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Experimental test of exchange fluctuation relations in an open quantum system
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Elucidating the energy transfer between a quantum system and a reservoir is a central issue in quantum
nonequilibrium thermodynamics, which could provide novel tools to engineer quantum-enhanced heat engines.
The lack of information on the reservoir inherently limits the practical insight that can be gained on the
exchange process of open quantum systems. Here we investigate the energy transfer for an open quantum
system in the framework of quantum fluctuation relations. As a novel toolbox, we employ a nitrogen-vacancy
center spin qubit in diamond, subject to repeated quantum projective measurements and a tunable dissipation
channel. In the presence of energy fluctuations originated by dissipation and quantum projective measurements,
the experimental results, supplemented by numerical simulations, show the validity of the energy exchange
fluctuation relation, where the energy scale factor encodes missing reservoir information in the system out-of-
equilibrium steady-state properties. This result is complemented by a theoretical argument showing that, also
for an open three-level quantum system, the existence of an out-of-equilibrium steady state dictates a unique
time-independent value of the energy scale factor for which the fluctuation relation is verified. Our findings pave
the way to the investigation of energy exchange mechanisms in arbitrary open quantum systems.
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I. INTRODUCTION

The connection among statistical properties of out-of-
equilibrium dynamical systems, thermodynamics quantities,
and information theory has been deeply investigated in clas-
sical and quantum systems and codified in terms of fluctu-
ation relations [1–7]. However, in open quantum systems,
despite several contributions [8–13], such connection is far
from being completely understood, especially regarding the
competition between thermal and quantum fluctuations. The
latter assumes a paramount role at the nanoscale, for example,
for developing quantum thermal engines [14,15] or studying
information-energy conversion [16,17]. Accounting for the
statistical fluctuations is the key to reformulate the second
law of thermodynamics, usually expressed as inequalities,
in terms of equalities. As a major example, the Jarzynski
equality [18,19] relates the exponentiated negative work done
on a system, averaged over a statistically relevant ensemble
of realizations of the system dynamics, with the change in
the free energy between two equilibrium thermal states. This
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framework has been also extended to describe the transport of
energy and matter between different systems with different
temperatures and chemical potentials [20,21]. Remarkably,
these relations hold for any kind of process driving the system
arbitrarily far from equilibrium, provided that the initial state
is in thermodynamic equilibrium.

In quantum mechanical settings, the fluctuation relations
can be recast in terms of the characteristic function—
Fourier transform of the probability distribution function—
of the considered nonequilibrium quantity. This contains the
full information about the fluctuations statistics and is ob-
tained from two-time quantum correlations rather than by a

FIG. 1. Schematic illustration of the experiment. A two-level
system, in our case a single NV center qubit in diamond, is subject
to series of quantum projective measurements (QPMs), and control-
lable energy exchange with a reservoir. We investigate the energy
exchange fluctuations occurred in the system from the beginning to
the end, over a statistically relevant ensemble of realizations of the
protocol.
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single-time expectation value [22]. Still, in the absence of
a heat reservoir, where the internal energy variation �E is
solely due to work, a formally equivalent quantum version
of the Jarzynski equality (QJE) [23–25] has been verified
in various experimental settings with no heat flux involved,
ranging from single trapped ions [26] to liquid-state nuclear
magnetic resonance platforms [27], atom chips [28], and
superconducting Xmon qubits [29].

Opening an energy exchange channel from a quantum
system to a reservoir poses challenges for describing the
nonequilibrium thermodynamic processes that take place [4].
While a dephasing dynamics can be effectively traced back
to the case of an isolated system [30], the energy transport
between a system and its environment is expected to be
described by an exchange fluctuation relation [3,4,8]. Such re-
lation was originally introduced to describe the heat exchange
between two bodies in thermal contact [20], each initially
in thermal equilibrium. Evaluating the exchange fluctuation
relation would then require information on the reservoir that is
often not practically available. Since the practically accessible
quantity is the system energy variation at two different times
[27,29,30], the exchange fluctuation relation is conveniently
expressed in terms of the characteristic function of the energy
variation statistics G(ε) ≡ 〈exp (−ε�E )〉. Thus, we argue
that the energy exchange fluctuation relation for an open
quantum system with a time-independent Hamiltonian can be
written as

G(ε) = 1, (1)

where the scale factor ε has to be determined and is expected
to be of the order of the system energy. Exemplarily, for a
classical or quantum system under thermalizing dynamics,
the energy scale ε is predicted to be related to the inverse
temperatures βin and β∞ of the initial and final states as
ε = �β, with �β = βin − β∞ [31]. For a quantum system
coupled to a tunable and generically nonthermal environment,
it is not yet specified whether ε such that G(ε) = 1 exists, and
whether and how it is related to the system dynamics and its
asymptotic behavior. Here we investigate these issues.

