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Dynamics of one-dimensional quantum many-body systems in time-periodic linear potentials
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We study a system of one-dimensional interacting quantum particles subjected to a time-periodic potential
linear in space. After discussing the cases of driven one- and two-particle systems, we derive the analogous
results for the many-particle case in the presence of a general interaction two-body potential and the corre-
sponding Floquet Hamiltonian. When the undriven model is integrable, the Floquet Hamiltonian is shown to be
integrable too. We determine the micromotion operator and the expression for a generic time evolved state of the
system. We discuss various aspects of the dynamics of the system both at stroboscopic and intermediate times, in
particular the motion of the center of mass of a generic wave packet and its spreading over time. We also discuss
the case of accelerated motion of the center of mass, obtained when the integral of the coefficient strength of
the linear potential on a time period is nonvanishing, and we show that the Floquet Hamiltonian gets in this case
an additional static linear potential. We also discuss the application of the obtained results to the Lieb-Liniger
model.
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I. INTRODUCTION

Time-periodic driven quantum systems have become re-
cently the subject of an intense research activity. These out
of equilibrium systems give rise to interesting novel physical
properties as, for instance, dynamic localization effects [1],
suppression of tunneling subjected to a strongly driven optical
lattice [2–8] (see [9] for more references), topological Floquet
phases [10,11], time crystals [12–19], dynamics in driven
systems [20–22], and Floquet prethermalization [23,24]. All
these concepts and phenomena can be collected together un-
der the heading of “Floquet engineering” [9,25], a very active
field both from experimental and theoretical points of view.

The name itself came from a famous paper by Floquet [26],
who was interested in the study of differential equations with
coefficients given by time-periodic functions. The formalism
he developed turns out to be very helpful in dealing with the
Schrödinger equation of a quantum mechanical system with
a time-periodic Hamiltonian [27,28]. Preparing the system in
an initial state χ (t = 0) and letting the periodic driving act on
it, the Floquet Hamiltonian ĤF is the operator that formally
gives the state of the system at multiples of the period T :

χ (t = nT ) = e−i nT
h̄ ĤF χ (t = 0). (1)

In other words, the Floquet Hamiltonian ĤF determines the
stroboscopic evolution of the system. It depends on the pa-
rameters of the original undriven Hamiltonian Ĥ0 and on
the time-dependent perturbation. ĤF is a Hermitian operator
whose eigenvalues are the so-called quasienergies EF . On the
other hand, the evolution of the state χ (t = 0) at generic
times t ∈ (0, T ) is determined by the micromotion operator

ÛF (t, 0), defined by the following decomposition of the time
evolution operator of the system Û (t, 0):

Û (t, 0) = ÛF (t, 0) e−i t
h̄ ĤF . (2)

Applying the micromotion operator ÛF (t, 0) on the eigen-
states of the Floquet Hamiltonian and multiplying by a
complex exponential containing the quasienergies, one ob-
tains the Floquet states |ψF (t )〉. They form a complete and
orthonormal set of functions and therefore any solution of the
original time-dependent Schrödinger equation can be written
as a superposition in terms of them,

χ (t ) =
∫

dk A(k) |ψF (t )〉,

where k is a momentum variable, related to the energy of
the system (k ∝ √

E ), and the A(k)’s are time-independent
coefficients. Therefore finding ĤF and ÛF (t, 0) gives access
to the full quantum dynamics of the system.

Finding the Floquet Hamiltonian and the micromotion op-
erator for an interacting many-body system in the presence
of a time-dependent driving is in general a challenging and
highly interesting task, relevant for a variety of applications
in the field of Floquet engineering. Tuning the form and
the parameters of the undriven system and of the periodic
perturbation, one aims at controlling the (desired) effective
Hamiltonian of the quantum dynamics of the system itself.

In general, even if the undriven model is integrable, when
we subject it to a time-periodic potential, we end up in a
non-integrable Floquet Hamiltonian. In a recent paper [29] we
addressed the question whether it would be possible to have
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an integrable Floquet Hamiltonian by perturbing an integrable
1D bosonic model with a time-periodic perturbation, finding a
positive answer. Namely, we considered the integrable Hamil-
tonian that describes a one-dimensional gas of bosons with
contact interactions, i.e. the Lieb-Liniger Hamiltonian [30],
in the presence of a linear in space, time-periodic one-body
potential of the form

V (x, t ) = f (t ) x, (3)

with a driving function f (t ) with period T : f (t ) = f (t + T ).
It was shown in [29] that under the condition∫ T

0
f (τ ) dτ = 0, (4)

the resulting Floquet Hamiltonian is integrable and has a Lieb-
Liniger form, with a shift on the momenta of the particles.

Despite the fact that other exactly solvable time-dependent
Hamiltonians can be constructed using different approaches
[31,32], the problem of finding an integrable Floquet Hamilto-
nian from an undriven interacting one is in general a difficult
task. The goal of the present paper is twofold: (a) first, we
provide a derivation valid for general one-dimensional many-
particle systems, extending the results of [29] to an arbitrary
two-body interaction potential V2b(x j − xi ) and giving explicit
results for the micromotion operator ÛF (t, 0); (b) secondly,
we present a detailed discussion of the case in which the
condition (4) does not hold, emphasizing its role for the time
dependence of the energy of the system.

We will show that if the undriven Hamiltonian is inte-
grable and perturbed with a linear time-periodic potential,
then also the Floquet Hamiltonian is integrable if the driving
function has a vanishing integral over a period of oscillation,
as it occurs for the Lieb-Liniger case. If, on the contrary,
the condition (4) does not hold, we will see that the Floquet
Hamiltonian can be still recast in a time-independent expres-
sion but with the addition of a linear potential. Expressions for
the value of the energy during the stroboscopic dynamics are
found and the micromotion operator explicitly written down.
The method we use is based on first applying a gauge trans-
formation on the wave function to wash out the linear term
and then solving the time-dependent Schrödinger equation
with Hamiltonian ĤF . It is worth underlining that, in gen-
eral, one of the difficulties in identifying integrable Floquet
Hamiltonians is that the integrability of these Hamiltonians is
not at all guaranteed by the integrability of the original time-
independent undriven model (see, for instance, [33] where
starting from the original BCS model the corresponding BCS
gap equation in the presence of a periodic driving is derived
and solved numerically). For the class of one-dimensional
interacting many-particle systems considered here, we show
instead that it is not the case, as far as the periodic driving is a
linear function on the position variables.

We remark that we are referring to the integrability of
the Floquet Hamiltonian of the system, which is a time-
independent Hamiltonian and therefore by integrable we
mean that there exist an infinite number of conserved charges
and hence one can find an exact solution for the stroboscopic
time-independent problem. In particular the integrability of
the Floquet Hamiltonian allows one to find the eigenfunctions

of ĤF and to write the behavior of a generic wave packet at
stroboscopic times.

In the following we present a detailed analysis of all these
aspects of the problem and, in particular, we show how to
extract the time evolution of generic wave functions at all
times by first computing the micromotion operators and then
the Floquet states, with which we can expand the wave func-
tion. After discussing a general two-body interaction term,
we focus on the paradigmatic and experimentally relevant
case where the particles interact with contact interactions,
i.e. the Lieb-Liniger model. This model constitutes an ideal
playground for integrable models in one-dimensional contin-
uous space. It is indeed exactly solvable using Bethe ansatz
techniques [30,34–36], related to the nonrelativistic limit of
the Sinh-Gordon model [37] and routinely used to describe
(quasi-) one-dimensional bosonic gases realized in ultracold
atoms experiments (see the reviews [38–40]).

The paper is organized as follows. In order to set the no-
tations and present initially the general results in the simpler
form, in Sec. II we discuss the dynamics of the one-particle
case, i.e. the Schrödinger equation for a particle of mass m in
a linear time-periodic potential in one dimension. In Sec. III
we consider the interacting two-particle case, where both par-
ticles, in addition to their relative potential, are also subjected
to a periodic driving potential proportional to their position.
In Sec. IV, we address the many-body interacting case. Our
conclusions are finally gathered in Sec. V.

II. ONE-BODY PROBLEM

A. Generic driving function

Let us consider the one-dimensional Schrödinger equation
for a particle of mass m in a linear potential with a time
varying strength:

ih̄
∂χ

∂t
= − h̄2

2m

∂2χ

∂x2
+ x f (t ) χ (x, t ). (5)

In what follows, f (t ) is a generic driving function that will be
taken to be periodic at the end of this section. In the literature,
Eq. (5) has been studied and solved in different ways [41–44].
Here we solve it with a method that will be particularly useful
to study the Floquet dynamics.

