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Abstract 

The Sit-to-Stand (STS) movement has significant importance in clinical practice, 

since it is an indicator of lower limb functionality. As an optimal trade-off between 

costs and accuracy, accelerometers have recently been used to synchronously 

recognise the STS transition in various Human Activity Recognition-based tasks. 

However, beyond the mere identification of the entire action, a major challenge 

remains the recognition of clinically relevant phases inside the STS motion pattern, 

due to the intrinsic variability of the movement. This work presents the 

development process of a deep-learning model aimed at recognising specific 

clinical valid phases in the STS, relying on a pool of 39 young and healthy 

participants performing the task under self-paced (SP) and controlled speed (CT). 

The movements were registered using a total of 6 inertial sensors, and the 

accelerometric data was labelised into four sequential STS phases according to the 

Ground Reaction Force profiles acquired through a force plate. The optimised 

architecture combined convolutional and recurrent neural networks into a hybrid 

approach and was able to correctly identify the four STS phases, both under SP and 

CT movements, relying on the single sensor placed on the chest. The overall 

accuracy estimate (median [95% confidence intervals]) for the hybrid architecture 

was 96.09 [95.37 - 96.56] in SP trials and 95.74 [95.39 – 96.21] in CT trials. 

Moreover, the prediction delays (≅ 33 ms) were compatible with the temporal 

characteristics of the dataset, sampled at 10 Hz (100 ms). These results support the 

implementation of the proposed model in the development of digital rehabilitation 

solutions able to synchronously recognise the STS movement pattern, with the aim 

of effectively evaluate and correct its execution.  
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Introduction:  

The Sit-To-Stand 

I.1 A key functionality in the light of a global demographic 

ageing 

The United Nations organization (UN) recognise the increase in the average age 

of the world population as one of the main factors which influence and guide its 

2030 agenda for sustainable development [1]. From the global report of 2019, 703 

million people, with more than 65 years old, have been surveyed, with East and 

South-East Asia holding the primacy for the largest number of older adults (260 

million) followed by Europe and North America (200 million). In adherence to the 

current trend, these numbers are destined to grow, increasing the percentage of 

"Over 65" in the world by 16% in the next three decades [Fig.I.1]. 

 

Figure I.1: Global population stratified by age groups, 1990-2050. [1] 

If on the one hand, this phenomenon highlights the important goals achieved by 

health care in modern society, on the other hand, it emphasises the need to adopt 

economic, social, and technological strategies to guarantee an adequate quality of 

life for elderly people. Following the above statements, the World Health 

Organization (WHO) defines the principle of Healthy Aging as "the process of 

developing and maintaining the functional ability that enables wellbeing in older 

age". The expression functional ability describes the interaction between the 

psycho-physical abilities of a subject within the environment and the community in 
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which he/she is inserted, considering his/her relationships, values, attitudes, and 

policies or services at support [2]. According to this definition, the quality of life in 

elderly populations implies the maintenance of their independence in the activities 

of daily living (ADLs) and their social engagement [3], [4]. Together, these factors 

promote physical and [5] mental health [6], survival and intellectual functioning 

[7], [8], and for this reason, they are considered objective indicators of successful 

ageing [9]. In this context, the transition from the sitting position to the upright 

stance, identified by the term Sit-To-Stand (STS), is an important element for the 

individual’s independence in everyday life. Despite the apparent simplicity, the 

STS is the functional bridge that connects static and dynamic phases in human 

movement [10]. It represents a fundamental prerequisite for maintaining the vertical 

stance and for walking, which in turn are essential functions for the interaction of a 

person in the surrounding environment [11]. Furthermore, lower limb muscle force 

is correlated with functional status and ability [12]. From these statements, it is clear 

how eventual changes in the performance of the STS movement are directly related 

to the quality of life, being predictors of adverse events in presence of neuromotor 

diseases and/or in old age [13]–[16].  

 

Figure I.2: Onset age of ADL disabilities for those with and without major chronic conditions. [17] 

Specifically, it has been shown that STS (and in general ‘Transferring’) 

dysfunctions have a later onset than walking impairments [17], [18], manifesting 

majorly in elderly subjects [Fig.I.2]. Such a phenomenon is related to the inevitable 

functional decline faced by older adults as a physiological consequence of the aging 

process or a symptom of chronic diseases [11]. Munton and colleagues highlighted 
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that 42% of a population of 379 older people reported difficulties associated with 

the STS movement across different neurological disorders [19]. A later survey 

identified the same outcome in 81% of 101 individuals with Parkinson’s disease 

[20]. The STS has been indicated as the most difficult and mechanically demanding 

motor task associated with ADLs [21]. For comparison purposes, the magnitude of 

moments (torques)1 at the hip articulation is greater during the STS compared to 

other activities such as climbing stairs or walking [23]. The dynamic of the 

movement itself requires a considerable amount of muscle-force and joint torques 

in the lower limbs [21], [24], [25] as well as an optimal balance control to lift the 

centre of mass (COM) against the gravity effect [11], [26]. With the natural ageing 

process, these skills tend to decline after 50 years, with a muscle strength reduction 

of 1-4% per year, (i.e. sarcopenia), [27], [28]. These factors lead to increased 

difficulty in the STS task for older adults, which perform the movement close to 

their maximal functional level [29], [30]. The power2 produced during STS 

significantly correlates with many established functional batteries and single 

measures of strength, speed, and balance [27], offering a versatile solution 

applicable in clinical settings, with advantages in terms of time and costs for the 

health-care system. Nonetheless, it is important to underline that like any complex 

movement, the STS is the result of an elaborate integration of physiological and 

psychological functions, rather than a simple measure of lower limb strength [32]. 

Hence, based on the global ageing trend and its possible impact on the ability to 

perform ADLs, the STS evaluation will play an important role in the coming years 

as an important index of institutionalization, disability, and reduced mobility in the 

elderly [24]. 

  

 
1 Joint moments describe the net sum of all internal moments delivered by all internal structures around a joint. Typically, 

joint moments are delivered by muscles and, toward the end range of motion, by ligamentous or bony tissue. [22] 

2 The power is the product of force and speed. It has been proven that this parameter is much more important than 

strength for performing daily activities like rising from a chair, walking or stair climbing. [31]
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I.2 The Sit-To-Stand movement in clinical practice 

 

Figure I.3: Number of publications per year (left), for the researched terms (right), qualitatively portraying 

the portion of literature focused on the STS. (https://pubmed.ncbi.nlm.nih.gov/) (09-08-2020) 

A qualitative search on MEDLINE outlined a continuously growing interest 

regarding the Sit-To-Stand movement in the last two decades [Fig.I.3], being 

adopted in clinic as a valid measure of patients’ functionality [33], either as a single 

test or as a part of clinical scales and batteries. Simple temporal outcomes measured 

during the STS have shown significant correlations with many physical 

performance measures such as gait speed [34] and the 6-Minutes-Walk-Test [35] in 

healthy older adults and patients affected by Parkinson’s disease, Stroke, and 

vestibular disorders [33]. In the following paragraphs, a summary of the main STS-

based performance tests used in clinical practice is provided. 

I.2.1 Five-Time Sit-To-Stand Test 

In the Five Time Sit-To-Stand-Test (FTSTS) [36], the participant is asked to rise 

from a chair five consecutive times as quickly as possible. The time required for 

completing the task represents the main clinical outcome. First introduced just as a 

measure to quantify strength in lower limbs, the FTSTS displayed more general 

correlations with the overall level of patients’ functionality. 

https://pubmed.ncbi.nlm.nih.gov/
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Whitney and colleagues [37] highlighted that the FTSTS improves the 

discriminative ability of the Activities-specific Balance Confidence Scale3 and the 

Dynamic Gate Test4 in the identification of people with impaired balance. 

Furthermore, the correct execution of the FTSTS implies the ability to integrate 

visuospatial information [38], which ultimately associates with cognitive function 

assessed by the Pfeiffer Short Portable Mental Status Questionnaire5. In particular, 

individuals that complete the FTSTS within 15 s have a reduced probability to 

develop cognitive dysfunction. FTSTS is also used to assess fall risk in the elderly 

[39] and it is included in the Short Physical Performance Battery6[40]. 

Unfortunately, the main limitation is the identification of the right time threshold. 

In this case, analysis of the Postural sway and the Jerk of the movement could be 

added as quality performance indicators. 

I.2.2 30s Chair Test 

The 30-second Chair Stand Test (30CST) [41] consists of counting the number 

of completed stands in 30 s with the hands crossed against the chest. The total 

number of stands completed is used as the main clinical outcome and a threshold of 

8 repetitions can distinguish between patients with low and high physical 

performance. The 30CST was introduced to avoid the floor effect associated with 

the difficulty of many patients in executing chair stand tests [30] and it is used as 

an indicator of lower limb strength. Bruun et al. [42] highlighted strong associations 

between the de Morton Mobility Index7 [43] and the 30CST, which presents the 

added value of being faster and easier to deliver, with the possibility to be 

implemented in acute settings. Moreover, the 30CST is included as a part of the 

 
3 The Activities-specific Balance Confidence Scale is a self-administered questionnaire tool used to assess the 

confidence is performing various ambulatory activities without falling or experiencing sense of unsteadiness. BC scale 

consists of less and more challenging daily activities. 

4 The Dynamic Gate Test is an 8-test to assess to quantify the dynamic balance abilities. It has been demonstrated to be 

very sensitive test, since it evaluates walking during challenging tasks. 

5 The Pfeiffer’s Short Portable Mental State Questionnaire is used for the assessment of organic brain deficit in elderly 

patients. 

6 The Short Physical Performance Battery comprised the gait speed, chair stand and balance tests. It has been used as a 

predictive tool for possible disability, mortality. and institutionalization, allowing the functional monitoring in older people. 

7 The de Morton Mobility Index is a test comprised of 51 items that measure patients’ mobility across the spectrum from 

bed-bound to independent mobility. It is a standard procedure of the admission protocol in an emergency department short-

stay unit. 
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Fullerton Advanced Balance Scale [44]8 for assessing the endurance and the 

strength of lower limbs. 

I.2.3 Timed Up And Go Test 

The Timed Up and Go (TUG) test was introduced in 1991 as a modification of 

the former Get-Up and Go test [45]. The TUG measures the time in seconds for a 

person to rise from a sitting position on a standard armchair, walk 3 meters, turn, 

walk back to the chair, and sit down. The person wears regular footwear and uses 

his/her customary walking aid. The original purpose of the TUG was to test the 

basic mobility skills of frail elderly people. The test has been used in other 

populations, including people with arthritis, stroke, and vertigo. The TUG may be 

particularly well suited for the quantification of those disorders characterised by a 

poor sequencing of well-learned motor skills, which is a common problem in people 

affected by Parkinson’s disease.  

  

 
8 The Fullerton Test is mainly intended to identify highly-active older adults who are at an increased risk to experience 

fall-related injuries due to sensory impairments. The test uses both dynamic and static balance under different situations to 

identify balance deficits in older adults. 
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I.3 The instrumented analysis of the Sit-To-Stand  

Despite being extensively used in practice, standard clinical assessments for 

mobility, walking, and balance depend on different contextual factors, in terms of 

patients, clinical staff, and environmental characteristics [46]. By requiring the 

presence of a trained assessor, these evaluation tools are affected by an intrinsic 

subjective bias that reduces their diagnostic power and the reliability of the 

measures [47]. This limit is reflected in a reduced capacity to monitor the evolution 

of pathology or the efficacy of a therapy [46], [48], [49]. Consequently, the 

technological progress of the last decades has led to the development of a broad 

variety of sensors, promoting the adoption of automated methods in clinical practice 

and research. Regarding this subject, many studies in the literature emphasize the 

added value of instrumented measures to better understand the biomechanics of the 

movement. Specifically, the STS has been analyzed since the late 1980s with the 

use of camera and optoelectronics systems, force plates, and electromyography 

(EMG). In a review of 2002, Janssen and colleagues [50] identified various 

elements that can affect expressly or implicitly (as confounding factors) how the 

STS movement is executed, by gathering evidence from experimental studies 

performed through the use of sensor-based technology. In their work, they divided 

these “determinants” into three main categories, presented in Table I.1. 

Chair-Related 

Determinants 

1. Height of chair seat    2.With armrests    3.Chair special type    

4.With backrest 

Subject-Related 

Determinants 

1.Age    2.Disease (eg, stroke, arthritis, low back pain)    3.Muscle 

force    4.No footwear 

Strategy-Related 

Determinants 

1.Speed    2.Foot position    3.Trunk position/movement    4.Arm 

use with armrest    5.Terminal constraint    6. Arm movement    

7.Dark versus light    8."Fixed" joints    9.Knee position    

10.Attention    11.Training 

Table I.1: Determinants of the Sit-To-Stand. [50] 

The objective analysis of these aspects has revealed important insights into the 

dynamics of the STS movement and how this can change according to the specific 

characteristics of different populations. 
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I.3.1 Events and phases standardisation of the Sit-To-Stand 

A large number of studies tried to establish a standard definition of the events 

occurring during the execution of the STS using sensor-based analysis. However, 

although it may seem easier to describe, compared to other movements (i.e. 

walking), the STS is the one that is characterised by the higher inter/intra-subject 

variability [51]. Even if temporally well-defined between the seated position and 

the standing stance, it implies a coordinated movement of flexion and extension 

involving the head, arms, trunk, and lower body segments. For this reason, the 

execution of the STS movement highly varies from one repetition to another, 

between and within-subjects. On top of that, different studies employ different types 

of instrumentation and measures, resulting in different descriptions of the same STS 

event. As an explanatory example, the beginning of the STS movement has been 

defined as the initiation of the trunk forward flexion and momentum [52], [53], or 

as the first vertical force deviation greater than 10 N [54]. Even the instant of rising 

from the chair, logically well-recognisable, has been determined with a plethora of 

various methods, by implementing a switch on the chair [55] or by identifying the 

peak of the horizontal [56] or the vertical [57] components of the Ground Reaction 

Force (GRF). In general, what emerges is a large variability in methodologies, 

terminologies, and biomechanic definitions of the movement that makes difficult 

the identification of a univocal standard for the categorisation of the STS motion 

pattern. The first attempts to approach this challenge exploited the data acquired 

from three-dimensional camera-based systems to divide the movement into two 

distinct phases [23], [58]:  

• The flexion phase, representing the first 35% of the movement and 

characterised by the forward flexion of the head, neck, trunk, and pelvis; 

• The extension phase, characterised initially by the backward movement of 

the neck toward the vertical axis, followed by the trunk and by the extension 

of the hips ankles, and knee; 

Nonetheless, this subcategorisation appeared to be excessively simplistic as it did 

not model properly the transfer of the COM of the body [59]. To overcome this 

limit, new finer standardisations were subsequently introduced, focusing on the 

analysis of body segments’ kinema, momentum and velocity events [51], [60]–[62]. 
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For instance, Roebrock modeled the STS movement into three phases [Fig.I.4] 

relying on the velocity of the COM: 

 

Figure I.4: Horizontal and vertical velocity of MCB during STS transfer. Mean curves in time (%) are given 

(n = 10). The curves refer to horizontal (solid line) and vertical (dashed line) velocity. The vertical lines 

indicate the limits between phases (solid) and the instant of seat-off (dotted). Phases: acceleration phase (I), 

transition phase (II), and deceleration phase (III). [62] 

• The acceleration phase, starting from the beginning of the movement until 

the COM reach the maximal horizontal velocity; 

• The transition phase, where the vertical acceleration increases until its 

maximum value at the expense of the horizontal acceleration which is 

gradually zeroed; 

• The deceleration phase, characterised by the decrement of the vertical 

velocity decreased until the end of the movement; 

 

Figure I.5: Four phases of rising marked by four key, events. [52] 
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Schenkman and colleagues proposed another model, based on the movement of the 

trunk and the ankle dorsiflexion [52], [63], categorising the STS in 4 distinct phases 

[Fig.I.5]:  

• The flexion momentum phase, temporally delimited by the beginning of 

the trunk movement and the moment preceding the raising from the chair; 

• The momentum-transfer phase, starting with the lifting from the seated 

position to the reaching of the maximal dorsiflexion of the ankles; 

• The extension phase, characterised by the complete extension of the hips; 

• The stabilization phase, beginning with the completion of the hip 

extension and continuing until the reach of a stable upright stance; 

Considering the intrinsical variability in the kinematics of the movement and the 

lack of an accepted standard to describe the STS motion pattern, a later work of 

Etnyre and Thomas [51] grounded its methods on a kinetic evaluation of the STS 

through the analysis of the GRF profiles.  

 

Figure I.6: Averaged normalised recordings over all trials and participants from the force platform and the 

seat-switch event for the 4 arm-use conditions by events. The arms-crossed condition was considered as a 

control condition, and the standard deviation was plotted for that condition. Positive deflections of the fore-

aft traces represent backward force (ie, moving the body forward). Lateral force to the right is shown in the 

positive direction, left toward negative. FREE: arms-free condition, CROSS: arms-crossed condition, KNEE: 

hands-on-knees condition, and ARMRESTS: hands-on-armrests condition. [51] 
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Across a sample of healthy young people (age: 21.8 ± 4.6), they identified eleven 

essential events [Fig.I.6] under different raising conditions (i.e. arm free, arm 

crossed, hands on knees, hands on armrest) described as follows:  

• 6 vertical GRF events, initiation of movement, a counterforce before seat 

off, seat-off, peak force, post-peak, rebound force, and final steady standing 

force; 

• 3 horizontal events, the start of force, peak force, and end of force;  

• 2 lateral events; 

Despite the population (young, healthy) that did not portray the usual characteristics 

of patients in clinical practice, the recognition of invariable events during the STS, 

independently from the movement strategies, provided interesting intuitions for 

discretely identifying key elements in its motion pattern. 

I.3.2 Raising strategies in the Sit-To-Stand movement 

If, as a first contribution, the use of objective evaluations allowed the description 

of certain invariant elements in the STS, it also permitted the quantitative 

identification of specific movement strategies related to the underlying 

characteristics of different groups of patients. Often underestimated by clinicians, 

which focus majorly on the success of the physical task per se, the information on 

how the upright position is attained could improve the outcome of the treatment 

itself, favouring the determination of which components of motor control are 

impaired [64]. Studies on healthy younger people and older adults raising from a 

chair under different conditions outlined two main movement strategies [29], [52], 

[58], [64]–[67]. The momentum transfer strategy is characterised by a limited 

flexion of the trunk and an early lifting from the chair when the COM is still distant 

from the feet. This implies high balance control and greater momentum on the lower 

limbs, to lift the body mass to a stable upright stance. For this reason, this strategy 

is typically observed in younger people, who have more strength and perform this 

movement almost automatically. Conversely, the elderly often presents functional 

deficits, in strength, physical characteristics and in sensory-cognitive terms, which 

ultimately precludes them from the feasible execution of the momentum transfer 

strategy. For this reason, frailer populations generally perform a stabilisation 

strategy (or flexion strategy) [29], [52]. This manoeuvre aims at reducing the global 
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instability of the movement and consists of an accentuated flexion of the trunk 

toward the knees, moving the COM over the feet.  

I.3.3 Evidence from Force plates 

 

Figure I.7: Comparison of vertical force change from sitting to standing in healthy subjects, stroke non-

fallers, and stroke fallers. The slope of the curve between the two asterisks on each of the three lines indicates 

the rate of rising in force (dF/dT) during rising. [68] 

Most of the modern, full-featured force plates assess the kinetics of the 

movement by measuring simultaneously [69]: 

• The three-dimensional components of the GRF;  

• The centre of pressure of the body (COP); 

• The centre of force; 

• The moment (torque) around each of the axes; 

In [68], the analysis of these parameters highlighted significant differences between 

stroke fallers and non-fallers patients. In general, stroke patients needed more time 

to stabilise the cop during the rising transition, with a loading asymmetry on the 

healthy leg. Stroke Fallers patients showed high medio-lateral COP sway, showing 

poorer stability and a higher risk of falls. Additionally, the between-group 

comparison of the vertical GRF profiles pointed out a lower rate of rising (dF/dT) 

in stroke fallers compared to non-fallers or healthy people [Fig.I.7]. Through the 

analysis of the COP displacement, Janssens et al. [70] explored the STS 

performance in Individuals with Chronic Obstructive Pulmonary Disease (COPD). 

The COPD group displayed greater difficulties in the phases that require greater 
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postural control, i.e. the stand and the stand-to-sit phases compared to the healthy 

group [Fig.I.8]. 

 

Figure I.8: Mean duration of the five sit, sit-to-stand, stand, and stand-to-sit phases. The phase durations of 

the sit-to-stand-to-sit (STSTS) task are displayed for the control group and COPD group. (* = p<0.05 

between both groups for five STSTS movements). [70] 

Recently, a similar evaluation of the COP underlined the possibility to differentiate 

functionally independent healthy older adults from younger populations [71]. The 

elderly displayed a greater global sway and higher velocity during the execution of 

the STS movement, suggesting the possibility to identify functional deterioration in 

the early stages. 

I.3.4 Evidence from Electromyography 

The analysis of the EMG patterns of activation under different initial postural 

settings allowed the identification of two main groups of muscles involved in the 

execution of the STS [72]. The tibialis anterior, the abdominal, the 

sternocleidomastoid, the soleus, and the trapezius showed different behaviors 

relative to the different experimental conditions under which the STS is performed. 

Such peculiarity is characteristic of the “postural” muscles [73] that must maintain 

balance throughout the movement, but not of the main “executor” muscles, 

involved in the effective execution.  
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Figure I.9: Area (μV×ms) of the EMG activity of the muscles examined in each condition. The area in grey 

marks the limits of 1SD above and below the mean area calculated in the reference condition for the muscle 

specified in each graph. [72] 

Accordingly, the hamstrings, the lumbar paraspinal, and the quadriceps were the 

real actuators of the STS, showing a consistent activation pattern independently 

from the postural condition [Fig.I.9]. By retaining very specific information on how 

the movement is performed, the study of the EMG signal can unveil condition-

related characteristics in the STS execution. As an example, it has been pointed out 

that the lower limbs’ activation patterns in hemiplegic patients differ significantly 

between fallers and non-fallers subjects [74]. In particular, as suggested by the 

authors, a limited (or absent) activity of the tibialis anterior and quadriceps muscles 

of the unaffected limb discriminated those individuals who are more prone to fall. 

This was accompanied by early or excessive activation of the soleus muscles in the 

hemiplegic limb, contributing to the instability and stiffness of the ankles. 

Similarly, in a recent publication [75] the analysis of the EMG pattern of the 

gastrocnemius lateralis revealed that fallers opted for a different strategy to 

maintain a certain condition of stability during the STS.  



16 

 

 

Figure I.10: Sequence of muscular activation movements in old subjects during sit-to-stand movement, RFR: 

rectus femoris right side, VLR: vastus lateralis right side, GLR: gastrocnemius lateralis right side. [75] 

Thus, as displayed in Figure I.10, while in the non-faller group the activity of 

gastrocnemius lateralis increased significantly during each phase of the STS, in the 

faller group it remains quite identical during the first stages of the movement. From a 

clinical point of view, these results can be used to plan effective therapy to prevent 

falls, by reinforcing the compensatory effect of specific postural muscles and 

consequently enhancing balance control. 

I.3.5 Evidence from Optical systems 

Starting from the first experiment of three-dimensional gait analysis by Otto 

Fischer and Willhelm Braune in the late 19th century [76], optical systems have 

evolved to become the gold standard reference in human kinematic analysis. They 

include various technologies to determine the positions of predetermined points on 

the body. As for other types of sensors, the information collected through these 

systems has been used to primarily describe the STS movement patterns and 

strategies (as described in Chapters I.3.1 and I.3.2), and to describe the eventual 

difference in frailer individuals. As an example, it has been highlighted that obese 
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patients use different motor strategies as an adaptation to the altered weight 

distribution [77]. This results in a negative overstress of the joints, especially during 

postural transitions. Compared to healthy subjects, during STS tasks obese people 

tend to limit the trunk flexion, moving the feet backward in respect to the initial 

position. This kinematic strategy leads to a minimisation of the hip joint torque 

(lowering at the same time the low backloading) but it exposes the knee to a higher 

load increasing the muscular fatigue. 
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I.4 Applications of wearable and smart sensors in the 

analysis of the Sit-To-Stand movement 

One major drawback of the presented devices and instrumented measures is that 

they are not easily applicable outside the laboratory environment [12], [47]. Despite 

their advantages over performance assessments, force plates and optoelectronic 

systems need certain expertise for their correct use, and are extremely expensive, 

both in terms of costs and time [78], precluding their implementation in standard 

clinical practice. In the later period, the technological advances in the sensor 

industry led to the development of wearable sensors that can be implemented for 

the kinematic analysis of the movement [79]. The low production costs, together 

with the reduced dimensions, make the inertial measurement unit (IMU) sensors 

the perfect trade-off between accessibility, portability, and measurement accuracy, 

allowing their comprehensive use in everyday life and clinical routine. For these 

reasons, this chapter discusses more in-depth the principles and the clinical 

implications of the IMU sensors, with particular attention to their application in the 

analysis of the STS.  

I.4.1 Principles of inertial sensing 

Inertial sensors are embedded micro-electromechanical systems (MEMS) that 

measure the static and dynamic components of the force of acceleration, angular 

rate, and orientation of the device reference frame [80]. They encompass different 

technologies “borrowed” from aerospace, industrial, and robotic engineering [78]. 

 

Figure I.11: Mechanical model of a general MEMS accelerometer.[81] 

The two main components of an IMU system are accelerometers and gyroscopes. 

Accelerometers can be modeled as second-order mass-damper-spring systems [81] 

consisting of a mass (M), a spring constant  (K), and a damping factor (D). The 
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functioning principle is relatively simple, an external acceleration causes the 

movement of the device, which stretches the spring in the direction opposite to the 

movement. The acceleration is derived from the force applied to the spring element, 

by measuring the relative displacement between the external support and the mass 

[Fig.I.11]. Gyroscopes are specific sensors used to measure the angular velocity of 

the reference frame on which they are mounted [82]. In MEMS applications, 

gyroscopes are based on the transfer of energy between two vibration modes, 

exploiting the effect of the Coriolis acceleration9. The device is outlined by two 

orthogonal mechanical excitation directions [Fig.I.12]:  

• The mass is vibrating in its natural frequency along its “drive direction”; 

• Under rotation, the Coriolis effect change the vibration in the “sense 

direction”; 

In this way, by completely characterising the drive axis, the displacement along the 

sense direction is proportional to the angular velocity. 

 

Figure I.12: Mechanical model of a general MEMS gyroscope. (modified by [81]) 

These variables are consequently integrated to estimate the position and the 

orientation of the IMU sensor through a process called dead reckoning. 

Theoretically, the orientation is obtained by single-integrating the angular velocity 

from the gyroscope. Starting from the pose of the IMU, the earth's gravity 

component is removed and the accelerometric measures are double integrated to 

obtain the position of the device [83]. However, the orientation estimate is affected 

by noise and a slowly time-varying bias, which adds an offset component to the 

 
9 The Coriolis force is an apparent force to which a body is subjected if observed by a system in rotary motion with 

respect to an inertial reference. 
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output even in the absence of any input. These errors accumulate through 

integration, leading to a measurement drift in time, especially for the yaw angle.  

 

Figure I.13: Position and orientation estimates based on dead-reckoning of the inertial sensors only. The 

data is collected with a Sony Xperia Z5 Compact smartphone that is lying stationary on a table [83]. 

This so defined bias drift is a complex phenomenon that depends on various factors 

related to temperature, operating time, and type of movement performed [84], [85]. 

To adjust its effect, the estimates of position and orientation are corrected with the 

use of wavelet analysis [86] or by exploiting prior knowledge about the movement 

[87] and the information from supportive systems [85], [88]. In the latter case, 

Kalman filters are used to fuse contributes from multiple devices and ultimately 

improve the accuracy by reducing the bias. As an example, modern inertial sensors 

incorporate internal magnetometers to improve the performance in the estimation 

of orientation and position [Fig.I.14] [89].  

 

Figure I.14: Model of IMU sensor based on Accelerometers, Magnetometers, and Gyroscopes [90] 
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In absence of external magnetic interferences, magnetometers identify the local 

magnetic north and can be used to improve the estimation of the heading reference 

in IMU devices [91], with successful results in various fields. In this context, it is 

important to remind that all sensors must be properly calibrated to obtain optimal 

measures. 

I.4.2 Towards an ecological and continuous assessment of 

the STS movement 

Beyond the advantageous trade-off between cost and measurement accuracy, the 

most appreciable feature of IMU sensors is undoubtedly their portability. Starting 

from the late 1900s with the invention of the first integrated circuit, miniaturisation 

and manufacturing techniques evolved rapidly, affirming the importance of MEMS 

systems in the global market. Just in 2019, the MEMS market size was around $11- 

$12 billion, and it is forecasted to grow up between 15% and 18% in 2025 [92], 

[93] [Fig I.15]. In particular, the effect of COVID-19 pandemic in the medical field 

will accelerate the transformation of the healthcare organisation promoting a more 

patient-centric approach. Contextually, novel telehealth solutions, represented by 

more wearable and connected devices, will guide the technological development of 

the following years towards a continuous monitoring of the patients, to improve 

prevention and health outcomes. 

 

Figure I.15: The forecasted size of the market of the MEMS industry for 2020 (COVID-19) and 2025. 

MEMS=Microelectromechanical systems; CAGR=Compound Annual Growth Rate; YoY=Year-over-Year. 

[92] 
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Following this trend in the medium term, there will be a transition to more wearable 

ultra-sensitive devices packing a lot of sensors but also a move to more consumer 

healthcare [92]. Nowadays, inertial sensors are included in many devices we use 

daily. Consequently, the interest in health-related metrics collected from 

smartphones [94], [95], and activity monitors [96]–[98] is rapidly growing among 

researchers, as they allow to perform objective clinical evaluations outside the 

laboratory environment [94]. By not being constrained in terms of time, costs, and 

medical personnel, the measurements performed through wearable sensors provide 

the opportunity for a continuous assessment of the patients’ health status in their 

own everyday life, potentially permitting the early detection of functional decline 

[99]. In this sense, it is important to distinguish the patient's ability to perform an 

exercise in front of a clinician from that of carrying out their daily activities outside 

the clinical environment. Functional evaluation strongly depends on the external 

factors in which they are applied, in terms of patients, clinical staff, and 

environmental characteristics [100], [101]. In the International Classification of 

Functioning, Disability, and Health (ICF) [102], the term functional capacity 

describes what individuals can do in a standardised environment, while the 

functional performance describes what they do in their daily environment. 

Similarly, Van Lummel and colleagues [103] distinguished physical function 

[Fig.I.16] into physical performance and physical activity. 
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Figure I.16: Mobility measures presented in a framework with physical performance and physical activity as 

domains of physical function. [103] 

In their work, the low correlations obtained underlined the clear distinction between 

these two domains. Therefore, an improvement in the clinical tests does not 

automatically reflect on the quality of ADLs, and continuous unsupervised 

screening of the patients in their daily routine (through inertial sensors and wearable 

devices) might be more representative of their health conditions. 

