observability is assumed.
In contrast, our framework is more general, since we additionally consider the cost due
to motion and sensing uncertainty and the distance to the goal. It is to be noted that our
approach is not limited to any particular cost function and can be easily adapted to support
any general cost formulation. In Chapter 6, we benchmark the scalability of our approach
and provide a comparison with PETLON by considering a motion planner that evaluates
the geometric-level cost of navigation. In this way we compare MPTP to PETLON by
adapting our cost function to incorporate only the geometric-level cost of traversing from one
location to another. Further, PETLON first compute a task plan using an admissible heuristic
which is then sent to the motion planner for cost evaluation. This updates the heuristic and a
refinement process repeats until the optimal plan is found. In contrast, MPTP evaluates the
motion cost as each action is expanded by the task planner and hence the plan returned is
optimal and needs no refinement.

3The costs are defined in terms of mechanical work and the objective is to find the path with optimal
mechanical work. For more details, refer to [112].



Chapter 3

Preliminaries, Notations and Problem
Definition

We begin by formally defining the notions of task and motion planning introduced in Chap-
ter 2. Then, we state the TMP problem that we discuss in this thesis. The notations and
formalism correspond to that of a state-transition system [30].

3.1 Task Planning

Task planning or classical planning can be defined as the process of finding a discrete
sequence of actions from the current state to a desired goal state [30].

Definition 1. A task domain Ω can be represented as a state transition system and is a tuple

Ω = (S,A,γ,s0,Sg) where:

• S is a finite set of states, each state is a conjunction of propositions1;

• A is a finite set of actions;

• γ : S×A→ S is the state transition function such that s′ = γ(s,a);

• s0 ∈ S is the start state;

• Sg ⊆ S is the set of goal states.

1A proposition is represented by a tuple of elements, which may be constants or variables, and can be
negated [9].
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Definition 2. The task plan for a task domain Ω is the sequence of actions a0, ...,an such

that si+1 = γ(si,ai), for i = 0, ...,n and sn+1 satisfies Sg.

PDDL [75] being the de facto standard syntax for task planning, we resort to the same
for modeling our task domain. PDDL is an action-centred language, where each action ai

is described as a tuple ai = (preai,e f fai), where preai (a set of preconditions for ai ) is a
conjunction of propositions with either positive or negative terms that must hold for action
execution and e f fai (the set of effects of ai) is a conjunction of positive (e f f+ai

) and negative
(e f f−ai

) propositions that are added or deleted upon action application, thereby changing
the system state. The set of positive effects e f f+ai

contains propositions that become true
upon the execution of action ai and the set of negative effects e f f−ai

contains propositions
that evaluates to false upon action execution. An action ai is said to be applicable to a state
si if each proposition of the preconditions holds in si, that is, prea ⊆ si. If an action ai is
applicable in state si, the corresponding successor state si+1 is obtained as, si+1 = γ(si,ai),
where si+1 = (si \ e f f−ai

)∪ e f f+ai
. A valid plan is a sequence of actions that when executed

from s0 results in Sg.
A planning problem with PDDL is created by providing a domain description that

describes the predicates and action schemas with free variables, and a problem description
that specifies the objects, initial state and the goal condition. The objects are used to
instantiate the predicates and action schemas, through a process called grounding. Grounding
is the process by which every combination of objects is used to replace the free variables in
predicates and action schemas to obtain propositions and ground actions respectively. In this
thesis, we use an extension of PDDL [25] that supports durative actions and numeric-valued
fluents. Temporal planning introduces the possibility of computing concurrent plans. A
temporal task domain can be defined by extending the task domain in Definition 1 as follows

Definition 3. A temporal task domain Ω can be represented as state transition system and is

a tuple Ω = (S,A,γ,s0,Sg) where:

• S is a finite set of states;

• V is a set of real valued variables;

• A is a finite set of actions;

• γ : S×A→ S is the state transition function such that s′ = γ(s,a);

• s0 ∈ S∪V is the start state;



3.2 Motion Planning 20

• Sg ⊆ S∪V is the set of goal states.

A durative action is a tuple ai = (preai,e f fai,durai), where preai and e f fai are temporally
annotated by specifying conditions/effects that holds at the start, end or during the entire

action interval and are expressed using the constructs at start, at end and over all respectively.
Note that these constructs are specific to PDDL formalism. durai corresponds to the duration
of action ai.

3.2 Motion Planning

Motion planning finds a sequence of collision free poses from a given initial/start pose
(position and orientation) to a desired goal pose [66].

Definition 4. A motion planning problem is a tuple M = (C, f ,q0,G) where:

• C is the configuration space or the space of possible robot poses;

• f = {0,1} determines if a configuration/pose is in collision ( f = 0) or not (C f ree with
f = 1). C f ree denotes the set of all poses that are not in collision;

• q0 is the initial configuration;

• G is the set of goal configurations.

Definition 5. A motion plan for M finds a valid trajectory in C from q0 to qn ∈G such that f

evaluates to true for q0, ...,qn.

In addition to the sequential form of the definition above, a motion plan can also be defined
by a continuous trajectory

Definition 6. A motion plan for M is a function of the form τ : [0,1]→ C f ree such that

τ(0) = q0 and τ(1) ∈ G.

We will use a combination of the two to define the TMP problem and use roadmap based
motion planner to generate collision free configurations.
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3.3 Task-Motion Planning

TMP essentially involves combining discrete and continuous decision-making to facilitate
efficient interaction between the two domains. Starting from an initial state, TMP synthesizes
a plan to a goal state by a concurrent or interleaved set of discrete actions and continuous
collision-free motions. Below we define the TMP problem formally.

Definition 7. A task-motion planning is a tuple Ψ = (C,Ω,φ ,ξ ,q0) where:

• φ : S→ 2C, is a function mapping states to the configuration space. For example, if
s represents the task state— the robot is in a corridor, then φ(s) corresponds to all
configurations such that the robot is in the corridor;

• ξ : A→ 2C, is a function mapping actions to motion plans. We recall here that motion
planning is essentially computing collision free poses in C.

Definition 8. The TMP problem for the TMP domain Ψ is to find a sequence of actions

a0, ...,an such that si+1 = γ(si,ai), sn+1 ∈ Sg and to find a sequence of motion plans τ0, ...,τn

such that for i = 0, ...,n, it holds that

τi(0) ∈ φ(si) and τi(1) ∈ φ(si+1) (3.1)

τi+1(0) = τi(1) (3.2)

τi ∈ ξ (ai) (3.3)

3.4 Problem Definition

In this thesis, we consider the TMP problem for a mobile robot (or robots) operating in a
partially-observable environment. The map of the environment is either known a priori or
is built using a standard SLAM algorithm2. At any time k, we denote the robot pose (or
configuration qk) by xk

.
= (x,y,θ), the acquired measurement is denoted by zk and the applied

control action is denoted as uk. We consider a standard motion model with Gaussian noise

xk+1 = f (xk,uk)+wk , wk ∼N (0,Wk) (3.4)

where wk is the random unobservable noise, modeled as a zero mean Gaussian. To process
the landmarks in the environment we measure the range and the bearing of each landmark

2http://wiki.ros.org/slam_gmapping/
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relative to the robot’s local coordinate frame. In general, we consider the observation model
with Gaussian noise

zk = h(xk)+ vk , vk ∼N (0,Qk) (3.5)

It is to be noted that we assume data association as solved and hence given a measurement
we know the corresponding landmark that generated it. This is not a limitation and our
approach can be extended to incorporate reasoning regarding data association, as shown
recently in [83]. The motion (8.1) and observation (8.2) models can be written probabilisti-
cally as p(xk+1|xk,uk) and p(zk|xk) respectively. Given an initial distribution p(x0), and the
motion and observation models, the posterior probability distribution at time k can be written
as

p(X0:k|Z0:k,U0:k−1) = p(x0)
k

∏
i=1

p(xk|xk−1,uk−1)p(zk|xk) (3.6)

where X0:k
.
= {x0, ...,xk}, Z0:k

.
= {z0, ...,zk} and U0:k−1

.
= {u0, ...,uk−1}. This posterior prob-

ability distribution is the belief at time k, denoted by b[Xk]∼N (µk,Σk). Similarly, given an
action uk, the propagated belief can be written as

b[ ¯Xk+1] = p(X0:k|Z0:k,U0:k−1)p(xk+1|xk,uk) (3.7)

Given the current belief b[Xk] and the control uk, the propagated belief parameters can be
computed using the standard EKF [53] prediction as

µ̄k+1 = f (µk,uk)

Σ̄k+1 = FkΣkFT
k +VkWkV T

k

(3.8)

where Fk is the Jacobian of f (·) with respect to xk and Vk is the Jacobian of f (·) with respect
to uk. For brevity, the linearized process noise will be denoted as Rk = VkWkV T

k . Upon
receiving a measurement zk, the posterior belief b[Xk+1] is computed using the EKF update
equations

Kk = Σ̄k+1HT
k (HkΣ̄k+1HT

k +Qk)
−1

µk+1 = µ̄k+1 +Kk(zk+1−h(µ̄k+1))

Σk+1 = (I−KkHk)Σ̄k+1

(3.9)

where Hk is the Jacobian of h(·) with respect to xk, Kk is the Kalman gain and I ∈ R3×3 is
the identity matrix.



Chapter 4

Single-robot MPTP

In this chapter we develop the MPTP approach and prove its probabilistic completeness and
task-level optimality. This chapter thus details our contributions C1 and C2.

4.1 Task Planning

TMP for navigation requires that the task planner takes into account the motion feasibility and
the corresponding motion costs while synthesizing a plan. As opposed to the manipulation
domain, where the motion feasibility is corroborated with the end-effector’s reachability
workspace, in navigation domains this is often validated against the cost constraints, for
example, a robot navigating in a corridor with a bound on the pose covariance to avoid
collisions. As such, any task planner customized to enable the task-motion interface can be
employed for our approach. In our tests, PDDL is used to define the task domain.

However, PDDL-based planning frameworks are limited, as they are incapable of handling
rigorous numerical calculations1. Most approaches perform such calculations via external
modules or semantic attachments, e.g. [16]. The term semantic attachment was coined by
Weyhrauch [111] to describe the association of algorithms to function and predicate symbols
via external procedures. However, the effects returned by these semantic attachments are not
exploited in identifying helpful actions during search and hence do not provide any heuristic
guidance, deeming the task unsolvable most often [6]. An action is considered helpful if it
achieves at least one of the lowest level goals in the relaxed plan to the state at hand [37].
Recently, Bernardini et al. [6] developed a PDDL-based temporal planner to implicitly
trigger such external calls via a specialized semantic attachments called external advisors.

1PDDL+ [26], an extension of PDDL supports mixed discrete and continuous non-linear changes.
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Figure 4.1 Map of the office environment obtained after a SLAM session.

They classify variables into direct (V dir), indirect (V ind) and free (V f ree). V dir and V f ree

variables are the normal PDDL function variables whose values are changed in the action
effects, in accordance with PDDL semantics. V ind variables are affected by the changes in
the V dir variables. A change in a V dir variable invokes the external advisor which in turn
computes the V ind variables. The Temporal Relaxed Plan Graph (TRPG) [12] construction
stage of the planner incorporates the indirect variable values for heuristic calculation, thereby
synthesizing an efficient goal-directed search. We employ this semantic attachment based
approach for the task-motion interface. The overall procedure and the interface layer are
discussed in detail in the remainder of this chapter.

Below, we elucidate the PDDL formalism for two different navigation domains that
we have considered. It is to be noted that the semantic attachment procedure is domain
independent and remains the same in both the domains. But the PDDL domain and problem
description differ, as the two domains are different in nature. In the first domain, the
underlying roadmap for motion planning does not change during plan computation. However,
in the second domain, the roadmap is updated during plan computation. Description of the
two domains are detailed below.

4.1.1 Office Domain

We consider a robot navigating in an office environment to collect and deliver documents.
The map of the environment following a SLAM session is shown in Fig 4.1 (snapshot of
the environment can be seen in Fig. 6.1). The regions c1, . . . ,c9 are cubicles and L denotes
a lift. The robot, starting from region S has to visit certain cubicles to receive documents.
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( :durative-action g o t o _ r e g i o n

:parameters ( ? v − r o b o t ? from ? t o − r e g i o n )

:duration (= ? d u r a t i o n 100)

:condition ( a t s t a r t ( r o b o t _ i n ? v ? from ) )

:effect ( and ( a t s t a r t ( n o t ( r o b o t _ i n ? v ? from ) ) )

( a t s t a r t ( i n c r e a s e ( t r i g g e r e d ? from ? t o ) 1 ) )

( a t end ( r o b o t _ i n ? v ? t o ) ) ( a t end ( a s s i g n ( t r i g g e r e d ? from ? t o ) 0 ) )

( a t end ( i n c r e a s e ( a c t−c o s t ) ( e x t e r n a l ) ) )

( a t end ( i n c r e a s e ( goa l− t r a c e ) ( bound ) ) ) )

( :durative-action c o l l e c t _ d o c u m e n t

:parameters ( ? v − r o b o t ? r − r e g i o n )

:duration (= ? d u r a t i o n 20)

:condition ( and ( a t s t a r t ( r o b o t _ i n ? v ? r ) ) ( a t s t a r t ( > ( g e t ? r ) 0 ) )

( o ve r a l l ( r o b o t _ i n ? v ? r ) ) )

:effect ( and ( a t end ( c o l l e c t e d ? r ) ) ( a t end ( i n c r e a s e ( a c t−c o s t ) 4 ) ) ) )

( :durative-action g o t o _ l i f t

:parameters ( ? v − r o b o t ? from ? t o − r e g i o n )

:duration (= ? d u r a t i o n 100)

:condition ( a t s t a r t ( r o b o t _ i n ? v ? from ) )

:effect ( and ( a t s t a r t ( n o t ( r o b o t _ i n ? v ? from ) ) )

( a t s t a r t ( i n c r e a s e ( t r i g g e r e d ? from ? t o ) 1 ) )

( a t end ( r e a c h e d ? t o ) ) ( a t end ( a s s i g n ( t r i g g e r e d ? from ? t o ) 0 ) )

( a t end ( i n c r e a s e ( a c t−c o s t ) ( e x t e r n a l ) ) ) )

Figure 4.2 A fragment of the PDDL office domain.
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Navigating to cubicles/regions is encoded using a single high-level action goto_region.
Once a robot reaches a cubicle from which a document is to be collected, we assume that a
human places the requisite document. Thus, the robot needs to wait at the specific location
for a fixed duration of time in which the human places the required document on the robot.
This is encoded using a high-level action collect_document. These documents then have
to be delivered to another floor, which implies using the lift L. Navigating to the lift is
modeled using a different high-level action goto_lift. This is because, unlike the action
goto_region, goto_lift is to be performed only if the robot has collected all the necessary
documents to be delivered. The stars with different colors represent certain unique features
assumed to be known and modeled like, printer, trash can, lounge, that aids the robot in better
localization. Hence, once the robot knows the regions to visit, then it suffices to perform
goto_region actions and collect the documents from these regions. However, to synthesize
an optimal plan it is necessary to sequence these actions in an order that minimizes the cost
function. It is therefore inevitable to obtain the motion costs of these goto_region actions,
so as to accurately synthesize the optimal plan.

A fragment of the PDDL domain is shown in Fig. 4.2. The PDDL domain dynamics
is specified through a set of durative actions (:durative-action). We use the following
parameters to model these actions: ?v is the name of the robot, ?from is the cubicle the
robot is currently at and ?to is the cubicle to which the robot needs to move, ?r corresponds
to the different regions or cubicles in the environment. Each action is described using
:condition and :effect, as defined in Chapter 3, and defines the conditions and effects that
holds at the start (at start), end (at end) or during the entire action interval (overall),
respectively. The predicate robot_in checks if the robot is in a particular region. The
function triggered encodes the fact that the robot is moving from one cubicle (from) to
another (to). The functions get and collected model the cubicles from which the document
is collected and whether it has been collected. Finally, act-cost stores the cost associated
with the actions and goal-trace keeps the robot state uncertainty bounded. The actions
goto_region and goto_lift invoke the external module call once the facts (increase
(act-cost) (external)) and (increase (goal-trace) (bound)) are encountered.
Here, act-cost, goal-trace are the direct variables in V dir and external, bound are the
indirect variables V ind . The function (triggered ?from ?to) is assigned the numerical
value 1 each time the actions are expanded and re-initialized to 0 once the action duration is
completed. In this way, the grounded variables from (start) and to (goal) are communicated
to the motion planner. The variables external and bound returns the motion cost and the
goal covariance trace respectively, which are computed by the external module. The action
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collect_document does not invoke the motion planner. In the problem description, the
function (get ?r), where r is a free variable denoting cubicles, is initialized to 1 for the
cubicles from which the documents are to be collected and to 0 for the remaining.

4.1.2 Corridor Domain

We consider a navigation domain, similar to the one in [47], wherein a robot navigates
through a building floor that consists of several rooms connected to one another through a
corridor. These rooms have doors, which can either be closed or open, connecting them to the
corridor. In addition, some of the rooms are also accessible from each other, through doors
in between them. The robot can navigate through the entire building by opening these doors.
We assume that once the robot is near to a closed door that directly connects a room to the
corridor, a human opens the door to allow the robot to pass through. Navigating to rooms can
hence be encoded using a single high-level action goto_room. However, the doors between
any two rooms are automatic, that opens only when the robot is directly in front of the door.
This requires the robot to navigate to the door and is encoded using the high-level action
goto_door. Upon reaching the goal, since the robot is uncertain about its pose, the robot
can be anywhere within its current belief distribution. Taking this into account, on reaching
the door it is open only if the trace of the pose covariance is within a certain bound η . If
the trace is within the bound, an edge is added to the Probabilistic Roadmap (PRM) [56]
graph between the current node and the nearest node in the next room to which the robot can
navigate via the door. Once the robot traverses the door to reach the next room, the newly
added edge is removed from the roadmap. This process is illustrated in Fig. 4.3. The addition
and deletion of edges is performed by the external module.

A fragment of the corridor PDDL domain is shown in Fig. 4.4. Similar to the office
domain, we use the following parameters: ?from is the room the robot is currently at and ?to

is the room which the robot needs to visit, ?d is any door. The predicate visited_in checks
if the robot has visited a room, hasdoor checks if the room has a door that opens to another
room, and expanded model the change in the roadmap. Similar to the previous domain, the
actions goto_room and goto_door invoke the external module call once the fact (increase
(act-cost) (external)) is encountered. Here, act-cost is the direct variable in V dir

variable and external is the indirect variable in V ind . The function (triggered ?from

?to) and (expanded ?r ?d) are assigned the value of 1 each time the actions are expanded
and re-initialized to 0 once the action duration is completed. This is performed so that
the grounded variables from (start) and to (goal) as well as r (start) and d (goal) are
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(a) goto_door (b) goto_door

(c) goto_room (d) goto_room

Figure 4.3 The addition and deletion of an edge to the PRM graph. The red nodes are the ones that
are close to the door. (a) Shows a possible path in green, when the goto_door action is expanded.
Note that there is no edge between the two red colored nodes. (b) Upon satisfying the trace constraint,
an edge added between the two nodes close to the door. (c) The goto_room action takes the robot to
the next room. (d) As the robot navigates towards the first node (red colored node) in the new room,
the edge connecting it to the room from which the robot traversed is removed from the roadmap.

communicated to the motion planner. The variables from, to and r are used to denote the
rooms and the variable d represents the doors available. This can be seen in the parameters
definition of the actions. The variable external returns the motion cost computed by the
external module.

4.2 Motion Planning

Independently of the domain, we use a sampling based PRM to instantiate robot poses for the
task actions. To begin with, the initial mean and covariance of the robot pose is assumed to be
known. This means that the initial state s0 corresponds to a single pose instantiation q0. The
regions to be navigated to are also instantiated into poses, by sampling from the pose space
within each region. Once an action ai is expanded by the task planner, the corresponding start
and goal states, that is si and si+1 are communicated to the motion planner. This is facilitated
by the functions triggered and expanded, as detailed in the previous section. For example,
the task state si might specify that the robot is in cubicle c2 and the goal state si+1 can be for
the robot to reach cubicle c4. In this scenario φ(si) and φ(si+1), that is, the mapping from
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( :durative-action goto_room

:parameters ( ? from ? t o − room )

:duration (= ? d u r a t i o n 100)

:condition ( and ( a t s t a r t ( r o b o t _ i n ? from ) ) ( a t s t a r t

( c o n n e c t e d ? from ? t o ) ) )

:effect ( and ( a t s t a r t ( n o t ( r o b o t _ i n ? from ) ) )

( a t s t a r t ( i n c r e a s e ( t r i g g e r e d ? from ? t o ) 1 ) )

( a t end ( r o b o t _ i n ? t o ) ) ( a t end ( a s s i g n ( t r i g g e r e d ? from ? t o ) 0 ) )

( a t end ( i n c r e a s e ( a c t−c o s t ) ( e x t e r n a l ) ) ) ( a t end ( v i s i t e d ? t o ) ) ) )

( :durative-action g o t o _ d o o r

:parameters ( ? r − room ? d − door )

:duration (= ? d u r a t i o n 40)

:condition ( and ( a t s t a r t ( r o b o t _ i n ? r ) ) ( a t s t a r t ( h a s d o o r ? r ? d ) )

( o ve r a l l ( r o b o t _ i n ? r ) ) )

:effect ( and ( a t s t a r t ( i n c r e a s e ( expanded ? r ? d ) 1 ) )

( a t end ( a s s i g n ( expanded ? r ? d ) 0 ) )

( a t end ( i n c r e a s e ( a c t−c o s t ) ( e x t e r n a l ) ) ) ) )

Figure 4.4 A fragment of the PDDL corridor domain.
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states to configurations, correspond to all possible poses such that the robot is in cubicles c2

and c4 respectively. Since the set of possible poses is infinite, we randomly sample a set of
poses corresponding to each task state si. It is to be noted that this sampling is an independent
problem and this set is incorporated while building the entire roadmap. For each region
si, the number of pose instantiations will be denoted by sn

i and a particular instantiation by
snk

i . With the pose instantiation of si as the start node, for each pose instantiation of si+1,
we simulate a sequence of controls along each edge starting from snk

i and ending in sn j
i+1,

estimating the beliefs at the each of these nodes using (3.8)- (9.4). The sn j
i+1 that corresponds

to the minimum cost is then selected as the goal pose to reach, for the state si+1. Thereafter,
this instantiation becomes the start node when an expansion is attempted from state si+1. It is
true that PRM is in the configuration space and not in the belief space, but the basic problem
remains the same since we are essentially finding a sequence of actions that minimizes the
objective function which is a function of the resulting beliefs. Our PRM approach is similar
to the Belief Roadmap (BRM) [89] approach and differs in the way one-step belief updates
are performed. Moreover, BRM assume maximum likelihood observations but we do not.

Since we plan in the belief space of the robot state, given the mean and covariance of
the starting node we propagate the belief along the edges of the PRM as the roadmap is
expanded during the search. Belief update is performed upon reaching a node if a landmark
is successfully detected by the robot’s perception system. Since we are in the planning phase
and yet to obtain observations, we simulate future observations zk+1 given the propagated
belief b[ ¯Xk+1], the set of landmarks LN = l1, . . . , ln and the measurement model (8.2). In this
work, we model landmarks using AprilTags [79] which are placed on the objects of interest.
Given a pose x ∈ b[ ¯Xk+1], the nominal observation ẑ = h(x, li) is corrupted with noise to
obtain zk+1, which is then used to compute the posterior belief.

4.3 Task-Motion Planning for Navigation

In our approach, the interface between task and motion planning occurs through semantic
attachments. Formally, semantic attachment can be defined as

Definition 9. Semantic attachments is a functional mapping from the set of direct variables

to the set of indirect variables, that is, χ : V dir→V ind .

We recall here that for the office domain V dir = {act-cost,goal-trace} and V ind =

{external,bound}. For the corridor domain, we have V dir = {act-cost} and V ind =

{external}. The planner receives as input- the PDDL domain, problem description, the
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Algorithm 1 TMP for Navigation in Belief Space
Input: Ψ = (C,Ω,φ ,ξ ,q0): Task-Motion domain, η : Uncertainty budget

1: while true do
2: ai← task planning(Ω)

▷ ai = an action selected to expand the next state
3: π∗← /0 // Task-Motion Plan
4: if ai ∈ As then
5: External module← V dir

▷ V dir = {act− cost,goal− trace}
6: current task state← si, next task state← si+1
7: c← /0, T← /0
8: current task state← φ(si), next task state← φ(si+1)
9: for each sn j

i+1 ∈ φ(si+1) do
10: start node← snk

i , goal node sn j
i+1

11: Belief space search from start node to goal node.
12: c← c j, T ← τ

j
i

13: end for
14: j∗ = arg min c
15: τi← τ

j∗
i

▷ τi is the selected motion plan to arrive at the task state si+1.
16: V ind ← External module
17: π∗← append(π∗, (ai,τi))
18: end if
19: end while
20: return π∗



4.3 Task-Motion Planning for Navigation 32

Algorithm 2 Belief space search
Input: Roadmap (sampled poses and edges), start node n with belief (µn,Σn) corresponding

to start state si, goal node (φ(si+1))
1: τi← n
2: while φ(si+1) not reached do
3: for each edge from n to n′ do
4: Propagate the belief (3.8)
5: if Landmark within sensing range then
6: Compute posterior belief (9.4).
7: end if
8: Select n′ with minimum cost.
9: c← minimum cost, τi← append(τi,n′)

10: n′ = n
11: end for
12: end while
13: return c,τi

shared library and other input parameters. The input parameter specifies the regions/rooms
and the corresponding pose instantiations. For the office domain, these pose instantiations
are the poses that lie inside the cubicles and for the corridor domain they are the poses that
lie inside the rooms. These poses are sampled once the map of the environment is available
as described in the previous section.

An overview of our TMP approach is presented in Algorithm 1. The external module
computes the V ind values and is invoked only when a change occurs in V dir variables due to
the action effects. The PDDL keyword increase is overloaded to refer to an encapsulated
object [87] and the external module is called if the PDDL action to be expanded has an
effect of the form (increase (vdir

i ) (vind
j )), where vdir

i ∈ V dir and vind
j ∈ V ind . We

denote the set of such actions by As. It is to be noted that the elements of this set can vary
depending on the requirements of a particular domain. However, the process for achieving
the semantic attachments of the external module remains the same. In this thesis, the set
As = {goto_region,goto_lift,goto_room,goto_door}. Every time a vdir

i is changed
due to the direct effects of an action ai ∈ As, the values of the respective vind

j is calculated
by the external module, attaching the computed value to the indirect variable vind

j , thereby
updating the state. Once an action ai is expanded by the task planner, the corresponding
start (si) and goal (si+1) task states are communicated to the motion planner through the the
function (triggered ?from ?to) (line 6). For the task state si, the robot pose τi(0) = φ(si)

is known since it is the mean of the current belief distribution. For the task state si+1, each
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pose instantiation sn j
i+1 ∈ φ(si+1) is considered as a goal node (line 9). With τi(0) as the start

node, a motion plan is attempted to each of the goal node sn j
i+1. The set of feasible motion

plans is obtained by performing a search over the roadmap. Along each edge of the roadmap,
the belief at si is propagated to sn j

i+1 by simulating the sequence of controls and observations.
We use EKF to compute the appropriate matrices for belief computation as shown in 3.8.
The posterior belief is computed at each node if a landmark is detected by the robot’s sensor.
This belief search process is shown in Algorithm 2. The motion costs and the corresponding
feasible motion plans are populated to the sets c and T respectively (line 12). The motion
plan that corresponds to minimum cost is then computed as τ

j∗
i (lines 14-15). The computed

values by the external module is then passed to the respective indirect variables V ind (line 16),
achieving semantic attachments. The corresponding motion plan τi and the goal node s

n j∗
i+1

are stored and this goal node subsequently becomes the start node for the roadmap search
from si+1. Consequently, the belief estimates returned by the semantic attachments guide the
TRPG in identifying the helpful actions, besides providing an efficient heuristic evaluation
for the task plan.

