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Preface

Medical imaging physics has advanced a lot in recent years, providing clinicians and
researchers with increasingly detailed images that are well suited to be analyzed with a
quantitative approach typical of hard sciences, based on measurements and analysis of
clinical interest quantities extracted from images themselves. Such an approach is placed
in the context of quantitative imaging.

The possibility of sharing data quickly, the development of machine learning and
data mining techniques, the increasing availability of computational power and digital
data storage which characterize this age constitute a great opportunity for quantitative
imaging studies.

The interest in large multicentric databases that gather images from single research
centers is growing year after year. Big datasets offer very interesting research perspec-
tives, primarly because they allow to increase statistical power of studies. At the same
time, they raised a compatibility issue between data themselves. Indeed images acquired
with different scanners and protocols could be very different about quality and measures
extracted from images with different quality might be not compatible with each other.

Harmonization techniques have been developed to circumvent this problem. Harmo-
nization refers to all efforts to combine data from different sources and provide users
with a comparable view of data from different studies. Harmonization can be done
before acquiring data, by choosing a-priori appropriate acquisition protocols through a
preliminary joint effort between research centers, or it can be done a-posteriori i.e. images
are grouped into a single dataset and then any effects on measures caused by technical
acquisition factors are removed.

Although the a-priori harmonization guarantees best results, it is not often used for
practical and /or technical reasons. In this thesis I will focus on a-posteriori harmonization.

It is important to note that when we consider multicentric studies, in addition to
the technical variability related to scanners and acquisition protocols, there may be a
demographic variability that makes single centers samples not statistically equivalent
to each other. The wide individual variability that characterize human beings, even
more pronounced when patients are enrolled from very different geographical areas, can
certainly exacerbate this issue. In addition, we must consider that biological processes
are complex phenomena: quantitative imaging measures can be affected by numerous
confounding demographic variables even apparently unrelated to measures themselves.

A good harmonization method should be able to preserve inter-individual variability



and remove at the same time all the effects due acquisition technical factors. Heterogene-
ity in acquisition together with a great inter-individual variability make harmonization
very hard to achieve.

Harmonization methods currently used in literature are able to preserve only the
inter-subjects variability described by a set of known confounding variables, while all
the unknown confounding variables are wrongly removed. This might lead to incorrect
harmonization, especially if the unknown confounders play an important role. This issue
is emphasized in practice, as sometimes happens that demographic variables that are
known to play a major role are unknown.

The final goal of my thesis is a proposal for an harmonization method developed in
the context of amyloid Positron Emission Tomography (PET) which aim to remove the
effects of variability induced by technical factors and at the same time are able to keep
all the inter-individual differences. Since knowing all the demographic confounders is
almost impossible, both practically and a theoretically, my proposal does not require the
knowledge of these variables.

The main point is to characterize image quality through a set of quality measures
evaluated in regions of interest (ROIs) which are required to be as independent as possi-
ble from anatomical and clinical variability in order to exclusively highlight the effect of
technical factors on images texture. Ideally, this allows to decouple the between-subjects
variability from the technical ones: the latter can be directly removed while the former is
automatically preserved.

Specifically, I defined and validated 3 quality measures based on images texture
properties. In addition I used a quality metric already existing, and I considered the
reconstruction matrix dimension to take into account image resolution.

My work has been performed using a multicentric dataset consisting of 1001 amyloid
PET images. Before dealing specifically with harmonization, I handled some important
issues: I built a relational database to organize and manage data and then I developed an
automated algorithm for images pre-processing to achieve registration and quantification.

This work might also be used in other imaging contexts: in particular I believe it
could be applied in fluorodeoxyglucose (FDG) PET and tau PET. The consequences of
harmonization I developed have been explored at a preliminary level. My proposal should
be considered as a starting point as I mainly dealt with the issues of quality measures,
while the harmonization of the variables in itself was done with a linear regression model.
Although harmonization through linear models is often used, more sophisticated tech-
niques are present in literature. It would be interesting to combine them with my work.
Further investigations would be desirable in future.
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Chapter 1

Research context

We live in a era in which knowledge is increasingly based on the analysis of large amounts
of data.

More and more advanced technologies and the possibility of sharing digital informa-
tion thanks to the World Wide Web, has allowed the creation of huge databases. In
parallel, the development of machine learning and data mining techniques, combined
with the development of computing technology, give us the opportunity to analyze and
investigate data as never before has been possible.

When databases reach very large volumes, when there is a continuous and rapid flow
of new data, when data comes from various sources and are acquired with different criteria
and sometimes in different formats, then it is legitimate to speak of big data. There is no
precise definition of what the minimum volume is to be considered big data; according
to Magoulas et al [I00] we are dealing with big data when the size and performance
requirements for data management become significant design and decision factors for
implementing a data management and analysis system. For some organizations, facing
hundreds of gigabytes of data for the first time may trigger a need to reconsider data
management options. For others, it may take tens or hundreds of terabytes before data
size becomes a significant consideration.

Large databases along with machine learning and data mining methods represent a
great and relatively new opportunity for advancement of science in many different fields.
The former increase statistical power of studies, while the latter allow to investigate
data space to obtain significant results and complex predictions even when there is no
theoretical model that drives studies.

However, studying big databases has not only benefits; one of the main drawbacks is
the potential heterogeneity of data from different sources.

Large databases are usually built through a joint data sharing effort of several research
centers. If data are collected without using a well-defined a priori shared protocol, then
important steps such as the choice of sample, the data acquisition process as well as data
manipulation may depend, even strongly, on the research center. The potential incom-
patibility between data with different provenance is considered as the main limitation of
multicentric studies. Data provenance refers to information about the origin, the process
and the methodologies by which data were produced. [66].
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Multiple effects could be involved in data provenance and take them all into account
is often a very hard challenge as each operation performed on data will modify data
themselves in a specific way. It is important to emphasize that the raw data, before being
analyzed, are typically subjected to more or less complex workflows which allow to map
them in a suitable format for analysis. In conclusion, data provenance leaves a mark on
data: the greater is the differences in provenance, the greater is the data heterogeneity
and hence the more difficult is to analyze data gathered in single multicentric studies.

Analyzing heterogeneous data without taking into account the provenance issue could
lead to incorrect and misleading results.

In this framework, the so-called data harmonization plays a crucial role: data har-
monization refers to all efforts to combine data from different sources and provide users
with a comparable view of data from different studies [70]. Harmonization includes all
practices which enable the pooling of data from multiple cohorts at a level of precision
that is scientifically adequate. The key challenge of harmonization is remove, or at least
mitigate, the data provenance heterogeneity, making possible to adequately combine data
from different studies in order to increase the sample size, and hence statistical power and
generalizability of the results.

1.1 Prospective and retrospective harmonization

Harmonization can be divided into two categories: prospective (also called a-priori) and
retrospective harmonization (also called a-posteriori) [61]. In the former researchers would
agree in advance on a series of practices to collect data in such a way as to directly enable
pooled analysis, while the latter refers to all the techniques used to make compatible data
after they have been collected.

Prospective harmonization can in turn be divided into two categories: stringent
prospective harmonization (also called standardization) and flezible prospective harmo-
nization[76].

Standardization refers to the implementation of uniform processes for prospective
collection, storage and transformation of data. Standardization implies that precisely the
same methods, protocols and standard operating procedures are used in every study or
study phase contributing to the analyses [76].

In particular harmonization is considered as stringent if data are collected across different
studies using identical data collection tools (e.g. identical measuring instruments) and
standard operating procedures [76].

Using standardized methods across multiple studies greatly facilitates analyses of
datasets from separate research centers. However, imposing identical procedures is a very
hard challenging in practice: differences in measuring instruments, in staff training, in
participant characteristics, in financial resources as well as differences in legislation on
ethical issues (if studies involve different countries) could make standardization difficult
to achieve [59].



A balance can be struck between the use of precisely uniform measures and procedures
that render data synthesis straightforward and the acceptance of some flexibility that
may be appropriate and more realistic in a collaborative context: such an approach is
called flexible prospective harmonization [60].

It is important to note that the goal of harmonization is to obtain data from different
research centers that can be integrated into a single study. The use of a precisely identical
data acquisition and data processing protocols (i.e. standardization) is a sufficient condi-
tion, but not necessary to achieve this aim: flexible harmonization permits the utilization
of different data collection tools and procedures,however it is required that data acquired
and pre-processed in individual research centers are sufficiently compatible to each other
in order to allow a valid integration of the data themselves. This can be achieved by des-
ignating studies a priori with a concerted effort: data acquisition, data preocessing tools
and protocols are required to be defined ab-initio in order to obtain comparable data.

However, a-priori harmonization, whether flexible or stringent, is in practice difficult
to achieve because it requires a joint effort that is rarely made. A further limitation of
prospective harmonization is the impossibility of using existing data that have not been
acquired according to criteria chosen a-priori, or whose provenance is unknown (or only
partially known).

Retrospective harmonization targets synthesis of information already collected by
existing studies. The ability to retrospectively harmonize data from existing studies fa-
cilitates the rapid generation of new scientific knowledge: harmonization can make use of
existing data, hence the construction of a synthesized dataset can be achieved relatively
rapidly. [60].

While the a-priori harmonization is based on a well-defined scheme, depending in
detail on the topic considered, but basically based on a common agreement between
research centers during the design phase of the study, a-posteriori harmonization cannot
be defined by a common general scheme. In other words, addressing the problem of a
posteriori harmonization requires the definition of a specific problem.

1.2 Big data and harmonization issues in medical
imaging physics

Interestingly, the introductory discussion on harmonization was very general. Indeed,
analysis of large datasets, problem of data provenance, and strategies related to har-
monization constitute cross-cutting topics that involve many fields of science, such as
medicine, neuroscience, physics, economics, chemistry, biology, sociology.

In physics, for example, instrument calibration could be viewed as an a-priori har-
monization. Typically, instruments are calibrated in the absence of signal in order to
characterize the noise. This simple approach can sometimes be very complex to achieve.
For example, a straightforward calibration of an instrument that detects gravitational
waves would imply characterizing the instrument simulating the absence of gravity: this
is very hard to achieve since it is not possible to shield a gravitational field.

Big data are particularly present in particle physics framework: the CERN LHCs



(Large Hadron Collider) sensors record hundreds of millions of collisions between parti-
cles. Clearly, this generates a huge amount of data, the LHC alone generates around 90
petabytes of information a year E] However, since these data come from a single source
(the LHC), the harmonization problem is essentially not present.

A field where harmonization is particularly important is medical imaging physics: it
is well known that when medical images acquired with different instruments and differ-
ent acquisition protocols are pooled in a single study, measures extracted from images
themselves usually affected by these technical factors. In the context of medical imaging,
data provenance consists of all the technical factors involved in the reconstruction and
acquisition of the data: the most important are the properties of the scanner and the
image acquisition and reconstruction protocols. These technical factors can have a great
impact on image quality, as we will discuss in chapter [2] and clinical measures extracted
from images could be sensitive to image quality. Data harmonization is often an essential
step to use medical imaging multicentric datasets [113] 156} 90, 2].

Research in medical physics is in some respects very different from research in fun-
damental physics. In medical physics there are ethical and legal aspects that constrains
studies and data collection: patients cannot be subjected to invasive examinations that
are not necessary, and this typically creates a bias in data acquisition for which there is
no availability of young and healthy subjects images. Furthermore, data often come from
naturalistic populations, and not from ad-hoc designed studies. A naturalistic database
is a collection of clinical images of patients who have undergone examinations.

Studies conducted on naturalistic databases can be affected by a sampling bias: a

naturalistic population is unlikely to constitute a representative sample of the whole
population. A further important issue is linked to the equivalence of the statistical units
considered, i.e patients. In fundamental physics the experiments are conducted on sam-
ples in which the variability is controlled and limited to the purposes of the experiment
itself. This does not happen in medical studies: the inter-patient variability can be
very wide and in practice is impossible to characterize it completely, as there are too
many variables potentially involved (for example, lifestyle, income, quality of night rest,
unknown pathologies, genetic differences etc...).
Therefore, in investigating a relation between a given input and a given output of interest,
a large number of unknown confounding variables may be involved, and this can lead to
misleading results [93, [I58]. This issue is enhanced by the complexity of the biological
mechanisms: this complexity means that there may be many confounding variables at
play, even apparently not related with measures of interest.

Furthermore, the samples size in studies involving medical imaging studies is enor-
mously lower than that typical samples size which characterize fundamental physic
experiments: many monocentric studies in neuroimaging use samples made of about 50
subjects [142]. For this reason there is an increasing interest in multicentric studies. i.e.
studies that involve data (i.e. medical images) from many clinical and research centers
[41], 103], 2, ©90). The price to pay for having a more powerful statistic is that of having
heterogeneous data. This aspect together with the problem of sampling bias constitutes
a main challenge for medical imaging studies. Heterogeneity in acquisition together with

Thttps://home.cern /science/computing /storage
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a great inter-individual variability make postreconstruction harmonization very hard to
achieve, as a good harmonization method should be able to preserve inter-individual
variability and remove at the same time all the effects due acquisition technical factors.

To conclude, I believe that a consideration on the concept of big data in medicine is
appropriate. Typical medical imaging studies certainly does not reach the typical volumes
of big data. However according to Eurostat reporting, each year, one person in ten in
Europe undergoes computed tomography imaging (CT), one in 13 undergoes magnetic
resonance imaging (MRI) and one in 200 positron emission tomography imaging (PET)
[3]. This huge number of images combined with a research increasingly oriented to study
large multicentric dataset, suggests that the future trend is certainly oriented towards a
numerosity that can legitimately fall within the field of big data.

It should also be considered that each medical image is made up of a relatively large
amount of data, which researchers would like to summarize in a few useful information.
However when we consider one medical image we are actually considering about a 0.1 -
1 gigabyte of data. Furthermore the heterogeneity of medical imaging due to provenance
as well as the relatively quickly flow of new data are typical characteristics of big data.

Nowadays, according to Smith et al. [I42], we may consider an imaging study as ”big”
if it has 1000 or more subjects.

In the thesis I will deal with the issues of harmonization and data provenance in the
context of Amyloid 8 (AfS) PET neuroimaging. I will use a naturalistic database made
up of 1001 subjects, thus falling within the limit of the big data category. The database I
considered for my work is very heterogeneous both in terms of demography and in terms
pf acquisition methods. This fact certainly enhances the problem of data provenance.
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Chapter 2

Neuroimaging

2.1 Neuroimaging overview

The terms neuroimaging refers to the use of various techniques to either directly or indi-
rectly image the structure, function and pharmacology of the central nervous system.
Neuroimaging techniques can be classified into two categories: structural and func-
tional. Structural neuroimaging (just imaging for the sake of simplicity) refers to ap-
proaches that are specialized for the visualization and analysis of anatomical properties
of the brain, then it is particularly useful for detecting brain damage and abnormalities as
well as for obtaining accurate knowledge of patients brain anatomy[79]. In this context,

Figure 2.1: An example of functional (amyloid-PET, at the top) and structural (T1 MRI, at the
bottom) are provided, respectively. From left to right are shown the same sagittal, coronal and axial
section respectively. Both the images are acquired scanning the same patient.
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structural imaging analyses can be used to quantify geometric structural properties such
as the size and volume of a given structure [I48] or the thickness of a cortical area (e.g.,
gray matter)[58]. Structural imaging include many techniques such as MRI, CT and
Diffusion Tensor Imaging (DTT).

On the other side, functional imaging is used to identify brain areas and underlying
brain processes that are associated with performing a particular cognitive or behavioral
task [79]. Functional imaging consists in family of techniques widely used for detecting
and measuring changes in metabolism, blood flow and regional chemical composition of
tissues. Functional images can be acquired with a broad category of techniques such as
functional Magnetic Resonance Image (fMRI) , Single-photon emission computed tomog-
raphy (SPECT), and PET. In this thesis I will only discuss Ag PET imaging and I will
especially focus on Amyloid-PET.

An example of structural and functional imaging can be found in figure [2.1]

2.2 Quantitative imaging

Quantitative imaging (QI) refers to the extraction and use of numerical /statistical features
from medical images [74]. As a research field, QI includes the development, standard-
ization, optimization, and application of anatomical, functional, and molecular imaging
acquisition protocols, data analyses, display methods, and reporting structures, as well
as the validation of QI results against relevant biological and clinical datal[l].

The QI concept is closely tied to that of a biomarker, which will be defined in the next
subsection.

2.2.1 Biomarker

There are different definitions of what a biomarker is, highlighting some aspects rather
than others. One of the most used and universally accepted by scientific community is
the following:

Biomarker definition: any substance, structure, or process that can be measured
in the body or its products and influence or predict the incidence of outcome or disease.[13]

Biomarkers are something of very general in medicine and is not necessarily related
to imaging, for example bone mineral density, blood pressure and blood glucose level are
biomarkers.

Focusing on quantitative imaging, the Quantitative Imaging Biomarkers Alliance E]
(QIBA), organized by the Radiological Society of North America (RSNA), has formally
defined a QI biomarker as follows:

QI Biomarker definition: an objective characteristic derived from an in vivo im-
age measured on a ratio or interval scale as indicators of normal biological processes,

Thttps://www.rsna.org/research/quantitative-imaging-biomarkers-alliance
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pathogenic processes, or a response to a therapeutic intervention[].

Biomarkers stand in contrast to medical symptoms, which are limited to those in-
dications of health or illness perceived by patients themselves: they may but do not
necessarily correlate with a patient’s experience and sense of wellbeing. [145].

Going beyond the defintions, as a biomarker is a measurable quantity which aim to
predict an output with regard to a subject’s certain disease, two fundamental questions
arise. Suppose we are studying a certain disease, thus

e what are the appropriate biomarkers as regard to the investigated disease? What
is the more appropriate one?

e How can a given biomarker be measured?

The first question is implicitly based on having a medical theory that causally links the
biomarker to the disease under investigation.
The second question opens up a vast scenario related to everything that concerns a mea-
surement: reproducibility, calibration of the instrument, error theory, statistical analysis
of the measured results, ability to distinguish signal from noise etc...

Ap PET images, which I worked on during my PhD, are involved in neurodegener-
ative disease studies; in particular brain cortical AS burden represents a biomarker for
Alzheimer’s Disease (AD) [37, 153, 25, 164, 120].

2.2.2 Radiotracers

As quantitative neuroimaging is based on the measure of biomarkers extracted from
medical images, a further important issue is related to the ability of a medical image to
highlight what is to be measured.

For example, with regard to AS PET imaging which I will discuss in this thesis, one
may ask how is it possible to detect the presence of amyloid so that it can be measured
through the so called quantification process.

The answer of this question relies both on radiotracers and PET working principles,
which I will describe in this subsection and in the next section respctively.

A radiotracer (also called tracer for the sake of simplicity) is a chemical compound
in which one or more atoms have been replaced by a radioactive isotope. Thus, a tracer
can be considered as consisting of two key elements: a carrier molecule and a radioactive
atom (radio-isotope) [64]. Carrier molecules are engineered to take part in a specific
biological process related to the pathology under consideration. As an example, In AS
their role is to chemically bind, as specific as possible, to the red AS.

The most commonly used radtiotracers for AS-PET are Amyvid (Florbetapir), Neu-
raceq (Florbetaben) and Vyzamil (Flutemetamol), which are marked with the ®F ra-
diosotope (Figure [2.2)). Another common radiotracer is Pittsburgh Compound-B (PIB)
which is "'C marked. ®F and ''C are largely used as they can be easily produced in
cyclotrons and that their half-life is rather short: ~ 110 min and ~ 20 min respectively:
this allows to avoid enduring radiation hazard for patients.
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Figure 2.2: Examples of fluorinated radiotracers for AS detecting
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Figure 2.3: Pictorial representation of a typical PET detector, consisting of a ring of scintillators coupled
to photomultipliers and a processing unit to retrieve the emitter position

2.3 PET physical principle

PET is an imaging technique used in nuclear medicine that allows non-invasive visualiza-
tion and quantification of biological and physiological processes. This technique provides
three-dimensional images of the anatomical district under examination by exploiting
the decay processes of radioactive isotopes, which were previously introduced into the
patients bloodstream by injection of a radiotracer [143].

PET operating principle relies on the decay processes of radioactive isotopes which
mark the tracer. Tracer is administered intravenously and, after its administration, the
patient is placed in the scanner for acquisition.

In this context, the measure consists in detecting the number of counts in a given
volume, where the measure timings are short when compared to the half life of the
radioisotope, and long with respect to the biochemistry kinetics that guide the tracer
spread into the anatomical region under investigation.

The radioisotopes which mark the tracer decay ST emitting a positron e* and an
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electron neutrino v,. The most common radioisotope is '8 F which decays as follows:
SF = B0 +et +u,

In organic tissue the emitted positron et has a
mean free path of about 1-2 mm. Then the positron
annihilates with an electron and two collinear 511
KeV photons are emitted (as illustrated in figure
2.4). As the photon direction is random, the key
point is to detect the coincidence of coplanar events.

A series of scintillators organized
in a circular array around a  cen-
tral axis detects a signal only  when
two collinear events are detected within
a  time-difference  of = 6-20  ns [132],
thus revealing the emission line of
sight.

Figure 2.4: Decay of the radioisotope . L .
18F and annihilation of the positron with The raw signal which is obtained from of all the

an electron resulting in the emission of two revealed lines of sight are then processed in order to
7 photons. obtain all the emitter positions and thus to recon-
struct the final three dimensional image.

The PET workflow is schematically illustrated in fig.

Two main steps are needed to obtain a three-dimensional image of the patent. The first
is data acquisition which basically regards signal’s detection and storage. The second step,
called image reconstruction, allows to obtain a tree dimensional images from the stored
raw signal.

I will discuss both these steps in the next sections.

2.4 Data acquisition

2.4.1 Detection

The PET acquisition system is the PET scanner, which basically consists of a ring of
scintillators coupled to photomultipliers.

PET working is based on the detection in coincidence of the two annihilation photons
that originate from the % emitting sources, which in clinical practice is the patient
positioned within the ring.

The detection is obtained by means of scintillators, that convert high energy photons
(generated by the annihilation of the positron) into photons of relatively low energy (in
the visible spectrum). These photons reach the photocathode of the photomultipliers,
which converts the light signal into an electrical signal.

Ideally, each annihilation event should be detected by the scintillator, while all events
not due to the same annihilation should not be counted. To avoid counting photons not
due to an annihilation event, it is necessary to select the events with respect to energy
range and time window.
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The energy range, which is also called energy window, is usually chosen as 350 - 650
keV [133]. About the time window, signal is detected through a coincidence filter, which
selects only nearly simultaneous event. The time window At depends on the type of
detector, but it is typically selected between At = 6ns and At = 20ns [132].

When two photons are detected both within the time window and within the energy
window, they are considered as due to the same annihilation event, and then they are
registered as a coincident count. Coincidence counts are also called prompt events.

The detection of a couple of photons related to the same annihlation event define an
imaginary line connecting the two scintillators that recorded the event. This line is called
line of response (LOR). It is important to emphasize that we do not know the position of
the annihilation along the LOR: only the LOR is known and the event could be occurred
anywhere along the LOR itself.

TOF vs NON-TOF detetction The
event may have occurred anywhere along
a LOR, so, in the absence of further in-
formation it is assumed that the event is
equiprobable along the whole LOR.
A considerable improvement relies on the
ability of locating the annihilation event
along the LOR itself; this is achieved
thanks to the time of flight (TOF) tech-
Figure 2.5: Schematic illustration of non-TOF nique. Thanks to the recent introduction
(left) and TOF (right) photon detecting. of new scintillator crystals and electronics
with better temporal resolution, it is now

possible to obtain information on the position of the annihilation event along the LOR
by measuring the small time difference in the detection of the two photons.

For an annihilation event placed at Az from the center of the FOV, the At between
the two detections will be:

At =227 (2.1)
C

The time difference is really tiny: for a spatial offset of 9 cm the required temporal
resolution is 600 ps.
This allows to go beyond the equiprobability assuption about the localization along the
LOR, as the position of a given event can be exploited through a probability distribution
definite on the LOR itself, as illustrated in figure

TOF information considerably improves image quality,contrast and signal-to-noise ratio

[154].

Digital data storing We notice that a LOR is uniquely defined by two polar coordi-
nates (r,6). The radial coordinate r represents the distance between the center of the
scanner and the LOR, while 6 is the angular coordinate of the LOR with respect of a
given axis, as illustrated in figure [2.6]
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Figure 2.6: The image space (z,y) is represented in sinogram space (r,0). A group of LORs constitute
a projection profile, corresponding to a column in the sinogram. A point in the image space corresponds
a curve in the space of the sinogram, while a point in the space of the sinogram is a LOR in the image

space (courtesy of [73])

Each event is uniquely identified by a LOR and it is registered as a count into an his-
togram, which is called sinogram. The sinogram is basically a 2-dimensional histogram
of the LORs in the (r,0) coordinates in a given detection plane. Thus, each LOR (and
hence, detector pair) corresponds to a particular pixel (or element) in the sinogram,
characterized by the coordinates r and 6. The relation between LORs and sinograms is
further explained in figure [2.6| PET data are acquired directly into a sinogram which is a
matrix of appropriate size in the computer memory. In the final sinogram the total counts
in each sinogram’s pixel represent the number of coincidence events detected during the
counting time by the two detectors along the LOR. A typical sinogram can be found in

figure

2.4.2 PET detectors

As mentioned in the previous section, the key point of PET scan is the detection of coin-
cidence events. Therefore, the properties of the PET scan detector is a really important
issue which will be discussed in this section. Typically, the choice of a detector is based
on the following characteristics:

e Stopping power of the detector for 511keV photons
e Scintillation decay time

e Light output per keV of photon energy

e Energy resolution of the detector

The stopping power of the detector determines the mean distance the photon travels until
it stops after complete deposition of its energy, and depends on the density and effective
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atomic number of the detector material.

The scintillation decay time arises when
a photon interacts with an atom of the
detector material, and the atom is ex-
cited to a higher energy level,  which
later decays to the ground state, emit-
ting visible light. This time of de-
cay is called the scintillation decay time
(given in  nanoseconds) and it  depends
on the detector material. The shorter
the decay time, the  higher the effi-
ciency of the detector at high count
rates.

Figure 2.7: A typical sinogram

A high-light-output detector produces a well-
defined pulse resulting in better energy resolution. The intrinsic energy resolution is
affected by inhomogeneities in the crystal structure of the detector and random variations
in the production of light in it. The energy resolutions at 511keV in different detec-
tors vary from 6% to 20% [132], for routine integration time of pulse formation, which
runs around a few microseconds. However, in PET imaging, the integration time is a
few hundred nanoseconds in order to exclude random coincidences, and the number of
photo-electrons collected for a pulse is small, thus degrading the energy resolution. Con-
sequently, the detectors in PET scanners have relatively poorer energy resolution (10%
to 25%) [132].

The detection efficiency of a detector is another important property in PET tech-
nology. Since it is desirable to have shorter scan times and low tracer activity for
administration, the detector must detect as many of the emitted photons as possible.
The 511 keV photons interact with detector material by either photoelectric absorption
or Compton scattering. Thus, the photons are attenuated (absorbed and scattered) in
the detector, and the fraction of incident photons that are attenuated is determined by a
linear attenuation coefficient which gives the detection efficiency.

The most commonly used detectors are the BGO (bismuth germanate) and LSO
(lutetium oxyorthosilicate).

2.4.3 Factors affecting acquired data

The data acquired in the form of sinograms are affected by a number of factors, namely
variations in detector efficiencies between detector pairs, random coincidences, scattered
coincidences, photon attenuation, dead time, radial elongation and acquisition modality
(2-D vs 3-D). Each of these factors contributes to the sinogram to a varying degree. In
this subsection many of the factors which affect the acquired data will be discussed.

Photon attenuation factor After the annihilation event, the photons will travel in
the patients tissues in opposite directions; in this phase, different types of interaction
occur between the photon and the medium, which attenuate or block the intensity. The
modulation property of the medium depends on its characteristics (such as the density),
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Figure 2.8: Types of coincidences in a PET scanner (courtesy of [73])

and is described by a linear attenuation coefficient . The fraction of photons that crosses
a thickness x of matter with attenuation coefficient pu is expressed by the following relation:

[=¢ (2.2)

which extends naturally to a sequence of materials with thickness x; and coefficient p; as:

[ = e Zimm (2.3)

The attenuation phenomenon in human tissues can be rather significant and can lead to
nonuniformities in the images, because of the loss of relatively more coincidence events
from the central tissues than the peripheral tissues of an organ and also because the two
photons may transverse different organs along the LOR. Therefore it is necessary to know
the magnitude of this effect to obtain the real distribution of the tracer within the patient.

The solution of this problem relies on computed tomography imaging. In modern
scanners, PET is combined with CT, which delivers morphological and tissue properties
information. The CT image is converted into an attenuation map and used to correct the
intensities in the image [143], [96].

Thus, if the attenuation map is known from CT, the photons counts can be corrected
applying the attenuation factors provided by to all individual LOR counts in the
sinogram.

Scatter and random coincidences Ideally, the only events that should be recorded
are those associated with the actual annihilation of positrons, called true coincidence;
however, a series of fringe events which satisfy the coincidence detection criteria are still
considered as annihilation events, resulting in noise, artifacts, and degradation of spatial
resolution.

Most of the spurious coincidence events are classifiable in random and scatter coincidences

(figure [2.8)).

A scattered coincidence occurs when one or both photons undergo Compton scatter-
ing. The Compton interaction causes both energy loss and change of direction, resulting
in an incorrect location of annihilation, and ultimately in image degradation, background
noise increase and reduction in contrast.

Since both scattered and true coincidence rates vary linearly with the administered activ-
ity, the scatter-to-true ratio does not change with the activity. Also, this ratio does not
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change with the width of the time window, because scatter events arise from the same
annihilation event and the two similar photons arrive at the two detectors almost at the
same time. In 2-D acquisition, as previously said, the use of septa collimators removes
additional scattered events, whereas in 3-D acquisition, they become problematic. Typi-
cally, the scatter fraction ranges from 15% in 2-D mode to more than 40% in 3-D mode
in modern PET scanners. In practice, the correction for scatter is made by taking the
counts just outside the field of view, where no true coincidence counts are expected. The
outside counts contain both random and scatter events. After subtracting random counts,
the scatter counts are subtracted from the prompt counts across the field of view to give
true coincidence counts.