I.4.3 Clinical evidence 

Temporal duration and kinematic parameters characterising the STS motion 

pattern can be described using IMU sensors [104]–[107] and can be used to identify 

age-related differences [108], [109]. Moreover, since the STS is influenced by 

somatosensation, balance, and psychological status [32], it is used to evaluate the 

fall risk [110]–[114], and the frailty level [115], [116]. As an example, in [108] the 

acceleration and the angular velocity from a single sensor positioned on the lumbar 

area were used to derive the trunk angle and consequently to calculate the duration 

of the STS motion pattern. These parameters, together with the relative coefficients 

of variation (CV) and the maximum values of angular velocity in the different STS 

phases, showed particular clinical interest, being able to discriminate between 

young and older adults [Tab.I.2].  
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 Young adults Older adults 
p-Value 

Phase Duration (s) Median Min Max Median Min Max 

Sit-to-stand 

Total 1.45 1.14 2.58 1.98 1.65 3.49 <0.001 

Flexion 0.73 0.63 0.88 1.06 0.74 1.64 <0.001 

Extension 0.72 0.49 1.74 1.1 0.82 1.94 <0.001 

Standing Total 0.33 0 0.74 1.35 0.57 6.57 <0.001 

Stand-to-sit 

Total 1.47 1.18 2.28 2.59 1.34 3.21 <0.001 

Flexion 0.69 0.46 0.91 1.31 0.65 1.87 <0.001 

Extension 0.79 0.71 1.37 1.06 0.69 1.68 0.024 

Sitting Total 0.33 0.06 0.7 3.1 0.36 9.71 <0.001 

Phase Angular rates (°/s)  

Sit-to-stand 

ω max flexion 124.62 90.04 192.7 91.62 57.31 125.46 <0.001 

ω max extension 57.22 20.7 98.9 54.67 25.57 93.33 0.323 

ω max flexion 79.68 50.32 117.63 40.93 22.99 72.71 <0.001 

Stand-to-sit ω max extension 102.15 60.42 138.22 107.31 65.65 170.29 0.527 

Phase CV Duration (%)  

Sit-to-stand 

Total 7 2 15 26 7 42 <0.001 

Flexion 8 5 16 19 9 41 <0.001 

Extension 11 3 33 40 7 85 0.003 

Standing Total 40 5 96 55 26 121 0.08 

Stand-to-sit 

Total 8 3 39 19 7 51 0.001 

Flexion 12 2 36 22 9 44 0.005 

Extension 10 3 61 18 11 79 <0.001 

Sitting Total 36 8 69 57 38 140 0.002 

Table I.2: Durations (s), maximum angular velocity (ω max, in°/s), and coefficient of variation of durations 

(percentage) of the 5 repeated sit-to-stand cycles of the young and older adults. P-values compared young 

and older adults are calculated using the Mann–Whitney U-test (p < 0.05). [108] 

By focusing on the analysis of the STS transitions, Ejupi and colleagues [113] 

collected and analysed data from a single wearable pendant device, with an 

embedded tri-axial accelerometer, to identify fallers and non-fallers in a population 

of 119 community-dwelling older adults. They found that the maximum magnitude 

of the acceleration vector, the maximum velocity, and the vertical peak power were 

significantly different between the two groups [Tab.I.3]. 

Measureement Fallers (n=34) Non-fallers (n=60) p-Value 

Duration (s) 1.6 ± 0.5 1.5 ± 0.3 0.59 

Max acceleration (m/s2) 2.4 ± 1.0 2.9 ± 1.1 0.04*✝ 

Max velocity (m/s) 0.6 ± 0.2 0.73 ± 0.3 0.03* 

Peak power (W) 464.1 ± 225.3 594.4 ± 292.9 0.03* 

Max forward lean (°) 15.8 ± 8.8 12.2 ± 10.2 0.09 

Table I.3: Sensor-Based Sit-To-Stand Assessment for the Fallers and Non-fallers. [113]  *< 0.05; ✝ Non-

parametric test 

In [116], the examination of the anteroposterior orientation and the vertical 

acceleration signals pointed out peculiar information on how people with different 

levels of frailty execute the STS movement. By collecting data from a single IMU 
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sensor positioned over the lumbar area, frail subjects showed lower accelerations 

compared to pre-frail and healthy groups during the raising and the sitting 

transactions, displaying reduced strength and a more cautious movement strategy. 

Additionally, frail people spent more time in the preparation of the raising 

movement, displaying a greater movement range along the sagittal plane [Fig.I.17]. 

 

Figure I.17: Movement patterns from raw inertial sensors’ signal for frail (a), pre-frail (b), and healthy 

subjects (c). Z-position, Z-acceleration, and X-orientation are displayed respectively in red, green, and blue. 

The circle outlines the extra forward and backward lean for more frail subjects and the arrows feature the 

time duration and X-orientation range. 

The evidence presented promotes the utility and clinical applicability of the 

objective measures of the sit-to-stand through inertial sensors, however, they must 

be evaluated contextually to the wide variability of results and in the literature [51], 

[112]. As a matter of fact, by allowing continuous and unsupervised measurements, 

the outcomes from IMU-based analysis are deeply influenced by the task 

performed, sensor positioning, and data processing more than any other kinematic 

methods. Therefore, to develop effective clinical applications, it is necessary to take 

these factors into account for the identification of movement features related to a 

pathology or risk factor.  

I.4.4 Human activity recognition 

The last application of inertial sensors that will be introduced is paradoxically 

the one on which all the clinical evidence presented so far is based. Infact, the 

identification of condition-specific characteristics in a movement cannot be 

performed without first identifying the movement itself. The term Human Activity 

recognition (HAR) summarises all those techniques aimed at detecting human 

activity, relying on the information received from different sensors [117] in 
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controlled and uncontrolled environments [118]. Research in this specific field has 

increased over the last twenty years, focusing on the development of applications 

for gesture and posture recognition, fall detection, and ambient assisted living 

[117], [119], [120]. HAR approaches consist generally of four sequential phases 

[117]: (i) the selection and deployment of the sensor-system, (ii) the data collection, 

and the (iv) pre-processing and feature selection phase, on which the (v) final 

inference process is based. This last step requires a decisional model that can be 

developed by exploiting knowledge of the phenomenon of interest, or by using 

various machine learning (ML) techniques [118]. Specifically, ML approaches have 

the advantages of learning directly on the recorded data, being able to handle its 

variability and inconsistency, and performing better than heuristics-methods based 

on determined decision rules [121]. The present state-of-the-art HAR methods 

reached an overall good to excellent identification rate in the IMU-based 

recognition of the STS movement transitions [Tab.I.4]. Still, wherever the 

categorisation of the STS into either static or dynamic phases may be acceptable in 

activity monitoring [120] and robotics implementations [122], it does not 

adequately model the movement, limiting the possible applications of HAR based 

clinical evaluation. This can be partially due to the intrinsic variability of the 

kinematic parameters of the STS, on which the majority of the works in the 

literature base their algorithms. Surprisingly, just a few studies explore the temporal 

performance of HAR techniques for the recognition of the STS movement in real-

time assessments. Providing a fast, as well as reliable, recognition is fundamental 

to implement specific skill learning and assessment tasks, where movements need 

to be evaluated by a system able to give corrective feedback on the performance 

[133] with interesting applications in physical rehabilitation and sports training 

[134]. 
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Ref. Activities Performance Sensors Real-Time 

[123] 

standing, sleeping, watching TV, walking, 

running, sweeping, stand-to-sit, sit-to-

stand, stand-to-walk, walk-to-stand, lie-

to-sit, sit-to-lie 

ACC10: 95.5 

(on sit-to-stand) 

1 sensor on the wrist 

(acc+gyro) 
no 

[124] 

walking, walking-upstairs, walking-

downstairs, sitting, standing, lying, stand-

to-sit, sit-to-stand, sit-to-lie, lie-to-sit, 

stand-to-lie, lie-to-stand. 

ACC: 99.6 Smartphone (acc+gyro)* no 

[125] 

stair descent, standing, sitting down, 

sitting, from sitting to sitting on the 

ground, sitting on the ground, lying down, 

lying, from lying to sitting on the ground, 

standing up, walking, stair ascent 

ACC: 83.3-97.7 

3 sensors on the trunk 

and the thighs 

(acc+gyro) 

no 

[122] sitting, standing, sit-to-stand 100 
1 sensor on the tigh 

(acc+ gyro+ mag) 
yes 

[126] 

sit-to-stand 

ACC: 92.9 orthosis system (2 acc+ 2 

gyro+2 potentiometers + 

2 force sensors) 

yes 
[127] ACC: 99 

[128] sit-to-stand, stand-to-sit ACC:90.6 
1 sensor on the trunk 

(acc+gyro+bar) 
no 

[129] sit-to.stand, stand-to-sit 

PPV11: 80-100 

SEN12: 80-100 

 (on sit-to-stand) 

1 sensor on the trunk 

(acc+gyro)  
no 

[130] sit-to-stand, stand-to-sit 
ACC: 99 

(on sit-to-stand) 

1 sensor on the trunk 

(acc) 
no 

[131] 
stepping, standing, sitting, sit-to-stand, 

stand-to-sit 

ACC: 52 

(on sit-to-stand) 
1 sensor on the hips (acc) no 

[132] sit-to-stand, stand-to-sit 
ACC: 90-96 

(on sit-to-stand) 

5 sensors on the trunk, 

thighs and shanks 

(acc+gyro+mag) 

no 

[113] sit-to-stand 

SEN: 93 

SPE13: 97 

(on sit-to-stand) 

1 sensor embedded in a 

pendant (acc+bar) 
no 

Table 4: Literature overview of the state of the art of human activity recognition methods for the 

identification of the sit-to-stand motor pattern. acc: accelerometer, bar: barometer, gyro: gyroscope, PPV: 

Positive Predictive Value, SEN: Sensitivity, SPE: Specitivity, ACC: Accuracy 

  

 
10 The accuracy is generally defined as the percentage of correctly classified instances. 

11 The precision also called positive predictive value (PPV) indicates the number of instances correctly identified  as 

belonging to the positive class divided by the total number of elements identified as the positive class 

12 The sensitivity (SEN) also called recall (RCL) measures the proportion of positives that are correctly identified. 

13 The specificity (SPE) measures the proportion of negatives that are correctly identified. 
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I.5 Objectives of the Thesis 

This thesis aims at the development of a ML algorithm able to classify the data 

acquired from a single IMU in accordance with the GRF signals registered from a 

force plate, for a finer synchronous classification of the STS movement. The use of 

a single reduced-sized sensor will limit the burden in terms of portability for 

possible implementation in the rehabilitation field. The major innovation of this 

work is represented by the sub-categorisation of a movement transition according 

to a validated clinical-relevant standardization [51]. The dissertation is structured 

in three chapters: 

• In the first chapter, an off-line heuristic method based on GRF signals for 

the categorisation of the STS is presented together with a structured analysis 

of its performance against human visual assessments; 

• Relying on the acquired evidence, the second chapter introduces and 

evaluates a simple ML method able to recognise in real-time the STS motion 

pattern from multiple inertial sensors; 

• In the third chapter, more sophisticated ML models are explored to improve 

the overall accuracy in the STS phase recognition and reducing at the same 

time the number of sensors needed for the classification.  
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Chapter 1:  

Categorisation of the Sit-To-Stand Motion Pattern. 

Human vs Automated Quantitative Assessments 
1.1 Introduction 

This chapter describes in detail the data collection and the subsequent processing 

aimed at creating the datasets on which the proposed ML routines were based. 

These two steps are essential as they lay the foundation for the success of any 

applications based on artificial intelligence. The reason behind this statement is to 

be found in the very main concepts of machine learning itself. This term defines the 

field of study which focuses on the development of computer algorithms that 

improve automatically through experience [135]. ML approaches can be divided 

mainly into two categories: unsupervised learning methods, which learn directly 

from the input by modelling undetected patterns in the data [136] and supervised 

learning methods, which, given a set of paired input-output training samples, learn 

their reciprocal relationship [137]. In this case, the output is defined by a label, and 

the method used to match the label with the respective input is called labelisation. 

Hence, by developing the present research on supervised methods, it is crucial to 

properly categorise the STS and consequently labelise the dataset to not negatively 

affect the performance of the final recognition algorithm. However, as already 

highlighted in the previous chapters, establishing a univocal definition of the STS 

motion pattern is a quite complex task which still depends too much on visual 

evaluations to obtain reliable results [51], [71]. Kinematic parameters proved to be 

strongly affected by the high within-between individuals’ variability, limiting the 

performance of automated techniques to the recognition of dynamic transitions and 

static positions. On the contrary, kinetic variables seem to offer a finer discretisation 

of the movement [51] and could be used as ground truth for the data labelisation 

process. Therefore, to demonstrate the validity of an automated labelisation method, 

this chapter confronts the result obtained by human visual inspection of the GRF 

profiles with those obtained by a custom routine for the categorisation of the STS 

movement pattern.   
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1.2 Methods  

1.2.1 Data Acquisition 

Given the homogeneity in population and methodologies, this section will be 

used as a reference for the entire dissertation, describing the characteristics of the 

analysed participants and the general experimental protocol followed during the 

research. Three convenience groups of subjects (HAR1, HAR2, HAR3) have been 

recruited from students attending university at the Campus of Savona, (Via 

Magliotto 2, 17100, Savona, Italy). The inclusion criteria for eligible subjects were: 

good health, absence of musculoskeletal or neurological disorders and, the ability 

to easily raise from a chair. Each participant had to sign an informed consent. The 

summarising characteristics for the three groups are presented in Table 1.1. A two-

tailed two-sample t-test was used to highlight possible between-group differences. 

No significant difference was found across the groups’ demographics. 

 HAR1 HAR2 HAR3 

N° of+ subjects 19 20 20 

Age (years) 26 ± 3 26 ±3. 27 ± 4 

Gender (M/F) [9/10] [13/7] [11/9] 

Weight (kg) 63 ± 10 69 ± 12 67 ± 15 

Height (cm) 171 ± 9 173 ±11 172 ± 9 

Table 1.1: Demographic characteristics of the recruited groups of subjects 

All subjects wore 6 inertial sensors (XSENS Technologies B.V. Enschede, The 

Netherlands) and performed the STS movement on a force plate (Kistler 

Winterthur, Switzerland). According to previous studies on accelerometry-based 

movement analysis [138], [139], sensors were placed on the trunk, the sacrum, 

upper legs (on the trochanteric area), and lower legs (on the fibular area) [Fig.1.1]. 

The sample frequencies for the inertial sensors and the force plate were settled 

respectively at 50 Hz and 1024 Hz. 
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Figure 1.1: Experimental set-up 

During the execution of the movement, a custom-made chair equipped with an 

electronic switch was used to record the time instants of rising (Seat Off) and sitting 

(Seat On). The chair was height-adjustable, to adapt each acquisition to the 

variability in the stature of the target population. The signal from the electronic 

switch was synchronized with the input from the force plate using a DAQ Hardware 

NIUSB 6343 (National Instruments, Austin, Texas, USA). Participants had to 

perform two different tasks: 

• To perform a set of repetitions of a single STS transition at self-paced speed 

(SP); 

• To perform a set of repetitions of a single STS transition at a controlled 

speed (CT) with duration marked by a repetitive 4 seconds acoustic 

feedback, composed by a succession of 3 tones and a pause. 

The acoustic feedback was designed to uniform the duration of the individual 

phases of the STS, identified on the GRF profiles according to the standardization 

proposed by Etnyre [51]. In SP trials, an initial deflection from the baseline was 

observed (Initiation). After reaching the lowest level in the force recording (Peak-

counter), the GRF raise to a global maximum (Peak) and subsequently levelled to 

a normal postural sway (Standing). Diversely, CT trials were characterised by a 

more gradual increase in the GRF following the progressive inclination of the trunk 

and the raising movement from the chair. Examples of force profiles for both SP 
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and CT trials are displayed in Figure 1.2. Accordingly, the STS movement pattern 

was categorised in 4 sequential phases [Fig.1.3]:  

• The Rest phase (RES), identified as the initial sitting position;  

• The Trunk Leaning phase (TLN), starting with the initial deflection of the 

GRF from the Initiation event to the Seat Off instant; 

• The Raising phase (RAI), delimited from the Seat Off to the Standing event; 

• The Standing phase (STA), characterised by a stable upright position until 

the beginning of the sitting movement. 

 

Figure 1.2: Examples of GRF force profiles for SP and CT trials 
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Figure 1.3: Categorisation of the STS phases 

Throughout the development and progress of this project, the experimental protocol 

has undergone minor modifications that must be taken considered and disclosed. 

These changes are due to the progressive methodological improvement of the 

general research, which relies on previous empirical evidence to reduce possible 

future bias. The summary of the differences in the data acquisition protocol for the 

three populations is reported in Table 1.2. 

H
A

R
1
 

• Participants performed 10 SP trials and 10 CT trials; 

• In SP trials some participants tended to start the movement too early not allowing the 

registration of an appropriate RES phase; 

• In SP trials some participants tended to sit-down without having reached a sufficient 

stable STA phase; 

• In CT trials participants considered the Stand-to-Sit transition as a single returning 

phase, starting from the beginning of the Sitting event until reaching the RES phase. 

H
A

R
2
 

• Participants performed 1 SP trials and 2 CT trials for two experimental sessions 

separately (see Chapter 2.2.2) 

• HAR1 and HAR2 groups were collected using the same experimental methodologies. 

However, data from HAR2 was collected through a different routine optimized for 

simultaneous acquisition of signals from sensors and real-time motion recognition. 

H
A

R
3
 

• Participants performed 10 SP trials and 10 CT trials 

• In SP trials participants had to wait 3 seconds from the start of the acquisition before 

starting the movement; 

• In SP trials participants had to wait 3 seconds in the STA phase to reach balance 

stability; 

• In CT trials participants were asked to control the descending movement, identifying 

two returning phases: a Sitting phase, starting from the beginning of the sitting 

movement until registration of the “seat-on” signal; a Trunk Raising phase, where 

subjects raise the trunk until reaching the RES phase. This was done in anticipation of 

future efforts in categorising the Stand-to-Sit transition. 

 

Table 1.2: Protocol differences between HAR1, HAR2, and HAR3 datasets 
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1.2.2 Data Processing 

To test the labelisation process, the analysis was carried out over the combined 

HAR1 and HAR3 datasets. The data acquired from the force plate was filtered at 

64 Hz using a first-order low-pass Butterworth filter and subsequently resampled at 

50 Hz. This step was automatically implemented to match the sampling frequency 

of the force plate with the one of the IMU sensors, however, in this context, only 

the signals from the force plate and the electronic switch were considered. Taking 

into account the possible sources of variability across different datasets, the 

similarity between movements was assessed using a correlation-based method, by 

comparing all the registered STS sequences with each other. This was done to 

evaluate the possible homogeneity of results obtainable from a combined analysis 

of the HAR1 and HAR3 datasets. For each pair of trials: 

• Through a cross-correlation operation, the relative lags that maximised the 

similarity between the two GRF profiles were found; 

• The Pearson’s Correlation Coefficient (𝜌) between the two STS trials, was 

calculated after shifting the respective GRF profiles according to the lags 

found in the first step. 

This process was carried out separately for the SP and the CT trials and the results 

are graphically depicted in the correlograms below [Fig.1.4]. 

 

Figure 1.4: Correlograms of the Pearson's Correlation Coefficients for each pairwise comparison between 

the trials in HAR1 and HAR3. 

In CT trials a specific sequence displayed a different pattern compared to all the 

other STS repetitions. A further exploration evidenced that this trial was 
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characterised by an erroneous offset of the force plate and therefore it was not 

considered in the subsequent analysis. In general, the graphs highlighted strong 

correlations (≅1) across all CT trials comparing signals from the same (HAR1 vs 

HAR1, HAR3 vs HAR3) and different dataset (HAR1 vs HAR3). In SP trials. The 

correlations were moderate to strong, significantly lower than those obtained in CT 

trials, with a comparable behaviour for either within and between datasets 

comparisons. This result was influenced by the unconstrained speed of execution 

of the movement and the differences in the experimental protocol, however, the 

similarities between the GRF profile of the trials were sufficiently strong to presume 

the consistency of the results across the different sequences of the datasets. The 

categorisation software was implemented in MATLAB (MATLAB R2020a. 

Natick, Massachusetts: The MathWorks Inc.) and includes three main sub-functions 

able to identify the significant events in the STS motion pattern.  

● The TrunkMOV.m function recognises the Initiation event, as the beginning 

of the Trunk Leaning phase. In a first step, the GRF profile is segmented into n time 

epochs of 𝑁𝑒 samples. Epochs are temporally defined by their middle sample 𝑡𝑖, 

with i =1,…n. The software calculates the standard deviation of the force across 

each epoch as: 

 

𝜎𝑒𝑝(𝑡𝑖) = √
1

𝑁𝑒 − 1
∙∑(𝐹𝑗,𝑖 − 𝐹𝑖̅)2

𝑁𝑒

𝑗=1

 (1.1) 

where 𝐹𝑗,𝑖 is the jth force sample of the ith epoch and 𝐹𝑖̅ is the respective mean force. 

The resulting 𝜎𝑒𝑝(𝑡𝑖) values are then averaged using a moving mean of 10 epochs 

and normalized over the  sequence baseline, 𝐵𝑇𝐿: 

 
𝜎𝑒𝑝(𝑡𝑖) = 𝐸{𝜎𝑒𝑝(𝑡𝑖−5),… , 𝜎𝑒𝑝(𝑡𝑖+4)} ∙

1

𝐵𝑇𝐿
 (1.2) 

where: 

 

𝐵𝑇𝐿 =
1

10
∙∑𝜎𝑒𝑝(𝑡𝑖)

10

𝑖=1

 (1.3) 

Hence, the initiation event is defined as the first instant 𝑡𝑖 that satisfies the 

condition: 

 𝜎𝑒𝑝(𝑡𝑖) > 𝑇𝑇𝐿 (1.4) 
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where 𝑇𝑇𝐿 is a user-defined threshold.  

● The Bottom_Transition.m identifies voltage transitions of the electronic 

switch, from 0V to -5V and vice versa using a differential mask procedure. 

● The Standing phase is recognised by retrieving the information from the 

electronic switch and by identifying the stable stance between the Seat Off and the 

Seat On events. The SteadyStandingPoints.m function recognise the balance 

stability in the upright stance, by identifying the Standing and Sitting events. Firstly, 

the force signal is trimmed and divided into n time epochs of 𝑁𝑒 samples between 

the Seat Off and the Seat On instants. Subsequently, the standard deviation across 

all the epochs is calculated using equation (1.1). Relying on the symmetrical shape 

of the GRF profile, the middle epoch 𝑡𝑚𝑖𝑑 of the resulting signal is considered as 

the centre of the stable stance. Hence the stability baseline 𝐵𝑆𝑇 is calculated around 

𝑡𝑚𝑖𝑑 as: 

 𝐵𝑆𝑇 = 𝐸{𝜎𝑒𝑝(𝑡𝑚𝑖𝑑−10),… , 𝜎𝑒𝑝(𝑡𝑚𝑖𝑑+10)} (1.5) 

In a similar way to that described in equation (1.3) the 𝐵𝑆𝑇 value is used to normalise 

the moving average of 𝜎𝑒𝑝(𝑡). The resulting 𝜎𝑒𝑝(𝑡) is used to identify the beginning 

and the ending instants of the stable stance as respectively the first and the last 

epochs that satisfy the condition: 

 𝜎𝑒𝑝(𝑡𝑖) < 𝑇𝑆𝑇 (1.6) 

Where 𝑇𝑆𝑇 is a user-defined threshold. The default values for the described variables 

used in this evaluation are reported in Table 1.3. For the purpose of the present 

analysis 𝑇𝑇𝐿 and 𝑇𝑆𝑇 were selected empirically by tuning the values according to 

the results obtained from the STS profiles. Under this consideration, 2 and 1.5 were 

the values that assured the best categorisation of the STS across the majority of the 

force profiles. 

 

 TrunkMOV.m SteadyStandingPoints.m 

GRF sample frequency 50 Hz 50 Hz 

𝑵𝒆 5 epochs (0.1 s) 5 epochs (0.1 s) 

𝑻𝑻𝑳 2 N.A. 

𝑻𝑺𝑻 N.A. 1.5 

Table 1.3: Default values of the categorisation software used for this study. 

1.2.3 Data Analysis 
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In the lack of a proper gold standard approach, visual inspection remains the 

most reliable method to recognise STS events and phases based on GRF values 

[51]. Hence, simultaneously with the software analysis, five participants aged (30 

± 6) years visually identified the beginning of the trunk movement (Initiation event) 

and the limits of the stable stance (Standing and Sitting events) from the force 

profiles of 200 STS sequences. The ages of the assessors are reported in Table 8 

together with their professional and academic background. As a measure of 

reliability, assessments were repeated in 2 distinct sessions, separated in time by a 

minimum interval of 1 hour. STS sequences were drawn randomly from a total pool 

of 742 acquisitions (HAR1+HAR3) and were maintained across the measurement 

trials. This information was not made explicit to avoid possible learning effects. 

Among the 200 pooled sequences, 100 referred to SP trials, and 100 referred to CT 

trials. Before the first session, subjects were briefly trained to recognise the onset 

of each event on five force profiles accordingly to the definitions given by Etnyre 

and colleagues, and an explanatory summary was always available in the form of 

MATLAB live script during all the measurements.  

AGE PROFESSIONAL BACKGROUND ACADEMIC LEVEL 

29 Bioengineer MSc/Ph.D. student 

27 Physicist MSc/Ph.D. student 

40 Physiotherapist Ph.D. 

25 Bioengineer MSc/Research Fellow 

30 Psychologist MSc/Ph.D. student 

Table 1.4: Assessors’ description 

All assessors were physiotherapists, bioengineers, and Ph.D. candidates with 

clinical experience in physiotherapy and expertise in movement analysis. Test-

Retest reliability was considered as a quality index of the human measure, and it 

was compared with the performance of the software evaluated with the Inter-Rater 

reliability against participants’ assessments in the first trial. For both analyses, the 

absolute agreement was measured using a non-parametric version of Bland-Altman 

statistics [140], as a consequence of the violation of the normality assumption of 

data. Normal distributions were tested using the Kolmogorov-Smirnov test and, 

furtherly investigated using the skewness and kurtosis indexes. To correct the 

analysis for possible outliers not directly connected to the evaluation of the 

assessors or the performance of the software, data observations that fell outside 1.5 

interquartile ranges above the upper quartile (75th percentile) or below the lower 



38 

 

quartile (25th percentile), were visually inspected. In particular, wrong 

identifications resulting from an erroneous mouse click, early movements, or a 

malfunction of the electronic switch were eliminated. The systematic bias and the 

limits of agreement was calculated as the median of the absolute differences 

between assessments and the respective 2.5th and 97.5th percentile scores. The upper 

Limits of Agreement (ULoA) represented the maximum estimated error between 

the measures. The 95% Confidence Intervals (CI) of the above-specified parameters 

were also calculated using a percentile bootstrap method based on 10k samples 

[141]. The percentile method was chosen for its conservative nature, as it tends to 

produce wider CI less sensitive to population value and sample size [142]. A two-

tailed two-sample t-test [143] was used to compare the maximum errors made 

between the Test-Retest trials and the Human-Software evaluations, exploring the 

significant differences between measures. Every ULoAs and respective CI were 

approximated to  normal distributions characterised by mean values 𝜇𝑖 and standard 

deviation 𝜎𝑖 [144], calculated as: 

 𝜇𝑖 = 𝑈𝐿𝑜𝐴𝑖 (1.7) 

 

𝜎𝑖 =

{
 

 
|𝐶𝐼𝑢𝑝 − (𝑈𝐿𝑜𝐴)𝑖|

1,96
∙ √𝑁

|𝐶𝐼𝑙𝑜𝑤 − (𝑈𝐿𝑜𝐴)𝑖|

1,96
∙ √𝑁

     
𝑖𝑓    |𝐶𝐼𝑢𝑝 − (𝑈𝐿𝑜𝐴)𝑖| > |𝐶𝐼𝑙𝑜𝑤 − (𝑈𝐿𝑜𝐴)𝑖|

𝑖𝑓    |𝐶𝐼𝑙𝑜𝑤 − (𝑈𝐿𝑜𝐴)𝑖| > |𝐶𝐼𝑢𝑝 − (𝑈𝐿𝑜𝐴)𝑖|
 (1.8) 

The choice of the lower or higher confidence limit was guided by the need to 

calculate the largest standard error to obtain a more conservative approximation. 

The statistical analysis was stratified by considering the different STS events 

separately, dividing the results obtained in SP and CT trials. Bland-Altman statistics 

was implemented in MATLAB as a modified version of the BlandAltman.m 

function developed by Ran Klein from the Department of Nuclear Medicine of the 

Ottawa Hospital [145]. The two-tailed two-sample t-test was executed with the 

online “Comparison of means calculator” tool from Medcalc Statistical Software 

[146].  
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1.3 Results 

The Bland-Altman plots related to the identification of the Initiation, Standing 

and Sitting events are shown respectively in Figure 1.5, Figure 1.6, and Figure 1.7 

and the summary of the descriptive statistics for the bias and the ULoAs (CI) are 

reported in Table 1.5. In both SP and CT trials, for all STS events, participants 

showed significantly lower identification bias in the repeated assessments, 

compared to the difference displayed against the measurements performed by the 

software. Moreover, the Test-Retest Reliability in the identification of the STS 

events significantly decreases in CT trials with a consequent increase in the value 

of the systematic error. 

 

Figure 1.5: Bland-Altman plots depicting the Test-Retest Reliability (left) and the Inter-Rater Reliability 

(right) of the identification of the Initiation event in SP trials (upper plots) and CT trials (lower plots). 
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 SP trials CT trials 

Events 

Test-Retest Human-Software Test-Retest Human-Software 

Bias 

(s) 

ULoA 

(s) 
N 

Bias 

(s) 

ULoA 

(s) 
N 

Bias 

(s) 

ULoA 

(s) 
N 

Bias 

(s) 

ULoA 

(s) 
N 

Initiation 
0.06 0.36 

492 
0.14 0.46 

490 
0.14 0.62 

483 
0.18 0.96 

493 [0.05-

0.06] 

[0.30-

0.46] 

[0.12-

0.15] 

[0.39-

0.58] 

[0.12-

0.16] 

[0.54-

0.84] 

[0.16-

0.20] 

[0.84-

1.20] 

Standing 

0.10 0.62 

488 

0.30 0.82 

495 

0.16 1.30 

484 

0.44 1.60 

493 [0.08-
0.10] 

[0.48-
0.74] 

[0.28-
0.32] 

[0.74-
0.86] 

[0.16-
0.20] 

[1.10-
1.70] 

[0.40 
0.48] 

[1.40-
1.70] 

Sitting 

0.08 0.42 

497 

0.20 0.48 

494 

0.14 0.69 

491 

0.20 0.81 

490 [0.06-

0.08] 

[0.34-

0.47] 

[0.18-

0.22] 

[0.46-

0.60] 

[0.12-

0.14] 

[0.60-

0.86] 

[0.18-

0.22] 

[0.66-

0.86] 

  
* 

    
* 

   

  
* 

       

Table 1.5: Descriptive statistics for Bias and ULoA for every comparison. (*) p<0.05 for not overlapping CI 

 

Figure 1.6: Bland-Altman plots depicting the Test-Retest Reliability (left) and the Inter-Rater Reliability 

(right) of the identification of the Standing event in SP trials (upper plots) and CT trials (lower plots). 
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Figure 1.7: Bland-Altman plots depicting the Test-Retest Reliability (left) and the Inter-Rater Reliability 

(right) of the identification of the Sitting event in SP trials (upper plots) and CT trials (lower plots). 

The results of the two-tailed two-sample t-test are summarised in Table 1.6. 

 SP trials CT trials 

 Initiation Standing Sitting Initiation Standing Sitting 

Difference (s) 0.100 0.200 0.060 0.340 0.300 0.120 

95% CI (s) 0.056 

0.256 

0.039 

0.361 

-0.084 

0.204 

0.014 

0.666 

0.017 

0.583 

-0.107 

0.347 

t-statistic 1.255 2.440 0.816 2.045 2.079 1.037 

df 980 981 989 974 975 979 

p-value 0.209 0.015 (*) 0.414 0.041 (*) 0.038 (*) 0.300 

Table 1.6: Two-tailed two-sample t-test results. Differences with p-values <0.05 (*) were considered 

statistically significant 

Significant differences in ULoAs between Test-Retest evaluation and Human-

Software assessments were found in the Standing event identification for both SP 

(0.200 s [0.039; 0.361], p>0.05) and CT (0.300 s [0.017; 0.583], p>0.05) trials. A 
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significant difference (p>0.05) of 0.340 s [0.014; 0.666] was also found in the 

Initiation event identification in CT trials.  
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1.4 Discussion and conclusions 

This part of the project aimed at evaluating the performance of a custom-routine 

for the recognition of clinically relevant events in the STS from GRF profiles, 

comparing the results of the automated approach to human visual assessment. 