The key point of the solution of Eq. (5) is to perform a
gauge transformation on the wave function,

χ (x, t ) = eiθ (x,t ) η(y(t ), t ), (6)

where y(t ) = x − ξ (t ), while ξ (t ) and θ (x, t ) are two func-
tions that are determined below. Substituting Eq. (6) into (5),
and imposing

dξ

dt
= h̄

m

∂θ

∂x
, (7)

and

−h̄
∂θ

∂t
= h̄2

2m

(
∂θ

∂x

)2

+ x f (t ), (8)
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we find that η(y, t ) satisfies the Schrödinger equation with no
external potential in the spatial variable y:

ih̄
∂η

∂t
= − h̄2

2m

∂2η

∂y2
. (9)

Hence, once θ (x, t ) is known, η(y, t ) will be readily deter-
mined from the free dynamics. To find the gauge phase θ (x, t )
we make the ansatz,

θ (x, t ) = m

h̄

dξ

dt
x + 	(t ), (10)

that leads to the conditions,

m
d2ξ

dt2
= − f (t ), h̄

d	

dt
= −m

2

(
dξ

dt

)2

, (11)

which give the translational parameter ξ (t ) and the function
	(t ) in terms of f (t ). Notice that the equation for ξ (t ) is
the Newton’s second law equation of motion, where d2ξ/dt2

represents the acceleration of the center of mass of the system,
and − f (t ) the driving force.

Solving the equations (11), with the initial conditions
ξ (0) = dξ (0)/dt = 0 and 	(0) = 0, we get

θ (x, t ) = − x

h̄

∫ t

0
f (τ ) dτ − 1

2 m h̄

∫ t

0
dτ

[∫ τ

0
f (τ ′) dτ ′

]2

,

(12)

which, together with Eq. (6) and Eq. (9), completely solves
Eq. (5).

Since θ (x, 0) = 0 and y(0) = x, we have from Eq. (6) that

χ (x, 0) = η(x, 0), (13)

for which the solution of the Schrödinger equation (5) reads

χ (x, t ) = eiθ (x,t )e−i t
h̄

p̂2

2m η(y, 0) = eiθ (x,t )e−i t
h̄

p̂2

2m e−i ξ (t )
h̄ p̂ χ (x, 0),

(14)

where we have used the definition of the translation operator
and the free time evolution operator. Notice that no boundary
conditions in the wave function have been considered in the
above calculations, i.e. x ∈ R.

In terms of the solution (14), one can easily compute the
expectation values of various physical quantities, such as mo-
mentum, position, as well as their variances. Assuming as
initial values 〈x̂〉(t = 0) = x0 and 〈p̂〉(t = 0) = p0, and using
the canonical commutation relations among different powers
of position and momentum operators, we have

〈x̂〉(t ) ≡ 〈χ (x, t )|x̂|χ (x, t )〉 = x0 + t

m
p0 + ξ (t ). (15)

This means that the mean position of a generic wave packet,
under the action of a linear time-dependent potential, is gov-
erned by the parameter ξ (t ) which is readily determined by
Eq. (11). Moreover, concerning the expectation value of the
momentum we have

〈p̂〉(t ) ≡ 〈χ (x, t )| p̂|χ (x, t )〉 = p0 −
∫ t

0
f (τ ) dτ, (16)

meaning that the value of the momentum is shifted away from
its initial value by a term that depends on the driving function

f (t ). As expected, the motion of the center of the wave packet
in Eq. (15) is the same of a classical particle moving in one
dimension under the action of a time-dependent gravitational
force. Concerning the variance of the position, we have


x(t ) ≡
√

〈x̂2〉(t ) − 〈x̂〉2(t ) = 
xundriven(t ), (17)

where the subscript “undriven” stands for the undriven evo-
lution of the variance, which is calculated using the wave
function η(x, t ) instead of χ (x, t ), i.e.


xundriven(t ) ≡
√

〈η(x, t )|x̂2|η(x, t )〉 − 〈η(x, t )|x̂|η(x, t )〉2.

(18)

For the variance of the momentum we have


p(t ) ≡
√

〈p̂2〉(t ) − 〈p̂〉2(t ) = 
pundriven(t ). (19)

This means that it remains constant and equal to its initial
value at t = 0.

The solution presented so far, and its consequences, are
valid for any driving function. In the sequel, as a preparation
for later sections, we shall focus our attention on periodic
drivings.

B. Floquet approach

When f (t ) is periodic with period T , the Schrödinger
equation (5) becomes a differential equation with periodic
coefficients where we can apply the Floquet theory. This leads
us to define the Floquet Hamiltonian ĤF , which, according to
Eq. (1), controls the time evolution of the wave function at
stroboscopic times t = nT , with n ∈ N. Switching for sim-
plicity to the bra-ket notation, Eq. (1) reads

|χ (nT )〉 = e−i nT
h̄ ĤF |χ (t = 0)〉. (20)

The eigenvalues of the Floquet Hamiltonian will be denoted
by EF and are known as the quasienergies. Since ĤF is Hermi-
tian, they are real numbers. The quasienergies are the timelike
analogs of the quasimomenta in the study of crystalline solids.
Let Û (t, 0) = e−i t

h̄ Ĥ be the time evolution operator, i.e. the
quantum operator that, when applied to a wave function de-
scribes its evolution from time 0 to time t . According to
the Floquet theory and the notation of [9], we can decom-
pose Û (t, 0) as in Eq. (2): Û (t, 0) = ÛF (t, 0) e−i t

h̄ ĤF . This
relation defines the micromotion operator ÛF (t, 0) in terms
of the Floquet Hamiltonian ĤF and Û (t, 0). ÛF is periodic
in time and equals to the unity at every stroboscopic time,
implying that Û (nT, 0) = e−i nT

h̄ ĤF . Therefore Û (t + T, 0) =
Û (t, 0)Û (T, 0). This means that it is enough to know the
evolution operator for times t ∈ [0, T ] in order to obtain the
evolution of the system at all times t � 0.

The importance of these concepts becomes clear once
one realizes that any solution of the time-dependent periodic
Schrödinger equation (5) can be expressed in terms of the
Floquet operator and their eigenfunctions. Indeed, writing the
eigenvalue equation for the Floquet Hamiltonian,

ĤF |ũ〉 = EF |ũ〉, (21)

one can apply the micromotion operator on the wave functions
|ũ〉 to write the Floquet modes (or Floquet functions according
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to the notation of [21]) as

|u(t )〉 = ÛF (t, 0)|ũ〉, (22)

which are time-periodic states, as follows from the properties
of the micromotion operator stated above. It is now straight-
forward to construct the Floquet states, which are solutions
of the time-dependent Schrödinger equation (5) with periodic
f (t ):

|ψF (t )〉 = |u(t )〉e−i t
h̄ EF . (23)

These states form a complete and orthonormal set of eigen-
functions of the time evolution operator over a driving period:

|ψF (t + T )〉 = Û (t + T, t )|ψF (t )〉 = e−i T
h̄ EF |ψF (t )〉.

Hence, any solution of the Schrödinger equation (5) can be
written as a superposition of Floquet states as

|χ (t )〉 =
∫

A(k)|u(t )〉e−i t
h̄ EF dk =

∫
A(k)|ψF (t )〉 dk, (24)

weighted with time-independent coefficients A, which de-
pend on the momenta of the particle k. Looking at the last
expression, notice that the Floquet states have occupation
probabilities |A|2 (preserved in time) and a phase factor
e−i t

h̄ EF , resembling the usual factor e−i t
h̄ E present in any time

evolution of energy eigenstates with eigenvalues E when
their Hamiltonian does not depend on time. Therefore the
quasienergies look as if they were effective energies and these
are the quantities which determine the linear phase evolution
of the system. Finally, notice that if the system is prepared in a
Floquet state, its time evolution is periodic in time and in this
case it is called a “quasistationary evolution”.

Before obtaining an expression for the micromotion op-
erator ÛF from Eq. (2), it is convenient first to derive an
expression for the Floquet Hamiltonian ĤF of the system
which will be useful in the many-body case. To get an equa-
tion for ĤF we need to rewrite Eq. (14) for t = nT in a single
exponential operator as in Eq. (20). To do this, we can use the
Baker-Campbell-Hausdorff formula between momentum and
position exponential operators, arriving at

ĤF = p̂2

2m
+

[
ξ (nT )

nT
+ 1

2m

∫ nT

0
f (τ ) dτ

]
p̂ − h̄

θ (x, nT )

nT
+

− 1

2mnT

[∫ nT

0
f (τ ) dτ

]
·
∫ nT

0
dτ

[∫ τ

0
f (τ ′) dτ ′

]

+ 1

12m

[∫ nT

0
f (τ ) dτ

]2

. (25)

From this expression one is tempted to say that the translation
of the center of mass of the wave packet at different strobo-
scopic times, would be ξ (nT )

nT + 1
2m

∫ nT
0 f (τ ) dτ , since this is

the factor that multiplies the operator p̂. However, this is not
true since to evaluate 〈χ (x, nT )|x̂|χ (x, nT )〉, one has to split
the operators in the exponential recovering the state Eq. (14),
where the translation factor is simply ξ (nT )

nT . Notice that one
could consider periodic boundary conditions requiring that
the periodic driving function satisfies the two conditions
f (nT ) = 0, for n ∈N, and

∫ T
0 f (t ) dt = 0, as discussed in [29].

Moreover, it is not manifest from Eq. (25) that the Floquet
Hamiltonian is independent of n, as it should be the case [9].