A random coincidence occurs when photons associated with two distinct annihilations
are seen by the detection system as coming from a common annihilation event. Random
events add to the background causing artifacts and loss of image contrast and are more
problematic in low-efficiency detectors and in 3-D acquisition modality.

The rate of random coincidences is given by

R = CiCyAt (2.4)

where At is the time window in nanoseconds for the system and where C and C5 are the
single count rates in counts/sec on each of the two detectors on the LOR. Random events
increase with the square of the administered activity whereas the true coincidence events
increase linearly with the administered activity.

Furthermore random coincidences are proportional to the time and energy window.

A common method of correcting for random events is to employ two coincidence
circuitsone with the standard time window of At ns and another with a delayed time
window (e.g. from 50 ns to 50 At ns) using the same energy window. The counts in the
standard time window include both the randoms plus trues, whereas the delayed time
window contains only the randoms. For a given source, the random events in both time
windows are the same within statistical variations. Thus, correction for random coinci
dences is made by subtracting the delayed window counts from the standard window
counts.

2D vs 3D acquisition Axially, PET scanners consist of several rings of detector el-
ements that may or may not be separated by thin annular septa of photon-absorptive
material that provide collimation. With collimation, all data is acquired in 2-dimensional
slices between the septa (2.9)).

The annular septa are usually made of tungsten and their thickness is of ~ 1mm while
their radial width is of about 7-10cm.

2D acquisition mode is characterized by the presence of septa which collimate photons,
while 3D mode works without any septa.

Detector pairs connected in coincidence in the same ring give the direct plane event.
In 2D mode most of the random and scattered 511 keV photons from outside the ring
are prevented by the septa to reach the detectors, leaving the true coincidences to be
recorded. However, considering direct planes coincidences only typically leads to a very
small sensitivity (i.e. low counts). Then, to improve sensitivity in 2-D acquisition, detector
pairs in two adjacent rings are connected in a coincidence circuit.

Coincidence events from a detector pair in this arrangement are detected also on the
so-called cross plane that falls midway between two adjacent detector rings. Direct plane
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Figure 2.9: Top: Septa allow to detect only photons which lie in accepted planes only. The septa
geometry, i.e. L, d and ¢ in figure, defines the accepted planes. Bottom (a): 2D data acquisition with the
septa placed between. Detectors connected in the same ring give direct plane events. Detectors connected
in adjacent rings give cross plane events. Bottom (b): When septa are removed, the 3-D data acquisition
takes place.

and cross plane coincidences are illustrated in figure[2.9] Moreover, instead of two adjacent
rings, such cross planes can be obtained from other nearby rings that are connected in
coincidence. The maximum acceptable ring difference is usually of £ 5 rings [132], i.e. a
maximum of 5 rings across can be interconnected in coincidence. Coincidences between
detectors in a connected n system-rings neighboring rings are summed or rebinned to
produce of 2n — 1 sinograms, (n from direct planes, n — 1 from cross planes). These
singorams may be reconstructed into images using standard 2D techniques, which will
be discussed in the following section. Obviously, increasing the number of cross planes
increases the sensitivity as well as increases number of spurious coincidences. 5

When a scanner is operated without collimation (i.e. no septa), coincidences from
all axial angles in the FOV will be accepted. Data storage, correction, and image re-
construction is considerably more complex in the 3D case. Modern PET scanners are
able to operate in either 2D-only or 3D-only mode, or in a 2D/3D mode for those with
retractable septa. Figure [2.9| shows the effect that collimation has on the acquisition
of coincidence counts: the septa block a fairly large number of true coincidences from
ever reaching the detector surface, decreasing sensitivity. However, they also reduce the
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noise: in 3D acquisition spurious coincidences fractions are 30%-40%, while in the 2D
acquisition are ~ 15% [132].In this context, of special importance are accidental counts
that partly originate from outside of the area between the detector surfaces (true FOV),
because without collimation, the scanner is sensitive to activity from a very large are

outside the true FOV [16], as illustrated in figure [2.10}

The  decision on  whether to
use 2D or fully 3D acquisitions
is still under debate, weighing the

reduction of background counts
against  the loss  of  sensitivity.
[135].

To summarize, 3D acquisition has a

i higher sensitivity than the 2D one. How-

ever 2D acquisition is simple to reconstruct

and less sensitive to spurious coincidences,

then image contrast and quality could be

Figure 2.10: Effect of septa removal on sensitivity better in 2D despite its lower sensitivity.

to coincidences which occur out of the true FOV. At the end of the story, there is no defini-

tive answer, as the 2D vs 3D choice can

be considered as choosing the best trade-off between noise and sensitivity, and this best
trade-off depends on the investigated issues and can not be defined in general.

3D Singles FOV

Dead Time For detection systems that record discrete events, such as particle and
nuclear detectors, the dead time is the time after each event during which the system is
not able to record another event [92].

Thus, all the events which occur during the dead time are not recorded by the detector.
The dead-time represents a serious problem at high count rates and varies with different
PET systems. The loss of coincidence events due to dead-time can be reduced by using
detectors with shorter scintillation decay time and faster electronics components in the
PET scanners. Dead time correction is made by empirical measurement of observed count
rates as a function of increasing concentrations of activity. From these data, the dead
time is calculated and a correction is applied to compensate for the dead time loss.

Detector Size One factor that greatly affects the spatial resolution is the intrinsic
resolution of the scintillation detectors used in the PET scanner. For multidetector PET
scanners, the intrinsic resolution R; is related to the detector size d. R; is normally given
by d/2 on the scanner axis at midposition between the two detectors and by d at the face
of either detector [132]. Thus it is best at the center of the FOV and deteriorates toward
the edge of the FOV. For a 6mm detector, the R; value is about 3mm at the center of the
FOV and about 6mm toward the edge of the FOV.

0.7

Positron range FEnergetic positrons travel a distance in tissue, losing most of their
energy. Then they annihilate and produce a couple of photons. As a consequence, the
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Figure 2.11: A pictorial representation of positron range (a) and non-collinearty (b)

site of e™ emission differs from the site of annihilation, as illustrated in figure a.

Figure 2.12: An illustration of radial
elongation. An off-center event (solid line)
strikes the back of the detector pair tan-
gentially. The dashed LOR definded by
the detector positions is a distance d away
from the actual location of the positron
annihlation

The distance traveled by the positron increases
with its energy, but decreases with the tissue den-
sity. Since the positrons are emitted with a spec-
trum of energy, the positron range is essentially an
effective range, which is given by the shortest dis-
tance from the emitting nucleus to the positron an-
nihilation line. The typical positron range in tissue
is of about 1 mm for ¥ F [83].

Non-collinearity Another factor of concern is
the non-collinearity that arises from the deviation
of the two annihilation photons from the exact 180
degrees position. That is, two 511keV photons are
not emitted at exactly 180 degrees after the anni-
hilation process (see figure a), because of some
small residual momentum of the positron at the end
of the positron range. The maximum deviation from
the direction is £0.25 degrees. Thus, the observed
LOR between the two detectors does not intersect
the point of annihilation, but is somewhat displaced
from it, as illustrated in figure b.

The contribution from non-collinearity worsens with

larger diameter of the ring, and it amounts to 1.8 to 2mm for currently available 80-cm

to 90-cm PET scanners.

Radial Elongation Radial elongation is caused by the photons penetrating into the

detector ring coupled with the fact

that the detector module does not determine the

interaction point, but the interaction crystal.
The off-centered 511 keV photons can strike tangentially at the backside of the detector
pair and form a coincidence event. As seen in figure the LOR defined by the detectors
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Figure 2.13: In both figure f(x,y) represent the tracer distribution. On the left: the blue line represent
the LOR Ly g, defined by ¢t and 6. We move on the LOR by varying the parameter s. On the right: the
projection Py(t) is obtained by integrating all the LORs defined by 6 (the red lines). We move on the
projection varying t, while choosing another 8 allow us to change projection.

(dashed line) is at a distance d away from the actual LOR (solid line), resulting in the
blurring of the image due to unknown depth of interaction in the detector material.

2.5 Image Reconstruction

2.5.1 The image reconstruction problem

The goal of image reconstruction step is to recover the radiotracer distribution starting
from the sinograms. The radiotracer distribution can be considered as a function F'(z,y, 2)
where x,y are the transaxial orthogonal coordinates and z is the axial coordinate with
respect to the PET detectors rings. The axis origin will be supposed to be located on the
symmetry axis of the rings.

As explained in the last section, there are two main ways to acquire images: the 2D and
the 3D acquisition methods, which respectively lead to a 2D and 3D image reconstruction
techniques. In this section I will discuss the most important 2D reconstruction methods
and then I will give a brief overview about the 3D reconstruction techniques.

For this purpose, we will generically consider a bi-dimensional transaxial slice of the
radiotracer distribution f(z,y) = F(z,y,2z = z), as illustrated in figure 2.13] Before
continuing, I want to point out that both the reconstructed images and sinograms are
not continuous object, as they are stored in digital array. However we will treat them
as if they were continuous object, and we will discretize them only when strictly needed
(typically in the iterative methods subsections).

Let now consider a generical LOR L;y. As illustrated in figure we notice that
Ly is uniquely defined by two coordinates (t,6), where ¢ € R and 6 € [0,27): (¢,0)
are coordinates for the space of all lines of R?. Furthermore, we notice that the versor
(cos,sinf) represents the direction of the distance OL;y, while (—sin®,cosf) is the
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versor of Ly g.
Therefore we can parameterize a given line L;y in terms of a real number s as follows:

Lig(s) = (z(s),y(s)) = (tcosd — ssinb, tsinf + scosf) VseR (2.5)

We notice that by varying ¢ we move across parallel LORs, while by fixing t = ¢, and
varying s we move along the specific LOR Ly, 4.

Radon Transform Given a function f(x,y) defined on R? with compact support, the
Radon transform R of the function f is defined as follows

(Rf)(t,0) = flz,y)ds = +OO f(tcos® — ssinf, tsinf + scosf)ds (2.6)

Lt,9 —0o0

where ¢t € R and 0 € [0,27). To better understand the meaning of Radon Transform, let
fix t =ty and 6 = 6. The Radon Transform R f(to, 0p) is the line integral of f(x,y) along
the line (g, 0y), thus it determines the total amount of tracer along the line (g, ) itself.
Furthermore, if we consider R f(¢,6y), we obtain the total amount of tracer (i.e. the pro-
jection of f(z,y)) along 6, direction (see figure [2.13). Therefore, we denote the projection
P of a function f along 6, as follows

(PFao(t) = (RF)(E, o) (2.7)

It is important to notice that (R f)(t, §) represents the continuous version of the sinogram,
which is the data we actually measure. We notice that (P f)g,(t) is the § = 6 sinogram
column, as illustrate in figure 2.6

At the end of the story, the 2D image reconstruction problem can be explicitly for-
malized for each slice as follows: given (Rf)(t,0), what is the function f(x,y) which
originates (R f)(t,0)?

There are two main ways to answer to this question: the analytical one, in which the
mathematical model is analytically inverted, and iterative one in which the tomographic
image is reconstructed using iterative statistical methods [143] [82].

2.5.2 Analytic reconstruction methods

Analytic methods provide a direct solution for the formation of the image, based on a
line-integral model and the Fourier theory. Although they have low requirements for
computational resources and they are relatively fast, the reconstructed images suffer from
high noise levels and streak artefacts. This is a result of the approximation that along a
projection line, the number of counts is linearly proportional to the integral of the tracer
density.

The goal of analytical methods is to find some type of inversion formula for the Radon
transform that will allow us to recover our starting function f. In this subsection we
discuss the Filter Back Projection (FBP) reconstruction, which are the widely used ana-
lytical reconstruction method. Before explaining FBP, it will be convenient to introduce
the central slice theorem and the back-projection operator.
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Central Slice Theorem The central slice theorem (also known as the projection slice
theorem) is the most important relationship in analytic image reconstruction. In this
paragraph we derive the two-dimensional version. To do that, we require the imaging
process be shift invariant, which allows the use of Fourier transforms. Shift-invariance
means that if we scan a shifted object, the projections are also shifted but are otherwise
identical to the projections of the unshifted object. Shift-invariance is a natural property
of two-dimensional imaging.

Central Slice Theorem
Let denote with 5 and F the 2-dimensional and 1-dimensional Fourier transform operator
respectively. For a function f defined on R? the central slice theorem states that

(Fof )(K cos 0, K sinf) = {F(Rf)}(K, ) (2.8)
for all K € R and 6 € [0, 27).

Proof
We first recall that the two dimensional Fourier transform of f(z,y) is given by

+o0 +oo
(Fof ) (ko ) = / F (2, y)e ) dady (2.9)

The generical point (k,, k,) in the spatial frequencies domain can be expressed in polar
coordinates (k, = K cosf, k, = K sinf) . Therefore we obtain

+o0o +o0o
(Fof (K cosf, K sinf) = / fla,y)e K weosbtysing) go. gy, (2.10)

We perform the following coordinates change suggested from ([2.5)) :
x(s,t) =tcosl — ssinf (2.11)
y(s,t) =tsinf + scosb (2.12)

from which we have t = xzcosf + ysinf. We notice that the determinant of the Jacobian
is 1, thus dzdy = dsdt. Thus (2.9) became

+oo +oo
(Fof ) (K cosf, Ksinf) = / f(tcos® — ssinf,tsinf + scosf)e *dsdt (2.13)

Because e %! has no dependence on s, we are able to rearrange the above integral as

follows:
(

(Fof)(K cos®, K sinf) = /

—00 —00

—+00 —+00

f(tcos® — ssinf, tsinf + scos 9)ds> e gt

(2.14)
where the inner integral is the Radon transform ([2.6)). Therefore, we finally obtain
+0o0

(Fof)(K cosf, K sinf) = Rf(t, e Fidt = {FRfYK, ) (2.15)

—00

and then the theorem is proofed.
We shown that the bi-dimensional Fourier transform of f evaluated along a given

direction is equivalent to the Fourier transform of the projection of f into the same
direction. A pictorial representation of central slice theorem is given in figure [2.14]
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Figure 2.14: A pictorial representation of the central slice theorem

Backprojection In this paragraph we introduce the backprojection operator. This is an
essential step in image reconstruction. Conceptually the backprojection can be described
as placing a value of Rf(t,6) back into an image array along the appropriate LOR Ly,
but because the knowledge of where the values came from was lost in the integration with
respect to s (see , the best we can do is place a constant value given by Rf(¢,0)
along each LOR L.

This can be done using the projection

f(tcost — ssinf,tsinf + scos) = (Pof)(t) (2.16)

We notice that (2.16]) gives a function f made up of constant values along the chosen 6
direction, or saying it in other words, which is constant along each LOR (i.e. with respect
to s).

Let now consider all the projections contributions: we integrate respect to 6 the equa-
tion (|2.16]). This leads to introduce the backprojection operator B which maps functions
from image space to projection space. Given a function h(t,6) defined in the projection
space, we define the backprojection Bh at a point (z,y) of the image space as

(Bh)(z,y) = l/ h(z cos@ + ysin6, 0)dl (2.17)
0

T

where we used the relation xcosf + ysinf = t obtained from the inversion of (2.11)).
Now applying the backprojection operator to equation (2.16)) we obtain

(BRF)(x,y) = %/OW(RM:C cos 0 + ysin 0, 0)d0 (2.18)

where (BRf)(z,y) is a function in the image space.
The function (BRf)(x,y) is the so called simple backprojected (SB) image reconstructed.

As is clear from (2.18)), the backprojection operator is not the inverse operator of
Radon transform. Thus, even if we use many projections to recover the original image,
we get a result which is an approximation of the original f and which is really very poor
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Figure 2.15: Simple Backprojection of a square in 5, 25, 100, and 1000 directions (courtesy of [20]).

about quality and not very similar to the original image. In particular the SB has the
problem of star pattern artifacts (as you can see in figure , which is a direct conse-
quences of assigning a constant value on each LOR (see equation ([2.16])) and summing
up these constant values .

Filter Backprojection In this paragraph we go beyond the SB and we discuss the
Filter Backprojection (FBP) method, which allows to explicitly inverse the Radon trans-
form in order to exactly recover the original f. FBP is an based on SB theory and gives
better result than SB, however even if an inversion formula for the Radon transform exist,
recovering the original f is not possible, as will be explained below.

We will now inverse the radon transform. Let consider f(z,y): we can write the
following identity

1 +oo +oo )
f(w,y)z(fg‘lfz)f(x,y)zﬁ/ / (Fof ) (ky, ky)e@ratvR0) dke_dk, (2.19)

where F, ! is the bi-dimensional inverse transform. We now change the integration vari-
ables from Cartesian (k,, k,) to polar coordinates (K, ), where k, = K cosf and k, =
Ksinf, with K € R and 6 € [0,7]. This gives the Jacobian determinant |detJ| = |K].

Thus the (2.19) became
1 s +oo ) )
flz,y) = F/ / (Fof ) (K cos B, K sin @) (@ cosb+ysind)| j0| 11 g9 (2.20)
™ Jo —00
Applying the central slice theorem ([2.8]) to the integrand function, we obtain
1 s +oo ) )
flx,y) = 4—2/ / (FR)(K, §)e ' costtusin®)| [1q ¢ g (2.21)
m 0 —00
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We notice that the inner integral is equal to the 1-dimensional Fourier inverse transform:

+o00
/ (FRF)(K,0)e K eosttvsind)| K |dKt = (2.22)

oo

— orF1 (\K\(]—"Rf)(K, 9)) (zcos 0 + ysin 6, 0)

Inserting the (2.22)) into the (2.21]) we obtain

fla,y) = % /Oﬂ F (yK|(fRf)(K, 9)) (cosf + ysin 6, 0)do (2.23)

Using ([2.17)), the integral can be rewrite as a backprojection

f(r.9) = 3 B{F (1KIFRF) }(2.0) (2.24)

where the dependence from coordinate K, 6 has not been made explicit for the sake of
simplicity.

The important factor in this formula is the | K| multiplier that occurs between the Fourier
transform and its inverse. This additional |K| can be interpreted as a filter (K is in the
Fourier space) we must apply to the projected data in the Fourier domain (i.e. to FRf)
in order to recover the original image f. This required filtering operation gives its name
to the filtered backprojection formula.

However the formula is clearly awkward to handle. Recalling the convolution
theorem

F(fxg)=F(f) Flg) (2.25)
and rewriting |K| as FF !|K| in (2.24) we obtain an handful version of the analytical

inversion formula
Fle.) = 5B{FED « (R} ,) (2.26)

The ideal reconstruction requires that the projection data to be filtered with by a ramp
filter | K| before backprojecting, as show in ([2.24)) (or in physical coordinates, to be con-
voluted with F~!|K| as shown in ([2.26])).

Such a ramp filter in practice is impossible to build as it has infinite in length. More-
over, even if it were possible to build such a filter, it would not really be convenient: in
real images noise is always present and an ideal ramp filter would amplify high frequency
noise. In practice, a variety of different filters may be used, such as the ramp band limited
filter, the Hanning filter and the Butterworth filter [163 159, 99, 17]. These filters all
have trade-offs among resolution and the presence of artifacts. Once the projections have
been filtered, they are back-projected as described above. Exapmles of PET images FBP
reconstructed are given in figure [2.16|

2.5.3 Iterative reconstruction methods

Iterative methods estimate a series of tentative radioactivity distributions and compares
the respective projections with those actually acquired, refining the former at each iter-
ation until correspondence is satisfactory [160]. While computationally more expensive,
it allows to modulate and account for the statistical fluctuations associated with noise,
both on the reconstructed images and on the raw data side [78].
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Figure 2.16: On the left: convolution kernels corresponding to a generic rectangular filter window (top)
and to a generic Hamming filter window (bottom).
On the right: A transaxial slice of an PET brain scan reconstructed using FBP with these two windows.

(Courtesy of [45]).

The tracer distribution we aim to re-
cover is a continuous function in the spa-
tial domain, while the measured data
acquired from the PET scanner are dis-
pixel f; cretized among several sinogram bins.
For this reason, in reality the function
w4 we aim to recover is the discrete version
/‘/ of the tracer distribution. Focusing on

a z = constant slice, the tracer distri-
discretization bution is given by f(x,y). Therefore we
of object . . .

approximate the continuous f choosing
a n-by-n grid and assuming that f(x,y)
takes constant values on each grid ele-
ment, also called pixel. As the discrete

) o _ version of f(x,y) is made up of N = n?
Figure 2.17: Pictorial - representation  of elements, it will be considered as a vector
(2.27) (courtesy of [T61]) ’

f=(fi,.... fn)"

projection p;

H ij

The grid dimension should be appropriate: too small N will lead to poor spatial
resolution (i.e. an ability to resolve two adjacent high-contrast objects), while too large
N will lead to high computational costs.

Note that the projection space is also discrete, with the projection data represented
by the column vector p. It is worth to remark that p is a vectorial rearrangement of a
sinogram, as sinogram is matrix: the element p; represents all the counts detected on the
i-th LOR. The elements of p are also called projection bins.
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Figure 2.19: Flowchart of a generic iterative reconstruction algorithm.

System matrix All the iterative meth-
ods is based on a system matrix (also
called projection forward operator). The

system matrix is a linear operator H €
M(M, N, R) which map elements of the im-

LOR. age space into elements of the projection
T space through the following relation:

P Hf 2.27

\\““‘-\.I;DRE p= (2.27)

The quality of the reconstructed images
directly depends on the accuracy of the sys-
tem matrix H and therefore accurate mod-
elling of the photon detection process is im-
Figure 2.18: A simple example of ray-tracing perative. An inaccurate projection opera-
for three lines of response (LOR) on a small 2= ¢ 110 result in wrong assignment of the
dimensional image grid. . . .

acquired data in the reconstructed images,
as well as in the introduction of noise and artifacts.
H describes the imaging process, and can represent attenuation and any linear blurring
mechanisms. Each element of H denoted by H;; represents the mean contribution of the
j-th pixel in the image space to the ¢-th bin in the projection space.
The matrix elements can be defined so that a projection bin receives contributions
only from pixels that are intersected by a given line, while the contributions of pixels that
do not intersect the line are set to zero, as illustrated in figure [2.18]

LOR,

Iterative methods working principle Here we outline the common features of most
iterative reconstruction algorithms and discuss some of their general properties. Let
m € RM the measured data in the projection space (i.e. the sinogram).

Most iterative reconstruction algorithms fit the general model shown in figure [2.19
First of all, the process begin with some initial estimate f(©) of the pixel intensity values
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in the image space (typically £f(°) constant).

Let now consider the generic n-th step of an iterative methods.
e A projection step is applied to the current image estimate (™

e Then we obtain a set of projection values p™ that would be expected if £ were
the true image

e The predicted projections p™ are then compared with the actual measured data m
to create a set of projection-space error values e](,n)

e The error e,(jn) are mapped back to the image space through a back-projection op-

eration to produce image-space error values egc")

estimate, which becomes the new estimate f(*+1).

that are used to update the image

This process just described is repeated again and again until the iteration stops automat-
ically or is terminated by the user. Each of these repetitions is called an iteration. At
the conclusion of the process, the current image estimate is considered to be the final so-
lution. A schematic representation of the generic iterative algorithm is given in figure[2.19]

The differences between iterative reconstruction algorithms are due to the details
of forward-projection, comparison, back-projection, and update steps. Note that direct
reconstruction methods such as FBP use only the backprojection portion of the loop, so
that there is no feedback about whether the image estimate, when projected, is consistent
with the measured data. The power of iterative methods lies in the use of this feedback
loop to refine the reconstructed image.

MLEM Maximum Likelihood Expectation Maximization (MLEM) [47, 28] is one of the
most important algorithms, not so much because of its use in practice (it is computation-
ally inefficient), but because it lays the foundations for faster algorithms such as OSEM
(Order Subset Expectation Maximization).

The basic idea of MLEM is to maximize a likelihood function at each step in order to
obtain the best estimation of the tracer distribution. Maximum likelihood estimators are
advantageous because they offer unbiased, minimum variance estimates as the number of
measurements increases towards infinity. This means that as the number of measurements
or projections becomes large the expected value of the image estimate approaches the true
image [161].

MLEM is based on the fact that the process of both radioactive disintegration and pho-
ton detection are described by the Poisson distribution [82]. Thus, the measured data m
in projection space (i.e. the sinogram) can be considered as a possible realization of a
stochastic Poissonian process. According to that, using the system matrix in , given
a tracer distribution f we expect to obtain the following projected data p; for each bin

pi=Y_ Hijfj+n; (2.28)
E(m;) = pi (2.29)

where n; models the noise contribution (e.g. scatter and random coincidences) to the i-th
bin and where E is the expected value. As explained by ([2.29)), we are assuming that the
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photon counts m; measured in the i-th bin is a realization of a stochastic process with
expected value p; defined by the system matrix ([2.28)).

Therefore, assuming that each m; is an independent identically distributed Poissonian
variable, the probability to observe the measured data m, given the unknown tracer
distribution f is given by

(2.30)

where the choice of indicating the probability with £ is due to the fact that (2.30)) is
precisely the likelihood function.

The maximum likelihood expectation method consists in finding the best tracer dis-
tribution f* for which the measured data would have had the greatest likelihood, so the
problem can be mathematically formulated as

f* = arg max L(f|m) (2.31)
£

Estimation of the ML solution suffers from increased variance (i.e. unstable solutions)
especially for low-counts images. This often leads to the use of suitable regularization
procedures, which restrict the acceptable solutions, ideally by exploiting prior knowledge
of the unknown tracer distribution f. This prior knowledge can be either based on
anatomical information acquired from other modalities (e.g. CT or MRI) [95, [65] and

the regularization can be practically achieved by adding a term to the objective function
L(ml]|f).

Estimation of the maximum likelihood (ML) solution is achieved by solving the (2.31).
In particular, MLEM is based on finding the best solution f* through K iterations (steps):
for each step the objective function (i.e. the likelihood) increases until a fixed point is
reached. More in detail, the MLEM solution of (neglecting noise n;) gives the

iterative equation
(k+1)
fj H E U( fk)> (2.32)

where f;k) is value of the j-th pixel of the image at the k-th iteration. The EM algorithm
converges monotonically to the solution f* | thus at each iteration the updated image will
increase the value of the likelihood function.

OSEM The MLEM algorithm is a simple algorithm, with attractive properties, but
unfortunately it has a very slow convergence rate. Since MLEM requires a projection and
a rear projection at each iteration, the total processing time is considerably greater than
that required by any analytical algorithm. To improve on this, current standards employ
the ordered-subset version (OSEM) of the MLEM. The OSEM algorithm has become a
major workhorse in todays scanner [167].

In MLEM the comparison is made between estimated and measured projections each
iteration: this requires considerable computation as the projections have to be calculated
at typically 64 or 128 angles, calculation of each projection taking at least as long as a
complete FBP reconstruction.
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OSEM method is a slight modification
of MLEM method: the measured data
are divided into several disjoint partitions,
called subsets, so that each partition con-
tains an equal integer number of projection
angles (see figure [2.20)).

Using OSEM the comparison and up-
v date steps are based on only a small num-

Subset 1 Subset 2 ber of the projections each iteration, pro-
tﬁ‘;‘;‘;‘ ?;‘;ET’;L‘;’ t;;‘:;‘f;‘j, gressively using other projections in each
© (@ further iteration.

For this reason, OSEM ensure a rapid
convergence of the algorithm [82].

Both MLEM and OSEM algorithms
produce high variance, especially for large
iteration numbers.

The best absolute choice of subsets and it-
erations number does not exist, as they are
Subset 3 Subset 4 context and problem dependent. However,
Next, these And, 50 on unti we can make some general considerations.
Figure 2.20: The process of using subset updates The image quality initially improves as the
in a reconstruction algorithm. (a) Subset 1: Apply number of iterations increases. However,
ML-EM for these four views. (b) Subset 2: Then if the iterations continue after a certain
apply the algorithm .for these four. (c) Subset 3: point, the resulting images show high vari-
Then apply the algorithm for these four. (d) Subset . . . .
4: Continue until all data are used. ance. [10’ 130]' This variance, which is
demonstrated as salt-and-pepper noise in
the reconstructed images, can be alleviated either by premature termination of the re-
construction process (lower iteration) or by post-smoothing the images using a Guassian
kernel [I2]. An example Post-smoothing recostruction is provided in figure 2.21]
With regard to the number of subsets, increasing the number of subsets resulted in in-
creased noise as well as subtle shape artifacts in these images, especially for the highest
numbers of subsets [139, [106].
An example of image reconstruction using different number of iterations and subsets is
provided in figure [2.21

(a) (b)

2.5.4 3D reconstruction methods: an overview

Reconstruction of images from 3-D data is complicated by a very huge volume of data.
However, both iterative and analytical methods discussed in the previous sections have
their 3-D counterpart [160].

The filtered backprojection can be applied to 3-D image reconstruction with some ma-
nipulations which basically consist in considering the 3-D data sinograms as consisting of
a set of 2-D parallel projections, and the FBP is applied to these projections.

The iteration methods can also be generally applied to the 3-D data. However, the com-
plexity, large volume, and incomplete sampling of the data due to the finite axial length
of the scanner are some of the factors that limit the use of the FBP and iterative methods
directly in the fully 3-D reconstruction.

To circumvent these difficulties, a modified method of handling 3-D data is commonly
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Figure 2.21: From left to right, image reconstruction using 1,4,8,16 iterations. From top to bottom,
image reconstruction using 1,4,16 subsets. The bottom images is a 16 subsets gaussian post filtered
reconstruction. We notice that increasing subsets allows the algorithm to converge more quickly.

used, which is described below.

A method of 3-D reconstruction involves the rebinning of the 3-D acquisition data into a
set of 2-D equivalent projections. Rebinning is achieved by assigning axially tilted LORs
to transaxial planes intersecting them at their axial midpoints. This is equivalent to col-
lecting data in a multiring scanner in 2-D mode, and is called the single-slice rebinning
algorithm (SSRB). This method works well along the central axis of the scanner, but
steadily becomes worse with increasing radial distance. In another method, called the
Fourier rebinning (FORE) algorithm, rebinning is performed by applying the 2-D Fourier
method to each oblique sinogram in the frequency domain. This method is more accurate
than the SSRB method because of the more accurate estimate of the source axial location.
After rebinning of 3-D data into 2-D data sets, the FBP or iterative method is applied.