Despite the significantly lower systematic bias in human evaluations, the 

comparison between visual assessments and the proposed approach showed similar 

values of maximum absolute error, supporting the use of the presented method for 

the automated categorisation of the STS movement. More specifically no statistical 

differences were found in the identification of the Initiation and the Sitting events 

in SP trials and the identification of only the Sitting event in CT trials. The 

worsening of the observed agreement during CT movements was generally in line 

with our expectation, as ULoAs values could be affected by uncertainties due to the 

kinetic modifications resulting from the standardisation of the movement. For 

instance, the initial GRF deflection effect is highly dependent on each individual’s 

movement strategy [51] and could be reduced by the lower quantity of momentum 

produced under constrained speed, complicating the identification of the Initiation 

event. Another important consideration highlights the intrinsic subjectiveness of 

human evaluations [147]. One could consider the slightest oscillation either as an 

extension of a contiguous static phase or as the limit of a movement transition. 

Moreover, whereas visual assessments can vary across repeated evaluation and 

differ in individuals, depending on their professional experience [148], [149], the 

use of an automated procedure ensures the repeatability of the assessments. 

Nonetheless, it is important to underline that, with an estimated maximal 

discrepancy of 0.200 s [0.039; 0.361] and 0.340 s [0.014; 0.666] respectively for 

normal and standardised speed, the proposed algorithm should not be considered as 

a replacement to visual clinical evaluations on a single patient, where the specific 

expertise of clinicians plays a key role in the diagnosis process, often requiring a 

high level of abstraction [147]. Indeed, such a method should be seen as a help to 

health professionals as it could be able to free them from the encumbrance of the 

data processing, with a reasonable margin of error. Previous works [147]–[151] 

evaluated the performances of various algorithms developed for the identification 

of Sit-to-Stand and Stand-to-Sit postural transitions using data acquired from 

inertial sensors. In particular, a recent paper of Atrsaei and colleagues [129] 
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validated the accuracy of a new routine based on a single inertial device against 

visual assessments on-camera recordings of STS movements, obtaining levels of 

agreement above 94%, in terms of positive predictive values and sensitivity. As a 

direct comparison with the present study, the use of inertial sensors is usually 

preferable since they can be also applied in non-clinical environments [46]. 

However, their measurements are strongly influenced by the inter/intra-individual 

variability of the movement [51], [152], and the positioning of the sensors, limiting 

the recognition of the STS motion pattern to the simple discrimination of static and 

dynamic phases. Conversely, our choice to use a force plate has some doubtless 

limitations in terms of costs and portability but the strong value of providing easier 

interpretable results, on which it is possible to identify clinically significant 

movement events and phases. This major advantage can be exploited by ML 

algorithms, as valid ground-truth data to train specific supervised approaches in a 

finer recognition of the STS for HAR tasks [153], [154]. In this context, the results 

obtained offered a double contribution to the general work and prospective 

researches. First, we evaluated the human-level performance in the described 

recognition task, giving an estimate of the considerable reference value in terms of 

“optimal error” [155]. Second, we quantified the discrepancies between the 

categorisation software and human assessment, obtaining an overall good-

agreement in the identification of significant STS events from values of vertical 

GRF. By providing objective measures, this method can be used to identify specific 

trends and patterns in the STS movement, which can be ultimately exploited for a 

reliable data labelisation in ML applications. With the support of such objective 

reference, the use of co-registration methods between different sensor modalities 

would allow the development of accessible, wearable rehabilitation tools, that 

combine the discriminating power of gold-standard instruments with the limited 

dimensions and costs of inertial sensors.  
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Chapter 2: 

Real-Time Validation of Neural Networks for a 

Clinically Relevant Recognition of the Sit-to-Stand 

Movement 
2.1 Introduction 

This chapter takes up some notions previously introduced to clearly explain the 

basic principles of machine learning and explore the potential of a simple neural 

network for synchronously recognise the STS movement pattern. 

2.1.1 A brief history of neural networks 

The Neural Network concept is relatively old, dating back to the 1940s with the 

studies of Warren McCulloch and Walter Pitts [156]. In their work, they described 

the theoretical model of the nervous system as a set of nodes that are connected 

through synapses. If a node (representing a neuron) receives a discrete amount of 

input from the neighbouring nodes, surpassing a definite threshold, then it will 

initiate an impulse and the signal will propagate across the network. This idea has 

been applied later by Frank Rosenblatt [157] in the development of a supervised 

binary classifier14: the Perceptron.  

 

Figure 2.1: The Perceptron 

 
14 There are two type of predictive models:  

• Classification models approximates a mapping function (f) from input variables (x) to 

discrete output variables (y) called labels or categories. 

• Regression models approximates a mapping function (f) from input variables (x) to a 

real-value continuous output variable (y) 
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Figure 2.2: The Mark I Perceptron machine, The system was connected to a 20×20 cadmium sulfide 

photocells based camera to make a 400-pixel image (on the left). The inputs were randomly connected with 

wires (center panel) to an array of potentiometers that implemented the network weights (on the right) 

The Perceptron is the simplest neural network architecture, it takes multiple inputs 

(x) and computes a weighted sum accordingly to the vector (w) of the weights. A 

non-linear activation function (in this case, a step-function f), is later applied to the 

weighted sum to produce the final output (y) [Fig.2.1].  

 
𝑓(𝑥) = {

1, 𝑖𝑓 w ∙ x + 𝑏 > 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2.1) 

Although initial expectations were high, Perceptron could not be generalised to 

multinomial classifications. Furthermore, being based on linear combinations of 

fixed basic functions, the model could not solve non-linearly separable problems 

(i.e. learning the boolean function "XOR"15). These limitations, valid for single-

layer networks, were erroneously generalized even to more complex architectures, 

leading the scientific community to underestimate the potential of neural networks 

with a consequent stall in research [158]. It is just in 1986 with the publishing of 

the backpropagation algorithm [159], a methodology for training16 more complex 

architectures, that the interest in neural network revived, laying the bases for the 

later “deep-learning” expansion.  

 

Figure 2.3: General structure of a simple feed-forward neural network 

 
15 The logical operator XOR outputs TRUE just when the inputs are differs between each other 
16 Training implies providing a model a set of data to learn from.The learning process allow the 

model to map the input intrinsic patterns to some outputs.  
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As the Perceptron can be considered a model for a single neuron, a neural network 

can be thought of as the connection of more Perceptrons and it is often schematised 

as displayed in figure 2.3. In the most general conception a network structure can 

be characterised by three types of layers [160], [161]:  

• the input layer whose neurons encode a fixed-size input signal (i.e. an image 

256x256 pixel); 

• one (or more) hidden layer(s), which connects inputs and outputs; 

• the output layer whose neurons represent the outputs of the model, for 

example the number of categories in a classification problem. 

The complexity of a network is related to the depth of its layers, a “shallow” 

network is composed of a maximum of three layers including the inputs and the 

outputs, while a “deep” network has more than one hidden layer [162]. Finally, 

according to the direction of the connections networks can be categorised in feed-

forward, if the information is fed uniquely from the inputs to the output, or 

recurrent if there are loops in the architecture to maintain a memory of the previous 

states (see Chapter 3) [160]. 

2.1.2 Multilayer Perceptron 

Following the previous statements, the Multilayer Perceptron (MLP) is a feed-

forward network that can be thought of as a composition of many Perceptron units 

organized into layers. However, the term “Perceptron” can be deceiving because 

the choice of the activation function for the single units is not limited to the step 

function but can be arbitrarly defined with real values outputs (usually ranging 

between 0 and 1or between -1 and 1), allowing probability-based classifications. 

The general functioning of a MLP can be summarised by the equations presented 

in Figure 2.4: 
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Figure 2.4: On the left the characteristic equation of a shallow MLP, the graphical representation of a 

shallow MLP network. Each layer is charachterised by the relative equation on the left. Biases elements are 

reported in black. 

Where i = 1,...,M, j=1,...,N and k =1,...,D. The superscript (l) indicates that the 

corresponding parameters are relatives to the lth layer of the network. The first 

subscript indicates the destination unit of the connection in the lth layer while the 

second subscript is referred to the origin unit of the connection in the l-1th layer. In 

this way the parameters 𝑤𝑎,𝑏
(𝑙)

 define the weights of the connections to the lth layer 

of the architecture and the parameters 𝑤𝑎,0
(𝑙)

 define the biases17 of the lth layer. The 

activation functions should be chosen accordingly to the nature of the data and the 

specific task. For instance, for regression problems, the activation function is the 

identity so that yk = ∑ 𝑤𝑘,𝑗
(2)
𝑧𝑗

𝑁
𝑗=1 + 𝑤𝑘,0

(2)
. and for multiclass problems a softmax 

activation function in the form of 

 𝜎(𝑥𝑖) =
𝑒𝑥𝑖

∑ 𝑒
𝑥𝑗𝐶

𝑗=1

. (2.2) 

is used to obtain the probability of each ith choice among a total number of C 

possible classes. From this point of view, the MLP can be seen as a nonlinear 

function that maps a set of input variables X to some output variables Y controlled 

through a vector W of adjustable parameters. Hence starting from a set of training 

data, the learning procedure aims at optimising the weights of the connections to 

reduce the difference between errors committed in output compared to the expected 

results.  

 
17 Biases are simple constant value added to the weighthed sum of the afferent connections to a 

node in the subsequent layer. They are used to offset the output of the activation function. 
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3.1.3 The Backpropagation learning rule: from biological 

to artificial neural networks 

The learning process described above recalls the mechanisms of neural 

plasticity, which is considered at the base of learning and memory function in the 

brain, and consist of the ability of biological Neural Networks and synapses to 

modify their properties depending on their activity [163], [164]. More specifically, 

synaptic plasticity is commonly referred to as the strengthening or weakening of 

synaptic weights and can be categorised into Short‐Term Synaptic Plasticity (STSP) 

and Long‐Term Synaptic Plasticity (LTSP) according to the duration of its effect. 

STSP lasts several minutes [165]. The STSP can manifest either as an enhancement 

or a depression. Among the enhancing effects, the two main typologies are the 

Paired Pulse Facilitation (PPF) and the Post Tetanic Potentiation (PTP) [164]. The 

PPF occurs when two action potentials arrive in short succession within tens of 

milliseconds due to the increased level of Ca++, which allows a larger release of 

neurotransmitters in the presynaptic cell, resulting in an excitatory potential. PTP 

is characterised by a larger temporal window, occurring after a high‐frequency train 

of presynaptic action potentials in association with Ca++ dependent protein kinases 

[166]. After PPF, STSP depression can occur due to the depletion of releasable 

pools of neurotransmitter vesicles. LTSP retains its effect for many hours (or 

longer) [167] with either enhancing (Long‐Term Potentiation - LTP) or depowering 

synaptic effects (Long‐Term Depression - LTD). The molecular mechanisms of 

LTP and LTD differ among the various types of synapsis and have been observed 

in numerous cerebral areas like the hippocampus, the cortex, and the cerebellum 

[163], [167]–[169]. The NMDA postsynaptic receptors18 play a key role in LTP and 

LTD. These receptors can be activated by the neurotransmitter glutamate from the 

presynaptic cell, glycine and D-serine [163], [171], enabling the stream of Ca++ in 

the postsynaptic cell, which causes more AMPA receptors to be inserted into the 

postsynaptic membrane, with the consequent strengthening of the synaptic 

 
18 NMDA and AMPA receptors belong to a class of ionotropic glutamate receptors. Excitatory 

synaptic transmission in the brain is based on the release of L-glutamate from presynaptic terminals 

that diffuses across the synapsis and binds to postsynaptic AMPA and NMDA receptors. The 

activation of AMPA receptors is fast and transient, while NMDA receptors regulate functional and 

structural plasticity of individual synapses, dendrites, and neurons by allowing activation of specific 

calcium-dependent signaling cascades. Several unique properties of NMDA receptors prevent their 

activation by L-glutamate released during a single synaptic event [170] 
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transmission (LTP). Conversely, a lower influx of Ca++ provokes the internalization 

of AMPA receptors, weakening the synaptic transmission (LTD). Following a 

process akin to the biological counterpart, Artificial Neural Networks update the 

weights of their connections iteratively according to the feedback received by 

comparing their outputs with some reference target. This process is commonly 

carried out by the Backpropagation algorithm [159]. The method is divided into two 

main steps:  

• the forward propagation of the input through the network to find the 

activations of all the hidden and output units; 

• the backpropagation of the error from the outputs to the inputs to find 

its partial derivatives respective to all the weights and the bias of the 

network; 

The forward propagation is completely defined by the previously introduced 

equations, which are reported and expanded more in-depth below [160], [172]. 

𝑎𝑖
(0)
= 𝑥𝑖,    ∀𝑖 ∈ ℤ | 1 ≤ 𝑖 ≤ 𝑁

𝑖𝑛𝑝𝑢𝑡 Input units (2.3) 

𝑧𝑗
(𝑙)
=∑𝑤𝑗,𝑖

(𝑙)
𝑎𝑖
(𝑙−1)

𝑀

𝑖=1

+𝑤𝑗,0
(𝑙)

 Weighted Sum at the jth unit in the lth layer (2.4) 

𝑎𝑖
(𝑙)
= 𝑓(𝑧𝑖

(𝑙)
) Activations of the jth unit in the lth layer (2.5) 

∀𝑖 ∈ ℤ | 1 ≤ 𝑖 ≤ 𝑁(𝑙−1) 

∀𝑗 ∈ ℤ | 1 ≤ 𝑗 ≤ 𝑁(𝑙) 

∀𝑙 ∈ ℤ | 1 ≤ 𝑙 ≤ 𝐿 

Table 2.1: Forward propagation. The superscript (l) indicates the layer, L is the total number of layers, the 

subscript j refers to the target unit in the lth layer, the subscript i refers to the origin unit in the l-1th layer, 

The parameter 𝑤𝑗,0
(𝑙)

 is the bias term. In the output layer the activations are the outputs of the network. 

The back propagation step starts with the calculation of the output error which is 

characterised by the cost function 𝐽(W), where W is the vectorisation of all the 

weights 𝑤𝑗,𝑖
(𝑙)
 of the network. Subsequently the partial derivatives of the cost function 

𝜕𝐽

𝜕𝑤𝑗,𝑖
(𝑙) are calculated using a mathematical method called the chain rule. Every 

𝜕𝐽

𝜕𝑤𝑗,𝑖
(𝑙) 

retain information on how much every single weight 𝑤𝑗,𝑖
(𝑙)

 contribute to the overall 

output error, and are actually used to update the parameters of the network. Below 

are the equations that describe back propagation in detail [160]: 
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𝛿𝑗
(𝐿)
=

𝜕𝐽

𝜕𝑧𝑗
(𝐿) = 

𝜕𝐽

𝜕𝑎𝑗
(𝐿)

𝜕𝑎𝑗
(𝐿)

𝜕𝑧𝑗
(𝐿)     Error associated with the jth node of the Lth layer (2.6) 

𝛿𝑗
(𝑙)
=

𝜕𝐽

𝜕𝑧𝑗
(𝑙) =  ∑

𝜕𝐽

𝜕𝑧𝑘
(𝑙+1)

𝜕𝑧𝑘
(𝑙+1)

𝜕𝑧𝑗
(𝑙)

𝐾
𝑘=1 =

∑ 𝑤𝑘,𝑗
(𝑙+1)𝐾

𝑘=1 𝑓′(𝑧𝑗
(𝑙)
)𝛿𝑘

(𝑙+1)
  

Error associated with the jth node of the lth layer (2.7) 

𝜕𝐽

𝜕𝑤𝑗,𝑖
(𝑙) = 𝑎𝑖

(𝑙−1)
𝛿𝑗
(𝑙)

  Partial Derivatives calculation (2.8) 

𝑤𝑗,𝑖
(𝑙)
= 𝑤𝑗,𝑖

(𝑙)
− 𝜆

𝜕𝐽

𝜕𝑤𝑗,𝑖
(𝑙)  Weight Update (2.9) 

∀𝑖 ∈ ℤ | 0 ≤ 𝑖 ≤ 𝑁(𝑙−1) 

∀𝑗 ∈ ℤ | 1 ≤ 𝑗 ≤ 𝑁(𝑙) 

∀𝑘 ∈ ℤ | 1 ≤ 𝑗 ≤ 𝑁(𝑙+1) 

∀𝑙 ∈ ℤ | 1 ≤ 𝑙 ≤ 𝐿 

Table 2.2: Backward propagation. The superscript l indicates the layer, L is the total number of layers, the 

subscript j refers to the target/origin unit in the lth layer, the subscript i refers to the origin unit in the l-1th 

layer, if equals to 0 refers to the bias connection, the subscript i refers to the target unit in the l+1th layer 

The algorithm starts with a randomised set of initial weight W0 and stops when the 

cost function reaches a sufficiently small value after a definite number of iterates 

{W𝐾}𝐾=0
𝑁 , essentially categorising the learning process as an optimisation problem, 

where a local minimum of the function 𝐽(W) is sought [173]. 

Iterative techniques for unconstrained non-linear optimisation 19can be categorised 

in two major classes: line search methods and trust-region methods [174]. Line 

search strategies search the data space along a direction 𝑝𝑘, by moving with a step 

𝛼 to find a new iterate W𝑘+1which decrease the cost function.  

min
𝛼>0

𝐽(W𝐾 + 𝛼𝑝𝑘) 

Following a dual concept, trust-region strategies reasonably approximate 𝐽(W) with 

a simpler function 𝐽∗(W𝐾) in a neighbourhood surrounding 𝛼, and minimise it by 

searching for an appropriate trial step 𝑝 inside the so defined trust region. W𝑘 is 

consequently updated as W𝑘 + 𝑝 if 𝐽(W𝐾 + 𝑝) < 𝐽(W𝐾). If the condition is not 

satisfied, a smaller trust region is considered, and a new solution W𝑘 + 𝑝 is 

evaluated. 

min
𝑝
𝐽𝑘(W𝐾 + 𝑝) 

 
19 Unconstrained minimization is the problem of finding a vector x that represent a local 

minimum of an objective function f(x)  

min
𝑥
𝑓(𝑥) 

Where 𝑥 ∈ ℝ𝑛, 𝑛 ≥ 1 and 𝑓: ℝ𝑛 →  ℝ. 

The term unconstrained means that no restriction is placed on the range of x. 
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Figure 2.5: On the left: line search strategies search the data space along a defined direction and move 

along it by a defined step. On the right: trust region strategies approximate J(W) with a simpler function J* 

(W) in a neighbourhood surrounding α, and minimise it inside the so defined trust region 

The basic Backpropagation approach applies a line search method, by finding the 

direction where the function J decreases more rapidly (i.e. gradient descent), 

however, it is important to underline that different variants of the algorithm exist. 

These alternative formulations can implement both line search and trust region 

strategies with advantages in terms of stability and/or speed of convergence.  

2.1.3 Objective 

By exploiting the aforementioned concepts, this chapter discusses the 

development of two shallow MLPs and evaluates their classification performance 

in the real-time recognition of the STS movement pattern.  
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2.2 Methods 

This section is divided into two parts: the development of the MLPs (design 

phase) and their implementation in the real-time recognition of the STS movement 

(validation phase). 

2.2.1 Design phase 

The MLPs were trained on the data collected from the HAR1 population 

following the methodologies described in Chapter 1.2.1 for the STS registration. 

Concerning the specific supervised classification task, it is important to underline 

that the execution of the STS movement implies variable durations for the phases 

of its motion pattern (RES, TLN, RAI, STA see Chapter 1.2.1) resulting in an 

unequal distribution of occurrences in the different output classes. This 

inhomogeneity of the dataset can affect the final performance of the algorithm in 

multiple ways [175]:  

• in imbalanced conditions, classifiers models provide suboptimal results, 

with a distortion in the overall performance pointing toward the most 

represented examples; 

• performance metrics such as prediction accuracy are prone to bias in favour 

of the majority class; 

• minority classes can be coded as noise and vice versa by the prediction 

algorithm since both are rare patterns in the data space; 

• minority classes could overlap with another class in the same data space and 

with a similar number of samples, making their a priori distinction difficult; 

• in general, small sample size and high dimensionality in the data space 

usually cause a failure in the detection of under-represented patterns; 

To conveniently handle these problems, the two classifiers were trained on the CT 

dataset, exploiting the role of the acoustic feedback in standardising the duration of 

the STS phases. The two classifiers were trained on the inertial signals, composed 

by 3D accelerations, Roll, Pitch and Yaw values. An epoch of 5 samples from the 

inertial signal (50 Hz – 20 ms) was used to obtain a valid sample of features for 

classification at 10 Hz (100 ms). This sampling rate was selected to simulate the 

occurrence of a real-time human movement signal, which is characterised by 
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spectral components below 20 Hz [176]. For instance the typical kinematic  

bandwidth of normal gait is between 4 and 6 Hz [177] and it has been demonstrated 

that the frequency range of ADLs, performed on a force platform, range between 

0.3 and 3.5 Hz [178]. Hence, from each signal epoch, 7 temporal features were 

extracted: mean, root-mean-square (RMS)20, maximum normalised to RMS, 

minimum normalised to RMS, standard deviation (SD), coefficient of variation 

(COV)21 , and Jerk22, calculated as the first derivative of the acceleration. The 

resulting dataset was subsequently segmented and labelled, based on the time 

events obtained from the GRF and the electronic switch using the labelisation 

software described in Chapter 1.2.2. During the execution of the automated labeling 

process of the dataset, data was visually investigated to exclude eventual 

inconsistencies due to acquisition errors. A supervised approach was then 

implemented in MATLAB to develop 2 separate models of MLPs, respectively 

trained over the data acquired from all the IMUs (see Chapter 1.2.1) or from just 

three sensors (situated on the trunk, and the upper legs). For each network, 100 

possible alternative models were identified by defining 10 different topologies 

(number of hidden units) and 10 different starting sets of initial weights. As 

suggested by Heaton [180], the numbers of hidden neurons were chosen between 

the number of output units (4 phases of the movement) and the number of input 

units (252 features from 6-sensors, 126 features from 3 sensors). The scaled 

conjugate gradient (SCG) variation of the backpropagation algorithm [173] was 

used as training rule and implemented inside an 11*10 stratified nested cross-

validation (SNCV) routine [181] with a simple early-stopping rule to regularise the 

training and limit the possible overfitting effect. The SCG combines line search and 

trust region techniques, removing the necessity of user-dependent parameters with 

an increment in speed of convergence and effectiveness of the algorithm. The 

 
20 The RMS of a time-varying quantity y(t) describes its average power. It is calculated as 

[179]: 

𝑦𝑅𝑀𝑆 = √
1

𝑇
∫(𝑦(𝑡))2𝑑𝑡

𝑇

0

 

 
21 The coefficient of variation (COV) is defined as the ratio of the standard deviation to the 

mean: 

𝐶𝑉 =
𝜎

𝜇
 

22 The Jerk is the rate of change of acceleration, or the third derivative of position with respect 

to time. 
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SNCV is a technique that assesses the generalisation power of a statistical analysis 

over independent data groups, based on the multiple division of the entire dataset. 

It is composed of two nested cross-validation loops which are referred to as internal 

and external cross-validation loops [182]. Firstly, the dataset is randomly divided 

into K stratified folds, which are repetitively assigned to the Test and the Design 

set in the external loop. The Test set is exclusively used to obtain a reliable 

evaluation of the model performance. In the internal loop, the Design set is 

iteratively splitted in the Training and the Validation set to optimise the parameters 

of the model. In summary, the networks which displayed the lowest error in the 

internal loop are employed and assessed in the external loop, obtaining an unbiased 

estimation of its classification performance [183]. The categorical cross-entropy23 

function was used as loss metric to evaluate the different models across the 

validation process. Following the above described concept the training procedure 

adopted for the development of the two MLPs was the following:  

STRATIFIED NESTED CROSS VALIDATION 
 
PARAMETER DEFINITION 
1- Define tuneable parameters, Hidden units: N 
2- Define tuneable parameters, Initial weights: W 
3- Define number of stratified folds: K 
PERFORMANCE ESTIMATION 
for k=1:K 
   5- Define the present fold k as test set: T 
   6- Define the remaining folds as design set: V 
   for n=1:N 
      for w=1:W 
         for v=1:V 
            7- Define the present fold v as validation set 
            8- Train the model with parameters w and n on the remaining folds 
            9- Test the model with parameters w and n on the validation set v 
            10- Save the performance for the validation set v 
         end 
         11- Average the performance across V 
         12- Save the validation result (matrix N x W x K) 
      end 
   end 
   13- Average the results across the set of random initial weights 
   14- Find the optimal number of hidden units n* 
   15- Train the optimised model with n* hidden units on the design set V 
   16- Test the optimised model on the test set T 
   17- Save the performance for the test set T (matrix K x 1) < Estimated performance 
   and the number of training iterations (matrix K x 1) 

 
23 For a multi-label classification, the loss is calculated using the following formula: 

𝑙𝑜𝑠𝑠 = −
1

𝑁
∑∑(𝑇𝑖,𝑗) log(𝑋𝑖,𝑗) + (1 − 𝑇𝑖,𝑗) log(1 − 𝑋𝑖,𝑗)

𝐶

𝑗=1

𝑁

𝑖=1

 

where 𝑋𝑖,𝑗 is the network response for a given category, 𝑇𝑖,𝑗 is the target value of that category, 

and C is the total number of categories. In this case, the cross-entropy loss is calculated as the 

probability of a given observation being assigned to a given category, summed over all categories 

and observations and normalized by the number of observations 𝑁. 



56 

 

end 
18- Select the optimal number of hidden units n** that performed better across the majority of the folds 
19- Train a network with n** hidden units on the entire dataset for the average number of training 
iterations across all the folds 
 

2.2.2 Validation phase 

In the validation phase, subjects executed the STS task in two experimental 

sessions, one for each MLP classifiers. For each session, participants performed 1 

SP trial and 2 CT trials. Features from the inertial sensors were calculated and fed 

directly into the classifiers, synchronizing the output of the network with the force 

plate and the electronic switch. Subsequently, we compared the real-time 

classifications with the asynchronous categorisation of the movement based on the 

analysis of the GRF and the electronic switch signal (Chapter 2). To evaluate the 

classification performance of the two models, (2.10) the precision (PRC), (2.11) the 

recall (RCL), and (2.12) the F1 scores across all STS phases were extrapolated  from 

the output of the networks. As overall-performance indexes, we also calculated the 

macro averages of these metrics together with (2.13) the general accuracy (ACC) 

achieved by each model. 

 𝑃𝑅𝐶𝑝 =
𝑇𝑃𝑝

𝑇𝑃𝑝 + 𝐹𝑃𝑝
 (2.10) 

 𝑅𝐶𝐿𝑝 =
𝑇𝑃𝑝

𝑇𝑃𝑝 + 𝐹𝑁𝑝
 (2.11) 

 𝐹1𝑝 =
2 ∗ 𝑃𝑅𝐶𝑝 ∗ 𝑅𝐶𝐿𝑝

𝑃𝑅𝐶𝑝 + 𝑅𝐶𝐿𝑝
 (2.12) 

 𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 (2.13) 

 

Additionally, the temporal distribution of the classification errors for each phase 

was evaluated by centring around its middle sample and comparing the network's 

outputs with the ground-truth categorisation over 300 ms time bins. To evaluate the 

temporal performance of each model, the acquisition time of every 100 ms sample 

(defined as the last recording instant of the signal from inertial sensors, see Figure 

2.6) and the relative classification time were recorded.  
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Figure 2.6: Real-time data acquisition workflow from the XSENS sensors. Data from each sensor are 

acquired sequentially until the completion of an entire datapacket at the user-defined sample frequency of 50 

Hz. Five consecutive datapackets are used to define a sample of 100 ms in the analysed datasets. 𝑡𝑖
𝑎𝑐𝑞

is 

defined as the temporal instant in which the last datapacket of the current sample is acquired. 𝑡𝑖
𝑐𝑙𝑎𝑠𝑠is defined 

as the temporal instant of classification after the current sample is acquired and fed to the MLP. 

 

Hence, (2.14) the average delay between data acquisition and classification; (2.15) 

and the average inter-classification time were calculated for each STS repetition. 

Finally, for both parameters 95% confidence intervals were calculated across all the 

specific datasets. 

 
𝑇𝑑𝑒𝑙𝑎𝑦 =

∑ 𝑡𝑖
𝑐𝑙𝑎𝑠𝑠 − 𝑡𝑖

𝑎𝑐𝑞𝑁
𝑖=1

𝑁
 (2.14) 

 
𝑇𝑖−𝑐𝑙𝑎𝑠𝑠 =  

∑ 𝑡𝑖+1
𝑐𝑙𝑎𝑠𝑠 − 𝑡𝑖

𝑐𝑙𝑎𝑠𝑠𝑁
𝑖=1

𝑁
 (2.15) 
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2.3 Results 

The characterisation of the developed models is presented in Table 2.3. 

Features Sensors Topology Test Accuracy (%) 

mean, RMS, max to RMS, 

min to RMS, SD, COV, 

jerk for each variable Roll, 

Pitch, Yaw, Acceleration 

on x-y-z axes 

6 sensors (trunk, sacrum, 

trochanter Sx, trochanter 

Dx, fibula Sx, fibula Dx) 

Input: 252 

89.2 [80.9 - 97.5] Hidden: 15 

Output:4 

3 sensors ( trunk, 

trochanter Sx, trochanter 

Dx) 

Input: 126 

92.2 [89.7 – 94.7] Hidden: 90 

Output: 4 

Table 2.3: Characterisation of the developed MLPs 

The final architectures for the two MLPs were identified in a 3 layer feed-forward 

topology with 15 hidden units for the 6-sensor-based network, and with 90 hidden 

units for the 3-sensor-based network. These models yielded the best validation 

performances (internal validation) and were therefore selected as optimal in the 

majority of the test folds (external validation), with accuracy values ranging around 

90 % (3 sensors: 92.2 [89.7 – 94.7]; 6 sensors: 89.2 [80.9 – 97.5]).

 

Figure 2.7: Frequencies of models’ parameters tunings across the outer loops of the SNCV for the two 

developed models. 

Neurons Neurons

11 7

15 9

46 25

72 38

101 52

167 84

173 87

179 90

189 95

192 97

0

3 sensors

Choices as optimal model

5 10

Choices as optimal model

6 sensors

0 5 10
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Figure 2.8: Confusion matrixes for the two developed MLPs tested on real-time CT trials. 

Model Phase PRC (%) RCL (%) F1 (%) ACC (%) 𝑻𝒊−𝒄𝒍𝒂𝒔𝒔 (ms) 𝑻𝑑𝑒𝑙𝑎𝑦(ms) 

3 sensors 

RES 88.0 90.8 89.4 

89.8 
100.1 

[99.9 – 100.2] 

26.0 

[23.4 - 28.0] 

TLN 87.6 87.9 87.7 

RAI 96.4 74.4 84.0 

STA 90.3 98.6 94.3 

Macro 90.6 87.9 89.2 

6 sensors 

RES 89.6 89.7 89.6 

89.8 
99.9 

[99.2 – 100.6] 

27.5 

[25.8 – 29.1] 

TLN 87.9 90.3 89.1 

RAI 92.7 75.7 83.3 

STA 90.3 96.8 93.4 

Macro 90.1 88.1 89.1 

Table 2.4: Classification results for the two developed MLPs tested on real-time CT trials. 
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Figure 2.9: Temporal distribution of the classification outputs for the two developed MLPs tested on real-

time CT trials. 

The classification outputs over CT trials for both the developed MLPs are presented 

in Table 2.4 and graphically displayed in Figures 2.8 and 2.9. Both networks 

showed an 89.8 % overall accuracy in line with the average values of F1 scores (3 

sensors: 89.2; 6 sensors: 89.1). Looking at the specific results of the individual 

phases of the movement, there was a generally slightly better performance in the 

recognition of static phases (RES, STA) than the dynamic ones (TLN, RAI), as 

highlighted by the relative F1 scores [Tab.2.4]. Also, the temporal performance 

metrics were very similar across the two models. The inter-classification times were 

close to the nominal 100 ms epoch necessary to acquired 5 samples at 50 Hz (3 

sensors: 100.1 [99.9 – 100.2] ms; 6 sensors: 99.9 [99.2; 100.6] ms). 
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Figure 2.10: Confusion matrixes for the two developed MLPs tested on real-time SP trials. 

