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Abstract: Improving pedestrian safety at urban intersections requires intelligent systems that 
should not only understand the actual vehicle–pedestrian (V2P) interaction state but also proac-
tively anticipate the event’s future severity pattern. This paper presents a Gated Recurrent Unit-
based system that aims to predict, up to 3 s ahead in time, the severity level of V2P encounters, 
depending on the current scene representation drawn from on-board radars’ data. A car-driving 
simulator experiment has been designed to collect sequential mobility features on a cohort of 65 
licensed university students who faced different V2P conflicts on a planned urban route. To accu-
rately describe the pedestrian safety condition during the encounter process, a combination of sur-
rogate safety indicators, namely TAdv (Time Advantage) and T2 (Nearness of the Encroachment), 
are considered for modeling. Due to the nature of these indicators, multiple recurrent neural net-
works are trained to separately predict T2 continuous values and TAdv categories. Afterwards, their 
predictions are exploited to label serious conflict interactions. As a comparison, an additional Gated 
Recurrent Unit (GRU) neural network is developed to directly predict the severity level of inner-
city encounters. The latter neural model reaches the best performance on the test set, scoring a recall 
value of 0.899. Based on selected threshold values, the presented models can be used to label pedes-
trians near accident events and to enhance existing intelligent driving systems. 

Keywords: ADAS; traffic safety; surrogate safety measures; driver behavior; Gated Recurrent Units; 
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1. Introduction 
Modern innovations in car-sensing devices, along with the development of deep 

learning techniques and recognition algorithms, has allowed engineers and researchers 
worldwide to implement increasingly reliable Advanced Driver Assistance (ADAS) and 
Automated Driving (ADS) Systems, which are expected to lead toward an improvement 
in road users’ safety levels (reducing the severity of injuries and/or preventing fatalities 
on roads), driving efficiency (e.g., vehicle fuel consumption), and, consequently, the sus-
tainability of transportation infrastructures. The capabilities of modern cars to detect sur-
rounding objects, represent traffic situations, and adapt their dynamic state have been 
enhanced to the point that some car manufacturers have first-ever presented driving au-
tomation systems capable of performing the entire dynamic driving task in a sustained 
manner under specific operating conditions. 

Nevertheless, deaths of vulnerable road users (VRUs) continue to make for a signif-
icant percentage of all road fatalities worldwide [1], and, consequently, more attentive 
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actions are called for attaining the road infrastructure’s sustainability in terms of protect-
ing VRUs. Although active safety systems are not considered driving automation as they 
provide momentary, not sustained, vehicle control intervention during potentially haz-
ardous situations [2], the European New Car Assessment Program (Euro-NCAP), the 
leading NCAP in the world [3], has recently restated the key role of Automatic Emergency 
Braking (AEB) systems in preventing accidents that involve cars and VRUs [4], and it has 
also promoted the further development of intervention-type ADAS to increase the ADS’s 
overall driving automation capabilities. AEB systems are vehicles’ active safety systems 
that assist the driver to avoid potential collisions or mitigate the severity of unavoidable 
impacts [5]. These systems exploit sensors and recognition algorithms to detect vehicles, 
pedestrians, and other objects in the road environment that interact (or could interact) 
with the moving vehicle. If certain safety-critical thresholds for the interaction are ex-
ceeded and the driver does not take any evasive action, AEB systems take active control 
of the brakes and, in some cases, other vehicles’ subsystems (steering wheel, throttle, sus-
pension, etc.), thereby reducing fatalities, severity of injuries, and social costs [5,6]. How-
ever, AEB systems generally consist of three subsystems or levels, namely “perception”, 
“decision making”, and “execution”, which can have quite different performance depend-
ing on the vendor/supplier that has developed it and the sensor technology used to ac-
quire the scene data. For these reasons and to ensure adequate functioning in a wide range 
of traffic scenarios, AEB systems are under continuous development. In addition, some 
researchers have found that if vehicles were capable of understanding and anticipating 
the intentions (or trajectories) of drivers and nearby road users one second in advance, 
most traffic accidents could be prevented [7]. In fact, such a prediction can be exploited to 
make appropriate driving decisions in advance, such as adjusting a vehicle’s trajectory to 
avoid a car-to-pedestrian accident or adapting assistance systems to the driver’s intentions 
(i.e., to determine, in the current situation representation, whether and when to initiate or 
abort an intervention, avoiding unnecessary driving interference). 