We experimentally test the energy exchange fluctuation
relation in a quantum simulator, as sketched in Fig. 1, subject
to repeated quantum projective measurements (QPMs) and
energy dissipation, where the resulting dissipative dynam-
ics drives the system toward an (out-of-equilibrium) energy
steady state. We realize the simulator with the use of a single
nitrogen-vacancy (NV) center qubit in diamond at room tem-
perature, in the presence of trains of short laser pulses. Each
absorbed laser pulse results in a QPM [32], and in an energy
redistribution that can be modeled as a controlled energy
exchange with a Markovian reservoir [14]. The time intervals
between QPMs follow a stochastic distribution due to the
finite absorption probability. Tuning the laser duration and
power enables the control of the coupling strength between
the quantum system and the reservoir.

The combined effect of QPMs and dissipation can create
or destroy quantum coherence during the system dynamics,
an effect that goes beyond the classical description. While
QPMs affect the energy distribution of the system, they
are expected to preserve the validity of quantum fluctuation
relations [33,34], also for stochastic distributions of QPMs

[35]. However, the energy fluctuations of a quantum system
in the presence of QPMs and dissipative dynamics have not
been studied yet. Measuring the statistics of the exponentiated
energy fluctuations through a two-point measurement (TPM)
protocol, we experimentally verify the exchange fluctuation
relation for an open two-level quantum system. We find
out a uniquely determined value of ε for which G(ε) = 1,
incorporating missing information about the reservoir. For a
two-level system, where any diagonal density matrix in the
energy basis can be recast in terms of an effective temperature,
ε encompasses the initial and final populations of the quantum
system through their effective temperatures.

While these results have been obtained for an effective
quantum two-level system, we provide a further analysis in-
volving a three-level system that is affected by a spontaneous
emission process. In the Appendix 2 we show with this
example that the validity of the exchange fluctuation relation
is conditioned by the existence of a unique nontrivial time-
independent energy scale factor ε, without requiring thermal-
izing dynamics. Therefore, our results are representative of
quantum systems with dimension larger than two subjected to
dissipation dynamics.

II. PROTOCOL IMPLEMENTATION

Here we introduce our experimental platform and describe
the protocol used for measuring the energy fluctuations. We
show that this protocol can be broadly applied to any finite-
dimensional quantum system, and we detail it for our specific
experimental setup.

The experimental platform is based on a negatively charged
NV center—a localized impurity in the diamond lattice based
on a nitrogen substitutional atom and a nearby vacancy—
which forms an electronic spin S = 1 in its orbital ground
state [see Fig. 2(a)]. The electronic spin can be initialized into
the state |0〉, where |ms = 0,±1〉 stands for the eigenvalues
of the spin operator Sz along the NV symmetry axis, via
optical spin pumping under laser excitation [36]. A strong
magnetic bias field removes the degeneracy of the spin states
|±1〉, allowing selective coherent manipulation of the transi-
tion |0〉 ↔ |+1〉. The spin-dependent intensity of the emitted
fluorescence enables the optical readout of the states |0〉 and
|+1〉. A continuous nearly resonant microwave field sets the
Hamiltonian H of the two-level system in the frame rotating
at the microwave frequency,

H = h̄ω

2
(cosα σz − sinα σx ), (2)

with eigenstates {|↑〉 , |↓〉} = {cos α
2 |0〉 − sin α

2 |+1〉,
sin α

2 |0〉 + cos α
2 |+1〉}, and eigenvalues E↑ = h̄ω/2 and

E↓ = −h̄ω/2. Here σi are Pauli matrices, tan α = −�/δ and
ω = √

δ2 + �2, � = 1.3 MHz being the bare Rabi frequency,
and δ ∈ [0,�] the microwave detuning. The Hamiltonian (2)
remains unchanged during the protocol, and the nonunitary
dynamics is due to repeated QPMs and dissipation acting
along the σz axis, as explained below.