Model Phase PRC (%) RCL (%) F1 (%) ACC (%) 

[%] 

𝑻𝒊−𝒄𝒍𝒂𝒔𝒔 (ms) 𝑻𝑑𝑒𝑙𝑎𝑦(ms) 

3 Sensors 

RES 67.0 94.6 78.4 

78.7 
100.0 

[99.8 – 100.2] 

27.84 

[24.1 –31.6] 

TLN 77.1 43.1 55.3 

RAI 96.9 70.8 81.8 

STA 78.0 97.8 86.8 

Macro 79.8 76.6 78.1 

6 Sensors 

RES 61.3 92.2 73.6 

76.6 
100.3 

[99.9 – 100.7] 

27.7 

[24.1 – 31.4] 

TLN 70.0 41.0 51.7 

RAI 93.2 70.0 80.0 

STA 82.3 94.4 87.9 

Macro 76.7 74.4 75.5 

Table 2.5: Classification results for the two developed MLPs tested on real-time SP trials. 
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Figure 2.11: Temporal distribution of the classification outputs for the two developed MLPs tested on 

real-time SP trials. 

The delays between acquisition and classification were also in line with these results 

respecting the 50 Hz (20 ms) between the end of one datapacket and the beginning 

of a new one (3 sensors: 26.0 [23.4 - 28.0] ms; 27.5 [25.8 – 29.1] ms). Moreover, 

focusing on the temporal distribution of the misclassified outputs [Fig.2.9] beyond 

the insights given by the confusion matrixes, it is evident how the major 

classification criticality lied in the transitions between the Rest phase and the Trunk 

Leaning phase and between the Raising phase and the Standing phase. A significant 

reduction in the classification performance was observed when the two models were 

experimented on the SP trials, as displayed in Figure 2.10-2.11 and Table 2.5. The 

two classifiers achieved an overall accuracy of 78.6 % for the 3-sensor-based 
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implementation (F1: 78.1 %) and, 76.6 % for the 6-sensor-based (F1: 76.1 %). 

Similarly to what observed under controlled speed, in SP trials the temporal metrics 

were ranging narrowly around 100 ms for inter-classification times (3 sensors: 

100.0 [99.8 – 100.2] ms; 100.3 [99.9 – 100.7] ms) and 20 ms for classification 

delays (3 sensors: 27.84 [24.1 – 31.6] ms; 6 sensors: 27.7 [24.1 – 31.4] ms). Also, 

in this case, the classification errors were concentrated between the Rest phase and 

the Trunk Leaning phase and between the Raising phase and the Standing phase. 

Finally, since each 100 ms epoch is processed from 5 consecutive samples at 50 Hz 

from the inertial sensors, the possible loss of information should be taken into 

account during the evaluation of the two classifiers. Such analysis is displayed in 

Figure 2.12, where the observations that lacked data from one or more IMU sensors 

across five consecutive are reported in red while the complete datapackets are 

shown in yellow. 

 

Figure 2.12: Analysis of the completeness of the data acquired in real-time. Complete samples are shown in 

yellow. Samples with one or more incomplete data packets are shown in red. The graph was obtained by 

aligning the real-time acquisitions of all the subjects 
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2.4 Discussion and conclusions 

This work focused on the validation of 2 MLPs in a real-time classification task 

for the recognition of complex movement patterns in the STS. A similar paradigm 

was already exploited in a recent work by Doulah and colleagues [127], which 

applied a three-layer feed-forward network for the early identification of STS 

transitions. Although they did not test their algorithm over real-time data, the results 

they obtained suggested that MLPs were able to identify STS transitions from 

synchronous data acquired with different types of sensors (IMU, potentiometers, 

and force sensors). With a classification delay of 26.0 [23.4 - 28.0] ms, 27.5 [25.8 

– 29.1] ms over CT trials, and 27.84 [24.1 – 31.6] ms, 27.7 [24.1 – 31.4] ms over 

SP trials this work confirmed the potential of simple architecture neural networks 

for the online detection of STS movement patterns. In terms of classification 

performance, the state-of-the-art methods for the STS pattern recognition reach a 

general accuracy above 90%. Yang and Hsu [184] implemented a rule-based 

algorithm to detect the standing and the sitting movements from a single wearable 

motion sensor with an accuracy of 92.2% and 95.6%. In their respective works, 

Bannerjee, Doulah and Martinez-Hernandez reached 94.6% [185], 92.9% [126], 

99.4% [127] and 100% [122] accuracy in the identification of STS transitions. In 

this scenario, our models failed to compete against the state-of-the-art approaches 

with greater accuracy in CT trials (89.8% for both the 3 sensor-based and the 6 

sensor-based networks) compared to SP trials (78.7% for the 3 sensor-based model 

and 76.6% for the 6 sensor-based network). To identify the next steps in the 

development of the project, the results obtained must be evaluated in light of some 

basic considerations. First, the main objective of this work was to develop a 

classifier model able to categorise the STS in four clinically relevant stages, 

characterising the movement beyond the identification of the simple transition of 

previous studies. The specificity of this task takes into account a greater level of 

uncertainty in the source dataset from which the neural networks were developed 

and trained. This was reflected by the large percentage of classification errors 

concentrated in the transitions between the Rest and the Trunk leaning phase and 

between the Raising and the Standing phase. This evidence was in accordance with 

what has been highlighted in Chapter 1, where the beginning of the trunk movement 

and the reaching of the stable upright stance proved to be the most challenging tasks 
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for the labelisation software with a difference of approximately 300 ms compared 

to the optimal visual categorisation made by a human rater. The intrinsic movement 

variability in these two particular instants could have affected the training of our 

models, reflecting in a relatively poor classification performance during the real-

time validation. Moreover, the lacks in the datastream (Fig.2.12) could also have 

negatively affected the performance of the MLPs, since in the general architecture 

no compensation for any data loss has been introduced to improve generalisation 

and avoid overfitting. The poor generalisation was also displayed in the low 

accuracy obtained over SP trials, which were somehow expected since the two 

models were trained over CT movements to avoid class imbalance. A partial 

solution to some of the above presented critical issues could be found in the work 

of Martinez-Hernandez and Abbas [122] where a probabilistic method was used to 

identify STS transitions with a 100% classification accuracy. In their study they 

presented a method based on the Bayesian theory and sequential analysis, 

comparing their results with other related work on the STS movement recognition. 

The Bayesian method could classify data relying on its intrinsic dependancies in 

time [186]. Time series data is ubiquitous and it is used to represent weather 

readings, financial recordings, industrial observations, psychological signals, 

electronic health records, and human activity recognition [187], [188]. Under this 

consideration, the recognition of the STS translates into a time-series classification 

problem, where the temporal relations retained in the ordered sequence of 

movements can be exploited to improve the overall classification performance. 

Moreover, this information is essential to reduce the number of sensors without 

compromising the classification accuracy 
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Chapter 3: A Hybrid Convolutional-

Recurrent Deep Learning Approach for a 

Clinically Relevant Real-Time Classification 

of the Sit-to-Stand Movement. 

3.1 Introduction 

Starting from the evidence presented in the previous sections, this chapter 

addresses the topic of time-series analysis, by introducing more advanced deep 

architectures and applying them to the classification of the STS motion pattern. 

3.1.1 Time series data and sequential predictive problems 

 

Figure 3.1: Example of sequential data and applications. In speech recognition, an input audio clip 

(sequence) is elaborated to obtain text transcript in output. In music generation, the output is a music 

sequence and the input can be either an integer value or an empty set or a sequence of notes to start the 

generation. In sentiment classification, a text is processed to extract a label (i.e good, bad, excellent, awful). 

In DNA analysis it is possible to identify, within a sequence of nucleotides, the portion that codifies a specific 

protein. In machine translation text sequences are automatically translated across different languages. In 

video recognition, a video clip (or each frame) can be classified in a label (i.e. activity recognition). [189] 

Time-series defines a type of data where the samples are temporally ordered. In 

a broader conception, this definition refers to a specific subset of a larger domain 

of sequential data, which includes any type of ordered information that shows a 

significant sequential correlation [190]. That is, nearby samples are likely to be 

related to each, rather than being drawn from an independent and identically 

distributed (IID) random variable. Sequential predictive methods exploit the 

knowledge retained within these data patterns to improve the prediction outcome. 
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As an example, it is possible to detect if a telephone is stolen by looking at the 

distribution of legitimate phone calls and then checking its variations to detect 

fraudulent activity. In text analysis, it is possible to identify the style that 

characterise an author or a section related to a specific subject [191]. However, 

despite the variety of applications, a sequential predictive task can be categorised 

into four major groups: 

 

Figure 3.2: Type of sequential predictive problems. The inputs are represented by the red squares and the 

outputs are represented by the blue squares. The processing steps are represented in white. 

• one-to-one, characterised by one fixed-sized input and one fixed-sized 

output; 

• one-to-many, characterised by one fixed-sized input and an output 

sequence; 

• many-to-one, characterised by an input sequence and a one fixed-sized 

output (i.e. in sentiment classification, a text can be classified as expressing 

positive or negative sentiment).  

• many-to-many, characterised by sequences both in input and in output 

which can be elaborated synchronously (i.e. in video recognition each frame 

of the video is classified and labelled) or asynchronously (i.e. in machine 

translation, a sentence is first read and then translated in different 

languages); 

The cardinality between inputs and outputs, and the specific setting of the predictive 

problem impose a constraint over the model architecture [192]. In the context of the 
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present work, the STS movement pattern recognition can be seen as a many-to-

many synchronous sequential classification task, that can be expressed as follows. 

Let {(𝑥𝑖, 𝑦𝑖)}𝑖=1
𝑁  be a set of N training examples, where each element is represented 

by a pair of sequences (𝑥𝑖, 𝑦𝑖) where 𝑥𝑖 = 〈𝑥𝑖,1, 𝑥𝑖,2, 𝑥𝑖,3………𝑥𝑖,𝑇〉 represent the 

ith STS movement expressed as a time-series and 𝑦𝑖 = 〈𝑦𝑖,1, 𝑦𝑖,2, 𝑦𝑖,3………𝑦𝑖,𝑇〉 

represent the respective sequence of STS phase labels at each time-stamp. The aim 

is to develop a classifier 𝑐 that can classify the movement pattern 𝑦 = 𝑐(𝑥) given 

an input sequence 𝑥 [190]. However, while the MLPs architectures introduced so 

far (see Chapter 2) are naturally fitted to solve one-to-one predictive problems, they 

present some major limitations when dealing with sequential data. Feedforward 

networks take into account the assumption of a pre-defined context length with 

fixed-sized inputs and outputs [193], [194] which contrasts with the intrinsic 

variability in length of sequential data. Moreover, by considering each element of 

the input sequence independently (every single input has its weight), MLPs do not 

exhibit any spatial sequential invariance and the temporal information is lost [188]. 

Starting from these assumptions, the following sections explores more complex 

neural network models, able to deal with the dynamic nature of the data 

characterising the STS movement pattern. 

3.1.2 Recurrent neural networks 

 

Figure 3.3: Simple recurrent neural network from Elman. The hidden layer has a feedback connection as part 

of its inputs. On the left, the recurrent model, on the right the unfolded architecture in time [195]. 

Recurrent neural networks (RNN) can be easily defined as specific types of 

architectures that maintain a “memory” of the previous inputs within a sequence to 

influence the present output [196]. This is achieved through internal loop 

connections in the network architecture that introduce recursive dynamics across its 

processing elements [197]. Elman [195] introduced a simple RNN model, where 

the hidden layer has feedback connections to the inputs, as a form of short term 
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memory of the previous activations of the hidden nodes (i.e. hidden state). [198]. 

That is, the parameters of the network are shared over time [Fig.3.4]. 

 

Figure 3.4: A computation graph corresponding to a simple RNN. Two time-steps are shown, but the 

computation graph can be unrolled indefinitely. The symbol ∗ denotes matrix multiplication. [193] 

More generally, RNNs maps a sequence of inputs e 𝑥 = 〈𝑥1, 𝑥2, 𝑥3…𝑥𝑇〉 to a 

sequence of hidden states ℎ = 〈ℎ1, ℎ2, ℎ3…ℎ𝑇〉 through a set of parameters 𝜃: 

 ℎ𝑡 = 𝑓(ℎ𝑡−1,𝑥𝑡, 𝜃) (3.1) 

This formulation allows to describe RNNs as actual computational blocks, where 𝑓 

can represent different types of nonlinearities, and 𝑥𝑡 and ℎ𝑡  does not need to be 

directly related to input and output data. In this way, it is possible to feed an input 

sequence to a recursive block, and the resulting hidden states are used by another 

RNN as inputs in deeper architectures [193].  

3.1.3 Long short-term memory networks: Beyond the 

limits of simple RNNs 

As discussed above, RNNs overcome the limitations of the feedforward neural 

network since no specific constraints are imposed on either the inputs or the outputs 

[194]. Hence, with no dependence on the context dimensions, it is theoretically 

possible to capture long-term relationships within a sequence. However, while the 

RNN architecture itself naturally motivates the modelling of temporally distant 

dependencies, these are not effectively learned by standard gradient-based training 

algorithms [199]. As data relationships become more distant, the gradients become 

unstable, increasing or shrinking exponentially with the lengths of the sequences. 

To understand this mechanic, it is necessary to consider the cost function of a 

general RNN (Fig.3.3) [193], [200]: 

 

𝐽 =  ∑𝐿𝑡

𝑇

𝑡=1

 (3.2) 
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Where 𝐿𝑡 represent the loss of the network performance at the time t. One classical 

training procedure is carried out by following the same principles of the 

backpropagation, where the RNN is expanded over time in a multi-layer 

architecture [Fig.3.3 (left)], and the algorithm is applied on the unrolled model. This 

temporal variant of the routine defines the backpropagation through time (BPTT). 

By applying the chain rule to obtain the gradients of the cost function with respect 

to the parameters of the network 𝜃 : 

 𝑑𝐽

𝑑𝜃
=∑

𝑑𝐿𝑡
𝑑𝜃

𝑇

𝑡=1

 (3.3) 

 𝑑𝐿𝑡
𝑑𝜃

=
𝜕𝐿𝑡
𝜕ℎ𝑡

𝑑ℎ𝑡
𝑑𝜃

 (3.4) 

It is important to note that ℎ𝑡 depends from ℎ𝑡−1which in turn depends from ℎ𝑡−2 

and 𝜃, hence by applying the chain rule again and summing the contribution of 

every time step: 

 𝑑𝐿𝑡
𝑑𝜃

=∑
𝜕𝐿𝑡
𝜕ℎ𝑡

𝜕ℎ𝑡
𝜕ℎ𝑘

𝑑ℎ𝑘
𝑑𝜃

𝑡

𝑘=1

 (3.5) 

Here 
𝜕ℎ𝑡

𝜕ℎ𝑘
  transport the error in time from step t back to step k. If its spectral norm 

is extremely small, then the effect of ℎ𝑘over the gradient computation is limited, 

and the network find very difficult to learn from events that occurred at time k. 

Specifically, since in simple RNNs there is one only possible “temporal path” from 

ℎ𝑘 to ℎ𝑡, the term can be further expanded in:  

 𝜕ℎ𝑡
𝜕ℎ𝑘

=∏
𝜕ℎ𝑖
𝜕ℎ𝑖−1

𝑡

𝑖=𝑘

 (3.6) 

Which, by considering the spectral norms, can be written as [193]:  

 
‖
𝜕ℎ𝑡
𝜕ℎ𝑘

‖ ≤ ‖
𝜕ℎ𝑡
𝜕ℎ𝑡−1

‖‖
𝜕ℎ𝑡−1
𝜕ℎ𝑡−2

‖…‖
𝜕ℎ𝑘+1
𝜕ℎ𝑘

‖ (3.7) 

Each partial is a Jacobian result of the product of two matrixes, one related to the 

specific function 𝑓(diagonal) (Fig.3.4) and one related to the recurrent weights 𝑊ℎℎ. 

Intuitively, if the largest spectral norm of any partial is lower than the unity, the 

contribution of the gradients fall exponentially with 𝑡 − 𝑘 (vanishing gradients). 

Conversely, if the lowest spectral norm of any partial is larger than the unity the 
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gradients grow exponentially with 𝑡 − 𝑘 (exploding gradients). The problem of 

exploding gradients is generally handled with the gradient clipping technique, 

which limits the derivative so that it lies inside a specified range. However, a more 

difficult challenge is mitigating the vanishing gradients issue. Among different 

alternatives proposed in the literature [201]–[203], the solution that gained major 

success is the Long Short-Term Memory (LSTM) architecture [204], which 

stabilise the spectral  norms across the gradients with additional paths between ℎ𝑘 

to ℎ𝑡 [193].  

 

Figure 3.5: Graphical depiction of the LSTM 

LSTM networks are distinguished by the ability to manage a memory cell 𝑐𝑡 at time 

t, by resetting, writing, and reading it using three sub-architectures called 

respectively the forget gate, the update gate, and the output gate. The structure of a 

generic LSTM is depicted in figure 40 and functionally described by the equations 

below: 

 𝑓𝑡 = 𝜎(𝑊𝑓ℎℎ𝑡−1 +𝑊𝑓𝑥𝑥𝑡 + 𝑏𝑓) (3.8) 

 𝑢𝑡 = 𝜎(𝑊𝑢ℎℎ𝑡−1 +𝑊𝑢𝑥𝑥𝑡 + 𝑏𝑢) (3.9) 

 𝑜𝑡 = 𝜎(𝑊𝑜ℎℎ𝑡−1 +𝑊𝑜𝑥𝑥𝑡 + 𝑏𝑜) (3.10) 

 𝑐̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐ℎℎ𝑡−1 +𝑊𝑐𝑥𝑥𝑡 + 𝑏𝑐) (3.11) 

 𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑢𝑡 ⊙ 𝑐̃𝑡 (3.12) 

 ℎ𝑡 = 𝑜𝑡 ⊙ tanh (𝑐𝑡) (3.13) 
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Each gate is a simple RNN characterised by a sigmoid activation function, with 

outputs limited in the range between 0 and 1, controlling the flow of information. 

A new candidate update for the memory cell 𝑐̃𝑡 is combined with 𝑐𝑡−1, according 

to the forget gate and the update gate, to obtain the new memory cell 𝑐𝑡. Finally, 

the hidden state ℎ𝑡 is formed by applying the tanh activation function to the present 

memory cell and weighting the result according to the output gate. This allows the 

LSTM to better control the behaviour of the gradients, deciding at each time step 

what information should be retained and updating the model parameters 

accordingly [204]–[206]. 

3.1.4 Convolutional neural networks 

As we highlighted in the previous section, RNNs are commonly considered the 

starting point (if not the favourite solution) for sequential predictive tasks [207]. 

However, another type of network model, the convolutional neural networks 

(CNN), proved to be capable of handling sequential data, obtaining optimal results 

in various challenging applications like audio generation, language processing, and 

machine translation [208]–[211]. As the name suggests, CNNs are a specific type 

of network that employs a convolution instead of straightforward matrix 

multiplications in at least one layer [212]. The convolution operation can be defined 

as: 

 
𝑓(𝑥) = ∫ 𝑖(𝑎)𝑘( 𝑥 − 𝑎) 𝑑𝑎 = (𝑖 ∗ 𝑘)(𝑥) (3.14) 

The term 𝑖(𝑥) is referred to as the input function, the term 𝑘(x) is the kernel and 

the output 𝑓(𝑥) 𝑖s generally called feature map. In the context of deep-learning 

applications, CNN operates on multidimensional arrays of data including time-

series data (1-D array) and images (2-D array), hence, the previous formula can be 

discretised as: 

 𝑓(𝑥) =∑𝑖(𝑛)𝑘(𝑥 − 𝑛)

𝑛

  (3.15) 

 𝑓(𝑥) =∑∑𝑖(𝑚, 𝑛)𝑘(𝑥 − 𝑚, 𝑦 − 𝑛)

𝑛𝑚

  (3.16) 
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Respectively for 1-D and 2-D inputs. Theoretically, by looking at the formulation 

of the convolution, the kernel is flipped in respect to the input. As m or n increases 

the indexes in the input increase accordingly, while the ones in the output decrease. 

Nonetheless, it is more common in practice to implement the cross-correlation 

function, which does not imply the flipping of the kernel term: 

 𝑓(𝑥) =∑𝑖(𝑥 + 𝑛)𝑘(𝑛)

𝑛

  (3.17) 

 𝑓(𝑥) =∑∑𝑖(𝑥 +𝑚, 𝑦 + 𝑛)𝑘(𝑚, 𝑛)

𝑛𝑚

 (3.18) 

 

Despite this slight variation, the terminology does not change, and the definition of 

convolution is overall accepted and used for both convolution and cross-correlation 

functions. The parameters that describe the convolutional operations are: 

• the kernel size (𝑑𝑘𝑒𝑟𝑛𝑒𝑙), which defines the receptive field of the 

convolution; 

• the stride (𝑠), which defines the step size of the kernel when spanning the 

input; 

• the padding (𝑑𝑝𝑎𝑑𝑑𝑖𝑛𝑔), which defines how the limits of the input are 

handled; 

Unpadded convolutions reduce the dimensions of the sequence in the output 

according to the following equation: 

 
𝑑𝑖𝑚𝑜𝑢𝑡𝑝𝑢𝑡 =

(𝑑𝑖𝑚𝑖𝑛𝑝𝑢𝑡 − 𝑑𝑖𝑚𝑘𝑒𝑟𝑛𝑒𝑙 + 𝑑𝑖𝑚𝑝𝑎𝑑𝑑𝑖𝑛𝑔)

𝑠
+ 1 (3.19) 

 

Figure 3.6: Graphical example of a 2-D convolution 
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Several reasons are motivating the practical success of CNNs in sequential 

processing and general machine learning applications [212]. The most immediate 

one is that, like RNNs, convolutional networks do not require a pre-defined context 

with fixed-dimensions. However, the real added value of the convolutional 

structure is its intrinsic efficiency in terms of memory requirements. CNNs can 

operate on very large images, detecting very specific features with a relatively small 

kernel. This is due to CNNs’ properties of sparse connectivity and parameter 

sharing [Fig.3.7], which limit the number of variables that need to be stored. 

 

Figure 3.7: (Top) In matrix multiplication, all the inputs affect every single output. In the convolution, with a 

kernel of width 3, only three inputs affect the output unit (sparse connectivity). (Bottom) In matrix 

multiplication, each parameter (black arrows) is used only once. In the convolution, the central parameter of 

a 3-element kernel in a convolutional model is used at all input locations. (parameter sharing) [212]. 

Moreover, sharing the parameter across the inputs implies another useful property 

of the convolution, which defines itself as invariant to translation. Focusing on 

time-series data, if the convolution produces a representation of an event at time t 

and the same event repeats itself at time t+k, the same representation will be also 

found in output at time t+k. These concepts are at the base of CNNs’ capacity to 

model the translation-invariant characteristics of human activities and capture the 

local dependencies of temporal sequences [213]. 

3.1.5 Temporal convolutional neural networks 

Relying on these concepts and the best practices in deep learning design, Bai 

[207] used a terminology previously introduced by Lea and colleagues [214] to 

describe a convolutional architecture specifically optimised for sequential 

predictive problems. In this sense, temporal convolutional neural network (TCN) 

have two important characteristics:  
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• the convolution operations in the architecture are “causal”, that is the 

output at time T does not depend on inputs at t >T; 

• the network can operate on input sequences of any length and process an 

output sequence of the same dimension; 

The general TCN model described by Bai in [207] is reported in figure 3.8. The 

TCN is designed as a fully convolutional network model [215], where every hidden 

layer has the same size of the input. This is accomplished by using a zero-padding 

technique, adding at the left of the temporal sequence k-1 zero elements, where k 

represents the kernel size.  

 

Figure 3.8: A general architecture of a TCN, formed by 3 residual blocks characterised by dilated causal 

convolutions with dilation factors d = 1, 2, 4 and filter size k = 3. Each residual block comprises two sets of 

dilated convolutions followed by a weight normalisation, a non-linear activation, and a dropout function, 

which prevents overfitting during training. A 1x1 convolution is added when residual input and output have 

different dimensions.  On the far right, an example of residual connection in a TCN. The blue lines are filters 

in the residual function, and the green lines are skip connections. [207] 

However, the use of simple causal convolution allows retaining limited information 

in time [207], hindering the performance of the network on all those tasks that 

require the modelling of long-distance relations within a sequence. Hence, to 

increase the memory capacity, TCNs implement a variant of the normal 

convolution, able to inflate by a dilation factor the receptive field of the kernel 

function [216]. In this way, TCNs allows to effectively control their memory 

requirements, by choosing larger filter sizes k and/or increasing the dilation factor 

d. Finally, since the receptive field depends also on the depth of the network, the 

stabilisation of deepest and larger structures becomes a key feature in the TCN 

design. For this reason, convolutional layers are embedded inside a specific 

building module called residual block, which ease the training of more complex 

architectures [217] and defines the network topology. The residual blocks are 

characterised by skip connections, that allows the information to flow directly from 
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one layer to another, and comprehends two dilated convolutional layer with non-

linear activations (ReLU) [218]. 

3.1.5 Deep-learning in HAR applications 

Conventional approaches for pattern recognition problems follow a well-defined 

general scheme [Fig.3.9] [219]. Information from different sensor modalities is 

acquired and processed to extract significant features, which are ultimately used by 

a decision model to make inferences on the collected data. These methodologies 

reached impressive progress in the HAR field, but their implementation is 

highlighted by some important drawbacks. The feature extraction process is heavily 

based on personal experience and knowledge relating to the specific domain of 

application. Information processed through human expertise using heuristic 

methods often refers to some statistical information of the signals (i.e. mean, 

variance, frequency, amplitude). These features can be used to identify low-level 

activities (i.e walking, running), but are not sufficient to recognise high-level or 

context-aware activities [220], [221].  

 

Figure 3.9: HAR applications using conventional (top) and deep-learning (bottom) approaches [219] 

Moreover, the majority of conventional approaches are based on static data, while 

every aspect of the real world is characterised by a continuous stream of 

information, requiring robust and synchronous incremental learning. Deep-learning 

approaches overcome these limitations, as the feature extraction process is carried 
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out automatically rather than be manually designed. Through training, the network 

learns the significant features of the data, and extract higher-level representations 

along with the depth of the model. In this context, the use of both RNNs and CNNs 

in HAR applications has been extensively investigated in the latest years [124], 

[213], [222]–[227]. By exploiting the information of the time-order relationship 

RNNs are recommended to recognize ordered short activities. On the other hand, 

CNNs are better at inferring long-term repetitive activities by learning deep features 

contained in recursive patterns. However, recent studies pointed out how hybrid 

implementations of recurrent and convolutional architectures can achieve better 

results in activity recognition tasks, beyond the one obtained using the single 

models [228]–[231]. In particular, Wang and colleagues [231] showed that the 

combination of CNNs and LSTM outperformed other deep-learning solutions in the 

recognition of basic and transitions movements (i.e. sitting to standing, standing to 

sitting, sitting to lying, and standing to lying).  

 

Table 3.1: Average accuracy of different activities with five deep learning models [231] 

3.1.6 Objective 

By exploiting the peculiar characteristics of the deep learning approaches above 

described, this chapter aims at investigating the performance of a hybrid-design 

model that combines the TCN [207] and LSTM [204] architectures for the 

recognition of the STS movement pattern.  
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3.2 Methods 

3.2.1 Deep-learning architectures 

The hybrid (HYB) model was assembled from the individual basic networks 

(LSTM and TCN). The LSTM architecture was characterised by a simple design 

(Fig.3.10), with the main recurrent core of the model followed by a fully connected 

layer and a softmax activation function in output.  

 

Figure 3.10: The LSTM network architecture. 

The TCN model was designed upon the model described in the work of Bai [207], 

[232] as 4 residual blocks followed, also in this case, by a fully connected layer and 

a softmax activation function (Fig.3.11). A single residual block was defined by 

two dilated convolutions, followed by a normalisation and a ReLU activation 

function. At the end of the residual block, the inputs were added to the output of the 

dilated convolutions. An optional 1-by-1 convolution was implemented in case of 

different dimensions between inputs and outputs. The dilation factor of subsequent 

residual blocks was increased exponentially to expand the receptive field of the 

network. Let the dilation factor 𝑑 of the 𝑘th block be defined as: 

 𝑑 = 2(𝑘−1) (3.20) 

 then the receptive field size of such a network can be computed as 

 𝑅 = (𝑓 − 1)(2𝐾 − 1) + 1 (3.21) 

where 𝑓 is the filter size and 𝐾 is the number of convolutional layers. At the end of 

the residual block, the inputs were added to the output of the dilated convolutions. 

 

Figure 3.11: The TCN network architecture 

Finally, the HYB network was implemented as a concatenation of the previously 

described architectures: with the LSTM network connected in-chain with the four 

residual blocks of the TCN. The complete model is represented in detail in figure 

3.12. 
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 1 

Figure 3.12: The hybrid network architecture 2 

 3 
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3.2.2 Model tuning and evaluation 

The tuning of the HYB network followed a two-step process. In the first part, 

the LSTM and the TCN networks were singularly designed and evaluated on the 

combined data from HAR1 and HAR3 datasets. For each architecture, two separate 

models were developed, specifically focused on the recognition of the two different 

modalities of execution of the STS movement, under controlled (CT trials) and self-

paced speed (SP trials). The models were directly trained on the signals acquired 

by the single IMU sensor placed on the chest, (namely the 3-D accelerations and 

orientations) without calculating any complex features. The only pre-processing 

operation on the raw data was to average 5 consecutive samples at 50 Hz (20 ms) 

to obtain a resampled version of the original signal at 10 Hz (100 ms) with T time 

steps. In this way, each STS acquisition was represented as a 2-D array of 6-by-T 

elements and labelled according to the values of the GRF through the software 

described in Chapter 1.2.2. To improve the statistical power of the estimated 

performance, each model was trained and tested using a 5-repeated 11*10 stratified 

nested cross-validation routine to tune a set of parameters related to the specific 

architecture [Tab.3.2].  

Model Parameter 

LSTM 
Number of hidden units 

Learning rate of the training algorithm 

TCN 
Size of the convolutional filters 

Learning rate of the training algorithm 

Table 3.2: List of parameters chosen for model optimization related to TCN and LSTM networks. 

Essentially, the algorithm repeats the subdivision of the dataset in 11 folds 5 times, 

altering the order of the subjects in the original dataset. In this way the composition 

of the folds is varied at each iteration, reducing the noisiness of the performance 

estimate obtained by the validation [233], [234]. The described procedure is 

schematically reported below: 

STEP 1) TRAINING AND EVALUATION OF THE TCN AND LSTM NETWORKS 
PARAMETER DEFINITION 
1- Define tuneable parameters: P 
2- Define number of folds: K 
3- Define number of repetitions: R 
PERFORMANCE ESTIMATION 

for r=1:R 
   4- Define the composition (randomisation) of the K folds: r 
   for k=1:K 
      5- Define the present fold k as test set: T 
      6- Define the remaining folds as design set: V 
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      for p=1:P 
         for v=1:V 
            7- Define the present fold v as validation set 
            8- Train the model with parameter p on the remaining folds 
            9- Test the model with parameter p on the validation set v 
            10- Save the performance for the validation set v 
         end 
         11- Average the performance across V 
         12- Save the validation result (matrix P x K x R) 
      end 
      13- Find the optimal p* 
      14- Train the optimised model with p* on the design set V<general train performance 
      15- Save the performance for the train set T (matrix K x R)  
      for each sequence in T 
         16- Test the complete model on the sequence in T < test performance 
      end 
      17- Average the performance across the entire test set T 
      18- Save the performance for the test set T (matrix K x R) < general test performance 
   end 
FINAL PARAMETER TUNING ON THE ENTIRE DATASET 

   for p=1:P 
      for k=1:K 
         19- Define the present fold k as test set 
         20- Train the model with parameter p on the remaining folds 
         21- Test the model with parameter p on the test set k 
         22- Save the performance for the test set k 
      end 
      23- Average the performance across K 
      24- Save the test result (matrix P x R)  
   end 
end 
FINAL TRAINING OF THE MODEL 

25- Choose the best parameter p** with the best average performance across all the repetitions R 
26- Choose the best randomisation r* of the dataset which achieved the best result across all the 
parameters P 
27- Train the final model on the entire dataset randomised r* with the optimal parameter p** 

 

The backpropagation algorithm with Adam optimisation was used as a general 

learning rule in the training routine (defined by the parameters in Table 3.3).  