Most mass-market ADAS systems do not have a medium-term predictive capability 
of the road users’ intentions [8], as they are designed to act reactively in high-risk situa-
tions (particularly AEB systems). Machine learning (ML) techniques are emerging in the 
ADAS development field as the main approach to motion prediction [9]. In the outlined 
context, ML models must learn from inputs that are time-series, e.g., the current and past 
positions of the traffic participants, and produce outputs that are future sequences. In re-
cent years, Long Short-Term Memory (LSTM) [10] and Gated Recurrent Units (GRU) [11] 
architectures, variants of the more general Recurrent Neural Networks (RNNs), have 
shown excellent efficiency in time-series prediction tasks: these models can capture the 
sequences’ dynamics by extracting relevant information from an arbitrarily long context 
window and retaining a state of that information [12]. Since RNNs variants are currently 
the preferred option for sequential data modeling, relevant LSTM- or GRU-based litera-
ture studies are presented hereafter. 

Existing techniques for learning driver or other road user behavior sequences from 
the set of features acquired by the vehicle sensor system can be divided between two 
methods: classification and regression. Classification problems concern the identification 
of movement intention labels, which are also called “behavior primitives” [13]: these clas-
ses segment complex driving behavior into a sequence of basic elements, such as lane 
keeping, left/right lane change, left/right turn, go straight, or speed maintenance, braking, 
and stopping. In the latter context, Khairdoost et al. [14] implemented a deep learning 
system that can anticipate (by 3.6 seconds on average) driver maneuvers (left/right lane 
change, left/right turn, and go straight), exploiting the driver’s gaze and head position as 
well as vehicle dynamics data. Differently, regression problems are concerned with pre-
dicting the future positions of cars [8], cyclists [15], and pedestrians [16] surrounding the 
ego-vehicle (i.e., the vehicle, also called the “subject vehicle” or “vehicle under test”, 
whose behavior is of primary interest in the traffic scenario), by a general understanding 
of their movement dynamics. Among recent RNNs applications in problems relevant to 
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autonomous vehicle movement within urban settings, Huang et al. [17] encoded temporal 
and spatial interactions between pedestrians in a crowded space by combining an LSTM 
and a Graph Attention Network (GAT) to obtain “socially” plausible trajectories. 

Although several literature studies have attempted to evaluate the trajectories and 
intentions of road users, AEB systems require a Risk Assessment Model (RAM, core ele-
ment of the perception level) that can objectively and quickly capture the risk level of the 
encounter process between the ego-vehicle and a VRU. In fact, an RAM that can fully 
understand the relationships between behavior and risk is essential to adequately judge 
the AEB system’s intervention timing and thus prevent collisions [18]. Risk (or severity) 
level is intended as the potential of an elementary traffic event to become an accident [19]. 
Specifically for vehicle–pedestrian (V2P) encounters in inner-city traffic (i.e., the simulta-
neous arrival of a driver and a pedestrian at the crosswalk or in a specific limited area), 
such process is a traffic event characterized by a continuous interaction over time and 
space between the two road users [20] The pedestrian’s decision to enter the zebra cross-
ing depends on the perceived speed and distance of the approaching vehicle; concur-
rently, the driver evaluates whether to grant or deny the priority to the pedestrian, based 
on the estimated arrival time at the crosswalk. Since the two traffic participants may enter 
a collision course during the encounter process, such a conflict has the potential to end up 
in a collision. For example, the latter would occur if the driver’s attention levels, his/her 
ability to control the vehicle, or the vehicle’s dynamic state were not adequate for a safe 
stopping behavior [21]. 