The resulting quantum dynamics induces energy fluctu-
ations of the spin system. To characterize the statistics of
these energy fluctuations, we employ a TPM protocol, where
the energy is measured at the initial and final times of the
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FIG. 2. (a) Schematic representation of the photodynamics of a nitrogen-vacancy center. Photon absorption (green upward arrow) and
spin preserving spontaneous emission (red downward arrow) between the electronic ground and excited levels realize quantum projective
measurements of the spin state along the z axis (z-QPM). A nonradiative decay channel (left gray arrows) enables controlled optical spin
pumping to the |0〉 state. Inset: Effective two-level system considered in the protocol, formed by two dressed spin states set by quasiresonant
continuous driving [see Eq. (2)]. (b) Block diagram of the two-point measurement protocol implementation and experimental pulse sequence.
After initialization in the |0〉 state, for each protocol repetition a Hamiltonian eigenstate |↑〉 (|↓〉) is prepared by applying a rotating microwave
(mw) gate Rα

y (Rα+π
y ). During the time tfin, the mw-driven spin unitary evolution set by the Hamiltonian H, defined in Eq. (2), is perturbed

by equidistant short laser pulses acting as z-QPMs plus a dissipation channel (D). The interpulse time (270 � τ � 750 ns) is much longer
than each pulse duration (tL = 41 ns). At the end, a quantum projective measurement of the final-state energy (H-QPM) is realized with a mw
gate Rα

−y and a spin-selective fluorescence intensity measurement read out. (c) Exemplary spin-state evolution (red filled circles) on the Bloch
sphere for a single realization of the protocol. (cI) Initially prepared Hamiltonian eigenstate, e.g., |↑〉. (cII) |↑〉 is projected in one of the σz

eigenstates, e.g., |+1〉, due to photon absorption as denoted by the the green arrow, and then evolves under unitary dynamics (dashed circle)
until a subsequent photon absorption. (cIII) Due to the spin amplitude damping, after several laser absorptions the system would most likely be
in the |0〉 state. After the last short laser absorption the state follows a unitary evolution. On average over several realizations of the protocol,
the state before the H-QPM has the same energy than the state |0〉 but with an unknown phase in the Hamiltonian basis. (cIV) Applying a
rotation Rα

−y allows us to obtain the energy of the system by measuring σz. Indeed, the final state is projected into one of the Hamiltonian
eigenstates (e.g., |↓〉).

process. We implement this protocol as shown in Fig. 2(b)
and specified below. Figure 2(c) shows an example of a
single trajectory followed by the system during the complete
protocol.

(i) Preparation of initial thermal states, and energy quan-
tum projective measurement (H-QPM). Each realization starts
by preparing the system in one of its energy eigenstates |i〉〈i|.
The experiment is then repeated PiN times for each eigenstate
over a statistical ensemble of N realizations, where Pi is the
population fraction of each energy eigenstate following a ther-
mal distribution [37]. Independently of the system dimension,
this is equivalent to considering the statistical result of an
initial energy measurement (H-QPM) applied to the thermal
state

∑n
i Pi |i〉〈i|, provided that N is large enough.

In the experiment, each of the two energy eigenstates (de-
scribed by the density operators �↑ = |↑〉〈↑| and �↓ = |↓〉〈↓|)
is prepared by optically pumping the NV into the |0〉 state and
then applying a rotation Rα (respectively, Rα+π ) along σy, via
a microwave (mw) gate as depicted in Fig. 2(b).

(ii) Evolution under repeated quantum projective measure-
ments and dissipative dynamics. The system is repeatedly
opened for short time intervals and stays closed otherwise,
due to being subject to a series of QPMs of an operator non-
commuting with the Hamiltonian, and a dissipative dynamics.
These effects on top of the unitary evolution U = e−iHt/h̄ lead
the system into an asymptotic steady state.