To clarify this issue we study in more detail the translational
parameter and the gauge phase. From the first equation in (11),
we derive

ξ (t ) = − 1

m

∫ t

0
dτ

[∫ τ

0
f (τ ′) dτ ′

]
, (26)

from which follows that

ξ (t + T ) = ξ (T ) + ξ (t ) − t

m

∫ T

0
f (τ ) dτ. (27)

In a similar way, one gets for the gauge phase:

θ (x, t + T ) = θ (x, T ) + θ (x, t ) − t

2mh̄

[∫ T

0
f (τ ) dτ

]2

− 1

mh̄

[∫ T

0
f (τ ) dτ

] ∫ t

0
dτ

[∫ τ

0
f (τ ′) dτ ′

]
.

(28)

Setting t = nT , with n ∈ N, in the above equations yields

ξ (nT ) = nξ (T ) − T

m

n(n − 1)

2

∫ T

0
f (τ ) dτ, (29)

and

θ (x, nT ) = nθ (x, T ) − T

2mh̄

n(n − 1)

2

[∫ T

0
f (τ ) dτ

]2

− 1

mh̄

n(n − 1)(2n − 1)

6

[∫ T

0
f (τ ) dτ

]

×
∫ T

0
dτ

[∫ τ

0
f (τ ′) dτ ′

]
. (30)

To continue with the proof of the n independence of the Flo-
quet Hamiltonian, we split the analysis in two cases: (1) when
the integral of the driving function over one period vanishes,
and (2) when it does not.

1.
∫ T

0 f (t ) dt = 0

When the integral on a time period is vanishing, from
Eq. (29) we have ξ (nT ) = nξ (T ) and therefore the term
linear in momentum of the Floquet Hamiltonian in (25) is
n independent. Moreover, since ξ (nT ) is linear in terms of
the stroboscopic factor n, the stroboscopic motion of the
wave packet has a constant velocity, as can be inferred from
Eq. (15). The constant term in the Floquet Hamiltonian is also
trivially n independent since θ (x, nT ) = nθ (x, T ), as follows
from Eq. (30). Hence, in this case the Floquet Hamiltonian
can be simply written as

ĤF = p̂2

2m
+ ξ (T )

T
p̂ − h̄

θ (T )

T
, (31)

where θ (x, T ) ≡ θ (T ), since the gauge phase is x independent
[in the considered case of

∫ T
0 f (t ) dt = 0], as one can see from

Eq. (12). Moreover, the Floquet Hamiltonian can be rewritten
as

ĤF = p̂2

2m
− p̂

m

1

T

∫ T

0
dτ

∫ τ

0
f (τ ′) dτ ′

+ 1

2m

1

T

∫ T

0
dτ

[∫ τ

0
f (τ ′) dτ ′

]2

.
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Notice that we can also express the Hamiltonian in Eq. (31) as

ĤF = [ p̂ + mξ (T )/T ]2

2m
+ C, (32)

where C = −h̄θ (T )/T − (m/2)[ξ (T )/T ]2. Now, applying
the unitary transformation,

ˆ̃HF ≡ eiax̂/h̄ĤF e−iax̂/h̄, (33)

with a = mξ (T )/T , we get finally

ˆ̃HF = p̂2

2m
+ C. (34)

Using these results we can derive the micromotion operator
ÛF . First of all, from Eq. (14), the time evolution operator is

Û (t, 0) = eiθ (x,t )e−i t
h̄

p̂2

2m e−i ξ (t )
h̄ p̂. (35)

Hence, inverting Eq. (2) and knowing the Floquet Hamilto-
nian from Eq. (31), we get

ÛF (t, 0) = e
i
h̄ t{[ ξ (T )

T − ξ (t )
t ]p̂−h̄[ θ (T )

T − θ (x,t )
t ]+ 1

2 [
∫ t

0 f (τ ) dτ ][ ξ (T )
T − ξ (t )

t ]},

(36)

where we used the Baker-Campbell-Hausdorff formula. An
alternative expression of the micromotion operator is

ÛF (t, 0) = eit[ θ (x,t )
t − θ (T )

T ] e
i
h̄ t[ ξ (T )

T − ξ (t )
t ] p̂, (37)

which has been derived using the Zassenhaus formula.
Let’s discuss a simple, yet instructive, application of these

results. Imagine we are interested in describing the time evo-
lution of a Gaussian wave packet with initial variance σ in the
infinite homogeneous space, i.e. χ (x, 0) = 1

4√2πσ 2
e−x2/(2σ )2

.
As we saw in the previous section, in order to determine
its time evolution, we have first to find the eigenvalues and
eigenfunctions of the Floquet Hamiltonian in (31). In this
case the complete set of eigenfunctions is simply the plane
wave set, and the associated quasienergies are then easy to
determine:

ũ(x) = 1√
2π

eikx, EF = h̄2k2

2m
+ ξ (T )

T
h̄k − h̄

θ (T )

T
, (38)

where k is the plane wave’s momentum. The Floquet modes
can be easily obtained from the action of ÛF from Eq. (37) on
the eigenstates |ũ〉:

u(x, t ) = 1√
2π

eix[k− 1
h̄

∫ t
0 f (τ ) dτ ]e−it{ 1

2mh̄t [
∫ t

0 dτ (
∫ τ

0 f (τ ′ ) dτ ′ )2− t
T

∫ T
0 dτ (

∫ τ

0 f (τ ′ ) dτ ′ )2]+k[ ξ (t )
t − ξ (T )

T ]}, (39)

where we used Eq. (12). The Floquet modes are plane waves
with a momentum that varies in time,

〈u(t )|k̂|u(t )〉 = k − 1

h̄

∫ t

0
f (τ ) dτ,

and which return to their initial value k at stroboscopic times.
As required, the Floquet modes are time periodic with period
T . The Floquet states are obtained from Eqs. (23) and (38),

ψF (x, t ) = 1√
2π

ei[kx+θ (x,t )]−it h̄k2

2m −ikξ (t ). (40)

They are plane waves, periodic in time with period T , and
their momentum expectation value varies in the same way as
it does for the Floquet modes. One can now evaluate the time
evolution of the Gaussian wave packet from Eq. (24). In order
to do so, we compute the amplitude A(k),

A(k) =
∫ ∞

−∞
χ (x, 0)ψ∗

F (x, 0) = 4

√
2σ 2

π
e−(kσ )2

,

and perform the Gaussian integration in Eq. (24), arriving at

χ (x, t ) = 1
4
√

2 π σ 2

ei θ (x,t )√
1 + i h̄ t

2 m σ 2

e
− [x−ξ (t )]2

4(σ2+i h̄ t
2 m ) . (41)

The wave packet has a Gaussian shape centered at ξ (t ) and
spreads in time as


x(t ) =
√

σ 2 + h̄2 t2

4 m2 σ 2
, (42)

in agreement with Eq. (17). The left side of Fig. 1 shows
an example, where f (t ) = 
 sin(ωt ). The center of mass of
the wave packet is located at ξ (t ) = 


mω2 [sin(ωt ) − ωt], and
it spreads according to Eq. (42). We use the parametrization

 = l · 
̃ and ω = u · ω̃, where 
̃ and ω̃ are dimensionless, and

define t̃ = t/u and x̃ = x 3

√
ml
h̄2 . In the left side of Fig. 1 we set

σ̃ = σ 3

√
ml
h̄2 = 2−1/2, 
̃ = 10, and ω̃ = 10.

FIG. 1. Time evolution of density profiles of Gaussian wave
packets |χ (x, t )|2 for a single particle in a potential: x f (t ). The
left plot shows an evolution with a driving force f (t ) = 
 sin(ωt ):
The motion proceeds with a constant stroboscopic velocity towards
the left. The right plot shows the evolution under a driving force
f (t ) = 
 sin2(ωt ): The motion is uniformly accelerated to negative
values of x. The figures are calculated via the split-step Fourier
method and in both σ̃ = 2−1/2, 
̃ = 10, and ω̃ = 10.
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2.
∫ T

0 f (t ) dt �= 0

In this case, the independence of the Floquet Hamiltonian
(25) on n is more difficult to demonstrate. Let us define a
function F (t ), such that dF

dt = f (t ). We have
∫ T

0 f (t ) dt =
F (T ) = c, where c depends on the driving parameters and,
by definition, F (0) = 0. It follows that F (nT ) = nF (T ) =
nc. It is easy to prove that F (t + T ) = F (T ) + F (t ) = c +
F (t ). Therefore F (nT + t ) = nc + F (t ) and ξ (nT ) can be
written as

ξ (nT ) = − 1

m

∫ nT

0
F (t ) dt = −n2

m
I, (43)

where I = ∫ T
0 F (t ) dt . Thus ξ (nT ) depends quadratically on

the stroboscopic factor n, and the stroboscopic motion experi-
ences a uniform acceleration − 1

m I . Next, since ξ (nT ) ∝ n2,
one has ξ (−T ) = ξ (T ) and, choosing n = −1 in Eq. (29),

yields ξ (T ) = − T
2m

∫ T
0 f (t ) dt . This can be substituted back

into Eq. (29) to obtain

ξ (nT ) = −n2T

2m

∫ T

0
f (t ) dt . (44)

If we now take t = nT in (26) and use (44), we derive the
relevant equation,∫ nT

0
dτ

∫ τ

0
f (τ ′) dτ ′ = n2T

2

∫ T

0
f (t ) dt,

that holds when the integral of the driving function over a
driving period does not vanish. Using these results into (25),
we can write

ĤF = p̂2

2m
− h̄

θ (x, T )

T
− 1

6m

[∫ T

0
f (τ ) dτ

]2

, (45)

or, equivalently,

ĤF = p̂2

2m
+ x

1

T

∫ T

0
f (τ ) dτ + 1

2m

1

T

∫ T

0
dτ

[∫ τ

0
f (τ ′) dτ ′

]2

− 1

6m

[∫ T

0
f (τ ) dτ

]2

.