Many researchers have addressed the issue of risk assessment for pedestrian–vehicle 
interactions both for current and future encounter states (for the latter, on the basis of 
predicted trajectories) [7]. However, the application of traffic safety indicators, also re-
ferred to as Traffic Conflict Techniques (TCTs), has been very successful as a proactive 
surrogate approach (i.e., complementary to accident statistical analysis) for traffic event 
safety assessment, due to its efficiency and short analysis time [22]. There are various con-
tinuous or discrete TCTs for V2P conflicts [23]. Nevertheless, Laureshyn et al. [19] identi-
fied and developed a set of safety indicators to continuously describe the severity level of 
the encounter process and, thus, to relate “individual interactions to the general safety 
situation” of the event. In fact, a single indicator is not sufficient to accurately classify 
interaction patterns into severity categories (i.e., the RAM’s purpose), as it cannot fully 
reflect the current safety situation [23]. Differently, a combination of at least two indicators 
should be considered to properly identify pedestrian “near-accident” [24] situations (i.e., 
the traffic conflicts between safe passages and collisions), which are the most relevant for 
pedestrian-AEB systems (PAEB), using appropriate threshold values on the selected 
TCTs. Among the indicators analyzed by Laureshyn et al. [19], Table 1 provides a detailed 
description of those most relevant to the discussion that follows: Time to Collision (TTC), 
Nearness of the Encroachment (T2), Post-Encroachment Time (PET), and Time Advantage 
(TAdv). 

Upon selecting safety indicators to classify near-accident events, the study by Kathu-
ria and Vedagiri [25] showed that TTC and PET profiles are of equal importance to effec-
tively categorize pedestrian–vehicle interactions at unsignalized intersections into sever-
ity levels when neither pedestrian nor vehicle takes an evasive action. Moreover, Zhang 
et al. [23] trained a GRU neural network to predict near-accident events at signalized in-
tersections using PET and TTC indicators generated from videos captured by fixed cam-
eras. The latter work is also of particular interest, as it represents the first attempt (alt-
hough it was not intended for the development of PAEB systems) to implement a model 
capable of directly predicting the current severity level of V2P interactions, which were 
described by three categories: “serious conflict”, “slight conflict”, and “safe”. However, 
as described previously, the encounter process may have crash potential even though the 
two road users are not on a collision course [19]. Conversely, the TTC calculation requires 
both users to be on a collision course and, thus, limits the events to be consider in safety 
analysis. These findings reveal that V2P encounters are extremely complicated and that, 
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to improve the reliability of RAMs, safety indicators capable of describing the whole en-
counter process as a continuous interplay between vehicle and pedestrian should be con-
sidered. 

The solution to this problem is offered by the supplementary indicators presented by 
Laureshyn et al. [19]: namely, the Nearness of the Encroachment (T2) and the Time Ad-
vantage (TAdv), which broaden the concepts of TTC and PET, respectively, to situations 
in which the two road users are not on a collision course (Table 1). In addition, Borsos et 
al. [26] recently performed a comparison of collision course indicators with indicators that 
include crossing course interactions at signalized intersections, demonstrating that TTC 
and T2 are transferable for crash probability estimation, with stricter threshold values for 
T2. 

Table 1. Definition of TCTs. 

Indicator Definition Type Remarks 

Time to Collision (TTC) 

The time it would take for 
two road users on a collision 

course to collide if they 
maintained their current tra-

jectory and relative speed. 

A set of values continually 
calculated over time 

Among all the pedestrian–
vehicle front-end contact 

points in a collision, the one 
leading to the lowest TTC 

value should be selected. The 
lower the TTC, the higher the 

risk. 

Nearness of the Encroach-
ment (T2) 

The expected time that it 
takes for the second road 

user to arrive at the conflict 
zone. 

A set of values continually 
calculated over time 

At the moment of transfer 
from crossing to collision 

course, T2 provides a smooth 
transition between the two 
situations and equals the 

TTC. 

Post-Encroachment Time 
(PET) 

The time that would elapse 
between the passage of the 

first and the second user 
through the same conflict 

zone. 

A discrete value 
For an encounter, the TAdv 

has a single value that can be 
measured directly. 