In the experiment, we apply to the NV center trains of
short laser pulses with duration tL at intervals τ , as depicted in
Fig. 2(b). The laser pulses trigger cycles of spin-preserving
radiative transitions from the ground to the excited states
[see Fig. 2(a) and Appendix 1]. On photon absorption, any
superposition or mixed spin state is projected into either one
of the two σz eigenstates |0〉 or |+1〉, while the state coherence
imprinted by the microwave during the prior evolution is
destroyed in the σz basis. This results in a quantum projective
measurement of σz (z-QPM) [32], even when the measure-
ment outcome is not recorded. Significantly, this mechanism
produces coherence in other bases, such as the energy basis
(for α �= 0), as shown in Fig. 2(c). Due to the finite photon-
absorption probability, a train of equidistant laser pulses
entails a stochastic time distribution of z-QPMs, for each
single realization. In addition, the absorption of laser pulses
induces a partial population transfer to |0〉, due to optical
pumping [see Fig. 2(a)], with an effective rate that depends
on the number of excitation-decay cycles performed by the
system, which can be controlled by changing the laser pulse
duration and power. This spin amplitude damping mechanism
is equivalent to a controlled dissipative channel toward |0〉
in the two-level system, which together with z-QPMs, in-
corporates all the laser-induced NV photodynamics involv-
ing the ground and excited triplet states, and the metastable
singlet state. The overall effect takes the system into an
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FIG. 3. Conditional probabilities P↑|↑ and P↑|↓ to measure Ef =
E↑ as a function of the evolution time tfin starting from the Hamil-
tonian eigenstates |↑〉 (blue circles) or |↓〉 (gray squares), with α =
π/2 (a) and α = π/3 (b). Vertical grids indicate the time position
of each laser pulse, separated by τ = 5π/3ω, where the energy
of the qubit jumps due to projective measurements and dissipative
dynamics. The probability that a z-QPM occurs during each laser
pulse is 0.18. Error bars denote the experimental uncertainty given by
the photon shot noise. The solid lines are obtained by a Monte Carlo
simulation of the dynamics (Sec. S.II in Ref. [38]). The horizontal
dotted lines represent the conditional probabilities for the asymptotic
(out-of-equilibrium) steady states (see text).

asymptotic out-of-equilibrium steady-state in the Hamiltonian
basis.

(iii) Measurement of the final energy. The statistics of �E
is provided by the conditional probabilities Pj|i = P(Efin =
Ej |Ein = Ei ) to measure Ej as the final energy, once known
the initial energy Ei [see Eq. (A5) of the Appendix 3]. For
an n-dimensional system, measuring n − 1 diagonal elements
of the final density operator for each initial energy eigen-
state |i〉〈i| bestows a full knowledge of all the conditional
probabilities. For the NV qubit, we measure the conditional
probabilities P↑|↑ and P↑|↓ for the spin to go in �↑ (with
energy Efin = E↑), when starting respectively from �↑ or �↓.
To implement the final energy measurement (H-QPM), we
apply a mw gate that maps H into σz [as detailed in Figs. 2(b)
and 2(cIV)], and then measure the σz operator by detecting
the presence (or absence) of emitted photons. Low collection
efficiency and photon shot noise impose the need of repeating
the procedure several times (∼1.6 × 106) and averaging over
the detected intensity to reduce the readout uncertainty.

III. STATISTICS OF THE ENERGY VARIATION

Figure 3 shows the conditional probabilities P↑|↓ and P↑|↑
as a function of the evolution time tfin, obtained in the ex-
periment. The competing effects of z-QPMs and dissipation
lead to a nontrivial dynamics, affecting the energy fluctuation
distribution. To quantitatively support that the considered two-

FIG. 4. Statistics of the energy variation under different pro-
tocols: Probability to obtain �E = 0, +h̄ω, −h̄ω, respectively, as
a function of the number of laser pulses NL experienced by the
qubit, with initial probability P↑ = 1/(1 + e). For each considered
NL value, the experimental points represent the average over ∼10
different values of final evolution times tfin. The error bars are due to
the uncertainty on the measured photoluminescence intensity. The
solid lines are the joint probabilities obtained from the numerical
simulation of the system dynamics.

level model provides an accurate description of the system
dynamics, we performed a numerical Monte Carlo simulation
of the dynamics (Sec. S.II in [38]) and we found excellent
agreement with data. Note that the only fit parameter is the
absorption probability, which depends on the laser power and
characterizes the stochasticity of the protocol. In the absence
of laser pulses, the spin qubit is a closed system and the energy
eigenstates do not evolve in time (usually referred to as spin
lock), while the absorption of laser pulses produce discrete
energy jumps.