2.6 Resolution modeling

Resolution can be loosely defined as the level of reproduction of spatial detail in the
imaging system. Many factors discussed in the section [2.4.3] contribute to the effective
spatial resolution of a PET scanner: detectors size, positron range, non-collinearity, radial
elongation and image reconstruction method are recognized as factors which affect PET
spatial resolution. Furthermore, patients motion is to be considered as a degrading factor
for spatial resolution. Depending on the PET scanner properties, on the reconstruction
method and on the location within the ring, the PET spatial resolution typically goes
from 2.5 mm to 5 mm [107, 87, [44] [6§].

The effective spatial resolution is often characterized through the point spread function
(PSF). Imagine a single point source is placed in the system and reconstructed into an
image: the reconstructed image is a spread out version of the point. In PET, the PSF
is frequently characterized by the transaxial and axial Full Width at Half Maximum
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Figure 2.23: Transaxial (top, middle) and sagittal (bottom) images reconstructed with no PSF and
no post-processing filter (left), no PSF post-filtered with a FWHM = 3 mm Gaussian filter (center) and
PSF (right). Courtesy of [126]

(FWHM) term, which describes the width at half of the maximum value of the PSF of a
Gaussian shaped function fitted to the PSF (in the transaxial or axial direction).

However, the real PSF is not ac-

tually purely Gaussian: Gaussian

@ ’ () . PSF do not model the presence of
. é » : . . varying inter-crystal blurring that is
. n ' : known to lead to the parallax ef-
rFe W TN e e fect, the degradation of resolution as
ra " r o one moves away from the center of

P . ’ . the field of view. [124]. Generaliza-

. . tions of Gaussian PSF can be achieved

by wused space-varying blurring kernels

Figure 2.22: Transverse sections of point source . . .
. ) i (which can be anistropic and asymmet-
images reconstructed without (a) and with (b) reso- i

ric) in order to to better model the

lution modeling. Courtesy of [124]
PSF.

Resolution model, which consists in characterizing the PSF, can be incorporate within
the iterative reconstruction algorithm in the system matrix. As including PSF in re-
construction algorithm provides improvements in contrast recovery, resolution and quan-
tification, particularly for small regions, the PSF modeling issue has received increased
attention over the recent years [124]. Several methods have been proposed to estimate
the PSF, which can be generally divided into three categories: Monte Carlo simulations
[52], analytical modelization [123], [144] and experimental measurements [9] [115].

Including PSF model in reconstruction step contributes to recover the symmetry of
the profiles, to obtain a more uniform resolution across the reconstruction FOV and to
recover similar peak heights across the FOV [126].

Even though resolution modeling methods are very commonly seen to lead to im-
proved resolution, at the same time it is important to notice that resolution modeling can
significantly modify the image noise structure [124].
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2.7 DICOM files and NIfTI images

In this chapter we discussed how PET images are reconstructed from sinograms. Recon-
structed images are typically saved in a digital format as DICOM (Digital Imaging and
Communications in Medicine) files [24], generally with one DICOM file per transaxial
image section (also called slice).

In this section I will briefly describe the content of a DICOM file, then I will show
how to obtain the final 3-D tracer distribution patient’s image in a useful format.

A DICOM file consists of a header and an image data sets, all packed into a single
file. The image data sets consists of voxel intensities written in the form of 2-byte integers
[T16]. The header contains metadata which provide important information such as matrix
dimensions, slice thickness, spacing between slices, and the modality used to create the

DICOM file.

Spacing between slices is a parameter (expressed in mm) that gives the distance
between two adjacent slices.

The matrix dimension is the n-byn grid used to reconstruct each sinogram from the
projection space to the image space.
The slice thickness is a parameter that can be selected and represent the thickness of
each slice in mm. Increasing the slice thickness leads to decreasing resolution, as slice
thickness refers to the axial resolution of the scan.

Ideally a complete DICOM file should contain detailed information about the acquisi-
tion process, such as 2D or 3D acquisition, acquisition type (e.g. iterative or analitycal),
acquisition details (e.g. number subsets and iterations) and details about the scanner
(manufacturer, model, detector properties etc...).

However, only some of this information is reported in practice: sometimes we deal with
more detailed files, sometimes less.

Furthermore DICOM files usually contain patient’s demographic information, such as
age and sex, and eh PET examination date.

Typically the 3D images are created by converting the DICOM files into the NIfTT
(Neuroimaging Informatics Technology Initiative) format [55]. NIfTT images obtained
from DICOM files provide 3D representations of the brain are called raw images.

This representation is actually a 3D n-by-n-by-p matrix whose elements are called
vozels and whose dimensions n and p are respectively the matrix dimension and the
number of slice.

This 3D n-by-n-by-p grid can be considered as a discrete space in which the raw image
is embedded, and this called the native space.
The conversion from DICOM files to NIfTT images is achieved using dedicated software,
such as dem2niil
3D NIfTT images can be visualized using appropriate tools (such as MR[cronED, that

Zhttps://people.cas.sc.edu/rorden /mricron/dcm2nii.html
3https://www.nitrc.org/projects/mricron
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allows to visualize different 3D image’s section image by varying the coordinates.

An example of a raw PET image visu-
alized with MRIcron can be found in figure
2.24].

X (143~ Y (05 |+|Z (54 |=||ToFit 2| &

Background = |9 57.3169 7 |1690.847 . | Grayscale :EI:I

2.8 Performance charac-
teristics of PET scanners
and image quality mea-
sures

A major goal of PET images acquisition is
to obtain a good quality and detailed image
of an object by the PET scanner, and so it
Figure 2.24: Example of a raw PET image in fflepends on hOW,WeH the scannfer' perfor.ms
NIfTT format visualized using MRIcron. Sagittal image formation. The definition of im-

(top left), coronal (top right) and axial (bottom) sec- age quality in nuclear medicine (and hence
tions are showed for a given triplet of matrix coordi- that of "best” image) is still rather open.

nate. An objective comparison of image quality
is often difficult and can only be performed
in the context of a specific application, or
task.

Phantom studies Before going on, it is

important to point out the following fact:
almost all the techniques currently used in literature to asses images quality and scanners
performance are based on phantom studies. Phantoms are objects built for the purpose of
calibrating and assessing performance of PET scanners and acquisition protocols. Phan-
toms have a known geometry and they typically consist of hot regions and cold regions:
the former are usually of different sizes and filled with a precise amount of radiotracer,
while the latter is filled of non-radioactive fluid (e.g. water) to simulating human tissue
not involved in radiotracer uptake. An illustration of a typical phantom is provided in
figure [2.25]
Since the phantom geometry is always known, the exact radiotracer distribution is avail-
able. Therefore, estimated and actual tracer distributions can be compared. In this
context, one of the main criteria for assessing image quality relies on the ability to best
distinguish between hot and cold regions. Phantoms must comply with the National
Electrical Manufacturers Association (NEMA) standards[46].

Image quality measures In the context of phantom studies, image quality can be
assessed via many measures extracted from the acquired phantom images, which I briefly
describe below.

Measures usually used in assessing image quality are based on ratio between true

coincidences and spurious coincidences as well as on signal to noise ratio (SNR) and
contrast detection (CNR).
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One of the most used measure to esti-
mate ratio between true coincidences and
spurious coincidences is the noise equiva-
lent count rate (NECR) which essentially
describes the relative numbers of trues,
scatters and randoms coincidences. NECR

is defined as follows [132]

T2
NECR = TIRTS (2.33)
where T, R, and S are the true, random, and scatter coincidence count rates, respectively.
We remind that scatter and random events can be measured as explained in section2.4.3|
The true events 7" are determined by subtracting scatter S and random R events from
all the prompt events. From the knowledge of 7', R and S, the NECR is calculated by
. Image noise can be minimized by maximizing NECR.

22mm 17 mm

Figure 2.25: A typical phantom

The CNR measures are based on comparing intensity values in phantom hot regions
against the background (i.e. phantom cold regions). Well contrasted images have the
ability to better detect the difference between hot and cold regions.

SNR measurements (extracted from images) are based on estimation of intensity and
variance of uniform regions (hot or cold).

SNR and CNR can be defined in different ways in the imaging framework, however
the most used definition are the following

SNR="1E (2.34)
0B
CONR = M~ HB (2.35)
0B

where g is the mean, o is the variance, and the subscripts B and H are referred to the
background (i.e. cold region) and to the hot region respectively.

Many studies compare image quality of different PET scanner and/or different image
reconstruction methods acquiring phantom images and assessing quality using NECR

measure as well as SNR and CNR measures [81], [111], 46, 168, 129].

2.9 Final considerations

In this chapter we have shown how PET scan acquisition and reconstruction is a complex
issue which involves many factors: some of them can be directly controlled (e.g. the
choice of a reconstruction method and the setting of its parameters (sections and
, the setting of time and energy windows in counts detection), while others that you
can’t control directly (e.g. factors that come into play in the acquisition phase discussed
in section , are typically taken into account in a more or less accurate way.

We have also discuss technologies that considerably improve the quality of the re-

constructed images, such as the use of TOF in the detection of annihilation and PSF
in image reconstruction. TOF and PSF often play a predominant role in image quality
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Figure 2.26: Graphic which shows the typical trend of true, scatter and random coincidences as well as
of NECR and Scatter fraction. Scatter fraction represent the ratio between scatter and true coincidences

(courtesy of [71] ).

determination [0}, 111, 39, [7) 22].

The great variability in the steps from PET scan to reconstructed ready-to-study
image is a source of great variability about perceived image quality.

In the framework of quantitative imaging (see section , image quality plays a role
which can not be ignored by researchers, as image quality could influence the results of

the analysis performed on PET images.

We have also shown that image quality is currently assessed using ad-hoc phantom
studies, as briefly discussed in section [2.8]

The relation between image quality and quantitative imaging analysis is the main
issue of the PET harmonization.

PET data harmonization is the main issue of my thesis work and it will be detailed
discusses in chapters [5] and [6]
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Chapter 3

Methods

3.1 Machine Learning overview

Machine learning (ML) is the study of computer algorithms that improve automatically
through experience and by the use of data. The goal of ML is learn from data in order
to finds generalizable predictive patterns: a well-constructed ML algorithm adapts well
to the data from which it has learned, but at the same time has the ability to make
predictions as correct as possible on new data.

The ML algorithms can be roughly categorized as either supervised or unsupervised.
In supervised learning, the goal is to predict the value of an outcome measure based on
a number of input measures; in unsupervised learning, there is no outcome measure, and
the goal is to describe the associations and patterns among a set of input measures [18].
Examples of supervised learning algorithms are given by regression and classification
problems, while examples of unsupervised learning are clustering and principal component
analysis.

Machine Learning

Unlabelled data Labelled data
Goal is to wexplores Goal is to epredicty

Unsupervised learning Supervised learning

Find subgroups Reduced dimensionality Mumerical label Categorical label

Dimensionaiky Regression
reduction g

Figure 3.1: Taxonomy and overview of most used machine learning algorithms. Courtesy of [18].

Classification
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3.1.1 Supervised Learning

Here we give a general review of how a supervised learning algorithm works.

Suppose we have a dataset D made of ordered couples of data
D=XxY ={(z1,y1),--.,(xNn,yn)}, where X = {z1,..., 2y} is the input set and where
Y = {y1,...,yn} the output set. The input set X belong to an input space X, which
typically is R*¥. The output set Y belong to an output space Y.
The output space usually can be

e a subset of R. This represents a regression problem

e a finite set of element {l;,...,[,} where the [; are called labels. This represents a
classification problem

Furthermore, we have to postulate the existence of a probability model for the data.
The model should take into account the possible uncertainty in the task and in the data.
We assume that exist a fixed unknown distribution p(zx, y) according to which the data are
identically and independently sampled. The distribution p(z,y) models different sources
of uncertainty and it can be factorized as p(x,y) = px(x)p(y|z); where the conditioned
probability p(y|x) can be seen as a form of noise in the output. For each input x there
is a distribution of possible outputs p(y|x), while the marginal distribution px (z) models
uncertainty in the sampling of the input points

Assuming a p(y|x) distribution lead us to suppose the existence of a unknown target
function f* which relates the whole input and output space

ff: X —Y (3.1)

In regression problems Y C Y, while in classification problems ¥ = Y. Furthermore
in regression problem we typically suppose the existence of a non-deterministic relation
described as follows

y=[f"(z)+e€ (3-2)
where y € Y and € X and where € is a noise term which represents the non-deterministic
part of the relation. We suppose € ~ N (0, o).

The goal of supervised ML is to obtain the best estimate of the function f* using the
elements of D, i.e. the input-output couples (z;,y;) € D.
We will denote the estimator of f*(x) by fp(z). If there are no ambiguities, we will call
fo(x) simply f.
We point out that we are looking for to a general relation which holds for all the possible
new incoming data. As new data are not in D, the we are looking for must not be the
best estimate relative to our dataset D because such a fp would not lead to generalize
for new data. Thus, the main point is the following: the fp we are looking for must be
a compromise between adapting well to data in D and at the same time predicting the
output of new data as well as possible.

At this point we need to formalize the concept of best estimate of f*. We need to
fix a loss function. Let consider a couple (x,y) € D, we define the loss function L as a
point-wise error measure

L:Y xY 35 (y, fo(z)) — L(y, fo(x)) € [0,+00) (3.3)
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The loss function represents the cost of predicting fp(z) instead of the correct output y.
The loss function for regression problem is usually the quadratic loss function. Consid-
ering a classification problem a common choice for the loss function is the zero-one loss
function, where all misclassifications are charged a single unit. Many other choices are
possible for L, both in classification and in regression problems.

We introduce now the expected loss (also called cost function):

ﬁh%z&ﬂﬂ%b@Mz/ﬂ%wﬂwhmMMy (3.5)

The £(f) can not be computed as p(z,y) is unknown. However, given n data, we
can estimate £(f) using an estimator. The best estimator for the expected value is the
arithmetical mean. Thus the estimator £ of £ is given by

E(fo) = 5 3 Ly folr) (3.6

where (z;,y;) are couples of D. If L is quadratic, the estimated cost function given by
equation (3.6)) became the mean square error

n

4 1

E=MSE = — i — fo(z))? 3.7

2 (0= fol) 3.7

An important point in ML is estimating the ability prediction of an algorithm. But if we

minimize £(f) using all the dataset D, the generalization ability can not be estimated,
as we have no new data to predict in order to test the model.

To overcome this problem, ML provide the following solution: the whole dataset D is
divided into two disjoint subsets: a training set 7 and a test set S.
We train the algorithm on the training set and we test the ability to generalize on the
test set.
What does train an algorithm mean? Training a given algorithm means optimize the free
parameters of the problem over the training set, i.e. finding the parameters which min-
imize the estimated expected loss given by equation evaluated for data € T set only .

This allows to define the training error and the test error. The training error is the
average error that results from using a ML method to predict the response on the training
set. Training error can be computed using for the data in 7.

The test error is the average error that results from using a ML method to predict the
response on new observations, i.e. observations not used in training the algorithm.

We are interested in test error estimation, as it provides an estimate of the prediction’s
ability of an algorithm.

As we just defined training and test sets, we will now introduce the concepts of
overfitting, underfitting, capacity of a model, regularization and hyperparameters.
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Overfitting and Underfitting If an algorithm works well on the training set but fails
to generalize, we say it is overfitting. An overfitted model contains more parameters than
can be justified by the data. The essence of overfitting is to have unknowingly extracted
some of the residual variation (i.e. the noise) as if that variation represented underlying
model structure.

In other words, the model remembers a huge number of examples instead of learning to
notice features.

The counterpart of overfitting is the underfitting. Underfitting occurs when a sta-
tistical model cannot adequately capture the underlying structure of the data. An
under-fitted model is a model where some parameters or terms that would appear in
a correctly specified model are missing. Under-fitting would occur, for example, when
fitting a linear model to non-linear data. Such a model will tend to have poor predictive
performance both on the dataset and on new incoming data.

Model capacity We can control whether a model is more likely to overfit or underfit
by altering its capacity. Informally, a models capacity is its ability to fit a wide variety
of functions [40]. Models with low capacity may struggle to fit the data of the dataset.
Models with high capacity can overt by memorizing properties of the training set that do
not serve them well on the test set.

One way to control the capacity of a learning algorithm is by choosing its hypothesis
space, i.e. the set of functions that the learning algorithm is allowed to select as being
the solution.

As an example, let consider the following polynomial regression

y=op+ a1z + ari+... +ayzV (3.8)

The model capacity is controlled through the polynomial degree N. Increasing N the
model increase its capacity, as the number of parameters (also called degrees of freedom)
increases, leading to a lower training error. Adding too many degrees of freedom leads
to overfitting. The extreme overfitting scenario occurs when the degrees of freedom N is
greater or equal than the number of data: data are exactly fitted and the training error
goes to zero. Obviously the generalization error will be very large. On the contrary, using
a polynomial of too low a degree with respect to the complexity of the problem will lead
to underfitting: for example, fitting an intrinsically quadratic relation with a polynomial
of degree 1 will certainly lead to underfitting.

To summarize, ML algorithms will generally perform best when their capacity is ap-
propriate for the true complexity of the problem and the amount of available training
data. Models with insufficient capacity are unable to solve complex tasks (underfitting).
Models with high capacity can solve complex tasks, but when their capacity is higher
than needed to solve the present task, they may overfit. An illustration of overfitting,
underfitting and model capacity can be found in figure [3.2]

Regularization Finding the optimal capacity of a model is not only matter of selection
of a suitable set of functions: adding or removing functions from the hypothesis space of
solutions is not the only way to control capacity.
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Figure 3.2: Top figure: typical trends of training error and generalization error versus model complexity.
Bias and variance typical trends are furthermore provided. The left/right gray regions are the underfit-
ting/overfitting regions, while the white one represent the region of good choices for model complexity.
Bottom figure: Bidimensional representation of underfitting, good fitting and overfitting.

The behavior of our algorithm is strongly affected not just by how large we make the
set of functions allowed in its hypothesis space, but also by the specific identity of those
functions.

Fixed a set of functions, an algorithm can be trained to prefer a solution over another
within the functions set. This means that both functions are eligible, but one is preferred.
The unpreferred solution will be chosen only if it fits the training data significantly better
than the preferred solution. How can we formalize this idea? This can be done by adding
a penalty Q(w), called regularizer, to the cost function. The penalty weight is controlled
by a positive real number A. Thus the equation to minimize became

A

J(f) = E(F) +A(f) (3.9)

Q(f) is typically chosen to impose a penalty on the complexity of f. Concrete notions of
complexity used include restrictions for smoothness (i.e. non rapidly oscillating solutions
are preferred) and bounds on the vector space norm. Typical choices for €2 which penalize
high vector norm are the Ly and L; regularization, which we briefly describe in the next
section.

The role of X is crucial in underfitting/overfitting trade-off. Minimizing J(f) results
in a choice of weights that make a trade-off between fitting the training data and being
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Figure 3.3: Workflow of a supervised ML algorithm. Common choices for data partitions are 50-60 %
for training set and 20-30 % for validation and test set.

small. When A is small the algorithm will prefer solutions that fit the data well (i.e. which
minimize £(f)), when X is large, on the contrary, solutions that minimize the regularizer
will be preferred.

In general, a regularization method can be defined as any modification we make to a
learning algorithm that is intended to reduce its generalization error but not its training
error. Regularization is one of the central concerns of the field of ML, rivaled in its
importance only by optimization[40].

Underfitting and overfitting can be considered in terms of bias and variance of an
estimator. In general, the mean square error expected value of a given estimator can be
decomposed into a bias term and a variance term [53].

Let consider the relation (3.2). The function fp is an estimator of the target function
f*, thus its expected mean squared error can be decomposed in a bias term, a variance
term, and an irreducible error term (i.e. the variance of the noise €).

The relationship between bias and variance is tightly linked to the ML concepts of
capacity, underfitting and overfitting. When generalization error is measured by the MSE
increasing capacity tends to increase variance and decrease bias.

Thus, the overfitting underfitting trade-off is commonly called bias-variance tradeoff,
where bias refers to underfitting and variance refers to overfitting, as shown in figure
5.2
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Hyperparameter and validation set An hyperparameter is a parameter that is set
before the learning process begins. This means that hyperparameters are not involved in
the minimization process as variable to minimize.

These parameters are tunable a-priori and can directly affect how well a model trains.
Hyperparameters directly drive the underfitting/overfitting trade-off, for example, A in
equation is an hyperparameter. As hyperparameters are fixed a priori, how can we
find their best values, i.e. the values which optmize the underfitting/overfitting trade-off?

Using training set to tune hyperparameters is not possible, because we want to choose
hyperparameters values that will best generalize and thus we need to test various hyper-
parameters choices using data that was not used to train the algorithm (exactly as for
the test set). However, we cannot even tune hyperparameters using the test set, because
that would be cheating. We are only allowed to use the test set once, to report the final
performance. If we peek at the test data by using it to tune hyperparameters, it will no
longer give a realistic estimate of generalization performance, as the generalization error
will be typically underestimated.

The typical solution to this problem relies on the definition of a validation set. Let
consider the training set 7. We divide the training set in two disjoint subsets, T and
Ty, as illustrated in figure . The former is used to train the algorithm (i.e. optimize
parameters for any given hyperparameters choice) and so it is used as an actual training
set. We will call 77 the training fold to distinguish it from the training set 7r.

The subset 7y, is used to estimate the generalization error after training for any spe-
cific hyperparameters, and so it is used as a test set for hyperparameters optimization.

The 77 subset is still typically called the training set, even though this may be con-
fused with the larger pool of data used for the entire training process. The subset Ty
used to guide the selection of hyperparameters is called the validation set.

Typically, one uses about 70-80 percent of the training data for training and 20-30
percent for validation, but an absolute rule does not exist.

After hyperparameters optimization is complete, the generalization error may be es-
timated using the test set.

The general unsupervised algorithm is summarized in figure 3.3} however the approach
discussed here requires a data-rich situation which is often not the case when dealing with
real problems.

3.1.2 Supervised Learning and small size datasets

Assessment of generalization performance of a ML model is extremely important in prac-
tice, since it guides the choice of learning method or model, and gives us a measure of the
prediction ability of the ultimately chosen model.

Choosing the best model and estimating its generalization error could be very com-
plicated issues when datasets size are not large enough.
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Figure 3.4: Supervised ML flowchart for limited datasets. The iterative process in gray area represents
a k-fold validation procedure. Once the model have been optimized, the generalization error is evaluated
on the test set. Courtesy of [I§]

In this section we discuss both this issues in the framework of relatively small size
datasets.

If we are in a data-rich situation, the best approach for both problems is the one
discussed in the previous section and illustrated in figure 3.3

Before continuing let fix some notation.
The main point is the same of the previous section: we want to estimate the function f*
which relate an input set X to an output set Y. As discussed in the previous section,
typically models have hyperparameters which control the models complexity and which
are needed to be tuned a-priori. Thus we denote the estimated f by fi\(x), where A
represents hyperparameters model dependencies. Having said this, for brevity we will
often suppress the dependence of f(x) on A.

Model selection and cross-validation If we are not in a data-rich situation, using one
validation set to optimize the algorithm could lead to a bad hyperparameter optimization.
Small size data increases the probability of sampling a validation set that is not rep-
resentative of the population.
In a such case, the hyperparameters optimization will not holds in general, as it would
be related to a not representative validation set.

One might be tempted to choose a large percentage validation partition. However
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this choice leads to a small training set and thus to inadequately trained models: this is
a bad solution too.

Cross validation allows to circumvent this problem. Even though many cross-
validation techniques exist, all the cross-validation techniques are based on a common
idea, which I will briefly explain below.

Cross validation methods are iterative processes based on many validation steps.
described in previous section. and it is illustrated in figure (3.4}

Each iteration is actually equivalent to a validation step (see figure [3.3]), but the
validation and training set will change during each iteration. Cross-validation methods
can be resumed as follows

e the training set is splitted in k disjoint set, i.e. T = {71,... 7k}, called training
folds

e the splitting leads to k validation steps: let consider the generic i-th step. The i-th
step is described as follows

— the i-th subset is treated as the validation set, while the model is trained using
the 7 \ 7; subsets, obtaining the i-th estimated function fi. As occurs in
validation, the algorithm is trained for different value of A by minimizing a
cost function of the type (3.9)).

— the i-th generalization error is computed using 7;. Thus we have

EN = Y LU.Y) (3.10)

(x,y)€Ti
where L is a given loss function
e once all the 51( fi,\) are computed, we get the final cross-validation error defined

as the average of all the k steps validation errors, i.e.

k
Erroy(A) = Z Ei(FLN) (3.11)

=

Minimizing the error (3.11)) we obtain the best hyperparameter \* = arg maxFErrgoy (A).
A
Once hyperameters have been setting via cross-validation, the algorithm is trained on
the whole training set 7 using the optimized hyperparameters, and the generalization
error is computed on the set set to obtain an estimation of the algorithm performance.
The generical supervised ML method in the framework of limited dataset is summarized

in figure [3.4]

However, this is a point which presents a criticality: we have said that cross-validation
is necessary because in order to circumvent . However, as shown in figure [3.3] we have to
consider that the numerosity of the test set is typically similar to that of the validation set.
Therefore, we conclude that the test set suffers of the same problems of the validation set:
using only one test set may leads to a generalisation error which is not representative of the
quality of the model, just as using only one validation set can lead to a bad optimisation
of the hyperparameters.
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Generalization error issues The final step of a supervised ML algorithm is to esti-
mate the generalization error, as the generalization algorithm ability is what we are really
interested in.

Given a limited dataset, two approaches are possible for estimating generalization
error:

e we can use an a-priori fixed test set S, as discussed in previous section and as
illustrated in 3.4, However, using only one randomly chosen test set to compute
generalization error could lead to the same criticality of using only one validation
set to optimize hyperparameters.

e as we did for model optimization, we can compute the generalization error using the
cross-validation approach (other techniques can be used, but cross-validation is the
simplest and most widely used). In this paragraph we will discuss the drawbacks of
this choice.

In this context it is important to distinguish between expected generalization error
and conditional generalization error.

Let f7 a function trained on the given training set 7.

The conditional generalization error Errs is the generalization error related to an
algorithm trained on a given training set 7, i.e. it is the generalization error related to
the function fr. It can be defined as

Erry = Exy {L(fr(X),Y)} (3.12)

We remark that here the training set is fixed, and generalization error refers to the error
for this specific training set.

The expected generalization error is quite different: it is the expected value of the
conditional generalization error for all possible training sets, i.e.

Err = E{Errs} (3.13)

The expected conditional prediction error error is what we are really interested in
knowing, as it estimates the generalization error of our specific model which is trained on
a specific T .

At this point, it is interesting to wonder about what quantity the cross-validation
estimates. Unfortunately, cross-validation is actually an estimator of Err rather than
Erry [53]; heuristically when we cross-validate the model, we train it on different training
fold samples. The cross-validation error is therefore constructed by averaging over
models trained on different sets and not on the specific training set given.

Despite theoretical aspects, cross validation could be sometimes used to estimates
generalization error, but caution must be exercised.

If stable ML models are considered, which are not particularly sensitive to the training
set, cross-validation may be a legitimate choice.
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On the contrary, if we are using methods like tree-based algorithms, cross-validation
can underestimate the true error by 10%, because the search for best tree is strongly
affected by the validation set. In these situations only a separate test set will provide an
unbiased estimate of test error [53].

3.1.3 Unsupervised Learning

Unsupervised learning (also informally called ”learning without a teacher”) algorithms
experience a dataset containing many features, then learn useful properties of the structure
of this dataset by minimizing (or maximizing) an objective function.

A generic unsupervised learning problem is characterized by having a dataset D €
RY*P made of N p-dimensional observation. Thus

D:{dl,...,d]\] | d, eR’ Vi€ [].,N]} (314)

The underlying assumption of unsupervised learning is that each observation d € D
is a realization of a multivariate stochastic variable X = [X7,..., X}] which has a joint
probability density function (pdf) Px(z1,...,z,).

According to the assumption Px(z1,...,z,) is the pdf which generates all possible data.
It is important to underline that this pdf is typically unknown.

The goals of unsupervised learning are [53]:

e highlighting relations and patterns (more or less hidden) which could subsist within
the dataset D

e inferring the probability distribution Px(z1,...,z,) that generated the dataset D
itself

The dimension of D is sometimes much higher than in supervised learning, and the
properties of interest are often more complicated than input/output predictions. These
difficulties are somewhat mitigated by the fact that D represents all of the variables under
consideration; one is not required to infer how the properties of Px change, conditioned
on the changing values of another set of variables.

Furthermore, a remarkable difference with respect to supervised is that of in unsuper-
vised learning, there is no such direct measure of success. It is difficult to ascertain the
validity of inferences drawn from the output of most unsupervised learning algorithms.
One must resort to heuristic arguments not only for motivating the algorithms, as is often
the case in supervised learning as well, but also for judgments as to the quality of the
results. Practically speaking, in unsupervised learning we have no test set to check the
quality of our prediction.

Typical unsupervised learning techniques are dimensionality reduction and clustering.

Principal components analysis, multidimensional scaling, self-organizing maps, and
principal curves, for example, attempt to identify low-dimensional manifolds within the D
space that represent high data density. This provides information about the associations
among the variables and whether or not they can be considered as functions of a smaller
set of latent variables.
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Cluster analysis attempts to find multiple convex regions of the D space that contain
modes of Px(z1,...,2,). This can tell whether or not Px(x1,...,x,) can be represented
by a mixture of simpler densities representing distinct types or classes of observation.

3.2 Resampling techniques

Data sampling refers to statistical methods for selecting observations with the objec-
tive of estimating a population parameter. In statistics, resampling is the method that
consists of drawing repeated samples from the original data [50]. Resampling tech-
niques are widely used both in statistic and in machine learning; resampling allows to
improve the estimate of population parameters and help to quantify the uncertainty of
estimates as well as it is a powerful tool to optimize and test machine learning algorithms.

In this section I will discuss the random bootstrap technique and oversampling/undersampling
techniques and stratified sampling. Furthermore, in supervised learning framework, a very
important and widely used resampling technique is the cross-validation. This technique
is the solution to a specific problem that occurs in supervised learning in the presence
of small datasets. Therefore, for the sake of a better narrative, cross-validation has been
discussed in the machine learning dedicated section

Bootstrap Bootstrap is a statistical method for estimating the sampling distribution
of an estimator by sampling with replacement from the original sample, most often with
the purpose of deriving robust estimates of standard errors and confidence intervals of a
population parameter like a mean, median, and correlation coefficient. It is often used
as a robust alternative to procedures based on parametric assumptions, especially when
those assumptions are in doubt, or where parametric inference is impossible or requires
very complicated formulas for the calculation of standard errors [141].