This expression is independent on n, a fact which completes the proof. Unlike the case where
∫ T

0 f (t ) dt = 0, the Floquet
Hamiltonian does not contain a term proportional to p̂, but a static linear potential. This term forces the particle to move to the
left (right) for positive (negative) values of

∫ T
0 f (t ) dt . An example is given in Fig. 1 (right) where 1

T

∫ T
0 f (τ ) dτ = 
T

2 > 0, so

that the wave packet moves with an acceleration of − 
T 2

4m . However, its spread does not depend on the external driving force as
predicted in Eq. (17).

The eigenfunctions of the Floquet Hamiltonian are the Airy function Ai [45] of the form,

ũ(x) = CAi

{(
2mT 2

h̄2
[∫ T

0 f (τ ) dτ
]2

)1/3 (
x

T

∫ T

0
f (τ ) dτ − EF + �

)}
, (46)

where C is a normalization constant and

� = 1

2m

1

T

∫ T

0
dτ

[∫ τ

0
f (τ ′) dτ ′

]2

− 1

6m

[∫ T

0
f (τ ) dτ

]2

.

The Floquet Hamiltonian has a continuous spectrum spanning the whole range of energy values EF from −∞ to +∞.
The micromotion operator is obtained inverting Eq. (2), and it leads to

ÛF (t, 0) = e
i
h̄ {t h̄[ θ (x,t )

t − θ (x,T )
T ]− t

2m

∫ T
0 f (τ ) dτ ·[ 1

3 (1+2 t2

T 2 )
∫ T

0 f (τ ) dτ ]−ξ (t ) t
T

∫ T
0 f (τ ) dτ } e− i

h̄ [ξ (t )+ t2

2mT

∫ T
0 f (τ ) dτ ]p̂. (47)

This expression makes it complicated to determine the time
evolution, even for a Gaussian wave packet, using Eq. (24).
To circumvent this problem we perform the unitary transfor-
mation,

χ (x, t ) = ÛF (t, 0)χ̃ (x, t ),

where the transformed wave function satisfies [21]

ih̄
∂χ̃

∂t
= ĤF χ̃ (x, t ).

Since ĤF has a linear potential term, we can apply the same
reasoning used to solve the original equation (5) for a constant
driving function f̃ = 1

T

∫ T
0 f (τ ) dτ , therefore we translate

and gauge transform the wave function χ̃ (x, t ) in order to
wash out the x-linear term in the Floquet Hamiltonian. By

doing so, we finally get Eq. (14), which is thus the convenient
way to obtain the time-evolved wave packet. In summary, we
need first to calculate the free expansion of χ (x, 0), then to
translate the solution and finally to multiply it by the gauge
phase.

The detailed analysis performed so far is valid for a single
particle subjected to a linear potential which varies periodi-
cally in time. We shall show below that it can be extended
straightforwardly to two or many particles interacting with a
generic interacting potential V2b(x j − xi ).

III. INTRODUCING INTERACTIONS:
THE TWO-BODY PROBLEM

Let us now consider a one-dimensional system of two inter-
acting particles subjected to a linear time-periodic potential.
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The Schrödinger equation reads

i h̄
∂χ

∂t
=

2∑
j=1

[
− h̄2

2 m

∂2

∂x2
j

+ x j f (t )

]
χ + V2b(x2 − x1)χ,

(48)
where V2b(x2 − x1) is a generic potential between the two par-
ticles. To solve the Schrödinger equation (48), we can employ
the same method discussed in the previous section: First we
perform the gauge transformation,

χ (x1, x2, t ) = ei[θ (x1,t )+θ (x2,t )]η(y1(t ), y2(t ), t ), (49)

where y j (t ) = x j − ξ (t ), for j = 1, 2. The wave function
η(y1, y2, t ) satisfies the Schrödinger equation for two inter-
acting particles with no external potential:

ih̄
∂η

∂t
= − h̄2

2 m

[
∂2

∂y2
1

+ ∂2

∂y2
2

]
η + V2b(y2 − y1) η, (50)

while ξ (t ) and θ (x j, t ) obey Eqs. (26) and (12), once we use
the same initial conditions of the previous case.

Notice that V2b(y1 − y2) = V2b(x1 − x2), because y j (t ) =
x j − ξ (t ). Moreover, since ξ (0) = 0, the two wave functions
coincide at initial time: χ (x1, x2, 0) = η(x1, x2, 0), hence the
solution of (48) can be written as

χ (x1, x2, t ) = eiθ (x1,t )+iθ (x2,t )e−i ξ (t )
h̄ ( p̂1+ p̂2 )e−i t

h̄ [
p̂2

1+ p̂2
2

2m +V2b(x2−x1 )]

×χ (x1, x2, 0). (51)

With this expression, using the procedure discussed in the
previous section, we can compute the expectation values of
physical observables and their variances. More precisely, the
expectation value of a single particle operator Ô j is defined as

〈Ô j〉(t ) ≡ 〈χ (x1, x2, t )|Ô j |χ (x1, x2, t )〉

=
∫ ∞

−∞
dx1

∫ ∞

−∞
dx2 χ∗(x1, x2, t ) Ô j χ (x1, x2, t ), (52)

and expectation values of position and momentum can be
computed using the Baker-Campbell-Hausdorff formula.

We will show below that there is a decoupling between the
linear potential term and the interacting one. This decoupling
arises from the separation of the center of mass motion (which
is determined by the external potential), and the relative mo-
tion (determined by the interacting potential). The diffusion
of the wave packet evolves as it would be free from the
linear time-dependent potential, but of course depends on the
interaction.

The undriven Hamiltonian is given by

Ĥ0 = p̂2
1 + p̂2

2

2m
+ V2b(x2 − x1).

This implies that the total momentum of the system P̂ = p̂1 +
p̂2 is conserved, i.e. [Ĥ0, P̂] = 0. An example is the contact
interaction V2b(x2 − x1) = λ δ(x2 − x1), with λ the coupling
strength. This property allows us to calculate the total energy
of the state:

E (t ) = 〈Ĥ〉(t ) = 〈χ (x1, x2, t )|
[

p̂2
1 + p̂2

2

2m
+ f (t )(x1 + x2) + V2b(x2 − x1)

]
|χ (x1, x2, t )〉. (53)

After a lengthy calculation, using the canonical commutation relations and Eq. (51), we obtain for a generic driving function
f (t ), including as well the nonperiodic cases:

E (t ) = E (0) + 1

m

[∫ t

0
f (τ )dτ

]2

+
2∑

j=1

p0, j

[
t

m
f (t ) − 1

m

∫ t

0
f (τ )dτ

]
+

− 2 f (t )

m

∫ t

0
dτ

∫ τ

0
f (τ ′)dτ ′ +

2∑
j=1

x0, j[ f (t ) − f (0)], (54)

where E (0) is the initial energy of the state, containing all
the interaction effects. The remaining terms arise from the
linear driving potential and depend on the position x0, j and
momenta p0, j , of the jth particle at time t = 0. If f (t ) is
constant, as for a constant (gravitational or electric) force, then
the energy is conserved. On the other hand, if f (t ) is periodic,
its integral over a time period vanishes, and f (t = 0) = 0,
then the energy is conserved at stroboscopic times.

Next we shall study the models where f (t ) is periodic. As
done in the previous section, we shall consider two cases:∫ T

0 f (t ) dt = 0 and
∫ T

0 f (t ) dt �= 0. The evolution operator
can be read from (51)

Û (t, 0) = ei[θ (x1,t )+θ (x2,t )]e−i ξ (t )
h̄ ( p̂1+p̂2 )e−i t

h̄ [
p̂2

1+ p̂2
2

2m +V2b(x2−x1 )].

(55)

It is convenient to use the center of mass and relative
coordinates: x = x2 − x1 and X = x1+x2

2 . In these variables the
effects of the linear time-dependent potential and the interac-
tions are completely decoupled. The time evolution in these
coordinates reads

Û (t, 0) = Û com(t, 0)Û rel(t, 0)

= e− i
h̄ {2X

∫ t
0 f (τ ) dτ+ 1

m

∫ t
0 dτ [

∫ τ

0 f (τ ′ ) dτ ′]2}e−i ξ (t )
h̄ P̂e−i t

h̄
P̂2

4m

× e−i t
h̄ [ p̂2

m +V2b(x)], (56)

where P̂ is the total momentum, that commutes with the
undriven Hamiltonian, and p̂ = p̂2 − p̂1 is the relative mo-
mentum of the particles.