The energy variation occurred to the qubit after the process
can assume one of the three values �E ∈ {−h̄ω, 0,+h̄ω}.
Figure 4 shows the distribution of energy variation (P�E=0,
P�E=+h̄ω, and P�E=−h̄ω), for a fixed initial mixed state when
varying the value of α and the power of the laser pulses. This
result shows that in the presence of z-QPMs and dissipation,
the energy distribution of the quantum system is modified.
The system jumps between states with different coherences
in the energy basis—as sketched in Fig. 2(c)—and finally
reaches, for a large number of z-QPMs, an out-of-equilibrium
steady state, which does not depend on the initial state. The
photon absorption probability dictates how fast the system
approaches the asymptotic steady state. Then, the final pro-
jective energy measurement returns, on average, a mixed state
defined by the balance between the energy variation due to
z-QPMs applied to the system and the dissipation channel.

For ideal equally spaced z-QPMs (perfect absorption, and
only spin-preserving optical transitions) the asymptotic prob-
ability to find the spin in the |↑〉 state P∞

↑ = P∞
↑|↑ = P∞

↑|↓
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can be analytically computed by modeling the spin temporal
evolution with a master equation in the Lindblad formalism,
yielding

P∞
↑ = 1

2

[
1 − (1 − e−tLD ) cosα

1 − e−tLDμ(α, τ )

]
, (3)

with μ ≡ 1 − 2 (sinα sin ωτ
2 )2 (Sec. S.II in Ref. [38]). Given

the experimental dissipation rate D, the analytic predic-
tion of P∞

↑ matches the numerical simulations for ideal
equally spaced z-QPMs. In the experiment, the stochasticity
of the temporal distribution of z-QPMs—induced by the fi-
nite photon absorption—removes the strong dependence on
τ (Sec. S.II in Ref. [38]). The analytical model is still a
good approximation of the system dynamics, provided one
replaces τ with an effective interpulse spacing (see Fig. IV.S
in Ref. [38]).

In the absence of dissipation (D = 0), z-QPMs bring
the system into an equilibrium thermal state with infinite
temperature [39,40] (P∞

↑ = 1/2). The cases α = {0, π} and
τ = 2π/ω, i.e., μ = 1, are exceptions [41]. The same asymp-
totic probability P∞

↑ = 1/2 is observed also in presence of
dissipation, when z-QPMs and amplitude damping act in a di-
rection orthogonal to the Hamiltonian (α = π/2, D > 0), as
experimentally confirmed [see Fig. 3(a)]. Indeed for α = π/2
the asymptotic state before the final energy measurement is a
fully coherent state in the Hamiltonian basis such that 〈H〉 =
0, thus the density matrix after the final energy measurement
corresponds, in average, to a completely mixed state (that is,
a thermal state with infinite effective temperature). In this
configuration (α = π/2), during a TPM protocol, dissipative
dynamics is indistinguishable from unitary dynamics plus
repeated measurements (D = 0) [34].

IV. EXCHANGE FLUCTUATION RELATION

For two macroscopic systems S1 and S2 placed in thermal
contact for a finite lapse of time, the statistics of exchanged
heat Q is known to be described by the heat exchange fluc-
tuation relation 〈e−(βin,S1 −βin,S2 )Q〉 = 1, where βin,S1 and βin,S2

are the initial inverse temperatures of S1 and S2 and Q =
�ES1 = −�ES2 [20]. For thermalizing quantum dynamics,
the non trivial value of ε for which Eq. (1) is verified is
ε = �β ≡ βin − β∞, where βin and β∞ are the initial and
asymptotic inverse temperatures of the system [31]. These
two results are equivalent in the case of a quantum system
interacting with a thermal reservoir at inverse temperature β∞.
However, the interaction with a nonthermal reservoir calls
for a deeper understanding of the role played by the energy
scale factor ε. With this aim, we implemented a numerical
simulation to show (see Appendix 2) that, for a three-level
quantum system asymptotically approaching a steady state
in the energy basis (SSE), there exists one single time-
independent ε �= 0 such that 〈exp (−ε�E )〉 = 1. The system
is brought into this steady state with constant energy in time,
which does not depend on the initial state, by means of a
dissipation channel that is modeled as a decay induced by
spontaneous emission. After the second energy measurement
of the TPM protocol, the quantum system is in a mixed state
that is not necessarily thermal. This means that the effects
of the dissipative channel on a quantum system may not be

modeled by the effective interaction of the system with a
thermal reservoir. However, also in this case, the validity of
Eq. (1) is ensured and, specifically, related to the existence of
a unique nontrivial constant value of ε when the system is at
the SSE. It is worth noting that ε depends on the populations
of the density matrix of both the initial state and the steady
state. In the special case that the mixed state after the TPM
protocol is thermal at inverse temperature β∞, the fluctuation
relation 〈exp(−�β�E )〉 = 1 is recovered [31]. The above
considerations show that quantum fluctuation relations hold
also in the steady-state regime [21], while in the transient
regime a model-dependent behavior is expected. We observed
that the energy scale ε does not depend on the nonunitary
map defined by the applied protocol, but only depends on the
asymptotic steady state.