For the office domain, the feasibility of the motion plan τ
j∗

i is checked by accounting
for the trace of the covariance matrix upon reaching a cubicle associated with si+1, that
is, trace(Σ

s j∗
i+1
) . Since the cubicle doors are of specific length, we bound the trace by a

constant η . However, the failure of an action ai to find a feasible motion plan during the
current expansion does not mean that it has to be discarded. Feasibility also depends on the
sequence of actions performed earlier. A different action sequence prior to ai can render ai

feasible. Hence infeasible actions are not discarded and are set aside for reattempting later.
Consequently the feasibility check is performed for the returned optimal plan π∗. The plan is
feasible if for each ai ∈ π∗, the trace(Σ

s j∗
i+1
)< η ; else there is no is feasible plan.

4.3.1 Cost Function

So far we have been agnostic about the cost function used while selecting the nodes for
expansion. Though our formulation can be adapted to any generic cost functions we use a
standard cost function [43]

c .
= Mucu +MGcG +MΣcΣ (4.1)

where cu is the control usage, cG is the distance to goal and cΣ is the cost due to uncertainty,
defined as trace(Σ), where Σ is the state covariance associated with the robot belief. Mu,MG

and MΣ are user-defined weights. For the current node n that is considered for expansion,
the cost c is computed for each of the nodes that shares an edge with n. The node with the
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minimum c is selected as the next node n∗ for expansion. As such, this can be extended to
non-myopic planning in a trivial manner, but it is not the current focus of this thesis. It is to
be noted that n∗ is considered only if it is not already in the expanded path with the n being
the last node added to the path. So if n∗ leads to a cycle, the next best node n∗∗ is selected.

As mentioned in the previous section, in case of the office domain we add the condition
cΣg < η , where Σg is the trace of the goal state covariance and η is a constant. The cubicle
doors have a width of 2m and considering maximum uncertainty along the door width we fix
η = 3m2 as the maximum upper limit and discard the motion plans with cΣg > 3 (see lines
19-24, Algorithm 1). For the corridor domain, since the automatic doors are of 1m in length,
we set an upper bound of η = 0.75m2, which corresponds to an uncertainty budget of 0.5m in
each of the pose component. This check is performed when the robot is at a node directly in
front of the door as a result of executing the action goto_door. If the estimated covariance
is within the uncertainty budget an edge is added between the current node and the nearest
node in the next room to which the robot can navigate via the door. Once the robot traverses
the door to reach the next room by executing the action goto_room, the newly added edge is
removed from the roadmap. The process of addition and deletion of an edge occur within the
external module as a consequence of the goto_door and goto_room actions.

4.3.2 Optimality

For a given roadmap, the plan synthesized by our approach is optimal at the task-level.
This means that the task plan cost returned by our approach (c∗) is lower than any of the
other possible task plan costs (c). Let us denote the optimal plan corresponding to c∗ as
π∗. Suppose that there exists a plan π with associated cost c such that c < c∗. If π and π∗

have the same sequence of actions, this is not possible since the action costs are evaluated
by the motion planner and for a given roadmap, the motion cost returned is the optimal for
each action, giving c∗ ≤ c. If π and π∗ have a different sequence of actions, the task planner
ensures that the returned plan is optimal, giving c∗ ≤ c. Therefore, in both the case, we have
c∗ ≤ c.

4.3.3 Completeness

We provide a sufficient condition under which the probability of our approach returning a
plan approaches one exponentially with the number of samples used in the construction of
the roadmap. A task planning problem, Ω = (S,A,γ,s0,Sg) is complete if it does contain
any dead-ends [38], that is there are no states from which goal states cannot be reached.
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The PRM motion planner is probabilistically complete [55], that is the probability of failure
decays to zero exponentially with the number of samples used in the construction of the
roadmap. Therefore, if the motion planner terminates each time it is invoked then probability
of finding a plan, if it exists, approaches one.

On the one hand our approach is probabilistically complete; on the other hand, it is
also resolution complete since the motion plan feasibility depends on the parameter η .
Nevertheless, given a fixed value of η , the probability that the planner fails to return a
solution, if one exists, tends to zero as the number of samples approaches infinity. In this
sense the best that we can guarantee is probabilistic completeness.



Chapter 5

Multi-robot MPTP

We extend the concepts discussed in Chapter 4 to facilitate multi-robot TMP which cor-
responds to our contribution C3. To this end, we consider a distributed multi-robot TMP
framework where robots operating in a known environment can observe each other, thereby
facilitating collaborative multi-robot localization. When one robot detects another, the re-
sulting localization uncertainty for both the robots is less than when there is no such mutual
observations [92]. This stems from the integration of multi-robot constraints into the joint
robot beliefs. In this work we only consider robots mutually observing themselves at the
same time. However, it should be noted that multi-robot constraints can also be formulated
for different robots observing the same environment at different time instances [42]. As
before, the map of the environment is either known a priori or is built using a standard SLAM
algorithm. At any time k, we denote the robot pose (or configuration qk) by xk

.
= (x,y,θ), the

acquired measurement is denoted by zk and the applied control action is denoted as uk. We
consider a standard motion (8.1) and observation model (8.2) with Gaussian distributed noises
as introduced in Chapter 3, that is, xk+1 = f (xk,uk)+wk and zk = h(xk)+ vk, respectively.
It is to be noted that we assume data association as solved and hence given a measurement
we know the corresponding landmark that generated it. This is not a limitation and our
approach can be extended to incorporate reasoning regarding data association, as shown
recently in [83].

We now derive the joint multi-robot belief and show how mutual observation influence
the inference. A formal definition for the belief of a robot was already given in Chapter 3,
however for the convenience of the reader we re-state them below. The motion (8.1) and
observation (8.2) models can be written probabilistically as p(xk+1|xk,uk) and p(zk|xk),
respectively. Given an initial distribution p(x0), the motion and observation models, the
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posterior probability distribution at time k can be written as

p(xk|Z0:k,U0:k−1) = η p(zk|xk)
∫

p(xk|xk−1,uk−1)b[xk−1] (5.1)

where Z0:k
.
= {z0, ...,zk}, U0:k−1

.
= {u0, ...,uk−1} and b[xk−1] ∼N (µk−1,Σk−1) is the pos-

terior probability distribution or belief at time k− 1. Similarly, given an action uk, the
propagated belief can be written as

b[ ¯xk+1] =
∫

p(xk+1|xk,uk)b[xk] (5.2)

Given the current belief b[xk] and the control uk, the propagated belief parameters can be
computed using the standard EKF prediction as

µ̄k+1 = f (µk,uk)

Σ̄k+1 = FkΣkFT
k +VkWkV T

k

(5.3)

where Fk is the Jacobian of f (·) with respect to xk and Vk is the Jacobian of f (·) with respect
to uk. For brevity, the linearized process noise will be denoted as Rk = VkWkV T

k . Upon
receiving a measurement zk, the posterior belief b[xk+1] is computed using the EKF update
equations

Kk = Σ̄k+1HT
k

(
HkΣ̄k+1HT

k +Qk

)−1

µk+1 = µ̄k+1 +Kk
(
zk+1−h(µ̄k+1)

)
Σk+1 = (I−KkHk) Σ̄k+1

(5.4)

where Hk is the Jacobian of h(·) with respect to xk, Kk is the Kalman gain and I ∈ R3×3

is the identity matrix. In the following we formulate the multi-robot localization problem.
For simplicity we consider only two robots r and r′, but the formulation can be trivially
expanded to incorporate R robots. At any time k, we denote the pose of robot r by xr

k, the
acquired measurement is denoted by zr

k and the applied control action is denoted as ur
k. We

first consider the case in which there are no mutual observations between the robots. For two
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robots r and r′, the joint belief at time k is given by

p(xr
k,x

r′
k |Zr

0:k,Z
r′
0:k,U

r
0:k−1,U

r′
0:k−1)

= p(xr
k|Zr

0:k,U
r
0:k−1)p(xr′

k |Zr′
0:k,U

r′
0:k−1)

= η p(zr
k|xr

k)
∫

p(xr
k|xr

k−1,u
r
k−1)b[x

r
k−1]·

p(zr′
k |xr′

k )
∫

p(xr′
k |xr′

k−1,u
r′
k−1)b[x

r′
k−1] (5.5)

As seen above the joint belief is factorized into individual beliefs of robot r and r′. Let
xk = [xr

k,x
r′
k ] be the joint state, then the EKF prediction can be written as

µ̄k = [ f (µr
k−1,u

r
k−1), f (µr′

k−1,u
r′
k−1)]

Σ̄k = Fk−1Σk−1FT
k−1 +Rk−1

(5.6)

where Fk−1, Σk−1 and Rk−1 are diagonal matrices. This renders the predicted covariance
matrix µ̄k diagonal. Since we do not consider mutual observations, the Kalman gain is also a
diagonal matrix

Fk−1 =

Fr
k−1 0
0 Fr′

k−1

 , Σk−1 =

Σr
k−1 0
0 Σr′

k−1


Rk−1 =

Rr
k−1 0
0 Rr′

k−1

 , Kk−1 =

Kr
k−1 0
0 Kr′

k−1

 (5.7)

giving a diagonal covariance matrix Σk. As such this corresponds to performing the belief
propagation and updates for each robot individually [92].

Now let us consider the case when robots can mutually observe each other. When robot r

observes robot r′ at time k, the measurement constraint will be denoted by ζ
r,r′
k . It is assumed

that a common reference frame is established so that the robots can communicate relevant
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information with each other. The joint belief at time k is given by

p(xr
k,x

r′
k |Zr

0:k,Z
r′
0:k,ζ

r,r′
k ,U r

0:k−1,U
r′
0:k−1)

= p(xr
k|xr′

k ,Z
r
0:k,ζ

r,r′
k ,U r

0:k−1)p(xr′
k |Zr′

0:k,U
r′
0:k−1)

= η p(zr
k|xr

k)p(xr
k|xr′

k ,Z
r
0:k−1,ζ

r,r′
k ,U r

0:k−1)·

p(zr′
k |xr′

k )p(xr′
k |Zr′

0:k−1,U
r′
0:k−1)

= η p(zr
k|xr

k)p(ζ r,r′
k |x

r
k,x

r′
k )
∫

p(xr
k|xr

k−1,u
r
k−1)b[x

r
k−1]·

p(zr′
k |xr′

k )
∫

p(xr′
k |xr′

k−1,u
r′
k−1)b[x

r′
k−1] (5.8)

The measurement likelihood term p
(

ζ
r,r′
k |x

r
k,x

r′
k

)
introduces cross correlations in Σk. This is

because the measurement Jacobian is computed with respect to xr
k−1 and xr′

k−1 [74] unlike
the previous scenario where the measurement Jacobian was computed separately for each r

using its corresponding xr
k−1. We assume that robot r measures the range and bearing of r′,

that is, ζ
r,r′
k = [dr,r′

k ,φ r,r′
k ]T where

dr,r′
k =

√
(xr′

k (1)− xr
k(1))

2 +(xr′
k (2)− xr

k(2))
2

φ
r,r′
k = arctan(

xr′
k (2)− xr

k(2)
xr′

k (1)− xr
k(1)

)− xr
k(3) (5.9)

Thus the Jacobian Hk−1, which is the partial derivative of the measurement function with
respect to the joint state is

Hk−1 =


∂dr,r′

k
∂xr

k(1)
∂dr,r′

k
∂xr

k(2)
∂dr,r′

k
∂xr

k(3)
∂dr,r′

k

∂xr′
k (1)

∂dr,r′
k

∂xr′
k (2)

∂dr,r′
k

∂xr′
k (3)

∂φ
r,r′
k

∂xr
k(1)

∂φ
r,r′
k

∂xr
k(2)

∂φ
r,r′
k

∂xr
k(3)

∂φ
r,r′
k

∂xr′
k (1)

∂φ
r,r′
k

∂xr′
k (2)

∂φ
r,r′
k

∂xr′
k (3)



=

−
(xr′

k (1)−xr
k(1)

dr,r′
k

− (xr′
k (2)−xr

k(2))

dr,r′
k

0 (xr′
k (1)−xr

k(1)

dr,r′
k

(xr′
k (2)−xr

k(2))

dr,r′
k

0

(xr′
k (2)−xr

k(2))

(dr,r′
k )2

− (xr′
k (1)−xr

k(1))

(dr,r′
k )2

−1 − (xr′
k (1)−xr

k(1))

(dr,r′
k )2

(xr′
k (2)−xr

k(2))

(dr,r′
k )2

0


(5.10)

The first time when a mutual observation is incorporated (say at time k), the measure-
ment Jacobian introduces cross correlations in Σk and thereafter the matrices are no longer
diagonal.



5.1 Approach 40

( :durative-action goto_room

:parameters ( ? from1 ? from2 ? t o 1 ? t o 2 − room ? r1 ? r2 − r o b o t )

:duration (= ? d u r a t i o n 100)

:condition ( and ( a t s t a r t ( r o b o t _ i n ? r1 ? from1 ) ) ( a t s t a r t

c o n n e c t e d ? from1 ? t o 1 ) ) ( a t s t a r t ( r o b o t _ i n ? r2 ? from2 ) )

( a t s t a r t ( c o n n e c t e d ? from2 ? t o 2 ) ) )

:effect ( and ( a t s t a r t ( n o t ( r o b o t _ i n ? r1 ? from1 ) ) ) ( a t s t a r t

( n o t ( r o b o t _ i n ? r2 ? from2 ) ) ) ( a t s t a r t ( i n c r e a s e

( t r i g g e r e d ? r1 ? from1 ? t o 1 ? r2 ? from2 ? t o 2 ) 1 ) ) ( a t end

( r o b o t _ i n ? r1 ? t o 1 ) ) ( a t end ( r o b o t _ i n ? r2 ? t o 2 ) ) ( a t end

( a s s i g n ( t r i g g e r e d ? r1 ? from1 ? t o 1 ? r2 ? from2 ? t o 2 ) 0 ) )

( a t end ( i n c r e a s e ( a c t−c o s t ) ( e x t e r n a l ) ) )

( a t end ( v i s i t e d ? t o 1 ) ) ( a t end ( v i s i t e d ? t o 2 ) ) )

Figure 5.1 A fragment of the PDDL room domain.

5.1 Approach

A fragment of the corresponding PDDL domain is shown in Fig. 5.1. The external module
computes the V ind values and is invoked only when a change occurs in the V dir variables due
to action effects. The PDDL keyword increase is overloaded to refer to an encapsulated
object [87] and the external module is called if the PDDL action to be expanded has an effect

of the form (increase (vdir
i ) (vind

j )), where vdir
i ∈V dir and vind

j ∈V ind . Once such an
action ai is expanded by the task planner, the corresponding start and goal states of robot
r, that is, sr

i and sr
i+1 are communicated to the motion planner. This is facilitated through

the function (triggered ?r1 ?from1 ?to1 ?r2 ?from2 ?to2) 1). This specifies that
robot r1 is navigating from from1 to to1 and that robot r2 is navigating from from2 to
to2, where from1, from2 and to1, to2 are free variables denoting the start and goal states
(corresponds to different rooms) of robots r1 and r2 respectively. In PDDL, the symbols
starting with question marks denote variables and the types they represent (room or robot
in our case) can be seen in the action parameters in Fig. 5.1. The function triggered

is assigned the value of 1 each time the actions are expanded and re-initialized to 0 once
the action duration is completed. This is performed so that the grounded variables are
communicated to the motion planner. For each region si, the number of pose instantiations
will be denoted by sn

i and a particular instantiation by snk
i . For each robot r, with the pose

instantiation of sr
i as the start node, for each pose instantiation of sr

i+1, we simulate a sequence
of controls and observations along each edge of the roadmap starting from sr

i
,nk and ending in

sr,n j
i+1, estimating the beliefs at the each of these nodes using (5.8). The sr,n j

i+1 that corresponds
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to the minimum cost is then selected as the goal pose for robot r for the state sr
i+1. Thereafter,

this instantiation becomes the start node when an expansion is attempted from state sr
i+1

for robot r. It is true that PRM is in the configuration space and not in the belief space but
fundamentally, planning in the belief space is just increasing the state space of the robot
(for example by including covariance). The basic problem remains the same since we are
essentially finding a sequence of actions that minimizes the objective function which by
itself is now a function of beliefs at different time steps. Our PRM approach is similar to
BRM [89] and differs in the way one-step belief updates are performed. Moreover, BRM
assume maximum likelihood observations but we do not.

Though our formulation can be adapted to any generic cost function we use a standard
cost function [43], c .

= Mucu +MGcG +MΣcΣ, where cu is the control usage, cG is the
distance to the goal and cΣ is the cost due to uncertainty, defined as trace(Σ), where Σ is the
state covariance associated with the robot belief. Mu,MG and MΣ are user-defined weights.
The cost of the selected motion plan is then returned to the task planner as the cost of the
corresponding action. The variable external returns the motion cost computed by the
external module and achieves semantic attachment by passing its value to the task-level cost
variable act-cost (see Fig. 5.1). The task-motion plan for changing the task state of the
robot from the state si to si+1 is the ordered tuple of the action ai and the corresponding
optimal path. The tuple is appended for all the task-level actions to generate the complete
task-motion plan.

5.2 Simulating Future Observations

Since we plan in the belief space of the robot’s state, given the mean and covariance of
the starting node we propagate the belief along the edges of the PRM as the roadmap is
expanded during the search. Belief update is performed upon reaching a node if a landmark
is successfully detected by the robot’s perception system. Since mutual observation between
robots are explicitly considered the update is also performed if robot r observes r′. In our
experiments a multi-robot constraint ζ

r,r′
k+1 is formulated if r′ is within 4 m of r (has been set to

4 just for pseudo-realism). Since we are in the planning phase and yet to obtain observations,
we simulate future observations zk+1 and ζ

r,r′
k+1 by corrupting the nominal observations with

noise.
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5.3 Optimality and Completeness

The multi-robot formulation preserves the notions of optimality and completeness discussed
in Chapter 4.



Chapter 6

Experimental Results

In this chapter we discuss our contribution C4 by validatng our MPTP approach for single and
multiple robots as discuused in Chapter 4 and Chapter 5, respectively. We use the temporal
POPF-TIF [6] as our task planner by customizing it to achieve semantic attachments of an
external module. The external module performs a PRM-based planning in the belief space
and is implemented as a dynamically loaded shared library that is passed as an input to the
planner. The enumeration into direct variables V dir and indirect variables V ind are listed
in the external module. The performance are evaluated on an Intel® Core i7-6500U under
Ubuntu 16.04 LTS.

6.1 Single-robot Scenarios

We validate our approach in two different robot navigation domains, namely office domain

and corridor domain as described in Chapter 4. First, we present the motion and sensor
models used in our experiments1. Then, we discuss the metrics devised to evaluate the
usefulness and validity of our approach. Finally, we present the evaluation of our approach
in the two navigation domains using the devised metrics.

1To simplify the notation, most variables are presented without time indexes.
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6.1.1 Motion and Sensor Model

The robot dynamics is modeled using the following non-linear model [105]

xk+1(1) = xk(1)+δtrans · cos(xk(3)+δrot1)

xk+1(2) = xk(2)+δtrans · sin(xk(3)+δrot1)

xk+1(3) = xk(3)+δrot1 +δrot2

(6.1)

where xk
.
= (x,y,θ), is the robot pose at time k with xk(1) = x,xk(2) = y and xk(3) = θ

and uk
.
= (δrot1,δtrans,δrot2) is the applied control. The model in (10.56) assumes that the

robot ideally implements the following commands in order: rotation by an angle of δrot1,
translation of δtrans and a final rotation of δrot2 orienting the robot in the required direction2.
It is to be noted that the robot accrue translational and rotational errors while executing uk.

In the EKF, the Jacobian of the state transition model with respect to the state xk denoted
by Fk (see (3.8) and (9.4)) is obtained by linearizing the state transition function about the
mean state at xk and is given by

Fk =


∂ f

∂xk(1)
∂ f

∂xk(3)
∂ f

∂xk(3)
∂ f

∂xk(1)
∂ f

∂xk(3)
∂ f

∂xk(3)
∂ f

∂xk(1)
∂ f

∂xk(3)
∂ f

∂xk(3)

=

1 0 −δtrans · sin(xk(3)+δrot1)

0 1 δtrans · cos(xk(3)+δrot1)

0 0 1

 (6.2)

Similarly, the linearized process noise, Rk =VkWkV T
k , is obtained by computing the Jacobian

of Vk

Vk =


∂ f

∂δrot1

∂ f
∂δtrans

∂ f
∂δrot2

∂ f
∂δrot1

∂ f
∂δtrans

∂ f
∂δrot2

∂ f
∂δrot1

∂ f
∂δtrans

∂ f
∂δrot2

=

−δtrans · sin(xk(3)+δrot1) cos(xk(3)+δrot1) 0
δtrans · cos(xk(3)+δrot1) sin(xk(3)+δrot1) 0

1 0 1

 (6.3)

The noise covariance matrix Wk is formulated as below with α1 to α4 being the robot-
specific error parameters [105] modeling the accuracy of the robot motion

Wk =

α1 ·δ 2
rot1 +α2 ·δ 2

trans 0 0
0 α3 ·δ 2

trans +α4 · (δ 2
rot1 +δ 2

rot2) 0
0 0 α2 ·δ 2

trans +α1 ·δ 2
rot2

 (6.4)

2The state transition model form of (10.56) is given in (8.1).
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As for the sensor model, we use a landmark-base model

zk =


r =

√
(li(1)− xk(1))2 +(li(2)− xk(2))2

φ = arctan( li(2)−xk(2)
li(1)−xk(1)

)− xk(3)

+ vk , vk ∼N (0,Qk) (6.5)

where r and φ are the range and bearing of the i-th landmark li relative to the robot frame.
The sensor model is linearized to obtain the Jacobian Hk, which is the partial derivative of
the measurement function with respect to the robot state3.

Hk =

 ∂ r
∂xk(1)

∂ r
∂xk(2)

∂ r
∂xk(3)

∂φ

∂xk(1)
∂φ

∂xk(2)
∂φ

∂xk(3)

=

− (li(1)−xk(1))
r − (li(2)−xk(2))

r 0
(li(2)−xk(2))

r2 − (li(1)−xk(1))
r2 −1

 (6.6)

We would like to reiterate the fact that since we are in the planning phase, the nominal
observation ẑ = h(x, li) is corrupted with noise to simulate future observations.

6.1.2 Plan Metrics

To benchmark our approach we consider four different cost formulations that differ in their
motion cost computation and thereby the task-level action costs. Though our formulation
can be adapted to any general cost function (see Chapter 4), we choose the following four
cost functions to demonstrate the efficiency of our approach:

• Euclidean cost: The motion planner is never called and the task cost are evaluated
computing the Euclidean distance ceuc between the geometric instantiations of si and
si+1, that is, between τ

j
i (0) and τ

j
i (1). Here c .

= ceuc.

• σ−Euclidean cost: This configuration evaluates the motion cost as the sum of Eu-
clidean distance between τi(0) and τi(1) and the cost due to uncertainty, defined as
cΣ = trace(Σ), where Σ is the covariance at each node of τi. The general form of this
cost function is c .

= Meucceuc +MΣcΣ.

• PETLON cost: In this configuration, the motion planner returns the trajectory length
or the geometric-level cost of traversing from si to si+1, that is, from τ

j
i (0) ∈ φ(si)

to τ
j

i (1) ∈ φ(si+1). The general form of the cost for this configuration is c .
= Mucu +

MGcG, where cu is the control usage and cG is the distance to goal. Since we assume

3The measurement function form of (10.58) is given in (8.2).



6.1 Single-robot Scenarios 46

straight line path between two sampled poses, the applied control for translation,
that is δtrans represents the trajectory length. We note here that the motion planner
in PETLON [70] computes the geometric-level cost of traversing from one state to
another and hence this configuration will be used to compare MPTP with PETLON.

• MPTP cost: In this configuration, we use the cost function as defined in Chapter 4, that
is, c .

= Mucu +MGcG +MΣcΣ, where cu is the control usage, cG is the distance to goal
and cΣ is the cost due to uncertainty. It is noteworthy that PETLON cost is subsumed
in MPTP cost since MPTP cost is fundamentally PETLON cost added with the cost
due to uncertainty.

6.1.3 Office Domain

This domain is simulated in Gazebo [58] by constructing an office environment of 36m×25m;
top view of the simulated environment is shown in Fig. 6.1. We note here that the landmarks
considered in this domain are the objects outside the cubicles like printers, trash cans,
lounge, vending machines and book-shelves. The robot is required to collect documents from
different cubicles, and the documents are then taken to the next floor via the lift L.

Figure 6.1 Top view of the simulated environment in Gazebo. See office domain in Chapter 4 for a
detailed description.
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Validation

We first demonstrate the need for a combined TMP for navigation. Unless otherwise stated,
the panning times presented is an average for 25 different planning sessions. Consider the
following scenario in which the robot is required to collect documents from the cubicles c3,
c4, c6 and c9. We first run the planner with Euclidean cost to synthesize the task plan. We
remind that in this configuration the motion planner is never called and the action costs are
evaluated by considering the Euclidean distance between the start and goal regions. The
plan synthesized is S→ c3→ c4→ c6→ c9→ L. This plan is then given to the motion
planner, to compute the corresponding cost due to uncertainty cΣ which is the trace of the
robot state covariance. The task planning cost and the motion planning cost are added to
estimate the overall planning cost, which equated to 298.84. The addition of the two costs is
possible because we first compute the task plan which is then passed to the motion planner to
compute the cost due to uncertainty. Therefore the overall planning cost is the task planning
cost combined with motion planning cost. In the same way, the overall planning time was
computed to be 0.94 (±0.09) seconds by adding the time for task planning and motion
planning, respectively. Next, we ran the planner with σ−Euclidean cost, returning the plan
S→ c4→ c9→ c6→ c3→ L, in 1.28 (±0.06) seconds with a total cost of 90.89. This
configuration evaluates the motion cost as the sum of Euclidean distance and the cost due
to uncertainty. It is seen that there is a significant difference in the plan quality as the cost
is improved by a factor of 3 for σ−Euclidean cost. This difference in cost is attributed to
the different task sequence synthesized. Essentially, Euclidean cost corresponds to planners
that pre-compute motion costs of all task-level actions or use an admissible heuristic for
the same (for example, the approach in [112]). The task plan is then given to the motion
planner for execution, assuming that such a motion plan exists. In contrast, σ−Euclidean

cost checks for the motion feasibility and estimates the motion costs while expanding each
task-level action and thus corresponds to an integrated TMP approach as discussed in this
thesis. The difference in plan quality between Euclidean cost and σ−Euclidean cost clearly
demonstrates the efficiency of a combined TMP approach as opposed to performing task
planning and motion planning separately. Though our considered scenario is much less
knowledge-intensive than real-world scenarios, the above example conveys the need for a
combined task-motion planner.