Time Advantage (TAdv) 

At any time, it represents the 
expected PET value if the 

road users maintained their 
current trajectory and rela-

tive speed. 

A set of values continually 
calculated over time 

Values above 2–3 s indicate 
that a user has a temporal 

advantage over his opponent 
in a competition over the 
same spatial zone and is 

likely to pass first. 

This paper presents a GRU-based system that predicts, up to 3 s ahead in time, the 
severity level of V2P encounters in inner-city traffic (i.e., encounters between a car and a 
pedestrian on a pedestrian crossing), depending on the current scene representation 
drawn from on-board radars’ data. A car driving simulator experiment has been designed 
to collect sequential mobility features on a cohort of 65 licensed university students and 
generate T2 and TAdv indicators for accurately classifying pedestrian safety conditions 
during the whole encounter process. Based on selected threshold values, the presented 
model could be used to label in advance pedestrians near accident events and to enhance 
existing PAEB systems. So, this might be a relevant contribution to improving the trans-
portation safety. 

Compared to the existing literature that has mainly focused on predicting the trajec-
tories (or intentions) of the ego-vehicle and/or other surrounding road users [9], the de-
veloped approach differs not only by modeling safety parameters directly related to the 
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V2P interaction severity levels but also by the fact that the multi-step-ahead prediction 
depends on a low-dimensional representation of the current situation: the calibrated sys-
tem depends only on six parameters related to driver mobility features and traffic scene 
properties. Indeed, Ortiz et al. [13] proved that there is no need to employ the state of the 
actuators as features for predicting future behavior: the authors have actually predicted 
with simple learning algorithms (i.e., multi-layer perceptron neural networks) the braking 
behavior of drivers approaching a traffic light with very good accuracy at time scales up 
to 3 seconds, using as input features only the ego-vehicle speed, state, and distance to the 
nearby traffic light. In addition, the approach presented in this paper has some aspects in 
common with the research of Zhang et al. [23], but the authors predict the instantaneous 
severity level (based on TTC and PET) of vehicle–pedestrian interactions whose dynamics 
are captured by fixed cameras placed at signalized intersections, whereas the aim of the 
current study is a multi-step-ahead prediction on a running vehicle. 

2. Data Collection 
To meet the purpose of the study, it would require the collection of mobility data on 

several vehicle–pedestrian encounters in real-world urban scenarios. In addition, these 
data must allow for the proper evaluation of interaction safety indicators (especially dur-
ing an online system application) and be easily acquired by on-board sensors (i.e., cam-
eras, pedal potentiometers, IMU, GNSS, or millimeter-wave radars). In particular, the 
analysis of the relevant literature [9] allowed us to identify three main groups of features 
for studying the problem under analysis: the actuators and steering wheel states, the in-
formation about the car dynamics, the pedestrian speed, and the direction vector. To col-
lect this information while keeping drivers safe, a cohort of 65 licensed university students 
was recruited to participate in a driving simulation experiment at the Road Laboratory of 
the Polytechnic Department of Engineering and Architecture (DPIA) of the University of 
Udine. 

The use of advanced driving simulators for the analysis of driver behaviors and the 
development of AEB systems is an accepted and widely recognized practice [27], since the 
driver’s performance observed in driving simulation shows the same patterns as real-
world driving (relative validity) [28]. Saito et al. [29] designed and validated with a driv-
ing simulator a PAEB system that controls vehicle subsystems (brake and accelerator) in 
potentially dangerous or uncertain situations to decelerate the vehicle and maintain a safe 
driving speed. Hou et al. [30], studying the braking behaviors of drivers in typical vehicle-
to-bicycle conflicts with a driving simulator, proposed a method to improve the timing 
and braking phases of bicyclist-AEB systems. Bella et al. [27] recently used a fixed-base 
driving simulator to evaluate the functionality and effectiveness of two types of ADAS 
that provide the driver with an audible alarm and a visual alarm to detect a pedestrian 
crossing into and outside the crosswalk. 