033310-7



A. COLCELLI et al. PHYSICAL REVIEW A 102, 033310 (2020)

1.
∫ T

0 f (t ) dt = 0

In this case one finds

ĤF =
2∑

j=1

[
p̂2

j

2 m
+ ξ (T )

T
p̂ j − h̄

θ (T )

T

]
+ V2b(x2 − x1), (57)

where θ (x j, T ) = θ (T ), as follows from Eq. (12).
From the analysis performed so far, and for the similarities

with the one-body case, we know that the stroboscopic motion
described by the Floquet Hamiltonian occurs with a constant
velocity, since the translational parameter is ξ (nT ) ∝ n. No-
tice that if the Schrödinger equation with the original undriven
Hamiltonian is solvable, then also the Floquet Hamiltonian
associated with the motion under the action of a linear time-
dependent potential is solvable, since it is described by the
same two-body potential of the original problem with no
driving, apart from a momentum shift. We observe that it is
not convenient to solve the dynamics via Eq. (24) with respect
to the eigenfunctions of the Floquet Hamiltonian in Eq. (57),
while it is instead more advantageous to pass to relative and
center of mass coordinates. Using the center of mass and rel-
ative coordinates the Floquet Floquet Hamiltonian decouples
in two parts:

Ĥ com
F = P̂2

4m
+ ξ (T )

T
P̂ − 2h̄

θ (T )

T
, (58)

and

Ĥ rel
F = p̂2

m
+ V2b(x). (59)

The same factorization occurs for the micromotion operators,
by defining

Û (t, 0) = Û com
F (t, 0)e−i t

h̄ Ĥ com
F Û rel

F (t, 0)e−i t
h̄ Ĥ rel

F . (60)

Using Eq. (56), the micromotion operator for the center of
mass evolution has a form,

Û com
F (t, 0) = e

−it
{

2X
h̄t

∫ t
0 f (τ ) dτ+ 1

mh̄t

∫ t
0 dτ[

∫ τ

0 f (τ ′ ) dτ ′]2+2 θ (T )
T

}
,

× ei t
h̄ [ ξ (T )

T − ξ (t )
t ]P̂, (61)

while the micromotion operator for the relative coordinate is
instead trivial,

Û rel
F (t, 0) = 1̂. (62)

The time evolution for the relative motion depends of course
on the interacting potential V2b(x). Concerning the center of
mass motion, we notice the similarity of Eq. (58) with the Flo-
quet Hamiltonian (31) for a single particle, that allow us to use
the results of the previous section. The eigenfunctions of the
Floquet Hamiltonian (58) are plane waves with a continuous
spectrum of quasienergies:

ũcom(X ) = 1√
2π

eiKX ,

Ecom
F = h̄2K2

4m
+ ξ (T )

T
h̄K − 2h̄

θ (T )

T
, (63)

where K is the center-of-mass momentum. Next, we can get
the Floquet modes by applying Û com

F (t, 0) onto ũcom(X ), ob-
taining

ucom(X, t ) = 1√
2π

eiX [K− 2
h̄

∫ t
0 f (τ ) dτ ]e−it{ 1

mh̄t [
∫ t

0 dτ (
∫ τ

0 f (τ ′ ) dτ ′ )2− 2t
T

∫ T
0 dτ (

∫ τ

0 f (τ ′ ) dτ ′ )2]+K[ ξ (t )
t − ξ (T )

T ]}, (64)

where we used Eq. (12). As in the one-body problem, the Floquet modes are plane waves with a momentum varying in time as

〈u(t )|K̂|u(t )〉 = K − 2

h̄

∫ t

0
f (τ ) dτ,

which implies that 〈K〉(nT ) = K . We finally get the Floquet states from Eqs. (23) and (63),

ψcom
F (X, t ) = 1√

2π
ei{KX− 2X

h̄t

∫ t
0 f (τ ) dτ− 1

mh̄t

∫ t
0 dτ [

∫ τ

0 f (τ ′ ) dτ ′]2}−it h̄K2

4m −iKξ (t ), (65)

that are plane waves, periodic in time with period T , and whose average center-of-mass momentum behaves like that of the
Floquet modes. Therefore the center-of-mass component of the wave function, the solution of (48), reads as

φ(X, t ) =
∫

A(K )ψcom
F (X, t ) dK, (66)

where we have written χ (x1, x2, t ) = φ(X, t )ϕ(x, t ).

2.
∫ T

0 f (t ) dt �= 0

Using the methods presented in previous sections, we find

ĤF =
2∑

j=1

[
p̂2

j

2m
− h̄

θ (x j, T )

T

]
− 1

3m

[∫ T

0
f (τ ) dτ

]2

+ V2b(x2 − x1). (67)
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This expression contains a linear potential, hidden in the gauge phases θ (x j, T ). Analogously to the one-body example, the
stroboscopic motion of the particles is uniformly accelerated:

d2〈x j〉
dt2

(nT ) = − 1

m

∫ T

0
dτ

∫ τ

0
f (τ ′) dτ ′.

Using the center of mass and relative coordinates, the Floquet Hamiltonian (67) splits in two parts:

Ĥ com
F = P̂2

4m
+ X̂

1

T

∫ T

0
f (τ ) dτ + 1

m

1

T

∫ T

0
dτ

[∫ τ

0
f (τ ′) dτ ′

]2

− 1

3m

[∫ T

0
f (τ ) dτ

]2

, (68)

while the Floquet Hamiltonian of the relative motion is given by Eq. (59). The difference between the cases (1) and (2) stems
only from the center-of-mass motion which has an additional linear dependence on P̂ in the first case, and X̂ in the second. The
micromotion operator can be split as well, obtaining Eq. (62) for the relative part, and

Û com
F (t, 0) = e

i
h̄

{
t
[
X ( 1

T

∫ T
0 f (τ ) dτ− 1

t

∫ t
0 f (τ ) dτ )+ 1

mT

∫ T
0 dτ[

∫ τ

0 f (τ ′ ) dτ ′]2+ 1
mt

∫ t
0 dτ[

∫ τ

0 f (τ ′ ) dτ ′]2
]
+

− t
m

∫ T
0 f (τ ) dτ ·

[
1
3

(
1+2 t2

T 2

) ∫ T
0 f (τ ) dτ

]
+−2ξ (t ) t

T

∫ T
0 f (τ ) dτ

}
e
− i

h̄ P̂
[
ξ (t )+ t2

2mT

∫ T
0 f (τ ) dτ

]
, (69)

for the center of mass.
The dynamics of the relative part can be analyzed once the

two-body potential is given, while the analysis performed on
the center-of-mass part follows the same line of the one-body
case. By this we mean that one has to perform a unitary trans-
formation on the center-of-mass wave function: �(X, t ) =
ÛF �̃(X, t ), and therefore the new wave function �̃(X, t ) sat-
isfies a time-dependent Schrödinger equation with the Floquet
Hamiltonian (68). Washing away the X -linear dependence of
the Floquet Hamiltonian by means of a translation and a gauge
transformation, for the center-of-mass part of Eq. (51) we have

�(X, t ) = e
− i

h̄

{
2X

∫ t
0 f (τ ) dτ+ 1

m

∫ t
0 dτ[

∫ τ

0 f (τ ′ ) dτ ′]2
}

× e−i ξ (t )
h̄ P̂e−i t

h̄
P̂2

4m �(X, 0), (70)

where Eq. (56) has been used.
As an example, we use the above results to study the time

evolution of two particles with contact interactions initially
prepared in a Gaussian wave packet.

A. Contact interactions

Let consider a contact potential: V2b(x2 − x1) =
λδ(x2 − x1), where λ > 0 is the repulsive interaction
parameter. At the initial time we prepare a Gaussian wave
packet with variance σ ,

χ (x1, x2, 0) = 1√
πσ 2

e−(x2
1+x2

2 )/2σ 2
, (71)

that factorizes into the center of mass and relative parts,

�(X, 0) = 4

√
2

πσ 2
e−X 2/σ 2

, ϕ(x, 0) = 1
4
√

2πσ 2
e−x2/4σ 2

. (72)

Let us start with the case:
∫ T

0 f (τ ) dτ = 0. Finding the
time-independent coefficient A(K ) appearing in Eq. (66) at
t = 0, and using (72), yields

�(X, t ) = 4

√
2

πσ 2

eiθ (X,t )√
1 + i h̄ t

mσ 2

e
− [X−ξ (t )]2

σ2(1+i h̄ t
mσ2 ) . (73)

Concerning the relative motion, we use the propagator
G(x, x′; t, 0) in the presence of a Dirac δ potential [46,47],

ϕ(x, t ) =
∫ ∞

−∞
G(x, x′; t, 0) ϕ(x′, 0) dx′, (74)

with

G(x, x′; t, 0) = 1√
4 π i h̄ t/m

ei m (x−x′ )2

4 h̄ t − m λ

4 h̄2 e
m λ

2 h̄2 (|x|+|x′|)+i m λ2 t
4 h̄

× erfc

( |x| + |x′| + i λ t
h̄√

4 i h̄ t/m

)
, (75)

with erfc being the complementary error function:

erfc(z) = 2√
π

∫ ∞

z
e−t2

dt .