Let consider a sample made of N elements, say X = {z1,...,zx)}. From X we
resample with replacement B other samples of numerosity equal to N. Thus we obtain a
bootstrap set {X7,..., X3}, where X7 = {a7,,,...,2{; y}. In each bootstrap extraction,
each element has probability 1/N of being extracted.

Suppose we are interested in studying a statistical parameter T'. Let T the estimator
of T': given a sample, we estimate 1" by computing the estimator T using the elements of
the sample.

We notice that bootstrap provide us a set {X7,..., X5} of samples: for each sample X
we obtain an value Tl* for the estimator 7.

This approach allows us to obtain B estimates {Tf, . ,Tg} of T: from this bootstrap
statistic the bootstrap mean, bootstrap variance, bootstrap percentiles etc can be com-
puted.

A great advantage of bootstrap is its simplicity. It is a straightforward way to derive
estimates of standard errors and confidence intervals for complex estimators of the dis-
tribution, such as percentile points, proportions, odds ratio, and correlation coefficients.
Bootstrap is also an appropriate way to control and check the stability of the results.
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Figure 3.5: Schematic illustration of undersampling and oversampling

Although for most problems it is impossible to know the true confidence interval, boot-
strap is asymptotically more accurate than the standard intervals obtained using sample
variance and assumptions of normality[4§].

Oversampling and undersampling techniques Let consider a two values classifica-
tion problem where the output set {g;, g2} is very unbalanced, say 1:100.

Training a classifier using such an imbalanced dataset usually could leads to very
poor accuracy in predicting the minority class . This is because the algorithm minimizes
the cost function as a whole, without taking into account the prediction accuracy of the
individual classes. If the classes are very unbalanced the minimization algorithm makes
it more convenient to minimize the error on the most represented class and this leads to
a poor prediction of the least represented class.

Many methods have been proposed to circumvent this problem, and they can be
roughly divided into cost-sensitive learning methods and resampling methods.

The former are based on modifying the cost function giving a class-dependent weight
to the prediction error; basically they use cost-sensitive loss functions that give greater
weight to the prediction error of the minority class (e.g. [94] 86, 166, 98, §]).

The latter class of methods relies on resampling techniques to balance the dataset.
Resampling consists of drawing repeated samples from original data; two kind of resam-
pling are considered: the under-sampling which consists of removing samples from the
majority class and the over-sampling, which consist of adding more examples from the
minority class. The drawback of oversampling is overfitting, as it uses more examples
from the minority class in order to balance the classes [43], while the drawback of under-
sampling is that it may potentially discard useful or important samples [57].

The simplest resampling techniques are random oversampling and random undersam-

pling.

Random oversampling involves supplementing the training data with multiple copies
of some of the minority classes. Instead of duplicating every sample in the minority class,
some of them may be randomly chosen with replacement.

Random undersampling consists is randomly remove samples from the majority class,
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Figure 3.6: Schematic illustration of stratified sampling.

with or without replacement.

An illustration of random sampling is given in figure [3.5]
Random over /under sampling are widely used, as they are very simple to implement
and all in all they are quite efficient [57].

Many more sophisticated oversampling and undersampling techniques can be consid-
ered , e.g. SMOTE (Synthetic Minority Over-sampling Technique)[29], ADASYN (Adap-
tive synthetic sampling approach)[77]. However, the discussion of these techniques goes
beyond the scope of this thesis.

Stratified sampling In a stratified sample, the population is divided into homogeneous
subpopulations called strata, based on specific characteristics (e.g. age, gender, location,
etc.). Every member of the population should be in exactly one stratum.

Each stratum is then sampled using another probability sampling method, such as
the simple random sampling, allowing to estimate statistical measures for each sub-
population, as is illustrated in figure [3.6

Stratified sampling can be used when the population can be exhaustively partitioned
into disjoint subgroups.

Stratified sampling is used to highlight differences between groups in a population, as
opposed to simple random sampling, which treats all members of a population as equal,
with an equal likelihood of being sampled.

3.3 Decision tree based ML algorithms

Many supervised ML algorithms are based on decision trees (DT). In this section I will
first discuss decision trees, then I will introduce classification and regression trees, and
finally I will describe the Random Forest method.

3.3.1 Decision Trees

First of all, we will introduce the notion of DT. In decision analysis, a DT can be used
to visually and explicitly represent decisions and decision making. As the name goes, it
uses a tree-like model of decisions.
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DT is a structure for data classifica-
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according to the rules given in branches, and the leaves are one where we get the output.
Furthermore, a subtree is any tree we can obtain by pruning a tree. A subtree of a tree
T is a tree consisting of a node in 7" and all of its descendants in T'. Pruning is reducing
the size of decision trees by removing sections of the tree, where the size of a tree is the
number of nodes in the tree.
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Figure 3.7: Flowchart of a simple decision tree

3.3.2 Classification and regresion trees (CART)

Tree-based ML methods partition the feature space into a set of rectangles, and then fit
a simple model (like a constant) in each one. They are conceptually simple yet powerful.
Here we describe a popular method for tree-based regression and classification called
CART.

The term CART (Classification And Regression Tree) is an umbrella term used to
refer to both of the above procedures, first introduced by Breiman et al. in 1984 [27].
Tree models where the target variable can take a discrete set of values are called classifi-
cation trees; in these tree structures, leaves represent class labels and branches represent
conjunctions of features that lead to those class labels. Decision trees where the target
variable can take continuous values (typically real numbers) are called regression trees.
Trees used for regression and trees used for classification have some similarities - but also
some differences, such as the procedure used to determine where to split [27].

Let us consider a regression problem with continuous response Y and inputs X; and
Xy, with Xy, Xy € [0,1]. The top left panel of figure shows a partition of the feature
space by lines that are parallel to the coordinate axes. In each partition element we can
model Y with a different constant. This is a fairly simple relation between predictors X7,
X5 and the response Y. However there is a problem: some of the resulting regions are
complicated to describe.

To simplify matters, we restrict attention to recursive binary partitions like that in
the top right panel of figure [3.8] We first split the space into two regions, and model the
response by the mean of Y in each region.

We choose the variable and split-point to achieve the best fit. Then one or both of
these regions are split into two more regions, and this process is continued, until some
stopping rule is applied. For example, in the top right panel of [3.8 we first split at
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Xy = t; . Then the region X1 < t1 is split at Xy = t5 and the region X; > t; is split
at X; = t3 . Finally, the region X; > t3 is split at X2 = t4 . The result of this process
is a partition into the five regions Ry, Rs, ..., R5 shown in the figure. The corresponding
regression model predicts Y with a constant c,, in region R,, , that is

5
X) =Y enl((X1,X5) € Ry,) (3.15)
m=1

where the function 7(”condition”) is defined as follows

1 if ”condition” is true

I(” condition”) = { (3.16)

0 elsewhere

This same model can be equivalently represented by the binary tree in the bottom left
panel of figure [3.8 The full dataset sits at the top of the tree. Observations satisfying
the condition at each junction are assigned to the left branch, and the others to the right
branch. The terminal nodes or leaves of the tree correspond to the regions Ry, Rs, ..., Rs.
The bottom right panel of figure is a perspective plot of the regression surface from
this model.

The central point here is that dividing the input space recursively creates partitions of
the space that are equivalently represented with a single decision tree simply by placing
conditions on the input variables.

A key advantage of recursive binary tree like the one we just described is its inter-
pretability.

Regression Trees Let consider a regression problem. Suppose we have a dataset D =
X XY made of N couples of input/output data described as follows

D={(x1,41)...,(xn,yn) | x€R"andy; €R Vi€ [1, N[} (3.17)

where X is the input set and Y the output set.

Let suppose there exist a target function f* which relates X space and Y space such
that Y = f*(X) + €, where € represents an irreducible noise (i.e. the relation is not
deterministic) which follows a normal distribution with zero mean, namely € ~ N (0, o).

Our goal is to obtain an estimation f of f* using a regression tree ML method, given the
dataset D.

As described before, the starting point is recursively input space partition. Let suppose
recursively partitioning led us to Ry,..., Ry regions of the form illustrated in top right
panel of figure |3.8]

According to equation and , we model the response function as a sum of

estimated values ¢, as follows

M:

I(zx € R, (3.18)

m=1
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Figure 3.8: Top right panel shows a partition of a two-dimensional feature space by recursive binary
splitting. Top left panel shows a general partition that cannot be obtained from recursive binary splitting.
Bottom left panel shows the tree corresponding to the partition in the top right panel, and a perspective
plot of the prediction surface appears in the bottom right panel. Courtesy of [53].

If we adopt a Lo loss function, we would minimize the sum of squares (yif(z;))? . It is
easy to see that the best ¢,, for this choice is just the average of y; in region R,,:

Cm = mean(y; | X; € Ryy,) (3.19)

Now finding the best binary partition in terms of minimum sum of squares is generally
computationally infeasible. Hence we proceed with a smarter hierarchical algorithm.

Starting with all of the data, the algorithm’s first step is dividing space in two ”best”
partition: considering a splitting variable j and split point s, space can be divided in two
partition as follows

Ri(j,s) ={X | X; <s}and Ry(j,s) ={X | X; > s} (3.20)

We notice the two regions are uniquely defined by the couple (7, s).
The "best” Ry, Ry partition is the one which minimize sum of squares, thus it is defined
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by the splitting variable j and split point s which solve

T 2 : 2

min |min P — i — 21

ninfmin Y (- ) +min Y (4 - )] (3.21)
x;€ER1(7,8) x;€R2(j,5)

For any choice j and s, the inner minimization of equation (3.21)) is the same problem

of equation (3.19)), thus is simply solved by

él = mean(yi | X; € Rl(j, 8)) (322)
¢o = mean(y; | x; € Ra(J, s)) (3.23)
(3.24)

The outer minimization is the more interesting part: the determination of the (7, s) couple
can be done very quickly by computationally scanning all the input space, computing
the results for each variables couple, and then selecting the the one which mininmize the

equation ((3.21)).

Having found the best split, we partition the data into the two resulting regions and
repeat the splitting process on each of the two regions. Then this process is repeated on
all of the resulting regions. This iterative hierarchical approach allows partitioning the
space into smaller and smaller regions, and each partitioning corresponds to a new node
in the DT. Iterating the procedure for a very high number of steps will create a very fine
space partition that fits very well to our data (training set), but may have difficulty in
generalizing to predict new data (i.e. overfitting). Remembering that each partition of
the space corresponds to one and only one decision tree, we can map the related problem
of finding an appropriate partition of the space to managing the size and properties of
a decision tree. Thus, we will control the trade off between overfitting and underfitting
by controlling the size of the decision tree itself. A decision tree that is too large (too
small) with respect to the complexity of our problem will lead to overfitting (underfitting).

In DTs, the underfitting/overfitting trade-off is managed by the pruning operation.
Let consider a subtree 7" C Ty. We denote leafs (terminal nodes) by m: it is important
to notice that each leaf m represents a region R,, . Let |T'| the number of leafs in 7" and
let N,, = #{x; € R,,} the number of input data in R,,. Then, letting

. 1
C e —
m Nm y’L
X;€ERm
1 .
Qu(T) = N (yi — Cm)2 (3.25)
m X;€ERm
allows us to define the cost complexity criterion
|T|
ColT) = NuQu(T) + alT] (3.26)
m=1

The idea is to find, for each «, the subtree T, C Tj to minimize C, (7).
We notice two facts

e the number of leaf |T| is actually the number of regions of the equivalent space
partition
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e the equation ((3.26)) is an application of the equation (3.9)) where |T'| is the regularizer
and « is an hyperparameter to tune

e o manage the tree complexity (i.e. underfitting/overfitting tradeoff): large values of
a result in smaller trees T, are preferred, while for smaller values of «, the goodness
of fit have more weight respect to tree size. As the notation suggests, with a = 0
the solution is the full tree T .

It can be shown that for each « there is a unique smallest subtree T, that minimizes

O (T) [53].

Estimation of « is typically achieved by five or ten fold cross-validation[53]: we choose
the value o to minimize the cross-validated sum of squares.

Classification Trees In a classification problem the outcome takes values in a finite
label set Y = {1,..., K} ) which is the output space. The classification tree algorithm is
equal to the regression one except for the criteria for assigning outputs, splitting nodes
and pruning the tree.

First of all, in regression we estimated the values of f in various regions R,, using a
sample mean which involved the response data y;. This is not possible in classification.
Furthermore in a classification problem, the goal is, given an input x;, to predict the
output label y; € Y. Thus, a modification is required: we define

Pmk = Ni > Iy =k) (3.27)

X;€ERm

Concretely speaking, p,, is the proportion of the k-th label in the m-th region. Thus the
predict class in the region R,, for classification problems became

Cm = kmam(m> = arg max P (328)
k

i.e. we assign to a given input x € R,, the label k,,,.(m), where k,,q.(m) is the most
represented class in R,,.

Furthermore we can not use the mean squared error for each leaf @,,(7") which have
been used (see equation (3.25]) ) in regression tree. Most common error measures of Q,, (1)
used in classification tree are [53] :

N Dicr, LY # Kmaz(m)) = 1 = Prgoemy  Misclassification error
Qm(T) = § Xk Dkt = Sy Dne(1 = Do) Gini index
K 4 R
=2 k1 Dk 108 Pr; Cross-entropy
(3.29)

dplogp (I p)log (1 p), respectively. They are shown in Figure 9.3. All three
are similar, but the cross-entropy and the Gini index are differentiable, and hence are
better for numerical optimization. In addition, cross-entropy and the Gini index are more
sensitive to changes in the node probabilities than the misclassification rate.
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Instability of Trees Omne major problem with trees is their high variance. Often a
small change in the data can result in a very different series of splits.

The major reason for this instability is the hierarchical nature of the process: the
effect of an error in the top split is propagated down to all of the splits below it. One
can alleviate this to some degree by trying to use a more stable split criterion, but the
inherent instability is not removed. It is the price to be paid for estimating a simple,
tree-based structure from the data.

In next section algorithms (bagging and Random Forest) used to reduce tree’s variance
will be discussed.

3.3.3 Bootstrap aggregating

Bootstrap Aggregation (usually called Bagging), is a simple and very powerful ensemble
method.

An ensemble method is a technique that combines the predictions from multiple ma-
chine learning algorithms together to make more accurate predictions than any individual
model.

Bagging can be considered as an application of the bootstrap technique to a machine
learning algorithm: bagging allows to dramatically reduce the variance of an algorithm
and thus it is very used for those ML methods affected by high variance and low bias,
such as decision trees.

Let f* a target function between a given input and output space we would like to
estimate. Bagging works as follows:

e a training set and a test set are fixed a-priori

B bootstrap samples are collected from the fixed training set

each bootstrap sample is considered as a training set, and thus it is used to train
the algorithm: {f1,..., fp} estimation of the target function are obtained

e we summarize the set {fi,..., fg} in a single classifier f,,, which has a better
generalization performance than the single classifier.

In particular, for regression, we simply define fi,, as an average of the set:

fuaa(2) = 5 S £ (330

For classification we replace the mean by the most ”voted” class: given an input x, we
will have B output labels, one for each classifier. The final label that the classifier fyq,
assigns will be the one most voted by the individual classifiers.

Bagging works very well for high variance and low bias classifier because averaging
reduces variance and leaves bias unchanged [53].
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Figure 3.10: Schematic illustration of OOB samples due to a bagging algorithm.

Out of bag samples As bootstrap is a resampling with replacement technique, for
each bootstrap sample taken from the training data, there could be samples left behind
that were not included. These samples are called Out-Of-Bag samples (usually denoted
by OOB).

The performance of each model on its left out samples when averaged can provide an
estimated accuracy of the bagged models. This estimated performance is often called the
OOB estimate of performance.

These performance measures are reliable to validate models parameters and can be
used also for generalization error estimate.

Finally we notice that the OOB estimation of performance is very similar to a k fold
cross-validation.
An illustration of OOB estimation is provided in figure [3.10}

3.3.4 Random Forest

Random forests [26] is a substantial modification of bagging that builds a large collection
of de-correlated trees, and then averages them.

As just metioned in previous section, trees are ideal candidates for bagging, since they can
capture complex interaction structures in the data, and if grown sufficiently deep, have rel-
atively low bias. Since trees are notoriously noisy, they benefit greatly from the averaging.

An important issue will be highlighted now. Let consider B identically distributed
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stochastic variables. Let suppose that each B has the same variance o2 and let denote

the pairwise correlation by p. Then it can be shown that the variance of the average of
the B variables is
2 L—p ,

UAverage = p0'2 + B g (331)

As B increases, the second term disappears, but the first remains, and hence the size of the
correlation of pairs of bagged trees limits the benefits of averaging. The Random Forests
key idea is to improve the variance reduction of bagging by reducing the correlation
between the trees, without increasing the variance too much. This is achieved in the
tree-growing process through random selection of the input variables.

More in detail, when growing a tree on a bootstrapped dataset, before each split, a
number m < p of the p input predictors are randomly selected as candidates for splitting.
Intuitively, reducing m will reduce the correlation between any pair of trees in the ensem-
ble, thus, as shown in the variance of the average is reduced.

3.4 Principal Component Analysis

Principal components analysis (PCA) is a dimensionality reduction unsupervised ML
technique which is widely used in high-dimensional data analysis.

The central idea of PCA is to reduce the dimensionality of a data set consisting of a
large number of interrelated variables, while retaining as much as possible of the variation
present in the data set.

PCA is one of the simplest and most robust ways of doing such dimensionality
reduction[137], .

Let us consider D-dimensional dataset made of n observations described by a data
matrix X € R™P. For the sake of simplicity let us suppose the data have zero mean.
The goal of PCA is to map X in a lower dimensional matrix X € R4 where d < D,
such that the loss of information due to the use of X instead of X is the least possible.

Thus, let us focus on the i-th observation x;. This vector is implicitly expressed in
the canonical basis of R”, but it can be also expressed in any other basis of R”. Let us
consider a generic orthonormal basis of R?, which we denote by {by,...,bp} and let us
express X; in terms of the new basis x; = Zle(bj, x;)bj.

Let B the subspace of RP spanned by the first d vector {by, ..., baq}, which we will call
principal subspace, and let B its orthogonal complement spanned by {bgy1,...,bp} We
can rewrite x; as

where
d
% =Y (b;,x;)b; (3.33)
k=1
D
%1i= Y (bjxi)bj. (3.34)
k=d+1

The first term is the projection of x; into B, while the second term is the projection of
x; into B, . We reduce the data dimensionality by using the B data projection instead of
the data themselves, i.e. using x; instead of X;.
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Figure 3.11: Original dataset A in space z,y,z is mapped onto a new space B built on principal
components PC1, PC2, PC3 (linear combination of original coordinates). Axis PC1 is the one that
better interprets dataset variability, while axis PC3 explains little variance. The best choice for reducing
dimensionality in the example in figure could be to consider the projected data in PC'1 and PC?2 space
(i.e. ignoring their component along PC3). In this way we reduce the complexity of the data and at the
time we lose as little information as possible.

What is the error due to this choice? The error we make is a function of the subspace B
we choose and it can be write as L; ,, (b, ..., bg) = x; —X;. Considering all the data, the
mean square error can be written as

1 n
MSEm (b, - ba) = 2 0 [ILim(bi - b =

n

:—Zuxz—xm? > = K)o~ %)

=1

(3.35)

Observing that X! x; = x7

the equation became

X; = i?iz because of the orthogonality between B and B,

MSE,,(by,...,b Zx X; — — ZincZ (3.36)

Let us rewrite the second term of B.36]
d n

n d d
% %'z = Z < (b;,x;)b;, Z(bk,xi)bk> =Y % > (b, x:)” (3.37)
j=1 j=1 " i=1

i=1 =1 k=1

where in the last passage we used inner product bilinearity and basis orthonormality
condition (bj, bg) = d,y.

The data have zero mean, so = > | (b;, x;)? is the by definition the variance of (b;, x;),
i.e. the variance of the data along the b; direction, which we will call ab Thus equation

3.36] became .
1 n
MSE,,(by,....by) = = Tx, — 2 3.38
(b ba) = 13 <! Zo (3.38)

The former MSE contribution is a constant term which is fixed once data are given, while
the latter is function of the subspace bq,...,bq we chose to project the data. Then,
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minimize the MSE is equivalent to maximize the variance explained along the by, ..., bg
directions.

Before maximize the variance, it will be convenient to rewrite the problem using matrix
notation. We observe that

Z<bj’ x;)? = (Xb;)"(Xb;) (3.39)

C=X'X (3.40)

where C is the variance-covariance matrix. Then, we can write

1 1< 1< 1<
> EE (b, x;)” EE :HE beTijZEE bICb;.  (3.41)
- - j=1 7=1

Thus, we want to maximize the RHS of[3.41, We also impose the constraint that bl 'b; = 1
for all j = 1...d. This is a constrained optimization problem which can be solved using
lagrangian multipliers method.

Let £ = Z;lzl [b]Tij — Xj(bjb; — 1)] the langrangian function, where the \; are the
lagrangian multipliers. In order to find the by, ..., bgq which maximize |3.41] we need to
put to zero at the same time all the d derivatives with respect to by where k =1...d.

oL

g = Obe—Abi=0,  Vk=1..d (3.42)

These d equations tell us that the b, which maximize the variance in the d-dimensional
subspace within which we want project data are d eigenvectors of C.

The last step is about finding these eigenvectors: C is a D-by-D symmetric matrix,
thus it has D eigenvectors. Which are the d whose maximize the variance?
Let us consider the eigenvalue equation related to |3.42}

Cb = )b (3.43)

Solving this equation is equivalent to diagonalize C. The eigenvectors of C, which form an
orthonormal basis, are called Principal Components. In eigenvectors basis we have that
C = diag(\y, ..., Ap), then the eigenvalues \; represents the variance explained by the
j-th eigenvector. Because we want to maximize the variance, the by, ..., bg eigenvectors
(i.e. Principal Components) which solve the problem are those are related to the greater
d eigenvalues.

Now we can compute the lowest possible MSE given by [3.38

Let us suppose that the grater d eigenvalues of variance-covariance matrix are A; ... \g,while
Ad+1, - - -, Ap are the lower. Let us rewrite the former contributions of in the basis of
the eigenvectors of C. Following the same approach used in [3.37, we obtain

n D

1 § T E 2

; - X; X = ~ ij (344)
1= Jj=
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Putting [3.44] in equation , and using the realtion af)j =X\; Vj=1...D, we obtain

D d D
MSE; =) A=Y X= ) X\ (3.45)
j=1 j=1

j=d+1

The PCA algorithm is particularly useful when many variables are highly correlated
(i.e. )\? are very different to each other): in this case most of the variance is explained
by few Principal Components, then dimensionality reduction do not leads to lose much
information. A pictorial PCA example is provided in figure |3.11]

Finally, it is important to observe that data expressed in the principal components
basis are uncorrelated, because the variance-covariance matrix C is diagonal: then, PCA
can be used not only for dimensionality reduction, but also in order to uncorrelate vari-
ables which are correlated.

3.5 Statistical evaluators

3.5.1 Statistical test of parametric hypothesis

In statistics, hypothesis testing is used to test the validity of a hypothesis. In the frame-
work of parametrical hypothesis test, an hypothesis can be defined as a statement about
the parameters describing a population.

In this context, given an unknown parameter § € O, where O represents the domain
of the stastical parameter (for example R"), an hypothesis H on € is a statement of the
type

H: 0e06,C0O (3.46)

Hypothesis is divided in two broad class: simple and composite hypothesis. An hypothesis

are called simple if © contains only one element, otherwise are called composite.
Usually two hypothesis are considered in statistical test: The null and the alternative

hypothesis.

The former, typically called Hj, is the hypothesis to be verified. The latter, usually

denoted with H;, is the hypothesis considered true when Hj is false.

Typically Hy is complementary with respect to Hy, i.e. if Hy is defined as 6 € Oy C O,

then H; is defined as 0 € O\ O,.

A statistical test is a rule which allows us to decide whether, and to what extent,
to accept or reject a null hypothesis, by examining the observations made on a sample
statistic.

It is important to notice that testing hypothesis requires the sample statistic knowl-
edge of the unknown parameter 6 if the null hypothesis Hj is true.

The decision to accept or reject the null hypothesis is affected by two types of error,

which are defined as follows.
The type I error « is the rejection of a true null hypothesis
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The type II error 3 is the failure to reject a false null hypothesis.

B =P(Ho|H,) (3.48)

The significance of the test is the maximum probability with which we are willing to risk
making a first kind error. The significance is fixed a-priori by fixing o. Most common
choice are @ = 0.05 and a = 0.01.

The p-value[note 1] is the probability of obtaining test results at least as extreme as the
results actually observed, under the assumption that the null hypothesis is correct.[2][3] A
very small p-value means that such an extreme observed outcome would be very unlikely
under the null hypothesis.

This means that, once « is fixed, if p-value > «, then H, will be accepted, otherwise
H, will be rejected.

The p-value helps to understand if the difference between the observed and the hy-
pothesized result is due to the randomness introduced by the sampling, or if this difference
is statistically significant, i.e. difficult to explain by the randomness due to the sampling.

Furthermore, another important quantity is the power of a test, which is defined as
the quantity W = 1 — [ that measures the probability of rejecting the null hypothesis
Hy when the alternative hypothesis H; is true. However the determination of the power
of a test is often difficult, because for its explicit calculation one also needs to know the
sampling distribution of when the alternative hypothesis H; is true, which, moreover, is
often not simple but composite.

Most common parametric tests are

e /-test: A z-test is any statistical hypothesis test for which the distribution of the test

statistic under the null hypothesis can be approximated by a normal distribution.
This hypothesis holds if the sample data come from a population with a normal
distribution and known standard deviation o. If the amount of data is large enough
(typically > 30), both the assumption are not required and o can be estimated using
sample variance.
The z-test is typically used to determine whether a sample data set comes from a
population with a particular mean p. Moreover z-test can be used to determine if
the sample mean of two different samples are compatible, i.e. if the two samples
came from the same population.

e T-test: A t-test is any statistical hypothesis test in which the test statistic follows
a Student’s t-distribution under the null hypothesis.
The t-test is commonly used for the same purpose of z-test. The only difference
is that t-test is used when population variance ¢ is unknown: in this case o is
estimated using sample variance. As sample data increase (usually > 30), t-test
tends to be equivalent to z-test.

e F-test: An F-test is any statistical test in which the test statistic has an F-
distribution under the null hypothesis. Let S? and SZ two sample variances of two
independent and identically distributed samples extracted from two populations
which each has a normal distribution. Let suppose the two samples are made of n,
and n, data respectively. The ratio F = S2/S? follows a F-distribution F,, 15, 1.
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As the ratio between sample variances follows F distribution, the F-test is typically
used to determine whether two sample variances coming from population with same
variance or not.

ANOVA (Analysis Of Variance): Let consider a sample made of n observation.
We divide the samples in G groups according to multiple factors. We might be
interested in knowing whether the sample means of these groups are compatible
with each other, to see whether the effect of multiple factors is relevant or not with
respect to given response variable y. Factors can be independent to each other or
not, no independence assumptions are required.

As an example, we can intersted in studying the effect of weight, age and sex on
the blood pressure (response variable y). We divide population in groups according
to low/high weight, low /high age and M/F sex. The goal is checking whether the
blood pressure means of considered groups are compatible or not.

ANOVA is an ensemble of statistical methods which offer a solution to this issue.

We focus on the simplest form of ANOVA only, sometimes called one way ANOVA.
The one way ANOVA (just ANOVA for the sake of simplicity) is a statistical tech-
nique that is used to check if the means of two or more groups are significantly
different from each other, supposing the number of factors involved in group division
are just one.

ANOVA can be seen as a generalization of t-test and z-test. When we have only
two samples, t-test/z-test and ANOVA give the same results.

ANOVA is based on the assumption that all sample populations are normally dis-
tributed, but it is known to be robust to modest violations of this assumption.
ANOVA tests the hypothesis that all group means are equal against the alternative
hypothesis that at least one group is different from the others.

The central point of ANOVA is the following. Given n data divided into G groups,
it is possible to decompose the variance into two components: the sample variance
within groups (also called within sample variance oy, ) and sample variance between
groups (also called sample between variance o). Between and within variances are
defined as follows

o =Y (g — 1)’ — (3.49)

ang — 1
Zag o (3.50)

where f1 is the sample mean of all n data, p, is the sample mean of g-th group, n, is
the number of data of the g-th group and o, is the sample variance of the g-th group.
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As mentioned for F-test, the ratio between two sampling variances follows a F-
statistic. Thus, ANOVA test whether op and oy coming from two populations
with same variance, through an F-test performed over the F-statistic F' = g—f/ ~
F G-1n—G-

If F-test between op and oy lead to reject the null hypothesis according to which
the population came from the same variance, we reject also the ANOVA null hy-
pothesis (i.e. all group means are equal), otherwise the we accept the ANOVA null
hypothesis.

3.5.2 Akaike Information Criterion and Bayesian Information
Criterion

The Akaike information criterion (AIC) is a mathematical method for evaluating how
well a model fits the data it was generated from. In statistics, AIC is used to compare
different possible models and determine which one is the best fit for the data.

AIC is calculated from the number of independent variables used to build the model and
the maximum likelihood estimate of the model (how well the model reproduces the data).

The Akaike information criterion (AIC) is an estimator of prediction error and thereby
relative quality of statistical models for a given set of data. Given a collection of models
for the data, AIC estimates the quality of each model, relative to each of the other models.
Thus, AIC provides a means for model selection.

In estimating the amount of information lost by a model, AIC deals with the trade-off
between the goodness of fit of the model and the simplicity of the model. In other words,
AIC deals with both the risk of overfitting and the risk of underfitting.

Suppose that we have a statistical model of some data. Let k be the number of
estimated parameters in the model. Let L be the maximum value of the likelihood function
for the model. Then the AIC value of the model is given by the following formula [4]

AIC = 2k — In(L) (3.51)

Given a set of candidate models for the data, the preferred model is the one with the
minimum AIC value. Thus, AIC rewards goodness of fit (as assessed by the likelihood
function), but it also includes a penalty that is an increasing function of the number
of estimated parameters. The penalty discourages overfitting, which is desired because
increasing the number of parameters in the model almost always improves the goodness
of the fit.