In the experiment, the initial state is described by a density
matrix diagonal in the energy basis and, since the system
is effectively two-dimensional, can be written as a thermal
state with an effective inverse temperature β

(eff )
in . Similarly, the

stationary mixed state after the second energy measurement
of the TPM protocol is, in average, equivalent to a thermal
state with effective inverse temperature β

(eff )
∞ [see Eq. (A7) of

Appendix 3]. Notice that for each single realization and before
the second energy measurement, the state evolves in time
even in the asymptotic limit, marking a difference between
dissipative and thermalizing dynamics for a two level system.
Figure 5 shows that the experimental data and simulation
always verify the relation

〈exp (−ε�E )〉 = 1, (4)

with

ε = β
(eff )
in − β (eff )

∞ ≡ �β (eff ), (5)

irrespective of the initial state and the applied protocol, i.e.,
relative orientation between the z-QPM operator and the sys-
tem Hamiltonian, interpulse time intervals and photoabsorp-
tion probability. We emphasize that, albeit our measurements
are done for a quantum two-level systems and therefore can
be interpreted in terms of effective temperature, the formalism
and the conclusion are expected to hold for a generic quantum
system, including multilevel systems, as predicted by the
numerical example in the Appendix 2.

V. CONCLUSIONS

We explored the quantum exchange fluctuation relation
for an open quantum system coupled to a tunable dissipa-
tive channel. We investigated the interplay between quantum
projective measurements and a dissipation channel, and we
proposed a formulation of the energy exchange fluctuation
relation, where the energy scaling factor depends on the
populations of the stationary density matrix reached by the
open quantum system. We showed that this formulation holds
also for a three-level system that asymptotically reaches a
steady state in the energy basis, suggesting that this result
might be extended to a general finite-dimensional system.
For the implemented two-level system, the energy scaling
factor can be formulated in terms of the effective temperatures
of the initial and final states of the system. At the steady
state, the final effective temperature is indeed an invariant
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FIG. 5. Experimental values of 〈e−�β (eff )�E 〉 [obtained as in Eq. (A6) in Appendix 2] as a function of the number of laser pulses NL .
Each dataset represents a different combination between the parameters, the angle α [see Eq. (2)], the time τ between laser pulses, and the
photon-absorption probability pabs. The top-to-bottom order in the legend symbols corresponds to the left-to-right one in the plots. These data
constitute the experimental verification of the exchange fluctuation relation for an open quantum system Eq. (4). The initial probability is set
to P↑ = 1/(1 + e), while the asymptotic probability P∞

↑ is acquired from experimental data, as described in the Appendix 2. Both quantities
define the value of �β (eff ).

quantity, irrespective of the initial state. We have shown that
this exchange fluctuation relation holds for any direction,
with respect to the Hamiltonian, along which the intermediate
quantum projective measurements are applied. In addition,
we have observed that the exchange fluctuation relation is
robust against the presence of randomness in the time intervals
between measurements, as theoretically predicted in Ref. [35].
Our experimental study is enabled by the use of a single NV
center in diamond at room temperature. We exploit the high
control on the spin degrees of freedom, under the effect of
trains of short laser pulses that perform quantum projective
measurements and controllably open the two-level system,
through a dissipation channel whose interaction coupling with
the external surroundings can be tuned. This work, therefore,
exploits NV centers in diamond as a quantum simulator to
explore the physics of an out-of-equilibrium open quantum
system, and to verify quantum fluctuation relations.