Next, we run the planner with PETLON cost and MPTP cost to demonstrate the advantage
of planning in belief space, that is using our MPTP approach. We recall here that similar
to PETLON [70], with PETLON cost, the motion planner evaluates the geometric-level
cost of traversing τi(0) to τi(1), whereas with MPTP cost, in addition to considering the
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d Overall time (s) Cost
c= 2 c= 4 c= 6 c= 2 c= 4 c= 6

MPTP cost 1 1.34 ± 0.05 2.24 ± 0.15 - 83.84 90.27 -
1.5 3.41 ± 0.08 7.16 ± 0.12 14.04 ± 0.09 88.18 101.01 237.59
2 9.11 ± 1.17 28.48 ± 1.19 46.15 ± 2.23 92.32 126.96 260.092

c= 2 c= 4 c= 6 c= 2 c= 4 c= 6
PETLON cost 1 0.47 ± 0.02 0.77 ± 0.04 1.77 ± 0.01 47.80 84.88 161.47

1.5 3.17 ± 0.03 4.91 ± 0.02 7.10 ± 0.10 55.77 95.74 174.90
2 6.08 ± 0.11 9.86 ± 0.17 15.14 ± 1.09 56.19 95.77 181.06

Table 6.1 Overall planning time and cost returned while running the task-motion planner with MPTP
cost and PETLON cost. The average number of samples per square meter is denoted by d. c = 2, 4
and 6 denotes the number of cubicles to be visited, increasing the task-level complexity. ’-’ denotes
the fact that no plan is found as the condition η < 1 is violated.

geometric-level cost of traversing, the cost due to uncertainty is also incorporated. We
consider a scenario in which the robot has to collect a document from cubicle c3. The
planned trajectories in both the scenarios with the corresponding covariance estimated at
each node (only the (x,y) portion is shown) is shown in Fig. 6.2. Clearly, the belief space
task-motion planner (MPTP cost) returns a route which is rich in sensor information (see
Fig. 6.2 in the mid), enabling effective localization. PETLON cost returns the shortest path
trajectory but with an increased robot state uncertainty. Fig. 6.2 on the right hand side shows
the traces of true robot state for 25 different simulations while running on MPTP cost—the
initial state being sampled from the known initial belief.

Figure 6.2 (left and center) The propagated belief distributions along the planned paths for PETLON
cost and MPTP cost. The belief estimates for a single planning instantiation corresponding to a unique
set of simulated observations are shown. Black dots represent the sampled poses. (left) Shortest path
route that corresponds to PETLON cost. (center) Belief space planning corresponding to MPTP cost,
returning an information rich route. (right) Traces of robot’s true state while starting from the initial
belief– run with MPTP cost.
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Figure 6.3 Plan length with overall planning time. MPTP is run with PETLON cost and a sampling
density of d = 1.5.

Scalability

We test the scalability of our approach by increasing the task-level complexity. We run our
planner on three different scenarios where 2, 4, 6 number of cubicles (c = 2,4,6) are to
be visited to collect the corresponding number of documents. This results in evaluating
more task-level actions, escalating the task level complexity. We also test these scenarios on
varying levels of sample densities. We choose d = 1,1.5,2, where d = i corresponds to an
average of i samples per square meter. The tests are run using MPTP cost and PETLON cost.
The overall planning time and the returned cost can be seen in Table 12.2. While we ran with
the MPTP cost, for d = 1 and c = 6, no feasible motion plan is found since the condition
η < 1 is violated. However, for higher sample densities, a feasible motion plan is found. The
plan quality is increased with increase in d, but at the expense of exponentially increasing
computation time. It is clearly seen that for our considered scenario d = 1.5 can be chosen,
without much loss of plan quality.

In [70], TMP for navigation is performed by evaluating the geometric cost of traversing.
They consider a scenario in which nine objects are placed at different locations. Two objects
from among them are to be collected and delivered to a person such that the geometric cost
of traversing is minimum. They report a total planning time of about 15 seconds with a plan
length of 37 m. Though the environment considered in [70] is larger than ours, to provide a
comparison with PETLON, we run our task-motion planner with PETLON cost and evaluate
the planning time with respect to the plan length. In comparison, MPTP with PETLON cost

fares superiorly with respect to increased task-level complexity. To demonstrate this, we first
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(a) (b)

Figure 6.4 (a) Willow Garage world with nine objects whose instances are marked as green blobs.
The optimal path when two objects are to be collected is shown in blue. The planner is run with
PETLON cost. (b) Overall planning time with increasing number of objects to be collected for
delivering.

consider three scenarios where 2, 4, and, 6 documents are to be collected to be delivered to
the next floor. The results can be seen in Table 12.2 under the PETLON cost section. We note
here that for d = 1.5 and collecting 6 documents (c= 6) MPTP with PETLON cost took only
about 7 (±0.34) seconds with a plan length of about 150 m (see Fig. 6.3). To provide a better
comparison, we also evaluate our approach by considering a much larger environment, the
Willow Garage world of 58m×45m as shown in Fig. 6.4(a). In this example, the robot (at
start) needs to collect any two objects from among nine different objects (location of objects
marked as green blobs), and deliver it to a person at the goal location (shown in red). We
ran our planner with PETLON cost, returning an optimal plan of length 53.94 m in 3.69 (±
0.09) seconds. We recall here that for the same scenario, PETLON [70] report a planning
time of about 15 seconds for a plan length of 37 m. In contrast, MPTP with PETLON cost

is almost three faster. This clearly elucidates the superiority of our approach. PETLON
first computes a task plan using an admissible heuristic which is then sent to the motion
planner for actual cost evaluation. This cost refinement process is iterated until the optimal
plan is found. MPTP does not require such an iteration since it evaluates the motion cost
using semantic attachments as the action is expanded by the task planner. The scalability to
increasing task complexity is tested by varying the number of objects to be collected (see
Fig. 6.4(b)). The task in which four objects are to be collected was completed in only about
25 (± 1.64) seconds. Therefore MPTP reveals to be much faster than PETLON and is robust
to the increasing number of objects and map size.
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Figure 6.5 Anytime property of MPTP. Valid solutions are returned even when strict bounds are
placed on the planning time.

POPF-TIF supports anytime planning which means that the planner searches for improved
solutions until it has exhausted the search space or is interrupted. Specifically, POPF-TIF is
run with a -n flag to activate anytime search. A time bound may be specified with the flag
-tx, where x is the time bound in seconds and is used in situations with strict time bounds
where optimality is sacrificed. We demonstrate this by considering the Willow Garage world
in which the robot needs to collect any three documents from among the nine objects and
deliver it to a person. We start with a time bound of 1 second and increment it by a second
until an optimal solution is found. The result is plotted in Fig. 6.5. As the time bound is
incremented, the plan quality is increased and for a planning time bound of 4 seconds, the
optimal plan length of 78.63 m is returned.

We stress here the fact that in this work we are mainly concerned with planning and the
synthesized plans are given to the robot for execution. Thus, any such execution approach
may be employed. In this work, the generated plans are executed with a TurtleBot robot in
the simulated Gazebo environment. We use AprilTags [79] to identify objects like printers,
trash cans, as landmarks. TurtleBot robot in front of one such landmark is seen in Fig. 6.6. A
ROS-based architecture has been developed to implement the approach. Belief estimation
is carried out using EKF. We note here that presently we consider static obstacles while
planning and therefore the planned trajectories are collision-free. However, to be robust to
dynamic obstacles, the plan execution is trivially extended to employ any collision avoidance
approach in dynamic environments [82, 113]. Snapshots of dynamic obstacle avoidance
during the execution of a plan can be seen in Fig. 6.7. As seen in the figure, dynamic obstacles
are simulated using TurtleBot robots (white in figure). We now report here the execution
time for the scenario discussed in Section 6.1.3. When 2, 4, 6 number of cubicles are to be
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visited to collect the corresponding number of documents, the execution times are 140.21s

(± 3.11s), 366.40s (± 4.99s), and 664.71s (± 16.28s), respectively. We note here that the
execution time varies with robot and its control limits.

Figure 6.6 A robot in front of AprilTags which provide the transformation between the robot pose
and the landmark pose.

6.1.4 Corridor Domain

Our corridor domain (see Chapter 4 for a detailed description) is a variant of the robot
navigation domain in [47]. However, they treat it as a task planning problem assuming
that feasible motion plans exist for the synthesized task plans. In contrast, we perform
task-motion planning. In this domain of 12m×25m, a mobile robot, starting from a given
room, navigates an office floor to visit a set of rooms that are selected randomly. The office
floor has ten rooms and the robot is initially located in room 1. All the rooms are connected
to each other through the central corridor. In addition, five rooms are directly connected with
each other via doors which need to be opened by the robot. The goal is to visit a set of rooms
R that are randomly selected for each run. Since these visits have to be carried out expending
as less cost as possible, the robot needs to assess the accessibility between the rooms that are
directly connected to each other via a door. This is facilitated through the goto_door action
as discussed in Chapter 4. The map of the building floor is as shown in Fig. 6.8.

Validation and Scalability

First, we run the planner with MPTP cost. For a fixed set cardinality |R| (set elements are the
rooms to be visited), 25 trials are performed, where the set elements are selected randomly
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(a) (b)

(c) (d)

(e) (f)

Figure 6.7 A robot avoiding a couple of dynamic obstacles (white TurtleBot robots) during execution.
Our approach is not restrictive to any particular execution strategy and any approach that employs
dynamic obstacle avoidance may be used.
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Figure 6.8 Map of the building floor environment with half the rooms connected directly by doors.
The stars with different colors represent landmarks that aids the robot in better localization.

Figure 6.9 Overall task-motion planning time for different number of rooms that need to be visited
in log scale. Planning times are the average for 25 different runs.

for each trial. The average planning time for each of them is shown in Fig. 6.9. While
the planning time does scale exponentially with |R|, the plan for |R| = 9 is computed in
less than 3 minutes. The work in [47] evaluates the task planning performance on a similar
domain randomly selecting the number of rooms to visit in each trial. Since MPTP performs
task-motion planning, the overall MPTP planning times with increasing |R| is greater than
those reported in [47]. However the graph of |R| with planning time (Fig. 6.9) follows a
similar trend to that reported in [47]. It is noteworthy that for a given |R|, the difference in
MPTP planning time and the planning time reported in [47] is significantly less.

Next, we run the planner with PETLON cost and MPTP cost. We consider a scenario
in which the robot, starting from room r1, has to visit rooms r2 and r3. As seen in Fig. 6.8,
rooms r1, r2 and r2, r3 are also connected by doors between them. Fig. 6.10 on top-left
and top-right shows the planned trajectories in both the scenarios with the corresponding
covariance estimated at each node (only the (x,y) portion is shown). Note that the illustrations
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Figure 6.10 (top-left and top-right) The propagated belief distributions along the planned paths
while running MPTP with PETLON cost and MPTP cost. The belief estimates for a single planning
instantiation corresponding to a unique set of simulated observations are shown. The black dots
represent the sampled poses. (top-left) Shortest path route that corresponds to running the planner with
PETLON cost. (top-right) Belief space planning corresponding to running the planner with MPTP
cost, returning an information rich route. (bottom-left) Traces of robot’s true state while starting from
the initial belief and run on PETLON cost– 80% of the trajectories lead to collision. (bottom-right)
Traces of robot’s true state while starting from the initial belief and run on PETLON cost– only 8% of
the trajectories lead to collision.

show a single planning instantiation corresponding to a unique set of simulated observations
Z. Belief space planning (MPTP cost) enables effective localization by returning a route
which is rich in sensor information (see Fig. 6.10 on top-right). Fig. 6.10 on the bottom-left,
shows the traces of true robot states for 25 different simulations while running on PETLON

cost. The initial poses are sampled from the known initial belief distribution. Out of the 25
trials, 20 lead to collision on the walls, giving a success rate of only 20%. The traces of true
robot pose for 25 different simulations while running on MPTP cost is shown in Fig. 6.10
(bottom-right). Only 2 trials lead to collision, giving a success rate of 92%.

Finally, we test the scalability of our approach by running the planner with varying
number of rooms that are directly connected by doors between them. We consider a scenario
in which seven rooms are to be visited. We consider five different cases of this scenario, each
of which has a fixed number of rooms that are directly connected by the doors. For each case,
25 trails are performed and for each trial, the rooms with doors between them are randomly
selected. The overall planning time is seen in Fig. 6.11.
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Figure 6.11 Overall planning time for visiting 7 rooms when the number of rooms directly connected
by doors are varying. Average time for 25 trails are plotted in each case.

6.2 Multi-robot Scenarios

(a) config 1

(b) config 2

Figure 6.12 Pose covariance evolution for robots r (blue trajectory) and r′ (green trajectory). The
belief evolution for a single planning instantiation corresponding to a unique set of simulated obser-
vations are shown. Black dots represent the sampled poses and the covariance estimates (only (x,y)
portion shown) are shown as red ellipses. (a) config 1 incorporating mutual observations between the
robots. (b) No mutual observations considered.
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Figure 6.13 Average position estimation errors. This corroborates the single instance of belief
evolution as shown in Fig. 6.12.

(a) (b)

Figure 6.14 (a) Average planning time with increasing number of rooms to visit for 2 robots. The
planning time is only about 5 seconds when 10 rooms are to be visited. (b) Average planning time in
log-scale for different number of collaborating robots.

We evaluate our approach in a simulated corridor environment whose map is as shown
in Fig. 6.8. The robot’s can navigate to rooms L = L1, . . . ,L10 that are connected to one
another through a corridor. These rooms have doors, which can either be closed or open,
connecting them to the corridor. We assume that once the robot is near to a closed door
that directly connects a room to the corridor, it is able to open the door– for example using
human aid. Navigating to rooms can hence be encoded using a single high-level PDDL
action goto_room as seen in Chapter 5, Fig. 5.1. The stars with different colors represent
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certain unique features assumed to be known and modeled like a printer or trash can that aid
the robot’s in better localization.

We first validate our approach by considering a scenario in which robot r starting at room
L1 has to visit room L10 and robot r′ starting at L10 has to visit L1. Fig. 6.12 shows the
planned trajectories with belief evolution (pose covariances) for robots r and r′. Multi-robot
constraints are incorporated in Fig. 6.12(a) and correspond to config 1 while config 2 as
seen in Fig. 6.12(b) does not consider mutual observations between the robots. Clearly,
incorporating mutual observation constraints facilitate improved localization. We ran the
same scenario for 25 different planning sessions, each time sampling the initial position
of the robots r and r′ from the known initial beliefs. The average position errors at each
node along the planned trajectories are shown in Fig. 6.13. This performance evaluation
shows the improved estimation accuracy for both the robots while incorporating multi-robot
constraints. In particular, for robot r′ in config 2, that is, without multi-robot constraints, it is
seen that there is significant pose uncertainty along its path. This is attributed to the lack of
landmarks, rendering inaccurate localization. However, incorporating multi-robot constraints
significantly improves localization, with the worst case position norm error for r′ reducing
by about 90%.

Next, we test the scalability for an increasing number of rooms to visit. As the number of
rooms to visit increase, the task-level complexity increase as the task completion requires
more task-level actions. We ran config 1 for five different scenarios that correspond to visiting
2, 4, 6, 8 and 10 rooms, respectively. For each scenario, 25 different planning sessions are
conducted with the rooms to be visited being selected randomly at each run. The average
planning time with two robots are shown in Fig. 6.14(a), the plans being computed in less
than 5 seconds in all cases. As seen from the figure, the planning time increase almost
linearly as there is only one single high-level action, namely, goto_room. Currently, this
high-level action models the navigation of both r and r′ and therefore the complexity is
directly dependent on the number of rooms.

Finally, we test the scalability for an increasing number of collaborating robots. In the
considered scenario eight rooms are to be visited with 2, 4 and 6 different robots. For each
run, the rooms to be visited are randomly selected and the average time for 25 different
planning sessions are plotted in log-scale in Fig. 6.14(b). It is seen that planning time scales
exponentially with an increasing number of collaborating robots. This is quite intuitive as
planning is to be performed for all possible robot pairs.



Chapter 7

Conclusions

In this chapter, we first discuss some limitations of our approach and later comment on the
relation to multi-goal planning and travelling salesman problems. Finally we conclude this
part of the thesis.

7.1 Discussion

MPTP has few limitations and assumptions and relaxing them would enhance the capability
and robustness of our approach in challenging scenarios. First, we sample collision-free
poses and therefore considering static obstacles, the planned trajectories are collision-free. In
this sense, we employ a deterministic collision avoidance approach and do not compute the
probability of collisions while computing a path during planning. It is a reasonable assump-
tion for all practical purposes but is not the case in general while planning in narrow regions
or corridors. The execution may be trivially extended to consider collision probabilities,
making it robust to both static and dynamic obstacles. Second, we assume straight line path
between two sampled poses. This might not fare well in some experimental domains and can
lead to larger prediction uncertainties. Presently, as the number of samples vary, the search is
performed again. It is our future direction to efficiently utilize the previous search results to
reduce the computation time for increased samples. It is also an interesting future direction
to extend the framework to an online real-time planning approach.

Multi-Goal Planning (MGP) [94], where a robot visits a sequence of goal configurations is
a subset of the general class of TMP problems. Most existing MGP approaches [94, 40, 2, 41]
leverage the Traveling Salesman Problem (TSP) [4] solvers for task sequencing. A TSP
problem finds a minimum cost path traversing a set of points such that every point is visited
once. In an MGP problem these points correspond to the set of goal configurations the
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robot needs to visit. It can be argued that all MGP problems can be modeled as a TMP
problem but not vice versa. For instance, consider the office domain presented in Chapter 4.
In this scenario the robot not only has to visit regions of interest but execute actions such
as collecting the documents, which is to be performed when visiting each cubicle ensuring
that the action preconditions are met. Moreover, in certain scenarios cubicles may need
to be visited multiple times violating the single visit constraint of traditional TSP solvers.
The corridor domain (see Chapter 4) presents additional challenges for TSP solvers. If
we consider that there are no doors between the rooms, then the problem reduces to just
visiting different rooms and can be solved using TSP solvers. However, in the considered
scenario there are doors between certain rooms and the accessibility between the rooms
that are directly connected to each other via a door needs to be assessed by the robot. This
requires different levels of reasoning to verify the action preconditions such as, checking if
a door exists, navigating to the door, checking if the trace of the robot pose covariance is
within the uncertainty budget and if yes, then updating the roadmap. Moreover, if the robot
passes through the door, the accomplishment of the action effect (in this case, closing the
door corresponds to updating the roadmap) needs to be established. Thus MPTP is able to
solve a larger class of problems than traditional TSP solvers.

7.2 Concluding Remarks

This part of the thesis introduced an approach for task-motion planning under motion and
sensing uncertainty in the context of both single and multi-robot settings. Task-motion
interaction is facilitated by means of semantic attachments that return motion costs to the
task planner. In this way, the action costs of the task plans are evaluated using a motion
planner. The plan synthesized is optimal at the task-level since the overall action cost is less
than that of other task plans generated for a given roadmap. It is to be noted that the action
cost also encompasses the motion cost. The proposed approach is probabilistically complete
and we have validated the framework using a simulated office environment in Gazebo and a
corridor environment. In the single robot TMP setting, the approach has been evaluated with
different configurations that correspond to different motion cost computation, illustrating the
need for a combined TMP approach for navigation in belief space. Though we have validated
MPTP in two different robot navigation domains, real-world scenarios often require large
number of tasks to be performed. Real-world domains are much more knowledge-intensive,
significantly increasing the task-level and motion-level complexity. The scalability results
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suggest that our approach fares well with respect to increased task-level complexity and plan
length.

In the multi-robot TMP setting, our approach scales well with an increasing task-level
complexity. Though there is an exponential increase in planning time as the number of
cooperative robots that perform the task increases, caching and reusing plans might help
alleviate this complexity in some cases. Presently, our approach fares well only when there
are an even number of rooms to visit. For odd number of rooms to visit, the generated plan
can force additional robot motions since our task-level action is defined for a pair of robots.
Let us consider a scenario with 4 robots r1, . . . ,r4 and rooms L1, L3 and L7 to be visited.
The synthesized plan might be that r1 visits L1, r2 visits L3 and r3 visits L7, r4 visits Li

(where i = 1, . . . ,10). Robot r4 visiting Li is an additional room visit, even though it is not
specified in the goal condition. This visit helps to obtain mutual observations between r3 and
r4 but in practice we only need r1 visiting L1, r2 visiting L3 and r3 visiting L7. However, it
is to be noted that this formulation still preserves the task-level optimality. Decoupling and
defining the action for each robot can rescind the additional motions. Yet, the computational
challenge associated with the semantic attachment architecture needs to be analyzed and it is
an immediate work for future. Another remark that needs to be stressed is that the extension
of our formulation in (5.8) to incorporate more than two robots is an approximation of the
joint belief. This is so because we only consider pairwise mutual observations. Nevertheless,
it is a fairly common practice [42].



Part II

Motion Planning with Environment
Uncertainty





This part focuses on computing the probability of collision for a robot while encountering
obstacles in the environment. As in the previous part, we assume that the environment is
known a priori. However, we relax the assumption of static obstacles and the approaches
developed in this part are applicable to dynamic obstacles as well. We develop an approach
for computing the exact collision probability and also compute tight upper bounds for the
same. As opposed to the previous part, in this part we perform online planning incorporating
robot motion, sensing and obstacle state uncertainties.



Chapter 8

Motion Planning with Environment
Uncertainty

In this part of the thesis we first introduce the concept of object uncertainty (Chapter 9) and
then compute exact (Chapter 10) and approximate collision probability bounds (Chapters 11
and 12) for safe motion planning.

8.1 Introduction

Robots have become more pervasive and are being increasingly used in close proximity to
humans and other objects (both static and dynamic) in factories, living spaces, elderly care,
and robotic surgery. Planning for collision free trajectories in real-time is imperative for
robots to operate safely and efficiently in such realistic conditions. However, uncertainties
often arise due to insufficient knowledge about the environment, imperfect sensing or inexact
robot motions. In these situations, it is indispensable to employ approaches that perform
safe motion planning under motion and sensing uncertainties. We therefore resort to BSP
based appraoches which are an instantiation of POMDPs. However, at the planning time,
future observations are yet to be obtained. Thus, for efficient planning and decision making,
it is required to reason about future belief distributions due to possible actions and the
corresponding expected future observations.

Uncertain environments are such that they often preclude the existence of collision free
trajectories ([3]). In the presence of noisy sensors, both the robot and the environment
state cannot be estimated precisely and one can only reason in terms of the corresponding
belief states. Moreover, in case of dynamic obstacles, their future states have to be predicted
and they are not known exactly due to the lack of perfect knowledge of their motions. As
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such, providing safety guarantees is difficult and for safe navigation, both the robot state
uncertainty and the uncertainty in obstacle estimates need to be considered while computing
collision probabilities.

Most robotic tasks require the knowledge of where the robot is with respect to the
environment. Localization is therefore one of the most fundamental problem in robotics
and significantly impacts planning and decision making. As such, localization is therefore a
key aspect for safe and efficient navigation. However, existing approaches assume that the
landmark locations are known precisely or with little uncertainty. For example, given the
map of the environment, while planning for future actions the standard Markov localization
does not take into account the map uncertainty (that is, landmark locations are assumed
to be perfect). This means that given the map and the sensing range, there exists a region
from which the landmark can be observed. This however, might not be true in practice.
For example, let us consider a SLAM session. Wrong data association or dynamics objects
preventing loop closures could lead to wrongly estimated landmark locations and thereby
the corresponding map. Thus landmark estimates arising out of such a SLAM session might
not be known precisely. It is noteworthy that due to this landmark location uncertainty the
regions from which the landmark can be observed are also uncertain. This is visualized in
Fig. 8.1. We define the pose space as the set of all possible poses the robot can assume. The
blue blob denotes the object which when viewed from a pose x produces an observation z.
Different observations are produced when the object is viewed from distinct poses such that
the object falls within the sensing range and there are no occlusions. The set of all such
poses is a subset of the pose space and is defined to be the viewpoint space (green region in
the figure). We note that the viewpoint space is sensor-dependent and is determined by the
sensing range and other aspects such as occluding objects. Intuitively, also the viewpoint
space is object depended and this set changes for each object. However, a pose x′ that falls
outside the viewpoint space does not produce an observation. Consequently, as seen on
the left hand side of the figure, when the object location is known precisely, there exists
a subset of the pose space from which the object can be observed. On the right hand side
of the figure, the light-blue shaded region denotes the uncertainty in object location. Thus
in practice the object can be anywhere within the uncertainty region. As a result, given a
pose, it cannot be said with certainty that the object can be observed. Subsequently, the
cardinality of the subset of the pose space from which the object can be observed is increased,
that is, the viewpoint space has increased (green region in the figure). As seen in the figure,
depending on the object really is, it can be observed from either x or x′ or both the poses.
As a result, one can only reason in terms of the probability of observing the object from
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Figure 8.1 The blue blob denotes an object in the environment. The green region is the viewpoint
space corresponding to the set of poses from which the object can be observed. Robot pose x produces
an observation z however x′ does not produce an observation. On the right hand side, the light-blue
shaded region denotes the uncertainty in object location. In practice the object can be anywhere within
the uncertainty region. As a result, depending on where the object really is, it can be observed from
either x or x′ or both the poses.

the considered pose or the viewpoint. Therefore, a probability distribution function for the
viewpoint space is obtained where the mean viewpoint corresponds to observing the object
with highest probability. Not accounting for this uncertainty can cause localization errors,
leading to inefficient plans. In this thesis, we will use the term object uncertainty to refer to
this notion of uncertainty in landmark location.

8.2 Related Work

Much research activities about BSP have been carried out in the past few years, with applica-
tions spanning a variety of areas [89, 109, 52, 1, 62, 83, 102, 29, 103]. Yet, most approaches
assume that the landmarks are fairly well known or are known with little uncertainty. [52]
consider object uncertainty since they are planning in an unknown environment and require
several measurements to obtain confidence estimates of object locations. Thus they perform
active perception, that is, to look for robot actions that enhances information to reduce the
object uncertainty. This context is different from ours since we consider a known environment
with object uncertainty and focus on active localization incorporating these uncertainties.
In [83], the concept of object uncertainty is commented upon (they call it scene uncertainty);
however they do not show how it affects the state estimation. Dynamic environments are
considered in [62, 1] however the landmark/beacon locations are assumed to be known
perfectly; [102, 103] also consider perfect landmark locations in the context of task and
motion planning. Thus most active and passive localization-based approaches focus on robot
state uncertainty and assume perfect knowledge about the location of the objects in the
environment. However, in practice, the environment is seldom known with high certainty
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and hence providing formal guarantees for safe robotic tasks under environment uncertainty
is of vital importance.

The starting point of all approaches is to formulate the collision constraint, that is, the
conditions under which a collision occurs between a robot and an obstacle. The methods
differ in their formulation of collision constraint due to different assumptions regarding the
shape of the robot and the obstacles (for example, point, spherical, ellipsoidal, or rectangular
shapes for the robot and the obstacle), modeling of uncertainties. Overall, most approaches
tend to be overly conservative and provide loose upper bounds. This can lead to sub-
optimal plans or in some case render plans infeasible and thus it is desirable to compute
accurate collision probabilities to ensure safe and efficient trajectories. Patil et al. [86]
truncate [49] the estimated a priori Gaussian state distributions to consider only the collision
free samples. Thus propagating these truncated distributions enable them to compute collision
free trajectories. The approach of truncating Gaussian distributions is leveraged to compute
risk-aware and asymptotically optimal trajectories by [69]. [8], the future state distributions
are predicted and the uncertainties are used to compute bounded collision probabilities. [67]
use sigma hulls for robot links and compute the signed distance of these hulls to the obstacles
to formulate the collision avoidance constraints.