Parameter Value Description 

Max epochs 30 
The maximum number of epochs to use for training. An epoch is the 

full pass of the training algorithm over the entire training set 

Mini-batch size 20 

Size of the mini-batch to use for each training iteration. An iteration is 

one step taken in the gradient descent algorithm towards minimizing 

the loss function. The mini-batch size defines the portion of the dataset 

used to train the network at each iteration. 

Learn-rate drop factor 0.1 Multiplicative factor to apply to the learning rate every time a certain 

number of epochs passes. 

Learn-rate drop period 12 The number of epochs for dropping the learning rate. 

Gradient threshold 1 Clipping value, which limits the gradient from exploding above a 

certain threshold. 

L2 coefficient 0.0001 The factor for L2 regularisation (weight decay). Regularisations are 

techniques used to reduce the prediction error by tailoring an 

appropriate model on the data to avoid overfitting. 

Table 3.3: General parameters used in the training routine. 
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The Adam optimiser [235] is one of the most popular solutions in the field of deep 

learning, outperforming, by a big margin, other used methods for an optimised 

gradient descent [236], [237]. During training, a dropout function was added both 

in the LSTM and TCN models, respectively between recurrent and the fully 

connected layer, and between the two consecutive dilated convolutions. The 

dropout function [230] is a form of regularisation which prevents overfitting by 

randomly zeroing some portions of the input data with a defined probability. As a 

second step, for each randomisation, the trained TCN was applied to extract, at the 

end of the residual blocks, the elaborated features from all the STS sequences, 

maintaining at the same the fold composition of the dataset (and every 

randomisation of it). These features were used as a base to tune the recurrent part 

of the hybrid model, and the resulting implementation was combined with the 

optimal TCN obtained in the first step to compose the final architecture, as 

described in the pseudo-code below: 

STEP 2) TRAINING AND EVALUATION OF THE HYBRID ARCHITECTURE 
PARAMETER DEFINITION 
1- Define tuneable parameters of the recurrent model: P 
2- Define number of folds: K (from STEP 1) 
3- Define number of repetitions: R (from STEP 1) 
4- Required the optimised TCN model (from STEP 1) 
for r=1:R 
   for k=1:K 
      for each sequence in k 
         5- Applying the TCN model on the sequence in the fold k and randomisation r of the raw dataset 
         6- Extract the elaborated features from the final residual block (RES): 
         INPUT>RES1>RES2>RES3>elaborated features 
      end 
   end 
end 
PERFORMANCE ESTIMATION 

for r=1:R 
   for k=1:K 
      7- Define the present fold k as test set (raw data): T 
      8- Define the remaining folds as design set: V 
      for p=1:P 
         for v=1:V 
            9- Define the present fold v as validation set (raw data) 
            10- Train the recurrent model with parameter p on the remaining folds (elaborated features) 
            11- Combine the optimised TCN with the trained recurrent model 
            INPUT>RES1>RES2>RES3>LSTM>Fully connected>Softmax>OUTPUT 
            for each sequence in v 
               12- Test the complete model with parameter p on the sequence 
            end 
            13- Save the performance for the entire validation set v 
         end 
         14- Average the performance across V 
         15- Save the validation result (matrix P x K x R) 
      end 
      16- Find the optimal p* for the recurrent model for the iteration k and repetition r 
      17- Train the optimised recurrent model with parameter p* on the design set V (elaborated features) 
      18- Save the performance for the train set T (matrix K x R) < general train performance 
      19- Combine the optimised TCN with the optimised recurrent model 
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      INPUT>RES1>RES2>RES3>LSTM>Fully connected>Softmax>OUTPUT 
      for each sequence in T 

       START 
         20- Test the complete model on the sequence in T<test performance 

       STOP< temporal cost 
         21- Save the computational time for the sequence in T 
      end 
      22- Average the performance across the entire test set T 
      23- Average the computational time for the entire test set T 
      end 
      24- Save the performance for the test set T (matrix K x R) < general test performance 
      25- Save the average computational time for the test set T (matrix K x R) < general temporal cost 
   end 
FINAL PARAMETER TUNING ON THE ENTIRE DATASET 

   for p=1:P 
      for k=1:K 
         26- Define the present fold k as test set (raw data) 
         27- Train the recurrent model with parameter p on the remaining folds (elaborated features) 
         28- Combine the optimised TCN with the trained recurrent model 
         INPUT>RES1>RES2>RES3>LSTM>Fully connected>Softmax>OUTPUT 
         for each sequence in k 
            29- Test the complete model on the sequence in k 
         end 
         30- Save the performance for the entire test set k 
      end 
      31- Average the performance across K 
      32- Save the test result (matrix P x R) 
   end 
end 
FINAL TRAINING OF THE MODEL 

33- Choose the best parameter p** with the best average performance across all the repetitions R 
34- Choose the best randomisation r* of the dataset which achieved the best result across all the 
parameters P 
35- Train the final recurrent model on the entire dataset (elaborated features) randomised r* with the 
optimal parameter p** 
36- Combine the optimised TCN with the final recurrent model 
 

3.2.3 Evaluation of the networks’ performance and 

statistical analysis.  

The results obtained by the three models (LSTM, TCN, HYB) have been 

analysed separately for SP and CT trials. For every repetition, the expected and 

predicted outputs obtained from all the STS sequences across the different test folds 

were serialised and used to build the respective confusion matrixes. Concurrently, 

the overall accuracies obtained in the performance estimation on the test sets were 

registered during both the final training and the testing of the models, together with 

the precision and recall performance metrics obtained for each STS phase. 

Descriptive statistics for the accuracy values were reported as medians and 

interquartile ranges (IQR), and their distributions were graphically displayed with 

histogram plots. The degree of difference between distributions was tested using a 

two-sided Wilcoxon rank-sum test and the direct comparison between the three 

models across all the performance metrics was displayed using boxplots. Outliers 
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were defined as those values that were more than 1.5 IQR distant from the 75th and 

25th percentiles. Since the TCN and the HYB models were trained and tested on 

the same dataset (in terms of composition of folds for every repetition), the 

McNemar24 test was used to assess two hypotheses: 

“The HYB model is a more accurate classifier than the TCN model in predicting 

the STS motion patterns across the test folds T” 

“The HYB model is a less accurate classifier than the TCN model in predicting 

the STS motion patterns across the test fold T” 

For every coupled prediction in the T fold across every randomisation of the dataset. 

The test was implemented using the pre-defined function included in the MATLAB 

suite [239]. Moreover, to evaluate the real-time applicability of the HYB 

architecture, the prediction time required for the classification of one STS sequence 

was averaged across the entire fold for all the test sets. 

 

  

 
24 The McNemar's test is a well-known statistical test to analyze statistical significance of the 

differences in classifier performances [238]. It is applied to a  contingency table, the cells of which 

include the number of samples correctly and incorrectly identified by both methods, the number of 

samples only classified correctly by one method. 

 
A two-sided test for comparing the accuracy of the two models evaluate the null hypothesis that the 

two marginal probabilities for each outcome are the same 𝑛1∎ = 𝑛∎1and 𝑛2∎ = 𝑛∎2. Thus the null 

hypothesis can be written as: 

𝐻0:
𝑛12
𝑛
=
𝑛21
𝑛

 

Where 𝑛𝑖𝑗indicates the number of observation misclassified by method j but classified correctly by 

method i. For two-sided tests, the test statistic is defined as: 

𝑡𝛼2
∗ :
(𝑛12 − 𝑛21)

2

𝑛12 + 𝑛21
 

If 1 − 𝐹𝜒2(𝑡2
∗;𝑚) < 𝛼, where F is the 𝜒𝑚

2  cdf evaluated at x, then 𝐻0 is rejected. 
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3.3 Results 

Model Dataset Parameter Optimised Value 

LSTM 

SP 
Number of hidden units 165 

Learning rate of the training algorithm 0.028 

CT 
Number of hidden units 130 

Learning rate of the training algorithm 0.007 

TCN 

SP 
Size of the convolutional filters 5 

Learning rate of the training algorithm 0.002 

CT 
Size of the convolutional filters 4 

Learning rate of the training algorithm 0.136 

HYB 

SP 

Size of the convolutional filters 5 

Number of hidden units 350 

Learning rate of the training algorithm 0.006 

CT 

Size of the convolutional filters 4 

Number of hidden units 178 

Learning rate of the training algorithm 0.002 

Table 3.4: Optimised parameters for every architecture tuned over the SP and the CT trials. 

The final implementations of the LSTM, the TCN, and the HYB architecture 

with the respective optimised parameters are reported in table 3.4. The tuning of the 

convolutional networks defined a filter size of 5 time-steps with a resulting causal 

receptive field of 6.1 s for the SP trials, and 4 time-steps with a causal receptive 

field of 4.6 s for the CT trials. The average prediction times necessary for the 

classification of an entire STS movement sequence, obtained across all the test folds 

were 29 ms [28 ms - 33 ms] for the SP trials and 30 ms [28 ms - 34 ms] for the CT 

trials. The confusion matrixes for every repetition of the SNCV process are 

displayed in Figures 3.13 to 3.18 and the accuracy values obtained during the train 

and test performance estimation of the selected architectures are described in Table 

3.5, with their distributions portrayed in figure 3.19 to 3.24. For both CT and SP 

trials the HYB model was significantly different, in terms of accuracy, compared to 

the other two models (p<0.001). Conversely, the results obtained by the TCN and 

the LSTM models were not dissimilar between each other in CT trials, however, in 

SP trials, their performance differed significantly (p<0.001) [Tab3.6]. 
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Figure 3.13: Confusion matrixes for the LSTM architecture obtained by the prediction on SP trials across all 

the test folds, for each repetition of the SNCV 

 

 

Figure 3.14: Confusion matrixes for the LSTM architecture obtained by the prediction on CT trials across all 

the test folds, for each repetition of the SNCV 
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Figure 3.15: Confusion matrixes for the TCN architecture obtained by the prediction on SP trials across all 

the test folds, for each repetition of the SNCV 

 

 

Figure 3.16: Confusion matrixes for the TCN architecture obtained by the prediction on CT trials across all 

the test folds, for each repetition of the SNCV 
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Figure 3.17: Confusion matrixes for the HYB architecture obtained by the prediction on SP trials across all 

the test folds, for each repetition of the SNCV 

 

 

Figure 3.18: Confusion matrixes for the HYB architecture obtained by the prediction on CT trials across all 

the test folds, for each repetition of the SNCV 
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Model Dataset 
Training Test 

Median IQR Median IQR 

LSTM 
SP 94.83 93.93 - 95.48 89.10 86.78 - 90.24 

CT 96.28 96.12 – 96.85 94.40 93.15 – 95.51 

TCN 
SP 97.44 96.96 – 97.85 92.77 91.31 – 93.86 

CT 96.43 96.14 – 96.94 94.84 94.25 – 95.67 

HYB 
SP 97.56 97.06 - 97.91 96.09 95.37 - 96.56 

CT 92.28 91.68 – 93.58 95.74 95.39 – 96.21 

Table 3.5: Train and test Accuracy values (median, IQR) obtained by the three architectures on SP and CT 

trials in the performance estimation of the repeated SNCV. 

This was supported also by the boxplots, which underlined how the HYB 

architecture yielded the best results in terms of performance metrics, confidence 

interval, and the number of outliers. 

 

Figure 3.19: Accuracy values for the SP trials obtained by the LSTM architecture in the train and test 

performance estimation 

 

Figure 3.20: Accuracy values for the CT trials obtained by the LSTM architecture in the train and test 

performance estimation 
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Figure 3.21: Accuracy values for the SP trials obtained by the TCN architecture in the train and test 

performance estimation 

 

Figure 3.22: Accuracy values for the CT trials obtained by the TCN architecture in the train and test 

performance estimation 

 

Figure 3.23: Accuracy values for the SP trials obtained by the HYB architecture in the train and test 

performance estimation 
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Figure 3.24: Accuracy values for the CT trials obtained by the HYB architecture in the train and test 

performance estimation 

 HYB TCN LSTM 

HYB  p=4.2e-08 p=9.9e-09 

TCN p=5.4e-18  p=0.2 

LSTM p=1.6e-19 p=4.7e-13  

Table 3.6: Results of the two-sided Wilcoxon rank-sum test. The shaded area represents the values obtained 

from the SP trials. The white area represents the values from the CT trials. 

 

Figure 3.25: Box plots of the distributions of the performance metrics obtained over the SP trials from the 

HYB, TCN, and LSTM models across all the test folds 
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Figure 3.26: Box plots of the distributions of the performance metrics obtained over the CT trials from the 

HYB, TCN, and LSTM models across all the test folds 

Fold 
Repetition 1 Repetition 2 Repetition 3 Repetition 4 Repetition 5 

p+ p- p+ p- p+ p- p+ p- p+ p- 

1 7.4e-09‡ 1.0 3.7e-11‡ 1.0 8.8e-07‡ 1.0 7.1e-17‡ 1,0 1.1e-08‡ 1.0 

2 2.2e-22‡ 1.0 5.1e-21‡ 1.0 4.4e-22‡ 1.0 2.7e-15‡ 1,0 1.1e-08‡ 1.0 

3 1.2e-10‡ 1.0 1.2e-04‡ 1.0 1.8e-21‡ 1.0 4.1e-06‡ 1,0 6.5e-32‡ 1.0 

4 7.3e-06‡ 1.0 1.6e-10‡ 1.0 2.1e-07‡ 1.0 6.1e-25‡ 1,0 4.7e-16‡ 1.0 

5 6.9e-12‡ 1.0 9.3e-10‡ 1.0 1.5e-12‡ 1.0 1.1e-07‡ 1,0 2.6e-09‡ 1.0 

6 5.8e-21‡ 1.0 6.2e-13‡ 1.0 9.6e-06‡ 1.0 2,5e-05‡ 1,0 3.8e-12‡ 1.0 

7 3.4e-18‡ 1.0 6.9e-09‡ 1.0 3.3e-13‡ 1.0 9.3e-10‡ 1,0 4.1e-05‡ 1.0 

8 1.5e-10‡ 1.0 2.5e-09‡ 1.0 7.8e-11‡ 1.0 6.9e-13‡ 1,0 1.2e-12‡ 1.0 

9 1.4e-09‡ 1.0 2.2e-10‡ 1.0 1.7e-11‡ 1.0 3.8e-10‡ 1,0 9.5e-16‡ 1.0 

10 3.8e-04‡ 1.0 3.2e-10‡ 1.0 2.2e-16‡ 1.0 3.7e-11‡ 1,0 2.2e-12‡ 1.0 

11 6.4e-16‡ 1.0 1.6e-07‡ 1.0 1.1e-11‡ 1.0 2.0e-19‡ 1,0 1.3e-07‡ 1.0 

Table 3.7: Results of the McNemar test in the comparisons between the HYB and the TCN architectures over 

the SP trials. The columns p+ test the hypothesis HYB > TCN. The columns p- test the hypothesis HYB < 

TCN. A p-value less than 0,05 confirms the relative hypothesis. The superscripts ‡indicates a value of p< 

0,01. The superscripts †indicates a value of p< 0,05. 

Fold 
Repetition 1 Repetition 2 Repetition 3 Repetition 4 Repetition 5 

p+ p- p+ p- p+ p- p+ p- p+ p- 

1 2.1e-09‡ 0.9 1.1e-06‡ 1.0 1.2e-12‡ 1.0 0.1 0.8 1.3e-09‡ 1.0 

2 4.3e-07‡ 0.9 1.4e-08‡ 1.0 1.2e-14‡ 1.0 5.2e-17‡ 1.0 1.0e-02† 1.0 

3 0.9 0.1 1.1e-07‡ 1.0 4.6e-07‡ 1.0 3.2e-07‡ 1.0 0.8 1.0 

4 6.9e-02 0.9 8.7e-02 1.0 1.3e-02† 1.0 2.1e-02† 1.0 3.3e-06‡ 1.0 

5 2.8e-04‡ 1.0 1.6e-08‡ 1.0 1.1e-03‡ 1.0 3.2e-02† 1.0 1.7e-05‡ 1.0 

6 6.2e-02 0.9 1.6e-206‡ 1.0 3.5e-02† 1.0 3.5e-05‡ 1.0 2.3e-04‡ 1.0 

7 2.2-02† 1.0 1.3e-04‡ 1.0 0.9 9.4e-04‡ 9.3e-04‡ 1.0 5.4e-05‡ 1.0 

8 6.8e-02 0.9 0.6 0.4 6.9e-04‡ 1.0 2.1e-04‡ 1.0 1.9e-113‡ 1.0 

9 2.2e-02† 1.0 8.2e-09‡ 1.0 1.4e-154‡ 1.0 9.9e-204‡ 1.0 0.8 0.2 

10 1.3e-205‡ 1.0 0.9 0.1 4.4e-09‡ 1.0 5.5e-04‡ 1.0 0.1 0.9 

11 1.6e-08‡ 1.0 0.1 0.8 6.3e-23‡ 1.0 1,.7e-18‡ 1.0 3.3e-09‡ 1.0 

Table 3.8: Results of the McNemar test in the comparisons between the HYB and the TCN architectures over 

the CT trials. The columns p+ test the hypothesis HYB > TCN. The columns p- test the hypothesis HYB < 

TCN. A p-value less than 0,05 confirms the relative hypothesis. The superscripts ‡indicates a value of p< 

0,01. The superscripts †indicates a value of p< 0,05. 
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Also, the evidence from the McNemar test was in accordance with the above-

described results. On the one hand, the HYB architecture was more accurate than 

the TCN model across all the test folds in SP trials [Tab.3.7] and the majority of the 

test folds in CT trials [Tab.3.8]. On the other hand, the HYB model did not perform 

worse than the TCN (except for one fold in a singular randomisation of the dataset). 

This was evident in the analysis of the classification outputs related to those STS 

sequences which reached a low level of performance in the test folds: whereas the 

LSTM and TCN models poorly classified the STS phases, the HYB model was 

visibly more accurate in respect to the ground truth data.  

 

Figure 3.27: Classification output of the HYB model compared to the LSTM and TCM models over two 

critical STS sequences (one for each movement paradigm: SP and CT trials) 
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3.4 Discussion and Conclusions 

A hybrid-approach architecture based on deep-learning was evaluated to achieve 

a finer real-time categorisation of the STS movement, relying on the data acquired 

from a single inertial sensor placed on the chest. The temporal dependencies within 

the sequence of movements were exploited to improve the predictive accuracy 

across all the STS phases, using both convolutional and recurrent approaches. 

Specifically, convolutional networks have been already used successfully in 

literature as feature filters able to extract more significant characteristics from raw 

data improving the performance of recurrent models in daily activity identification 

[231], hyperspectral image classification [240], and hand gestures recognition 

[241]. In this work, the TCN architecture described by Bai [207] was implemented 

to extract more discriminant temporal features from the raw accelerometric signal, 

to enhance the predictive ability of the LSTM network. Thus, a comparative study 

was carried on to highlight the advantages of the proposed architecture over the 

single models. The results obtained pointed out the better accuracy and stability of 

the HYB architecture across all the phases of the STS motion pattern. More 

importantly, the number of outliers in the boxplots and the distributions of accuracy 

obtained across the different test folds pointed out the better generalisation 

performance of the HYB model. Whereas TCN and LSTM model, separately, 

showed low accuracy on some specific test folds, their combination proved to be 

significantly more robust against the intrinsic between/within-subjects variability 

of the STS and the uncertainty related to the possible systematic errors due to the 

experimental setting. This result represents a key factor in the context of a possible 

clinical implementation of the proposed architecture, as it estimates the reliability 

of the system in a common-use scenario: where the movement and the mounting 

position of the inertial sensor can slightly vary across different executions [242]. 

This evidence was found in both SP and CT trials, suggesting that a hybrid 

approach, based on convolutional feature extractors, could be a viable solution to 

classify the STS motion pattern independently from the condition of execution of 

the task. In this sense, such architecture might provide reliable and finer movement 

classification also in all those populations that are characterised by different motor 

strategies from those expressed by the healthy young people recruited for this work.  
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Final remarks and future developments 

The recent technological advances are leading the global digital development in 

the health-care field, opening novel solutions for both clinicians and patients [243]. 

Such innovations aim at maximizing the efficacy of health treatments, allowing to 

overcome the constraints of distance, location, and time through the use of different 

technology modalities like smartphone apps, sensors, artificial intelligence, video, 

social media, and messenger platforms. It has been estimated that, just in the United 

States, applying digital solutions to the annual practice of every primary care 

physician would result in a saving of 5 minutes per patient encounter, which 

translates into a general annual value of more than 7 billion $ [243]. Nowadays, 

digital health-care is starting to be considered more than a simple accessory, and 

several specific applications have already been approved and prescribed by doctors 

in their clinical practice. For instance, real-time data analytic, artificial intelligence, 

and sensor technology are changing the prospect of health and biomedical research 

obtaining successful results in image-based diagnosis, genome interpretation, 

patient monitoring, clinical outcome prediction, and in a plethora of applications 

aimed at inferring the patients’ status from wearable technology [244]. The results 

highlighted in the present research represent a first step toward the development of 

an automated coaching system for the unsupervised rehabilitation of the STS 

movement. Taking inspiration from the real world, human coaches exhibit unique 

online behaviours which must be taken into account in the development of a motor 

skill learning applications. In a study from 2015, de Kok and colleagues [133] 

presented a virtual reality environment capable of reading and analysing users’ 

movements and comprised of a coaching avatar that can generate appropriate 

instructions as the motor skill is performed. Based on the evidence from real 

coaching interactions, their study identified four major attributes that define a 

realistic virtual coach:  

• Intrinsic multimodality in the understanding of coachee’s movements and 

the generation of a proper demonstration of the motor skill;  

• Embedded detailed science-informed online movement analysis; 

• Motivational and relevant feedback generation to maximise the learning 

gain and naturalness of the coach; 
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• Closed-loop functioning framework with low latency and incremental 

processing components from input to output to instruct on and correct a 

problematic phase of the skill at the relevant time. 

While a multimodal approach would necessitate different types of sensors 

(increasing the overall costs and encumbrance of the system), the presented work 

demonstrated the possibility to accurately and reliably recognise the STS movement 

pattern online, relying on a single inertial sensor placed on the chest. In this way, 

the limited hardware requirements would ease the software development process 

by reducing the computational burden due to the synchronization of different 

devices, and at the same time, facilitate the clinical implementation of the system 

by exploiting the unobtrusive nature of wearable technology. Starting from the 

positive results achieved, future efforts will be focused on the further evaluation of 

the synchronous prediction capabilities of the hybrid model. The estimated 

classification time obtained for an entire STS movement sequence (~30 ms) must 

be empirically tested through an online classification task, following the same 

protocol presented in Chapter 2. Eventual positive results would confirm the 

temporal performance of the proposed architecture supporting its implementation 

in a closed-loop framework able to evaluate the execution of the STS and 

synchronously and effectively correcting the patients’ movement. In this sense, 

there is extensive evidence in the literature that promotes the use of artificially 

produced sounds cues as an effective feedback mechanism to support motor skill 

learning [245]. From a neuroanatomical aspect, the auditory and the motor system 

are strictly connected, with reciprocal interactions at the spinal cord, subcortical 

and cortical levels [246]. It has been demonstrated that rhythmic auditory stimuli 

could increase the efficiency of the motor system [247], by entraining the activity 

of the auditory neurons with the firing pattern of the motor cortex, with a key role 

in movement anticipation and motor preparation [248]. More importantly, 

synchronous auditory feedback ameliorates error-correction mechanisms [249]–

[251] and it is hypothesised that mapping of movements parameters onto different 

sound components through a multi-perceptual integration of congruent information 

enhance the internal representation of the movement [252], [253] improving its 

quality and the re-learning of motor skills in stroke rehabilitation [254]–[256]. An 

additional investigation must be aimed at understanding and design the correct 
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auditory stimulus to be used as effective feedback for the STS movement execution. 

For instance, rhythmic auditory stimulation techniques are used in rehabilitation to 

solicit auditory-motor synchronization and promote sustained functional changes to 

movement by providing continuous-time references [257]–[259]. In particular, the 

repetitive pattern of the temporal cues generates expectation regarding the advent 

of a subsequent sound, allowing eventual anticipation and motor preparation with 

an increase in quality and precision of the movements [248]. Another 

implementable solution is represented by the use of sonification techniques, by 

transferring movement features into non-speech audio signals. Sonification refers 

to the mapping of physiological and physical characteristics onto psychoacoustic 

parameters to provide access to biomechanical information otherwise not available 

[260]. Sonification promotes movement control and planning by improving self-

awareness of the physiological processes underlying its execution [261]. For this 

reason, this method has already been applied as effective feedback in sports 

training, to inform athletes about performance error/deviation during the execution 

of movements. Literature evidence indeed suggests that the availability of real-time 

auditory feedback enhances online error-correction mechanisms during movement 

execution and facilitates the learning of a new motor skill [245], [262]–[264]. Such 

properties could be effectively exploited in a closed-loop system for the coaching 

of the STS to contrast avoidance and maladaptive behaviours in the execution of 

the movement under pain or fatigue conditions. For instance, the different 

movement strategies adopted for the STS manoeuvre in chronic low back pain can 

be characterised by a cognitive-behavioral fear-avoidance paradigm [265], [266]. 

This model is based on the concept that pain and pain-related fear levels might lead 

to avoidance behaviour, which is ultimately transferred into a reduction of mobility, 

preventing the further incitement of pain in damaged tissues [267]. If retained, these 

habits may evolve into a chronic pain syndrome, negatively affecting patients’ 

everyday functioning and mental state [268]. The maintenance of altered movement 

strategies in the STS transition has also been evidenced in patients who have 

undergone unilateral total knee arthroplasty (TKA) 25. In their cross-sectional study, 

Farquhar and colleagues investigated the changes in STS performance after surgery 

 
25 Total knee arthroplasty (TKA) is one of the most cost-effective and successful surgeries 

performed in orthopedics. It involves different possible approaches [269] and it is often is performed 

to relieve the pain of end-stage knee OA following the failure of nonsurgical management . 
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[270]. After 3 months follow-up, the TKA group displayed an altered raising 

strategy, consisting of the unloading of the affected limb with the use of greater hip 

flexion, which resulted in higher hip extensor moments. In an early phase, this 

manoeuvre represents a reasonable solution to compensate for muscle weakness 

and pain. However, the altered strategy persisted and increased further after 1 year 

follow-up, despite the normalization of weight-bearing and strength, with a 

consequent over-stress on the uninvolved hip joints. A large hip extensor moment 

contributes to increased wear on the anterior portion of the femur and has been 

implicated in the development of hip osteoarthritis [271]. Relying on the presented 

observations, an unobtrusive and automated STS coaching system would be a 

valuable contribute to the clinical practice for treatment and prevention. 

Nonetheless, the use of technology in health-care remains fragmented at present 

due to a lack of supportive policy and regulation, unsustainable reimbursement, 

inefficient business models, and concerns regarding data security and privacy. A 

“human-machine” synergy, via a closer cooperation between clinicians and data-

scientists, would allow the great amount of available data to be an efficient enabler 

for new knowledge and intelligence in biomedicine and healthcare [272]. 
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Abbreviations 

30CST 30-Second Chair Stand Test 

ACC Accuracy 

ADL(s) Activit(y/ies) Of Daily Living 

BPTT Backpropagation Through Time 

CI Confidence Intervals 

CNN(s) Convolutional Neural Network(s) 

COM Centre Of Mass 

COP Centre Of Pressure Of The Body 

COPD Chronic Obstructive Pulmonary Disease 

COV Coefficient Of Variation 

CT Controlled Speed 

EMG Electromyography 

FTSTS Five Time Sit-To-Stand-Test 

GRF Ground Reaction Force 

HAR Human Activity Recognition 

HYB Hybrid 

ICF International Classification Of Functioning, Disability, And Health 

IID Independent And Identically Distributed 

IMU Inertial Measurement Unit 

IQR Interquartile Range 

LSTM Long Short-Term Memory 

LTD Long‐Term Depression 

LTP Long‐Term Potentiation 

LTSP Long‐Term Synaptic Plasticity 

MEMS Micro-Electromechanical Systems 

ML Machine Learning 

MLP Multilayer Perceptron 

PPF Paired Pulse Facilitation  

PPV Positive Predictive Value 

PRC Precision 

PTP Post Tetanic Potentiation 

RAI Raising Phase 
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RCL Recall 

RES Rest Phase 

RMS Root-Mean-Square 

RNN(s) Recurrent Neural Network(s) 

SCG Scaled Conjugate Gradient 

SD Standard Deviation 

SEN Sensitivity 

SNCV Stratified Nested Cross-Validation 

SP Self-Paced Speed 

SPE Specitivity 

STA Standing Phase 

STS Sit-To-Stand 

STSP Short‐Term Synaptic Plasticity 

TCN Temporal Convolutional Neural Network 

TKA Total Knee Arthroplasty 

TLN Trunk Leaning Phase 

TUG Timed Up And Go 

ULoA Upper Limits Of Agreement 

UN United Nations Organization 

WHO World Health Organization 
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Supplement Materials:  MATLAB code and routines 

In this section, the main routines are reported and commented. All the comments are introduced by a % character and include: 

• A brief description of the script/function; 

• Eventual input and outputs; 

• Pseudocode 

For the main functions a user-friendly description of the routine has been added, displaying the main inputs and outputs to provide an intuitive 

understanding of its processes. 

S.1 TrunkMOV.m function 

The following code implements a heuristic routine based on the standard deviation thresholding of the GRF to identify the initial instant of forward 

bending of the trunk. It takes as input the threshold constant (T) and the STS force signal (varargin) registered through a force plate and divided into 

100 ms epochs (i.e. the rows of the data structure represent the number of samples for each epoch, the columns of the data structure represent the 

number of epochs). It gives as output the index of the sample that identifies the beginning of the movement (IndexMov).  

% Function to detect the initiation of the Trunk movement (Initiation event). It calls the sub-function stdonepoch.m, which divide 

the Signal in % epochs of 100 ms and calculates the standard deviation for each epoch. 

 

function IndexMov=TrunkMOV(T,varargin) 

 

% INPUT T: Experimental threshold; 



 

102 

 

%   Varargin: Input signal divided into epochs MxN matrix where M is the number of samples in each epoch and N is the %

  number of epochs;  

% OUPUT IndexMov: Initiation event; 

 

Signal=varargin{1,1}; % Assign the input parameter to Signal 

std_arr=stdonepoch(Signal); % For each epoch calculate the standard deviation 

std_arr(2,:)=movmean(std_arr(2,:),10); % Moving average of the standard deviation across epochs 

BsLn=abs(mean(std_arr(2,1:10))); % Baseline reference = standard deviation on first ten epochs 

std_arr(2,:)=std_arr(2,:)./BsLn; % Normalisation of the averaged standard deviation in respect to the baseline 

IndexMov=std_arr(1,find(std_arr(2,:)>=T,1)); % The first index surpassing the threeshold identify the beginning of the movement 

 

S.2 stdonepoch.m function 

% Function to calculate the standard deviation across each epochs. Save the values of standard deviation and the central indexes of 

% the epochs. 

 

function std_arr=stdonepoch(Signal) 

 

% INPUT Signal: Input signal divided into epochs. MxN matrix where M is the number of samples in each epoch and N is the  

%   number of epochs; 

% OUTPUT stdEp: Output matrix describing how the standard deviation range across the different epochs. 2xM matrix 

%  , where M is the number of epochs, the first row represent the epochs indexes (number of the middle 

%  sample), the second row represent the standard deviation for each epoch; 

%   |__|__|__|... references indexes 

%   |__|__|__|... standard deviations 

  

stdEp=NaN(2,size(Signal,2)); % Declaration and pre-allocation of the variable 

nsamples=size(Signal,1); % N°of samples per epochs 

stdEp(2,:)=std(Signal,0,1); % Standard deviations per epochs 

stdEp(1,:)=(1:length(Signal))*Nsamples+ceil(Nsamples/2); % Indexes per epochs 
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S.3 Bottom_Transition.m function 

The following code implements a heuristic routine based on the masking of the signal from the electronic switch on the chair to identify the instants 

of seat-off and seat-on. It takes as input the signal from the electronic switch (Bott). It gives as output the indexes of seat-off (Bottomup) and seat-on 

(Bottomdown). 