The numerical integration of (74), provides the wave function
χ (x1, x2, t ) for any value of λ > 0. In the limit of hard-core
interactions, λ → ∞, the integral (74) can be computed ana-
lytically and gives

ϕ(x, t ) = 1

(2π )1/4

√
imσ/h̄t

−1 + imσ 2/h̄t

× erf

(
m σ x

2h̄t
√

−1 + imσ 2/h̄t

)
e
− m

4h̄t
x2

i+mσ2/h̄t , (76)

where erf (z) = 1 − erfc(z). We have studied the time evolu-
tion of the density matrix,

ρ(x1, t ) = 2
∫ ∞

−∞
|χ (x1, x2, t )|2 dx2, (77)

in order to visualize the evolution of the wave packet. The
density matrix (77) reads in the center of mass and relative
wave functions, as

ρ(x, t ) = 2
∫ ∞

−∞

∣∣∣∣�
(

x1

2
+ x, t

)∣∣∣∣
2

|ϕ(x1, t )|2 dx1. (78)
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FIG. 2. Time evolution of density matrix profiles (77) for a Gaussian wave packet (71), under the action of a linear external potential:
x f (t ), with driving function f (t ) = 
[cos2(ωt ) − 1 + 4

3 sin4(ωt )]. The left side plot is the free case, λ̃ = 0, the central plot has λ̃ = 1, and
the right side plot has λ̃ = ∞. The center of mass moves with constant stroboscopic velocity, as predicted analytically, and the wave packet
spreads over time as it would do for the undriven case 
 = 0. As one can see from the right side plot, for very large interactions, the wave
packet rapidly tends to split in two specular parts. In all the figures the values 
̃ = 200, ω̃ = 2, and σ̃ = 1 have been chosen.

The results are reported in Fig. 2 for different times and
coupling strengths λ, using the driving function

f (t ) = 


[
cos2(ωt ) − 1 + 4

3
sin4(ωt )

]
.

We choose the same dimensionless variables as in the one-
body case: dimensionless coupling strength λ̃ = l mλ

h̄2 , 
̃= 200,
ω̃ = 2, and σ̃ = 1. The values λ̃ = 0, 1, and ∞, correspond to
the left, center, and right sides of Fig. 2. Here

ξ (t ) = 


12mω2
sin4(ωt )

vanishes at stroboscopic times, as checked in the numerical
simulations. We have also verified that the wave packet ex-
pands as it was not subjected to the linear oscillating potential,
in agreement with the theoretical prediction.

Figure 2 shows that increasing the parameter λ, the vari-
ance of the wave packet increases in time more rapidly. We
have been able to fit this behavior with the approximation:


x j (t ) ≈ σ√
2

√
1 +

(
h̄ t

m σ 2

)2(
1 + B m λ σ

2 h̄2

)
, (79)

where B ≈ 1.23. For λ = 0 one retrieves an expression sim-
ilar to Eq. (42), while in the limit λ → ∞, Eq. (79) diverges
for all t because the tail of the density matrix decays as ∝ x2,
even starting from a Gaussian.

As an additional check, we have calculated numerically
the total energy of a two-particle system driven with f (t ) =

 sin3(ωt ), separating its center of mass and relative compo-
nents. The analytical value can be obtained from Eq. (54),
and is represented by the solid, dashed, and dotted lines in
Fig. 3. The circular dots represent the values calculated nu-
merically. We have used 
̃ = 200, ω̃ = 60, σ̃ = 2−1/2, and
p0, j = x0, j = 0 for j = 1, 2. The interaction strengths, λ̃ =
0.1, 1, and 10, only displace the curves since their effects are
encoded in the initial energy factor E (0) of Eq. (54), as can

be seen from the inset of the plot. For this driving function
we have f (nT ) = ∫ T

0 f (τ ) dτ = 0, therefore from Eq. (54)
the energies at the stroboscopic times are equal to the initial
energy, i.e. E (nT ) = E (0) for every n, and there is no heating
of the system, in agreement with theoretical results [7,8] and
experimental findings [48].

In the case where
∫ T

0 f (τ ) dτ �= 0, we used Eq. (70) for
the center-of-mass initial wave function of Eq. (72), obtaining
the same result as when

∫ T
0 f (τ ) dτ = 0, i.e. we retrieved

Eq. (73). For the relative motion we have applied the same
reasoning as before, by which we know that the relative

FIG. 3. Time evolution of the energy Ẽ = 3

√
m

h̄2 l
E for two in-

teracting particles subjected to a linear external potential: x f (t ),
with driving function f (t ) = 
 sin3(ωt ). The system is prepared in
the Gaussian wave packet state (71). The curves represent different
values of the parameter λ̃, which only shifts the total energy, as
shown in the inset for short times t̃ and different coupling strengths.
The circular dots represent the energy values calculated from the
numerical computation.
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FIG. 4. Evolution of density matrix (77) for a Gaussian wave packet (71) under the action of a linear external potential: x f (t ), where the
driving function is f (t ) = 
[cos(ωt ) − 1]. Notice that the center of mass motion is uniformly accelerated to the right, as predicted analytically,
and the wave packet spreads over time as it would do for the undriven case. From left to right panels one has λ̃ = 0, 1, ∞; moreover, 
̃ = 10,
ω̃ = 5, and σ̃ = 1.

part of the wave packet evolves according to Eq. (74). We
have performed a numerical simulation of a system made
of two δ-interacting particles under the action of a linear
potential with driving function: f (t ) = 
[cos(ωt ) − 1]. The
results for different interaction strengths λ are reported in
Fig. 4, where the density matrix calculation (78) is plotted,
in correspondence with 
̃ = 10, ω̃ = 5, and σ̃ = 1. In this
case the motion is uniformly accelerated to the right side of
the x axis; indeed the translational parameter reads ξ (t ) =



2mω2 [ω2t2 − 2 + 2 cos(ωt )]. This has to be compared with

the case
∫ T

0 f (t ) dt = 0, where the center of mass does not
accelerate.

Concerning the spreading of the wave packet, it is the
same as in the case without a driving potential and it also
satisfies Eq. (79) with B ≈ 1.23. In conclusion, there is no
difference for the wave packet spreading between the results
of a driving function whose integral over a period vanishes or
not.

IV. MANY-BODY PROBLEM

The analysis done so far can be generalized to many-body
systems with N interacting particles, a generic interacting po-
tential V2b(x j − xi ), and under the action of an external linear
time-dependent potential. The Schrödinger equation reads

i h̄
∂χ

∂t
=

N∑
j=1

[
− h̄2

2 m

∂2

∂x2
j

+ x j f (t )

]
χ +

∑
j>i

V2b(x j − xi )χ.

(80)
Performing the translation and a gauge transformation,

χ (x1, . . . , xN , t ) ≡
N∏

j=1

eiθ (x j ,t )η(y1, . . . , yN , t ), (81)

the wave function η(y1, . . . , yN , t ) satisfies the Schrödinger
equation without the external driving, i.e.

i h̄
∂η

∂t
= − h̄2

2 m

N∑
j=1

∂2η

∂y2
j

+
∑
j>i

V2b(y j − yi )η, (82)

where y j (t ) = x j − ξ (t ), ∀ j, therefore the interacting poten-
tial is invariant under these transformations: V2b(y j − yi ) =
V2b(x j − xi ).

Using the initial conditions ξ (0) = 0 and θ (x j, 0) = 0,
∀ j, the parameter ξ (t ) and the gauge phase θ (x j, t ) satisfy
Eqs. (26) and (12). Hence, the two wave functions coincide at
initial time t = 0.

The complete solution of the Schrödinger equation (80)
can be formally written as

χ (x1, . . . , xN , t )=
N∏

j=1

[
eiθ (x j ,t )e−i ξ (t )

h̄ p̂ j

]
e−i t

h̄ Ĥ0η(x1, . . . , xN , 0),

(83)
where the undriven Hamiltonian of one-dimensional many-
particle systems has the general form,

Ĥ0 =
N∑

j=1

p̂2
j

2m
+

∑
j>i

V2b(x j − xi ). (84)

In (83) the momentum operator p̂ j is the generator of the
translation for the jth particle, and η is the solution of the
Schrödinger equation with no linear driving.

The generalization of the two-body results for the expec-
tation values of physical observables is straightforward. First,
we can compute the total energy of the system evaluating the
expectation value of the driven Hamiltonian. In the calculation
we use the conservation of the total momentum P̂ = ∑N

j=1 p̂ j

for the undriven Hamiltonian Ĥ0, i.e. [Ĥ0, P̂] = 0, valid in the
considered case in which the interaction V2b depends on the
relative distance between the particles (see more comments
in Sec. IV A). Using the commutation relations we find for a
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general (also nonperiodic) driving function f (t ):

E (t ) = E (0) + N

2m

[∫ t

0
f (τ )dτ

]2

+
N∑

j=1

p0, j

[
t

m
f (t ) − 1

m

∫ t

0
f (τ )dτ

]
+

− N f (t )

m

∫ t

0
dτ

∫ τ

0
f (τ ′)dτ ′+

N∑
j=1

x0, j[ f (t ) − f (0)],

(85)

which generalizes Eq. (54). As for the two-body case, if
f (t ) is periodic in time and its integral over a time period
vanishes, then the energy is conserved at stroboscopic times
if f (t = 0) = 0. Once again, there is a decoupling between
the interactions and the external linear driving potential, since
the effect of the interactions among particles is encoded in the
initial value of the energy E (0), while the remaining terms
collect the effect of the external potential.