2.1. The Car-Driving Simulator Experiment 
The car-driving simulator at the Road Laboratory (product name AutoSim 1000-M) 

has been already validated and successfully used for studying the drivers’ braking behav-
ior affected by cognitive distractions [21]. The simulator cockpit is made with real car parts 
(e.g., dashboard, steering wheel, pedals, gear lever, handbrake, driver seat, seatbelt) of an 
Italian city car. These are important components of the equipment to give more realistic 
sensations to the driver during the simulation experiment, along with the steering force 
feedback, the engine sound, and the two-degree-of-freedom motion base system that re-
produces the vehicle’s roll and pitch. Three 43-inch LCD screens allow the road scenario 
to be visually reproduced, showing a 180° view. 

In the Lab’s AutoSim 1000-M driving simulator [21], it was possible to record a da-
taset for the GRU models’ development by observing test participants’ behavior toward 
two planned traffic encounters: a boy/girl entering a crosswalk from the curb. The simu-
lated scenes (Figure 1) were set in a typical urban environment on a course that could take 
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about 15 minutes to be completed, considering the 50 km/h speed limit. On the urban 
course, participants experienced many traffic light intersections, tight turns (90°), short 
straight streets, and occasional crossings of pedestrians, some of which occurred outside 
the crosswalks. The encounters that were used to record data (and compute surrogate 
safety indicators for each participant in an offline fashion, following the procedure de-
scribed in Appendix A of the study by Laureshyn et al. [19]) were set on a four-lane road 
(two lanes in each direction), placing traffic signs and markings that met European stand-
ards (Figure 1). 

  
(a) (b) 

Figure 1. Frontal view of simulated scenarios: (a) boy crossing; (b) girl crossing. 

The scenarios were designed as follows: (1) the participant arrives at a red traffic light 
approximately 200 m from the crosswalk, on which he/she has a clear view; (2) as the 
participant starts driving, the pedestrian (initially hidden) walks at a 90° angle toward the 
road and then stops at the edge of the curb; (3) at the moment the vehicle, based on its 
current speed, is about 3 s from the crosswalk, the pedestrian enters the zebra crossing 
and maintains a speed of 1.4 m/s. These conditions, consistent with relevant literature [31], 
require the participant to stop, giving priority to the pedestrian. In this way, the data col-
lected refer to stopping maneuvers that avoided a collision with the pedestrian. 

2.2. Partecipant Statistics and Experimental Procedure 
The students recruited for the experiment were between the ages of 20 and 30, had a 

valid driver’s license, and had driven at least 5000 km in the past year. All participants 
were properly trained in the use of the simulator actuators before the experimental driv-
ing and were able to test their abilities on a simulated suburban course that took approx-
imately 5 minutes. Before the urban driving simulation, each participant filled in a ques-
tionnaire aimed at collecting his/her personal data (e.g., age, driving experience). Con-
versely, at the end of the simulation test, a second questionnaire about the discomfort 
perceived while driving was completed by each participant to identify and remove from 
the cohort those drivers who had experienced excessive annoyance. The simulation test 
procedure just presented has been drawn from relevant literature that provided for its 
validation [21,27,31]. The recruited cohort includes 19 females and 41 males, with a mean 
age of 24.0 (SD 3.43) and 24.1 (SD 1.91) years and a mean non-verbal intelligence quotient 
(IQ) [32] of 33.4 (SD 2.50) and 33.9 (SD 1.66), respectively. Therefore, the sample of males 
and females can be considered roughly balanced for age and IQ. However, the original 
cohort had an additional five participants who were excluded from the analyses, as they 
could not complete the experiment due to excessive discomfort. 

It is worth pointing out that participation in the experiment was voluntary, there was 
no monetary reward, and all participants gave informed consent after being instructed on 
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the simulated driving test procedure. Conversely, they were not informed about the ob-
jectives of the research. Finally, the study has been conducted in accordance with the Dec-
laration of Helsinki, and the protocol was approved by the Local Ethics Committee of 
Udine’s University (Progetto_Guida). 