Another criterion for model selection is the Bayesian information criterion (BIC). It is
very similar to AIC criterion, and as occurs in AIC criterion, the model with the lowest
BIC is the model to prefer.

BIC is closely related to AIC, and as AIC is based on the number of model parameters
and on the maximum likelihood value. BIC is defined as follows [136]

BIC = klnn —In(L) (3.52)
where n is the sample size.
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BIC is consistent in the sense that if the true model is among the candidates, the
probability of selecting the true model approaches 1. On the other hand, AIC is minimax-
rate optimal for both parametric and nonparametric cases for estimating the regression
function [162]. Moreover, in the case of multivariate regression analysis, AIC is better
than BIC in model selection [162]

Both AIC and BIC have no absolute meaning: what matters is the difference in AIC
and BIC between models. Let A(AIC) and A(BIC) the difference between AIC and BIC
of two models respectively. The rules of thumb are usually used. If the difference.

If A(AIC) is [54]

e Less than 2, this indicates there is substantial evidence to support the candidate
model (i.e., the candidate model is almost as good as the best model)

e Between 4 and 7, this indicates that the candidate model has considerably less
support

e Greater than 10, this indicates that there is essentially no support for the candidate
model (i.e., it is unlikely to be the best model)

If A(BIC) is [54]

e Less than 2, it is not worth more than a bare mention

e Between 2 and 6, the evidence against the candidate model is positive
e Between 6 and 10, the evidence against the candidate model is strong

e Greater than 10, the evidence is very strong

3.5.3 Receiver Operating Characteristics

Receiver Operating Characteristics (ROC) is a technique for visualizing, organizing and
se- lecting binary classifiers based on their performance. ROC charts have long been used
in signal detection theory to depict the trade-off between hit rates and false alarm rates
of classifiers [147, [75], [56].

Lets consider a two-class classification problem, where each instance [ is mapped to one
element of the set {p,n} of positive and negative class labels, and denote with {Y, N}
the class predictions produced by the classifier model. Given a classifier and an instance,
there are four possible outcomes:

e the True Positive (TP) outcome if a positive instance is classified as positive
e the False Positive (FP) outcome if a negative instance is classified as positive
e the True Negative (TN) outcome if a negative instance is classified as negative
e the False Negative (FN) outcome if a positive instance is classified as negative

Given a classifier and a set of instances (typically the test set), a 2-by-2 confusion matrix
can be constructed representing the dispositions of the set of instances, as illustrated in
figure 3.12,
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Figure 3.12: Confusion matrix for binary classification, and common performance metrics that stem
from it.

The diagonal elements of the confusion matrix represent the correct decisions made,
while the outer diagonal elements represents the misclassified instances.
Given a collection of TP and NP counts we can define the true positive rate tp and the
false positive rate fp of a classifier as

n(TP)
= TP+ n(FN) (3:53)
_ n(FP)
P = SN £ n(FP) (3.54)
(3.55)

where n(X) represents the number of elements which belong to the class X.

Additional important terms associated with ROCs are sensitivity and specificity.

Sensitivity measures the proportion of positives that are correctly identified (i.e. the
proportion of those who have some condition (affected) who are correctly identified as
having the condition). We notice that sensitivity is, by definition, the same of ¢p and can
be calculated using (3.53).
Specificity measures the proportion of negatives that are correctly identified (i.e. the
proportion of those who do not have the condition (unaffected) who are correctly identified
as not having the condition). Thus sensibility is by definition equal to the true negative
ratio tn

(3.56)

which is also equal to 1 — fp.

ROC can be visualized as two-dimensional graphs in which ¢p rate is plotted on the
y-axis and 1 — fp rate is plotted on the x-axis, as illustrated in figure [3.13] This graph
depicts relative trade-offs between benefits (true positives) and costs (false positives).
Several points in ROC space are important to note. The lower left point (0, 0) represents
a classifier of never issuing a positive classification; such a classifier commits no false
positive errors but also gains no true positives. The opposite strategy, unconditionally
issuing positive classifications, is represented by the upper right point (1,1).

To compare classifiers we may want to reduce ROC performance to a single scalar

value representing the expected performance. A common method is to calculate the area
under the ROC curve (AUC).
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Figure 3.13: An exemplifying ROC curve. Step by step moving the threshold (red dot) leads to obtain
couples of (tp, fp) values which compose the ROC curve

AUC ranges in AUC € [0, 1], with AUC = 0.5 corresponding to a random-guessing classi-
fier. The AUC has an important statistical property: the AUC of a classifier is equivalent
to the probability that the classifier will rank a randomly chosen positive instance higher
than a randomly chosen negative instance.

3.6 Image Registration

In chapter 2| all the steps to obtain a three-dimensional medical image from a PET
examination were shown. In particular, in section we have shown what is the final
product of the whole procedure, i.e. a three-dimensional NIfTT image, known as the raw
image, which is described in terms of a 3-D matrix n — by — n — by — p whose elements
are called voxels and whose dimension n and p are reconstruction dependent. The 3-D
matrix can be considered as a discrete space in which the raw image is embedded, and
this called the native space. Examples of native space images are give in figure

In this section we point out that raw images are not directly usable in a data analysis,
as they are not comparable with each other. We will then show how this problem can be
solved by using so-called image registration.

Let us consider two or more medical images. They can be:
e multi-modality images of the same subject (for example one PET and one MRI)

e mono-modality images of different subjects (such as two PET od two different sub-
jects)

e mono-modality images of the same subject acquired at different time

Whatever category the images you want to study belong to, the common point is that
different images are not directly comparable, as they are embedded in spaces of different
dimensionality and/or as they are not aligned with each other, as you can see in m

In other words, if we consider N images, the same anatomical point P will be de-
scribed by N different sets of three coordinates: this represents a central problem in
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(a) (b)
Figure 3.14: Examples of coronal (a) and axial (b) sections of two raw images.

medical imaging analysis.

Image registration is the process which permit to align different images in a common
coordinates space through a transformation between the two spaces. The goal of image
registration is to find a map which transform points from one image to homologous points
on a second image. Registration brings one image to match another image, such that the
same voxels refers roughly to the same structure in both brains.

The best transformation is the one which map into each other two points related to
the same anatomical point. Let us consider the simplest registration problem, namely the
one which involve two images.

A generic 3 — d image can be described by a function g defined on a M-by-N-by-P grid

x — g(x) €eR (3.57)

where x is a point a on the grid.Let f(x) the fized image and the let m(y) the moving im-
age, where x and y are points of the reference space and of the moving space respectively.
Often the fixed image is a template, but you can register any two images with each other,
there is nothing special in a template from the computation perspective. Registration
is treated as an optimization problem with the goal of finding the best spatial mapping
T* which minimizes the distance d equation (or maximize a similarity measure s
between the fixing and the moving image:

T = ar%?rin d(f, I(T'(m))) (3.58)
T = ar%nr;ax s(f, 1(T(m))) (3.59)

where 7 is the space of the all possibile transformations and where represents the action
of a given interpolator on the transformed intensity 7'(m). Indeed, it is important to
observe that images are defined on a grid of integer values, so points mapped by T" could
not belong to a grid point (see figure on the next page).When a transformation is
applied to the input image, a new grid is obtained and an intensity interpolation algorithm

73



Figure 3.15: The red point, which belong to the moving space, is mapped by the transformation 7" in
the yellow point. While the red point has a well-defined intensity value, since it corresponds to a grid
point, the yellow point does not: the intensity value at this point is estimated by interpolation.

is necessary for the computation of new intensity values at every transformed grid point
[157].

Image registration algorithms can broadly be classified in two categories according to the
transformation models they use to relate the moving image space to the reference image
space: affine transformations and elastic transformations.

The most general affine transformation is a composition of

xz sinf cosf 0 O x
. y | | —cosf sinf 0 0 Yy
e rotations S T 0 0 10 z
1 0 0 0 1 1
2 s, 0 0 0 x
. y/ . 0 Sy 0 0 Y
e scaling 1710 0 s, 0 z
1 0 0 0 1 1
! 1 0 0 ¢t z
_ vy | [0 1 0 ¢, Y
e translations 1~ 1o o0 1 ¢ z
1 0 00 1
x 1 a 00 x
| 0100 Y
e shear 1 1o o0 1 o >
1 0 001 1

and it is completely defined by 12 parameters.

Affine transformations action is global, as they are not functions of the application
point. As a consequence, affine transformations cannot model local geometric differences

between images.
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Figure 3.16: (a) Image registration as deformable model with attraction. (b) A deformed image,
considered as a deformable grid, is diffusing through the contours of the objects in the static image, by
the action of some effectors, called demons, situated on these interfaces.

On the contrary, elastic transformations are capable of locally warping the moving
image in order to align it with the reference image.
As an example of elastic transformation, one of the most efficient methods is the Demons
algorithm[149]. This algorithm consider non-rigid registration as a diffusion process
where some entities (called demons) pushing voxels of the moving image according to
local characteristics of the reference image, as illustrated in figure [3.16|
The forces which push voxels are inspired from the optical flow equations [19], and the
registration procedure alternates several steps of computation of the forces and of regular-
ization by means of a Gaussian smoothing. An improvement of the demons algorithm is
the Diffeomorphic demons algorithm [155]. Diffeomorphisms are powerful assumptions in
image registration, as they preserve the topology of objects. It is important to notice that
the deformable registration process modifies the intensities of the moving image since it
matches them on the target image. This means that in principle a perfect correspondence
can be reached. However it must be taken into account that in this case the image
information would be completely lost. Furthermore, diffeomorphisms are considered to
be a good working hypothesis when no additional information about the spatial transfor-
mation is available. The image information can be recovered by analyzing the warp field
through the Jacobian of the transformation.

The choice of the registration distance d(f,T(m)) (similarity measure d(f,T'(m))) is
a crucial issue in order to obtain a good image alignment. No distance is a priori better
than another. The most widely used is cross-correlation equation , Mean Squared
Error equation and Mutual Information equation ([3.62)).

Let f = I(T(m)) the interpolated and transformed moved image. Let f; and f; the
intensity related to i-th voxel (i = 1...N), where N is the total number of voxels of the
two images. The measures just mentioned are defined as follows

5 S = D=0

CC(f, f) = (3.60)
VEL (= Xl (- Py
MSE(f, f) = %ZN: (3.61)
NI, ) = U+ (D) - HU ) (3.62)
where H(f) = [ps(x)log(ps(z))dz is the Shannon entropy and H(f, f) is the joint en-

tropy.
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The Mutual Information is zero if the two sets f and f are independent, i.e. if

P(f.f) = P(f)P(f)-

By definition, CC metric has a maximum when images intensity are linearly related.
If we consider two aligned images acquired with the same modality, we expect respective
intensities are lineary related, as the two images convey the same information. Therefore,
CC similarity measure may be a good choice in registering mono-modality images [69].

On the contrary, gray-level intensity values of medical images acquired in different
modalities (such as MRI and PET) does not convey the same information. Then there is
no reason to suppose a linear intensity relation between two different modality. This fact
make CC not the best choice in registering multi-modality images. A better choice in this
case could be the Mutual Information, because it can measures how much information
is shared between images with respect to a probabilistic description of their respective
intensities values.

The drawback of MI is its sensitive to noise. As noise in one or both images increases, the
joint entropy of the two images increases, consequently the mutual information decreases
[69].

Affine registration is generically used in aligning two images of the same patient (which
can be acquired with two different modalities or not), while elastic registration is used
in inter-subject registration in order to take into account the inter-subject anatomical
variability.

Whichever registration algorithm and metric are chosen, a template or reference space
is fundamental to standardize coordinates across many patients. One of the most com-
monly used space is the Montreal Neurological Institute (MNI) coordinate spaceﬂ

3.6.1 ANTSs software

Image registration is in practice performed using appropriate software which, through
optimized algorithms, actually searches the best transformation which relates the moving
and the fixed images, i.e. searches for the solution of the equation or . Once
the best transformation is found, the software applies it to the moving images, hence the
registered image is finally obtained.

One of the most used medical image registration toolkit is ANTs (Advanced Normal-
ization Tools) E|, and during my PhD I used ANTs too in order register medical images,
as discussed in section 4.2l

To achieve optimal registration, ANTs provides rigid, affine and diffeomorphic trans-
formations which can be individually used as well as combined together. A rigid transfor-
mation is a particular type of affine transformation which not deform or scale the brain,
it is just a roto-translation with no shear and no scaling.

"Montreal Neurological Institute: http://www.bmap.ucla.edu/portfolio/atlases
http:/ /stnava.github.io/ANTSs/
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The best transformation we are looking
for is based on finding a global minimum
of a distance/maximum of similarity mea-
sure (see eq. [3.58[3.59). However image
registration is in general a non-convex op-
timization problem, thus a large number of
local optima could be present. [112].

To try to overcome this optimization
challenge, ANTS enables the use of a multi-
level approach (also called resolution-
pyramid-scheme) [112]: ANTs registra-
tion working principle is based on mul-
tiple resolution gradient descent frame-
work [I4]. ANTSs improves the registra-

iterations tion within each algorithm gradually at
. ) . ) different resolutions, called levels. The
Flgure. 3.17: A naively 11.1ustra.tlon of a two-levels ANTSs multi-level approach working prin-
resolution approach for optimzation: the blue curve
curves represent the registration metric distance be- ciple is described as follows: we start with
tween a fixed and a moving non smoothed image, ”blurry” images (first level, low resolution,
while the red curve represents the distance between highly smoothed), register those to each
a fixed and a moving smoothed image. other, then we go to the next level, with
a sharper higher resolution version, and so on. At each level we use the transforma-
tion obtained from the previous level as starting position: as smoothing and sampling
decreases, we get closer and closer to the global minimum with increasing precision.

The multi-level approach is superior to the single-scale version as it is much less likely
to get trapped in a local minimum because of the smoothing effect of the pyramid, as
schematically shown in figure[3.17 Furthermore, it is much faster because most iterations
are performed at the coarsest resolution [151]

Each level is divided into a given number of iterations, which are the maximum num-
ber of iteration that the gradient descent can do in order to find the minimum.

distance

ANTs allows a high level of customization of the registration algorithm through the
choice of numerous parameters. The most important are

e the registration metric
e the transformation used (e.g. affine, diffeomorphic...)
e the number of levels and the maximum number of iterations per level

e the gradient step. In affine transformations gradient step state how big the linear
shifts will be, while in diffeomorphic ones it tells the algorithm how much each point
can move after each iteration.

e the shrink factor, used to control resolution
e the smoothing factor, used to manage smoothing

Focusing now on diffeomorphic transformation, after each iteration a gradient field which
indicates how each voxel will shift in space is computed. This small deformation (or
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updated gradient field) is combined with previous updates to form a total gradient defor-
mation. Becuase each point can follow its own path, non-realistic deformations can occur,
which may make images look like unrealistically stretched. To resolve this issue a penalty
is usually added, such that shifts are not considered independently at each point. Thus,
for non-rigid transformation only, we furthermore have two parameters which control the
updated and the total gradient field:

e the update field variance, which is a parameter which serves as penalty on the
updated field at each iteration. This parameter smooths the deformation computed
on the updated gradient field, before this is added to previous deformations to form
the total gradient field. Thus, for each point the deformation of neighboring points
is taken into account as well, which avoids too much independent moving of points
at each iteration (i.e. a point cannot move 2 voxels away in one direction if all it’s
neighbors are moving 0.1 voxels away in the other direction).

e the total field variance, which is a parameter that serves as penalty on the total
gradient field. It smooths the deformation computed on the total gradient field.

Once registration process has been computed, ANTs gives as output not only the
registered image, but also the transformation used, and, in the case of diffemorphic
transformation, also the deformation field and its inverse.

Finally ANTs provides a tool called AntsApplyTransform which allows to apply a
transformation previously computed and stored in PC memory.

3.7 Image semi-quantification

PET semi-quantification refers to all those algorithms which aim to measure the presence
of a certain biomarker in some brain regions of interest (ROIs) using one (or more) static
PET scan per subject.

Semi-quantification, which is also called relative quantification, differs from absolute
quantification because it does not require kinetic models, dynamic scans and arterial
blood samples.

Although semi-quantification is slightly less accurate than the absolute one, it has the
great advantages of being both really simpler to achieve and less invasive for patients, so
it is a widely used tool in medical imaging.

Semi-quantification allows us to estimate a biomarker both regionally and globally.
Global semi-quantification refers to mean biomarker value across all the ROIs, while
regional quantification refers to biomarker evaluation in each ROI.

ROIs are usually defined as regions of a brain atlas. A brain atlas is a spatial partition
of a template in subsets which represent the ROIs.

Each ROI is uniquely defined by a gray-level intensity label.

As an example, the AAL atlas is shown in figure on the next page

Regardless of the specific method, semi-quantification require two inputs (subject im-
age and atlas) and provide semi-quantification values as output. More precisely, given a
PET image P and an atlas A = {ROI,... ROIy}, a generic semi-quantification method
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Figure 3.18: A pictorial 3 — D visualization of the AAL atlas

S is as a function

(P,A) = S(P,A) = [sp1, ..., 5,n] €ERY (3.63)
where s, is the semi-quantification value related to the i¢-th ROI of the p-th subject.

During my PhD I have dealt of semi-quantification: absolute quantification has been
just mentioned above for completeness, but it will be never used or discussed anymore
during this thesis.

Therefore, since there is no chance of misunderstanding and for the sake of simplicity,
I will from now on refer to semi-quantification just as quantification.

In this thesis I focus and explain two quantification method: SUVR and ELBA.

3.7.1 Standardized Uptake Value ratio (SUVr)

The most used quantification method is the Standardized Uptake Value ratio (SUVr).

It is known that the radiotracer binds (aspecifically) to the biomarker. The amount of
radiotracer at a given point is proportional to the image gray-level intensity at the same
point. Thus it seems to be reasonable to define intensity-based measures. However the
intensity range is not the same across different images, then a intensity normalization is
required to compare intensities of different images. The intensity normalization problem
is by fixed defining a reference region against which the intensity of any other ROI is
assessed. Let R the ROI to quantify and let NV a reference region. SUVr is an intensity
based measure defined as

f (ICCER)

f(IzeN)

where [, is the intensity of the z-th voxel and where f is a function on the intensity which
usually may be the mean, the median, generic n-th quantile, etcetera. In this thesis we
set f as the mean, thus from now on SUVr will be defined as

w2 1o
SUVr = 20 (3.65)
v 2 Lo

TEN

SUVr = (3.64)

where nr and ny are the number of voxels which belong to R and to N respectively.

The reference ROI choice is quite arbitrary and constitutes an important issue.
This ROI have to be as independent as possible from subjects clinical profile, thus it is
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Figure 3.19: Schematic illustration of Standard Uptake Value ratio (SUVr) calculation: target PET is
registered to a template image, and the uptake ratio is computed

usually chosen among those regions for which there is minimal specific binding of the
tracer. Furthermore, the ability to correctly segment the chosen reference region must be
taken into account, as a poor quality segmentation could lead to significant uncertainty
in the count.

With regard to amyloid load quantification, there are several possible choices [134] [89]
such as the encephalic trunk [89], the cerebellum GM [122], 89] or the entire cerebellum
(both GM and WM) [35], 89, [104].

3.7.2 Evaluation of Brain Amyloidosis (ELBA)

Evaluation of Brain Amyloidosis (ELBA) is a fairly recent quantification measure [32].
ELBA is conceptually different from SUVr-like measures as it is not based on ROI inten-
sity values, but rather on intensity distribution pattern.

The main advantage of quantifying the amyloid load using ELBA is that it does not

require any reference region. The drawback of ELBA are basically two. While SUVr is a
local measure of intensity, ELBA is an ensemble measure, so ELBA might lose precision
in quantifying very small regions, as the number of voxels might not be sufficient to
capture meaningful patterns. The second limitation is related to the appliWhile SUVr
is a generic measure, ELBA is specific for amyloid quantification, as it is based on an
empirical amyloid-specific observation.
The second limitation concerns the domain of applicability of SUVr and ELBA: while the
former is a generic class of measures which can be used in many fields of medical imaging,
the latter is specific for amyloid quantification, as it is based on an amyloid-specific
working hypothesis.
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(a) Negative scan (b) Positive scan

Figure 3.20: Three iso-intensity curves taken at different intensity values (quantile 30, 60 and 80 %
of intensity distribution) for patients with low amyloid deposit (a) and for a patient with high and
widespread amyloid deposit (b).

Here is the working hypothesis: let us consider brain as a whole. Both geometri-
cal appearances of iso-intensity surfaces and whole-brain intensity histograms are rather
characteristic in typical negative and positive subjects. Positive subjects scans tend to
show a sparser and more convoluted appearance of the iso-intensity surfaces with respect
to negative scans[32]. Figure provides an example of what just said.

The aim of ELBA is to quantify these characteristics through two features: one that
gauges the iso-intensity surface complexity and another that assess the histogram ten-
dency toward higher/lower values for positive/negative scans.

Here I will describe the ELBA algorithm.

Geometric features Let B; a brain region, let v the generical voxel € B; and I, the
intensity of the voxel v.

First of all B, is partitioned into n iso-intensity levels 0 < L; < 1 taken at equal quantile
distances of the whole intensity distribution (n is typically set at 32 of 48).

Partitions consist of couples {s;,V;}, where s; is surfaces and V; is enveloped volumes
defined as

V,i={veB, | L >L}

5=y 1 (3.66)

vedVj
(3.67)

where the OV} denotes the boundary of V;. As the sum have been computed on 9V},
s; represents the number of voxels on the V; boundary.

Let us consider the volume V; of the j-th partition. The radius rJ of the equivalent

sphere of volume V is
1
v 3Vi\3
ri = ( J) (3.68)

s
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Figure 3.21: This plot illustrates the characteristic curve (r,,rs) for low/high amyloid burden scan
(thick/dotted curve respectively). Values are normalized to the respective brain volume and boundary.
The thin line is the bisector.

while the equivalent sphere having the same surface extent as s; is

P = (3—J)2 (3.69)

4
Considering equations equation (3.69) and equation (3.68)) on the previous page for all
partitions, (i.e. forall j = 1...n), we get a set of ordered pairs R = {(r7,75), ..., (r},7r5)}.

Plotting R on a Cartesian plane lead us to obtain a characteristic curve inferiorly bounded
by the bisector line r, = ry. The bisector line represents the limit for all s; being actual
spheres.

The area A included between the bisector line r, = r, and the characteristic curve
r°(r’) increases as s; became rougher and notched.

When we subtracted the trivial bisector line, typically positive scans show a higher
surface-to-volume ratio on the higher intensity levels (low r¥ ) with respect to the lower
intensity levels (high 7V ), and viceversa for negative scans.

The characteristic curve is integrated without the bisector area on the lower and higher
half of its domain D (i.e. the range of ¥ ) to deliver the geometric feature G;:

_ fDl(Ts(r) —r)dr
Sy (rs(r) —r)dr

where D1 = [min(r?),r?/2] and D2 = [r?/2, maz(r’)].

Gi (3.70)

Intensity features The intensity feature is based on the intensity values in Bi. To
characterize the different trends of intensity histograms in positive and negative subjects
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Figure 3.22: Comparison between the intensity histograms (cortical region) in the scan of a subject
with limited amyloid burden (above) and one with large load (below). The tendency of the distribution
toward high intensity values in the positive scan is evident

( see figure we used the distance between the average intensity I,,.qn, and the two
intensity percentiles ¢ = 1% and gg9 = 99% as described by the ratio

[mean -
O, = —mean — 01 (3.71)

99 — [mean

ELBA score The two adimensional image features G; and C; are combined with the
geometric mean to provide the ELBA score for B; which is defined as

E; = \/GiC; (3.72)

3.8 Computing

Computational neuroimaging tools require substantial computational resources and the
increasing availability of large image databases will further enhance this need [127].

In this context, a really effective and often indispensable solution when working with
neuroimaging data is provided by parallel computing and outsourced analysis.

Parallel processing is the execution of program instructions by dividing them among
multiple processing units (CPUs), this allows to remarkably reduce the running times, as

jobs are performed concurrently instead of in sequence.

The typical parallel execution can be easily made nowadays on common multi-core
desktop PCs, where different code fractions are taken on independently by each available
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CPU.

Following the same principle, but adapting it on a large scale, it is possible to dis-
tribute jobs on high computing performance interconnected architectures: this allows to
leverage the collective computational power of multiple machines, which are called nodes.

What was said represents the key-point of clusters and grids. A cluster is a group of
nodes that are connected by a high bandwidth and low latency local area network (LAN).
Clusters are often informally called farm.

Grids are larger distributed system solutions: a grid is typically a collection of inter-
connected and de-localized clusters owned by different institutes to leverage the collective
computational power of these shared resources.

All the algorithms described in this thesis have been executed on a dedicated server
farm within the INFN-GE ICT infrastructure. The ensemble counts 7 multi-CPU units
(100 cores overall) with 2 Gb RAM per core.

A shared file system is available across the cluster, via fiber channel, with 10 Tb of
disk space.

All servers are running Scientific Linux release 6.8 (Carbon) operating system, and
have been equipped with several packages and libraries focused on neuroimaging such as
ANTS and AntsRegistration EL Freesurfelﬂ7 ITKH as well as a licensed calculus software
Matlabfl

LONIpipe E| The simple way with which we implemented parallel processing scheme
on this network of servers is based on the LONI Pipeline Processing Environment [49].

The LONI Pipeline is a free distributed system for designing, executing, monitoring
and sharing scientific workflows on grid computing architectures [128].

LONTI Pipeline is a free distributed cross-platform java-based environment for design-
ing, executing and monitoring scientific workflows on grid/cluster computing architec-
tures.

Thanks to this environment it is possible to design a block programming paradigm
where each block (or node) identifies a single executable. Streams can be designed where
nodes are concatenated as directed graphs receiving input from former modules and send-
ing output to following ones, as you can see in figure [3.23] Any command-line driven
processing program or routine can be represented as a module, and submitted for execu-
tion to the different machines composing the calculus infrastructure.

3http://picsl.upenn.edu/software/ants

thttps:/ /surfer.nmr.mgh.harvard.edu
Shttps://itk.org

Shttps://it.mathworks.com /products/matlab.html
"https://pipeline.loni.usc.edu/
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Figure 3.23: A basic LONI Pipeline workflow. Data streams flow from left to right: output of previous
modules (Module 1) is fed as input to following ones (Module 2, Module 3). The final yields of the chain
are comfortably collected in data-sink local folders Output 1 and Output 2.

LONTI Pipeline responds to the scheme:
client job submission — remote analysis — client output retrieving

this approach saves client machines from all of the computational burden, and users
from waiting for jobs completion connected.

LONI Pipeline grants jobs independent execution: the same steps are performed for
each single image without any interaction.

One of the main advantages of LONI Pipeline is that it allows users to surgically ac-
cess and interact with workflow execution collecting information, status and intermediate
results at each level of execution as well as pausing/interrupting it at will.

LONTI Pipeline parallel execution allows to process a large quantity of images (~ 10?)
at the same time. This leads to a huge amount of saving time, as the computational
time to process many images is roughly the same of a single-image execution on a regular
desktop PC. For all these reasons, LONIpipe is widely used in neuroimaging case studies,

as you can see in [33], 34, BT, [30].

3.9 Database

3.9.1 Database building and managing

The practice of data sharing is growing in society, particularly in the scientific community,
as vast amounts of data continue to be acquired [I17]. With the rapid advances being
made in neuroimaging technology, data acquisition, and computer networks the successful
organization and management of neuroimaging data has become more important than
ever before[152].

As neuroimaging databases have grown in size and complexity, an effort to quickly and
efficiently store, manage and browsing data is required.
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RELATIONAL DATABASE

primary keys primary keys

SubjectsData n .
) Quantification
ID_tabledati patient_ name positivity sex age tracer center ID_quantification 1 patient name « 1 TYPE VALUEL
a1
 amET—— T137YANT001 ELBA 0.7098
47 JANTO001 NEG F 82 FLORBETAPIR ANVERSA ai S N
1140 pANT0O01 Suvr 1.1515
48 JANT002 POS M 73 FLORBETAPIR ANVERSA
e » - 1142 JANT002 ELBA 0.9427
49 JANT003 NEG M 51 FLORBETAPIR ANVERSA
1138 JANT002 Suvr 16003
50 JANT004 POS = 74 FLORBETAPIR ANVERSA
— ~ 1139 JANT003 ELBA 0.7985
51 JANT00S POS F 73 FLORBETAPIR ANVERSA
] - 1141 JANT003 SuVr 1.1607
52 JANTO06 POS M 74 FLORBETAPIR ANVERSA
- - — - . 1150 JANT004 ELBA 1.0699
53 JANT0O7 POS F 67 FLORBETAPIR ANVERSA
1135 JANTOO4 Suwr 14313
54 JANT008 POS F 82 FLORBETAPIR ANVERSA
a . 1136 JANTO00S SuUVr 21521
55 JANT009 POS M 68 FLORBETAPIR ANVERSA
1149 BANTO0S ELBA 11988
56 CKTDLD POS F 83 FLORBETAPIR ANVERSA
1143 JANT006 Suvr 1.3558
1144 JANT006 ELBA 09422
1146 JANT007 ELBA 1.0297
1148 JANTO07 Suvr 14474
Ffureign keys 1147 JanToo8 ELBA 08627
1145 JANTOO8 Suvr 1622
1151 JANT009 Suvr 1.3676
1152 JANT009 ELBA 1.0641
1153 JANTO10 Suvr 15639
1154 :NTOIO ELBA 0.9747

Figure 3.24: SubjectsData and Quantification are two tables of a relational database. The column
patient name contain the foreign keys, which easily allow to relate the data stored in the two tables.
Both the primary keys uniquely identify rows (i.e. data record) in each table.

A database can be defined as an organized collection of data, which is usually stored
and accessed electronically from a computer system.
The access to a database is usually provided by a database management system (DBMS),
which is a software system that enables users to define, create, maintain and control access
to the database [38] There are different typologies of databases (hierarchical, graphical, re-
lational etc...), but the relational one is probably the most popular. A relational database
is managed by a relational database management system (RDBMS) and it can be defined
as a database based on the relational model of data [36].