% Function to identify the SeatOFF and SeatON moments. 

function [Bottomup,Bottomdown]=Bottom_Transition(Bott) 

 

% INPUT Bott: Filtered and sampled electronic switch signal 

% OUTPUT Bottomup/Bottomdown: SeatOFF / SeatON 

  

Bott(Bott>-1)=0; % Signal over threshold is setted at 0 

Bott(Bott<-1)=-5; % Signal under threshold is setted at -5 

DerBott=diff(Bott); % Differentiation of the masked Signal 

Bottomup=find(DerBott<=-1,1,'first')+1; % Find transitions 

Bottomdown=find(DerBott>-(-1),1,'last'); 

 

 

S.4 SteadyStandingPoints.m function 

The following code implements a heuristic routine based on the standard deviation thresholding of the GRF between the seat-off and seat-on 

instants to identify the period of stable upright stance. It takes as input the threshold constant (T), the STS force signal (varargin) registered through a 

force plate (F), the sampling rate of the force signal (fs), the temporal length (in seconds) of the epochs (ep) with which to divide the force signal and 

the seat-off/seat-on instants (Bottomup/Bottomup). It gives as outputs the indexes of the samples that identify the beginning and the ending of the 

upright stable stance (Standing/Sitting).  
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% Function to extrapolate the Standing and Sitting event from the GRF profile. It calls 

 

function [Standing,Sitting]=SteadyStandingPoints(F,fs,ep,Bottomup,Bottomdown,T) 

 

% INPUT F: Force signal resampled at 50 Hz; 

%  fs: Sampling frequency (50 Hz) 

%   ep: 0.1 [s] 

%   Bottomup: SeatOFF 

%  Bottomdown: SeatON 

%   T: threshold 

% OUTPUT Standing/Sitting 

 

samples=fix(fs*ep); % N°samples x epoch 

t=Bottomup:Bottomdown; % Consider just the samples between Bottomup and Bottomdown 

stand2sit=F(stand:sit); % Consider just the GRF between Bottomup and Bottomdown 

bstdF=std(buffer(stand2sit,samples,0,'nodelay')); % Divide the GRF in epochs 

bavgT=mean(buffer(t,samples,0,'nodelay')); % Divide the samples in epochs 

midpoint=round(length(bstdF)/2); % The midpoint between Bottomup and Bottomdown is considered the centre of stability 

baseline=mean(bstdF(midpoint-10:midpoint+10)); % Calculate the baseline  

bstdF=bstdF/baseline; % Normalise the force signal  

mask=movmean(bstdF,10)>T; % Mask the force signal  

Standing= bavgT(find(mask==0,1,'first')); % The first sample below the threshold is the Standing event 

Sitting= bavgT(find(mask==0,1,'last')); % The last sample below the threshold is the Sitting event 

 

S.5 NeuralSNCV.m script 

The following script implements the Stratified Nested Cross Validation in the tuning and evaluation of a Multi-Layer Perceptron. 

% Script to implement the Stratified Nested Cross Validation in the tuning and evaluation of a Multi-Layer Perceptron. It calls the 

sub-functions Redistribute.m and ValidationLoop.m which respectively distribute the observations of the dataset equally in the 

different folds, and implement the cross validation loops. 

 

% INPUT: The file containing:  

%   - the variable DataSET with all the 0.1 s observations from the IMU sensors 

%   - the variable DIVISOR with the definition of the subjects for all the 0.1 s observations in the dataset 
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load(fullfile(cd,'Table_Classifier.mat')); % Load of the variable DataSET, matrix (N°observations X [Features+Labels]) 

x=table2array(DataSET(:,1:end-1))'; % Input matrix F X N, where F is the number of features and N is the number of observations 

tc=table2array(DataSET(:,end)); % Label matrix N x 1, where N is the number of observations  

targets=[ ... % Creation of the dummy variable targets O X N, where O is the number of labels in the label matrix 

    tc==1,... % Boolean vector defining which observation correspond to the label 1 = REST phase 

    tc==2,... % Boolean vector defining which observation correspond to the label 2 = TRUNK LEANING phase 

    tc==3,... % Boolean vector defining which observation correspond to the label 3 = RAISING phase 

    tc==4,... % Boolean vector defining which observation correspond to the label 4 = STANDING phase 

    ]'; 

[I, N]=size(x); % Dimensionality of DataSET 

[O, ~]=size(targets); 

Sbj=unique(DIVISOR); % Identifying the subjects in the dataset 

loop=0; % Flag for the loop for the definition of the nested cross validation modality 

while loop==0 

    flag=input(['What validation model you would like to implement?\n 1 - 5 folds\n   2 - 10 folds\n   3 - LOSOCV\n\n']); 

    switch flag 

        case 1 % CrossValidation 5 fold  

            folds = 6; % folds are +1 the definition of the cross validation to implement a nested routine: 

            loop = 1; % an outer loop will consider one fold as test, the inner loop will implement the cross validation 

        case 2 % CrossValidation 10 fold 

            folds = 11; 

            loop = 1; 

        case 3 % LOSOCV (Leave One Subject Out CrossValidation 

            folds = length(SBJ); 

            loop = 1; 

        otherwise 

            loop = 0; 

    end 

end 

 

% The following step is implemented to separate different subjects in every fold (avoid overfitting) 

Shuffled=Sbj(randperm(numel(Sbj))); % Randomize the order of the subjects  

step=floor(numel(Sbj)/folds); % Minimum number of subject per fold 

division=1:step:(step*folds); % Indexes to distribute subjects in the folds 

R=rem(numel(Sbj),folds); % Remaining subjects to distribute                                                                                                                 

subgroup=cell(folds,1); % Folds declaration 

for t=1:folds 

    subgroup{t}=Shuffled(division(t):division(t)+step-1); % Folds filling 
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end 

 

% The following step is implemented to redistribute the remaining subjects according to the number of observations 

if R~=0  

    Remain=Shuffled(end-(R-1):end); % Remaining subjects 

    subgroup=Redistribute(DIVISOR,subgroup,Remain); % Redestribute function 

end 

 

% Definition of the performance metrics 

xentrval=cell(folds,1); 

xentrtrn=cell(folds,1); 

xentrtst=zeros(folds,1); 

xentrtstT=zeros(folds,1); 

best_epval=cell(folds,1); 

best_eptst=zeros(folds,1); 

TSToutputs=cell(folds,1); 

TSTtargets=cell(folds,1); 

accuracy=zeros(folds,1); 

recall=zeros(folds,1); 

precision=zeros(folds,1); 

f1=zeros(folds,1); 

OptimalN=zeros(folds,1); 

  

Neurons=sort(randi([O,I],10,1)); % Ten different values of hidden units between input and outputs 

S=cell(1,10); % Ten random states to initialise ten different set of weights 

rng(0); 

for s=1:10 

    S{s}=rng; 

    rand; 

end 

rng(0); 

  

for t=1:folds 

    logicalindext=cellfun(@(x)contains(DIVISOR,x), subgroup{t},'un',0); % Definition of the TestSET.                                                   

    ITST=find(any(horzcat(logicalindext{:}),2)==1) % TestSET Indexes 

    IVAL=cell(1,folds-1);% Declaration of validation indexes for each validation loop 

    ITRN=cell(1,folds-1);% Declaration of training indexes for each validation loop 
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    count=1; 

    for v=1:folds % For each fold ... 

        if t~=v % ... different from the TestSET 

            logicalindexv=cellfun(@(x)contains(DIVISOR,x),subgroup{v},'un',0); 

            IVAL{1,count}=find(any(... % Definition of the validation indexes  

                horzcat(logicalindexv{:}),2)==1); 

            ITRN{1,count}=find(~any([any(... % Definition of the training indexes 

                horzcat(logicalindext{:}),2),any(... 

                horzcat(logicalindexv{:}),2)],2)==1); 

            count=count+1; 

        end 

    end 

   

    perf_xentrval=zeros(10,10); 

    perf_xentrtrn=zeros(10,10); 

    perf_best_epval=zeros(10,10); 

 

    for n=1:10 % For each model described by a different number of neurons 

        H=Neurons(n); 

        parfor i=1:10% For each random state (Parallel multi-core processing)       

            fprintf(['Validation for Model with: ',num2str(H),' neurons and randomization ',num2str(i),'\n']); 

            % Validation for Model with: H neurons and randomization i 

            [val_xentrval,val_xentrtrn,val_epochs]=ValidationLoops(S{i},folds,x,targets,H,ITRN,IVAL); 

            perf_xentrval(n,i)=mean(val_xentrval); 

            perf_xentrtrn(n,i)=mean(val_xentrtrn); 

            perf_best_epval(n,i)=mean(val_epochs); 

        end 

    end 

 

    % The following step implement the final architecture and test it on the test set 

    [~,optind]=min(mean(perf_xentrval,2)); % Found the optimal number of hidden units as the topology that minimise the ...  

    OptimalN(t)=Neurons(optind); % ... validation crossentropy across all the randomisation of the initial weights 

    net=patternnet(OptimalN(t),'trainscg'); % Definition of the net  

    net.performFcn = 'crossentropy'; % Cost function  

    net.divideFcn='divideind'; % Division by indexes 

    ITRNcom=1:length(DIVISOR); % All the dataset is in the training 

    ITRNcom(ITST)=[]; % Except for the hold out portion 

    net.divideParam.trainInd=ITRNcom; 
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    net.divideParam.valInd=ITST; 

    net.divideParam.testInd=[]; 

    net=configure(net,x,targets); % Net configuration 

    [net,tr,y,e]=train(net,x,targets); % Training of the net 

 

    best_eptst(t)=tr.best_epoch; % Saving of the performance metrics 

    xentrtst(t)=crossentropy(net,targets(:,ITST),y(:,ITST)); 

    xentrtstT(t)=crossentropy(net,targets(:,ITRNcom),y(:,ITRNcom)); 

    TSToutputs{t}=y(:,ITST); 

    TSTtargets{t}=targets(:,ITST); 

    % Accuracy 

    [nanO,out]=max(y(:,ITST)); 

    [nanT,tar]=max(targets(:,ITST)); 

    cmat=confusionmat(out(~isnan(nanO)),tar(~isnan(nanT))); 

    accuracy(t)=trace(cmat)/sum(cmat(:)); 

    for c=1:size(cmat,1) 

        TP = cmat(c,c);                

        FP = sum(cmat(c,:))-TP; 

        FN = sum(cmat(:,c))-TP; 

        recall(t)=recall(t)+(TP/(TP+FN)); 

        precision(t)=precision(t)+(TP/(TP+FP));              

    end 

    recall(t)=recall(t)/size(cmat,1); 

    precision(t)=precision(t)/size(cmat,1); 

    f1(t)=2*(precision(t)*recall(t))/(precision(t)+recall(t));            

    xentrval{t}=perf_xentrval; 

    xentrtrn{t}=perf_xentrtrn;  

    best_epval{t}=perf_best_epval; 

end 

delete(gcp('nocreate')) % Close the Parallel Multicore processing    

 

S.6 ValidationLoop.m function 

The following code implements the inner loop of the SNCV routine given a determinate neural network model to validate (identified by the number 

of hidden units and the initial random weights). It takes as inputs the random state (S) to initialise the initial weights of the network, the number of 
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folds in the outside loop (folds), the validation training data (the Design set, x) and the respective targets (targets), and the data structure containing 

the indexes of training and validation for each folds-1 validation loops (ITRN/IVAL). That is, the ith elements of ITRN and IVAL represent respectively 

the ith indexes of training and validation of the ith validation loop. It gives as outputs the values of crossentropy for the validation (val_xentrval)  and 

training (val_xentrtrn) sets, and the number of training epochs (val_epochs) for each validation loop. 

 

function [val_xentrval,val_xentrtrn,val_epochs]=ValidationLoops(S,folds,x,targets,H,ITRN,IVAL) 

 

% INPUT S: Random state 

%  folds: Number of folds 

%  x: Input data 

%  targets: Targets 

%  ITRN/IVAL: Indexes of training and validation, cell arrays with fold-1 elements containing the indexes of the 

%  different validation cycles 

% OUTPUT val_xentrval: Validation crossentropy 

%  val_xentrtrn: Training crossentropy 

%  val_epochs: Total epochs of training 

  

val_xentrval = zeros(1,folds-1);                      

val_xentrtrn = zeros(1,folds-1);                                        

val_epochs = zeros(1,folds-1); 

for v=1:folds-1 % For each validation fold  

    net=patternnet(H,'trainscg'); % Definition of the net with learning model: Scaled Conjugant Gradient 

    net.performFcn = 'crossentropy'; % Cost Function 

    net.divideFcn='divideind'; % Define Sets by indexes 

    net.divideParam.trainInd=ITRN{v}; % Training set 

    net.divideParam.valInd=IVAL{v}; % Validation set 

    net.divideParam.testInd=[];                            

    rng(S); % Reset the random state 

    net=configure(net,x,targets); %Configuration of the initial parameter of the net  

    [net,tr,y,e]=train(net,x,targets); % Training 

    val_xentrval(v) = crossentropy(net,targets(:,IVAL{v}),...%------- Crossentropia 

        y(:,IVAL{v})); 

    val_xentrtrn(v) = crossentropy(net,targets(:,ITRN{v}),... 

        y(:,ITRN{v})); 
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    val_epochs(v) = tr.best_epoch; 

end 

 

S.7 Redistribute.m function 

% The function redistribute the remaining data observations to the less populated folds of the dataset 

 

function [folds]=Redistribute(DIVISION,folds,remains) 

% INPUT DIVISION: cell array D x 1 where D is the entire dimensionality of the dataset 

%  folds: cell array F x 1 where F is the number of folds containing the name of the included subjects 

%  remains: cell array R x 1 where R is the number of subjects that remained undistributed from the main categorisation 

% OUTPUT folds 

 

% Count the observations for the already defined folds sorting them in ascending order 

occurencesG=sortrows([cell2mat(cellfun(@(x)sum(ismember(DIVISION,x)),folds,'un',0)),(1:1:length(folds))'],1,'ascend'); 

% Count the observations for the remaining subjects 

occurencesR=sortrows([cell2mat(cellfun(@(x)sum(ismember(DIVISION,x)),remains,'un',0)),(1:1:length(R))'],1,'descend'); 

% the less populated folds are filled with the subjects with more observations 

for k=1:length(remains) 

    folds{occurencesG(k,2)}=[folds{occurencesG(k,2)};R{occurencesR(k,2)}]; 

end 

 

S.8 ImplementTCN.m function 

The following script tune evaluates and implements a Temporal Convolutional Neural Network according to the model proposed in [207]. 

% The script tune evaluates and implements a Temporal Convolutional Neural Network according to the model proposed in [207]. It 

calls the function TCN which builds the network architecture. 

 

load("DataSTS_NOTimed.mat",'DataSEQ');  

% DataSEQ is a version of the dataset where all the subjects are divided with their respective STS sequence. 
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% It is a cell array S x 1 where S is the number of subjects. Each element is a T x 2 cell array where T is the number of trials for 

% each subject: The first column contains the features from the accelerometers, a F x L matrix where F is the number of features and 

% L the length of the sequence. The second column represents the label of the sequence, a matrix 1 x L. 

 

loop=true; % This part of the code limits the choice of the phases to analyse. Just Sit-To-Stand, not Stand-to-Sit 

while loop 

    p=input('Phase of movement considered 1-REST, 2-TRUNKLEANING, 3-RAISING, 4-STANDING, 5-SITTING, 6-TRUNKRAISING, 7-REST:'); 

    if (0<p) && (p<8) 

        loop=false; 

    end 

end 

 

loop=true; % Choice of the number of sensors to consider 

while loop 

 s=input('Number of sensors considered :'); 

 if (0<s) && (s<7) 

     loop=false; 

 end 

end 

while loop==0 % Choice of the validation process 

    flag=input('What validation model you would like to implement?\n   1 - 5 folds\n   2 - 10 folds\n   3 - LOSOCV\n\n'); 

    switch flag 

        case 1      % 6*5 Nested CV 

            f = 6; loop = 1; 

        case 2      % 11*10 Nested CV   

            f = 11; loop = 1; 

        case 3      % LOSOCV 

            f = length(SBJ); loop = 1; 

        otherwise   % Il  

            loop = 0; 



 

112 

 

    end 

end 

 

X=cell(f,Nrep); % Declaration of inputs  

Y=cell(f,Nrep); % Declaration of outputs 

LearnRates=sort(10.^(3.*rand(10,1)-3)); % hyperparameters to tune: learn rates 

SizeF=[2 3 4 5]; % hyperparameters to tune: size of the filters 

Nrep = 5; % number of repetitions 

ValidationAccV=zeros(numel(LearnRates),numel(SizeF),f,Nrep); % Accuracy in validation (Tuning of the model) 

ValidationAccT=zeros(numel(LearnRates),numel(SizeF),f,Nrep); % Accuracy in training (Tuning of the model) 

ValidationTime=zeros(numel(LearnRates),numel(SizeF),f,Nrep); % Prediction time (Tuning of the model) 

TestAccV=zeros(f,Nrep); % Accuracy in test (Estimate of the model) 

TestAccT=zeros(f,Nrep); % Accuracy in training (Estimate of the model) 

TestTime=zeros(f,Nrep); % Prediction time (Estimate of the model) 

TuneAccV=zeros(numel(LearnRates),f,Nrep); % Accuracy in validation (Final tuning of the model) 

TuneAccT=zeros(numel(LearnRates),f,Nrep); % Accuracy in training (Final tuning of the model) 

TuneTime=zeros(numel(LearnRates),f,Nrep); % Prediction timme (Final tuning of the model) 

Hypar_choice=cell(f,Nrep); % Hyper-parameter choice (Estimate of the model) 

YP=cell(f,Nrep); % Prediction (Estimate of the model) 

YT=cell(f,Nrep); % Targets (Estimate of the model) 

 

for r=1:5 % Repeated Stratified Cross-Validation 

     

    idx=randperm(numel(DataSEQ));    % Randomisation of the subjects 

    DataSEQR=DataSEQ(idx); 

         

    step=floor(numel(DataSEQR)/f); % Preparation of the folds (as seen NeuralSNCV.m) 

    division=1:step:(step*f);        

    R=rem(numel(DataSEQR),f);        

    folds=cell(f,1); 
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    for i=1:f 

        folds{i}=DataSEQR(division(i):division(i)+step-1); 

    end 

     

    if R~=0 % Distribution of remaining subjects 

        folds=Redistribute(folds,DataSEQR(end-(R-1):end)); 

    end 

    folds=cellfun(@(x)vertcat(x{:}),folds,'UniformOutput',false); 

     

    for i=1:numel(folds) % Preparation of dataset according to the user choices 

        X{i,r}=cellfun(@(x,y)x(1:7:s*6*7,y<=p),folds{i}(:,1),folds{i}(:,2),'UniformOutput',0);  

        Y{i,r}=cellfun(@(y)categorical(y(y<=p)),folds{i}(:,2),'UniformOutput',0); 

    end 

     

    for t=1:numel(folds) % Outer loop Estimate of the model         

        idev=1:numel(folds); % Development set (Training+Validation) 

        idev(t)=[]; % Except the present fold as Test set 

        Xtest=X(t,r);     % Test Data 

        Ytest=Y(t,r);     % Test Response 

        Xdev=X(idev,r);   % Development Data 

        Ydev=Y(idev,r);   % Development Response 

         

        for ln=1:numel(LearnRates) % For each set of parameters          

            for sz=1:numel(SizeF)      

                % Validation and parameter tuning on the remaining folds: Inner loop  

                [ValidationAccV(ln,sz,t,r),ValidationAccT(ln,sz,t,r),ValidationTime(ln,sz,t,r)]=TCN(... 

                   Xdev,...                 % X 

                   Ydev,...                 % Y 

                   SizeF(sz),...            % filterSize 

                   30,...                   % maxEpochs 
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                   20,...                   % miniBatchSize,  

                   LearnRates(ln),...       % initialLearnRate 

                   0.1,...                  % learnRateDropFactor 

                   12,...                   % learnRateDropPeriod 

                   1,...                    % gradientThreshold 

                   1,...                    % validationFrequency 

                   0.0001,...               % l2Regularization 

                   "auto",...               % executionEnvironment 

                   "none",...    % plots 

                   "validation"...          % mode 

                );        

            end               

        end 

   

        [OptimalLR,OptimalSZ]=find(ValidationAccV(:,:,t,r)==max(ValidationAccV(:,:,t,r),[],'all')); % Find the Optimal parameters 

        Hypar_choice{t,r}=[LearnRates(OptimalLR),SizeF(OptimalSZ)]; 

% Estimate of the model on the test set  

        [TestAccV(t,r),TestAccT(t,r),TestTime(t,r),YP{t,r},YT{t,r}]=TCN(... 

               [Xdev;Xtest],...         % X 

               [Ydev;Ytest],...         % Y 

               SizeF(OptimalSZ),...     % filterSize 

               30,...                   % maxEpochs 

               20,...                   % miniBatchSize,  

               LearnRates(OptimalLR),...       % initialLearnRate 

               0.1,...                  % learnRateDropFactor 

               12,...                   % learnRateDropPeriod 

               1,...                    % gradientThreshold 

               1,...                    % validationFrequency 

               0.0001,...               % l2Regularization 

               "auto",...               % executionEnvironment 
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               "training-progress",...  % plots 

               "test"...          % mode 

            );   

        figure('Name',['Test ',num2str(t)]); 

        plotconfusion(horzcat(YT{t,r}{:}),horzcat(YP{t,r}{:}));       

    end 

     

    % The below section reiterates the tuning process (validation) using all the folds in the datasets    

    for ln=1:numel(LearnRates) 

        for sz=1:numel(SizeF) 

            [TuneAccV(ln,sz,r),TuneAccT(ln,sz,r),TuneTime(ln,sz,r)]=TCN(... 

               X(:,r),...                 % X 

               Y(:,r),...                 % Y 

               SizeF(sz),...             % filterSize 

               30,...                   % maxEpochs 

               20,...                   % miniBatchSize,  

               LearnRates(ln),...       % initialLearnRate 

               0.1,...                  % learnRateDropFactor 

               12,...                   % learnRateDropPeriod 

               1,...                    % gradientThreshold 

               1,...                    % validationFrequency 

               0.0001,...               % l2Regularization 

               "auto",...               % executionEnvironment 

               "none",...  % plots 

               "validation"...          % mode 

            );        

        end               

    end 

end 

% From the final tuning process, averaging across the different repetitions to find the best hyperparameters 
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globalAcc=mean(TuneAccV,3);  

[OptimalLR,OptimalSZ]=find(globalAcc==max(globalAcc,[],'all')); 

% The randomisation of the dataset that yielded the best results is used as training data 

[~,OptimalRep]=max(squeeze(mean(mean(TuneAccV,1),2)))  

[~,~,~,~,~,parameters,hyperparameters,~,~]=TCN(... 

    X(:,OptimalRep),...               % X 

    Y(:,OptimalRep),...               % Y 

    SizeF(OptimalSZ),...     % filterSize 

    30,...                   % maxEpochs 

    20,...                   % miniBatchSize,  

    LearnRates(OptimalLR),...% initialLearnRate 

    0.1,...                  % learnRateDropFactor 

    12,...                   % learnRateDropPeriod 

    1,...                    % gradientThreshold     

    1,...                    % validationFrequency 

    0.0001,...               % l2Regularization 

    "auto",...               % executionEnvironment 

    "training-progress",...  % plots 

    "training"...            % mode 

); 

 

XF=cell(size(X)); % Declaration of the transformed dataset (and all its randomisations) 

YF=cell(size(Y)); 

% In features mode the TCN function extrapolate the elaborated feature map from the initial dataset 

for r=1:Nrep 

    [~,~,~,~,~,~,~,XF(:,r),YF(:,r)]=TCN(... 

               X(:,r),...               % X 

               Y(:,r),...               % Y 

               SizeF(OptimalSZ),...     % filterSize 

               30,...                   % maxEpochs 
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               20,...                   % miniBatchSize,  

               LearnRates(OptimalLR),...% initialLearnRate 

               0.1,...                  % learnRateDropFactor 

               12,...                   % learnRateDropPeriod 

               1,...                    % gradientThreshold 

               1,...                    % validationFrequency 

               0.0001,...               % l2Regularization 

               "auto",...               % executionEnvironment 

               "training-progress",...  % plots 

               "features",...           % mode 

               parameters,... 

               hyperparameters... 

            ); 

end 

 

 

S.9 TCN.m function 

The following code implements the Temporal Convolutional Network (TCN) according to the parameters passed from the script 

ImplementTCN.m. It can take as inputs the training data (X), the relative target labels (Y), the size of the convolutional filters (filterSize), the 

maximum number of training epochs allowed (maxEpochs), the number of training samples for each mini-batch subset (miniBatchSize), the initial 

learning rate (initialLearnRate), the learning drop factor (learnRateDropFactor), the period that marks the dropping of the learning rate 

(learnRateDropPeriod), the threshold for gradient clipping (gradientThreshold), the period that marks the validation checks (validationFrequency), 

the L2 regularisation constant (l2Regularization), the execution environment (CPU/GPU) (executionEnvironment), the plotting option (plot – chose 

whenever to plot the training progress), the set of parameters of the convolutional network (learnables) the set of hyperparameters of the 
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convolutional network (hyperparameters) and the functioning mode (mode). It can give as outputs the overall accuracy on the validation (or either 

test) set (validationAccuracy), the overall accuracy on the training set (trainingAccuracy), the average prediction time on the validation set 

(TimePred), the predictions of the network with the relative labelled targets (pred/targ), the set of parameters of the convolutional network 

(learnables) the set of hyperparameters of the convolutional network (hyperparameters), the elaborated parameters of the network with the relative 

labelled targets (transformedInput, transformedOutput). The mode parameter controls the four different work modalities of the function: 

• VALIDATION: In validation mode, the TCN is trained and validated across the different folds of the Design set, the function takes all 

inputs except for the “learnables” and the “hyperparameters” parameters and it gives as outputs the “validationAccuracy”, the 

“trainingAccuracy”, and the “TimePred” parameters to evaluate the validation performance; 

• TEST: In test mode, the TCN is trained following the optimal model characteristics (from the validation mode) over the entire Design test 

and validated over the Test set, the function takes all inputs except for the “learnables” and the “hyperparameters” parameters and it gives 

as outputs the “validationAccuracy”, the “trainingAccuracy”, the “TimePred”, the “pred”, and the “targ” parameters to evaluate the test 

performance; 

• TRAINING: In training mode, the TCN is trained following the optimal model characteristics (from the test mode) over the entire Design 

test and validated over the Test set, the function takes all inputs except for the “learnables” and the “hyperparameters” parameters and it 

gives as outputs the “learnables”, and the “hyperparameters” parameters to reproduce the optimal neural network; 

• FEATURES: In features mode, the optimal TCN obtained from the training mode is used to extract elaborated features from the entire 

dataset using the convolutional layers. The function takes all the input parameters and returns the elaborated dataset (“XF” and “YF” 

parameters. 
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% This function implements a Temporal Convolutional Network in training validation test and feature mode. It works in different  

% modalities, depending on the call from implementTCN.m. The supporting functions called by this algorithm are reported and briefly  

% described after the main routine. 

function [validationAccuracy,trainingAccuracy,TimePred,pred,targ,learnables,hyperparameters,transformedInput,transformedOutput] = 

TCN(X,Y,filterSize,maxEpochs,miniBatchSize,initialLearnRate,learnRateDropFactor,learnRateDropPeriod,gradientThreshold,validationFreq

uency,l2Regularization,executionEnvironment,plots,mode,learnables,hyperparameters) 

 

% INPUT X: Accelerometric data [F x 1] cell array containing [S x 1] cell arrays containing [Feat x T] elements. 

%   Where F is the number of features, S is the number of sequences, Feat is the number of features and T is the number of 

%   time steps 

%  Y: Response data [F x 1] cell array containing [S x 1] cell arrays containing [1 x T] elements. 

%  maxEpochs: Number of training epochs. 

%  miniBatchSize: Number of sequences inside a batch of training. 

%  initialLearnRate: Initial learning rate. 

%  learnRateDropFactor,learnRateDropPeriod: These two parameters describe the learning rate decay process. 

%  gradientThreshold: Threshold for gradient clipping. 

%  validationFrequency: Number of epochs after which the trained network is tested on validation data. 

%  l2Regularization: l2 regularization rate. 

%  executionEnvironment: 'gpu' or 'cpu'. 

%  plots: 'training-progress' or 'none'. 

%  mode: 'validation','test','training' 

% OUTPUT validationAccuracy: The accuracy of the network on the set of data held out from the training. 

%  trainingAccuracy: The accuracy of the network on the set of training. 

%  TimePred: Prediction time of the network on the set of data held out from the training 

%  pred: Predicted outputs. 

%  targ: Target outputs 

%  learnables: Parameters of the model 

%  hyperparameters: Hyperparameters of the model 

%  transformedInput: 

%  transformedOutput: 

 

% VALIDATION MODE: Iteration of the training-validation process across the folds of X,Y 

% INPUTS: All 

% OUTPUTS: validationAccuracy, trainingAccuracy, TimePred 
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    if mode == "validation" 

        learnables=[]; % Declaration of the learnables parameters structured as a table  

        hyperparameters=[]; % Hyper-parameters       

        VvalidationAccuracy = ones(numel(X),1); % Validation accuracy on the dev set 

        VtrainingAccuracy = ones(numel(X),1); % Training accuracy on the dev set 

 

        for v = 1:numel(X) % Validation loop 

            idt = 1:numel(X); % training folds 

            idt(v) = []; % held out the current fold as validatiomn   

            XT=vertcat(X{idt});YT = vertcat(Y{idt}); % grouping all the sequences in the training and validation folds 

            XV=vertcat(X{v});YV = vertcat(Y{v}); 

            % Dimensionality of the dataset    

            numSequences = numel(XT); % Number of sequences         

            numInputChannels = size(XT{1},1); % Number of features of the signal 

            classes = categories(YT{1});         

            numClasses = numel(classes); % Number of the output classes         

            

            hyperparameters = struct; % hyperparameter definition 

            numBlocks = 4;              % residual blocks (default: 4) 

            numFilters = 175;           % number of filters (default: 175) 

            dropoutFactor = 0.05;       % dropout (default: 0.05)                     

            hyperparameters.NumBlocks = numBlocks; 

            hyperparameters.DropoutFactor = dropoutFactor; 

            hyperparameters.sizeFilters = filterSize; 

            

            learnables = table([],[],'VariableNames',{'Parameter','Value'});% learnable parameter definition for each block 

            numChannels = numInputChannels; 

            for k = 1:numBlocks                                  

                blockName = "Block"+k 

                par = {...   
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                    blockName+".Conv1.Weights";... % Parameters name for convolution 1 

                    blockName+".Conv1.Bias";... 

                    blockName+".Conv2.Weights";... % Parameters name for convolution 2 

                    blockName+".Conv2.Bias"... 

                    }; 

                var = {...  

                    dlarray(HeinitializeGaussian([filterSize, numChannels, numFilters]));... % Value for convolution 1 

                    dlarray(zeros(numFilters, 1, 'single'));... 

                    dlarray(HeinitializeGaussian([filterSize, numFilters, numFilters]));... % Value for convolution 2 

                    dlarray(zeros(numFilters, 1, 'single'))... 

                    }; 

                learnables = [learnables;par,var]; compose the learnables table                         

                if numChannels ~= numFilters % If inputs and outputs of the residual block are not the same                 

                    par = {...  

                        blockName+".Conv3.Weights";... % Parameters name for convolution 3 

                        blockName+".Conv3.Bias"... 

                        }; 

                    var = {... 

                        dlarray(HeinitializeGaussian([1, numChannels, numFilters]));... % Value for convolution 3 

                        dlarray(zeros(numFilters, 1, 'single'))... 

                        }; 

                    learnables = [learnables;par,var]; % compose the learnables table                         

 

                end           

                numChannels = numFilters; % For next block, update number of channels              

            end 

                                 

             

            par = {... % fully connect parameters names 

                "FC.Weights";... 
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                "FC.Bias"... 