2.3. Problem Formulation 
Formally, the severity prediction system has to perform a mapping between the sit-

uation representation at the current driving time 𝑡𝑡, i.e., the real-time scene properties and 
vehicle status described by a set of sensor-observed features, and the expected severity 
level of the vehicle–pedestrian encounter, which is defined by T2 and TAdv, for times 
𝑡𝑡+1s, 𝑡𝑡+2s, and 𝑡𝑡+3s. In practice, a learning algorithm is trained to accurately predict the 
surrogate safety indicators at instants 𝑡𝑡 −2s, 𝑡𝑡 −1s, and 𝑡𝑡 using the vehicle sensing sys-
tem observations available at instant 𝑡𝑡-3s. Once the expected convergence between pre-
dicted outputs and ground-truth targets is reached, the trained model represents the de-
sired medium-term prediction system and can be used to make forward-in-time predic-
tions based on the current scene representation. It is assumed that the input features can 
all be acquired simultaneously and at a regular time interval given by the lowest sampling 
frequency among those of the involved sensors, since the goal is to perform real-time pre-
diction on running vehicles. However, considering that the current study is based on a 
driving simulator experiment, the calculation of surrogate safety indicators for each par-
ticipant and the training of the learning algorithm were both performed in an offline fash-
ion (please refer to Appendix A of the study by Laureshyn et al. [19]) at the end of the 
driving experiments. 

2.4. Low-Dimensional Input Representation 
The coordinate system established for the vehicle sensing system is shown in Figure 

2. The following features form the six components of the learning model input vector and 
describe the V2P interaction process at the current time 𝑡𝑡 for each participant in the ex-
perimental data set: driver’s behavior primitive 𝐴𝐴(𝑡𝑡), current 𝑇𝑇2(𝑡𝑡) value, ego-vehicle’s 
speed 𝑣𝑣𝑣𝑣(𝑡𝑡), pedestrian’s speed 𝑣𝑣𝑝𝑝(𝑡𝑡), and position vector (𝑟𝑟0(𝑡𝑡),𝜙𝜙(𝑡𝑡)). 

 
Figure 2. Ego-vehicle coordinate system. 

Behavior primitives are the set of elementary behaviors into which the driver’s ap-
proaching maneuver (in the longitudinal dimension of the event) can be segmented based 
only on speed, gas pedal, and brake pedal information [13]. These data, easily acquired 
on modern vehicles (e.g., by means of pedal potentiometers, IMU, GNSS), are processed 
to define a categorical variable whose values, in the case of V2P conflicts, are 0 for 
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“stopped behavior”, 1 for “braking behavior”, and 2 for “maintaining speed behavior”. 
Based on the study by Ortiz et al. [13], the parts of the stream wherein the vehicle speed 
𝑣𝑣𝑣𝑣 is less than 2 km/h (about 0.56 m/s) are labeled “stopped”. The “braking” behavior 
begins at the moment the driver releases the gas pedal completely, since in urban traffic, 
this condition represents the beginning of slowing down in response to an event. All other 
moments in the stream that do not belong to the two illustrated categories are labeled as 
“maintaining speed”. The categorical variable of behavior primitives represents im-
portant information for the GRU model, as it allows the sequence of mobility features to 
be segmented according to the current driver behavior. Similarly, the current value of T2, 
which can be calculated directly using the other features as shown by Laureshyn et al. 
[19], is of high importance, since neurosciences indicates that the human brain relies 
closely on judgments of TTC (and, consequently, of T2, since the two indicators are trans-
ferable [26]) to perform coordinated action [33]. 