More in detail, a relational database is characterized by the presence of two elements:
table and keys.
Tables are the the ”containers” where all the data is stored, and they are made up of
rows and columns. Each column represents a specific datatype (attribute), while each
row represent a data record.
Keys define the relational structure of a database and they are diveded into primary keys
and foreign keys.
Primary keys are defined independently for each table: for each rows in a table, there
exist one and only one primary key value (i.e. if a table has n rows, then it has also n
different primary key values).
Foreign keys allow to relate the information in one table to that in another table.
How a RDBMS works is graphically explained in figure

MySQL MySQL is a widely used RDBMS based on SQL (Structured Query Language)
programming language. MySQL has many advantages: it is easy to use, it is free and
open source, it is reliable (has been around since 1995) and secure (you need to be logged
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through a password to browsing the database, and the password itself is encrypted in
MySQL), and it has a large community of developers who can help answer questions.
Furthermore it can be accessed using phpMyAdmin, as I will better explain in the next
paragraph.

Users with administrator privileges can import data and create, copy, drop, rename
and modify databases tables, while other users are allowed to browse the database only
after a username and password login.

phpMyAdmin phpMyAdmin is one of the most popular MySQL administration tools:
it is a free software written in PHP which allows you to administer a MySQL database
via any browser.

The software is intended for both database administrators and users, who can access the
database after logging in through user name and password.

An intuitive web interface enables all logged users, according to their privileges, to browse
databases and tables, to import/export data to various formats (CSV, SQL, XML, Open-
Document Text and Spreadsheet, Word and LATEX) and to manage databases, tables,
columns, users and permissions.

However, you still have the ability to directly execute any SQL statement through SQL
queries via PhpMyAdmin: creating complex queries can be made easier through the use
of Query-by-example (QBE).
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Chapter 4

Materials

4.1 AmyDB Database

Using MySQL T built a relational database, called AmyDB, where I stored all the neu-
roimaging data made available to me. AmyDB can be also accessed via phpMyAdmin.

AmyDB is multicentric and multitracer amyloid-PET database made of 1001 subjects
from a naturalistic population. Data were provided by 14 EADC (European Alzheimer’s
Disease Consortium) clinical centers and other 7 memory clinics and excellence centers
for Alzheimer Disease.

Images have been acquired using 4 different tracers (PIB (146), Florbetaben (280), Flor-
betapir (369), and Flutemetamol (190)). Each subject has at least one amyloid-PET late
scan.

DICOM files have been provided for 562 subjects. However DICOM files do not give
us a complete knowledge about image acquisition and reconstruction for all subjects:
acquisition scanners (manufacturer and model) are known for 543 subjects, while PET
reconstruction methods as described in the DICOM files are known for 514 subjects.

Of these 514, detailed reconstruction information are given for 290 images only (see
table , while for the other images only roughly reconstruction information are known:
the type of reconstruction (iterative vs analytical), the inclusion of PSF in reconstruction
method and the use of TOF in photons detection.

The global cortical AS load of each late scan has been assessed by 4 independent ex-
pertise nuclear medicine physicians through a dichotomic evaluation (POS/NEG label).
It is important to point out that even though database subects are labelled by a POS/NEG
amyloid assessment label, they can not be respectively considered as case and controls.
This is because controls needs to be healthy subjects: as PET scanning is an invasive
procedure, in clinical practice PET examination is usually performed only on subjects
with symptoms and clinical pictures which justify such an exam.

Moreover basic demographics and neuropsychological assessments are provided for all
subjects: age, sex, MMSE (Mini Mental State Examination), Education (years). Further
neuropsychological details were not available for the whole dataset and have been dis-
carded in this analysis.
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All these demographic data are summarized in tables [4.1]

Inclusion-exclusion database criteria could be different center by center, as they de-
pend both on country own’s legislation and at least on physician’s opinion. This fact
leads to a between-centers heterogeneous demography, size samples and clinic (see table

11).

Furthermore, it is important to notice that AmyDB is also very heterogeneous with re-
gard to images acquisition: images have been acquired with different scans and acquisition
protocols, as illustrated in tables and

Images belonging to the same clinical center are usually acquired with the same

scanner and with same reconstruction method, even though this is not always true, as
illustrated in tables 3] and .4

Finally, 198 images have been evaluated regarding their quality by an experienced
nuclear medicine physician: three dichotomic labels "High Quality” (HQ)/” Low Qual-
ity” (LQ)for evaluating three different quality facets of images have been provided. Qual-
ity labels will be used in chapter [6]

89



Center Tracer Sample Sex(F-M) Amy(N-P) Age MMSE Education
GNV BEN 15 6-9 5-10 72.60 (7.80) [55.00 - 82.00]  27.67 (1.95) [24.00 - 30.00]  10.53 (5.17) [0.00 - 18.00]
HSR BEN 49 28 - 21 26 - 23 69.80 (7.68) [51.00 - 87.00]  25.62 (3.36) [16.00 - 30.00]  10.91 (4.81) [0.00 - 17.10]
MAN BEN 32 15- 17 13- 19 65.78 (9.78) [48.00 - 85.00]  24.39 (4.16) [13.00 - 30.00]  11.53 (4.30) [3.00 - 21.00]
PDV BEN 86 40 - 46 54 - 32 69.31 (9.92) [43.00 - 86.00]  25.85 (3.17) [16.00 - 30.00]  12.90 (4.85) [0.00 - 30.00]
FBB BEN 9 4-5 3-6 68.00 (6.73) [56.00 - 77.00]  24.36 (3.62) [18.26 - 28.00]  12.33 (5.15) [4.00 - 18.00]
UPG BEN 38 22 - 16 21-17 68.21 (6.30) [53.00 - 82.00]  26.15 (4.64) [16.00 - 30.00]  13.11 (4.42) [4.00 - 21.00]
TVG BEN 51 38- 13 33-18 69.67 (6.69) [56.00 - 80.00]  25.56 (4.21) [13.00 - 30.00]  12.74 (4.13) [3.60 - 19.30]
ANT PIR 74 35 - 39 31 - 43 71.55 (7.53) [51.00 - 85.00]  25.07 (3.68) [15.00 - 30.00]  15.69 (4.39) [5.00 - 30.00]
BRE PIR 75 42 - 33 36 - 39 71.09 (6.63) [54.00 - 84.00]  25.32 (3.12) [18.00 - 30.00]  10.89 (4.98) [0.00 - 21.00]
GEN PIR 57 27 - 30 19 - 38 72.93 (5.01) [57.00 - 83.00] 26.07 (3.62) [13.00 - 30.00] 9.86 (4.64) [0.00 - 21.00]
GNV PIR 41 21 - 20 26 - 15 72.48 (7.81) [55.00 - 87.00]  25.27 (4.31) [13.00 - 30.00]  13.47 (4.06) [0.00 - 20.00]
MAR PIR 26 14 - 12 17-9 77.77 (7.34) [68.00 - 90.00]  27.62 (4.16) [12.00 - 30.00]  11.54 (3.08) [7.00 - 17.00]
MON PIR 14 8-6 3-11 71.93 (5.20) [64.00 - 82.00]  21.21 (3.83) [16.00 - 26.00]  9.29 (4.05) [5.00 - 18.00)
CUN PIR 33 11 - 22 11 - 22 69.24 (7.10) [48.00 - 82.00]  27.00 (2.18) [18.00 - 30.00]  10.33 (4.41) [5.00 - 17.00]
PAV PIR 19 10-9 5- 14 75.89 (5.85) [65.00 - 87.00]  24.10 (5.72) [13.00 - 30.00]  7.43 (3.83) [3.60 - 17.00]
PER PIR 10 7-3 5-5 76.70 (2.58) [72.00 - 80.00]  25.70 (4.08) [19.00 - 30.00]  7.50 (3.72) [4.00 - 13.00]
UBS PIR 20 12-8 11-9 64.75 (8.88) [51.00 - 81.00]  25.76 (2.82) [19.00 - 29.00]  12.61 (3.90) [5.00 - 17.10]
GEN MOL 15 8-7 5-10 69.67 (7.68) [54.00 - 79.00]  26.73 (3.17) [18.00 - 30.00]  10.60 (4.34) [5.00 - 17.00]
PAR MOL 44 26 - 18 37-7 62.09 (8.21) [41.00 - 82.00]  27.86 (1.81) [23.00 - 30.00]  13.37 (3.46) [6.00 - 20.00]
PRT MOL 97 49 - 48 29 - 68 69.57 (8.85) [48.55 - 87.98]  23.59 (4.74) [13.00 - 30.00]  12.48 (5.16) [3.60 - 30.00)]
ROM MOL 18 8-10 6-12 63.78 (7.86) [48.00 - 79.00] 23.08 (7.00) [4.00 - 30.00] 12.00 (3.36) [5.00 - 16.00]
FBB MOL 14 11-3 6-8 79.14 (4.37) [68.00 - 84.00]  23.38 (4.98) [13.00 - 29.00]  11.50 (4.00) [4.00 - 19.30]
UBS MOL 2 1-1 0-2 71.00 (5.66) [67.00 - 75.00]  20.50 (6.36) [16.00 - 25.00]  13.15 (8.70) [7.00 - 19.30]
CoI PIB 68 34 - 34 27 - 41 65.51 (7.23) [49.00 - 77.36]  23.03 (5.87) [4.00 - 30.00]  8.49 (4.75) [2.00 - 15.00]
LIS PIB 78 52 - 26 21 - 57 65.72 (7.69) [43.00 - 81.00]  23.95 (3.89) [14.00 - 30.00]  12.69 (3.99) [4.00 - 17.00]

Tracer Sample Sex(F-M) Amy(N-P) Age MMSE Education

BEN 280 153 - 127 155- 125  69.04 (8.40) [43.00 - 87.00]  25.68 (3.74) [13.00 - 30.00]  12.25 (4.67) [0.00 - 30.00]

PIR 369 187 - 182 164 - 205  72.02 (7.29) [48.00 - 90.00]  25.52 (3.84) [12.00 - 30.00]  11.74 (4.97) [0.00 - 30.00]

MOL 190 103 - 87 83 - 107 68.02 (9.33) [41.00 - 87.98] 24.76 (4.77) [4.00 - 30.00] 12.43 (4.55) [3.60 - 30.00]

PIB 146 86 - 60 48 - 98 65.62 (7.45) [43.00 - 81.00]  23.51 (4.93) [4.00 - 30.00]  10.73 (4.83) [2.00 - 17.00]

Table 4.1: Top table: demographic data per center and per tracer. Bottom table: demographic data

per tracer. Amy(N-P) is the number of negative and positive subjects respect to A load. BEN, PIR,
MOL stand for Florbetaben, Florbetapir and FLutemetamol respectively.
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Rec-Scan Tracer Sample Sex(F-M) Amy(N-P) Age MMSE Education
IPT -BGR40mCT  BEN 9 4-5 3-6 68.00 (6.73) [56.00 - 77.00]  24.36 (3.62) [18.26 - 28.00]  12.33 (5.15) [4.00 - 18.00]
1-1080 BEN 15 6-9 5-10 72.60 (7.80) [55.00 - 82.00]  27.67 (1.95) [24.00 - 30.00]  10.53 (5.17) [0.00 - 18.00]
UKN -DSC 690 BEN 21 12-9 10-11 69.52 (8.30) [51.00 - 87.00] 25.67 (2.43) [21.00 - 30.00] 12.06 (4.54) [4.00 - 17.10]
UKN -DSC STE BEN 27 16 - 11 15 - 12 69.89 (7.44) [54.00 - 81.00] 25.61 (4.05) [16.00 - 30.00]  10.09 (5.00) [0.00 - 17.10]
1-DSC STE BEN 45 34-11 31- 14 69.64 (6.92) [56.00 - 80.00]  26.18 (3.62) [18.00 - 30.00]  13.20 (3.94) [3.60 - 19.30]
1-DSC ST BEN 25 14-11 14-11 67.60 (7.30) [53.00 - 82.00]  25.95 (4.80) [16.00 - 30.00]  14.08 (4.58) [4.00 - 21.00]
IP -BGRA0mCT BEN 29 13- 16 11-18 65.08 (10.64) [48.00 - 85.00]  24.33 (4.23) [13.00 - 30.00]  12.17 (3.97) [4.00 - 21.00]
I -BGRmMR BEN 73 36 - 37 47 - 26 69.48 (9.80) [43.00 - 84.00] 25.83 (3.25) [16.00 - 30.00]  12.93 (4.94) [0.00 - 30.00]
IPT -BGR4OMCT  PIR 74 41-33 36 - 38 71.14 (6.66) [54.00 - 84.00]  25.27 (3.13) [18.00 - 30.00]  10.85 (5.00) [0.00 - 21.00]
IPT -DSC 690 PIR 20 13-7 10- 10 65.05 (8.89) [51.00 - 81.00]  25.76 (2.82) [19.00 - 29.00]  12.46 (3.78) [5.00 - 17.10]
IPT -BGR64mCT  PIR 5 1-4 0-5 67.60 (8.08) [60.00 - 80.00]  27.40 (1.52) [26.00 - 29.00]  13.40 (3.51) [8.00 - 17.00]
IPT -1080 PIR 27 9-18 11-16 69.67 (7.13) [48.00 - 82.00]  26.96 (2.33) [18.00 - 30.00]  9.93 (4.39) [5.00 - 16.00]
1-1080 PIR 57 27 - 30 19 - 38 72.93 (5.01) [57.00 - 83.00] 26.07 (3.62) [13.00 - 30.00] 9.86 (4.64) [0.00 - 21.00]
IPT -BGR128mCT  PIR 41 21-20 26 - 15 72.48 (7.81) [55.00 - 87.00]  25.27 (4.31) [13.00 - 30.00]  13.47 (4.06) [0.00 - 20.00]
1-DSC ST PIR 10 7-3 5-5 76.70 (2.58) [72.00 - 80.00]  25.70 (4.08) [19.00 - 30.00]  7.50 (3.72) [4.00 - 13.00]
IP -DSC 600 PIR 12 8-4 2-10 71.67 (5.57) [64.00 - 82.00]  20.50 (3.66) [16.00 - 25.00]  9.50 (4.36) [5.00 - 18.00]
1 -DSC 600 PIR 2 0-2 1-1 73.50 (2.12) [72.00 - 75.00]  25.50 (0.71) [25.00 - 26.00]  8.00 (0.00) [8.00 - 8.00]
IPT -UKN PIR 19 10-9 5-14 75.89 (5.85) [65.00 - 87.00]  24.10 (5.72) [13.00 - 30.00]  7.43 (3.83) [3.60 - 17.00]
IPT -BGR4OMCT  MOL 13 11-2 6-7 79.15 (4.54) [68.00 - 84.00]  23.25 (5.17) [13.00 - 29.00]  11.38 (4.14) [4.00 - 19.30]
IT -BGR64mCT  MOL 18 8-10 6- 12 63.78 (7.86) [48.00 - 79.00]  23.08 (7.00) [4.00 - 30.00]  12.00 (3.36) [5.00 - 16.00]
1-1080 MOL 15 8- 7 5-10 69.67 (7.68) [54.00 - 79.00]  26.73 (3.17) [18.00 - 30.00]  10.60 (4.34) [5.00 - 17.00]
Reconstr Tracer Sample Sex(F-M) Amy(N-P) Age MMSE Education
IPT BEN 9 4-5 3-6 68.00 (6.73) [56.00 - 77.00]  24.36 (3.62) [18.26 - 28.00]  12.33 (5.15) [4.00 - 18.00]
P BEN 29 13- 16 11-18 65.17 (9.89) [48.00 - 85.00]  24.48 (4.08) [13.00 - 30.00]  11.93 (4.30) [3.00 - 21.00]
1 BEN 158 90 - 68 97 - 61 69.53 (8.52) [43.00 - 84.00]  26.14 (3.53) [16.00 - 30.00]  12.96 (4.68) [0.00 - 30.00]
IPT PIR 186 95 - 91 88 - 08 70.96 (7.62) [48.00 - 87.00]  25.54 (3.66) [13.00 - 30.00]  11.18 (4.74) [0.00 - 21.00]
P PIR 12 8-4 2-10 71.67 (5.57) [64.00 - 82.00]  20.50 (3.66) [16.00 - 25.00]  9.50 (4.36) [5.00 - 18.00]
I PIR 70 34 - 36 26 - 44 73.33 (4.99) [57.00 - 83.00]  26.03 (3.59) [13.00 - 30.00]  9.57 (4.56) [0.00 - 21.00]
IPT MOL 14 11-3 6-8 78.29 (5.44) [67.00 - 84.00]  22.69 (5.34) [13.00 - 29.00]  11.95 (4.50) [4.00 - 19.30]
IT MOL 18 8-10 6-12 63.78 (7.86) [48.00 - 79.00] 23.08 (7.00) [4.00 - 30.00] 12.00 (3.36) [5.00 - 16.00]
I MOL 17 9-8 5-12 70.53 (7.62) [54.00 - 79.00]  26.53 (3.02) [18.00 - 30.00]  10.53 (4.20) [5.00 - 17.00]

Table 4.2: Top table: demographic data per roughly reconstruction information, scan model and tracer.
Bottom table: demographic data per roughly reconstruction information and tracer. Regarding recon-
struction information, I stands for iterative method, P denote the inclusion of PSF in reconstruction and
T denote the using of TOF technology to detect photons. With regard to scan model, BGR stands for

Biography, while DSC stand for Discovery.

BEN, PIR, MOL stand for Florbetaben, Florbetapir and FLutemetamol respectively, while Amy(N-P) is
the number of negative and positive subjects respect to AS load.
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Rec - Scan BRE GEN GNV HSR MAN MON PDV CUN PAV PER ROM FBB UBS UPG TVG

IPT - BGR40mCT 74
IPT - DSC 690
IPT - BGR64mCT
IPT - 1080
IT - BGR64mCT
I - BGR40mCT
I-1080
IPT - BGR128mCT
UKN - DSC 690
UKN - DSC STE
I1-DSC STE
I-DSC ST
I-DSC 690
IP - BGR40mCT
IP - DSC 600
I-DSC 600
IPT - UKN
I - BGRmMR
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Scanner BRE GEN GNV HSR MAN MON PAD CUN PER ROM FBB UBS UPG TVG

BGR40mCT 74 0 0 0 29 0 0 0 0 0 23 0 0 0
DSC 690 1 0 0 21 0 0 0 0 0 0 0 22 0 0
BGR64mCT 0 0 0 0 0 0 0 6 0 18 0 0 0 0
1080 0 87 0 0 0 0 0 27 0 0 0 0 0 0
BGR128mCT 0 0 41 0 0 0 0 0 0 0 0 0 0 0
DSC STE 0 0 0 27 0 0 0 0 0 0 0 0 0 45
DSC ST 0 0 0 0 0 0 0 0 10 0 0 0 25 0
DSC 600 0 0 0 0 0 14 0 0 0 0 0 0 0 0
BGRmMR 0 0 0 0 0 0 73 0 0 0 0 0 0 0

Reconstr BRE GEN GNV MAN MON PDV CUN PAV PER ROM FBB UBS UPG TVG

IPT 75 0 41 0 0 0 32 19 0 0 22 20 0 0
1P 0 0 0 29 12 0 0 0 0 0 0 0 0 0
IT 0 0 0 0 0 0 1 0 0 18 0 0 0 0

I 0 87 0 0 2 73 0 0 10 0 1 2 25 45

Table 4.3: Tables describing the numerosity of the couple (reconstruction information, scanner) versus
clinical centers (top), of the scanner versus clinical centers (middle), of reconstruction information versus
clinical centers(bottom).

It should be noted a strong relation between scanner-center and reconstruction information and center
LP,T,.BGR and DSC have been defined in table
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Reconstruction Details BRE GEN GNV MAN CUN ROM FBB

PSF+TOF3i21s
OSEM3D+TOF3i21s
PSF+TOF4i21s
OSEM3D5i24s
PSF+4+TOF5i21s
OSEM2D4i14s
OSEM2D6i16s
OSEM2D2i24s
OSEM2D4i16s
PSF3i24s
OSEM3D+TOF4i21s
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Table 4.4: Detailed reconstruction information are known for 290 images. In this table you can find the
numerosity of detailed reconstruction methods versus clinical centers.
Here ”i” and ”s” stand for iteration and subset respectively.
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In the final part of this section I will describe the database structure.
AmyDB consists of 3 tables:

e Subjects. This table is basically used to summarize all the database subjects as
well as to define the foreign keys once for all. It contains all the anonymized subject
code-names which will be used as foreign keys

e SubjectsData. This table contains:

— patients basic demographic and clinical information at the time of image ac-
quisition
— PET images file paths (raw paths, registered paths, DICOM file paths, and

transformation matrices/warp fields related to each registration process has
been done)

— three dichotomic quality labels (HQ/LQ) for the assessment of three different
facets of scans quality

— a two-value label which serves as registration quality flag

— data acquisition information and provenance, such as acquisition center, tracer,
used scanner and image reconstruction protocol (when available)

e Quantification. All the quantification information are stored in this table: each
data record contains the global and regional semi-quantification values computed
using ELBA and SUVr methods (described in sections [3.7.1] and [3.7.2) as well as
the atlas used to quantify

4.2 Image preprocessing

In this section I describe the image preprocessing which basically consists of two steps:
image registration and image quantification. These two steps are necessary to organize the
raw data (i.e. DICOM files or raw images (see section [2.7)) into quantification matrices
that allow us to perform subsequent analyses.

4.2.1 Image preprocessing overview

Before describing in detail the registration and quantification algorithms I used, I will
describe the relation between registration and quantification. This will allow a better
understanding of the registration and quantification algorithms and the choice of related
parameters that will be discussed in the next sections.

The goal of my registration and quantification algorithm is to register each subject’s
image in the MNI space using as fixed image the [CBM152 templateﬂ(which is an MRI
structural template) and then to quantify images using two brain atlases and two different
quantification method, ELBA and SUVr.

'In this text, the acronyms MNI and ICBM152 are used indiscriminately to identify the template-space
and the template image itself.
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Registration and quantification in case of patient’s structural images are avail-
able Having at disposal, in addition to PET, also patient’s structural image (e.g. MRI)
allows to perform an optimal registration and quantification process, which is described
here below

e Let consider a specific subject. The subject’s PET raw image is co-registered on
the subject’s MRI raw image [I,; through an affine transform. We denoted the
co-registerd PET image by Ip.

e Then I, is mapped into the template using an affine trasform denoted by A, ob-
taining the affine registered image Inj4 = A(Iy)

e The affine image I;4 is mapped into the template using a diffeomorphic trasnform
W, leading us to obtain the diffeomorphic registered image Ipy = W(lpa). We
notice that both A and W are invertible maps which relate the patient’s anatomical
structures and those one of the template.

e Then we apply the affine transform A on the PET image Ip. We obtain the PET
affine registered image Ipy = A(Ip). This is the image we will quantify.

e Let R a given atlas which we would like to use for quantification. Typically R
is a parcellation of the template, hence it is embedded in MNI space and it is by
definition aligned with the template.

e Let consider the W previously computed. Applying the inverse transform W~ we
are able to map the atlas R on Ip,, obtaining R4 = W~!(R). We emphasize that
R4 is the patient-like representation of the atlas R.

e Finally quantification can be performed using the couple (Ipa, R4) as generically
described in function [B.63

This algorithm may seem cumbersome, but it is necessary to get a good quantification
result. Quantifying using the couple (R, [4) instead of using (R4, [ 4) is not a good choice
at all. Each patient has its own individual local variability which remains present in [4,
as an affine registration can not take into account local variability. The regions of the
R atlas is not patient-dependent and hence using R could lead to wrong quantification,
especially if small regions are considered.

Registration and quantification in case of patient’s structural images are not
available Sometimes the structural images of patients are not available. In particular,
the AmyDB database I built does not have structural images. This means that the above
process cannot be performed. It is therefore necessary to use an alternative procedures.

Actually the algorithm I have used is similar to the previous one but it is not driven by
the structural images; in other words the above mentioned A and W transformations will
not be computed using the structural images of the patients, but they will be computed
using only the PET. Some tricks will be required to avoid problems associated with this
different approach. Here I describe the algorithm I used

e Let consider a raw PET image Ip. We map Ip to the template using an affine
transform denoted by A, obtaining the affine registered image Ips = A(Ip). As in
the previously described algorithm, this is the image we will quantify.
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e [p, is mapped to the template using a diffeomorphic transform W

e Let consider the W previously computed. Applying the inverse transform W~! to
the atlas R, we obtain Ry = W~(R).

e Exactly as for the other algorithm, quantification can be performed using the couple
(Ipa, Ra)

In this framework, the diffeomorphic transformation plays an important and delicate
role.

We notice that, in principle, a diffeomorphic registration is able to find a W such
that the transformed image is mapped exactly to the template. Such a W is what we
wish to have in the case where the structural image is available, so that the anatomical
structures of the patient and the template are perfectly mapped. However, in the case
we are considering now, such a transformation is not appropriate at all.

We are mapping a radiotracer distribution onto the structural MRI template. The
radiotracer being lipophilic, binds nonspecifically to certain anatomical structures in which
there is no f-amyloid, typically the skull and white matter. For this reason it is grossly
possible to distinguish some anatomic macro-regions by observing a PET scan. However,
it must be emphasized that a map between a PET and template is not a map between
anatomical structures, but at least it can be considered as a map between a distribution
of radiotracer carrying some, gross anatomical information and the anatomical structures
of the template, which is very detailed.

So, at the end of the story, a diffeomorphic transformation W without any constraint
on the deformation field, which acts locally on a small spatial scale (the typical length
scale of the gray matter gyri, where the clinical signal, i.e. AS, accumulates) will lead to
exchange clinical with anatomical information. Therefore the atlas obtained by W~!(R)
will be absolutely improper to identify the patient-like atlas ROIs.

The above can be clarified with an example. Let us consider 2 subjects, with exactly
the same brain anatomy (identical MRI), but with two different amyloid loads, one very
positive and one very negative (different PET). Registering the two PET on a template
without any deformation field small scale constraints could give two transformations W
and W, potentially very different from each other, as the registration algorithm starts
from two different PET images. Since W) differs from Wy, then Wy (R) # Wa(R). How-
ever, by hypothesis, the two patients have the same anatomy, thus they must share the
same R4 atlas. This example shows why such an approach is wrong.

To overcome, or at least mitigate, this problem, I put contraints on deformation fields
so that deformations on the small spatial scale were strongly suppressed, leaving the
possibility of slight deformations at a large spatial scale, which is typically that of the
coarse structures a-specifically evidenced by the radiotracer distribution.

Structures that are typically modified by the constrained deformation field are the
shape of the brain , ventricles and cerebellum.

To do that I used ANTs, that offers the possibility to control the computed and total
gradient, as showed in [3.6.1] The computational details, such as the specific choice of
parameters, of the registration algorithm are described in the next section.
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Figure 4.1: The pipeline for registration

4.2.2 Registration pipeline

The first preprocessing step is image registration. First of all I converted DICOM files
using the dem2nii software.
Then I built a pipeline for images registration using LONIpipe and ANTs. ANTs has been
employed with notable success in recent public, unbiased, international evaluation studies
[15] and allows the use of various types of concatenated transformations, both affine
and non-affine; each transformation can be controlled by the user through appropriate
parameters in order to obtain the best result. ANTs is described in the section and
LONIpipe has been discussed in section [3.8]

The registration pipeline is illustrated in figure [£.1} here below I will report the de-
scription of the single modules of the pipeline.

Raw NIfTT Images : here I listed the paths of the raw images to register (i.e. the
moving images).

Template : here I listed the path of the fixed image, which is the template ICBM152.

AffineAndDiffeomorphic : this is the module used to register images through three
consequential transformations: a rigid, an affine and a SyN transformation. SyN is one
of the diffeomorphic transformation provided by ANTs, I used this one because it is
considered as one of the top performing algorithms [88]. This module requires two input
NIfTT images, the moving raw image and the fixed image (ICBM152 template) and gives
as output the diffeomorphic registered image, the global affine transformation file (as a
composition of the two consquential rigid and affine transformations) as well as the total
gradient field (and its inverse) which drives the SyN transformation. Here below is the
bash pseudo-code I used in this module

antsRegistration \

-n Linear \
I used a linear interpolator. There are many interpolation schemes proposed in the
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literature, but linear interpolation seems to be the best for higher accuracy in this
framework[112]

-t Rigid [0.1] \

I did a rigid transformation with 0.1 gradient step

-m MI \

MI stands for Mutual Information that is the metric I used for registration. I used MI
because it is very for multi-modal image registration.

-c 1000x500x250x100 \

This parameter controls levels and iterations: I chose a 4 levels registration, 1000,500,250,100
are the maximum number of iteration steps for each level. Note that the number of it-
erations is reduced at each level because it is assumed that the algorithm approaches at
each level more and more to the global optimization; in particular the start of level n is
the global optimum find at level n — 1. For this reason, as we approach the optimaztion,
the convergence steps can be fewer and fewer. It is not necessary to reduce the number
of iterations, but it is strongly recommended to have an agorithm considerably faster.
-s 3x2x1x0 \

The sigma-smoothing values for each step: o = 3,2,1,0. To convert the sigma in amount
of mm you can use roughly a factor of 2.36. The above correspond roughly to 7mm, 5mm,
2mm and Omm (no smoothing).Note, smoothing is applied before shrinking the image to
lower resolution.

-f 8x4x2x1 \

The 4 level steps will have resolutions divided by 8,4,2,1

-t Affine[0.1] \

I did an affine transformation with 0.1 gradient step. The parameters of the affine trans-
formation listed below are the same as those of the rigid one, so I report them without
comments

-c 1000x500x250x100 \

-m MI \
-s 3x2x1x0 \
-f 8x4x2x1 \

-t SyN[0.1,7,1] \

I performed a diffeomorphic SyN transformation, with a gradient step of 0.1. The values
7 and 1 are the update field variance and total field variance penalties respectively (see
section [3.6.1)). As detailed discussed in section [£.2.1] we need to put hard constraints to
deformation fields, just accepting small deformations on large spatial scales. As update
field variance is very related to small scale local image stretching, I chose a big penalty
for it, while I choose a smaller one for total field variance.

-m MI \

-c 100x75x50%x25 \

I chose a 4 level registration again, but the number of convergence iterations is consider-
ably smaller than in the rigid and affine transformations. This is because we are assuming
that the rigid and affine registrations has already been sufficiently precise. Furthermore,

we want small local deformations, so few iterations are sufficient for our purposes.
-s 3x2x1x0 \

-f 8x4x2x1 \
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Figure 4.2: The quantification pipeline

ApplyTransform The composition of rigid and affine registration matrix is given in
input together with raw image to the ” ApplyTransform” module. To do that I used the
antsApplyTransform command which allows to applies a given transformation to an
input image. The output of this module is the affine registered image.