Exact collision probability can be computed by marginalizing the joint distribution
between the robot and obstacle locations [18]. This integration is then performed over the
set of robot and obstacle locations that satisfy the collision constraint. Such an appraoch
is used to derive the collision constraint in [19] and [82]. However, there is no closed
form solution to the integral and numerical integration or Monte Carlo (MC) techniques are
employed [96] to obtain an approximate value. Assuming that the robot radius is negligible
the joint distribution can be approximated as the product of the volume occupied by the robot
and the conditional distribution of the obstacle evaluated at the robot location. Furthermore,
Park et al. [82] compute an upper bound for the collision probability. [65], an approximation
is computed using Monte Carlo Integration (MCI), which is nonetheless computationally
intensive. Another related work that uses a Monte Carlo approach and is real-time compatible
is Monte Carlo Motion Planning (MCMP) [44]. They first solve a deterministic motion
planning problem with an inflated obstacle and later adjust the inflation to compute the
desired safe path.

A chance-constrained1 approach to compute the bounded probability of collision along a
trajectory is presented by [7]. This approach is leveraged to compute bounded collision-free

1A chance-constrained approach finds the optimal sequence of control inputs subject to the constraint
that the collision probability must be below a user-specified threshold. This constraint is known as a chance
constraint.
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trajectories with dynamic obstacles by [113], wherein the dynamic obstacles follow a constant
velocity model with Gaussian noise. In [3], a Gaussian Process (GP) based approach is used
to learn motion patterns (a mapping from states to trajectory derivatives) to identify possible
future obstacles trajectories. Newton’s method combined with chance-constraints is used
in [101] to obtain an upper bound for collision probability. In [27] the first-exist times for
Brownian motions are leveraged to compute collision probabilities. [5] focus exclusively on
obstacle uncertainty. They formalize a notion of shadows, which are the geometric equivalent
of confidence intervals for uncertain obstacles. The shadows fundamentally give rise to loose
bounds but the computational complexity of bounding the collision probability is greatly
reduced. Uncertain obstacles are modelled as polytopes with Gaussian-distributed faces
by [98]. Planning a collision-free path in the presence of risk zones is considered by [95]
by penalizing the time spent in these zones. Risk contours map, which take into account
the risk information (uncertainties in location, size and geometry of obstacles) in uncertain
environments are used by [45] to obtain safe paths with bounded risks. A related approach
for randomly moving obstacles is presented by [32]. Formal verification methods have also
been used to construct safe plans [15, 93].

Most of the approaches discussed above leverage Boole’s inequality to compute the
collision probability along a path by summing or multiplying the probabilities along different
waypoints in the path. However, the additive approach assumes that the probabilities along
the waypoints are mutually exclusive and the multiplicative approach treats them as indepen-
dent. Such approaches tend to be overly conservative and rather than computing bounded
collision probabilities along a path, the bound should be checked for each configuration
along the path itself. Moreover, in most approaches, the collision probability computed
along each waypoint is an approximation of the true value. For example, the MCI approach
of [65] approximates the resulting double summation expression for collision probability to
a single summation. [113] compute an approximate upper bound for collision probability by
linearizing the collision condition. [82] and [19] assume the volume occupied by the robot to
be negligible. On the one hand, such approximations can overly penalize paths and could
gauge all plans to be infeasible. On the other hand some approximations can be lower2 than
the true collision probability values and can lead to synthesizing unsafe plans.

2For example, the approach of [19] computes a lower value than the actual when the robot state covariance
is small.
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8.3 Notations and Problem Definition

We shall denote vectors by bold lower case letters, that is x and its components by lower case
letters. The transpose of x will be denoted by xT and its Euclidean norm by ∥x∥ =

√
xT x.

The the expected value of a random vector3 x will be denoted by E(x). A multivariate
Gaussian distribution of x with mean µµµ and covariance Σ will be denoted using the notation
x∼N (µµµ,Σ). Matrices will be denoted by capital letters, that is M. The trace of a square
matrix M will be denoted by tr(M) and its determinant by det(M). The identity matrix will
be denoted by I or In when the dimension needs to be stressed. A diagonal matrix with
diagonal elements λ1, . . . ,λn will be denoted by diag(λ1, . . . ,λn). Sets will be denoted using
mathcal fonts, that is S . Unless otherwise mentioned, subscripts on vectors/matrices will be
used to denote time indexes and (whenever necessary) superscripts will be used to indicate
the robot or the object that it refers to. For example, xi

k represents the state of robot i at
time k. We use the notation E n(A,a) to denote an ellipsoid with center a ∈ Rn and A being
a positive definite n×n matrix. The superscript n will be avoided when there is no cause
for confusion. The notation P(·) will be used to denote the probability of an event and the
probability density function (pdf) will be denoted by p(·).

We now formally define the problem that we tackle in this part of the thesis. Let us
consider a mobile robot operating in a partially-observable environment. The map of the
environment is either known a priori or it is built using a standard SLAM algorithm. At
any time k, we denote the robot pose (or configuration) by xk

.
= (xk,yk,θk), the acquired

measurement from objects is denoted by zk and the applied control action is denoted as
uk. It is noteworthy that by objects we refer to both the landmarks and the obstacles in the
environment. We also make the following assumptions: (1) the uncertainties are modelled
using Gaussian distributions, (2) the robot and obstacles are assumed to be non-deformable
objects.

To describe the dynamics of the robot, we consider a standard motion model with
Gaussian noise

xk+1 = f (xk,uk)+wk , wk ∼N (0,Rk) (8.1)

where wk is the random unobservable noise, modeled as a zero mean Gaussian. Objects are
detected through the robot’s sensors and assuming known data association, the observation
model can be written as

zk = h(xk,Oi
k)+ vk , vk ∼N (0,Qk) (8.2)

3By a random vector we refer to a vector random variable.
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where Oi
k is the i−th detected object and vk is the zero mean Gaussian noise. The function

h(xk,Oi
k) denotes the fact that at time k, the measurement zk is obtained by observing the

i− th object Oi
k from viewpoint (robot location) xk. In the case of a laser-range finder the

function h could be defined as the distance between xk and the location of the object (or any
particular point on the object) Oi

k. If we consider the case of a camera, h may be defined
as a pinhole projection operator, projecting the object Oi

k onto the image plane. We note
here that the motion (8.1) and observation (8.2) models can be written probabilistically as
p(xk+1|xk,uk) and p(zk|xk,Oi

k), respectively.
Given the models in (8.1) and (8.2), in this thesis we compute safe plans, wherein the

probability of collision of the robot with any obstacle is guaranteed to be less than a specified
bound while navigating to the goal. To this end, we consider the object uncertainties while
localizing the robot. Given the robot and obstacle locations, we compute the probability of
collision under motion, sensing uncertainty, and the uncertainty in obstacle location.



Chapter 9

Object Uncertainty

As discussed in Chapter 8, most localization approaches assume that the landmark locations
are known precisely or with little uncertainty. This however, might not be true in practice
due to noisy measurements and/or imperfect sensors. Thus, it is pertinent that landmark
uncertainties are considered within the localization and planning framework. Below, we
delineate the incorporation of object uncertainty within the Bayes filter which correspond to
C5 of our contribution.

We define the collection of all objects in the environment to be the object space O =

{Oi|Oi is an object, and 1 ≤ i ≤ |O|}. Let us posit that at time k the robot received a mea-
surement zk which was originated by observing the object Oi

k. Given1 an initial distribution
p(x0), and the motion and observation models in (8.1) and (8.2), the posterior probability
distribution at time k is the belief b[xk] and can be written as

b[xk] = p(xk|zk,Oi
k,z0:k−1,u0:k−1) (9.1)

where Oi
k is the object observed at time k, z0:k−1

.
= {z0, ...,zk−1} and u0:k−1

.
= {u0, ...,uk−1}.

We note that this posterior belief is computed after incorporating the measurement at time k,
that is, zk.

Given the belief b[xk] and an action uk, the belief before incorporating a measurement
will be called the propagated belief and can be written as

b[ ¯xk+1] =
∫

xk

p(xk+1|xk,uk)b[xk] (9.2)

1Robot belief and inference was already introduced in Chapter 3. As we additionally incorporate object
uncertainty it is imperative for us to furnish the complete derivation to provide a comprehensive understating
for the reader.
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Now let us consider that a measurement zk+1 is obtained that corresponds to observing the
object Oi

k+1. The posterior distribution b[xk+1] can then be computed using Bayes rule and
the theorem of total probability. This expansion is obtained in terms of the belief at the
previous time step since the Bayes filter is recursive. Thus we have

p(xk+1|zk+1,Oi
k+1,z0:k,u0:k) =

η p(zk+1|xk+1,Oi
k+1)p(Oi

k+1|xk+1)
∫

xk

p(xk+1|xk,uk)b[xk] (9.3)

where η = 1/p(zk+1|z0:k,u0:k) is the normalization constant. The term p(Oi
k+1|xk+1) denotes

the probability of observing the object Oi
k+1 from the pose xk+1. In other words, this term

models the fact, how likely it is to observe Oi
k+1 from xk+1 and thus models the object

uncertainty. The term p(Oi
k+1|xk+1) also additionally model aspects such as occlusions

due to static obstacles that hinder the observation, occlusions that results due to dynamic
obstacles, faulty sensors or other aspects that impedes observations of objects of interest.
Thus, given an object one can only reason probabilistically about observing it to obtain the
corresponding measurement. However, when the object uncertainty and other additional
aspects are ignored an object is observed whenever the robot is within the viewpoint space
(see left hand side of Fig. 8.1). Thus, in the case of such an assumption, for poses within
the viewpoint space the term is equal to unity, that is, p(Oi

k+1|xk+1) = 1. For poses that lie
outside the viewpoint space p(Oi

k+1|xk+1) = 0, and hence no measurement can be obtained.
As such, when the object uncertainty is ignored, the term p(Oi

k+1|xk+1) can be removed
from (11.27) and the posterior belief parameters can be computed using the standard EKF
update equation as

Kk+1 = Σ̄k+1HT
k+1

(
Hk+1Σ̄k+1HT

k+1 +Qk+1

)−1

µµµk+1 = µ̄µµk+1 +Kk+1
(
zk+1−h(µ̄µµk+1)

)
Σk+1 = (I−Kk+1Hk+1) Σ̄k+1

(9.4)

where Hk+1 is the Jacobian of h(·) with respect to xk+1, and Kk+1 is the Kalman gain.
The exposition so far has been agnostic to the actual model of p(Oi

k+1|xk+1). In general,
this term can be modeled given the environment map, the sensing capabilities and the
robot objectives. These aspects should hence be incorporated to obtain the actual object
uncertainty model. However, in this work we approximate the object distribution as a
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Gaussian distribution:
p(Oi

k+1|xk+1)∼N (µµµOi
k+1

,ΣOi
k+1

) (9.5)

where µµµOi
k+1

is the viewpoint/pose that corresponds to the maximum probability of observing
Oi

k+1 and ΣOi
k+1

is the associated uncertainty in the observation.
We will now consider the object uncertainty term p(Oi

k+1|xk+1) and derive the Gaussian
belief parameters by expanding (11.27). Expanding the right hand side of (11.27) using the
probability density function (pdf) of multivariate Gaussian distributions, we have b[xk+1] =

η ′
∫

exp(−Jk+1), where η ′ contains the non-exponential terms and Jk+1 is given by

Jk+1 =
1
2

(
zk+1−h

(
µ̄µµk+1

)
−Hk+1

(
xk+1− µ̄µµk+1

))T
Q−1

k+1

(
zk+1−h

(
µ̄µµk+1

)
−Hk+1

(
xk+1− µ̄µµk+1

))
+

1
2
(xxxk+1−µµµOi

k+1
)T

Σ
−1
Oi

k+1
(xk+1−µµµOi

k+1
)

+
1
2
(xk+1− µ̄µµk+1)

T
Σ̄
−1
k+1(xk+1− µ̄µµk+1) (9.6)

where Hk+1 is the Jacobian of h(·) with respect to xk+1. As shown in [105], the covariance
Σk+1 is obtained as the inverse of the second derivative of Jk+1 with respect to xk+1. The
expression for the second derivative is obtained as

∂ 2Jk+1

∂x2
k+1

= HT
k+1Q−1

k+1Hk+1 +Σ
−1
Oi

k+1
+ Σ̄

−1
k+1 (9.7)

Therefore the posterior covariance is obtained as

Σ
−1
k+1 = HT

k+1Q−1
k+1Hk+1 +Σ

−1
Oi

k+1
+ Σ̄

−1
k+1 (9.8)

The mean of b[xk+1] is the value that maximizes b[xk+1] and hence is obtained by equating
the first derivative of Jk+1 to zero. The expression for the mean µµµk+1 is obtained as (see
Appendix A for derivation)

µµµk+1 = µ̄µµk+1 +Kk+1

(
zk+1−h

(
µ̄µµk+1

))
+Σk+1Σ

−1
Oi

k+1

(
µµµOi

k+1
− µ̄µµk+1

)
(9.9)

where Kk+1 = Σk+1HT
k+1Q−1

k+1 is the Kalman gain. We note that when no object uncertainty is

considered the update step of the standard EKF gives µµµk+1 = µ̄µµk+1+Kk+1

(
zk+1−h

(
µ̄µµk+1

))
.

The additional term in (9.9) rightly adjusts the mean µµµk+1 accounting for the fact that the
object location is uncertain.
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As in the standard EKF based Bayes filter, the expression for the covariance Σk+l can
also be derived in terms of the Kalman gain Kk+1 and the predicted covariance Σ̄k+1. Using
the matrix inversion lemma on (9.8), the following expression is obtained (see Appendix B
for derivation)

Σk+1 = (I−Kk+1Hk+1) Σ̄k+1Σ̃k+lΣOi
k+1

(9.10)

where Σ̃k+l =
(

Σ̄k+1 +ΣOi
k+1

)−1
.

When object uncertainty is not considered, the update step of the standard EKF gives
Σk+1 = (I−Kk+1Hk+1) Σ̄k+1. The extra terms in (9.10) account for the object uncertainty
and scale the posterior covariance accordingly. We note that when object uncertainty is
not considered, p(Oi

k+1|xk+1) = 1 and hence the results in (9.9) and (9.10) reduce to that
of the standard EKF case in (9.4). The method presented above is easily generalized to
multiple objects observed at any time instant. This is done by following the sequential-sensor
method ([20]), considering the fact that given the current state estimate, the observations are
independent of each other.

Let us now analyse the effect of object uncertainty. As discussed above when object
uncertainty is not assumed, p(Oi

k+1|xk+1) = 1, and therefore the posterior belief parameters
reduce to that of the standard EKF case. However, in practice, one should consider object
uncertainty and the posterior belief parameters are as delineated in (9.9) and (9.10). Yet,
the impact of considering object uncertainty in localisation depends on the covariance of
the estimated object location. When the covariance of the object location is much larger
compared to the predicted robot belief state covariance, the impact of considering object
uncertainty is greatly reduced.

Lemma 1. If the uncertainty in the estimated object location is much larger than the predicted

robot state uncertainty, that is, when ΣOi
k+1
≫ Σ̄k+1, then the respective object uncertainty is

no longer significant.

Proof. In order to prove the above lemma, it suffices to show that when ΣOi
k+1
≫ Σ̄k+1,

the posterior belief parameters reduce to that of the standard EKF update case as given
in (9.4). Let us first consider the expession in (9.8). Using the fact that ΣOi

k+1
≫ Σ̄k+1,

then Σ
−1
Oi

k+1
≪ Σ̄

−1
k+1 and hence it can be neglected when compared to Σ̄

−1
k+1. This gives

Σk+1 =
(

HT
k+1Q−1

k+1Hk+1 + Σ̄
−1
k+1

)−1
, and is the expression for the posterior belief covariance

when object uncertainty is not considered. Again, using ΣOi
k+1
≫ Σ̄k+1, Σ̄k+1 can be neglected
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from the sum
(

Σ̄k+1 +ΣOi
k+1

)
. The expression for Kalman gain thus reduces to

Kk+1 = Σ̄k+1

(
ΣOi

k+1

)−1
ΣOi

k+1
HT

k+1(
Hk+1Σ̄k+1

(
ΣOi

k+1

)−1
ΣOi

k+1
HT

k+1 +Qk+1

)−1

= Σ̄k+1HT
k+1

(
Hk+1Σ̄k+1HT

k+1 +Qk+1

)−1
(9.11)

Thus, as can be seen in (9.4), the Kalman gain is exactly the gain obtained when object
uncertainty is not considered. Similarly, we have Σk+1Σ

−1
Oi

k+1
≪ 1, thus µµµk+1 = µ̄µµk+1 +

Kk+1

(
zk+1−h

(
µ̄µµk+1

))
. Following a similar argument, it is easily seen that Σk+1 = (I−

Kk+1Hk+1)Σ̄k+1. This completes the proof of Lemma 1.
Although the above result might seem counter-intuitive at first, we note here that the

viewpoint space, when object uncertainty is not considered, is the space centred around the
mean of the viewpoint space when the object uncertainty is considered. When the covariance
of the object location is very high, then the probability values for viewpoints slightly away
from the mean reduces drastically. Consequently considering these viewpoints adds little
impact.



Chapter 10

Exact Collision Probability

In this chapter, we approximate both the robot and obstacles using their bounding volume
sphere (or a combination of spheres). This is relaxed in Chapter 11 where we assume
bounding volume ellipsoids which form a much better approximation than bounding volume
spheres. Our contributions C6, C7 and C8 are discussed in this chapter.

We denote by R the set of all points occupied by a rigid-body robot at any given time.
Similarly, let S represent the set of all points occupied by a rigid-body obstacle. A collision
occurs if there exits a point such that it is in both R and S . Thus the collision condition is
defined as

R ∩S ̸= {φ} (10.1)

and we denote the probability of collision as P
(
R ∩S ̸= {φ}

)
. In this work we assume

spherical geometries for R and S with radii r1 and s1, respectively. We assign body-fixed
reference frames to both the robot and the obstacle located at xk and sk, respectively in the
global frame. By abuse of notation we will use xk and sk equivalently to R and S . The
collision condition is thus defined in terms of the body-fixed frames as

Cxk,sk : R ∩S ̸= {φ} (10.2)

We recall here that the locations of the obstacles are in general uncertain. Let us now consider
an obstacle at any given time instant, distributed according to the Gaussian sk∼N

(
µµµsk

,Σsk

)
,

where µµµsk
represents the mean and Σsk the associated covariance. Given the current robot

state xk and the obstacle state sk, the probability of collision can be formulated if the joint
distribution between the robot and the obstacle state is known. In such a case the collision
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probability is given by

P
(
Cxk,sk

)
=
∫

xk

∫
sk

Ic(xk,sk)p(xk,sk) (10.3)

where Cxk,sk as defined above represents the fact that the robot configuration xk and its
collision with an obstacle at location sk is considered, and Ic is an indicator function defined
as

Ic(xk,sk) =

1 if R ∩S ̸= {φ}

0 otherwise.
(10.4)

and p(xk,sk) is the joint distribution of the robot and the obstacle. [113] compute an approxi-
mate upper bound for the collision probability by linearizing the collision condition. [65]
use MCI to compute (11.13). However, the resulting double summation is approximated to a
single summation to reduce computational complexity. [19], [82] approximate the integral in
(11.13) as V p(xk,sk), where V is the volume occupied by the robot. For computing p(xk,sk),
they first assume a distribution centered around the obstacle with the covariance being the
sum of the robot and obstacle location uncertainties. Then the density p(xk,sk) is computed
by assuming a constant robot location. Du Toit and Burdick use the robot center, whereas
in [82] the maximum of p(xk,sk) on the surface of the robot is used to obtain an upper bound.
However, the approximation is valid only when the robot radius is negligible. To demonstrate,
let us re-write the collision condition as

P
(
Cxk,sk

)
=
∫

xk

[∫
sk∈R

p(sk|xk)

]
p(xk) (10.5)

If the robot radius is negligible then it can be assumed that sk = xk, giving

P
(
Cxk,sk

)
=
∫

xk

[
p(sk = xk|xk)

∫
sk∈R

]
p(xk) (10.6)

Thus assuming a constant value of the obstacle evaluated at the robot location, we have

V =
∫

sk∈R
(10.7)

where V is the volume occupied by the robot. The approximate collision probability is thus

P
(
Cxk,sk

)
≈V

∫
xk

p(sk = xk|xk)p(xk) (10.8)
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Assuming that the robot and the obstacle locations are independent Gaussian distri-
butions with sk ∼N

(
µµµsk

,Σsk

)
and xk ∼N

(
µµµxk

,Σxk

)
, the collision probability can be

approximately written as

P
(
Cxk,sk

)
≈V p(xk = µµµxk

,sk = µµµsk
) (10.9)

where

p(xk = µµµxk
,sk = µµµsk

) = det
(

2π
(
Σsk +Σxk

))− 1
2 exp

(
−1

2
(µµµxk
−µµµsk

)T
Σ
−1(µµµxk

−µµµsk
)

)
(10.10)

Other existing approaches truncate the state distributions or compute approximate upper
bounds using chance-constraints. As such, these approaches compute an approximation of
the collision probability. In contrast, we formulate the collision constraint as a quadratic form
in random variables, allowing us to compute an exact expression for the collision probability.
In the remainder of this Section, a rigorous treatment of the same is presented.

Since the robot and the obstacles are assumed to be spherical objects, the collision
constraint is written as

∥xk− sk∥2 ≤ (r1 + s1)
2 (10.11)

where (as before) xk and sk are the random vectors that denote the robot and obstacle locations,
respectively. Let the current estimates of the two random vectors be distributed according
to sk ∼N

(
µµµsk

,Σsk

)
and xk ∼N

(
µµµxk

,Σxk

)
. Let us denote the difference between the

two random variables by w = xk− sk. Using the expression for the difference between two
Gaussian distributions, we have w ∼N

(
µµµxk
−µµµsk

,Σxk +Σsk

)
. The collision constraint

in (12.3) can now be written in terms of w,

y =∥w∥2 = wT w≤ (r1 + s1)
2 (10.12)

where y is a random vector distributed according to the squared L2-norm of w. Now, given
the probability density function (pdf) of y, the collision constraint reduces to solving the
integral

P
(
Cxk,sk

)
=
∫ (r1+s1)

2

0
p(y) (10.13)

where p(y) = Py(y = y) is the pdf of y. It is noteworthy that the above integral is the
cumulative distribution function (cdf) of y, that is, P

(
Cxk,sk

)
= Fy(y), where Fy(y) denotes

the cdf. Thus the collision condition reduces to finding the cdf of y such that y≤ (r1 + s1)
2.
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As a consequence, we have

P
(
Cxk,sk

)
= P

(
y≤ (r1 + s1)

2
)
= Fy

(
(r1 + s1)

2
)

(10.14)

In the following Sections, we will first show that the collision constraint is a quadratic form
in random variables and later derive an exact expression for the cdf of the quadratic from.

10.1 Quadratic Form in Random Variables

We define a quadratic form in random variables:

Definition 10. Let x = (x1, . . . ,xn)
T denote a random vector with mean µµµ = (µ1, . . . ,µn)

T

and covariance matrix Σ. Then the quadratic form in the random variables x1, . . . ,xn

associated with an n×n symmetric matrix A = (ai j), with i and j in 1, . . . ,n, is

Q(x) = Q(x1, . . . ,xn) = xT Ax =
n

∑
i=1

n

∑
j=1

ai jxix j (10.15)

Let us define v = Σ
− 1

2 x and define a random vector z =
(

v−Σ
− 1

2 µµµ

)
. The resulting

distribution of z is thus zero mean with covariance being the identity matrix. Therefore, the
quadratic form becomes

Q(x) =
(

z+Σ
− 1

2 µµµ

)T
Σ

1
2 AΣ

1
2

(
z+Σ

− 1
2 µµµ

)
(10.16)

Let us suppose there exists an orthogonal matrix P, that is, PPT = I which diagonalizes
Σ

1
2 AΣ

1
2 , then PT Σ

1
2 AΣ

1
2 P = diag(λ1, . . . ,λn), where λ1, . . . ,λn are the eigenvalues of Σ

1
2 AΣ

1
2 .

The quadratic form can now be written as

Q(x) =
(

z+Σ
− 1

2 µµµ

)T
Σ

1
2 AΣ

1
2

(
z+Σ

− 1
2 µµµ

)
= (u+b)T diag(λ1, . . . ,λn)(u+b)

(10.17)

where u = PT z = (u1, . . . ,un)
T and b = PT Σ

− 1
2 µµµ = (b1, . . . ,bn)

T . The expression in (11.10)
can be written concisely,

Q(x) = xT Ax =
n

∑
i=1

λi(ui +bi)
2 (10.18)
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It is easily verified that the left hand side of (12.4), that is wT w, is in the quadratic form
Q(w) with A = I, that is, the identity matrix. Thus the collision probability can be computed
from the cdf of the quadratic form.

10.2 Series Expansion for the Quadratic Form

We describe below the most general method used to obtain a series expansion for the pdf and
cdf of the quadratic form in random variables. Various other methods exists in the literature
and we refer the interest readers to [90] for a brief survey. The series expansion that we seek
for the pdf of the quadratic form is of the form

py(y) = p(y = y) =
∞

∑
k=0

ckhk(y) (10.19)

where ck is a sequence of complex number and {hk} is a known sequence of the form yk. Let
the Laplace transform of hk(y) be denoted by L(hk(y)). In the expansion sought here, the
Laplace transform is of the special form ([59])

L(hk(y)) = ξ (s)ηk(s) (10.20)

where, for Re(s) > α and α being a real constant, ξ (s) is a non-vanishing (non-zero
everywhere) analytic function and η(s) is an analytic function with an inverse function
η(ζ (θ)) = θ . Now we are interested in the case where the series expansion is convergent,
that is, ∑

∞
k=0 ckhk(y)< ∞. For any real number β , let us define

∞

∑
k=0

ckhk(y)≤
∞

∑
k=0
|ck||hk(y)| ≤ αeβy, y ∈ [0,∞] (10.21)

If the above equation is satisfied almost everywhere, then computing the Laplace transform,
we have ∫

∞

0
e−sy

αeβy = α

∫
∞

0
e−(s−β )ydy < ∞ (10.22)

if (s−a) > 0. Therefore, from Lebesgue’s dominated convergence theorem, we have the
following lemma.

Lemma 2. Let {hk}∞
0 be a sequence of measurable complex valued functions on [0,∞] and

{ck}∞
0 be a sequence of complex numbers such that almost everywhere the following is
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satisfied
∞

∑
k=0
|ck||hk(y)| ≤ αeβy, y ∈ [0,∞] (10.23)

where α , β are real constants. Then when s > 0 and py(y) =
∞

∑
k=0

ckhk(y), we have

L
(

py(y)
)
=

∞

∑
k=0

ckL(hk(y)) (10.24)

The implications of the above lemma are twofold. The first is that the series expansion
is convergent. This however is rather straightforward from our construction of the series
expansion. The second is the fact that the Laplace transform of the series py(y) can be
obtained by taking the Laplace transform of the individual terms of the series. This fact will
be used below to derive the pdf and the cdf of the quadratic from. We now state the following
theorem without proof. The proof may be found in [90].