Thanks to the simple rewriting of the many-body wave
function in Eq. (83), we are also able to write the one-body
density matrix of the driven system in terms of the undriven
one. The one-body density matrix is defined as [49]

ρ(x, x′, t ) = N
∫

dx2 . . . dxN χ∗(x, x2, . . . , xN , t )

×χ (x′, x2, . . . , xN , t ). (86)

Therefore using Eq. (83) we can rewrite the density matrix as

ρ(x, x′, t ) = N ei[θ (x′,t )−θ (x,t )]
∫

dy2 . . . dyN η∗(y, y2, . . ., yN , t )

× η(y′, y2, . . . , yN , t ), (87)

since dx j = dy j for every j, while y(t ) = x − ξ (t ), y′(t ) =
x′ − ξ (t ). So, finally,

ρ(x, x′, t ) = ei[θ (x′,t )−θ (x,t )] ρundriven(y, y′, t ), (88)

where ρundriven(y, y′, t ) is defined in terms of the wave function
η solution of the Schrödinger equation without the driving
term.

For a translational invariant system, the above equation
may be further simplified by writing everything in terms of
the relative coordinate r ≡ x − x′. In this case, since it is also
true that r = y − y′, then Eq. (88) may be rewritten as

ρ(r, t ) = ei r
h̄

∫ t
0 f (τ ) dτ ρundriven(r, t ). (89)

We may further analyze the eigenvalues of the one-body
density matrix for a translational invariant system. In the equi-
librium, the one-body density matrix satisfies the eigenvalue
equation [49] ∫

ρ(x, x′) φi(x) dx = λi φi(x
′), (90)

where λi is the occupation number of the ith natural or-
bital eigenvector φi(x). The λi are such that

∑
i λi = N . For

the dynamics, when the Galilean invariance is not broken
(correspondingly requiring appropriate initial conditions), the
quantum number labeling the occupation of the natural or-
bitals is the wave number k, and the natural orbitals at time
t are simply plane waves. Therefore we may write Eq. (90)
for a driven translational invariant many-body system as

λk (t ) =
∫

ρ(r, t ) ei k r dr. (91)

Now, thanks to Eq. (89), we can write the following relation
between the natural orbitals occupation numbers of the driven
system with those of the undriven one:

λk (t ) = λundriven
k̃ (t ), (92)

where k̃(t ) = k + 1
h̄

∫ t
0 f (τ ) dτ , and we have defined the oc-

cupation numbers of the system without driving as

λundriven
k (t ) =

∫
ρundriven(r, t ) eikr dr. (93)

From the above relations, one may observe that there is only a
time-dependent translation over the momentum wave number
which identifies the occupation numbers of the driven system
with respect to the undriven case.

Let us now focus on periodic driving functions. As before,
we discuss separately the cases when

∫ T
0 f (τ ) dτ = 0 and

�= 0. In the first case, the gauge phase at stroboscopic times is
independent on the position variables, while the parameter ξ

is linear in the stroboscopic factor n, indicating a stroboscopic
motion with constant velocity. Using the fact that [Ĥ0, P̂] = 0
and the Baker-Campbell-Hausdorff formula on Eq. (83) eval-
uated at t = nT , we find the Floquet Hamiltonian

ĤF =
N∑

j=1

[
p̂2

j

2 m
+ ξ (T )

T
p̂ j − h̄

θ (T )

T

]
+

∑
j<i

V2b(x j − xi ).

(94)
Hence, if the undriven Hamiltonian describes an integrable
model, also the Floquet Hamiltonian is exactly solvable since
it has the same two-body interaction potential among particles
and presents only a shift in the momenta. For the micromotion
operator one finds

ÛF (t, 0) = e
it

∑N
j=1

[
θ(x j ,t)

t − θ (T )
T

]
ei t

h̄ [ ξ (T )
T − ξ (t )

t ]
∑N

j=1 p̂ j . (95)

If f (t ) has a nonvanishing integral over a driving period, then
the Floquet Hamiltonian reads

ĤF =
N∑

j=1

[
p̂2

j

2m
− h̄

θ (x j, T )

T

]
− N

6m

[∫ T

0
f (τ ) dτ

]2

+
∑
j<i

V2b(x j − xi ), (96)

which presents a time-independent x-linear potential term act-
ing on all the particles. In this case, as we saw for the one-body
problem, the system is governed by a stroboscopic dynamics
with a uniform acceleration, since the translational parameter
depends quadratically on the stroboscopic factor: ξ (nT ) ∝ n2.
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The micromotion operator reads

ÛF (t, 0) = e
i
h̄ {t h̄

∑N
j=1[

θ (x j ,t )

t − θ (x j ,T )

T ]−N t
2m

∫ T
0 f (τ ) dτ [ 1

3 (1+2 t2

T 2 )
∫ T

0 f (τ ) dτ ]−Nξ (t ) t
T

∫ T
0 f (τ ) dτ }e− i

h̄ [ξ (t )+ t2

2mT

∫ T
0 f (τ ) dτ ]

∑N
j=1 p̂ j . (97)

A. Comments

We pause here to comment on the generality of our
findings. The main results in the case

∫ T
0 f (τ ) dτ = 0 are

Eqs. (94) and (95). They are valid for any form of the
two-body potential V2b and therefore for any interacting
Hamiltonian (84), integrable or not. The crucial assumption
we have made is that the two-body potential V2b depends only
on the relative distance xi − x j , otherwise V2b(xi, x j ) would
be in general different from V2b(yi, y j ) when the transfor-
mation y j = x j − ξ (t ) is done. Since V2b(x j − xi ) = V2b(y j −
yi ) then the equations of motions for the wave function
η(y1, . . . , yN , t ) are exactly the same of those for the wave
function χ (x1, . . . , xN , t ), except for the fact that the time-
periodic linear potential has been removed. Notice that in
presence of one-body potentials V1b(xi ), breaking translational
invariance, this fact would be no longer valid. When the inter-
acting many-body Hamiltonian has only the kinetic term plus
a time-independent two-body potential V2b depending only on
the relative distance between the particles, then the conserva-
tion of the total momentum of the undriven Hamiltonian Ĥ0 is
guaranteed:

[Ĥ0, P̂] = 0,

a relation we subsequently used to determine the Floquet
Hamiltonian, the micromotion operator, and the expression of
the energy at time t .

We conclude that if, in addition, Ĥ0 turns out to be inte-
grable, then the associated Floquet Hamiltonian is integrable
too. We have presented the analysis for many-body systems
made of bosons, but it could equally be applied to many-
body systems made of fermions or Bose-Fermi mixtures. In
few words, our results are valid for any one-dimensional
integrable Hamiltonian in the continuum. This also includes
the Gaudin-Yang model for one-dimensional Fermi gases,
integrable Bose-Fermi mixtures, integrable multicomponent
Lieb–Liniger Bose gases, and Calogero-Sutherland models
(in the absence of external one-body harmonic potential)
[35,36,50,51].

Hence, having in mind the broad generality of our results,
we shall present below a study of the paradigmatic Lieb-
Liniger model driven by an external linear time-dependent
potential whose driving function has a vanishing integral over
a driving period.

It is therefore clear that since the Gaudin-Yang model for a
one-dimensional Fermi gas is described by the same Hamilto-
nian of the Lieb-Liniger model, but with the only difference of
having attractive interactions (i.e., the sign of the interaction
parameter will change), the method presented will apply also
in that case. Finally when one considers Bose-Fermi mixtures
or multicomponent Lieb-Liniger Bose gases, the Hamiltonian
has more terms, for intra- and interspecies interactions, but
each of them separately satisfies the required conditions of
having two-body potentials which depend only on the relative
distances among particles and our method can be applied as

well. Let’s take as an example the case of a mixture of two
distinguishable bosonic species labeled with A and B. The
Hamiltonian of the system reads [52]

H =
∑

σ=A,B

Hσ + HAB,

where the single-species Hamiltonian is

Hσ =
Nσ∑
j=1

[
− h̄2

2 mσ

∂2

∂x2
σ, j

+ xσ, j f (t )

]
+λσ

∑
j>i

δ(xσ, j − xσ,i ),

while the interspecies Hamiltonian reads

HAB = λAB

NA∑
a=1

NB∑
b=1

δ(xA,a − xB,b),

where NA and NB are the number of particles of species A
and B, respectively. Therefore, when the driving function f (t )
is the same for both the species, the method which consists
of making a gauge transformation of the wave function and
a translation will allow one to eliminate the external linear
potential separately in HA and HB, while the interspecies
Hamiltonian will not be affected at all. In the more specific
case when the undriven mixture is integrable, which happens
when the masses of bosons and fermions are the same and
when they have equal repulsive interactions between Bose-
Fermi and Bose-Bose particles [53], then also the Floquet
Hamiltonian will be integrable for the same reasons that we
have seen for a generic interacting potential V2b(xi, x j ).