OrganizeOutput This module allows to organize all the files previously obtained in the
database AmyDB. In particular I stored in AmyDB the diffeomorphic and affine registerd
images as well as the global affine transfomations, the deformation fields and their inverse.

4.2.3 Quantification pipeline

Once the images were recorded I quantified them following the algorithm presented in
section 4.2.1} To quantify images I used the pipeline in figure [4.2]

Images have been quantified using two methods, ELBA and SUVr, and they were
quantified both globally and regionally using two different atlases, one made of 14 ROIs
and one made of 50 ROIs.

The SUVr score has been computed using the whole cerebellum as reference region,
which is illustrated in figure [£.3] T chose this reference ROI because is less prone to
segmentation errors than the selection of the cerebellum gray matter alone or the brain
stem, as reported in some works in literature [134].

Now I will briefly describe the most important quantification pipeline modules:

MNI affine PET Here I listed all MNI affine registerd images to quantify.

Mask Preprocessing As discuss in the algorithm described in section [£.2.1], here the
patient-like atlas is computed: the diffeomorphic inverse transform is applied to all atlas
ROIs by creating ROIs masks adapted to patients.

matFileCreation Here the ROIs mask and the affine registered images are stored in a
MATLAB file which will be used for quantification
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Figure 4.3: Axial section of a florbe-
tapir PET image. Green lines enclose the
cerebellum, often indicated as reference
region; a good contrast between WM/GM
(higher /lower part of the of highlighted ar-
eas) can be noticed

QuantificationAnalyisis This module contains
the computational implementation (MATLAB
based) of ELBA and SUVr quantification methods
as described in sections B.7.2l and B.7.1]

ExtractElbaSuvr, InsertElba and InsertSuvr
these modules simply serves to save the quantifica-

tion values obtained to text files and hence to insert
them in the AmyDB database.
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Chapter 5

Data Harmonization in PET imaging

In section [3.7) we explained what quantification is in the context of PET imaging and we
give the operation description of two quantification methods, ELBA and SUVr.

In chapter [ I described the AmyDB database highlighting its heterogeneity both
clinically and related to image acquisition and reconstruction methodologies.

In chapter [2 I described the acquisition and reconstruction methods in PET imag-
ing, showing all the factors that can affect both the two steps as well as highlighting
the huge variability that is present in such steps, as many different PET scanners and
reconstruction methods can be used, each of them with different properties, strengths
and weaknesses.

Furthermore, in chapter [2, I emphasized how the perceived quality of PET images is
strongly influenced by the data provenance, where data provenance is a shortcut to de-
note everything that involves the "history” of a given image, i.e. all the steps required to
obtain a PET image as a 3D matrix of voxels (NIfTT image) starting from the radiotracer
injection. Moreover, I point out that image quality can influence the quantification values.

We can think of quantification as a measurement process aimed at synthesizing the
distribution of a signal of interest, i.e. the distribution of the radiotracer, through a vector
of quantification. However this signal is in general affected by the data provenance, in
particular the most important data provenance factors are

e scan detector properties(e.g. detector efficency, dead time, energy and time window,
TOF availability etc... )

e scatter and random coincidences

e type of acquisition (2D vs 3D)

e inclusion of a resolution model (PSF)

e type of reconstruction used, e.g. analytical or iterative

e the choice of a specific parameters set for a given reconstruction method, e.g. subset
and iteration in OSEM reconstruction
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I will refer to all these factors as noise. This definition is improper because this is not
noise in the proper sense of the term: noise is typically a stochastic process which can be
described in probabilistic terms.

Although some signal degrading factors in PET imaging are actual noise (e.g. Pois-
sonian noise affecting photon counting), many other degrading factors are not properly
noise: consider for example the artifacts introduced in the texture a due to image recon-
struction in iterative reconstruction methods.

However, here the main point is to distinguish between true signal (the relative dis-
tribution of radiotracer) and anything that degrades signal information. In this sense I
operationally define noise as anything that degrades the signal we want to measure.

To summarize, we are dealing with a database, AmyDB, consisting of images with
different provenance, from which we extract a measure of quantification that will be
affected by the provenance itself, and we would like to perform a single study involving
all these quantification measures.

The above can be framed within a problem of data harmonization. Indeed data
harmonization refers to all efforts to combine data from different sources and provide
users with a comparable view of data from different studies [70].

This issue will be deepen discussed below.

5.1 Multicentric and monocentric studies

Monocentric (or single-center) studies are studies conducted on a statistical sample from
a single clinical center, whereas multicenter studies are based on the analysis of data from
many centers.

Single center studies are logistically easier and cheaper with respect to multicen-
tric ones. Furthermore they do not require prolonged negotiations on the study pro-
tocol and they typically deal with a less heterogeneous population, thereby diminishing
confounding[2I]. The primary shortcoming of single-center studies is their potentially
limited external validity [42]. Interventions tested in a single clinical environment are not
necessarily generalizable to a broader population [21].

Benefits of multicenter studies include a larger number of participants from different
geographic locations, the possibility of inclusion of a wider range of population groups,
and the ability to compare results among centers, all of which increase the generalizabil-
ity of the studies. Multicenter trials are difficult to conduct, and when underpowered or
poorly conducted may be even less useful than a single-center trial.[21]

Even though both monocentric and multicentric studies have pro and contra, the
scientific community is certainly directed towards multicenter studies [41} 103, 2, O0];
indeed monocentric studies investigate samples whose size are typically small and this
may lead to incomplete, or even misleading, results. [103].

However, multicentric studies, in order to achieve valid and generalizable results,
must take into account the so-called data harmonization problem. Data from differ-
ent clinical centers have a different provenance, and the data provenance could have a
very big impact on studies results, this is especially true in PET multicentric studies,
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where data provenance is highly varied and can have a significant impact on image quality
and therefore on quantification and at the the end of the story on the results of the studies.

For this reason, together with the growing need for multicentric studies, there is in-
creasing attention to the issue of data provenance and the development of harmonization
techniques, e.g. [113}, 156, 00, 2l 4T, 42 R0, [5l T08].

IN 2017 Aide et. al [2] have pointed out that in addition to the issue of reconstruction
method and scanner, other effects such as errors in the administration of the radiotracer,
patient movement, blood glucose level and uptake period can have a significant impact
on the quality of the image.

In 2015 Sunderland et. al. [146] published an oncological PET survey study in which
they reported that differences in site-specific reconstruction parameters increased the
quantitative variability among similar scanners, with postreconstruction smoothing filters
being the most influential parameter: in their survey involving 237 PET/CT systems in
170 international imaging centers, with technology advancements spanning more than
a decade and covering the three major PET manufacturers (GE Healthcare, Siemens
and Phillips Healthcare made up approximately 56%, 34% and 10%), more than 100
reconstruction parameters were reported.

Moreover, in an international PET oncological survey, in 2011 Beyer et al. [23]
reported that 52% of sites used alternative protocols with adapted reconstruction param-
eters, instead of the acquisition and reconstruction guidelines.

In 2019 a neuroimaging survey of Jovicic et al. [85] completed by 459 partecipants
(MRI 53.6% of participants, EEG 30.3%, and PET-SPECT 16.1%) revealed a substantial
lack of harmonization for analysis tools and the necessity of harmonize multivendor image
reconstruction parameters.

In 2021 Verwer et. al [I506] state that rigorous quality control and assurance are
required in order to prevent that variability and differences between PET systems with
regard to image quality can affect research conclusions or patient diagnostics; this is
especially true when the effects studied are small (e.g. annual change in amyloid signal
in Alzheimers disease), so that data from multiple centres need to be combined to form
the large datasets needed to obtain statistically significant conclusions.

In 2016 Akamatsu et al. [5] pointed out that the SUVr quantification values of PET
amyloid images are not directly comparable if the image reconstruction parameters have
not been prior-calibrated by individual centers using phantoms, since quality features
such as noise or resolution typically affects SUVr values.

At the end of the story, multicentric studies could be considered as double-edged sword:
they are very important to improve results statistical significance, but the significance
improvement can be considered as a real improvement only if the data provenance is
taken into account and mitigated through harmonization.
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5.2 Prospective and retrospective harmonization in
PET imaging

PET harmonization methods can be divided into two categories: pre-preocessing and
retrospective harmonization.

Prospective harmonization addresses the issue considering standardization of acquisi-
tion protocols and reconstruction settings. A Prospective strategy is by definition asso-
ciated with less noise and improved statistical power, potentially allowing for more valid
interpretations[42].

Typical prospective harmonization is based on phantom studies in which different
PET scanner and/or reconstruction method are compared in order to obtain the best
reconstruction parameter to achieve harmonized images. Phantom were used as a ground
truth to test the radiotracer distribution reconstruction ability. Examples of these stud-
ies are [I50} 102, 138, O7]. Prospective harmonization is related to standardization of
acquisition protocols: in previously section we reported many literature which highlight
the lack of standardization thus a retrospective harmonization is often required. I will
not discuss further the prospective harmonization since it is not a topic I have addressed
during my PhD.

Retrospective harmonization addresses the harmonization issue in the feature domain
by either selecting features prior to the statistical analysis based on their robustness
in order to rely only on features insensitive to multicenter variability, or by keeping all
features and harmonizing their statistical properties so they can be pooled during the
modeling step [42].

Here below I will briefly discuss the most used retrospective harmonization techniques.

Harmonization only based on imaging sites A naively approach for harmonizing
across imaging sites is a simple z-score normalization. Consider an image-derived mea-
surement y;;¢ for imaging site ¢, subject j, and feature type f (e.g. SUVr). Once the
mean ptf and he standard deviation o;5 has been computed for each imaging site and
feature (if more than one is present), the features harmonized value yg s Is given by

Yijr — pif
il = Jigf — P (5.1)
Oif

where subject j was scanned at site 7.

a general linear model approach that includes site or scanner as a fixed effect covariate

Another approach can be used to take into account the site-specific effects is the linear
regression. To this end, site becomes a regressor in a linear regression

Yijf = af + Vi + €ijf (5.2)

where o is the mean of the feature of a reference site (the intercept), v;r is an additive
imaging site effect and ¢;;5 is the residual for the subject j of the site 7.
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Thus the features harmonized value is the residual
H A
Yijr = Yijf — Vif (5.3)
where 4, is the estimator of 7,5 computed solving the corresponding ordinary least squares
problem for the considered dataset.

Harmonization preserving demographic variability: linear model Let us con-
sider a multicentric study in which N centers are involved. In general we are dealing
with a multicentric sample S made of single-center samples S, ..., Sy. If the study is
not designed a priori, samples could be unbalanced with respect to demographic/clinical
variability: in general there is no reason to expect that samples are equivalent with re-
spect some demographic or clinical factors which may influence the output feature we
are studying. For example, it could happen that the sample S; has an average age of 65
years, while for sample .S,, the average age is 75 years. Subject’s age is obviously a con-
founding factor for amyloid quantification, as the amyloid burden typically increases as
age increases. Fitting a model as described in equation (5.2]) will leads to ignore this fact;
indeed such a model is equivalent to consider the between-samples age demographic dif-
ference like if it were a center difference (where we point out that ”center difference” refers
to ”data provenance difference” only). In this context we would like to take into account
subject-specific information due to demographic/clinical variability. To fix this problem
we add a vector variable k; to the model to indicate a set of demographic/clinical
confounding variables for each j-th patient (e.g. age, years of education...), obtaining

Yijf = af +7if + K;Br + €ijy (5.4)

where k; is the set of confounding variables related to subject j and where §; is the
regression coefficient for the feature f. We notice that given a j-th subject, the confound-
ing vector k; can be written as k; = (kj1,...,kjr), where R is the number of covariates
considered. Thus k; can be considered as a matrix K, where j goes from 1 to the total
number of subjects and r goes from 1 to R.

Then one can harmonize considering the partial residual
Viip = Yiis — it (5.5)
where 4,5 is the estimator of 7,y computed solving the ordinary least squares problem
given in equation ((5.4)).

Harmonization preserving demographic variability: ComBat Harmonization
ComBat is an harmonization method introduced for genomic data harmonization by John-
son et al. [84] to correct the batch effect (BE). In genomic BE occurs when non-biological
factors in an experiment cause changes in the data produced by the experiment; in partic-
ular BE refers to technical variation or non-biological differences between measurements of
different groups of samples. If this systematic bias is not removed, its effect can mask im-
portant biological differences, at worst resulting in misleading inferences and conclusions
[109).

In 2017 and 2018 Fortin et al proposed the ComBat method to harmonize diffusion
tensor imaging EI data [63] and for harmonization of cortical thickness measurements ob-
tained from different MRI scanners [62] respectively.

! Diffusion tensor imaging is an MRI imaging tecnique
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In 2018 Orlhac et al. [113] proposed ComBat to harmonize radiomic features extracted
from FDG(Fluorodeoxyglucose)-PET oncological images.

The idea that underlies the use of ComBat for medical images is the analogy between
batch effect and data provenance effect (e.g. scanner, reconstruction protocol...): both are
effects due only to technical factors afferent to the acquisition of the data that introduce
a systematic error that affects the output variable that we are interested to study.

ComBat can be considered as a generalization of a simple linear model given by equa-
tion : ComBat adds a site-specific scaling factor ¢, yielding a model that adjusts for
additive and multiplicative effects. In addition, ComBat uses empirical Bayes for inferring
model parameters, which assumes that model parameters across features are drawn from
the same distribution.

ComBat harmonization model assumes that the value y;;¢ of the feature f for the
subject 7 and center i can be written as follows [84]:

Yijr = oy + KBy + i f + digeijr (5.6)

where ¢ is the average value across ¢ and j indices for feature y;;r, K, is the matrix
of the covariates of interest, B is the vector of regression coefficients corresponding to
each covariate for the feature f, v;; is the additive effect of center ¢ on feature f, d;¢
describes the multiplicative scanner effect, and ¢, is an te residual variance unexplained
by the linear model, which is supposed to be normally distributed with a zero mean.

ComBat harmonization uses Bayes Empirical estimation for estimating v;; and o,
supposing that «;; follows an inverse gamma distribution and ¢, follows a normal dis-
tribution. We denoted the empirical Bayes estimation of «;; and d,f by 4y and Sif
respectively. The harmonized value is then obtained as [84]:

omBa Yijf — & —K'rB — % A A
ygf Bat _ Jijf / 5 Jjrf f+af+Kjr6f (5.7>
if

where ay and Bf are estimators of parameters ay and 3y respectively. It is important to
observe that K, is a matrix which summarizes the covariates of interest. This covariates
of interest are preserved by ComBat algorithm.

5.3 Fixing the notation

At this point it is convenient to fix some notation once and for all to avoid misunder-
standings.

Confounding variables Let consider a model which relates an input X to an output
Y and let suppose that X and Y are correlated. We might tempt to say that X causes Y,
but this is not true in general. Let consider a variable Z that is affects both X and Y; Z
could be responsible for the correlation between X and Y. In this framework Z is called
confounding variable and the correlation between X and Y is called spurious correlation;
we remark that spurious correlation never imply a causal relation between X and Y. For
example, consider you want to study causes of AD. Analyses of the data show a high
correlation between gray hair (input X) and AD (output Y'), which may naively lead to
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the conclusion that gray hair causes AD. However, the observed correlation between gray
hair and AD is only due to a persons age (confounding 7). Therefore, the association
between gray hair and AD is confounded by the common cause age. This form of bias is
known as confounding bias.

Selection bias In neuroimaging studies, various types of bias can be present that can
alter the conclusions one deduces from this study. In the first step, individuals have to
be enrolled into the study. If subjects do not faithfully represent the overall population
one wants to study, i.e., one obtains a non-random sample of a population, conclusions
will be biased. This is referred to as selection bias. The selection bias could occur in the
form of confounding variables. If samples from different clinical centers have a selection
bias we say that the samples are unbalanced.

For example, in amyloid imaging, age, sex, MMSE and years of education can be consid-
ered as confounding variables. Samples from different clinical centers may not have an
equivalent distribution with respect to clinical and/or demographic confounding variables.
Take into account confounding variables are very important to avoid misleading results.

Batch variable versus center variable It is important to remark that the variability
due to the provenance of the data is exclusively technical. The effect of data provenance
on output measures will be denoted by batch effect. This term has been borrowed by
biology but it is already used in medical imaging literaure, e.g.[62, 113].

Now I will clarify a point that can lead to misunderstandings. It may happen that
the same center acquires and reconstructs images with different protocols. Similarly, it
can happen that different research centers share the same protocol. There is therefore
no one-to-one correspondence between the center variable and the data provenance. The
center variable per se does not play any direct role on image quality, as quality is related
to the technical factors involved in creating images. As these factors are summarized in
the data provenance, I will define a data provenance specific variable, called batch variable.
It often happens that batch and center variables are equivalent as they carry the same
information, but this is not always true. This fact can be observed in the table [4.3]

Batch effect and sample bias effect Thus, statistically significant differences in the
distribution of a given output variable of interest between samples from different centers
may be due to a combination of the following effects

e batch effect (BE): all the factors (exclusively technical) related to data provenance
which is supposed to affect the output variable (quantification, for our purpose).

e sample bias effect (SE): it emerges if samples are not representative of the whole
population, i.e. samples are unbalanced. It could be due to different enrollment
criteria among centers or it could be due to other issues, such as geographical dif-
ferences: the demographic/clinical variability of the world population may not be
homogeneously distributed, but may depend on geographical location. Since mul-
ticenter studies bring together data from even very distant geographical locations,
this variability cannot be excluded a priori.
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Harmonization Here I emphasize a fundamental point: the ideal harmonization algo-
rithm is the one that completely eliminates the BE while preserving the clinical and/or
demographic variability related to the SE.

5.4 PET retrospective harmonization methods dis-
cussion

Let start this section with an observation: BE can be of marginal or major importance
depending on how pronounced this effect is and depending on what we are interested in
measuring. A measure can be more or less stable with respect to the quality of the image
and therefore to the BE. For example, if we study the global quantification of amyloid
load on the whole brain we expect that the BE is rather limited, while if we study the
regional quantification on small regions it is safe to assume that the BE will have a quite
important role.

Many multicentric amyloid PET studies take into account the BE using a simple
linear model, at most preserving the SE by inserting known confounding variables into
the model. This approach is not absolutely right or wrong, but in agreement with what
has been said above, it can be correct if we believe that the BE has a marginal role with
respect to what we want to measure.

ComBat provides an approach that is certainly more performative than a simple linear
model, however although it has been used in FDG PET in oncology studies, as far as [
know it has never been used in multicenter studies of amyloid PET imaging.

What are the limits of linear models and ComBat in taking into account the BE?
Apart from the limitations related to the assumptions on which linear models and Com-
Bat are intrinsically built, the most important even though rarely considered limitation
common to both methods is the following: we know that both ComBat and linear models
are able to take into account the batch effect by introducing a more or less sophisticated
batch variable (BV) (i.e. ;s in and ;5 and &;7 in (5.6))). Furthermore those methods

are able to preserve a set of confounding clinical/demographic variables (i.e. they can

preserve the SE) introducing an appropriate term K, 8¢ (see (5.4]) and (5.6))).

However, what is rarely emphasized even in the literature is that the confounding
variables preserved by these approaches are only the known confounding variables (KCV),
while many other (more or less relevant) unknown confounding variables (also called la-
tent) could be present. We will denote latent confounding variables by LCV.

Obviously the set of all confounding variables CVs is the disjoint union of KCVs and
LCVs sets, thus we will improperly write CV=KCV+LCV for simplicity.

In particular when we harmonize data using a method that specifies which is the batch
(introducing a suitable set of BV) and which are the variables to be preserved KCV, we
run into the possible trap of latent confounders; in practice LCVs are not preserved by
definition: they are considered by the model as part of the batch effect. LCV’s together
with BE are therefore modeled within the BVs and eliminated by the harmonization
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Variability between samples

Sample Bias Batch effect
KCV LCV BE
to preserve and  to preserve but to remove and
preserved, well removed, removed, well
done ! warning ! done!

y = KCV |+ |LCV + | BE |+ Residual + Intercept
y = a + K ||3 + + £
preserve the KCVs ¥ should contains exclusively BE information; but if LCVs are present,

Y also contains LCVs. Thus we can sloppy write ¥ = BE + LCV. In this
framework harmonizing means to fit the model and to remove the Y
effect, hence together with BE we remove also the LCVs we would
preserve.

Figure 5.1: Variability between samples arises from sample bias and batch effect. We wish to remove
the latter and preserving the former. However sample bias is splitted into a set of known (KCV) and
unknown (LCV) confounding variables. The linear model in figure are the same of (5.4, but written
with no indices for simplicity. Using such a linear model we are able to preserve only the former, while
the latter are removed together with BE. it is important to point out that the same would happen using
ComBat or any other model based on the scheme: ”give me the variables to preserve, everything else is
to eliminate”.

algorithm. This delicate point is explained in figure |5.1

Why do this actually happen? The point is that we are not modeling the batch effect.
Rather we model just the KCVs we would preserve, and we assume that everything is
not KCVs is due to the batch effect, therefore to be eliminated. However looking the set
in figure [5.1| we notice that the complementary set of KCV is not BE, but is BE +LCV,
that is what we are really removing. This problem is common to all the harmonization
methods based on the schemes:” give me a set of variables to preserve, any other statistical
difference between samples is to eliminate”.

Approaches based on this scheme work ideally only when the KCVs coincide with all
possible CVs. However, this scenario is essentially impossible to implement. If LCVs are
present, but they have a small impact, then the error committed using such methods is
reasonably negligible.

The difficulties for a realization of a scenario where LCVs would have a small impact
are both practical and theoretical. At a theoretical level, since biological phenomena
are very complex it is very hard to know a priori all the important confounders. More-
over, practically speaking, sometimes it happens that some important confounders are
unknown.
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It is important to remark that these studies are not conducted on statistical units
where variability is controlled and limited to certain aspects, but are conducted on sub-
jects who live their lives each in a potentially very different way. We do not know whether
factors such as income or lifestyle (diet, sedentary lifestyle, night rest, etc...), can have a
strong impact as confounding variables. However, what is reasonable to assume is that
these variables are dependent on the geographical location of the enrolled subjects: this
will generate unbalanced samples with respect to these variables. In addition, genetic
variability and comorbidities may be also unknown confounding variables. We do not
have an a priori model to identify all the confounding variables, and this might limit the
use of the harmonization strategies I have presented.

Some scientific articles warn about the problem of confounding variables in harmo-
nization [142, [158] 01, 110]; in particular Wachinger et al [I58] notice that in practice the
knowledge of all potential confounders is almost impossible and this could lead to easily
lose relevant subject-specific information However, harmonization also requires caution
as it can easily remove relevant subject-specific information, therefore Wachinger suggest
to use harmonization with caution.

In particular, in 2017 Lewinn et al. [93] examined whether sample composition in-
fluences age-related variation in global measurements of gray matter volume, thickness,
and surface area in MRI imaging. They proved that an uneven sample composition
across a number of basic socio-demographic (socioeconomic status, ethnicity and sex)
characteristics had introduced significative bias on results.

In context of the biology, Nygaard et al [T10] investigated various harmonization mod-
els including ComBat, and warns us that using not evenly distributed samples can lead
to errors in data harmonization, inducing apparent batch differences, highlighting how
this important point is often not take seriously into account by the scientific community.

Furthermore, with regard to ComBat harmonization, the minimum number of patients
required per imaging protocol to successfully apply ComBat remains to be comprehen-
sively investigated [114] even though the method seems to work well using small size
samples (~ 50 per "batch”).
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Chapter 6

Image quality estimation and data
harmonization: proposal for a novel
approach

6.1 Batch effect estimation using quality measures
directly extracted from the PET images

In the previous section we evidenced the limits of the harmonization approaches discussed
in section 5.2l A common point that limits theese approaches is that the batch effect
which explains some of the variability between samples is not explicitly modeled. Indeed,
the methods I previously described are based on identifying a set of known confounding
variables KCVs that one wants to preserve and on the implicit assumption that any other
statistically significant difference between samples not explained by KCVs is attributable
to the BE and therefore should be eliminated, as illustrated in figure [5.1

In this chapter I will propose a method to explicitly estimate the BE. This will be
useful to overcome the limitation just described.

Before going into detail, I will illustrate the general lines of the approach that I
followed in order to introduce my idea.

The final goal of my work is to define a set of appropriate quality measures that allow
to evaluate certain aspects of PET image quality. These aspects should be related to
the data provenance, hence I am looking for measures which are able to assess features
related to texture, noise and smoothness of the images themselves.

The main difficult in following this approach can be summarized in two factors. First,
we cannot use quality measures that require knowledge of a reference image to use as a
ground truth.

Second, we are focusing on quality variability between images, but we must take into
account that inter-images variability are not only due to quality.

For example, let consider two images with different provenance: they will differ in
quality because of different provenance. However they will also have a clinical and an
anatomical variability: the radiotracer binds specifically to amyloid and provides clinical
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information with respect to the amyloid burden itself. At the same time it binds a-
specifically to white matter and bone structure, and these latter regions have an inter-
individual variability too.

In literature image quality is commonly assessed a-priori using phantom studies. This
allows to eliminate both the problem previously introduced: we have a ground truth (the
reference image is given, as the actual radiotracer distribution is known) and we have no
clinical and anatomical variability, as we are using phantom to characterize PET scanner
quality performance.

However this approach is typically related on a prospective harmonization, in which
acquisition parameters and image reconstruction protocols are tuned a-priori. This ap-
proach is not often used: in section we reported a bunch of literature which highlights
the problem of lack of PET protocols standardization and harmonization which often
affect PET studies. Furthermore, acquisition parameters, image reconstruction methods
and type of scanner used can be combined in really many ways, so it is very complicated to
characterize them all. In addition, data provenance is not only reduced to factors measur-
able on phantoms, there are also factors related to patient movement, non-standardized
injection dosage and uptake periods.

Therefore, we want to find a number of no-reference quality measures (i.e. measures
that do not need a reference image) that are able to quantitatively describe only and
exclusively quality, ignoring the clinical and anatomical variability of patients. In other
words, the key point is decoupling quality from clinical /anatomical information.

How is it possible to obtain measures with such properties? At this point it is im-
portant to emphasizes that we have one more degree of freedom we have ignored so
far: the regions where these measures will be evaluated. Indeed it is not necessary to
use the whole image to assess quality, but it will be enough to use an appropriate part of it.

My working hypothesis is that there exist some image’s regions where the radio-
tracer uptake is a~specific bounded (no clinical variability) and in which the inter-subject
anatomical and variability is so low that the only differences we can observe between dif-
ferent PET scans are due to data provenance. Therefore the request for a set of measures
exclusively dependent on quality can be reformulated into a request for regions exclusively
dependent on quality. Regions with such property are what I used to characterize image
quality.

Thus, the points I will discuss in next sections are

I will define appropriate ROIs where I will compute quality measures

I will define 3 no-reference quality measures

I will validate measures through visual analysis as well as by verifying the link with
data provenance

I will harmonize data using these measures and I will explore the consequence of
my approach
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Figure 6.1: The lower (on the left, z = 16) and the higher (on the right, z = 26) ROI out of the 6 ROIs
I have selected. z is the axial MNI coordinate.

6.2 ROIs selection

In this section I discuss the ROIs selection where I will perform quality measures. To
evaluate just and only the PET images quality, I focus my attention only on ROIs with
the following properties:

e very low inter-subject clinical and anatomical variability

e an anatomical structure with simple and clearly recognizable shapes

e large enough to be representative of the quality of the whole image

I selected for each image of the dataset six transaxial ROIs, namely {ROI;, ..., ROIs},
defined by the following MNI coordinates:

ROL = {x,y,z | x€[40,153], y € [70,189], 2 =16+ 2(i — 1)} (6.1)
where i € [1,6].

A figurative example of ROIs I chose can be found in figure [6.1]

6.3 Quality measures

In this section I will introduce and describe the set of quality measures I defined and used.

6.3.1 Watershed
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Figure 6.2: Pictorial representation of watershed

transform working principle: all voxels in the same
basin are denoted by a unique label. Obviously the
three-dimensionality of the figure is a representation
of the voxels intensity: the higher the intensity the
higher the height. So valleys and ridges are defined
by the intensity levels of the image.

The first quality measure 1 in-
troduce aims to estimate the
granularity of PET  images tex-
ture.

Granularity can be considered
as the size of  the elemen-
tary particles that make up
the  fundamental  structure of a
texture[67].

The central idea is that texture gran-
ularity could be captured by applying a
watershed transform to the ROIs consid-
ered. Watershed transform treats the im-
age it operates upon like a topographic
map, with the intensity level of each point

representing its height. This transform identifies the ridges of the map: points surrounded
by ridges are indexed with the same label. We will refer to these regions as the valleys of
the image. An example of watershed transform is provided in figure [6.3

Watershed=3.58

Watershed=5.03

Figure 6.3: Watershed Measure. On the left
two ROIs with low granularity (top image) and high
granularity (bottom image) texture. On the right
the respective watershed transforms. In the top im-
age arises less watershed regions than in the bottom
one, as expected.

Watershed is used for image segmen-
tation in various fields, including medical
imaging [72]. A drawback of this segmen-
tation method, which especially occurs in
noisy medical image data, is that a large
number of small regions arises. This is
known as the over-segmentation problem
[121].

My idea is to take advantage of over-
segmentation in order to capture and quan-
tify the image granularity. Since ROIs de-
scribe the same anatomical structure for
each patient, and because we are assuming
ROIs individual variability is negligible, we
can conclude that the greater is the num-
ber of watershed regions, the greater is the
texture granularity.

Let W the watershed transform and let
R a given ROL. I define the watershed mea-
sure W as follows

W=log(NW(R))  (62)

where N is the operator which counts the number of watershed regions (i.e. the number
of W(R) label). We notice that W is an a-dimensional quantity.
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6.3.2 Delta Contrast

Watershed measure allows to quantify textures granularity, but it does not provide any
information about the noise amplitude. Let us consider images in figure although
textures of the two ROIs considered are both grainy, they appear very different with
regard to noise amplitude. I therefore defined a measure which allows us to quantify
textures noise amplitude. I called this measure Delta Contrast (AC). Before explaining
the procedure I followed to obtain AC I will give a mathematical definition of image
contrast.