Theorem 1. For Q(x) = y = xT Ax with A = AT > 0,x ∼ N (µµµ,Σ),Σ > 0, the moment

generating function MQ(t) of Q is given by

MQ(t) = exp

(
−1

2

n

∑
i=1

b2
i

)
exp

(
1
2

n

∑
i=1

b2
i (1−2tλi)

−1

)
n

∏
i=1

(1−2tλi)
− 1

2 (10.25)

where the bi, λi are the parameters of the quadratic form as defined in Section 10.1. Let us
now define the series M(θ) such that

M(θ) =
∞

∑
k=0

ck
L(hk(y))
ξ (ζ (θ))

=
∞

∑
k=0

ckθ
k (10.26)

where the infinite series is a uniformly convergent series for θ in some region with M(θ)> 0,
M(0) = c0 and s = ζ (θ). We note here that if py(y) = 0 for y < 0, then MQ(−t) represents
the Laplace transform of py(y). Thus, from (10.25) we have

L
(

py(y)
)
= exp

(
−1

2

n

∑
i=1

b2
i

)
exp

(
1
2

n

∑
i=1

b2
i (1+2sλi)

−1

)
n

∏
i=1

(1+2sλi)
− 1

2 (10.27)

Using ζ (θ) = θ−1, we have
L
(

py(y)
)
= s−

n
2 M(θ) (10.28)
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Thus we obtain,

c0 = M(0) = exp

(
−1

2

n

∑
i=1

b2
i

)
n

∏
i=1

(2λi)
− 1

2 (10.29)

Differentiating the natural logarithm of M(θ), we get the following form

lnM(θ) = d0 +
∞

∑
k=1

dk
θ k

k
(10.30)

where

d0 =−
1
2

n

∑
i=1

b2
i + ln

n

∏
i=1

(2λi)
− 1

2

dk =
1
2

n

∑
i=1

(
1− kb2

i

)
(2λi)

−k
(10.31)

From (10.28), we have the following lemma.

Lemma 3.
L
(

py(y)
)
=

∞

∑
k=0

ck(−1)ks−(
n
2+k) (10.32)

We now obtain the required expressions for the pdf and cdf of the quadratic form of Q(x).

Lemma 4. The cdf of Q(x) = y = xT Ax with A = AT > 0,x∼N (µµµ,Σ),Σ > 0 is

Fy(y) = p(y≤ y) =
∞

∑
k=0

(−1)kck
y

n
2+k

Γ
(n

2 + k+1
) (10.33)

and its pdf is given by

py(y) = p(y = y) =
∞

∑
k=0

(−1)kck
y

n
2+k−1

Γ
(n

2 + k
) (10.34)

where Γ denotes the gamma function, c0 and d0, dk are the terms defined in (10.29)
and (10.31), respectively. The expression for ck is given by (see Appendix C for derivation)

ck =
1
k

k−1

∑
j=0

dk− jc j, k ≥ 1 (10.35)
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Proof. From Lemma 3, we have L
(

py(y)
)
=

∞

∑
k=0

ck(−1)ks−(
n
2+k). The lemma is proved by

noting that s−(
n
2+k) is Laplace transform of y

n
2+k−1/Γ

(n
2 + k

)
. Integrating the expression for

py(y), we obtain the required expression for Fy(y).

Theorem 2. The collision probability for the collision constraint formulated in (12.4) is

given by

P
(
Cxk,sk

)
=

∞

∑
k=0

(−1)kck
y

n
2+k−1

Γ
(n

2 + k
) (10.36)

where y = (r1 + s1)
2.

Proof. From (12.4), the collision constraint is in the quadratic form Q(y), with w ∼
N
(

µµµxk
−µµµsk

,Σxk +Σsk

)
. We recall here that w = xk− sk, where xk and sk are the random

vectors that denote the robot and obstacle locations, respectively and are distributed according
to sk ∼N

(
µµµsk

,Σsk

)
and xk ∼N

(
µµµxk

,Σxk

)
. As noted before, the collision probability is

the cdf of the quadratic form Q(y). Thus from Lemma 4, the above theorem is proved.

10.3 Revisiting Convergence of the Series Expansion

As seen in Lemma 2, the cdf and the pdf of the quadratic form is convergent. In the following,
we will derive upper bounds for the truncation error of the series expansions for the pdf and
the cdf of the quadratic form.

If the infinite series pdf in (11.16) is truncated after N terms, the truncation error is

e(N) =
∞

∑
k=N+1

|ckhk(y)|=

∣∣∣∣∣ ∞

∑
k=N+1

ck
y

n
2+k−1

Γ
(n

2 + k
)∣∣∣∣∣ (10.37)

Using Cauchy’s inequality, we get

|ck| ≤
m(ρ)

ρk , m(ρ) = max|θ |=ρ |M(θ)| (10.38)

Thus we have

e(N)≤ m(ρ)

ρk

∣∣∣∣∣ ∞

∑
k=N+1

y
n
2+k−1

Γ
(n

2 + k
)∣∣∣∣∣≤

m(ρ)

(
Γ

(
n
2

)
N!

)−1(
y
2

) n
2−1( y

2ρ

)N+1

exp
(

y
2ρ

)
(10.39)
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where we have used the gamma function identity, ∀ς > 0, Γ(ς +1) = ςΓ(ς). In a similar
manner, we obtain the truncation error for the infinite series cdf in (11.15)

E(N)≤ m(ρ)

(
Γ

(
n
2

)
(N +1)!

)−1(
y
2

) n
2
(

y
2ρ

)N+1

exp
(

y
2ρ

)
(10.40)

The expression for m(ρ) is obtained from [60],

m(ρ) =
n

∏
i=1

λ
− 1

2
i exp

(
−1

2

n

∑
i=1

b2
i λi

λi +ρ

)
n

∏
i=1

(1− ρ

λi
)−

1
2 (10.41)

For the expression in (10.41) to be valid, it is required that ρ < λi and therefore we have
ρ <min λi. As a result, m(ρ) vanishes with ∑

n
i=1 b2

i →∞. We recall here that b=PT Σ
− 1

2 µµµ =

(b1, . . . ,bn)
T . Thus, larger the distance from the obstacles and lower the uncertainty in the

robot and obstacle positions, the greater is the bi value. In such scenarios, based on our
experience, convergence is often attained within the first few terms of the series.

It is worth noting that for a given robot configuration and obstacle parameters, the
varying term in (10.40) is (y/2ρ)N+1/(N +1)!. This term is inversely proportional to the
parameter ρ . As discussed above ρ depend on λi’s, that is, the eigenvalues of Σk +Σs. Thus
at time instant k, the parameter that influences the convergence is the degree of uncertainty
in both the robot and obstacle locations, that is, Σk +Σs. This is visualized for different
configurations in Fig. 10.1. The blue and green circles represent a robot and an obstacle,
respectively. The red ellipses corresponds to the 3σ uncertainties for different covariances
diag(0.04,0.04), diag(0.08,0.08), . . . , diag(0.74,0.74). For all the scenarios discussed
we choose E(N) = 0.001. In Fig. 10.1(a) the robot and the obstacle are touching each
other. For each of these covariances, the number of terms for convergence is shown in
Fig. 10.1(b). The worst case corresponds to the covariance of diag(0.04,0.04), requiring
16 terms for convergence (dashed blue line with spikes in Fig. 10.1(b)). In Fig. 10.1(c)
the distance between the robot and the obstacle is increased by 0.2m and the covariance
diag(0.04,0.04) needs 12 terms for convergence. The distances are further increased by
0.4m and 0.8m in Fig. 10.1(e),(g) and their worst case convergences are 9 and 5 respectively,
as seen in Fig.10.1(f),(h). The number of terms for the worst case convergence corresponds to
covariance diag(0.04,0.04) and the respective timings for collision probability computation
are shown in Table 12.1.

Similarly, the term (y/2ρ)N+1/(N +1)! is directly proportional to y which quantifies the
size of the robot and the obstacle. We recall here from (10.14) that y = (r1 + s1)

2, that is,
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(a) Configuration A (b) Collision probability evolution

(c) Configuration B (d) Collision probability evolution

(e) Configuration C (f) Collision probability evolution

(g) Configuration D (h) Collision probability evolution

Figure 10.1 Different configurations for a robot of radius 0.3m and obstacle of radius 0.5m. For each
configuration the evolution of collision probability is plotted for different covariances. In each of
the 4 configurations, the maximum terms for convergence correspond to the minimum covariance of
diag(0.04,0.04).
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(a) Configuration E (b) Collision probability evolution

(c) Configuration F (d) Collision probability evolution

(e) Configuration G (f) Collision probability evolution

(g) Configuration G (h) Collision probability evolution

Figure 10.2 Different configurations for a robot of radius 0.3m and obstacle of radius (a) 0.8m, (c)
0.7m, (e) 0.6m and (g) 0.5m. In the second column, for each of these configurations the evolution of
collision probability is plotted against different covariances.
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Configuration Terms for convergence Computation time (s)
A 16 0.0412 ± 0.0086
B 12 0.0044 ± 0.0041
C 9 0.0008 ± 0.0003
D 5 0.0004 ± 0.0002

Table 10.1 The maximum number of terms required for convergence and the corresponding collision
probability computation time. The values correspond to the covariance diag(0.04,0.04) for each of
the configurations.

Configuration Terms for convergence Computation time (s)
E 7 0.0006 ± 0.0005
F 4 0.0004 ± 0.0002
G 3 0.0004 ± 0.0001
H 2 0.0001 ± 0.0000

Table 10.2 The maximum number of terms required for convergence and the corresponding collision
probability computation time. Each configuration corresponds to different y values with the robot and
obstacle locations remaining the same; only obstacle size varies.

the square of the sum of robot and obstacle radius. By keeping the robot size constant and
varying the obstacle size, the influence of y on convergence is visualized for four different
configurations in Fig. 10.2. In Fig. 10.2(a) y = 1.12(m2) and convergence is obtained within
7 terms. In Fig. 10.2(c),(e),(g) we have y = 12,0.92,0.82 and the number of terms required
for convergence are 4, 3 and 2, respectively. The collision probability computation times are
as given in Table 10.2. For y > 1.12, it can be seen that the number of terms for convergence
did not exceed 7 and for y < 0.82 convergence is achieved with the first two terms. Thus this
shows that ρ plays a much larger role in convergence than y.

10.4 Safe Configurations

In the presence of perception and motion uncertainty, providing safety guarantees for robot
navigation is imperative. In this Section, we certify safety by defining the notion of a “safe"
robot configuration. Let us assume that the obstacle position is known with high certainty as
a result of perfect sensing, that is, no significant noise is present. However, since the true state
of the robot is not known and only a distribution of these states can be estimated, collision
checking has to be performed for this distribution of states. Moreover, in practice, the
observations are noisy and this renders the estimated obstacle location (and shape) uncertain.
Hence, this uncertainty should be taken into account while considering collision avoidance.

Given a robot configuration xk, we define the following notion of ε−safe configuration.
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(a) (b) (c)

Figure 10.3 Comparison of our approach with [65, 113, 82, 19]. (a) The robot state (in blue) is
known perfectly, however the obstacle location (in green) is uncertain. (b) Robot state uncertainty is
considered. The approaches in [19, 82, 113] computes higher values. (c) Point-like robot and obstacle
considered. The values computed with [19, 82] are much lower than expected while that of [82] is
very high.

Definition 11. A robot configuration xk is an ε−safe configuration with respect to an obstacle

configuration s, if the probability of collision is such that P
(
Cxk,s

)
≤ 1− ε .

For example, a 0.99−safe configuration implies that the probability of this configuration
colliding with the obstacle is at most 0.01. On the one hand, sampling-based motion planning
approaches such as the PRM ([56]) consider a discrete state space or a set of controls. As a
result, it can only guarantee probabilistic completeness for returning ε−safe configurations
since the PRM motion planner is probabilistically complete ([55]), that is the probability of
failure decays to zero exponentially with the number of samples used in the construction
of the roadmap. As a result, for sampling-based BSP approaches ([1, 89]), the failure to
find an ε−safe configuration might be because such a configuration indeed does not exist or
simply because there are not enough samples. On the other hand, continuous state and action
space BSP approaches ([109, 88, 85, 43]) do not always guarantee ε−safe configurations.
This is merely because there might not be enough measurements to localize the robot or
to estimate obstacle locations or both and hence this may preclude computing appropriate
control commands.

10.5 Comparison to Other Approaches

[65] compute the collision probability by performing MCI. The joint distribution between
the robot and the obstacle p(xk,sk) is simplified as the product of the individual distributions.
This MCI approach results in an expression with double summation for computing the
probability of collision. However, [65] approximate this to a single summation expression to
decrease computational complexity. [113] compute an upper bound for collision probability
using Gaussian chance constraints. [82] compute the collision probability by finding the
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Case Algorithm Collision probability Computation time (s) Feasible

(a)

Numerical integral 4.62% 0.8648 ± 0.0418 Yes
[65] 4.41% 0.0272 ± 0.0023 Yes
[19] 5.84% 0.0017 ± 0.0002 Yes
[82] 33.26% 0.2495 ± 0.3093 No
[113] 9.60% 0.0021 ± 0.0003 No

Our approach 4.61% 0.0254 ± 0.0034 Yes

(b)

Numerical integral 8.25% 1.1504 ± 0.0318 Yes
[65] 7.87% 0.0325 ± 0.0024 Yes
[19] 14.20% 0.0011± 0.0002 No
[82] 36.31% 0.2156 ± 0.4068 No
[113] 16.73% 0.0013 ± 0.0003 No

Our approach 8.22% 0.0216 ± 0.0023 Yes

(c)

Numerical integral 14.82% 1.1341 ± 0.0211 No
[65] 15.26% 0.0287 ± 0.0059 No
[19] 0.46% 0.0015 ± 0.0007 Yes
[82] 0.61% 0.3233 ± 0.5405 Yes
[113] 50.00% 0.0018 ± 0.0007 No

Our approach 14.83% 0.0280 ± 0.0093 No

Table 10.3 Comparison of collision probability approaches.

xk that maximizes p(xk,sk) and formulate the problem as an optimization problem with a
Lagrange multiplier. Unlike in [82], which computes the maximum density, [19] use the
density associated with the center of the robot. However, this approximation can either be
smaller (if covariance is small) or larger than the true value. We formulate the problem
as exactly given in each of the works mentioned above to compare it with our approach1.
The MCI approach of [65] is evaluated using 10,000 samples. Finally, to validate the value
computed using our approach, we also perform the numerical integration of the expression
in (11.13), using Monte Carlo method with 10,000 samples.

Three different cases are considered as shown in Fig. 10.3. The solid green circle denotes
an obstacle of radius 0.5m and its corresponding uncertainty contours are shown as green
circles. The solid blue circle denotes a robot of radius 0.3m with the blue circles showing the
Gaussian contours. We define a collision probability threshold of 0.09, that is, a 0.91−safe
configuration. The collision probability values and the computation times are summarized
in Table 10.3. In Fig. 10.3(a), the robot position is known with high certainty and our
approach computes collision probability as 4.61% and hence the given configuration is a
0.91−safe configuration. The numerical integration of (11.13) gave a value of 4.62%. The

1For comparison, the computation of other approaches have been reproduced to the best our understanding
and the reproduced codes can be found here- https://bitbucket.org/1729antony/comparison/src/master/

https://bitbucket.org/1729antony/comparison/src/master/
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approach of [65] and [19] also estimates the configuration to be feasible, giving a collision
probability value of 4.41% and 5.84%, respectively. The collision probability computed
as given in [82] is 33.26% (not a 0.91−safe configuration). Moreover, the value computed
is almost seven times higher than the one computed using our approach. Similarly, the
value computed using the approach in [113] is 9.60%, predicting the configuration to be
unsafe. The higher values are due to the overly conservative nature of the estimates as loose
upper bounds are computed. In Fig. 10.3(b), there is robot uncertainty along the horizontal
axis and the collision probability computed using our approach is 8.22% and the numerical
integration gave a collision probability value of 8.25%. As compared to the previous case,
the probability has almost doubled. This is quite intuitive as seen from the robot location
uncertainty spread and hence there is greater chance for intersection between the two spheres.
The increased chance for collision is also rightly communicated by the values computed
using other approaches. The value computed using the approach in [82] gave a much higher
value of 36.31%, an increase by 342% as compared to our approach. As in the previous case,
the approaches in [19], [113] also gave higher values of 14.20% and 16.73%, respectively,
while [65] gave a feasible value of 7.87%.

The approaches in [19, 82] assume that the robot radius is negligible and that the obstacle
size is relatively small compared to their location uncertainties. We also compute the collision
probabilities for a robot and an obstacle with radius 0.05m each, where the robot and the
obstacle are touching each other (Fig. 10.3(c)). The obstacle location is also much more
certain, with the uncertainty reduced by 97% as compared to cases in Fig. 10.3(a),(b). The
numerical integration gave a collision probability value of 14.82%. The probability of
collision computed using our approach is 14.83%, whereas, using the approach in [82],
the computed value is 0.61%. A lower value of 0.46% is obtained using the approach
in [19]. The approach of [113] gave an overly conservative estimate of 50%. The value
computed using [65] is 15.26%. To get a sense of the actual value, we compute the area of
the covariance matrix, which is 6.28× 10−4m2. This clearly indicates that 0.61%, 0.46%
and 1.69% are too small values while 50.00% is a very high value. Our approach computes
the exact probability of collision and outperforms the approaches in [65, 19, 82, 113].

We now provide a comparison in simulation using a scenario shown in Fig. 10.4(a). The
robot has to reach the goal position (black star) by avoiding the obstacles in-between. To
make the implications of overly conservative estimates (loose upper bounds) explicit, we
make the following assumptions. During each planning session2, the robot can choose from

2By a planning session we mean an L look-ahead step planning at the current time and choosing an optimal
control. Thus if n planning sessions are required to reach a goal this means that the control action was executed
n times.
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(a) (b)

Figure 10.4 Comparison to other approaches in simulation: (a) Top view of the environment in
gazebo. (b) Path 1 is the trajectory executed by the robot following our approach. The trajectory
is executed in seven planing sessions. Path 2 leads to collision as upper bounds are computed by
other approaches deeming the plans infeasible. The action set is extended and a longer trajectory is
executed by the robot using the approach of [113]. The goal is reached in 15 planning sessions.

a set of nine different actions. A description of the motion and observation models can be
found in Section 10.10. An action is chosen based on an additive cost of distance to the
goal and the collision probability. If the collision probability for an action is greater than
0.01, then this is penalized by redefining the value to be equal to a large number M. The
trajectory executed by the robot using our collision probability computation approach is
shown in blue (Path 1) in Fig. 10.4(b). The goal was reached in seven planning sessions. For
all the other approaches the robot executes the green trajectory (Path 2), leading to a collision.
The control action as a result of the first planning session is the same as in Path 1, but the
control resulting from the second planning session leads to collision. This is because for all
the actions the computed collision probability is greater than 0.01 and hence the values in
the cost are redefined to M. Therefore the action chosen is the one that results in minimum
distance to the goal and leads to collision. The collision probability values are greater than
0.01 as other approaches compute overly conservative bounds. Our approach computes the
exact value and hence the robot reaches the goal safely. We note that collision occurred due
to our restrictive action set. If this restriction is relaxed then all the other approaches are able
to compute a path with a greater curve than Path 1. One such trajectory is shown in cyan
(Path 3), with the collision probabilities computed using the approach by [113]. Thus it is
seen that loose upper bounds for collision probability can lead to longer trajectories or in
some cases deem all plans to be infeasible.



10.6 Non Circular Geometry 93

10.6 Non Circular Geometry

Given two objects (represented as convex polygons), in this Section we derive the collision
constraint as a measure of the distance between the mid points of the objects. As before,
let us consider two objects, R ⊂ R2 and S ⊂ R2. Let us assume that S is static and R

can perform translational motions and is approaching S . Then, subtracting R from S

gives a convex polygon P such that for any c ∈P , then R ∩S ̸= {φ} ([71]), that is, the
convex polygon P is the set of configurations of R that leads to collision with obstacle S .
Note that, R and S are essentially two sets whose elements are the (x,y) pairs belonging
to the respective polygons that they represent. Therefore, P is essentially the Minkowski
difference between the two sets R and S .

Definition 12. The Minkowski sum of two sets S , R ⊆ Rd is

S +R = {s+ r | s ∈S , r ∈R} (10.42)

Definition 13. The Minkowski difference of two sets S , R ⊆ Rd is

S −R = {s− r | s ∈S , r ∈R} (10.43)

The Minkowski sum and difference of two objects are visualized in Fig. 10.5. The
Minkowski difference between the two sets S and R, also called the configuration space
obstacle, is the set of (translational) configurations of R that brings it into collision with
S ([71, 11]). However, we would like to obtain a collision constraint of the form (12.3). In
order to obtain such a constraint, we first compute the Minkowski difference between the set
S and the mid-point of R. This gives a new convex set P ′ whose elements are formed by
subtracting each element of the set S by the mid-point of object R. In other words, the set
P ′ is the set of all configurations of the mid-point of −R3 obtained by shifting/translating
this point by each element in the set S .

Lemma 5. The maximum distance from a point to a line segment occurs at either of the two

end-points of the line segment.

Proof. Given a point P, its distance to line segment AB is PC; see Fig. 10.6. Using
Pythagoras theorem, we get PA > PA′ since CA > CA′. Similarly for CA ≥ CB, we get
PA ≥ PB, with the equality obtained when PC divides line segment AB equally. Thus the
maximum distance from P to AB is either PA or PB.

3It holds that −R = {−r | r ∈R}
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(a) Convex objects (b) Minkowski sum (c) Minkowski differ-
ence

Figure 10.5 (a) Two convex objects and the object formed by considering the (b) Minkowski sum
and (c) Minkowski difference.

Figure 10.6 Illustration of Lemma 8. The maximum distance from a point P to line segment AB is
either PA or PB.

Lemma 6. The maximum distance from a point P to any other point on a polygon Q is

obtained by computing

sup{PVi | Vi is the vertex of Q} (10.44)

where PVi denotes the line segment from point P to the vertex Vi.

Proof. Given a point inside (or outside) a polygon, the maximum distance to any other
point on the polygon is obtained when these points fall on the boundary of the polygon.
The boundary of a polygon is formed by edges or line segments and from Lemma 8, the
maximum distance from a point to a line segment occurs at the end-points of the line segment.
The end-points of these line segments form the vertices of the polygon. Hence it is only
sufficient to compute the distances to the vertices of the polygon. Hence the distance from
the given point to the vertex of the polygon that is farthest from the point gives the required
distance.

For convex polygons R and S , the boundary configurations of the Minkowski differ-
ence represents configurations that lead to contact between R and S ([11]), that is, the
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configurations where R and S touch each other. Also note that the polygon P ′ obtained by
computing the Minkowski difference between the mid-point of R and the set S is fundamen-
tally the set of all translated configurations of the mid-point of −R in the set P = S −R.
Thus the collision constraint is obtained by computing the maximum distance between the
mid-point of the obstacle S and the polygon P ′.

Theorem 3. Given a convex polygonal set R and an obstacle set S , the collision constraint

is given by

sup{SVi | Vi is the vertex of P ′} (10.45)

where S is the mid-point of S and P ′ is the set obtained by computing the Minkowski

difference between S and the mid-point of R.

Proof. We saw above that the collision constraint is obtained by computing the maximum
distance between the mid-point of the obstacle S , that is S and the polygon P ′. From
Lemma 6, the maximum distance is achieved at the vertices of the polygon. Hence, it follows
from Lemma 6 that the collision constraint is sup{SVi | Vi is the vertex of P ′}.

Thus, if R and S correspond to the set of points occupied by the robot and the obstacle,
respectively, the collision constraint in (12.3) can be written as∥xk− sk∥2 ≤

(
sup{SVi}

)2.
The Minkowski sum or difference are not invariant to rotations and hence rotation about

a reference axis elicits different sets. The resulting sets are obtained by pre-multiplying the
starting configuration with the standard rotation matrix of the corresponding angle. This
renders different collision constraints for the two given sets. However, while planning for
future control commands, the robot pose is often estimated using the motion model and by
simulating possible future observations. As a result, an estimate of the robot orientation is
computed. Moreover, for static obstacles, both in known and unknown environments, the
geometry of the obstacle is a constant4. In the case of dynamic obstacles, the orientation
of this geometry changes. Thus, assuming that the orientation of the obstacle is known and
using the estimated robot orientation, the collision constrained is obtained as elucidated in
Theorem 3.

10.7 Complexity Analysis

Finding a trajectory to the goal requires performing Bayesian (EKF) update operations.
This involves performing matrix operations, that is, matrix multiplication and inversion of

4In this work we assume non-deformable objects.
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Figure 10.7 True obstacle trajectories plotted along with the estimated obstacle trajectories. In all
the cases the linear velocity of the obstacle is greater than or equal to 0.5m/s. A laser rangefinder is
placed at the origin pointing towards the north-east direction. The green ellipses show the estimated
covariances. Initial large ellipses correspond to the prior uncertainties. The prior uncertainties shrink
as measurements are obtained due to obstacle detection.

matrices. For a state of size n, the covariance matrix is of size O(n2). Therefore, each step
of the Bayesian update has a complexity of O(n3). Let L denote the number of time steps
in the trajectory or the look-ahead horizon, then the overall computational complexity is
O(n3L). Note that this is the complexity while computing the objective function at each
time step. The number of times the computation is to be performed cannot be expressed
beforehand as it depends on the specific application and objective to be achieved. Let us now
analyze the complexity of collision probability computation. From (10.40) we see that for
each iteration, the truncation error varies with (y/2ρ). Therefore, to achieve E(N)≤ δ , for
an ε−safe configuration, k = O

(
log δρ

y(1−ε)

)
iterations are required. We note that for each

obstacle, the runtime is increased by this factor.

10.8 Obstacle State Estimation

We adapt the approaches in [97, 82] and describe below the process for estimating future
obstacle states. Let us consider that at time instant k, the robot at state is xk and the estimated
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obstacle location is s. Since the obstacle is following an unknown trajectory, the robot
receives a series of measurements z1

k , . . . ,z
n
k . Note that since the obstacle is moving, then

each measurement zi
k corresponds to a different location of the dynamic obstacle. Given the

robot pose xk and the measurement zi
k, the obstacle location si can be estimated using the

Bayesian approach,
p(si|xk,zi

k) = η p(zi
k|xk,si) p(si|xk) (10.46)

where η = 1/p(zi
k|xk) is the normalization constant. Since the obstacle state si is independent

of the robot state xk, we obtain

p(si|xk,zi
k) = η p(zi

k|xk,si) p(si) (10.47)

where p(si) is the prior density. Given the current robot belief b[xk] and the measurement zi
k,

the expression p(zi
k|xk,si) is computed using the measurement model (8.2). Therefore, the

mean of the obstacle state si is obtained as

s̄i = argmax
si

p(si|xk,zi
k) (10.48)

with the covariance matrix defined accordingly. Once n measurements are acquired at time
k, we use it to estimate future obstacle states within in Model Predictive Control (MPC)
strategy, where the robot plans for an optimal sequence of controls for L look-ahead steps. At
each look-ahead step, the second term in (10.47), that is the obstacle belief has to be updated
as per the obstacle motion model which is unknown. Given the state sn obtained from the
last measurement zn

k , the new state s′ can then be predicted as

p(s′) =
∫

sn
p(s′|sn) p(sn) (10.49)

whose state space form is given by

s(t +1) = As(t)+Bu(t)+ν(t) (10.50)

where u(t) is the control and ν(t) is the process noise and A, B are matrices which will be
defined later. Now we discuss how this prediction can be achieved. From each estimated
location si we can then compute the approximate velocities in the x and y directions using
the forward difference method. Note that we assume that the obstacle does not change its
velocity very drastically and that any two consecutive velocities differ by an ε ≪ 1m/s.
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Therefore, given s1, . . . ,sn we obtain the sets

∆x
∆t

=

{
x̄2− x̄1

∆t
, . . . ,

x̄n− x̄n−1

∆t

}
=

{
∆x̄2

1
∆t

, . . . ,
∆x̄n

n−1

∆t

}
∆y
∆t

=

{
ȳ2− ȳ1

∆t
, . . . ,

ȳn− ȳn−1

∆t

}
=

{
∆ȳ2

1
∆t

, . . . ,
∆ȳn

n−1

∆t

}
(10.51)

where x̄i, ȳi are the two components of s̄i and ∆t is the time between two measurements. In a
similar way we also compute the rate of change of the velocities in the x and y directions.
From this computed sets, we choose the maximum change in velocities in both directions and
denote the corresponding covariances5 as Σx

v and Σ
y
v. From the Taylor series, each component

of s′ can be written as

x′(t ′) = xn(t +∆t)≈ xn(t)+
∆x̄n

n−1

∆t
∆t +

1
2

∆2x̄n
n−1

∆t2 ∆t2

y′(t ′) = yn(t +∆t)≈ yn(t)+
∆ȳn

n−1

∆t
∆t +

1
2

∆2ȳn
n−1

∆t2 ∆t2 (10.52)

Note that the above equation is in the form of (10.50). The process noise is hence defined as

ν(t)∼N

0,

1
4Σx

v(∆t)4 0
0 1

4Σ
y
v(∆t)4


 (10.53)

We use a 2D laser scanner to estimate the state of dynamic obstacles. It is assumed that
the geometry of the obstacle is spherical and is known beforehand. From each scan of the
laser rangefinder, the ray with the minimum distance r j and the corresponding orientation
is computed to form a measurement zi

k. This is repeated to obtain n distinct measurements.
Given these measurements and the current robot state estimated using the standard EKF, the
x and y components of the obstacle location are estimated. These estimated values are then
used to compute the respective velocities using (10.51). The location estimates of the last
scan zn

k is then used as the prior in (10.49) to estimate future obstacle states. The respective
mean and covariance are computed using (10.52) and (10.53). To illustrate our approach, in
Fig. 10.7 we plot the true and estimated locations for different obstacle trajectories.