Our work paves the way for the investigation of Jarzynski-
like equalities for general open quantum systems beyond
two-dimensional Hilbert spaces. In addition, our results con-
solidate NV centers as a suitable platform to study phenom-
ena related to open quantum systems, for example, to study
the role of coherence in energy transport, or to experimen-
tally verify different quantum fluctuation relations (QFR),
such as the QFR for engines or refrigerators [42], or the
so-called generalized QFR [43]. Finally, we hope that our
work will stimulate further research to experimentally test
our findings with other physical realizations, ranging from
ions [26] to superconducting devices [29,44], and to ultracold
gases [45]. Furthermore, our results can contribute to the
implementation of heat engines working in out-of-equilibrium
regimes [14].
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APPENDIX: METHODS

1. Experimental platform and modeling

We used a single NV center hosted in an electronic grade
diamond sample, with 14-N concentration <5 ppb (Element
Six). The NV center is optically addressed at ambient condi-
tions with a home-built confocal microscope and its electronic
spin is manipulated via resonant microwave driving. The NV
center is chosen to be free from proximal 13-C nuclear spins.
The 14-N spin is polarized due to a static bias magnetic field
of 394 G, combined with electronic spin pumping [46]. The
long coherence time of the nuclear spin ensures that it remains
unaffected during the experiment. A microwave coherently
manipulate the effective two-level system, composed by the
ms = 0 and ms = +1 levels of the ground state. On the ex-
periment timescales (∼μs) spin-lattice relaxation is negligible
(T1 ∼ ms), while the Rabi driving prevents spin dephasing to
occur [47].

The absorption of 532-nm laser light pulses excites the
NV-center electronic spin from the ground to the excited
triplet states. The decay involves (i) radiative transitions to
the ground state, spin-preserving (∼96.5%, see Sec. S.I in
Ref. [38]), generating a red-shifted photoluminescence with
zero-phonon line at 637 nm and (ii) nonradiative transitions
through a singlet metastable state. Thus, the interaction with
short laser pulses has a probability (1 − pdiss) to result in
an ideal z-QPM, but also a finite probability (pdiss < 1) to
destroy the state and force the resulting state to be |0〉, this
process gives origin to the dissipative dynamics. Even when
we cannot completely isolate each of these two effects, by
changing the short laser pulses duration and intensity, we
can control the value of pdiss to be between 0.44 and 1.
The photodynamics of the NV center is thus well described
with a seven-level model [32,48]. However, our experiments
can be well reproduced by an effective two-level model.
The neglected photodynamics occurring through the hidden
physical states is re-absorbed through an effective photon
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absorption probability pabs, an effective dissipation probabil-
ity pabsDtL and a correction on the z-QPM outcome that
takes into account the nonspin conserving probability. In this
regard, the simulations shown in the main text were realized
by using a two-level system with absorption probability in
the range 18–68 %, and 44% conditional probability to move
populations to |0〉 once projected in |+1〉. The results of the
analysis with a seven-level model and its comparison with the
two-level one are reported in Sec. S.II in Ref. [38].

2. Energy steady-state regime enabling fluctuation relations:
A three-level system case-study

From the analysis of the experimental data we have ob-
served the connection between the stationary state SSE of
a two-level quantum system and the existence of a unique,
finite, time-independent value of ε, obeying the fluctuation
relation G(ε) = 〈exp (−ε�E )〉 = 1. In this section, we extend
this result to to an exemplary case of a three-level system
(3LS) subjected to dissipative dynamics.

Specifically, we have chosen a 3LS governed by the fol-
lowing Hamiltonian:

H = ω12(|1〉〈2| + |2〉〈1|) + ω13(|1〉〈3| + |3〉〈1|)

=
⎛⎝ 0 ω12 ω13

ω12 0 0
ω13 0 0

⎞⎠, (A1)

where | j〉 denotes the jth level of the system and ω12, ω13

are the coupling rates between the first level and the second
and the third ones. The system is also characterized by a
decay channel (mimicking a spontaneous emission process)
with rate  between the first and second level of the 3LS.
We describe the system dynamics by means of a Lindblad
master equation, whereby the spontaneous decay is given by
the following Lindbladian super-operator:

L =
√

|1〉〈2| =
⎛⎝0

√
 0

0 0 0
0 0 0

⎞⎠. (A2)

Note that, albeit no intermediate QPMs are applied to the
quantum system, the dynamics of the 3LS is dissipative due
to the presence of a spontaneous decay term, here modelled
by means of the Lindbladian formalism.