                }; 

            var = {... 

                dlarray(HeinitializeGaussian([numClasses,numChannels]));... % fully connect parameters values 

                dlarray(zeros(numClasses,1,'single'))... 

                }; 

            learnables = [learnables;par,var]; compose the learnables table                                       

            learnRate = initialLearnRate; 

            trailingAvg = []; % moving average of the parameters 

            trailingAvgSq = []; % element-wise squares of the gradients used by the Adam optimizer. 

                         

            if plots == "training-progress" % training and validation progress  

                if exist('lossacc','var') == 0;lossacc=figure;end % If the accuracy-loss plot does not exist create it 

                subplot(2,1,1) 

                lineAccuracyTrain =  animatedline('Color',[0 0 0]); 

                lineAccuracyValid =  animatedline(gca,'Color',[0.85 0.325 0.098]); 

                ylim([0 inf]) 

                ylabel("Accuracy") 

                grid on      

                subplot(2,1,2)  

                lineLossTrain = animatedline('Color',[0 0 0]); 

                lineLossValid = animatedline('Color',[0.85 0.325 0.098]); 

                ylim([0 inf]) 

                xlabel("Iteration") 

                ylabel("Loss") 

                grid on 

                if exist('conf','var') == 0;conf=figure;end % If the confusion plot does not exist create it            

            end 

            iteration = 0; % Iteration counter 

            numIterationsPerEpoch = floor(numSequences./miniBatchSize); % Number of iterations per epochs 
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            for epoch = 1:maxEpochs % for each epoch 

                idx = randperm(numSequences);  

                XT = XT(idx); 

                YT = YT(idx);  

              

                for i = 1:numIterationsPerEpoch % for each iteration 

                     

                    iteration = iteration + 1;      

                    idx = (i-1)*miniBatchSize+1:i*miniBatchSize; 

                     

                    % This section calls at the function transformSequences.m for pre-processing 

                    [DataTrain,ResponseTrain,numTimeSteps] = transformSequences(XT(idx),YT(idx)); % Training 

                    [DataValid,ResponseValid,numTimeStepsV] = transformSequences(XV,YV); % Validation 

                    dlX = dlarray(DataTrain); % Training data        

                    dlXV = dlarray(DataValid); % Validation data 

                     

                    % Gradient calculation 

                    [gradients, loss, accuracy] = dlfeval(... 

@modelGradients, ... 

dlX, ... 

ResponseTrain, ... 

learnables.Value, ... 

learnables.Parameter, ... 

hyperparameters, ... 

numTimeSteps); 

                    % Regularization 

                    idx = contains(learnables.Parameter,"Weights"); % Consider the weights parameters 

% Update the gradients 

                    gradients(idx,:) = dlupdate(@(g,w) g + l2Regularization*w, gradients(idx,:), learnables.Value(idx,:)); 
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                    % Gradients clipping 

                    gradients = dlupdate(@(g) thresholdL2Norm(g,gradientThreshold),gradients);  

                    % Adam optimizer 

                    [learnables.Value,trailingAvg,trailingAvgSq] = adamupdate(learnables.Value,gradients, ... 

                        trailingAvg, trailingAvgSq, iteration, learnRate);   

                    % Validation of the model (at first iteration and at a defined frequency 

                    if iteration == 1 || mod(iteration,validationFrequency) == 0 

                        [lossV, accuracyV,targ,pred,TimePred] = modelValidation(... 

           dlXV, ... 

                        ResponseValid, ... 

                        learnables.Value, ... 

                        learnables.Parameter, ... 

                        hyperparameters,numTimeStepsV); 

                         

                        if plots == "training-progress" % Validation progress (if plot is enabled) 

                            figure(lossacc); 

                            addpoints(lineLossValid,iteration, lossV); 

                            addpoints(lineAccuracyValid,iteration, accuracyV); 

                            figure(conf); 

                            plotconfusion(targ,pred)                             

                        end         

                    end 

                    if plots == "training-progress" % Training progress (if plot is enabled)                                

                        loss = mean(loss ./ numTimeSteps); % Normalize the loss over the sequence lengths             

                        loss = double(gather(extractdata(loss))); 

                        loss = mean(loss); 

                        figure(lossacc); 

                        addpoints(lineLossTrain,iteration, mean(loss)); 

                        addpoints(lineAccuracyTrain,iteration, accuracy); 

                        title("Epoch: " + epoch) 
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                        drawnow 

                    end 

                end 

                if mod(epoch,learnRateDropPeriod) == 0 % Drop the learning rate after a defined period 

                    learnRate = learnRate*learnRateDropFactor; 

                end 

                fprintf(['EPOCH',num2str(epoch),' Validation = %f | Training = %f\n'],accuracyV,accuracy); 

            end 

            VvalidationAccuracy(v)=accuracyV; 

            VtrainingAccuracy(v)=accuracy; 

            fprintf('Validation accuracy on fold = %f \n',VvalidationAccuracy(v)); 

            fprintf('Training accuracy on fold = %f \n',VtrainingAccuracy(v)); 

        end 

        validationAccuracy=mean(VvalidationAccuracy); 

        trainingAccuracy=mean(VtrainingAccuracy); 

        fprintf('Validation accuracy = %f \n',mean(validationAccuracy)); 

        fprintf('Training accuracy = %f \n',mean(trainingAccuracy));    

% TEST MODE: training the net on the entire train+validation sets and evaluating on the test set 

% INPUTS: All 

% OUTPUTS: validationAccuracy, trainingAccuracy, TimePred 

 

 

    elseif mode == "test" % The first part follow the same rules of the VALIDATION MODE, but it is not included in a for loop        

        learnables=[]; % Declaration of the learnables parameters structured as a table 

        hyperparameters=[]; % Hyper-parameters       

        XT=vertcat(X{1:end-1});YT=vertcat(Y{1:end-1}); % grouping all the sequences in the training and validation folds 

        numSequences = numel(XT);  

        numInputChannels=size(XT{1},1); % Number of features of the signal 

        classes = categories(YT{1}); % Number of the output classes         
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        numClasses = numel(classes); 

        % hyperparameter definition 

        hyperparameters = struct; 

        numBlocks = 4;              % residual blocks (default: 4) 

        numFilters = 175;           % number of filters (default: 175) 

        dropoutFactor = 0.05;       % dropout (default: 0.05)                     

        hyperparameters.NumBlocks = numBlocks; 

        hyperparameters.DropoutFactor = dropoutFactor; 

        hyperparameters.sizeFilters = filterSize; 

         

        learnables = table([],[],'VariableNames',{'Parameter','Value'}); % learnable parameter definition for each block 

        numChannels = numInputChannels;         

         

        for k = 1:numBlocks                                  

            blockName = "Block"+k; 

             

            par = {... 

                blockName+".Conv1.Weights";... % Parameters name for convolution 1 

                blockName+".Conv1.Bias";... 

                % convolution2 

                blockName+".Conv2.Weights";... % Parameters name for convolution 2 

                blockName+".Conv2.Bias"... 

                }; 

            var = {... 

                dlarray(HeinitializeGaussian([filterSize, numChannels, numFilters]));... % Value for convolution 1 

                dlarray(zeros(numFilters, 1, 'single'));... 

                dlarray(HeinitializeGaussian([filterSize, numFilters, numFilters]));... % Value for convolution 2 

                dlarray(zeros(numFilters, 1, 'single'))... 

                }; 

            learnables = [learnables;par,var]; % compose the learnables table                         
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            if numChannels ~= numFilters                    

                par = {... 

                    blockName+".Conv3.Weights";... % Parameters name for convolution 3 

                    blockName+".Conv3.Bias"... 

                    }; 

                var = {... 

                    dlarray(HeinitializeGaussian([1, numChannels, numFilters]));... % Value for convolution 3                         

                    dlarray(zeros(numFilters, 1, 'single'))... 

                    }; 

                learnables = [learnables;par,var]; % compose the learnables table                         

            end 

             

            numChannels = numFilters; % For next block, update number of channels              

               

        end 

                             

        par = {... % fully connect parameters names 

            "FC.Weights";... 

            "FC.Bias"... 

            }; 

        var = {... 

            dlarray(HeinitializeGaussian([numClasses,numChannels]));... % fully connect parameters values 

            dlarray(zeros(numClasses,1,'single'))... 

            }; 

        learnables = [learnables;par,var]; % compose the learnables table                         

        learnRate = initialLearnRate; 

        trailingAvg = []; % moving average of the parameters 

        trailingAvgSq = []; % element-wise squares of the gradients used by the Adam optimizer. 
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        if plots == "training-progress" % training and validation progress      

            if exist('lossacc','var') == 0;lossacc=figure;end  % If the accuracy-loss plot does not exist create it 

            subplot(2,1,1) 

            lineAccuracyTrain =  animatedline('Color',[0 0 0]); 

            ylim([0 inf]) 

            ylabel("Accuracy") 

            grid on  

            subplot(2,1,2)  

            lineLossTrain = animatedline('Color',[0 0 0]); 

            ylim([0 inf]) 

            xlabel("Iteration") 

            ylabel("Loss") 

            grid on                 

        end 

        iteration = 0; % Iteration counter 

        numIterationsPerEpoch = floor(numSequences./miniBatchSize); % Number of iterations per epochs 

             

        for epoch = 1:maxEpochs % for each epoch           

            idx = randperm(numSequences);  

            XT = XT(idx); 

            YT = YT(idx);  

          

            for i = 1:numIterationsPerEpoch % for each iteration 

                 

                iteration = iteration + 1;      

                idx = (i-1)*miniBatchSize+1:i*miniBatchSize; 

                

                % This section calls at the function transformSequences.m for pre-processing 

                [DataTrain,ResponseTrain,numTimeSteps] = transformSequences(XT(idx),YT(idx)); % Training 

                dlX = dlarray(DataTrain); % Training data          



 

129 

 

                                 

                % gradient calculation 

                [gradients, loss, trainingAccuracy] = dlfeval(... 

              @modelGradients, ... 

              dlX, ... 

              ResponseTrain, ... 

              learnables.Value, ... 

              learnables.Parameter, ... 

              hyperparameters, ... 

              numTimeSteps); 

                 

                % Regularization 

                idx = contains(learnables.Parameter,"Weights"); 

   % Update the gradients 

                gradients(idx,:) = dlupdate(@(g,w) g + l2Regularization*w, gradients(idx,:), learnables.Value(idx,:));           

                % Gradient clipping 

                gradients = dlupdate(@(g) thresholdL2Norm(g,gradientThreshold),gradients);  

                % Adam optimizer 

                [learnables.Value,trailingAvg,trailingAvgSq] = adamupdate(learnables.Value,gradients, ... 

                    trailingAvg, trailingAvgSq, iteration, learnRate);   

                if plots == "training-progress" % Training progress (if plot is enabled)                                                

                    loss = mean(loss ./ numTimeSteps); % Normalize the loss over the sequence lengths             

                    loss = double(gather(extractdata(loss))); 

                    loss = mean(loss); 

                    figure(lossacc); 

                    addpoints(lineLossTrain,iteration, mean(loss)); 

                    addpoints(lineAccuracyTrain,iteration, trainingAccuracy); 

                    title("Epoch: " + epoch) 

                    drawnow 

                end 
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            end       

            if mod(epoch,learnRateDropPeriod) == 0 % Drop the learning rate after a defined period 

                learnRate = learnRate*learnRateDropFactor; 

            end 

        end        

        fprintf('Training accuracy = %f \n',trainingAccuracy); 

        Xt=vertcat(X{end});Yt=vertcat(Y{end}); % Test data 

        numObservationsTest = numel(Xt); % Number of test observations 

        doTraining = false; % test phase 

 

        % Test data and response 

        dlXTest=cellfun(@(x)dlarray(reshape(x,[size(x,1),1,size(x,2)])),Xt,'UniformOutput',false);  

        Ytest=cellfun(@(x)reshape(single(full(ind2vec(double(x),numClasses))),[numClasses,1,size(x,2)]),Yt,'UniformOutput',false);  

         

        accuracy = zeros(1,numObservationsTest); % Accuracy for every test sequence 

        Times = zeros(1,numObservationsTest); % Prediction time for every test sequence 

        pred = cell(1,numObservationsTest); % Predictions for every test sequence 

        targ = cell(1,numObservationsTest); % Targets for every test sequence 

        for obs=1:numObservationsTest % For each sequence in the test set 

            start=tic; 

            dlYPred = model(dlXTest{obs},learnables.Value,learnables.Parameter,hyperparameters,doTraining); % Prediction 

            Times(obs) = seconds(duration(0,0,toc(start),'Format',"mm:ss.SSS")); % Time 

            YPred = gather(extractdata(dlYPred));  

            pred{obs} = squeeze(YPred); % Predictions  

            targ{obs} = squeeze(Ytest{obs}); % Targets 

            [~,idxPred] = max(pred{obs},[],1); 

            [~,idxTest] = max(targ{obs},[],1); 

            accuracy(obs) = mean(idxPred == idxTest); % Accuracy for the sequence 

        end 
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        validationAccuracy=mean(accuracy); 

        TimePred=mean(Times); 

% TRAINING MODE: training the net on the entire dataset  

% INPUTS: All 

% OUTPUTS: learnables, hyperparameters 

    elseif mode == "training"         

        learnables=[]; % Declaration of the learnables parameters structured as a table 

        hyperparameters=[]; % Hyper-parameters       

        XT=vertcat(X{1:end});YT=vertcat(Y{1:end}); % grouping all the sequences 
        numSequences = numel(XT);        

        numInputChannels=size(XT{1},1); % Number of features of the signal 

        classes = categories(YT{1}); % Number of the output classes         

        numClasses = numel(classes); 

        % hyperparameter definition 

        hyperparameters = struct; 

        numBlocks = 4;              % residual blocks (default: 4) 

        numFilters = 175;           % number of filters (default: 175) 

        dropoutFactor = 0.05;       % dropout (default: 0.05)                     

        hyperparameters.NumBlocks = numBlocks; 

        hyperparameters.DropoutFactor = dropoutFactor; 

        hyperparameters.sizeFilters = filterSize; 

         

        learnables = table([],[],'VariableNames',{'Parameter','Value'}); % learnable parameter definition for each block 

        numChannels = numInputChannels;         

         

        for k = 1:numBlocks                                  

            blockName = "Block"+k; 

             

            par = {... 

                blockName+".Conv1.Weights";... % Parameters name for convolution 1 
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                blockName+".Conv1.Bias";... 

                % convolution2 

                blockName+".Conv2.Weights";... % Parameters name for convolution 2 

                blockName+".Conv2.Bias"... 

                }; 

            var = {... 

                dlarray(HeinitializeGaussian([filterSize, numChannels, numFilters]));... % Value for convolution 1 

                dlarray(zeros(numFilters, 1, 'single'));... 

                dlarray(HeinitializeGaussian([filterSize, numFilters, numFilters]));... % Value for convolution 2 

                dlarray(zeros(numFilters, 1, 'single'))... 

                }; 

            learnables = [learnables;par,var]; % compose the learnables table                         

                                      

            if numChannels ~= numFilters                    

                par = {... 

                    blockName+".Conv3.Weights";... % Parameters name for convolution 3 

                    blockName+".Conv3.Bias"... 

                    }; 

                var = {... 

                    dlarray(HeinitializeGaussian([1, numChannels, numFilters]));... % Value for convolution 3                         

                    dlarray(zeros(numFilters, 1, 'single'))... 

                    }; 

                learnables = [learnables;par,var]; % compose the learnables table                         

            end 

             

            numChannels = numFilters; % For next block, update number of channels              

               

        end 

                             

        par = {... % fully connect parameters names 
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            "FC.Weights";... 

            "FC.Bias"... 

            }; 

        var = {... 

            dlarray(HeinitializeGaussian([numClasses,numChannels]));... % fully connect parameters values 

            dlarray(zeros(numClasses,1,'single'))... 

            }; 

        learnables = [learnables;par,var]; % compose the learnables table                         

        learnRate = initialLearnRate; 

        trailingAvg = [];               % moving average of the parameters 

        trailingAvgSq = [];             % element-wise squares of the gradients used by the Adam optimizer. 

                     

        if plots == "training-progress" % training and validation progress      

            if exist('lossacc','var') == 0;lossacc=figure;end  % If the accuracy-loss plot does not exist create it 

            subplot(2,1,1) 

            lineAccuracyTrain =  animatedline('Color',[0 0 0]); 

            ylim([0 inf]) 

            ylabel("Accuracy") 

            grid on  

            subplot(2,1,2)  

            lineLossTrain = animatedline('Color',[0 0 0]); 

            ylim([0 inf]) 

            xlabel("Iteration") 

            ylabel("Loss") 

            grid on                 

        end 

        iteration = 0; % Iteration counter 

        numIterationsPerEpoch = floor(numSequences./miniBatchSize); % Number of iterations per epochs 

             

        for epoch = 1:maxEpochs % for each epoch           
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            idx = randperm(numSequences);  

            XT = XT(idx); 

            YT = YT(idx);  

          

            for i = 1:numIterationsPerEpoch % for each iteration 

                 

                iteration = iteration + 1;      

                idx = (i-1)*miniBatchSize+1:i*miniBatchSize; 

                

                % This section calls at the function transformSequences.m for pre-processing 

                [DataTrain,ResponseTrain,numTimeSteps] = transformSequences(XT(idx),YT(idx)); % Training 

                dlX = dlarray(DataTrain); % Training data          

                                 

                % gradient calculation 

                [gradients, loss, trainingAccuracy] = dlfeval(... 

              @modelGradients, ... 

              dlX, ... 

              ResponseTrain, ... 

              learnables.Value, ... 

              learnables.Parameter, ... 

              hyperparameters, ... 

              numTimeSteps); 

                 

                % Regularization 

                idx = contains(learnables.Parameter,"Weights"); 

   % Update the gradients 

                gradients(idx,:) = dlupdate(@(g,w) g + l2Regularization*w, gradients(idx,:), learnables.Value(idx,:));           

                % Gradient clipping 

                gradients = dlupdate(@(g) thresholdL2Norm(g,gradientThreshold),gradients);  

                % Adam optimizer 
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                [learnables.Value,trailingAvg,trailingAvgSq] = adamupdate(learnables.Value,gradients, ... 

                    trailingAvg, trailingAvgSq, iteration, learnRate);   

                if plots == "training-progress" % Training progress (if plot is enabled)                                                

                    loss = mean(loss ./ numTimeSteps); % Normalize the loss over the sequence lengths             

                    loss = double(gather(extractdata(loss))); 

                    loss = mean(loss); 

                    figure(lossacc); 

                    addpoints(lineLossTrain,iteration, mean(loss)); 

                    addpoints(lineAccuracyTrain,iteration, trainingAccuracy); 

                    title("Epoch: " + epoch) 

                    drawnow 

                end 

            end       

            if mod(epoch,learnRateDropPeriod) == 0 % Drop the learning rate after a defined period 

                learnRate = learnRate*learnRateDropFactor; 

            end 

        end        

        fprintf('Training accuracy = %f \n',trainingAccuracy); 

% FEATURE MODE: Giving a trained model extract the complex features from the entire dataset 

% INPUTS: All 

% OUTPUTS: transformedInput; transformedOutput; 

    elseif mode == "features"  

        Xtransf=vertcat(X{1:end});Ytransf=vertcat(Y{1:end}); 

        numObservations = numel(Xtransf); 

        transformedInput=cell(numObservations,1); % transformed dataset 

        ends=cumsum(cellfun(@(x)length(x),X)); % ends of folds subdivision 

        starts=[1;ends(1:end-1)+1]; % starts  of folds subdivision 

        for obs=1:numObservations % For each sequence 

            [XF,~]=transformSequences(Xtransf(obs),Ytransf(obs)); 

            dlX = dlarray(XF); 
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            doTraining = false; 

            getFeatures = true; 

            transformedInput{obs} = squeeze(extractdata(model(... extract the elaborated features from the convolutional layers 

     dlX, ... 

     learnables.Value, ... 

     learnables.Parameter, ... 

     hyperparameters, ... 

     doTraining, ... 

     getFeatures))); 

        end 

         

        transformedInput=cellfun(@(x,y)transformedInput(x:y),num2cell(starts),num2cell(ends),'UniformOutput',false); 

        transformedOutput=Y;                

    end 

    switch mode % Outputs according to the function mode 

    case "validation" 

        pred=[];targ=[];learnables=[];hyperparameters=[];transformedInput=[];transformedOutput=[]; 

    case "test" 

        learnables=[];hyperparameters=[];transformedInput=[];transformedOutput=[]; 

    case "training" 

        validationAccuracy=[];TimePred=[];pred=[];targ=[];transformedInput=[];transformedOutput=[]; 

    case "features" 

        validationAccuracy=[];trainingAccuracy=[];TimePred=[];pred=[];targ=[];learnables=[];hyperparameters=[]; 

    end     

end 

 

S.9.1 Supporting functions 



 

137 

 

initializeGaussian.m. function 

% The initializeGaussian function samples weights from a Gaussian distribution with mean 0 and standard deviation 0.01. 

function parameter = initializeGaussian(sz) 

    parameter = randn(sz,'single') .* 0.01; 

end 

HeinitializeGaussian.m function 

% The HeinitializeGaussian function samples weights using the He initialization. 

function parameter = HeinitializeGaussian(sz,scale) 

    if nargin < 2 

    scale = 0.1; 

    end     

    numIn = prod(sz);     

    varWeights = 2 / ((1 + scale^2) * numIn); 

    parameter = randn(sz) * sqrt(varWeights); 

end 

transformSequences.m function:  

% The transformSequence function takes a cell array of N sequences and returns a C-by-N-by-S numeric array of left-padded 1-D  

% sequences and the number of time steps in each sequence, where C corresponds to the number of features of the sequences and S  

% corresponds to the number of time steps of the longest sequence. 

function [XTransformed, YTransformed, numTimeSteps] = transformSequences(X,Y) 

numTimeSteps = cellfun(@(sequence) size(sequence,2),X); 

miniBatchSize = numel(X); % Size of the mini-batch 

numFeatures = size(X{1},1); % Number of features 

sequenceLength = max(cellfun(@(sequence) size(sequence,2),X)); % Maximum lenght in the mini-batch. 

classes = categories(Y{1});     % classes in the sequences  
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numClasses = numel(classes);    % number of classes 

 

sz = [numFeatures miniBatchSize sequenceLength]; % Definition of the Input and Output transformed sequences 

XTransformed = zeros(sz,'single'); 

sz = [numClasses miniBatchSize sequenceLength]; 

YTransformed = zeros(sz,'single'); 

 

for i = 1:miniBatchSize For each sequence. 

    predictors = X{i};   

    responses = zeros(numClasses, numTimeSteps(i), 'single');  

    for c = 1:numClasses 

        responses(c,Y{i}==classes(c)) = 1; 

    end    

    XTransformed(:,i,:) = leftPad(predictors,sequenceLength); % Left padding. 

    YTransformed(:,i,:) = leftPad(responses,sequenceLength); 

end 

end 

leftPad.m function 

% The leftPad function takes a sequence and left-pads it with zeros to have the specified sequence length. 

function sequencePadded = leftPad(sequence,sequenceLength) 

[numFeatures,numTimeSteps] = size(sequence); 

paddingSize = sequenceLength - numTimeSteps; 

padding = zeros(numFeatures,paddingSize); 

sequencePadded = [padding sequence]; 

end 
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modelGradients.m function 

% The modelGradients function takes a mini-batch of input data dlX, the corresponding target sequences T, the learnable parameters, 

% and the hyperparameters, and returns the gradients of the loss with respect to the learnable parameters and the corresponding loss 

% and applying, if setted the the L2 regularization using the RegularizationFunction function. To compute the gradients, evaluate  

% the modelGradients function using the dlfeval function in the training loop. 

function [gradients,loss,accuracy] = modelGradients(dlX,T,learnables,labels,hyperparameters,numTimeSteps) 

 

dlY = model(dlX,learnables,labels,hyperparameters,true); Application of the model using the defined parameters and hyperparameters. 

dlT = dlarray(T,'CBT');  

numObservationsTest=size(T,2);  % Number of observations for the mini-batch  

YP = gather(extractdata(dlY));  % Output of the model 

acc = zeros(1,numObservationsTest);  

for i = 1:numObservationsTest 

    [~,idxP] = max(YP(:,i,:),[],1); 

    [~,idxT] = max(T(:,i,:),[],1); 

    acc(i) = mean(idxP == idxT); 

end 

accuracy=mean(acc); % Calculation of the accuracy on the training set. 

loss = maskedCrossEntropyLoss(dlY, dlT, numTimeSteps); % Calculation of the loss on the training set. 

gradients = dlgradient(mean(loss),learnables); Calculation of the gradients and Regularization. 

end 

maskedCrossEntropyLoss.m function 

% The maskedCrossEntropyLoss function computes the cross-entropy loss for mini-batches of sequences, where the sequences are  

% different lengths. 

 

function loss = maskedCrossEntropyLoss(dlY, dlT, numTimeSteps) 
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numObservations = size(dlY,2); 

loss = dlarray(zeros(1,numObservations,'like',dlY)); 

for i = 1:numObservations 

    idx = (size(dlY,3)-numTimeSteps(i)+1):size(dlY,3); 

    loss(i) = crossentropy(dlY(:,i,idx),dlT(:,i,idx),'DataFormat','CBT'); 

end 

end 

thresholdL2Norm.m function 

% The thresholdL2Norm function scales the gradient g so that its norm equals gradientThreshold when the norm of the gradient is 

% larger than gradientThreshold. 

function g = thresholdL2Norm(g,gradientThreshold) 

gradientNorm = sqrt(sum(g.^2,'all')); 

if gradientNorm > gradientThreshold 

    g = g * (gradientThreshold / gradientNorm); 

end 

end 

modelValidation.m function 

% The modelValidation function takes a mini-batch of validation input data dlXV, the corresponding target sequences TV, the  

% parameters, and the hyperparameters, and returns the accuracy and the loss. 

function [lossV,accuracyV,targ,pred,TimePred] = modelValidation(dlXV,TV,learnables,labels,hyperparameters,numTimeSteps) 

numObservationsTest=size(TV,2); % number of observations in validation set 

startV=tic;             % timer start 

dlY = model(dlXV,learnables,labels,hyperparameters,false); % prediction 

TimePred = duration(0,0,toc(startV),'Format',"mm:ss.SSS")/numObservationsTest; % Total time divided by the number of sequences 

TimePred = seconds(TimePred);   % seconds 
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dlT = dlarray(TV,'CBT'); 

YP = gather(extractdata(dlY));  

acc = zeros(1,numObservationsTest); 

pred=zeros(size(YP,1),size(YP,2)*size(YP,3)); 

targ=zeros(size(TV,1),size(TV,2)*size(TV,3)); 

 

for i = 1:numObservationsTest % Calculation of the accuracy on the validation set 

    pred(:,((i-1)*size(YP,3))+1:(i*size(YP,3)))=squeeze(YP(:,i,:)); 

    targ(:,((i-1)*size(TV,3))+1:(i*size(TV,3)))=squeeze(TV(:,i,:)); 

    [~,idxP] = max(YP(:,i,:),[],1); 

    [~,idxT] = max(TV(:,i,:),[],1); 

    acc(i) = mean(idxP == idxT); 

end 

accuracyV=mean(acc); 

lossV = maskedCrossEntropyLoss(dlY, dlT, numTimeSteps); % Calculation of the loss on the validation set 

lossV = mean(lossV ./ numTimeSteps); 

lossV = double(gather(extractdata(lossV))); 

lossV = mean(lossV); 

end 

model.m function 

% The function model takes the input data dlX, the learnable model parameters, the model hyperparameters, and the flag doTraining  

% which specifies whether the model should return outputs for training or prediction. The network outputs the predictions for the  

% labels at each time step of the input sequence. The model consists of multiple residual blocks with exponentially increasing  

% dilation factors. After the last residual block, a final fullyconnect operation maps the output to the number of classes in the  

% target data. 

function dlY = model(dlX,learnables,labels,hyperparameters,doTraining,getFeat) 
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if nargin<6 % If not specified does not extract features 

    getFeat=false; 

end 

numBlocks = hyperparameters.NumBlocks;          % Number of residual blocks 

dropoutFactor = hyperparameters.DropoutFactor;  % Dropout factor 

dlY = dlX; 

 

for k = 1:numBlocks % Definition of residual blocks 

    dilationFactor = 2^(k-1); % The dilation factor increase at each consecutive layer  

    nameBlock = "Block"+k;   % Parameter of the block 

    dlY = residualBlock(dlY,dilationFactor,dropoutFactor,nameBlock,learnables,labels,doTraining);   % Residual block function   

end 

 

if getFeat 

    Features=dlY; % Extraction of the features 

end 

weights = learnables{labels=="FC.Weights"}; Definition of the fully connected layer. 

bias = learnables{labels=="FC.Bias"}; 

dlY = fullyconnect(dlY,weights,bias,'DataFormat','CBT'); 

 

dlY = softmax(dlY,'DataFormat','CBT'); % Softmax activation function. 

 

if getFeat 

    dlY=Features; % If the feature mode is activated the output are the complex features 

end 

end 
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residualBlock.m function 

% The function residualBlock implements the core building block of the temporal convolutional network.  

function dlY = residualBlock(dlX,dilationFactor,dropoutFactor,nameBlock,learnables,labels,doTraining) 

 

filterSize = size(weights,1); % Size of the filter  

paddingSize = (filterSize - 1) * dilationFactor;    % Padding of the convolution as (size of the filter-1)*dilation 

 

weights = learnables{labels==nameBlock+".Conv1.Weights"}; 

bias = learnables{labels==nameBlock+".Conv1.Bias"}; 

 

 

dlY = dlconv(dlX,weights,bias, ... % Convolution 

    'DataFormat','CBS', ... 

    'Stride', 1, ... 

    'DilationFactor', dilationFactor, ... 

    'Padding', [paddingSize; 0] ); 

 

dlY = instanceNormalization(dlY,'CBS');     % Instance normalization function 

dlY = relu(dlY); % Relu 

dlY = spatialDropout(dlY,dropoutFactor,'CBS',doTraining);   % Spatial dropout function 

 

weights = learnables{labels==nameBlock+".Conv2.Weights"}; 

bias = learnables{labels==nameBlock+".Conv2.Bias"}; 

 

dlY = dlconv(dlY,weights,bias, ... % Convolution 2 

    'DataFormat','CBS', ... 

    'Stride', 1, ... 

    'DilationFactor', dilationFactor, ... 