The approach is readily extended to estimate the state of all obstacles detected by the laser
scanner. We note here that advanced strategies exits in the literature to efficiently segment

5Note that since each variable is Gaussian, their differences are also Gaussian and the corresponding
covariances can be computed trivially.
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laser rangefinder’s scans, but it is not the main focus of the work discussed herein. We
therefore employ a rather simpler method sufficient to demonstrate the approach discussed
herein. The laser rangefinder returns a sequence of distance measurements and these distances
are less than the maximum range when obstacles are encountered. We assume that the
obstacles are not too close, that is, there is a least one distance measurement between two
obstacles that gives the maximum range. This discontinuity in the distance measurements
between two obstacles allows us to separate the laser scanner measurements into different
clusters belonging to different obstacles. From each cluster, we estimate the state of the
corresponding obstacle. Note that it does not guarantee estimating the state of all the obstacles
since some of them could be completely occluded by the others. It is also worth mentioning
that estimating the location of static obstacles is a special case of the approach discussed
here since for static obstacles both ∆x

∆t and ∆y
∆t equate to zero.

10.9 Objective Function

At each time instant k, the robot plans for L look-ahead steps to obtain a control policy
u⋆

k:k+L−1 given by
u⋆

k:k+L−1 = argmin
uk:k+L−1

Jk(uk:k+L−1) (10.54)

where Jk(uk:k+L−1) is the objective function. As per the standard MPC, at each time step the
first control command u⋆

k is then applied. At each time step, the robot is required to minimize
its control usage and proceed towards the goal xg avoiding collisions, while minimizing its
state uncertainty. We quantify the state uncertainty by computing the trace of the marginal
covariance of the robot position. As a result, we have the following objective function

Jk(uk:k+L−1)
.
=

L−1

∑
l=0

∥∥ξ (uk+l)
∥∥2

Mu
+tr

(
∥MΣ∥2

Σk+l

)
+MCP(Cxk+l ,sk+l)

+ E
zk+L

[
∥xk+L−xg∥2

Mg
+ tr

(
∥MΣ∥2

Σk+L

)]
(10.55)

where∥x∥S =
√

xT Sx is the Mahalanobis norm, Mu,Mg,MC are weight matrices and ξ (·) is a
function that quantifies control usage. The choice of weight matrices and the control function
vary with the application. The term tr

(
∥MΣ∥2

Σk

)
= tr

(
MT

Σ
ΣkMΣ

)
returns the marginal

covariance of the robot location. Therefore, MΣ = τM̄Σ, where τ is a positive scalar and M̄Σ

is a matrix filled with zero or identity entries. MC penalizes the belief states with higher
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Algorithm 3 Safe motion planning.
Input: b[xk],L,ε,N, radii, z1

k , . . . ,z
n
k

1: Jk = 0, l = 0
2: compute p(si|xk+l,zi

k+l) ∀i,1≤ i≤ n and ∆x
∆t ,

∆y
∆t

3: while true do
4: b[x−k+l+1]← b[xk+l]p(xk+1+l|xk+l,uk+l)
5: {zk+l+l}← simulate future observations
6: for each {zk+l+l} do
7: compute b[xk+l+1]
8: predict obstacle state sk+l ( using (10.52) )
9: compute ∑ j P(Cxk+l+1,sk+l)

10: compute total_cost ( using (10.55) )
11: end for
12: Jk← Jk+ total_cost
13: end while
14: u⋆

k:k+L−1← argminuk:k+L−1
Jk(uk:k+L−1)

15: return u⋆
k:k+L−1

collision probabilities. Since future observations are not available at planning time and are
stochastic, the expectation is taken to account for all possible future observations.

Our approach is summarized in Algorithm 3. At each time instant, the robot state
is estimated using EKF (lines 4, 7). As described in the previous Section, obstacles are
detected using a laser rangefinder. For the j−th detected obstacle, its future state is then
estimated (line 8) using the approach discussed in Section 10.8. The total collision cost is
then computed by adding the collision cost with each obstacle (line 10). Please note that if no
ε−safe configuration exists then the algorithm terminates. Finally the total cost is computed
as given in (10.55). This is repeated for each horizon step to obtain the optimal control policy
u⋆

k:k+L−1. The control command u⋆
k is then applied and the process is repeated till the goal is

reached.

10.10 Results

In this section we describe our implementation and then illustrate and explore the capabilities
of our proposed approach. First, we present a theoretical example to conceptually understand
the proposed approach. Next, we consider both single and multi-robot experiments, which
are performed using different Gazebo-based realistic simulations. For all the experiments we
use a TurtleBot3 Waffle robot with a radius of 0.22m. The robot is equipped with a Laser
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(a) (b)

Figure 10.8 Simulation environment. (a) Scaled-down (×1
4 ) top view of the environment with the

sampled roadmap and start and goal locations of the robot. (b) Pioneer robot at the starting node of
the roadmap.

Approach Robot radius Obstacle uncertainty Beacon (object) uncertainty Planned trajectory
Our Point No No Fig. 10.10(a)
Our Point Yes No Fig. 10.10(b)
Our 0.3 m No No Fig. 10.10(a)
[19] 0.3 m No No Fig. 10.10(a)
[82] 0.3 m No No Fig. 10.10(d)
Our 0.3 m Yes No Fig. 10.10(c)
Our 0.3 m No Yes Fig. 10.10(e)
Our 0.3 m No No (true beacon location) Fig. 10.10(f)
Our 0.3 m No No (mean beacon location) Fig. 10.10(a)

Table 10.4 Different configurations used for the 2D environment domain.

Distance Sensor LDS-01 and we use the same to acquire obstacle range and bearing. The
performance is evaluated on an Intel® Core i7-6500U CPU@2.50GHz×4 with 8GB RAM
under Ubuntu 16.04 LTS. In all the Gazebo based experiments, the initial uncertainty in robot
pose is Σ0 = diag(0.1m,0.1m,0.02rad). The LDS detections/measurements are only from
the obstacles whose motion is unknown and the EKF is employed to predict the robot state at
each time step. The ground truth odometry from Gazebo is used to measure the pose of the
robot, mimicking a motion capture system. This measurement is then corrupted with noise to
perform state estimation. However, this estimation is not performed at each time step and we
randomly select the times steps to carry out the same. In this way we explore the robustness
of our approach to localization uncertainties.

10.10.1 Theoretical Example 1

We consider the case of a environment where a mobile robot moving in an environment of
30m×20m. A scaled-down top view is seen in Fig. 10.8(a). The underlying PRM graph, the
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(a) (b)

(c) (d)

(e) (f)

Figure 10.9 Trajectory and the covariance evolution for single planning instantiations are shown.
Different cases with obstacle uncertainty for a point robot and a robot of radius 0.3m are shown in (a),
(b), (c) and (d). (e) The planned trajectory when there is uncertainty in beacon locations. (f) True
beacon locations are shown in yellow.
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start (S in the figure) and goal (G in the figure) locations can also be seen. The gray circles
denote the obstacles in the environment. Fig. 10.8(b) shows a Pioneer P3DX robot at the start
location. For the robot motion model, we consider the following non-linear dynamics [105]

xk+1 = xk +δtrans cos(θk +δrot1)

yk+1 = yk +δtrans sin(θk +δrot1)

θk+1 = θk +δrot1 +δrot2

(10.56)

where xk
.
= (x,y,θ) is the robot pose at time k and uk

.
= (δrot1,δtrans,δrot2) is the applied

control. The model assumes that the robot ideally implements the following commands in
order: rotation by an angle of δrot1, translation of δtrans and a final rotation of δrot2 orienting
the robot in the required direction. The robot accrue translational and rotational errors while
executing uk and localizes itself by estimating its position using signal measurements from
beacons b̄1, . . . , b̄7, which are located at (xb̄1

,yb̄1
), . . . ,(xb̄7

,yb̄7
). The signal strength decays

quadratically with the distance to the beacon, giving the following observation model with
sensor noise vk,

zk =


1/
(
(xk− xb̄1

)2 +(yk− yb̄1
)2 +1

)
...

1/
(
(xk− xb̄7

)2 +(yk− yb̄7
)2 +1

)
+ vk (10.57)

We validate our approach in the above discussed environment by varying different
parameters, a summary of which is provided in Table 10.4. Below we detail each of cases
considered in Table 10.4. We first consider the motion planning approach for a point-like
robot. The cost function is of the form in (10.55) with Mu = 0.3, Mg = diag(0.8,0.8),
MΣ = diag(1,1) and MC = 10. The underlying PRM graph with 65 nodes is shown in
Fig. 10.10, with the green dots denoting the sampled nodes. The robot, starting from its
initial belief state (mean pose denoted by S in the figure) has to reach the node xg (G in
the figure), while reducing its uncertainty. The blue triangles denote the beacons that aid in
localization. The solid black circles with radius 0.5m, represent obstacles in the environment
and the red ellipses denote the 3σ covariances (only the (x,y) portion is shown). Unless
otherwise mentioned, in all the experiments, 0.99−safe configurations are solicited and the
total planning time is the average time for 25 different runs.

We first consider a case with a point robot and no uncertainty in obstacle location.
The planned trajectory in this case is seen in cyan in Fig. 10.10(a) with total planning
time of 0.0051s(±0.0008s). Please note that the total planning time also includes the
collision probability computation time. Next, we consider uncertainty in one of the obstacle
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location, whose covariance ellipse is shown in gray. The planned trajectory is seen in cyan
in Fig. 10.10(b) and the planning was completed under 0.0279s(±0.0043s). Due to the
uncertainty in the obstacle location, the robot takes a longer route to avoid collision. A robot
of radius 0.3m and certain (negligible uncertainty) obstacles gave the same trajectory as
in Fig. 10.10(a) with a planning time of 0.0055s(±0.0009s). However, when the obstacle
location is uncertain the resulting trajectory is as shown in Fig. 10.10(c). A change in the
trajectory is observed, as compared to the case of a point robot in Fig. 10.10(b). The planning
time in this case is 0.0294s(±0.0047s). It is also worth mentioning that in Fig. 10.10(b) and
(c), the roadmap was updated by adding a node since a 0.99−safe configuration could not be
found. The added node is seen in brown, with its coordinates being approximately (9,11). We
also run the case with no obstacle uncertainty and a robot of radius 0.3m using the approach
of Park et al. [82]. In this case the planned trajectory is as given in Fig. 10.10(d). Note that
using our approach, the same scenario gives a shorter trajectory (Fig. 10.10(a)). The longer
trajectory computed using the approach in [82] is due to the fact that a loose upper bound is
computed for the collision probability. As a result a longer trajectory is obtained. Contrary to
this, we compute the exact collision probability and hence a shorter trajectory is synthesized.
The same scenario is also run with the approach in [19] and produced a trajectory similar
to ours. However, since the uncertainties are significantly lower, the approximate collision
probability values computed using [19] are much smaller than the actual values.

Next, we consider the case with uncertainty in the location of the beacons. The con-
sidered robot radius is 0.3m with the bottom obstacle being uncertain with covariance
diag(0.49,0.49). Taking object uncertainty into account, the planned trajectory with co-
variance evolution is as shown in Fig .10.10(e). Fig. 10.10(f), shows the trajectory planned
with true beacon locations. The beacons are shown in yellow to denote the true location.
Considering only the mean position of the beacons and neglecting the position uncertainty,
the planned trajectory is as shown in Fig. 10.10(a). Actual execution of this would lead to
collision with the bottom obstacle. However, executing the planned trajectory obtained by
considering the uncertainty in beacon locations does not violate the ε−safety criterion and
all the configurations are 0.99−safe.

10.10.2 Theoretical Example 2

We consider the case of a mobile robot navigating in a 2D environment of 20m× 40m.
Fig. 10.10 shows the underlying PRM graph (sampled nodes in green, connected by edges)
with 90 nodes. In this domains, the robot (radius 0.3m), starting from its initial belief state
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(a) (b) (c)

Figure 10.10 Trajectory and the covariance evolution for single planning for the 2D environment.
(a) Plan obtained when object uncertainty is not considered. (b) The planned trajectory when object
uncertainty is considered (c) Planned trajectory with true landmark locations.

(mean pose denoted by S in the figure) has to reach the node xg (G in the figure), minimizing
its cost function (11.42). The blue/yellow triangles denote the landmarks in the environment
and the solid black blobs represent the obstacles in the environment. The red ellipses denote
the 3σ covariances (only the (x,y) portion is shown). Unless otherwise mentioned, in all the
experiments, 0.99−safe configurations are solicited and the total planning time is the average
time for 25 different runs.

The state xk
.
= (xk,yk,θk) is the robot pose (position and orientation) at time k. The

applied control vector uk
.
= (δrot1,δtrans,δrot2) consists of an initial rotation δrot1, followed

by a translation of δtrans and a final rotation of δrot2, orienting the robot in the required
direction. The non-linear robot dynamics is thus the same as (10.56).

For robot localization, we consider a landmark based measurement model that returns
the range and bearing. The measurement model with noise is thus obtained as

zk =


ri

k =
√
(Oi

k(1)− xk(1))2 +Oi
k(2)− xk(2))2

φ i
k = arctan(Oi

k(2)−xk(2)
Oi

k(1)−xk(1)
)− xk(3)

+ vk , vk ∼N (0,Qk) (10.58)
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(a) (b)

Figure 10.11 Execution traces of robot’s true state across ten simulation with initial state drawn from
the known initial belief. (a) Computed control when object uncertainty not considered is followed. (b)
Traces of robot’s true state while following the computed control considering object uncertainty.

where ri
k and φ i

k are the range and bearing of the i-th object Oi
k (at time k) relative to the robot

frame.
The mean landmark locations are (0,18),(8,28),(20,18),(18.9,13.5). The landmarks at

(20,18),(18.9,13.5) are not precisely known and has an associated uncertainty of diag(0.02,0.02)
in each of their locations. We first neglect the uncertainty and plan using the mean landmark
locations. The planned trajectory is seen in cyan in Fig. 10.10(a) and the associated beliefs
are seen in red. The overall planning time is 0.0041s(±0.0003s). We note here that the
overall planning time also includes the collision probability computation time. Next, we
consider the landmark uncertainty during planning. The planned trajectory and the associated
beliefs are seen in Fig. 10.10(b). We note here that there is a significant change in the planned
trajectory. The total planning time in this case is 0.0042s(±0.0008s). Finally, we plan using
the true landmark locations of (0,18),(8,28),(20,17.5),(18.9,13) which are seen in yellow
in Fig. 10.10(c). The overall planning time is 0.0044s(±0.0011s). As seen in the figure, the
planned trajectory is similar to the case when landmark uncertainty is considered. However,
executing the plan synthesized by not considering the landmark uncertainty (scenario in
Fig. 10.10(a)) would lead to collision and larger goal state covariance. This is visualized
in Fig. 10.11. The traces of true robot state across ten simulations while executing the
plan synthesized by neglecting object uncertainty (scenario in Fig. 10.10(a)) is shown in
Fig. 10.11(a). The initial state is sampled from the known initial belief and 60% of the execu-
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tions lead to collision. Fig. 10.11(b) shows the traces of true robot state across ten simulations
while executing the computed control policy by considering object uncertainty (scenario in
Fig. 10.10(b)). Therefore, not considering the object uncertainty lead to localization errors
and thereby synthesize inefficient plans.

10.10.3 Single-robot Scenarios

In this Section, we discuss our collision avoidance approach considering single-robot scenar-
ios in the Gazebo simulator. Dynamic obstacles are simulated using different robots whose
motion model is unknown to the considered robot. The robot kinematics is as follows

xk+1 =


xk− Vk

ωk
sin(θk)+

Vk
ωk

sin(θk +ωk∆t)

yk +
Vk
ωk

cos(θk)− Vk
ωk

cos(θk +ωk∆t)

θk +ωk∆t

+wk (10.59)

where the applied control uk = (Vk,ωk)
T is made up of the linear and angular velocities

and wk is the noise as defined in Chapter 8. We define the prior uncertainty in the obstacle
location as diag(0.1m,0.1m) and corrupt the range data returned by LDS with varying noise
with variance 0.1× rand(1)m2. By default, 0.99−safe configurations are solicited and we
use a look-ahead horizon of L = 7. Since the TurtleBot3 robot is used, the collision constraint
is ∥xk− sk∥2 ≤ (0.22+ 0.22)2. In each experiment, we consider a robot starting from the
location (0,0) and having to reach the goal location of (3,0), subject to minimizing the
objective function in (11.42).

First, we consider three scenarios (A,B and C) where the robot has to avoid head-on
collisions with dynamic obstacles. The obstacle linear velocities in each scenario are 0.5m/s,
1.0m/s and 2.5m/s, respectively. This is however unknown to the robot and at each time
step obstacle states are estimated using the approach detailed in Section 10.8. The robot and
obstacle trajectories for the three scenarios are shown in Fig. 10.12(a)-(c). Note that evading
a collision is the main focus of these experiments and hence only the relevant trajectories are
plotted. Snapshots of four different stages during each the trajectory execution are shown in
Fig. 10.13. The first row corresponds to scenario A, the second to scenario B and the third row
displays snapshots of scenario C. For all the scenarios, stage 1 shows the initial configuration
of the robot and the obstacle. Once the obstacle is detected, a control command for evading
the obstacle is computed to move towards a 0.99−safe configuration. The beginning of
execution of such a control command is seen in stage 2. Stage 3 shows the snapshot when
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(a) Scenario A (b) Scenario B

(c) Scenario C (d) Scenario D

Figure 10.12 Top view of robot and obstacle trajectories are plotted with the starting locations
marked as round blobs. The robot trajectory is shown in blue. (a) Single obstacle with velocity of
0.5m/s. (b) Obstacle velocity is 1.0m/s. (c) Obstacle velocity is 2.5m/s and the zoomed figure is
shown in the inset. (d) Four obstacles with different velocities.

the obstacle and the robot are very close to each other with the robot evading the obstacle to
avoid collision. In stage 4 it is seen that the robot has successfully avoided collisions.

For each scenario, the experiment is performed 50 times and the average time for
computing the associated collision probability is shown in the first three rows of Table 10.5.
The last row corresponds to Scenario D, a multi-obstacle scenario which will be described
soon. As a safety metric, the minimum distance between the two robots is also measured and
the results are shown in Table 10.5. For all the scenarios a success rate of 100% is achieved,
that is, in all the 50 experiments, there were no collisions. However, lower look-ahead
horizon, that is, L < 7 did not give 100% success rate as most often the obstacles were too
close before executing the appropriate control command. Another parameter that affects
the success rate is the value of ε . For example, a 0.4−safe configuration always resulted in
collision for scenarios B and C.
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In scenario D, we consider four obstacles, each with different velocities. The robot
successfully evades collision with all the four obstacles and the results are shown in the last
row of Table 10.5. The trajectories of the robot and the obstacles can be seen in Fig. 10.12(d).
Aerial snapshots at different time instants are shown in Fig. 10.14. Stage 1 corresponds
to the initial configuration of the robot and the obstacles. Stages 2 and 3 show the robot
moving to evade a head-on collision with obstacle 2 (obstacle numbers in Fig. 10.12(d)).
Stages 4 through 7 show different instances while the robot tries to evade the remaining
obstacles. Finally, in stage 8, the robot has successfully avoided potential collisions. The
mean computation time for collision probability is 0.3682s and the computation time of
the entire framework is 0.4230s. The entire framework time includes the time for collision
probability computation, uncertainty propagation, and obstacle state estimation.

(a) Stage 1 (b) Stage 2 (c) Stage 3 (d) Stage 4

Figure 10.13 Top view snapshots of the robot and the obstacle at four different stages (from left to
right) of the experiment in scenarios A (row 1), B (row 2) and C (row 3). Positive x-axis is vertically
downwards.
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Scenario Minimum distance (m) Collision probability
computation time (s)

A 0.16 0.0267 ± 0.0078
B 0.31 0.0189 ± 0.0074
C 0.12 0.0191 ± 0.0072
D 0.20 0.0368 ± 0.0023

Table 10.5 The minimum distance between the robot and the obstacles and the collision probability
computation time for four different scenarios. The minimum distance corresponds to the minimum
among all the distances between robots and the obstacles.

(a) Stage 1 (b) Stage 2 (c) Stage 3 (d) Stage 4

(e) Stage 5 (f) Stage 6 (g) Stage 7 (h) Stage 8

Figure 10.14 Top view snapshots of the robot and the obstacles in the Gazebo environment at
different stages of the experiment in scenario D.

10.10.4 Multi-robot Scenarios

In this Section we demonstrate our approach with multi-robot planning scenarios. In this
setting, each robot considers all other robots as dynamic obstacles. However, there is no
communication between the robots and the obstacle/robot states are estimated using the
approach described in Section 10.8.

We first consider different scenarios with two robots. The initial pose of the robots are
(0,0,0) and (3,0,−π) and the goal for each robot is to navigate towards the starting location
of the other robot. The starting configuration and the executed trajectory of scenario I can
be seen in Fig. 10.15(a), (b). Scenario II, which includes a cube and a cylinder as static
obstacles, is shown in Fig.10.15(c), (d). It can be seen that the robots evade collision with
each other and the static obstacles and navigate between the obstacles. The locations of
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Scenario Minimum distance (m) Collision probability
computation time (s)

I 0.33 0.0117 ± 0.0044
II 0.08 0.0137 ± 0.0123
III 0.51 0.0099 ± 0.0013
IV 0.10 0.0211 ± 0.0052

Table 10.6 Minimum distance between the robot and the obstacles in four scenarios and the corre-
sponding collision probability computation time.

the static obstacles are unknown to the robots and they are estimated using the approach
discussed in Section 10.8. However, we assume known data association and we apply the
collision constraint derived in Theorem 3. The obstacles in scenario II are pulled closer
in scenario III (Fig. 10.15(e),(f)) to prevent the robots from passing between the obstacles.
This is rightly estimated by the robots and they navigate around the obstacles to reach the
goal. However it was seen that for L < 7, both robots turned to the same side and 20% (10
out of 50) of the time this leads to collision. This is so because, as the robots turn to the
side of the cube, the cube occludes one robot from the other. By the time each robot turns
around the cube and see the other, they are already too close to avoid collision. In scenario IV
(Fig. 10.15(g),(h)), we consider four robots, where the robots facing each other are required
to swap their positions. The initial poses of each robot are (0,0,0), (1.5,−1.5, π

2 ), (3,0,−π)

and (1.5,1.5,−π

2 ), respectively.
Table 10.6 shows the statistics for the four scenarios discussed above. The minimum

distance between the robot and the obstacle and the average computation time for evaluating
the collision probability are reported. In scenario IV, it was seen that ε < 0.99 leads to
collision in 80% of the experiments. For the other scenarios, ε < 0.9 successfully evaded
collision in all the experiments.

10.11 Discussion

In Section 10.5, we have compared our approach to other similar techniques ([65, 19, 82,
113]) and it is seen that our approach outperforms them. In this section we outline few
limitations and discuss how to overcome them by proposing suitable extensions. These
extensions would enhance the capability and robustness of our approach in challenging
scenarios.

In Section 10.8, we have modelled the object uncertainty as a Gaussian. The assumption
is justified in the case of Gaussian belief states, and works for all practical situations. Yet,
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in general, the model might not be Gaussian and it has to be determined based on the
environment, sensing model and the robot task that needs to be achieved. Finding an
appropriate model, especially for non-Gaussian belief states is a work for the future.

The collision probability approach discussed in this chapter is not restrictive to mobile
robots and is readily extended to any 3D rigid body robot. For example, a quad-rotor can
be approximated using a minimum volume enclosing sphere and therefore our approach
can be used directly. Similarly, in the a manipulator robot each link is approximated by
minimum volume bounding spheres that tightly enclose the link. For such robots, the
collision with an obstacle has to be checked for each bounding volume. For example, let
us consider a manipulator robot with l bounding spheres. Then the collision condition for
the i−th sphere is given by Cxi

k,sk
, where xi

k is the center of the i−th sphere. Furthermore,
an alternative and more appropriate approach is to consider the minimum-volume enclosing
ellipsoid for each link ([91]). For every convex polyhedron, there exists a unique ellipsoid of
minimal volume that contains the polyhedron and is called the Löwner-John ellipsoid of the
polyhedron ([31]). Thus each link can be represented by their corresponding Löwner-John
ellipsoids. However, the collision condition in (12.3) is no longer valid. The collision
condition should be reformulated using the distance between two ellipsoids. Please note that
the representation using Löwner-John ellipsoid is also extended to the 3D obstacles.

While formulating the objective function in Section 10.9, we assume that the set of actions
from which the robot can plan its future control is known a priori. In other words, a finite
action set is considered. This justifies the inclusion of the collision cost term P(Cxk+l ,sk+l)

in (11.42). However, our approach is not limited to any specific set of actions or trajectories.
The general approach would be to include the set of all possible control actions. The objective
function in (11.42) is then reformulated as an optimization problem with the collision cost
term included as a constraint to keep the collisions within the 1− ε bound.
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(a) Scenario I (b) Executed trajectory

(c) Scenario II (d) Executed trajectory

(e) Scenario III (f) Executed trajectory

(g) Scenario IV (h) Executed trajectory

Figure 10.15 Different multi-robot scenarios and the corresponding trajectories executed by the
robots.



Chapter 11

Bounded Collision Probability

In this chapter, we relax the spherical geometry assumption of the previous chapter and
consider the minimum-volume enclosing ellipsoids. For every convex polyhedron, there
exists a unique ellipsoid of minimal volume that contains it and is called the Löwner-

John ellipsoid of the polyhedron [31]. The ellipsoid representation provides a much better
approximation of the polyhedron as compared to the spherical representation. This chapter
is thus C9 of our contribution. The collision constraint is thus formulated as the distance
between Löwner-John ellipsoids. Furthermore, we derive a tight upper bound for fast
approximation of the collision probability for 3D motion planning.

11.1 Distance Between Two Ellipsoids

Definition 14. For a real m×n matrix A and a vector b∈Rm, the solution set {x∈Rn|Ax≤
b} is called a polyhedron P .

We note that, a scalar-valued function f : Rn→ R is a convex function if f (λx1 +(1−
λ )x2)≤ λ f (x1)+(1−λ ) f (x2),∀x1,x2 ∈ Rn and 0≤ λ ≤ 1.