Under the hypothesis that the system reaches a steady
state in its energy basis, the conditional probabilities Pj|i are
invariant with respect to the initially measured energy values
obtained from the TPM scheme. This means that

Pj|1 = Pj|2 = Pj|3 ≡ P̃j (A3)

for any j = 1, 2, 3, irrespective of the initial state ρ0 and
the transient properties of the dissipative dynamics acting
on the 3LS. The validity of Eq. (A3) implies the following
decomposition for the mean exponentiated energy variation
〈exp(−η�E )〉:

〈exp(−η�E )〉 =
⎛⎝ 3∑

j=1

P̃je
−ηEj

⎞⎠(
3∑

i=1

Pie
ηEi

)
, (A4)
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FIG. 6. Exchange fluctuation relation for a three-level model
subjected to spontaneous decay processes. (a) Plot of g(η) ≡ G(η) −
1 as a function of η ∈ [0, 1] and ω13/ω12 ∈ [0, 3] at the steady state in
the energy basis. (b) ε as a function of time t ∈ [0, 80] for four differ-
ent values of ω13/ω12, i.e., ω13/ω12 = {0.21, 0.41, 0.91, 1.51, 2.28},
corresponding respectively to the green solid, red dashed, black
dash-dotted, blue dotted, and magenta dashed lines. Inset: Time
behavior of the probabilities Pf j to measure the energy of the system
at the final time instant of the TPM protocol, by taking ω13 = 0.21
and ω12 = 1. All the parameters used to numerically compute the
system dynamics, namely ω13, ω12 = 1,  = 1.5, β = 1 with ρ0 =
exp(−βH )/Tr[exp(−βH )], are in units of h̄ = 1.

where {Ei} and {Ej} are, respectively, the set of measured
energy at the initial and final time instants of the TPM scheme,
while Pi denotes the probability of measuring Ei. We have nu-
merically computed the system dynamics with a time duration
long enough to ensure that the system has reached a steady
state in the energy basis for each set of system parameters.
In Fig. 6(a), we have plotted g(η) ≡ G(η) − 1 as a function
of η and ω13/ω12 at the SSE, by fixing the value of the other
parameters (see caption). One can observe that, for each value
of ω13 (ω12 = 1), g(η) always has two zeros, where one zero
is always η0 = 0. Instead, regarding the other zero of g(η), in
the numerical simulations it takes a unique time-independent
value η = ε that depends only on the initial state ρ0 and the
asymptotic steady state.

Finally, to conclude our analysis, we have fixed five dif-
ferent values of ω13 (with ω12 = 1) and plotted ε [value of
η such that G(η) = 1] as a function of time. In Fig. 6(b)
one can observe that, as the time increases, ε becomes a
constant (time-independent) value, depending on the specific
steady-state reached by the 3LS. The same behavior occurs
also by varying the other dynamics parameters, e.g.,  and β.

3. Two-level systems: Energy variation distribution and
asymptotic effective temperature

Measuring the conditional probabilities P↑|↑ and P↑|↓ gives
access to the full statistics of �E

P�E ≡ Prob(�E ) =
∑
i, j

δ(�E − �Ei, j )Pj|iPi, (A5)

even without directly measuring the output energy for each
experiment realization. The latter, indeed, cannot be achieved
due to low photon collection efficiency from the NV center. In
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the previous equation Pi denotes the probability of measuring
Ei at the beginning of the TPM protocol, Pj|i is the conditional
probability of measuring Ej at the end of the protocol, and
the sum is performed over all the possible initial i and final
j measured energies. Once obtained the distribution of the
energy variation, we operatively evaluate the mean value of
the exponentiated energy fluctuations of the two-level system
as

〈e−�β (eff )�E 〉 = e−�β (eff ) h̄ωPh̄ω + P0 + e�β (eff ) h̄ωP−h̄ω, (A6)

where �β (eff ) = β
(eff )
in − β

(eff )
∞ . For a two-level mixed state

�mix = p↑�↑ + (1 − p↑)�↓, an effective inverse temperature

is defined as

β (eff )(p↑) = 2

h̄ω
arctanh(1 − 2p↑). (A7)

This picture of effective temperature does not capture the
possible population inversion, and is therefore valid only for
the half of the Bloch sphere containing the state at lower
energy. In the experiment, β

(eff )
in is defined by the choice of

the initial mixed state. The asymptotic inverse temperature
β

(eff )
∞ is extracted from the experimental data after a large

enough number of z-QPMs, whereby P∞
↑|↑ = P∞

↑|↓ ≡ P∞
↑ , thus

ensuring the stationarity of the system final state. Otherwise,
for low photon-absorption probability, the asymptotic temper-
ature can be extracted by finding the initial state for which
〈�E〉 = 0 during the whole evolution.
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