B. Driven Lieb-Liniger gas

The Lieb-Liniger model describes a gas of N bosons with
δ-contact repulsive interactions in one dimension [30], that
is, V2b(x j − xi ) = λδ(x j − xi ), with λ > 0 the interaction pa-
rameter. The dynamics of the Lieb-Liniger model in a linear
potential was studied in [54], while we refer to [55–57]
for a study of the classical counterpart of the Lieb-Liniger
model, the nonlinear Schrödinger equation, in the presence
of a time-dependent linear potential. The Floquet analysis of
the Lieb-Liniger model with a periodic tilting was studied in
[29], where it was discussed the stroboscopic evolution writ-
ten in terms of the eigenfunctions of the Floquet Hamiltonian
in Eq. (94). Here we make a further step forward, giving a
procedure for getting an expression for the time evolution of
a generic wave packet.

The undriven Hamiltonian of this system, i.e.

Ĥ0 =
N∑

j=1

p̂2
j

2m
+ λ

∑
j<i

δ(x j − xi ), (98)

is an integrable Hamiltonian and an exact expression of its
eigenfunction can be obtained using the Bethe ansatz tech-
nique [34,35]. Therefore we can write the eigenfunctions for

033310-13



A. COLCELLI et al. PHYSICAL REVIEW A 102, 033310 (2020)

the Floquet Hamiltonian (94) as Bethe ansatz states

ũ(x1, . . . , xN ) =
∑

P

AP(Q) e
i
h̄

∑N
j=1 kPj x j , (99)

where Q is the permutation index which specifies the order of
the particles, while P is the permutation index of the pseudora-
pidities k j , which are undetermined until boundary conditions
are chosen [35,36] (we refer to [29] for a discussion on the
relation between the boundary conditions and the external
linear potential). The amplitudes AP(Q) can be written as

AP = N (−1)P
∏
j<l

(
kPj − kPl + i

mλ

h̄2

)
,

where N represents the normalization factor. The respective
quasienergies are given by

EF = h̄2

2m

N∑
j=1

k2
j + h̄

ξ (T )

T

N∑
j=1

k j − Nh̄
θ (T )

T
. (100)

For convenience, we will indicate the state ũ as
BAS(k1, . . . , kN ), where BAS stands for Bethe Ansatz
State. In order to understand what happens for the N-body
case, it is convenient to start from the two-body problem. In
this case we can write [58]

BAS(k1, k2) = g(x1, x2)θH (x2 − x1) + g(x2, x1)θH (x1 − x2),

(101)

where θH (x) is the Heaviside step function, while

g(x1, x2) =
[

i(k1 − k2) − mλ

h̄2

]
ei(k1x1+k2x2 )

+
[

i(k1 − k2) + mλ

h̄2

]
ei(k2x1+k1x2 ).

Hence, g(x1 + a, x2 + a) = g(x1, x2) eia(k1+k2 ) for generic a,
and the action of the micromotion operator (95) on the BAS
will give the following Floquet modes:

u(t ) = BAS

(
k1 − 1

h̄

∫ t

0
f (τ ) dτ, k2 − 1

h̄

∫ t

0
f (τ ) dτ )

)

× ei(k1+k2 )t[ ξ (T )
T − ξ (t )

t ]e
−i

{
1

mh̄

∫ t
0 dτ[

∫ τ

0 f (τ ′ ) dτ ′]2+2 t
T θ (T )

}
.

(102)

Apart from a phase, the Floquet modes are then Bethe ansatz
states with shifted pseudomomenta. The Floquet states from
Eqs. (23) and (100) read

ψF (t ) = BAS

(
k1 − 1

h̄

∫ t

0
f (τ ) dτ, k2 − 1

h̄

∫ t

0
f (τ ) dτ )

)

× e−i(k1+k2 )ξ (t ) e− i
mh̄

∫ t
0 dτ[

∫ τ

0 f (τ ′ ) dτ ′]2

, (103)

and the total momentum expectation value of the Flo-
quet states is therefore 〈P̂〉F (t ) = h̄(k1 + k2) − 2

h̄

∫ t
0 f (τ ) dτ .

These results may be easily extended to the many-body case.

The Floquet modes can be written as

u(t ) = BAS

(
k1 − 1

h̄

∫ t

0
f (τ ) dτ, . . . , kN − 1

h̄

∫ t

0
f (τ ) dτ )

)

× eit[ ξ (T )
T − ξ (t )

t ]
∑N

j=1 k j

× e
−i

{
N

2mh̄

∫ t
0 dτ[

∫ τ

0 f (τ ′ ) dτ ′]2+N t
T θ (T )

}
, (104)

while the Floquet states read

ψF (t ) = BAS

(
k1− 1

h̄

∫ t

0
f (τ ) dτ, . . . , kN − 1

h̄

∫ t

0
f (τ ) dτ )

)

× e−iξ (t )
∑N

j=1 k j e−i N
mh̄

∫ t
0 dτ[

∫ τ

0 f (τ ′ ) dτ ′]2

. (105)

The total momentum of the Floquet states is then

〈
P̂
〉
F

(t ) = h̄
N∑

j=1

k j − N

h̄

∫ t

0
f (τ ) dτ. (106)

In particular one can calculate the time evolution of a generic
wave packet for this system as

χ (x1, . . . , xN , t ) =
∫

A(k1, . . . , kN ) ψF (t ) dN k, (107)

which is an extension of the one-body equation (24).
It is worth stressing that this is a nontrivial expansion

to evaluate: Indeed, once the initial wave packet has been
chosen at t = 0, one needs to evaluate the time-independent
amplitudes A(k1, . . . , kN ) inverting the integral by multiplying
by ψ∗

F (t ), and then evaluate the N-dimensional integral on the
right-hand side.

V. CONCLUSIONS

In this paper we have studied the effect of a time-dependent
linear external potential on one-dimensional quantum systems
made of one, two, and many particles. The potential could
physically represent a time varying gravitational linear force,
or a time varying electric field acting on the system, therefore
its analysis is interesting in many different contexts. The key
point of our approach has been to solve the problem for a
generic driving function by applying a gauge transformation
on the wave function and a translation over the position vari-
ables. Doing so, we have been able to compute expectation
values for different observables such as the center-of-mass
position of a wave packet and its variance, and the way these
observables depend on time. We have observed that the exter-
nal driving does not affect the spread of a wave packet, which
depends instead only on the interaction effects. This is the
result of the decoupling of the external potential which takes
place already from the two-particle case, due to the linearity of
the potential. This decoupling acts at the level of the center of
mass and relative coordinates and can be observed also in the
behavior of the total energy of the system, which oscillates in
time depending on the form of the driving function f (t ). We
derived expressions for the energy of the state at any time also
for nonperiodic driving function. The system in general does
not conserve the energy, apart from some specific cases, e.g. if
f (t ) is constant in time. However, when f is periodic in time
and its integral on a time period vanishes, plus f (t = 0) = 0,
then the energy at stroboscopic times is conserved (notice
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that, at stroboscopic times, the expectation value of the full
Hamiltonian does not need to be equal to the expectation
value of the Floquet Hamitonian). When f is periodic, but its
integral on a time period is nonvanishing, then the energy at
stroboscopic times is in general not conserved.

For a periodic driving, we have analyzed in detail the
dynamics of the systems. In this case we have employed the
Floquet approach and written down the Floquet Hamiltonian
and the micromotion operator, describing the time evolution
of the system at stroboscopic times and generic intermediate
times, respectively. Our results, as discussed in Sec. IV A,
are valid when the two-body interaction terms depend only
on the relative distance between the particles so that the total
momentum commutes with the undriven Hamiltonian. If the
undriven Hamiltonian is integrable, and obeys such condi-
tions, then, when

∫ T
0 f (τ ) dτ = 0, the Floquet Hamiltonian

is integrable, too. Therefore, our results are valid for any
one-dimensional integrable Hamiltonian on the continuum
including the Gaudin-Yang model for one-dimensional Fermi
gases, integrable Bose-Fermi mixtures, integrable multicom-
ponent Lieb-Liniger Bose gases, and Calogero-Sutherland
models (in the absence of external one-body harmonic po-
tential). It would be of interest to study the integrablity
of the Floquet Hamiltonian and the micromotion opera-
tor for undriven integrable lattice Hamiltonians subjected to
time-periodic linear potentials (or magnetic fields) suitably
extending the method presented here.

If the integral of the driving function on a period of os-
cillation is, on the contrary, nonvanishing, then the Floquet
Hamiltonian can be shown to be time independent and it

contains a linear, constant in time, external potential. In this
case, such a term can be eliminated using the same recipe
of a gauge transformation and a translation over the position
variables. The study whether such Floquet Hamiltonians are
in general formally integrable is a very interesting topic of
future research.

We finally obtained expressions for the Floquet states for
one-, two-, and many-body cases with contact interactions,
where it has been observed that they essentially retain the form
of the eigenfunctions of the original undriven Hamiltonian
with a time-dependent translation over the momenta (or pseu-
domomenta). Our approaches can be applied to any many-
body system where the particles interact with a two-body po-
tential which depends on the difference between particle posi-
tions and are translationally invariant. It would be very inter-
esting to consider the effects of different boundary conditions
on the problem in finite-size systems, and employing a Flo-
quet engineering approach to study ac-Stark shifts and multi-
photon resonances [21] for single- and many-particle systems.
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