Definition 15. A set E n(A,a) ⊆ Rn is an n−dimensional ellipsoid if there exists a vector

a ∈ Rn and a positive definite n×n matrix A such that

E n(A,a) = {x ∈ Rn|(x−a)T A(x−a)≤ 1} (11.1)

Theorem 4. For every convex polyhedron P ⊆ Rn, there exits a unique ellipsoid E of

minimal volume that contains P , called the Löwner-John ellipsoid of P .
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Proof. The proof may be found in [48] and a comprehensive treatment is available in [31].

For computing collision-free paths it is imperative that distance between the robot and
its environment is known. The geometry of robots and other objects in the environment can
be expressed using polyhedrons or a combination of polyhedrons. From Theorem 4, there
exists a unique minimum volume ellipsoid (Löwner-John ellipsoid) that encloses a convex
polygon P . It is also noteworthy that non-convex polyhedrons can be decomposed into
overlapping convex polyhedrons. As result it is suffices to compute the distance between the
Löwner-John ellipsoids of the robot and the obstacle, respectively.

A convex optimization approach for computing Löwner-John ellipsoids can be found
in [91]. In this work we assume that these ellipsoids are known to us. Note that for an
ellipsoid E (A,a), a is the center of the ellipsoid. Thus our assumption of known ellipsoids
mean that at each planning instant the matrix A and the vector a is known to us. Typically,
a is the center of the robot or the objects that the ellipsoid encloses. Thus, once a Löwner-
John ellipsoid E (A,a) is computed, at each planning instant, the variable quantity is the
matrix A, that varies with orientation. It is noteworthy that while planning for future control
commands, the robot state is often estimated using the motion model and by simulating
possible future observations. As a result, the quantity a as well as the orientation is known.
An appropirate rotation matrix is then used to compute A. Moreover, for static obstacles,
both in known and unknown environments, the geometry of the obstacle is a constant and
hence the corresponding Löwner-John ellipsoids remain constant. In the case of dynamic
obstacles, the state of these obstacles change and a state estimation technique is required to
compute the varying enclosing ellipsoids.

We now ompute the distance between two ellipsoids E1,E2 which will be denoted by
d(E1,E2). This will serve as a precursor to obtaining the collision condition. First, we will
compute the distance of a point x0 ∈ Rn from an n−dimensional ellipsoid E n(A,a). For this
purpose, we will use the method outlined in [91].

We wish to compute the minimum distance of a point x0 from the ellipsoid E n(A,a). We
assume that the point lies outside the ellipsoid and further without loss of generality assume
that x0 is at the origin of the global Rn frame. Thus the problem reduces to

minimize ∥x∥ , subject to (x−a)T A(x−a) = 1 (11.2)

We will now state two lemmas without proof through the remainder of this section. The
proofs may be found in [91].
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Lemma 7. Let x∗ be the solution to (11.2). Then

x∗ = λ0(M)
[
λ0(M)A− I

]−1 Aa (11.3)

where λ0(M) is the eigenvalue with minimal real part (minimal eigenvalue) of a 2n× 2n

matrix M given by

M =

 Ã −I

−ããT Ã

 (11.4)

with Ã = A−1 and ã = A−1/2a. Therefore the distance of a point x from the ellipsoid E n(A,a)
is given by ∥x−x∗∥.

Thus, the distance of a point from an ellipsoid is computed as an eigenvalue problem.
This can be leveraged to arrive at the collision condition between two ellipsoids. Let us
consider two ellipsoid, E1 = E n(B,b) and E2 = E n(C,c). We compute a point x∗ ∈ E2 such
that the ellipsoid level surface surrounding E1 first touch E2 at x∗.

Lemma 8. Given two ellipsoids E n(B,b) and E n(C,c), the point x∗ ∈ E2 at which the

ellipsoid level surface surrounding E1 first touch E2 is given by

x∗ = b+λ0(M′)B−1/2
[
λ0(M′)I−C̃

]−1
c̄ (11.5)

where λ0(M′) is the minimal eigenvalue of a 2n×2n matrix M′ given by

M′ =

 C̃ −I

−c̃c̃T C̃

 (11.6)

with C̃ = C̄−1 and c̃ = C̄−1/2c̄, where C̄ = B−1/2CB−1/2 and c̄ = B1/2(c−b).

11.2 Collision Condition

For two ellipsoids E1 = E n(B,b) and E2 = E n(C,c), a collision between them occurs if
E1∩E2 ̸= {φ}. We will denote this collision condition by

Cb,c
.
=
{
E1,E2|E1∩E2 ̸= {φ}

}
(11.7)

We now define a quadratic form in random variables and later show that that the collision
condition can be written in terms of the quadratic form in random variables of the difference in
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robot and obstacle locations. Note that the concepts of quadratic form in random variables and
its cdf and pdf were already presented in Chapter 10. However, for the sake of completeness
and the ease of the readers we present them here again.

Definition 16. Let x = (x1, . . . ,xn)
T denote a random vector with mean µµµ = (µ1, . . . ,µn)

T

and covariance matrix Σ. Then the quadratic form in the random variables x1, . . . ,xn

associated with an n×n symmetric matrix A = (ai j) is

Q(x) = Q(x1, . . . ,xn) = xT Ax =
n

∑
i=1

n

∑
j=1

ai jxix j (11.8)

Let us define y = Σ
− 1

2 x and define a random vector z =
(

y−Σ
− 1

2 µµµ

)
. The resulting

distribution of z is thus zero mean with covariance being the identity matrix. Thus the
quadratic form becomes

Q(x) =
(

z+Σ
− 1

2 µµµ

)T
Σ

1
2 AΣ

1
2

(
z+Σ

− 1
2 µµµ

)
(11.9)

Suppose there exists an orthogonal matrix P, that is, PPT = I which diagonalizes Σ
1
2 AΣ

1
2 ,

then PT Σ
1
2 AΣ

1
2 P = diag(λ1, . . . ,λn), where λ1, . . . ,λn are the eigenvalues of Σ

1
2 AΣ

1
2 . The

quadratic form can now be written as

Q(x) =
(

z+Σ
− 1

2 µµµ

)T
Σ

1
2 AΣ

1
2

(
z+Σ

− 1
2 µµµ

)
= (u+b)T diag(λ1, . . . ,λn)(u+b)

(11.10)

where u = PT z = (u1, . . . ,un)
T and b = PT Σ

− 1
2 µµµ = (b1, . . . ,bn)

T . The expression in (11.10)
can be written concisely,

Q(x) = xT Ax =
n

∑
i=1

λi(ui +bi)
2 (11.11)

Using Lemma 8, for two ellipsoids E n(B,b), E n(C,c), we can compute the point x∗ ∈ E2

at which the ellipsoid level surface surrounding E1 first touch E2. Now, suppose that the
two ellipsoids touch each other, then x∗ satisfies the equation of E1. Thus we have, (x∗−
b)T B(x∗−b) = 1. Substituting for the value of x∗ from Lemma 8, expanding and rearranging,
it follows that yT DT BDy = 1/λ 2

0 (M
′), where y = c−b and D = B−1/2(λ0(M′)I−C̃)−1B1/2

and M′ is a 2n×2n matrix as defined in (11.6). A collision between the two ellipsoid occur
when they touch or intersect each other. Thus the collision condition, that is, Cb,c can be
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written as
yT DT BDy = yT Ay≤ 1

λ 2
0 (M

′)
(11.12)

where A = DT BD. In motion planning, the ellipsoid collision that we have discussed so
far correspond to robot-obstacle or robot-robot collision. While planning under motion
and sensing uncertainty, the robot and obstacle states can only be estimated in probabilistic
terms. This renders b, c as random vectors. As discussed before, in this work we model
these probabilities as Gaussian distributions. As a result, the difference vector c−b is also a
Gaussian (the difference of Gaussian random variables is also a Gaussian random variable).
Since B, C is positive definite, the matrix A is symmetric and therefore yT Ay is in a quadratic
form in the random variables of y = c−b. Thus, the expression yT Ay in (12.3) is in the
quadratic form in the Gaussian random vector y. Thus the collision probability can be written
as

P(yT Ay≤ 1
λ 2

0 (M
′)
) (11.13)

Let v = yT Ay, then
P(v≤ 1/λ

2
0 (M

′)) = Fv(1/λ
2
0 (M

′)) (11.14)

where Fv is the cumulative distribution function (cdf) of v. From the following theorem, an
exact expression for Fv is obtained.

Lemma 9. The cdf of Q(y) = v = yT Ay with A = AT > 0,y∼N (µµµ,Σ),Σ > 0 is

Fv(v) = P(v≤ v) =
∞

∑
k=0

(−1)kck
y

n
2+k

Γ
(n

2 + k+1
) (11.15)

and its pdf is given by

pv(v) = P(v = v) =
∞

∑
k=0

(−1)kck
y

n
2+k−1

Γ
(n

2 + k
) (11.16)
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where Γ denotes the gamma function and

c0 = exp(−1
2

n

∑
i=1

b2
i )

n

∏
i=1

(2λi)
− 1

2

ck =
1
k

k−1

∑
i=0

dk−ici

dk =
1
2

n

∑
i=1

(
1− kb2

i

)
(2λi)

−k

Proof. The proof of the above lemma can be found in Chapter 10, Section 10.2 and Ap-
pendix A.

Thus computing the cdf as elucidated in Lemma 9 gives the exact value of collision
probability. The cdf is computed as an infinite series; a proof of convergence, an expression
for the truncation error and the computational complexity can be found in [104]. In our
experience, the convergence is often obtained within the first few terms and hence can be used
for online planning. However, during online motion planning it often suffices to compute
fast approximate upper bounds for the collision probability. In the next section we derive a
tight upper bound that can be computed faster than the cdf in Lemma 9.
Special case: For a Gaussian random variable x ∼N (µµµ,Σ), Σ > 0 and a matrix A = AT ,
under certain conditions the quadratic form xT Ax is distributed as a noncentral chi-square
distribution. We will now state the theorem without proof that states the necessary and
sufficient conditions. The proof may be found in [90].

Theorem 5. Let x ∼ N (µµµ,Σ), Σ > 0. Then the necessary and sufficient conditions for

xT Ax∼ χ2
r (∆

2), A = AT and ∆2 = µµµT Aµµµ are

1. tr(AΣ) = r

2. AΣA = A.

Whenever the collision condition in (12.3) satisfy the conditions in Theorem 5, the cdf of
the collision probability in (11.13) can be computed exactly as the cdf of the corresponding
noncentral chi-square distribution. This can be obtained by using a series approximation or a
look-up table.
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11.3 Tight Bound for Collision Probability

In this section, we derive a tight upper bound for the collision probability, that is, P(yT Ay≤
1/λ 2

0 (M
′)).

Lemma 10. Let v be a random variable that is never larger than β . Then, for all α < β

P(v≤ α)≤ β −E(v)
β −α

(11.17)

Proof. From Markov’s inequality, for all α > 0, we have

P(v≥ α)≤ E(v)
α

Let us now define ṽ = β −v such that P(v≤ β ) = 1. Thus, we have

P(v≤ α) = P(β − ṽ≤ α) = P(ṽ≥ β −α) (11.18)

Applying Markov’s inequality to ṽ, we get

P(ṽ≥ β −α)≤ E(ṽ)
β −α

=
β −E(v)

β −α
(11.19)

This completes the proof.

Using the above lemma, an upper bound for the collision probability is obtained as

P(yT Ay≤ 1
λ 2

0 (M
′)
)≤ β −E(yT Ay)

β − 1
λ 2

0 (M
′)

(11.20)

In the following, we will elucidate how to compute the expectation in the numerator
E(yT Ay) and the parameter β .

Lemma 11. For a Gaussian random variable x∼N (µµµ,Σ), the expectation of its quadratic

from is E(xT Ax) = tr(AΣ)+µµµT Aµµµ .
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Proof.

E(xT Ax) = tr
(
E(xT Ax)

)
= E

(
tr(AxxT )

)
= tr

(
AE(xxT )

)
= tr

(
A(Σ+µµµµµµ

T )
)

= tr (AΣ)+ tr
(

Aµµµµµµ
T
)
= tr(AΣ)+µµµ

T Aµµµ

To prove the above, we have used the fact that tr
(
E(·)

)
= E

(
tr(·)

)
, tr(AB) = tr(BA) and

Σ = E(xxT )−µµµµµµT .

Similarly, for a Gaussian random variable x ∼N (µµµ,Σ), the variance of its quadratic
form is given by

Var(xT Ax) = tr
(

AΣ(A+AT )Σ
)
+µµµ

T (A+AT )Σ(A+AT )µµµ (11.21)

Thus using the expected value and the variance of the quadratic form, an expression for β

can be obtained such that P(xT Ax≤ β ) = 1.
We now define the following notion of an ε−safe configuration.

Definition 17. A robot configuration xk is an ε−safe configuration with respect to an obstacle

configuration sk, if the probability of collision is such that P
(
Cxk,sk

)
≤ ε .

Let us consider the case where the ellipsoids enclose a robot currently at location xk

and an obstacle at location sk, respectively. Since the position of robots and obstacles are
Gaussian distributed random variables, collision avoidance constraints can only be written in
a probabilistic manner. Similar to Cb,c, the collision condition between the robot and obstacle
will be written as Cxk,sk . We are looking for robot positions xk such that the probability of
collision is at most ε , that is, P

(
Cxk,sk

)
≤ ε . Thus, from (11.13), we have

P(yT Ay≤ 1
λ 2

0 (M
′)
)≤ ε (11.22)

Using Lemma 10, the bounded collision (11.22) constraint is obtained as

β −E(yT Ay)≤ ε

(
β − 1

λ 2
0 (M

′)

)
(11.23)
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11.4 Comparison to Other Methods

We provide a comparison with several state-of-the-art methods using a robot and a close-by
obstacle. The robot is located at (0.95,0.95,0) m with semi-principle axes (0.18,0.18,0.22)
m and covariance diag(0.41,0.41,0.21) m2. The obstacle is located at the origin with semi-
principle axes (0.6,0.6,1.2) m. The collision probability values can be seen in Table 12.1.
We define ε = 0.09 and this configuration is 0.09−safe or is feasible. The value computed
using the upper bound (11.20) is very close to the actual value computed using the cdf of
the quadratic form (11.15). We note here that we use the distance between two ellipsoids
to compute the collision probability. Most approaches approximate an integral of the joint
distribution between the robot and the obstacle to compute the collision probability. Given
the current robot state xk and the obstacle state sk, the collision probability is given by

P
(
Cxk,sk

)
=
∫

xk

∫
sk

Ic(xk,sk)p(xk,sk) (11.24)

where Ic is an indicator function defined as

Ic(xk,sk) =

1 if R ∩S ̸= {φ}

0 otherwise.
(11.25)

and p(xk,sk) is the joint distribution of the robot and the obstacle. The numeric integral
of (12.17) gives the exact value and we compute the same to validate our approach. As
seen from Table 12.1 the difference in values is very negligible. The double summation of
numerical integration is approximated to a single summation in [65] and gives a feasible
result. The approach in [104] also gives a feasible configurations. Other approaches compute
loose upper bounds and hence determine the configuration infeasible. Our approach thus
computes a tight upper bound.

11.5 Belief Dynamics

We consider a Gaussian parametrization for the probability distribution over the robot (or
object) state which is known as the belief state. Though BSP has been researched extensively
in the past [89, 109, 52, 1, 62, 83, 102, 29], below we provide a brief overview of the same.

We will now state the Gaussian belief state dynamics. The motion (8.1) and observation
(8.2) models can be written probabilistically as p(xk+1|xk,uk) and p(zk|xk), respectively.
Given an initial distribution p(x0) (Gaussian), and the Gaussian motion and observation
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Methods Collision Computation Feasible ?
probability time (s)

Numerical integral 0.0568 4.3619 ± 1.1784 Yes
Approximate Numerical integral [65] 0.0773 1.7932 ± 0.1927 Yes

Bounding volume [81, 54] 1 0.0003 ± 0.0016 No
Center point approximation [19] 0.1027 0.0004 ± 0.0001 No

Maximum probability approximation [82] 0.7168 0.2288 ± 0.1626 No
Chance constraint [113] 0.1894 0.0013 ± 0.0000 No

Rectangular bounding box [33] 0.1582 0.0056 ± 0.0006 No
Sphere approximation [104] 0.0898 0.0198 ± 0.0309 Yes

Our approach– exact 0.0572 0.0044 ± 0.0042 Yes
Our approach– upper bound 0.0660 0.0009 ± 0.0003 Yes

Table 11.1 Comparison of collision probability methods

models, the posterior probability distribution at time k is the belief b(xk) and is be written as

b(xk) = p(xk|z0:k,u0:k−1) (11.26)

where z0:k
.
= {z0, ...,zk} and u0:k−1

.
= {u0, ...,uk−1}. The posterior distribution can be

expanded using Bayes rule and theorem of total probability giving

p(xk|zk,z0:k−1,u0:k−1) = ηk p(zk|xk)
∫

xk−1

p(xk|xk−1,uk−1)b(xk−1) (11.27)

where ηk = 1/p(zk|z0:k−1,u0:k−1) is the normalization constant and b(xk−1) is the belief at
time k−1. Since the belief b(xk)∼N (µµµk,Σk) is a Gaussian with mean µµµk and covariance
Σk we will denote the belief state by a vector

b(xk) =
[
µµµ

T
k ,s

T
k

]T
(11.28)

where sT
k = [sT

k1
, . . . ,sT

kn
] is vector composed of the n columns of Σk. Equivalently, sT will

also be denoted by vec(Σk) To implement the Bayes filter in (11.27) we use the technique of
EKF. The belief state parameters are then given by the EKF update equations

µµµk = µ̄µµk +Kk
(
zk−h(µ̄µµk)

)
(11.29)

Σk = (I−KkHk) Σ̄k (11.30)
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where

µ̄µµk = f (µµµk−1,uk−1)

Σ̄k = Fk−1Σk−1FT
k−1 +Rk−1

Kk = Σ̄kHT
k

(
HkΣ̄kHT

k +Qk

)−1
(11.31)

with Hk being the Jacobian of h(·) with respect to xk and Fk−1 is the Jacobian of f (·) with
respect to xk−1. The second term in (11.29) depends on the measurement zk and is often
referred to as the innovations process. Since future observations are unknown at the planning
time, the innovations process is stochastic. As a result the belief state dynamics is stochastic
in nature.

Theorem 6. The innovations process is a zero-mean Gaussian white noise sequence with

E
([

zk−h(µ̄µµk)
][

zk−h(µ̄µµk)
]T)

= HkΣ̄kHT
k +Qk (11.32)

Proof. The proof may be found in [76], page 234.

From Theorem 6, the stochastic belief state dynamics can be written as

b(xk) = g
(
b(xk−1),uk−1

)
+W

(
b(xk−1),uk−1

)
wk−1 (11.33)

where

g
(
b(xk−1),uk−1

)
=

 µ̄µµ

sT
k

=

 f (µµµk−1,uk−1)

vec
(
(I−KkHk) Σ̄k

)
 (11.34)

W
(
b(xk−1),uk−1

)
=

Kk

0

 (11.35)

wk−1 ∼N (0,HkΣ̄kHT
k +Qk) (11.36)

Thus the innovation term Kk(zk−h(µ̄µµk)) is distributed according to

N (0,Kk(HkΣ̄kHT
k +Qk)KT

k ) (11.37)

The assumption of maximum likelihood observation was first relaxed by Van Den Berg
et al. [109]. They used a similar approach as discussed above to arrive at the stochastic belief
dynamics. However, in [109] a first-order approximation is used rendering the innovation
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term to be distributed according to N (0,KkHkΣ̄k). It is also noteworthy that most approaches
prior to and after [109] assumed maximum likelihood observations [89, 88, 67, 84]. The
maximum likelihood observation at time k is zk = h(µ̄µµk), which reduces the innovation term
in (11.29) to zero. This assumption thus eliminates the stochasticity from the belief state
dynamics. Other approaches that relax the maximum likelihood assumption treat either
simulate future measurements or treat them as random variables [43, 108, 83].

11.6 Objective Function

We formulate the collision avoidance in belief space planning as an optimization problem.
At each time instant k, the robot plans for L look-ahead steps and minimizes an objective
function Jk, subject to certain constraints. We consider the objective function

Jk = E
zk+1:k+L

[
L−1

∑
l=0

cl(b(xk+l),uk+l)+ cL(b(xk+L))

]
(11.38)

where cl is the cost for each look-ahead step and cL is the terminal cost. Since future
observations are not available at planning time and are stochastic, the expectation is taken to
account for all possible future observations. The optimization problem can then be formally
stated as

min
bk:k+L−1,uk:k+L−1

Jk

s.t. b(xk+l) = g
(
b(xk+l−1),uk+l−1

)
+W

(
b(xk+l−1),uk+l−1

)
wk+l−1

uk+l ∈ U

P
(
Cxk,sk

)
≤ ε

(11.39)

where bk:k+L−1 = {b(xk),b(xk+1), . . . ,b(xk+L−1)}, uk+l ∈U constraints the control input to
lie within the feasible set of control inputs U and P

(
Cxk,sk

)
≤ ε enforces ε−safe configura-

tions, bounding the collision probability. The expectation is taken to account for the fact that
the observation is unknown at the planning time.

At each time step, the robot is required to minimize its control usage and proceed towards
the goal xg avoiding collisions. As a result, we have the following immediate and terminal
costs

cl(b(xk+l),uk+l) =
∥∥ξ (uk+l)

∥∥2
Mu

(11.40)

cL(b(xk+L)) =∥xk+L−xg∥2
Mg

(11.41)
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where ∥x∥S =
√

xT Sx is the Mahalanobis norm, Mu,Mg are weight matrices and ξ (·) is a
function that quantifies control usage. The choice of weight matrices and the control function
vary with application. The objective function in (11.38) can now be explicitly written as

Jk = E
zk+1:k+L

[
L−1

∑
l=0

∥∥ξ (uk+l)
∥∥2

Mu
+∥xk+L−xg∥2

Mg

]

=
L−1

∑
l=0

∥∥ξ (uk+l)
∥∥2

Mu
+ E

zk+L

[
∥xk+L−xg∥2

Mg

] (11.42)

The expectation is discarded from the first term as it does not depend on the future obser-
vations. Let us now proceed by evaluating the term with expectation. Using (11.29), we
have

∥xk+L−xg∥2
Mg

=
∥∥µ̄µµk+L +Kk+L

(
zk+L−h(µ̄µµk)

)
−xg∥∥2

Mg

=
∥∥µ̄µµk+L−xg +Kk+L

(
zk+L−h(µ̄µµk)

)∥∥2
Mg

=
∥∥µ̄µµk+L−xg∥∥2

Mg
+
∥∥Kk+L

(
zk+L−h(µ̄µµk)

)∥∥2
Mg

+(
µ̄µµk+L−xg)T Mg

(
Kk+L

(
zk+L−h(µ̄µµk)

))
+
(

Kk+L
(
zk+L−h(µ̄µµk)

))T
Mg
(
µ̄µµk+L−xg)

(11.43)

Computing the expectation of the expression in (11.43) and using E
[(

zk+L−h(µ̄µµk)
)]

= 0,
we have

E
zk+L

[
∥xk+L−xg∥2

Mg

]
=
∥∥µ̄µµk+L−xg∥∥2

Mg
+ E

zk+L

[∥∥Kk+L
(
zk+L−h(µ̄µµk)

)∥∥2
Mg

]
(11.44)

For any random vector y and a matrix A of appropriate dimension, we have

E
[
yT Ay

]
= tr

(
AVar(y)

)
+E[y]T AE[y] (11.45)

where Var(·) denotes the variance. Using (11.45) and using E
[(

zk+L−h(µ̄µµk)
)]

= 0, the
expression in (11.44) simplifies to

E
zk+L

[
∥xk+L−xg∥2

Mg

]
=
∥∥µ̄µµk+L−xg∥∥2

Mg
+ tr

(
Kk+LVar

(
zk+L−h(µ̄µµk)

))
=
∥∥µ̄µµk+L−xg∥∥2

Mg
+ tr

(
Kk+L

(
Hk+LΣ̄k+LHT

k+L +Qk+L

)) (11.46)
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where the expression for the variance is obtained from (11.32). We will now derive the
expression for the third constraint in (12.15), that is P

(
Cxk+l ,sk+l

)
≤ ε . Let the Löwner-

John ellipsoids of the robot and the obstacle be E (X ,xk+l) and E (S,sk+l), respectively.
From (11.23), we have

P
(
Cxk+l ,sk+l

)
≤ ε ≡

β −E
[
(sk+l−xk+l)

T Ak+l (sk+l−xk+l)
]
≤ ε

(
β − 1

λ 2
0 (M

′)

)
(11.47)

From (11.6), we recall that

M′k+l =

 S̃ −I

−s̃k+l s̃T
k+l S̃

 (11.48)

with S̃ = S̄−1 and s̃k+l = S̄−1/2sk+l , where S̄ = X−1/2SX−1/2 and sk+l = X1/2(µµµsk+l
−

µµµxk+l
). Similarly, from (12.3), we have Ak+l = DT

k+lXDk+l , with Dk+l = X−1/2(λ0(M′k+l)I−
S̃)−1X1/2 and λ0(M′k+l) being the minimal eigenvalue of M′k+l . The expectation in (11.47) is
then evaluated following (11.45). Thus we obtain

E
[
(sk+l−xk+l)

T Ak+l (sk+l−xk+l)
]
=

tr
(

Ak+l
(
Σsk+l +Σk+l

))
+
(

µµµsk+l
−µµµxk+l

)T
Ak+l

(
µµµsk+l

−µµµxk+l

)
(11.49)

where we have used the fact that sk+l − xk+l is Gaussian distributed as sk+l − xk+l ∼
N (µµµsk+l

−µµµxk+l
,Σsk+l +Σk+l).

11.7 Results

In this section we describe our implementation and then evaluate the capabilities of our
proposed approach. Simulations are performed in the Gazebo environment with a quadrotor
of semi-principle axes (0.18,0.18,0.06) m. We refer the readers to [22] for the quadrotor
dynamics. The ground truth odometry from Gazebo is used to measure the pose of the robot,
mimicking a motion capture system. This measurement is then corrupted with noise which
is zero mean with covariance Σ = diag(0.05m2,0.05m2,0.05m2,0.1deg2,0.1deg2,0.1deg2).
The optimization of (12.15) is performed using the MPC based approach developed in [22],
which is based on ACADO [39] and qpOASES [23]. In all the experiments we use a
collision probability bound of ε = 0.05. A look-ahead horizon of two seconds is used with
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Measurement noise
Σ 2Σ 3Σ 4Σ

Method d l T sp d l T sp d l T sp d l T sp
Bounding volume [81, 54] 0.70 7.72 6.6 100 0.93 8.15 6.19 100 1.38 8.78 6.54 100 1.51 9.54 7.04 100

Our method 0.40 7.48 6.01 100 0.45 8.05 6.13 100 0.76 8.21 6.19 100 0.79 8.37 6.43 100
Center point approximation [19] - - - 0 - - - 0 0.10 7.02 6.01 55 0.13 7.10 6.08 35

Table 11.2 Collision probability efficiency with varying measurement noise. The minimum distance
between the quadrotor and the obstacle is denoted by d (m). l (m) is the total trajectory length and T
(s) is the total trajectory duration. sp denotes success percentage.

a discretization of 0.1 seconds. The performance is evaluated on an Intel® Core i7-6500U
CPU@2.50GHz×4 with 8GB RAM under Ubuntu 16.04 LTS.
Comparison to bounding volume approaches: We compare our approach to bounding
volume methods [81, 54] wherein robots and obstacles are enlarged with their 3-σ confidence
ellipsoids. Computation time and complexity are greatly reduced with bounding volumes.
However, plans tend to be overly conservative and suboptimal. In the experiment, we consider
a quadrotor at (0,0,1.4) m moving to the goal location at (0,13,1.4) m. An obstacle of semi-
principle axes (1,1,1) m is located in between at (0,3,3) m. We conduct the experiment with
varying measurement noise of Σ,2Σ,3Σ,and 4Σ. To compare the efficiency of our approach
we define the compute the following metrics: (a) d– minimum distance between the quadrotor
and the obstacle, (b) l– total trajectory length, and (c) T– total trajectory duration.