Image contrast and co-occurence ma-
trix Image contrast can be defined using

Watershed=5.03 - 1 1 1
Matnrshed=5.03 co-occurrence texture analysis, which is

a statistical method of examining texture
that considers the spatial relationship be-
tween voxels of a given binary image (e.g.
black and white image). Co-occurence
texture analysis is based on the so-called
— gray-level co-occurrence matrix (GLCM),
s also known as the gray-level spatial depen-
dence matrix.

First of all, the image is discretized in
a given number of gray intensity level,
namely N. Then the GLCM is obtained
calculating how often a pixel with gray-
level value i occurs adjacent to a pixel
Figure 6.4: Top and bottom ROIs have almost the with the value j. Each element (7,j) in
same grainy texture, but they appear very different GLCM specifies the number of times that

about noise amplitude. AC allows to differentiate the pixel with intensity i occurred adjacent
these two images capturing the noise amplitude. . C1 . .
to a pixel with intensity j.

Once GLCM is computed some image properties such as contrast can be evaluated.
Specifically, let g;; the GLCM. The image contrast is defined as

> (0= 3)%9i
Zi,j 9ij
The formula tells us that image contrast is positively related with intensity vari-

ations of neighbor voxels. We notice that voxels intensity variations are determined by
two contributions:

C= (6.3)

e the gray-level intensity variations due to noise profile, which worsens the quality of
the image

e the gray-level intensity variations which highlight the anatomical structures, which
improves image quality

Below I will propose a method to estimate just and only the factor due to noise by
decoupling it from the contribution due to anatomical structures.
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Contrast and noise amplitude relation Before going any further, I give a proof of
what just said, namely that contrast increases as noise increases. Thus I considered all
the images of AmyDB database: for each subject I added a zero mean gaussian noise
of variable variance o to the 6 ROIs defined by and then I measured the respective
contrast C' as a function of the noise variance using the formula. I obtained 6 ROIs x
1001 subject curves Cj(o) (where i € [1,...,6 x 1001]). All the C; showed an increasing
trend, even sometimes slight fluctuations were present. These fluctuations, in addition
to being small in amplitude, had a typical length that was very small relative to the
increasing o. Therefore, they are negligible fluctuations, while the increasing trend was
very evident. However, the rate of contrast versus ¢ increment was image dependent. To
visualize what has been said, I calculated the mean value and standard deviation of the
contrast versus o curves and plotted them in figure |6.5

Decoupling contrast due to noise
from contrast due to anatom-
ical  structures Even though C
is a  monotone increasing  func-
tion of the mnoise variance o, it
can not be wused by itself to es-
timate noise  amplitude, as  con-
trast depends also on how well
the anatomical structures are high-

lighted.

14 r

Contrast

0 0.002 0.004 0.006 0.008 0.01 In order to decoupling the two
Gaussian Nolse Variance contributions to contrast, it is im-

Figure 6.5: Gaussian noise (zero mean, variable pPortant to notice that  the local
variance) has been added to ROIs images, and re- gray-level intensity  variations  due
spective contrast has been evaluated. Red curve is {5 poise have a  smaller spatial
the mean across all contrast versus variance curves,
while the light red area is the region between mean
+ 3 standard deviation of contrast curves.’

length scale than the variations due
to anatomical structures  highlight-
ing.

Thus, I applied to ROIs a gaussian filter of an appropriate radius (I chose 7 voxels
radius), so that the filter affects almost uniquely the noise. This allows to dump noise
while keeping anatomical structures highlighted at the same time.

So, to summarize, the contrast of the original image Cg is due to both noise and
anatomical structures, the contrast of the filtered image Crp is almost all due to the
presence of anatomical structures; therefore, the greater the contrast variation between
the filtered and the original image, the greater is the noise contribution to the total image
contrast. Thus, I defined the measure Delta Contrast AC" as follows

_ CR - CRF

A
C cn

(6.4)

So the grater is AC' the greater is the noise amplitude. I divided by Cg in order to
keep the measure range between 0 and 1.

116



isotropic gaussian
filter

original image: noise filtered image:
+ anatomical anafomical
contributions coniribution only, as
contrast due fo noise
has been filtered
compute image compute image
contrast GR contrast C.
. J

Y
AC =(Cy- Cpp) / Cp

Figure 6.6: Illustration of the Delta Contrast algorithm

6.3.3 Acutance

Acutance is one of the two features, together with resolution, which determines the sharp-
ness of an image [119]. Acutance is best described as how well a photographic medium
handles edge contrast. While high acutance gives crisp, clean edges, low acutance gives
fuzzy edges that are less distinct [119]. Acutance is related to intensity spatial gradient
measured along images edges[125, [51].

Therefore I will propose an algorithm based on spatial gradient to measure acutance.
The algorithm can be divided in two parts: the ROIs edges detection and the gradient
evaluation on the edges previously detected.

Edges detection In this first step an automated edges detection method is provided. A
gaussian filter of 7 voxels amplitude is applied to a given ROI in order to dump noise while
keeping the anatomical structures highlighted. Filtering is a necessary step to identify
the edges of mean features of images (i.e. anatomical structures) ; otherwise noise could
dominate the edges detection, as you can see in figure [6.7]

Once the image has been filtered, I applied a 3 voxel range-filter to highlight the edges
of the filtered image. The edges region will be denoted by E. This procedure is illustrated

in figure
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Figure 6.7: Edge detections in a highly noisy ROI: the yellow regions represent the edges identified by
the algorithm. On the left edges detection without gaussian filter: edges are not detected. On the right
edges detection using filtering: edges are correctly detected.

Figure 6.8: The 4 steps of edge detections. Top left: The ROI considered. Top right: the ROI filtered
by gaussian filter. Bottom left: range filter has been applied to the top right image. Bottom right: ROI’s
main edges (shown in yellow) detection by application of range filter mask to the initial ROI.

Gradient computation The second step is related to the evaluation of the edges gra-
dient intensity. The simple way to do that is to consider the mean value of the absolute
intensity gradient computed over the edges previously detected. Such a straightforward
approach tends to overestimate acutance, especially in noisy images: the edge’s gradient
intensity could be increased by the local intensity variations of the noise profile. A good
sharpness measure should have the ability to distinguish between sharpness due to orig-
inal high frequency detail of an image and sharpness due to high frequency noise detail
[118].

Therefore I propose a method to avoid acutance overestimation caused by high level
noise profile.

Let R(x,y) a function representing the gray-level intensity map a given ROI, where

x,y are the spatial coordinates, and let Rp(x,y) the ROI filtered by an isotropic gaussian
filter. For this purpose I chose a 7 voxels radius.
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Let us now consider the gradient of both functions, namely VR and V Rg, then let
compute the following projection

VRp

G=VR-
\VRF|

(6.5)

I evaluate the acutance using the mean across the edges E of absolute value of the
projection G by the following formula

A== 3 G) (6.6

zyek

where NN is the number of voxels which belong to the edges region E. Estimating acutance
A using formula allows to reduce the gradients noise contribution, as it is mitigated
by the projection [6.5

Indeed the filtered ROI Rp(z,y) is related to anatomical structures, because noise has
been filtered, thus the gradient versor égi | locally gives the maximum increase direction
of the anatomical structures, ignoring noise profile. Noise intensity variations are typically
isotropic, using this method the gradient components not parallel to the direction of
interest (the one defined by the maximum intensity variation of the anatomical structures
|§£§ ‘) are more or less strongly suppressed (in particular the orthogonal components are
set to zero).

Therefore acutance computed by gives a more accurate estimation then a simple

evaluation of gradient across the edges.

6.3.4 Natural Image Quality Evaluator (NIQE)

NIQE[L05] is no-reference Natural Scene Statistic (NSS) based quality measure. It is
implemented in Matlab and it is characterized by having a very good correlation (about
90 percent) between quality predicted scores and human judgments of visual quality [105].

NSS model assumes that natural
images possess certain regular statis-
tical properties[I40]. = The presence of
distortions will change the statistics
property of natural images. There-
fore, the key idea of NSS-based met-
rics is to quantify the image quality
degradations by measuring the losses
of naturalness. = NSS-based algorithms
are achieved by measuring the vari-
ation of image statistics, which are
characterized by the fitting parame-
ters of NSS model, across different
distortions|[165].

Figure 6.9: An example of a low NIQE (better
quality) and high NIQE (worst quality) transaxial
section of two different subjects.

NIQE is based on the construction of a ” quality aware” collection of statistical features
based on a simple space domain NSS model. These features are derived from a corpus of
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natural, undistorted images. NIQE algorithm is based on fitting ”quality aware” features
to a multivariate Gaussian model.

In particular, the quality of a given image is expressed as the distance between the
multivariate Gaussian fit of the NSS features extracted from the test image, and a mul-
tivariate Gaussian model of the ”quality aware” features extracted from the corpus of
natural images.

6.3.5 Matrix Dimension

Finally, the last quality measure I used is a discrete numerical quantity related to the
resolution of the image: the matrix dimension, which has been briefly discussed in section
2.7 The matrix dimension basically is the dimension of the square grid used in image
reconstruction: the higher is the matrix dimension, the higher is the number of raw image
voxels.

Resolution can be defined as the number of distinguishable elements per measurement
unit [101]. Images with higher resolution allows us to perceive the fine details contained
in an image. As the theoretical best resolution is directly proportional to the numbers of
image voxels, an higher matrix dimension is related to a better resolution [T01].

Matrix dimension can be easily obtained from raw PET images embedded in native
space.

6.4 Quality measures extraction and post-processing

I have implemented Watershed, Delta Contrast and Acutance measures in Matlab (NIQE
is already available as a function of Matlab). So I have developed an automated procedure
(Matlab based) which extracts ROIs (defined as in equation [6.1)), evaluates the quality
measures on each of the 6 ROIs and averages them. Therefore, for a given patient, a
4-dimensional vector consisting of the average across ROIs of quality measures is provided.

The size of the matrix was instead extracted in advance from the raw image in the
native space, and it has been treated as a categorical variable. This is because the values
of matrix dimension, even though they are actually number, take values in set of a few
natural numbers, namely 128,256, 336 and 512.

At the end of the story I therefore obtained a 1001-by-5 matrix, where the generic
element ¢, j corresponds to the j-th measure of the i-th patient.

The quality measures I defined are not homogeneous about their range values, then a
z-score transformation has been applied to make them comparable. Some measures are
quite correlated, as you can see in figure [6.10] (a).

In order to have a set of orthogonal measures with respect to correlation, I applied a
PCA transform (see section[3.4)). The PCA measures I obtained, denoted by {q1, g2, g3, qa },
are linear combinations of quality measures I previously introduced. It is worth empha-
sizing that no information has been lost because of PCA transformation: {qi,...,qs} are
just a different basis representation of quality measures. Here I report the PCA transform
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Nige - 1 0.92381 0.86468

Watershed - 0.92381

0.87044

DeltaContrast - 0.86468

Explained Variance (%)

Figure 6.10: (a)Quality measures corrrelation matrix. (b)Principal components explained variance.

Q1 0.58 0.58 0.56 —0.06 N,

g2 _ [—0.08 —=0.06 0.25 0.96 W, (6.7)
a3 —-0.33 —-045 0.78 —-0.26| [AC, ’
qa 0.74 —-0.67 —0.06 0.04 A,

where N, W, AC,, A, are NIQE, Watershed, DeltaContrast, Acutance z-scored mea-
sures.

Finally, the cumulative PCA explained variance is reported in figure [6.10] (b).

6.5 Quality Measures Validation

In this section a validation of quality measures previously described will be provided.

6.5.1 Independence between quality measures and clinical pro-
files

First of all, we test the independence between quality measures and patients amyloid
positivity visual assessment (P-N). This is an important step, as quality measures should
be related to date provenance only and not to clinical variability of patients.

I considered 1000 bootstrap samples and I performed a two tailed t-test to compare
the distributions of each quality measure in positive and negative populations. The null
hypothesis I tested was that m]evan[mi] = m%an[mi] where m; is the i-th quality measures

and and where mean and mean denotes the mean of ¢; across negative and positive subjects
N P

respectively. Acceptance of the null hypothesis ( therefore large p-values ) are a necessary
condition for measures validation, as rejection of the null hypothesis means that quality
measures distinguish between the patient’s clinic.

Because positivity and negativity numbers are not balanced for each center, (see table
, to avoid possible spurious correlation between center and positivity, a balanced
bootstrap has been used.
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Results suggest that NIQE, Watershed
and Delta Contrast measures are indepen-

= o i} dent from P - N assessment, while Acu-
-+ | tance p-values distribution it is very often
- }L independent although in a small fraction of

! bootstrap samples the null hypothesis that
- E | positive and negative samples come from

the same population was rejected, having
set the test significance to 5%

value [log o]

a qglt

Nige Watershed DeltaContrast Acutance 6 . 5 . 2 Visual Validat ion

Figure 6.11: P-value distribution per quality mea- Quality measures which I have defined
sures of 1000 bootstrap samples. For each quality (Watershed’ DeltaContrast, Acutance)
measure, p-values were obtained from a t-test which [ 5ve Been visually validated by an ex-
assumed as null hypothesis that the meausre’s av- . . . .
perienced nuclear medicine physician who

erages on positive and negative subjects was equal. . .
The red line represents the 5% significance level. The viewed and assessed 150 images. In par-

fractions of significant p-values (< 0.05) for each ticular, for each measure the physician fo-
measure are shown in the box. cused his attention on the feature evalu-
ated by the measure itself, giving a dichoto-
mous evaluation. Thus, the physician eval-
uated texture graininess, noise amplitude,
and image edge sharpness, giving to each of these aspects a two-values label of quality

(HQ,LQ). Results are summarized in figure [6.12]

6.5.3 Testing the ability of data provenance reconstruction

During my thesis I extensively discussed the relation between image quality and data
provenance. In particular, data provenance are often homogeneous within centers, hence
PET scans coming from the same clinical center are often comparable about quality.
Therefore it is reasonable to expect that, given the images, quality measures have the
ability to trace back to respective clinical centers and to certain aspects of reconstruction
methods.

In this section I test whether quality measures have this ability.

I explored relation between quality measures and data provenance using two random
forest classifiers, one predicting acquisition centers and one predicting a main aspects of
data provenance, namely the possible use of TOF and/or PSF during acquisition and
reconstruction steps. in order to investigate the quality measures prediction ability with
regard to the two output classes just mentioned. The input of random forest were the 5
quality measures which I introduced in section [6.3]

Training set and test set have been randomly chosen with the following proportion:
70% for the former, 30% for the latter. The database is imbalanced about output classes
(see tables and [1.3): as discussed in section training a classifier on an imbalanced
dataset can lead to loss in accuracy in minority classes predictions. To avoid this problem,
we randomly oversampled the training set in order to balance the numerosity of the output
classes.
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Figure 6.12: Visual validation results of quality measures. Boxplots of each measure versus visual label
(HQ/LQ) are reported. Furthermore in the bottom right figure the ROC curves of each measures and
the respective AUC are reported.

I chose for both the classifiers 300 clas-
sification trees. The minimum number of
leaf and number of randomly selected pre-
dictors have been considered as hyperpa-
rameters optimized by minimizing the out
of bag error. Once hyperparameter has
been optimzed, I trained the algorithm on
the whole training set, then I tested the

Total accuracy [92.5%]
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generalization ability on the test set. The
o & < prediction results for the test set are sum-

N e %! N . . .
& @ marized in confusion charts [6.14] and [6.13]

Predicted Class

Figure 6.13: Reconstruction methods confusion Centers-quality measures relation
chart. Let focus the attention on the wrong pre-
diction of center confusion charts illus-
trated in As we are considering this
chart as a validation check for measures, it is important to notice that it is not reasonable
to expect a close to zero prediction error.

Indeed it may happen that images acquired in different centers may have a similar data
provenance, (see batch variable versus center variable in section therefore such images
may be rather homogeneous with respect to image quality. When such a situation occurs,
it is reasonable to expect that the quality measures are not able to distinguish between
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Figure 6.14: Confusion chart of the random forest prediction ability tracer by tracer. The total accuracy
is provided for each tracer.

centers. An extreme example is given by the PIB tracer confusion chart: PIB images
formally comes from two different centers, Coimbra and Lisbona. However, even though
these two clinical centers enroll populations independently (thus are considered distinct),
they conduct PET examinations using the same PET scanner, acquisition and registration
protocols, hence obtaining images of equal quality on average. The fact that the prediction
error is close to 50 percent for PIB images demonstrates that the quality measures I chose
are not able to distinguish between the two centers. This represents a further validation
of measures, as it shows that they are sensitive only to image quality (batch effect)
and not to clinical and demographic variability that might be present between different
independently enrolled samples.

Reconstruction methods-quality measure relation The use of TOF and PSF, as
discussed in chapter [2], is a very important factors in determining image quality, though
obviously is not the only one. The pretty good accuracy (~ 90%) shown in confusion
chart shows that quality measures have a good ability to discern such factors: this
is a good validation check for measures themselves.

It might be interesting to test whether quality measures are also able to distinguish
between images that have been reconstructed with different number of subsets and itera-
tions as well as with different scanners. However, the paucity of data with regard to such
information, coupled with the complex interactions between acquisition/reconstruction
variables would make this test not feasible.

For example, if we would know the relation between quality measures and the number
of iterations, it would be good to have a large number of images in which all other sources
of variability are fixed (e.g., scanner, PSF/TOF inclusion, number of subsets). Indeed if
other variables involved also vary, it becomes very difficult ,if not impossible, to isolate
the effect of the parameter of interest (the number of iterations) on quality measures.
The confusion chart in figure [6.13] is partially exempt from this criticality because the
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use of PSF and TOF is a very important factor, which is considered dominant over other
parameters variability [0, 11, B9, [7, 22]: this makes the confusion chart significant
even though other degrees of freedom are not fixed.

6.6 Harmonization of quantification values

In this section I will use the quality measures previously defined to harmonize the quan-
tification values using a linear model, then I will explore the consequences of this harmo-
nization.

Here 1 will consider 4 different linear models in order to explain the quantification
values, denoted by S, in terms of combinations of the following covariates: the center
variable C(categorical), the tracer variable T (categorical), the vector of PCA scored
quality measures and the matrix dimension Mgy, (Mg, is considered as categorical),
denoted by @ = {q1, ¢2, q3, @1, Myir, } and the vector K (both categorical and numerical)
which contains demographic/clinical variables (namely age, sex, MMSE, Education).

Thus I considered the following linear models

S=a+pC+~T +e¢ (6.8)
S=a+pQ+T+e¢ (6.9)
S=a+pBC+vK + 0T +¢€ (6.10)
S=a+pQ+vK+ 0T +¢ (6.11)

where € is the residual term.
Then I fitted these models and from each one I computed the residual variance e.

To get more robust results I made this step with using 1000 balanced bootstrap
samples. The results reported in figure [6.15] show that models fitted using the center
as a covariate variable lead to a residual variance distribution with lower mean than
models fitted using quality measures. This seems to suggest that the center variable
explains more variance than the quality variable. It is interesting to note that the gap
between residual variance of center and quality models could be due to the fact that the
center variable contains, in addition to information on data provenance (batch effect) also
"hidden” demographic/clinical information not considered in the model. In other words,
in agreement with what was said in the section the center variable might contain
LCVs, while the quality measures which are specific to the batch effect, do not. This
could account for the difference between such distributions of residuals.

Furthermore, as already happened in the section related to the validation of the mea-
surements (section , also in this section the PIB plays a particular role. We know
that the data provenance of the PIB images is homogeneous: for this reason we should
expect that the quality measures do not reduce the residual variance of the PIB. The fact
that this actually happens, as shown in figure , demonstrates the consistency of the
results obtained.
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Figure 6.15: The residual variance distribution for each model. Raw denotes the quantification variaces,
i.e. the not harmonized output. Cen, QIt, CinCen and ClnQIlt denotes the residual variance of model
fitted using as covariates respectively center label [6.8] quality measures [6.9] both clincal vector K and
center label @ both clincal vector K and quality measure @

6.7 Estimation of AIC and BIC for different models

One of the main problems of the linear fit that I have considered is that the 4 models
considered have a number of degrees of freedom different from each other. The use of a
different number of degrees of freedom (i.e. covariates) could make the results of the fit
not comparable. In this section I will use the AIC and BIC methods introduced in section
3.5.2in order to test the goodness of fit using methods that account for the difference in
degrees of freedom.

I performed a bootstrap sampling repeated 1000 times on the dataset, resulting in 1000
bootstrap samples. For each bootstrap sample I fitted the 4 models considered above and
I calculated their AIC and BIC. I considered the quantification data all together, without
separating by individual tracer, in order to have fits that were more robust. Results for
AIC and BIC are shown in the figure and respectively.

It is interesting to note that the models and E those containing the center
labels) always better fit the data with respect to the models|6.9| - and [6.11] (those containing
the quality measures), both using the AIC and the BIC criteria. This shows that models
fitted using the center label explain better the quantification data than models fitted
using the quality measures.

Moreover in the figures and [6.17]T have reported the boxplots of the differences of
AIC and BIC between models fitted using the quality measures and models fitted using
center labels. Observing these graphs is interesting to note that the difference of AIC and
BIC is always extremely significant, as it is much greater than 10 (see section ).

I notice that this confirm results illustrated in [6.15]

This suggests that the center label could describe not only batch variability, (data
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Figure 6.16: cen and ¢lt denotes the models fitted using center label ) and quality measures
respectively. In addition, models denoted by cln were fitted using patient clinical and demographic
information as well (see equations and . In top boxplots you can find the AIC values for
models fitted using the two quantification methods ELBA and SUVr as output. In bottom boxplots the
differences in AIC (related to top boxplots) for the models with (cincen-clnglt) and without (cen-qlt)
clinical/demographic information are shown

provenance), but also additional demographic and/or clinical information about the sam-
ple. In other words, the center label could contain latent confounding information (the
LCV’s illustrated in figure . This greater amount of demographic/clinical information
contained in the center label fitted models than in the quality measures fitted models
could justify a significantly better fit.
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Figure 6.17: cen, qlt, cilncen and clnglt have been define in figure In top boxplots you can find
the BIC values for models fitted using the two quantification methods ELBA and SUVr as output. In
bottom boxplots the differences in BIC (related to top boxplots) for the models with (clncen-cinglt) and
without (cen-glt) clinical/demographic information are shown.

6.8 Discussion
In this section I will discuss the limitations and the prospects of this work.

The final goal of my work was to model the batch effect, in order to lay the foun-
dations for an a-posteriori harmonization that is not affected by the problem of latent
confounding variables. To achieve this aim, I defined and used a set of quality measures
which I evaluated on specific ROIs. Then I performed a simple harmonization based on a
linear regression model and I explored some of the consequences of this harmonization by
comparing corrections to quantification using my approach with corrections made using a
linear model in which data provenance has been taken into account through a categorical
center variable. This latter approach is commonly used in the literature.

In chapter [£.2]T described the registration and quantification algorithm I used. Specif-
ically, registration was done in the absence of MRI structural image guidance. This
may have introduced errors into the registration and consequently quantification process.
Repeating the analysis using a database where the MRI structural image is also provided
could be interesting in the future.

The quality measures I described in section were validated using different ap-
proaches. However, there is no guarantees that quality measures cover the whole spec-
trum of image quality: they may capture some aspects of quality, but not describe it
completely. If this were true, the quality measures would not fully describe the batch ef-
fect. The part of the batch effect not explained by quality would end up being considered
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as part of the latent confounding variables and hence it will be wrongly preserved.

A possible criticism may be related to the choice of ROIs. I only used transaxial
regions, and I chose regions relatively close to the edge of the image. In my opinion these
ROIs selection were the best possible choice compatible with the properties defined in
section [6.2] However, regions too close to the image’s edge could be affected by artifacts
in the acquisition / reconstruction phase. Even though it is true that the anatomical
ROIs I chose are relatively close to the edge of the registered image, it is also true that
the same anatomical ROIs considered in the raw images embedded in native space are
not so close to image’s edge. Indeed, registration step remove some clinically not relevant
pieces of native images actually acquired which are located outside the domain of the
ICBM template used for registration. So, in my opinion, we can consider this ROIs
selection acceptable. Furthermore, from a visual analysis of the image, I did not find any
particular problems related to this topic.

Another criticism is related to the determination of the relation between quantifica-
tion and quality carried out using linear regression models. Data are not homogeneously
distributed in the quality space, nor are they numerically homogeneous with respect to
the acquisition methods and clinical amyloid load dichotomic assessment. For this reason
the fits of the considered linear models could enhance the inhomogeneity of the data
rather than capture the actual relation between quantification and quality. To avoid this
problem, I considered a balanced bootstrap approach.

Moreover it would be interesting to consider the relations between my quality mea-
sures and those that are currently used in literature; however to do this comparison,
phantom images are required. As discussed in section 2.8 all the quality measures used
in literature (as far as I know) require a ground truth reference, typically the knowledge
of the actual radiotracer distribution, which is always known in phantom studies, but
unknown in clinical images. For this reason such a comparison using clinical images is
not feasible. However the measures I introduced could be used in the context of phantom
studies and be compared with those used in literature.

An interesting consideration can be made regarding the generalizability to other type
of imaging methods of the approach I proposed. I built and validated quality measures
using amyloid PET images. This does not imply that they cannot be used in other
imaging fields, but their validity outside the amyloid PET context would have to be
demonstrated. I believe they could be used directly (or with little modification), in other
types of PET images (such as tau PET or FDG PET images) thanks to the texture and
visual perception similarity between these imaging types. For example, in the context of
FDG PET, they could be used to harmonize radiomic features extracted from the images
themselves. This is a major problem in FDG PET imaging.

However it must be borne in mind that the approach I have proposed requires the def-
inition of a given set of ROIs in which perform quality measures. Such regions must show
the effect of data provenance at best, and at the same time they should have a very low
anatomical inter-subject variability and do not contains any clinical information. Indeed
ROIs selection is an imaging-specific issue: ROIs I have chosen for amyloid neuroimaging
PET may not be appropriate in other types of PET. In addition, the FDG-PET are also
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carried out to other anatomical district (such as liver, lung, whole body), making the
ROIs defined in the equation [6.1] unusable.

Furthermore I believe that quality measures I defined are not appropriate for MRI
features harmonization (an equally important issue), since MRI texture are too far from
PET images typical texture. However it is important to point out that the general aspects
of the approach that I followed could be used also in the field of MRI images. It would be a
matter of finding a set of quality measures and ROIs appropriately defined ad-hoc for MRI.

A further test for the quality measures could be to consider a given sinogram, thus
reconstruct images from sinogram using different techniques, for example using an OSEM
reconstruction and varying the number of subsets and iterations, and therefore investigate
how the image quality varies accordingly.

Furthermore, it could be interesting to verify the consequences of harmonization ap-
proach I proposed on regional quantification values, in order to better appreciate its effects.

Finally, I mainly dealt with the issues of quality measures, while the harmonization
of the variables in itself was done with a linear regression model. Although harmoniza-
tion through linear models is often used, more sophisticated techniques are present in
literature, for exaple ComBat. It would be interesting to combine them with the quality
measures | defined and more in genereal with the basics of my work.
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Conclusion

My PhD work is placed in the context of PET imaging postreconstruction harmonization.

When PET images from different research centers are gathered in a single multicentric
study, quantities of interest extracted from images themselves could be affected by data
provenance, i.e. any technical effects due to the use of different protocols and scanners in
data acquisition and images reconstruction. Furthermore, samples coming from different
centers could not be statistically equivalent with regard to the distribution of demo-
graphic variables. A good postreconstruction harmonization method should preserve
the demographic inter-individual variability while removing effects introduced by data
provenance.

Postreconstruction harmonization methods currently used in literature are able to
achieve this aim only if all the demographic confounding variables are known. The com-
plexity that characterizes biological mechanisms makes in practice impossible to identify
all the confounding variables to be preserved.

For this reason, I proposed an harmonization method based on modeling the data
provenance effects directly on clinical images through the use of 5 quality measures
evaluated in appropriate regions of interest (ROIs). Using this harmonization scheme
do not requires to provide a matrix of confounding to preserve, since the effect of data
provenance can be estimated on images themselves and therefore removed.

Specifically, I defined 3 quality measures based on images texture properties, moreover
I used a quality metric already implemented in Matlab, and I considered the reconstruc-
tion matrix dimension to take into account image resolution.

ROlIs selection was also an important issue, as ROIs are required to be as independent
as possible from individual variability in order to highlight the effect of data provenance
on images texture only.

Quality measures have been validated both visually and using a random forest al-
gorithm to test their ability to predict some important image reconstruction properties,
which are known to be closely related to perceived quality. Furthermore, as quality
measures are required to be related to image quality only, I tested the independence be-
tween quality and cortical amyloid load, which was visually assessed by expert physicians
through a dichotomic positive/negative label.

Therefore I used a linear regression model to harmonize quantification values using
quality measures as covariates and quantification values as output.
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I explored the consequences of this harmonization by comparing corrections to quan-
tification using my approach with corrections made using a linear model in which data
provenance has been taken into account through a categorical center variable. This latter
approach is commonly used in the literature.

In particular I considered the residual variances of models and I also computed their
Aikake Information Criterion and Bayesian Information Criterion values. These three
results are consistent with each other: harmonization performed using categorical cen-
ter variables are significantly different with respect to harmonization based on quality
measures. Moreover, the center-based harmonization has a lower residual variance than
the quality-based harmonization. It is plausible that differences in residual variance are
related to information carried by the center variable: it might contains "hidden” relevant
unknown demographic variables (e.g. comorbidities, genetics, lifestyle) which could be
related with the disease (i.e. cortical amyloid load) and therefore reduces the residual
variance.

Quality measures have been built and validated using a multicentric amyloid PET
database. It is important to remark that although the main principles of my proposal
may be generalizable to other typologies of medical imaging, quality measures and in
particular ROIs selection are image’s type dependent. However I believe quality measures
could be successfully used in other PET imaging modalities (such as in FDG PET and
tau PET), even though its validity outside the context of amyloid PET imaging must be
demonstrated.

[ am currently exploring in detail the consequences of my quality based harmoniza-
tion and I am considering the possibility of integrating the basics of my proposal with
more sophisticated harmonization algorithms present in literature, such as ComBat. To
conclude, I am presently using my harmonization method in a multicentric study (in col-
laboration with San Martino Hospital of Genan[) which aims to find a relation between
cerebral microbleeds and regional amyloid burden.

Thttps://www.ospedalesanmartino.it/
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