    'Padding',[paddingSize; 0] ); 
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dlY = instanceNormalization(dlY,'CBS'); 

dlY = relu(dlY); 

dlY = spatialDropout(dlY,dropoutFactor,'CBS',doTraining); 

 

if ~isequal(size(dlX),size(dlY)) % In case channel input are not equal to channel output, optional 1-by-1 convolution. 

    weights = learnables{labels==nameBlock+".Conv3.Weights"}; 

    bias = learnables{labels==nameBlock+".Conv3.Bias"}; 

 

    dlX = dlconv(dlX,weights,bias,'DataFormat','CBS'); 

end 

 

dlY = relu(dlX+dlY); % Addition and ReLU 

 

end 

instanceNormalization.m function 

% The instanceNormalization function normalizes the input dlX by first calculating the mean μ and the variance for each  

% observation over each input channel. Then it calculates the normalized activations as  

 

% In comparison to batch normalization, the mean and variance is different for each observation in the mini-batch. Use  

% normalization, such as instance normalization, between convolutional layers and nonlinearities to speed up training of  

% convolutional neural networks and improve convergence.  

function dlY = instanceNormalization(dlX,fmt) 

 

reductionDims = find(fmt == 'S'); 

mu = mean(dlX,reductionDims); 
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sigmaSq = var(dlX,1,reductionDims); 

epsilon = 1e-5; 

dlY = (dlX-mu) ./ sqrt(sigmaSq+epsilon); 

end 

spatialDropout.m function 

The spatialDropout function performs spatial dropout [3] on the input dlX with dimension labels fmt when the doTraining flag is 

true. Spatial dropout drops an entire channel of the input data. That is, all time steps of a certain channel are dropped with the 

probability specified by dropoutFactor. The channels are dropped out independently in the batch dimension.  

function dlY = spatialDropout(dlX,dropoutFactor,fmt,doTraining) 

if doTraining 

    maskSize = size(dlX); 

    maskSize(fmt=='S') = 1;     

    dropoutScaleFactor = single(1 - dropoutFactor); 

    dropoutMask = (rand(maskSize,'like',dlX) > dropoutFactor) / dropoutScaleFactor; 

     

    dlY = dlX .* dropoutMask; 

else 

    dlY = dlX; 

end 

end 

 

S.10 HybridNET.m function 

The following code implements the Hybrid Convolutional-Recurrent Network (HYB) according to the parameters passed from the user. It can take 

as inputs the raw (i.e. directly from the IMU sensors) training data (R), the elaborated (see S.9 – feature mode) training data from the previously 

trained TCN (E), the relative target labels (Y), the optimised TCN parameters/hyperparameters (TCNpar, TCNhypar) the number of hidden neurons 
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of the recurrent LSTM part of the network to be trained (Neurons), the maximum number of training epochs allowed (maxEpochs), the number of 

training samples for each mini-batch subset (miniBatchSize), the initial learning rate (initialLearnRate), the learning drop factor 

(learnRateDropFactor), the period that marks the dropping of the learning rate (learnRateDropPeriod), the threshold for gradient clipping 

(gradientThreshold), the period that marks the validation checks (validationFrequency), the L2 regularisation constant (l2Regularization), the 

execution environment (CPU/GPU) (executionEnvironment), the plotting option (plot – chose whenever to plot the training progress), and the 

functioning mode (mode). It can give as outputs the overall accuracy on the validation (or either test) set (validationAccuracy), the overall accuracy 

on the training set (trainingAccuracy), the average prediction time on the validation set (TimePred), the predictions of the network with the relative 

labelled targets (pred/targ), the set of parameters of the trained recurrent LSTM part of the HYB network (LSTMpar), and the set of hyperparameters 

of the trained recurrent LSTM part of the HYB network (LSTMhypar). The mode parameter controls the four different work modalities of the function:  

• VALIDATION: In validation mode, the HYB is trained and validated across the different folds of the Design set, the function takes all 

inputs and it gives as outputs the “validationAccuracy”, the “trainingAccuracy”, and the “TimePred” parameters to evaluate the validation 

performance; 

• TEST: In test mode, the HYB is trained, following the optimal model characteristics (from the validation mode), over the entire Design 

test and validated over the Test set, and it gives as outputs the “validationAccuracy”, the “trainingAccuracy”, the “TimePred”, the “pred”, 

and the “targ” parameters to evaluate the test performance; 

• TRAINING: In training mode, the HYB is trained following the optimal model characteristics (from the test mode) over the entire Design 

test and validated over the Test set, the function takes all inputs parameters and it gives as outputs the “LSTMpar”, and the “LSTMhypar” 

parameters to reproduce the optimal combined neural network; 
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% This function implement a hybrid network composed by a Temporal Convolutional and LSTM network in training validation and test 

mode. The supporting functions called by this algorithm are reported and briefly described after the main routine. Some are 

equivalent to the one called by TCN.m and for this reason are omitted. 

 

function [validationAccuracy,trainingAccuracy,TimePred,pred,targ,LSTMpar,LSTMhypar] = 

HybridNET(R,E,Y,TCNpar,TCNhypar,Neurons,maxEpochs,miniBatchSize,initialLearnRate,learnRateDropFactor,learnRateDropPeriod,gradientThr

eshold,validationFrequency,l2Regularization,executionEnvironment,plots,mode) 

% INPUT  

 

 

%  R: Accelerometric data extracted from IMU [F x 1] cell array containing [S x 1] cell arrays containing [Feat x T]  

%  elements.Where F is the number of features, S is the number of sequences, Feat is the number of features and T is the 

%  number of time steps 

%  E: Elaborated data extracted from the Pre-Trained TCN [F x 1] cell array containing [S x 1] cell arrays containing 

%  [Feat x T] elements.Where F is the number of features, S is the number of sequences, Feat is the number of features  

%  and T is the number of time steps 

%  Y: Response data [F x 1] cell array containing [S x 1] cell arrays containing [1 x T] elements. 

%  TCNpar= parameter of the pre-trained TCN architecture 

%  TCNhypar= hyparameter of the pre-trained TCN architecture 

%  Neurons= Neurons of the LSTM network 

%  maxEpochs: Number of training epochs. 

%  miniBatchSize: Number of sequences inside a batch of training. 

%  initialLearnRate: Initial learning rate. 

%  learnRateDropFactor,learnRateDropPeriod: These two parameters describe the learning rate decay process. 

%  gradientThreshold: Threshold for gradient clipping. 

%  validationFrequency: Number of epochs after which the trained network is tested on validation data. 

%  l2Regularization: l2 regularization rate. 

%  executionEnvironment: 'gpu' or 'cpu'. 

%  plots: 'training-progress' or 'none'. 

%  mode: 'validation','test','training' 

% OUTPUT validationAccuracy: The accuracy of the network on the set of data held out from the training. 

%  trainingAccuracy: The accuracy of the network on the set of training. 

%  TimePred: Prediction time of the network on the set of data held out from the training 
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%  pred: Predicted outputs. 

%  targ: Target outputs 

%  LSTMpar: Parameters of the model 

%  LSTMhypar: Hyperparameters of the model 

 

 

 

% VALIDATION MODE: Iteration of the training-validation process across the dataset folds 

% INPUTS: All 

% OUTPUTS: validationAccuracy, trainingAccuracy, TimePred 

    

    if mode=="validation"        

        Loop_Val_Acc = ones(numel(E),1); % Performance metrics, vectors of folds-1 elements 

        Loop_Train_Acc = ones(numel(E),1);  

         

        for v=1:numel(E)        % Validation loops                                                    

            idt=1:numel(E);      

            idt(v)=[];           

                         

            ETrn=vertcat(E{idt});YTrn=vertcat(Y{idt});  % Training set (Elaborated features) 

            RVal=vertcat(R{v});                         % Validation set (Raw data) 

            EVal=vertcat(E{v});                         % Validation set (Elaborated data) 

            YVal=vertcat(Y{v});  

             

            numSequences = numel(ETrn);                 % Number of sequences 

            numInputFeatures=size(ETrn{1},1);           % Number of features 

            classes = categories(YTrn{1});               

            numClasses = numel(classes);                % Number of classes 

             

            LSTMhypar = struct;                         % Hyperparameters of the LSTM network 

            dropoutFactor = 0.05;                                               
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            LSTMhypar.DropoutFactor = dropoutFactor;    % Dropout factor 

            LSTMhypar.numHiddenN = Neurons;             % Hidden neurons  

            LSTMhypar.numClasses = numClasses;          % Number of classes 

              

            LSTMpar = table([],[],'VariableNames',{'Parameter','Value'});   % Initialise the learnable parameters for the LSTM 

            par = {...                          % Labels of the parameters 

                "LSTM.Weights";... 

                "LSTM.recurrentWeights";... 

                "LSTM.Bias";... 

                "FC.Weights";... 

                "FC.Bias"... 

                };  

            var = {...                          % Values of parameters 

                dlarray(HeinitializeGaussian([4*Neurons,numInputFeatures]),'CU');...  

                dlarray(HeinitializeGaussian([4*Neurons,Neurons]),'CU');... 

                dlarray(zeros(4*Neurons,1,'single'),'CU');... 

                dlarray(HeinitializeGaussian([numClasses,Neurons]),'CU');...                

                dlarray(zeros(numClasses,1,'single'),'CU')... 

                };            

            LSTMpar = [LSTMpar;par,var];        % Compose the learnables table 

            learnRate = initialLearnRate;       % Variables for adaam optimizer    

            trailingAvg = [];                

            trailingAvgSq = [];   

             

            if plots == "training-progress"     % training and validation progress  

                if exist('lossacc','var') == 0;lossacc=figure;end % If the accuracy-loss plot does not exist create it 

                subplot(2,1,1)                                           

                lineAccuracyTrain =  animatedline('Color',[0 0 0]);     

                lineAccuracyValidE =  animatedline('Color',[1 0 0]);     

                lineAccuracyValidR =  animatedline('Color',[0 0 1]);     
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                ylim([0 inf]) 

                ylabel("Accuracy") 

                grid on       

                subplot(2,1,2)                                              

                lineLossTrain = animatedline('Color',[0 0 0]);         

                lineLossValid = animatedline('Color',[1 0 0]);          

                ylim([0 inf]) 

                xlabel("Iteration") 

                ylabel("Loss") 

                grid on 

                 

                %if exist('conf','var') == 0;conf=figure;end             % If the accuracy-loss plot does not exist create it 

            end 

             

            iteration = 0; % Iteration counter 

            numIterationsPerEpoch = floor(numSequences./miniBatchSize); % Number of iterations per epochs 

                  

            for epoch = 1:maxEpochs                 % for each epoch                 

                idx = randperm(numSequences);       % shuffle data at each loop      

                ETrn = ETrn(idx);                   % training data on elaborated features 

                YTrn = YTrn(idx);                   % training response 

                 

                for i = 1:numIterationsPerEpoch                     % for each iteration       

                    iteration = iteration + 1;                      % increment iteration counter 

                    idx = (i-1)*miniBatchSize+1:i*miniBatchSize;    % indexes of observation 

                     

   % This section calls at the function transformSequences.m for pre-processing 

                    [TrainX,TrainY,Train_TSteps] = transformSequences(ETrn(idx),YTrn(idx));      

                    %[ValXE,ValY,ValE_TSteps] = transformSequences(EVal,YVal);                   

                    dlTrainX = dlarray(TrainX,'CBT');         
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                    %dlValXE = dlarray(ValXE,'CBT'); 

                    dlValXR = cellfun(@(x)dlarray(x),RVal,'UniformOutput',false); 

                     

                    % Gradient calculation 

                    [gradients, Train_Loss, Train_Acc] = dlfeval(... 

@modelGradients, ... 

dlTrainX, ... 

TrainY, ... 

LSTMpar.Value, ... 

LSTMpar.Parameter, ... 

LSTMhypar, ... 

Train_TSteps);               

                    % Regularization 

                    idx = contains(LSTMpar.Parameter,"Weights"); 

% Update the gradients 

                    gradients(idx,:) = dlupdate(@(g,w) g + l2Regularization*w, gradients(idx,:), LSTMpar.Value(idx,:));                     

                    % Gradient clipping 

                    gradients = dlupdate(@(g) thresholdL2Norm(g,gradientThreshold),gradients);       

                    % Adam Optimizer 

                    [LSTMpar.Value,trailingAvg,trailingAvgSq] = adamupdate(LSTMpar.Value,gradients, ... 

trailingAvg, trailingAvgSq, iteration, learnRate);    

                    % Validation of the model (at first iteration and at a defined frequency 

                    if iteration == 1 || mod(iteration,validationFrequency) == 0     

                        [Val_Loss, ValE_Acc,~,~,~] = modelValidation(... % Validation on elaborated inputs 

    dlValXE, ... 

    ValY, ... 

    LSTMpar.Value, ... 

    LSTMpar.Parameter, ... 

    LSTMhypar, ... 

    ValE_TSteps);  
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                        [ValR_Acc,targ,pred,TimePred] = modelCValidation(... % Validation on raw inputs 

    dlValXR, ... 

    YVal, ... 

    TCNpar, ... 

    TCNhypar, ... 

    LSTMpar.Value, ... 

    LSTMpar.Parameter, 

    LSTMhypar); 

                         

                        if plots == "training-progress"     % Plot validation progress 

                            figure(lossacc); 

                            addpoints(lineLossValid,iteration, Val_Loss); 

                            addpoints(lineAccuracyValidE,iteration, ValE_Acc); 

                            addpoints(lineAccuracyValidR,iteration, ValR_Acc);                             

                            %figure(conf); 

                            %plotconfusion(targ,pred)                             

                        end 

                    end                  

                    if plots == "training-progress" % Training progress (if plot is enabled)                                

                        Train_Loss = mean(Train_Loss ./ Train_TSteps); % Normalize the loss over the sequence lengths             

                        Train_Loss = double(gather(extractdata(Train_Loss))); 

                        Train_Loss = mean(Train_Loss); 

                        figure(lossacc); 

                        addpoints(lineLossTrain,iteration, mean(Train_Loss)); 

                        addpoints(lineAccuracyTrain,iteration, Train_Acc); 

                        title("Epoch: " + epoch) 

                        drawnow 

                    end 

                end 

                if mod(epoch,learnRateDropPeriod) == 0 
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                    learnRate = learnRate*learnRateDropFactor; 

                end 

                fprintf(['EPOCH ',num2str(epoch),' Validation = %f | Training = %f\n'],ValR_Acc,Train_Acc); 

            end 

             

            Loop_Val_Acc(v)=ValR_Acc; 

            Loop_Train_Acc(v)=Train_Acc; 

            fprintf(['FOLD ',num2str(v),' Validation = %f | Training = %f\n'],Loop_Val_Acc(v),Loop_Train_Acc(v)); 

        end 

         

        validationAccuracy=mean(Loop_Val_Acc); 

        trainingAccuracy=mean(Loop_Train_Acc); 

        fprintf('Validation = %f | Training = %f\n',validationAccuracy,trainingAccuracy); 

% TEST MODE: training the net on the entire train+validation sets and evaluating on the test set 

% INPUTS: All 

% OUTPUTS: validationAccuracy, trainingAccuracy, TimePred, pred, targ 

 

    elseif mode=="test" 

        ETrn=vertcat(E{1:end-1});YTrn=vertcat(Y{1:end-1});  % Training on elaborated features 

        numSequences = numel(ETrn);                         % Number of sequences              

        numInputFeatures=size(ETrn{1},1);                   % Number of features      

        classes = categories(YTrn{1});                      % Number of classes 

        numClasses = numel(classes);   

        LSTMhypar = struct;                         % Hyperparameters of the LSTM network 

        dropoutFactor = 0.05;                       % Dropout factor                        

        LSTMhypar.DropoutFactor = dropoutFactor; 

        LSTMhypar.numHiddenN = Neurons;             % Hidden neurons 

        LSTMhypar.numClasses = numClasses;          % Number of classes 

         

        LSTMpar = table([],[],'VariableNames',{'Parameter','Value'}); % Initialise the learnable parameters for the LSTM 
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        par = {...                                  % Labels of the parameters 

            "LSTM.Weights";... 

            "LSTM.recurrentWeights";... 

            "LSTM.Bias";... 

            "FC.Weights";... 

            "FC.Bias"... 

            }; 

        var = {...                                  % Values of parameters 

            dlarray(HeinitializeGaussian([4*Neurons,numInputFeatures]),'CU');... 

            dlarray(HeinitializeGaussian([4*Neurons,Neurons]),'CU');... 

            dlarray(zeros(4*Neurons,1,'single'),'CU');... 

            dlarray(HeinitializeGaussian([numClasses,Neurons]),'CU');...                

            dlarray(zeros(numClasses,1,'single'),'C')... 

            }; 

        LSTMpar = [LSTMpar;par,var];                % Compose the learnables table          

        learnRate = initialLearnRate;   % Variables for adaam optimizer    

        trailingAvg = [];                

        trailingAvgSq = [];              

        if plots == "training-progress"     % training and validation progress 

            if exist('lossacc','var') == 0;lossacc=figure;end  % If the accuracy-loss plot does not exist create it  

            subplot(2,1,1) 

            lineAccuracyTrain =  animatedline('Color',[0 0 0]); 

            ylim([0 inf]) 

            ylabel("Accuracy") 

            grid on 

             

            subplot(2,1,2)  

            lineLossTrain = animatedline('Color',[0 0 0]); 

            ylim([0 inf]) 

            xlabel("Iteration") 
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            ylabel("Loss") 

            grid on 

        end  

         

        iteration = 0; % Iteration counter 

        numIterationsPerEpoch = floor(numSequences./miniBatchSize);     % Number of iterations per epochs 

 

        for epoch = 1:maxEpochs                         % for each epoch 

            idx = randperm(numSequences);               % shuffle data at each loop 

            ETrn = ETrn(idx);                           % training data on elaborated features 

            YTrn = YTrn(idx);                           % training response% training response 

 

            for i = 1:numIterationsPerEpoch                     % for each iteration 

                iteration = iteration + 1;                      % increment iteration counter              

                idx = (i-1)*miniBatchSize+1:i*miniBatchSize;    % indexes of observation 

                  

     % This section calls at the function transformSequences.m for pre-processing 

                [TrainX,TrainY,Train_TSteps] = transformSequences(ETrn(idx),YTrn(idx));      

                dlTrainX = dlarray(TrainX,'CBT');         

                 

                % Gradient calculation                 

                [gradients, Train_Loss, trainingAccuracy] = dlfeval(... 

   @modelGradients, ... 

   dlTrainX, ... 

   TrainY, ... 

   LSTMpar. ... 

   Value, ... 

   LSTMpar.Parameter, ... 

   LSTMhypar, ... 

   Train_TSteps); 
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                % Regularization 

                idx = contains(LSTMpar.Parameter,"Weights"); 

   % Update the gradients 

                gradients(idx,:) = dlupdate(@(g,w) g + l2Regularization*w, gradients(idx,:), LSTMpar.Value(idx,:)); 

                 

                % Gradient clipping 

   gradients = dlupdate(@(g) thresholdL2Norm(g,gradientThreshold),gradients); 

   % Adam optimizer 

                [LSTMpar.Value,trailingAvg,trailingAvgSq] = adamupdate(LSTMpar.Value,gradients, ...      

                    trailingAvg, trailingAvgSq, iteration, learnRate);  

  

                if plots == "training-progress"         % Plot training progress                     

                    Train_Loss = mean(Train_Loss ./ Train_TSteps); 

                    Train_Loss = double(gather(extractdata(Train_Loss))); 

                    Train_Loss = mean(Train_Loss); 

                    figure(lossacc); 

                    addpoints(lineLossTrain,iteration, mean(Train_Loss)); 

                    addpoints(lineAccuracyTrain,iteration, trainingAccuracy); 

                    title("Epoch: " + epoch) 

                    drawnow 

                end 

            end                            

            if mod(epoch,learnRateDropPeriod) == 0 

                learnRate = learnRate*learnRateDropFactor; 

            end 

        end 

         

        fprintf('Training accuracy = %f \n',trainingAccuracy); 

        Etst=vertcat(E{end});Ytst=vertcat(Y{end}); % Test set definition 

        Rtst=vertcat(R{end}); 
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        numObservationsTest = numel(Etst); 

        doTraining = false; 

         

        %dlTestXE=cellfun(@(x)dlarray(reshape(x,[size(x,1),1,size(x,2)]),'CBT'),Etst,'UniformOutput',false); 

        dlTestXR = cellfun(@(x)dlarray(x),Rtst,'UniformOutput',false); 

        TestY=cellfun(@(x)reshape(single(full(ind2vec(double(x),numClasses))),[numClasses,1,size(x,2)]),Ytst,'UniformOutput',false); 

               

        %Test_AccE = zeros(1,numObservationsTest); 

        Test_AccR = zeros(1,numObservationsTest);  

        Times = zeros(1,numObservationsTest); 

        pred = cell(1,numObservationsTest); 

        targ = cell(1,numObservationsTest); 

         

        for obs=1:numObservationsTest 

            %dlYPredE = model(dlTestXE{obs},LSTMpar.Value,LSTMpar.Parameter,LSTMhypar,doTraining); 

            start=tic; 

            dlYPredR = modelC(dlTestXR{obs},TCNpar,TCNhypar,LSTMpar.Value,LSTMpar.Parameter,LSTMhypar,doTraining); 

            Times(obs) = seconds(duration(0,0,toc(start),'Format',"mm:ss.SSS")); 

            YPred = gather(extractdata(dlYPredR)); 

            pred{obs} = YPred; 

            targ{obs} = squeeze(TestY{obs}); 

            [~,idxPred] = max(pred{obs},[],1); 

            [~,idxTest] = max(targ{obs},[],1); 

            Test_AccR(obs) = mean(idxPred == idxTest); 

        end 

     

        validationAccuracy=mean(Test_AccR); 

        TimePred=mean(Times); 

          

    % TRAINING MODE: training the net on the entire train+dev sets and evaluating on the test set     
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    elseif mode=="training" 

         

        ETrn=vertcat(E{1:end});YTrn=vertcat(Y{1:end});  % Training on elaborated features 

        numSequences = numel(ETrn);                         % Number of sequences              

        numInputFeatures=size(ETrn{1},1);                   % Number of features      

        classes = categories(YTrn{1});                      % Number of classes 

        numClasses = numel(classes);   

        LSTMhypar = struct;                         % Hyperparameters of the LSTM network 

        dropoutFactor = 0.05;                       % Dropout factor                        

        LSTMhypar.DropoutFactor = dropoutFactor; 

        LSTMhypar.numHiddenN = Neurons;             % Hidden neurons 

        LSTMhypar.numClasses = numClasses;          % Number of classes 

 

        LSTMpar = table([],[],'VariableNames',{'Parameter','Value'}); % Initialise the learnable parameters for the LSTM 

        par = {...                                  % Labels of the parameters 

            "LSTM.Weights";... 

            "LSTM.recurrentWeights";... 

            "LSTM.Bias";... 

            "FC.Weights";... 

            "FC.Bias"... 

            }; 

        var = {...                                  % Values of parameters 

            dlarray(HeinitializeGaussian([4*Neurons,numInputFeatures]),'CU');... 

            dlarray(HeinitializeGaussian([4*Neurons,Neurons]),'CU');... 

            dlarray(zeros(4*Neurons,1,'single'),'CU');... 

            dlarray(HeinitializeGaussian([numClasses,Neurons]),'CU');...                

            dlarray(zeros(numClasses,1,'single'),'C')... 

            }; 

        LSTMpar = [LSTMpar;par,var];                % Compose the learnables table          

        learnRate = initialLearnRate;   % Variables for adaam optimizer    
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        trailingAvg = [];                

        trailingAvgSq = [];              

        if plots == "training-progress"     % training and validation progress 

            if exist('lossacc','var') == 0;lossacc=figure;end  % If the accuracy-loss plot does not exist create it  

            subplot(2,1,1) 

            lineAccuracyTrain =  animatedline('Color',[0 0 0]); 

            ylim([0 inf]) 

            ylabel("Accuracy") 

            grid on 

             

            subplot(2,1,2)  

            lineLossTrain = animatedline('Color',[0 0 0]); 

            ylim([0 inf]) 

            xlabel("Iteration") 

            ylabel("Loss") 

            grid on 

        end  

         

        iteration = 0; % Iteration counter 

        numIterationsPerEpoch = floor(numSequences./miniBatchSize);     % Number of iterations per epochs 

 

        for epoch = 1:maxEpochs                         % for each epoch 

            idx = randperm(numSequences);               % shuffle data at each loop 

            ETrn = ETrn(idx);                           % training data on elaborated features 

            YTrn = YTrn(idx);                           % training response% training response 

 

            for i = 1:numIterationsPerEpoch                     % for each iteration 

                iteration = iteration + 1;                      % increment iteration counter              

                idx = (i-1)*miniBatchSize+1:i*miniBatchSize;    % indexes of observation 
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     % This section calls at the function transformSequences.m for pre-processing 

                [TrainX,TrainY,Train_TSteps] = transformSequences(ETrn(idx),YTrn(idx));      

                dlTrainX = dlarray(TrainX,'CBT');         

                 

                % Gradient calculation                 

                [gradients, Train_Loss, trainingAccuracy] = dlfeval(... 

   @modelGradients, ... 

   dlTrainX, ... 

   TrainY, ... 

   LSTMpar. ... 

   Value, ... 

   LSTMpar.Parameter, ... 

   LSTMhypar, ... 

   Train_TSteps); 

                % Regularization 

                idx = contains(LSTMpar.Parameter,"Weights"); 

   % Update the gradients 

                gradients(idx,:) = dlupdate(@(g,w) g + l2Regularization*w, gradients(idx,:), LSTMpar.Value(idx,:)); 

                % Gradient clipping 

                gradients = dlupdate(@(g) thresholdL2Norm(g,gradientThreshold),gradients);   

     % Adam optimizer 

                [LSTMpar.Value,trailingAvg,trailingAvgSq] = adamupdate(LSTMpar.Value,gradients, ...     

                    trailingAvg, trailingAvgSq, iteration, learnRate); 

  

                if plots == "training-progress"         % Plot training progress                     

                    Train_Loss = mean(Train_Loss ./ Train_TSteps); 

                    Train_Loss = double(gather(extractdata(Train_Loss))); 

                    Train_Loss = mean(Train_Loss); 

                    figure(lossacc); 

                    addpoints(lineLossTrain,iteration, mean(Train_Loss)); 
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                    addpoints(lineAccuracyTrain,iteration, trainingAccuracy); 

                    title("Epoch: " + epoch) 

                    drawnow 

                end 

            end                            

            if mod(epoch,learnRateDropPeriod) == 0 

                learnRate = learnRate*learnRateDropFactor; 

            end 

        end 

         

        fprintf('Training accuracy = %f \n',trainingAccuracy); 

    end 

    switch mode 

    case "validation" 

        pred=[];targ=[];LSTMpar=[];LSTMhypar=[]; 

    case "test" 

        LSTMpar=[];LSTMhypar=[]; 

    case "training" 

        validationAccuracy=[];TimePred=[];pred=[];targ=[]; 

    end 

end 

S.10.1 Supporting functions 

modelValidation.m function 

% This function implement the validation of the neural network relying on the elaborated data extracted from the previous training  

% of a TCN net. Hence, the model function used in this context have to build just the LSTM part of the hybrid implementation. 

 

function [Val_Loss,Val_Acc,Targ,Pred,TimePred] = modelValidation(dlXV,YVal,LSTMvalue,LSTMlabels,LSTMhypar,TimeSteps) 
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numObsv_Val=size(YVal,2);   % number of observation for the validation set 

startV=tic;                 % start timer prediction 

dlYpred = model(dlXV,LSTMvalue,LSTMlabels,LSTMhypar,false);     % model based on elaborated features 

TimePred = duration(0,0,toc(startV),'Format',"mm:ss.SSS")/numObsv_Val; % stop timer prediction 

TimePred = seconds(TimePred); % Save the result in seconds 

dlYVal = dlarray(YVal,'CBT');           % formatting y responses           

YPred = gather(extractdata(dlYpred));   % gather prediction values 

Accuracy = zeros(1,numObsv_Val);        % accuracy 

Pred=zeros(size(YPred,1),size(YPred,2)*size(YPred,3)); 

Targ=zeros(size(YVal,1),size(YVal,2)*size(YVal,3)); 

for i = 1:numObsv_Val % accuracy for each observation 

    Pred(:,((i-1)*size(YPred,3))+1:(i*size(YPred,3)))=squeeze(YPred(:,i,:)); 

    Targ(:,((i-1)*size(YVal,3))+1:(i*size(YVal,3)))=squeeze(YVal(:,i,:)); 

    [~,idxP] = max(YPred(:,i,:),[],1); 

    [~,idxT] = max(YVal(:,i,:),[],1); 

    Accuracy(i) = mean(idxP == idxT); 

end 

Val_Acc=mean(Accuracy);                 % average value of accuracy 

Val_Loss = maskedCrossEntropyLoss(dlYpred, dlYVal, TimeSteps); 

Val_Loss = mean(Val_Loss ./ TimeSteps); 

Val_Loss = double(gather(extractdata(Val_Loss))); 

Val_Loss = mean(Val_Loss); 

end 

modelCValidation.m function 

% This function implement the validation of the neural network relying on raw accelerometric data. Hence the function have to build 

% the entire model comprised of convolutional network. 

 

function [accuracyV,targ,pred,TimePred] = modelCValidation(dlValXR,YVal,TCNpar,TCNhypar,learnables,labels,hyperparameters) 
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numObservationsTest=numel(YVal);    % number of observation for the validation set 

dlY=cell(size(YVal));                

TimePred=0; 

for obs=1:numObservationsTest 

    startV=tic;                             % start timer prediction 

    dlY{obs} = modelC(dlValXR{obs},TCNpar,TCNhypar,learnables,labels,hyperparameters,false); 

    TimePred = TimePred+seconds(duration... % stop timer 

        (0,0,toc(startV),'Format',"mm:ss.SSS")); 

end 

TimePred=TimePred/numObservationsTest;      % average prediction time 

YVal=cellfun(@(x)single(full(ind2vec(double(x),4))),YVal,'UniformOutput',false); 

YP=cellfun(@(x)gather(extractdata(x)),dlY,'UniformOutput',false); 

acc = zeros(1,numObservationsTest);         % accuracy 

for i = 1:numObservationsTest 

    [~,idxP] = max(YP{i},[],1); 

    [~,idxT] = max(YVal{i},[],1); 

    acc(i) = mean(idxP == idxT); 

end 

targ=horzcat(YVal{:}); 

pred=horzcat(YP{:}); 

accuracyV=mean(acc); 

end 

model.m Function 

% This function implement the hybrid model relying on pre-elaborated features, hence it defines just the LSTM part of the  

% architecture 

 

function dlY = model(dlX,LSTMvalues,LSTMlabels,LSTMhypar,doTraining) 

dropoutFactor = LSTMhypar.DropoutFactor;    % dropoutfactor 
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H0 = zeros(LSTMhypar.numHiddenN,1);         % hiddenstates 

C0 = zeros(LSTMhypar.numHiddenN,1); 

weights = LSTMvalues{LSTMlabels=="LSTM.Weights"};  % weights 

recweights = LSTMvalues{LSTMlabels=="LSTM.recurrentWeights"};  % recurrent weights 

bias = LSTMvalues{LSTMlabels=="LSTM.Bias"};        % bias 

[dlY,~,~] = lstm(dlX,H0,C0,weights,recweights,bias);    % lstm layer 

dlY = Dropout(dlY,dropoutFactor,doTraining);    % dropout function (just in training)     

weights = LSTMvalues{LSTMlabels=="FC.Weights"}; %         

bias = LSTMvalues{LSTMlabels=="FC.Bias"}; 

dlY = fullyconnect(dlY,weights,bias); 

dlY = softmax(dlY); 

end 

modelC.m function 

% This function implement the hybrid model relying on raw accelerometric data, hence it has to implement both the pre-trained TCN  

% and the LSTM architecture  

 

function dlY = modelC(dlX,TCNpar,TCNhypar,learnables,labels,hyperparameters,doTraining) 

dropoutFactor = TCNhypar.DropoutFactor;  % Fattore di dropout 

numBlocks = TCNhypar.NumBlocks;          % Number of residual blocks 

dlY = dlX; 

for k = 1:numBlocks 

    dilationFactor = 2^(k-1); % The dilation factor increase at each consecutive layer  

    dlY = residualBlock(dlY,dilationFactor,dropoutFactor,TCNpar,k,doTraining);   % Residual block function   

end 

H0 = zeros(hyperparameters.numHiddenN,1); 

C0 = zeros(hyperparameters.numHiddenN,1); 

weights = learnables{labels=="LSTM.Weights"}; 

recweights = learnables{labels=="LSTM.recurrentWeights"}; 

bias = learnables{labels=="LSTM.Bias"}; 
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[dlY,~,~] = lstm(dlY,H0,C0,weights,recweights,bias,'DataFormat','CT'); 

dlY = Dropout(dlY,dropoutFactor,doTraining); 

weights = learnables{labels=="FC.Weights"}; 

bias = learnables{labels=="FC.Bias"}; 

dlY = fullyconnect(dlY,weights,bias,'DataFormat','TC'); 

dlY = softmax(dlY,'DataFormat','CT'); 

end 

Dropout.m function 

The Dropout function performs spatial dropout [3] on the input dlX with dimension labels fmt when the doTraining flag is true. 

Dropout drops random samples of the input data. 

function dlY = Dropout(dlX,dropoutFactor,doTraining) 

if doTraining 

    maskSize = size(dlX); 

    dropoutScaleFactor = single(1 - dropoutFactor); 

    dropoutMask = (rand(maskSize,'like',dlX) > dropoutFactor) / dropoutScaleFactor; 

     

    dlY = dlX .* dropoutMask; 

else   

    dlY = dlX; 

end 

end 
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