The results can be seen in the first two rows of Table 11.2. In all the cases, our approach
is more efficient as can be seen from the shorter average trajectory length and duration. As
the measurement noise increases this becomes more evident. We also provide a comparison
to center point approximation [19] discussed in Section 8.2 and Table 11.1, which is also
computationally less intense. However, as recognized by [82], if the covariance is small, the
approximated probability can be much smaller than the exact probability. Moreover, the
approach work well only when the sizes of objects are relatively very small compared with
their position uncertainties [113]. This is seen in the last row of Table 11.2. For measurement
noise Σ and 2Σ the approach resulted in collision for all the runs. For measurement noise
3Σ and 4Σ, the approach succeeded in 55% and 35% of the runs, respectively. This reduced
success percentages are due to lower values of the collision probabilities computed. The
executed trajectories for all the three approaches in Table 11.2 are shown in Fig. 11.1.
Four obstacles: In this experiment, we consider four obstacles which are placed (a) far
apart from each, (b) two obstacles are placed close to each other, and (c) all obstacles are
placed close to each other. In each of the cases, the quadrotor starting from (0,0,1.4) m
has to reach the goal location at (0,13,1.4) m. The quadrotor successfully reaches the goal



11.7 Results 129

(a) Bounding volume (b) Center point approximation (c) Our method

Figure 11.1 Top view (x-y) of four obstacles in different locations. The solid blue lines represent the
trajectories executed by the quadrotor and the red blobs represent the obstacles.

(a) (b) (c)

Figure 11.2 Simulation with varying measurement noise. The upper plots shows the top view (x-y)
and the lower plots show the side view (y-z). The solid lines represent the trajectories executed by the
quadrotor.
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Obstacle location l (m) T (s) d (m)
(a) 17.78 14.94 ± 0.03 0.59
(b) 16.10 14.54 ± 0.01 0.88
(c) 14.57 14.36 ± 0.02 0.82

Table 11.3 Trajectory results with varying obstacle configurations.

location avoiding collisions. The respective trajectories in each of the three cases can be seen
in Fig. 11.2. The change in configuration of the obstacles affects the collision probability
computation which is reflected in the respective executed trajectories. The results are shown
in Table 11.3.
Column domain: In this experiment, we test the adaptability of our approach to cluttered
and challenging environments. Fig. 11.3 shows a snapshot of the column domain which
consists of 19 cylindrical columns that obstruct the quadrotor path. We test the We consider
two different scenarios where the quadrotor need to avoid collision with the columns to reach
the goal location. In scenario 1, the quadrotor starting from (−2.5,0,1.4) m has to reach
the goal location at (−2.5,12,1.4) m. The trajectory followed is seen in Fig. 11.4a, with
an average trajectory length of 13.72 m, and trajectory time of 13.14 (±0.02) seconds. The
average minimum distance between the quadrotor and the obstacles is 0.21 m. In scenario
2, the quadrotor starting from (0,0,1.4) m has to reach the goal location at (1,12,1.4) m.
The trajectory followed is seen in Fig. 11.4b, with an average trajectory length of 13.42 m,
and trajectory time of 13.37 (±0.05) seconds. The average minimum distance between the
quadrotor and the obstacles is 0.66 m. We note here that there since there are 19 columns,
there are 19 constraints of the form P(Cxk,sk)≤ ε . Our method is computationally less intense
and hence solvable in real time.

Figure 11.3 Column domain in Gazebo consisting of 19 cylindrical columns.
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(a) Scenario 1 (b) Scenario 2

Figure 11.4 Top view (x-y) of the column world scenarios. The solid blue lines represent the
trajectories executed by the quadrotor and the red blobs represent the obstacles. Quadrotor successfully
evades collision in both the scenarios.



Chapter 12

Fast and Bounded Collision Constraint

In this chapter, we discuss our contribution C10 by developing an accurate constraint for
collision avoidance during motion planning which is much faster when compared to the
approaches discussed in Chapter 10 and Chapter 11. For a specific collision probability
threshold, the collision avoidance constraint can then be used for online MPC optimization.
To be robust to uncertain environments, robot motion and sensing uncertainties (and obstacle
uncertainties) are incorporated by propagating the uncertainties within the MPC framework.

12.1 Collision Constraint for Motion Planning

We denote by R the set of all points occupied by a rigid-body robot at any given time.
Similarly, let S represent the set of all points occupied by a rigid-body obstacle. A collision
occurs if there exits a point such that it is in both R and S . Thus the collision condition is
defined as

R ∩S ̸= {φ} (12.1)

and we denote the probability of collision as P
(
R ∩S ̸= {φ}

)
. In this work we assume

spherical geometries for R and S with radii r1 and s1, respectively. We assign body-fixed
reference frames to robot and obstacle centers located at xk and sk, respectively in the global
frame. By abuse of notation we will use xk and sk equivalently to R and S . However, when
we talk about the distribution of their locations, we refer to the distribution of their centers
(the body-fixed frame). The collision condition is thus defined in terms of the body-fixed
frames as

Cxk,sk : R ∩S ̸= {φ} (12.2)
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We recall here that the locations of the robot and the obstacles are in general uncertain. Let
us now consider a robot and an obstacle at any given time instant k, distributed according to
the Gaussians xk ∼N

(
µµµxk

,Σxk

)
and sk ∼N

(
µµµsk

,Σsk

)
, respectively. Since the robot and

the obstacles are assumed to be spherical objects, the collision constraint is written as

∥xk− sk∥2 ≤ (r1 + s1)
2 (12.3)

Thus 12.3 is equivalent to Cxk,sk . Let us denote the difference between the two random
variables by w = xk− sk. Using the expression for the difference between two Gaussian
distributions, we have w∼N

(
µµµxk
−µµµsk

,Σxk +Σsk

)
. The collision constraint in (12.3) can

now be written in terms of w,

y =∥w∥2 = wT w≤ (r1 + s1)
2 (12.4)

where y is a random vector distributed according to the squared L2-norm of w.

Proposition 1. A symmetric matrix A ∈ Rn×n with orthonormal eigenvectors qi can be

factorized as

A = QΛQT (12.5)

where the columns of Q correspond to the orthonormal eigenvectors qi and Λ is a diagonal

matrix comprised of the corresponding eigenvalues of A.

Lemma 12. For a symmetric matrix A ∈ Rn×n and a random vector x, we have

xT Ax≤ λmax∥x∥2 (12.6)

where λmax is the maximum eigenvalue of A.

Proof. From Proposition 1, we have

xT Ax = xT QΛQT x =
(

QT x
)T

Λ

(
QT x

)
=

n

∑
i=1

λi(qT
i x)2

≤ λmax

n

∑
i=1

(qT
i x)2 = λmax∥x∥2

where we have used the fact that the eigenvectors are orthonormal.
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Proposition 2. For any random variable x, the probability of an event P(x≤ x) is given by

its cumulative distribution function (cdf) Fx(x), that is,

Fx(x) = P(x≤ x), −∞ < x <+∞ (12.7)

Proposition 3. For n-dimensional x∼N (µµµ,Σ)

y = (x−µµµ)T
Σ
−1(x−µµµ)∼ χ

2
n (12.8)

where χ2
n denotes the chi-squared distribution with n degrees of freedom.

Let Fchi be the cdf of a chi-squared distribution with n degrees of freedom and let
x∼N (µµµ,Σ), then for any −∞ < x <+∞ we have

P((x−µµµ)T
Σ
−1(x−µµµ)≤ x) = Fchi(x) (12.9)

Alternatively, for any 0≤ ε ≤ 1, we have

P((x−µµµ)T
Σ
−1(x−µµµ)≤ F−1

chi (ε)) = ε (12.10)

Lemma 13. Let x∼N (µµµ,Σ),∥x∥2 ≤ α , Fchi be the cdf of a chi-squared distribution and

P((x−µµµ)T
Σ
−1(x−µµµ)≤ F−1

chi (ε)) = ε

Then λmax

(
α−2xT µµµ +µµµT µµµ

)
≤ F−1

chi (ε), where λmax is the maximum eigenvalue of Σ−1.

Proof. From Lemma 12, it follows that

(x−µµµ)T
Σ
−1(x−µµµ)≤ λmax∥x−µµµ∥2 (12.11)

where λmax is the maximum eigenvalue of Σ−1. Expanding the right-hand side of (12.11) and
using the fact that∥x∥2 ≤ α , we get

(x−µµµ)T
Σ
−1(x−µµµ)≤ λmax

(
α−2xT

µµµ +µµµ
T

µµµ

)
(12.12)

Thus, for (x−µµµ)T Σ−1(x−µµµ)≤ F−1
chi (ε) it suffices that λmax

(
α−2xT µµµ +µµµT µµµ

)
≤ F−1

chi (ε).
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Note that the collision constraint in (12.4) is of the form ∥x∥2 ≤ α and this allows us
to define a notion of maximum allowable collision probability. We remind the readers that
Cxk,sk represents the collision condition and is therefore equivalent to (12.3). We now define
the collision constraint that satisfy the required collision probability threshold.

Lemma 14. Given n-dimensional x∼N (µµµ,Σ), and P(∥x∥2 ≤ α)≤ ε , then

λmax

(
α−2xT

µµµ +µµµ
T

µµµ

)
≤ F−1

chi (ε) (12.13)

where λmax is the maximum eigenvalue of Σ−1 and Fchi is the cdf of the chi-squared distribu-

tion with n degrees of freedom.

Proof. We have

P(∥x∥2 ≤ α) = P(xT x≤ α) = P((x−µµµ +µµµ)T (x−µµµ +µµµ)≤ α)

= P((x−µµµ)T (x−µµµ)+2(x−µµµ)T
µµµ +µµµ

T
µµµ ≤ α)

= P(∥x−µµµ∥2 ≤ α−2xT
µµµ +µµµ

T
µµµ)

= P(λmax∥x−µµµ∥2 ≤ λmax(α−2xT
µµµ +µµµ

T
µµµ))

where λmax is the maximum eigenvalue of Σ−1. Now from Lemma 12 it follows that

P(λmax∥x−µµµ∥2 ≤ λmax(α−2xT
µµµ +µµµ

T
µµµ))

= P((x−µµµ)T
Σ
−1(x−µµµ)≤ λmax(α−2xT

µµµ +µµµ
T

µµµ)) = P(∥x∥2 ≤ α) = ε

The required result then directly follows from Lemma 13.

Since the collision constraint in (12.4) is a Gaussian distribution, for a collision probability
threshold of ε we can directly use the constraint in (12.13). We now state the following
lemma which is a direct consequence of Lemma 14.

Lemma 15. Given n-dimensional x∼N (µµµ,Σ), and P(∥x∥2 ≤ α)≤ ε , then

P(∥x∥2 ≤ α)≤ F−1
chi

(
λmax(α−2xT

µµµ +µµµ
T

µµµ)
)

(12.14)

12.2 Objective Function

We formulate the collision avoidance problem as an optimization problem. At each time
instant k, the robot plans for L look-ahead steps and minimizes an objective function Jk,
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subject to collision and other constraints. The optimization problem can then be formally
stated as

min
xk:k+L,uk:k+L−1

Jk

s.t. xk+1 = f (xk,uk)

uk+l ∈ U

P
(
Cxk+l ,si

k

)
≤ ε

(12.15)

where

Jk =
L−1

∑
l=0

cl(xk+l,uk+l)+ cL(xk+L) (12.16)

with cl denoting the cost term at time k+ l and cL denoting the terminal cost, xk+1 = f (xk,uk)

is the robot dynamics (8.1), uk+l ∈ U constraints the control inputs to lie within the feasible
set U and P

(
Cxk,si

k

)
≤ ε enforces a collision probability threshold of ε with obstacles si

k.

We recall here that to determine the constraint P
(
Cxk+l ,si

k

)
≤ ε in (12.15) it is required

to evaluate the constraint in (12.13), which depends on the uncertainty or the covariance at
each time step. Thus the uncertainty needs to be propagated at each time step to compute the
collision probability constraint. In this work we use the EKF uncertainty propagation; other
approaches can be found in [73]. Note that the covariance dynamics dependent on the robot
state and control inputs and hence require L

2 (n
2
x+nx) [36] (nx is the dimension of x) additional

variables in the optimization problem, increasing the computation time significantly. Thus,
similar to [36, 113], we approximate the uncertainty evolution by propagating the robot
uncertainties based on its last-loop state and control inputs.

12.3 Comparison to Other Approaches

We provide a comparison with several state-of-the-art methods using a robot and a close-by
obstacle. For this comparison, we use a 2D example, however our approach is not limited
to 2D scenarios and is equally applicable in 3D scenarios as it can be seen in Section 12.4.
The robot is located at (0.38,0) m with radius 0.2 m and covariance diag(0.04,0.04) m2.
The obstacle is located at the origin with radius 0.2 m. The collision probability values can
be seen in Table 12.1. To validate the value computed using our approach, we compute the
exact collision probability by performing numerical integration. Given the current robot state
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Methods Collision Computation
probability time (ms)

Numerical integral 0.1728 9168.9 ± 258.0
Approximate Numerical integral [65] 0.4280 18.30 ± 3.90

Bounding volume [81, 54] 1 0.1480 ± 0.4411
Maximum probability approximation [82] 1 101.6 ± 23.86

Chance constraint [113] 0.5398 0.3917 ± 0.1278
Rectangular bounding box [33] 0.1601 0.067 ± 0.0070

Our approach 0.1772 0.588 ± 0.13

Table 12.1 Comparison of collision probability methods.

xk and the obstacle state sk, the collision probability is given by

P
(
Cxk,sk

)
=
∫

xk

∫
sk

Ic(xk,sk)p(xk,sk) (12.17)

where Ic is an indicator function defined as

Ic(xk,sk) =

1 if R ∩S ̸= {φ}

0 otherwise.
(12.18)

and p(xk,sk) is the joint distribution of the robot and the obstacle. The numeric integral
of (12.17) gives the exact value and is used to compare the tightness of the upper bound
computed using our approach. As seen from Table 12.1 the value computed using our ap-
proach provides a tighter bound when compared to other approaches. The double summation
of numerical integration is approximated to a single summation in [65] and this results in a
much higher value. Other approaches compute loose upper bounds and hence the resulting
values are significantly higher. Our approach thus computes a tighter upper bound.

12.4 Results

In this section we describe our implementation and then evaluate the capabilities of our
approach. Simulations are performed in the Gazebo environment with mobile robots as well
as quadrotors. The mobile robot kinematics is as follows

xk+1 =


xk− vk

ωk
sin(θk)+

vk
ωk

sin(θk +ωk∆t)

yk +
vk
ωk

cos(θk)− vk
ωk

cos(θk +ωk∆t)

θk +ωk∆t

+nk (12.19)
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Measurement noise
Σ 4Σ 16Σ

Method d(m) l(m) T (s) d(m) l(m) T (s) d(m) l(m) T (s)
Bounding volume [81, 54] 0.50 3.31 16.19 0.70 3.90 16.34 0.81 4.26 16.54

Our method 0.49 3.28 16.01 0.58 3.59 16.13 0.61 3.71 16.29

Table 12.2 Collision probability efficiency with varying measurement noise.

where the applied control uk = (vk,ωk)
T is made up of the linear and angular velocities and

nk is the zero mean Gaussain noise. We refer the readers to [22] for the quadrotor dynamics.
The ground truth odometry from Gazebo is used to measure the pose of the robot, mimicking
a motion capture system. This measurement is then corrupted with noise which is zero mean
and is used to estimate the state of the robots employing an EKF. The optimization of (12.15)
is set up in ACADO [39] which generates a C++ template to run the MPC problem (12.15),
and is then modified according to the execution platform. For quadrotor control, we use the
publicly available RPG-MPC1 [22] which is also based on ACADO and modify it to meet
our requirements. A look-ahead horizon of L = 1 second is used with a discretization of 0.1
seconds for mobile robots and for the quadrotors we use L = 2 seconds. The performance is
evaluated on an Intel® Core i7-6500U CPU@2.50GHz×4 with 8GB RAM under Ubuntu
16.04 LTS.
Comparison to bounding volume approaches: Bounding volume methods [81, 54] presents
a straightforward approach for computing collision probability under uncertainty by enlarging
the robot and obstacles by their 3−σ ellipsoids. We provide an efficiency comparison of such
methods with ours. We consider a scenario in which a mobile robot navigates from (0,0)
m to (3,0) m with an obstacle of radius 0.2 m at (1.5,0) m. We begin with a measurement
noise of Σ = diag(0.02m2,0.02m2,1.2deg2) and increase it to 4Σ and 16Σ. We define the
following metrics to compare the efficiency: d− minimum distance between the robot and
the obstacle, l− total trajectory length, and T− total trajectory duration. The results are
shown in Table 12.2 where each given value is an average over 10 different simulations. In
all the three cases, the trajectory length and duration quantities certify our approach as most
efficient. This is more evident as the measurement noise increases as we compute a tight
upper bound.
Mobile robot scenarios: In this setting we consider multiple mobile robots exchanging
their initial positions with each robot considering every other robot as a dynamic obstacle.
To this end, the trajectory (pose and covariance) of each robot is communicated to other
robots. The trajectories for two and four mobile robots exchanging their positions can be

1https://github.com/uzh-rpg/rpg_mpc

https://github.com/uzh-rpg/rpg_mpc
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(a) (b) (c)

Figure 12.1 (a), (b) Simulation results of mobile robots exchanging their positions. The solid lines
represent the trajectories executed by the robots. (c) Mean MPC planning time for four robots R1, R2,
R3 and R4, respectively.

seen in Fig. 12.1a and Fig. 12.1b. We use a collision probability threshold of 0.1 and a
minimum separation of 0.2 meters is achieved between the robots. In both the cases, a
measurement noise of Σ = diag(0.02m2,0.02m2,1.2deg2) is used to corrupt the ground truth
odometry which is then used to estimate the robot states using EKF. The simulation was
run 10 times and the robots successfully avoided collisions in all the runs. For collision
probability thresholds above 0.2 the success rate was less 100%. The average computation
time for MPC planning is 9.50 ms and Fig. 12.1c shows the mean MPC planning time for
each robot. The low computation time thus allows for real time online planning.
Quadrotor scenarios: Similar to the scenario discussed above, here we consider multiple
quadrotors exchanging their initial positions. Each quadrotor communicates its trajectory,
both pose and covariance, with others. The top view and side view for four and six quadrotors
exchanging their initial positions can be seen in Fig. 12.2. Close distances between quadrotors
are observed due to our tight bound. We also observed that a success rate of 100% is achieved
for collision probability thresholds below 0.1. Mean computation time for MPC planning is
3.05 ms.
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(a) Four quadrotors (b) Six quadrotos

Figure 12.2 Simulation results of quadrotors exchanging their positions; trajectories executed
visualized by solid lines. The upper plots show the top view (x-y) and the lower plots show the side
view (x-z).



Chapter 13

Conclusions

In this part of the thesis, we have first presented an approach that incorporates reasoning
regarding the landmark uncertainties within the BSP framework. We consider a Gaussian
parametrization of the belief dynamics and derive the corresponding mean and covariance
of the belief state when the object uncertainty is considered. We also analyze the effect of
adding the object uncertainty for belief estimation and provide the conditions when the effect
is negligible.

In Chapter 10 we present a novel approach to compute an exact expression for the
collision probability when the robot and obstacle states are uncertain. In contrast, existing
works compute an approximation of the actual collision probability. Note that the exact
value can be computed using numerical integration but is computationally expensive. We
therefore propose an alternate derivation to obtain the exact value by formulating the collision
condition as a quadratic form in random variable and the associated collision probability
is the cdf of the quadratic from. We derive the cdf is derived as an infinite series and we
prove its convergence and provide an upper bound for the truncation error. We further relax
the spherical geometry (of robot and obstacles) assumption by considering the exact convex
footprints of the robot and the obstacles and derive the collision constraints for convex
polygons. A method to estimate the states of dynamic obstacles and further estimate its
future states to enable non-myopic planning is also discussed. Gazebo based simulation
using single and multi-robot scenarios with both static and dynamic obstacles demonstrate
the real-time online capability of our approach.

In many scenarios it might be sufficient to work with approximate collision probability
values. Such approximations can be computed much faster when compared to the exact values.
Thus in Chapter 11 we derive a tight upper bound for fast approximation of the collision
probability for 3D motion planning. We also relax the spherical geometry assumption of
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Chapter 10 and consider the minimum-volume enclosing ellipsoids. This representation
provides a better approximation of polyhedrons as compared to the spherical representation.
Efficiency of our approach with respect to trajectory length and duration is tested in simulation
by comparing with bounding volume approaches. Trajectory variation due to change in
obstacle configurations have also been tested and it is seen that our method readily adapts to
the same. Finally, we also test our approach in a heavily cluttered column domain.

In Chapters 10 and 11 we first derive the collision probability and then formulate it
as a constraint for online motion planning. In Chapter 12 we directly derive the collision
constraint (a tight upper bound for collision probability can be derived from it) for online
MPC planning. The proposed approach is tested in simulation considering mobile robots as
well as quadrotors to demonstrate that successful collision avoidance is achieved in real time
application.

Though our simulations in multi-robot setting resembles that of Multi-Agent Pathfinding
(MAPF), there are certain differences. We consider a combined objective function of cost due
to uncertainty and distance traversed by the robot. Moreover, we perform a look-ahead based
planning rather than in the combined state space of all agents, as usually done in MAPF.
Further, we do not consider the wait action in MAPF and we require the robots to be moving
unless they have reached the goal. In this work, it was our aim to demonstrate the efficacy of
our collision avoidance strategies. Yet, with minor changes, we believe that our approach can
be suited to certain facets of MAPF.

Note that currently we assume either spherical or ellipsoid bounding volumes for obstacles
and spheres. Though this approximations are valid for all practical purposes the estimates
may not fare well in heavily crowded environments or those with narrow passages. In such
scenarios the collision constraint is to be formulated by considering the exact geometries of
robot and obstacles. As a first step in this direction, in Chapter 10 we consider 2D scenarios
by deriving the collision constraint between convex polygons by considering their footprints.
This needs to be extended to 3D scenarios by considering the collision constraint between
3D polygons.

Currently we consider all obstacles in the environment while computing the collision
probability during each time instant of the planning phase. Thought it does not hinder
real time performance as seen from the experiments, scalability to larger domains might
be challenging. Considering obstacles only within a certain distance from the robot, for
example, within its 3-σ uncertainty region might reduce the computation time to efficiently
scale the approach to larger domains (higher number of obstacles). Furthermore, in some
cases the assumption of Gaussian distribution for robot state and other noises may not hold.
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For example, estimation problems under aliased environments can lead to many distinct
hypothesis for obstacle state estimates and this assumption will fare poorly. Another challenge
is to determine the number of lookahead steps for MPC planning. Currently we perform
the method of trail and error aided with our previous experience. Similar challenge exist in
determining the discretization time for each step of the MPC optimization. These variables
also change with different robot dynamics, for example, a mobile robot and a quadrotor
exhibit different behaviors under the same constants. Note that in all the derivations we have
considered two different spheres or ellipsoids interacting. Manipulators present an added
challenge that they can be modeled only using a combination of spheres or ellipsoids. Though
extension of our methods to such robots are trivial— one need to consider the collision of
each sphere or ellipsoid of the robot to that of the obstacle, it would be interesting to see how
our methods fare under such robots.
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Appendix A

Derivation of (9.9)

The mean of b[xk+1] is the value that minimizes Jk+1, and therefore it is obtained by
equating its first derivative to zero. The first derivative of Jk+1 with respect to xk+1 is
obtained as

∂Jk+1

∂xk+1
=−HT

k+1Q−1
k+1

(
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)
(A.1)

Since we are evaluating an expression for the mean, we will substitute µµµk+1 for xk+1. Thus
setting the first derivative of Jk+1 to zero, we have
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From (9.8) we have Σ
−1
k+1 = HT
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k+1Hk+1 + Σ̄
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k+1 +Σ

−1
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k+1
. Also using the fact that Kk+1 =
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k+1, (A.2) simplifies to
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Rearranging, we get the final expression
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Appendix B

Derivation of (9.10)

In this Appendix we derive the expression for Σk+1 in terms of the Kalman gain Kk+1 and
the predicted covariance Σ̄k+1. For convenience we write down the matrix inversion lemma
which states that for any invertible matrices B and C and any matrix D with appropriate
dimensions, the following holds true(

B+DCDT
)−1

= B−1−B−1D
(

C−1 +DT B−1D
)−1

DT B−1 (B.1)

We note here that the Kalman gain Kk+1 = Σk+1HT
k+1Q−1

k+1 in (9.9) is a function of Σk+1.
Thus we first need to derive an expression for Kk+1 that does not depend Σk+1. To obtain
such an expression, we follow the approach for the standard EKF case presented in [105].
We begin by post-multiplying Σk+1HT

k+1Q−1
k+1 with an identity matrix I = AA−1, where

A =

(
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To avoid clutter, let us further define Σ̃k+l =
(

Σ̄k+1 +ΣOi
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)−1
. The expression for Kk+1 can

then be written as
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We will now compute the inverse of the term Σ̄k+1Σ̃k+lΣOi
k+1

. This can be done as follows:
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The expression in (B.3) simplifies to
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where we have used the fact that Σ
−1
k+1 = HT
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k+1. Thus we obtain
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Let us now define Ξk+1 = Σ
−1
Oi

k+1
+ Σ̄

−1
k+1. Applying the matrix inversion lemma to the

right hand side of (9.8), we have
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From (B.4), we have
Ξ
−1
k+1 = Σ̄k+1Σ̃k+lΣOi
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(B.8)

We note here that the expression Ξ
−1
k+1 appears four times in (B.7). Substituting for Ξ

−1
k+1

using (B.8) in the second and third expression of Ξ
−1
k+1 in (B.7), we get
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From (B.6) and (B.8), it is easily seen that the expression in (B.9) simplifies to

Σk+1 = Ξ
−1
k+1−Kk+1Hk+1Ξ

−1
k+1 = (I−Kk+1Hk+1)Ξ

−1
k+1

= (I−Kk+1Hk+1) Σ̄k+1Σ̃k+lΣOi
k+1

= (I−Kk+1Hk+1) Σ̄k+1

(
Σ̄k+1 +ΣOi

k+1

)−1
ΣOi

k+1
(B.10)

This completes the derivation.
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Derivation of (10.35)

From (10.30), we have

lnM(θ) = d0 +
∞

∑
k=1

dk
θ k

k
(C.1)

For differentiable M(θ), we have

d
dθ

lnM(θ) =
1
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d
dθ
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∑
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ckθ
k−1 (C.2)

where we have used the definition of M(θ) given in (10.26). Also note that by construction
M(θ)> 0. Re-arranging (C.2), we obtain

M(θ)
d
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∞

∑
k=1

ckθ
k−1 (C.3)

From (C.1), we have
d
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From (C.2) and (C.4), we thus obtain(
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Comparing the coefficient of θ k−1 on both sides of the equation, we get the required expres-
sion for ck as

ck =
1
k

k−1

∑
j=0

dk− jc j (C.6)
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