Position vector components are the azimuth angle 𝜙𝜙 of the pedestrian with respect 
to the travel direction and the distance 𝑟𝑟0 between the ego-vehicle (point A or C) and the 
pedestrian (point B, please see Figure 2). Specifically, 𝑣𝑣𝑝𝑝, 𝑟𝑟0, and 𝜙𝜙 are the pedestrian 
state data acquired by millimeter-wave radars mounted on the vehicle front end (points 
A and C, Figure 2). In fact, since the detection of the pedestrian presence in the scene is 
usually performed using robust frame classification algorithms on vehicle camera videos 
[34], the status of the detected pedestrian can be easily acquired by radars: in this study, 
we assumed data acquisition equipment consisting of a long-distance millimeter-wave 
radar installed at the center of the vehicle front end and a mid-range radar on either side 
of the vehicle front, with maximum detection distances of 100 m and 50 m and azimuth 
angles of ±10° and ±45°, respectively, to ensure the optimal scene coverage [18]. Compared 
to video sensors that require object tracking and perspective transformation after object 
detection to generate the trajectory profiles of VRUs in time-series [23], radars allow the 
direct and continuous acquisition of pedestrian mobility features [18]. However, the use 
of cameras is essential for pedestrian detection in the traffic scene; in this regard, for the 
further online analysis of the proposed system, the use of the state-of-the-art Mask R-CNN 
(Region-based Convolutional Neural Network) [35] is recommended to ensure high per-
formance of the automated object detection process. 

Therefore, time sequences of participants’ maneuvers begin with the detection of the 
pedestrian’s status from the long-distance radar, approximately 100 m from the cross-
walk, assuming the simultaneous recognition of the pedestrian’s presence by the ego-ve-
hicle detection model. Time sequences end when the first road user (the pedestrian) leaves 
the conflict zone or the second road user (the driver) comes to a complete stop, and none 
of the TCTs can be calculated (since the collision is no longer possible). Furthermore, alt-
hough the sampling rate of radars (e.g., the current 77 GHz band millimeter-wave radar) 
is 20 Hz, we assumed that the encounter process is recorded at 10 Hz to account for limi-
tations of other on-board equipment and raw data processing times. 

2.5. Safety Indicators and Severity Classes Generations 
Regarding the model output vector, we decided to split the severity level prediction 

problem into single-output learning tasks: T2 continuous values and TAdv categories were 
the learning target of two distinct GRU models. Although both safety indicators can be 
calculated continually over time, TAdv does not provide the same smooth transfer be-
tween crossing and collision courses as T2: conversely, it quickly goes to zero and holds 
that value as long as the two road users remain on a collision course (since, by definition, 
TAdv cannot take on negative values). After the change from collision to crossing courses 
due to the driver’s braking or slowing down, the TAdv value starts gradually growing. 
Such a behavior induces singularities in the TAdv pattern during the maneuver (i.e., if 
TAdv is plotted on a graph as a function of time, it will not make a continuous curve), 
which are difficult to capture with ML regression techniques, unless overfitting the model. 
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To avoid running into such problems, TAdv values less than 1s have been labeled as “col-
lision course” and those greater than 1s have been labeled as “crossing course”, since this 
indicator can be interpreted as the minimal delay of the driver that, if applied, will result 
in a collision course [19]. Conversely, T2 is defined by a continuous curve over time and 
provides information about how soon the encroachment will occur. Thus, the TAdv pre-
diction is treated as a binary classification problem, whereas the T2 prediction represents 
a regression problem. 

After training these models separately, their predictions were used to classify conflict 
interactions ahead in time, distinguishing between “safe” and “unsafe” processes. These 
categories have been defined according to the static threshold values reported in the liter-
ature [23,26,36,37] and the conditions under which the simulation experiment was per-
formed [31]: when the TAdv class is “collision course” and the T2 value is less than 3 s 
over the same time horizon, the interaction is defined as “unsafe”; in all other cases, it is 
considered “safe”. Additional intermediate classes have been avoided (e.g., the case 
wherein TAdv is reporting “collision course” but the T2 value is greater than 3 s), since 
the main interest is to detect actual hazard situations or “serious conflict” iterations ahead 
of time (i.e., before they happen) [23]. By comparing the models’ results with the ground-
truth targets, it was possible to evaluate the effectiveness of the proposed system in clas-
sifying pedestrian’s near-accident events. However, an additional GRU neural network 
has been developed to directly predict the severity level of V2P encounters to verify which 
of the proposed models would guarantee the best classification performance. 

It is worth recalling that the procedure reported in Appendix A of the study by Lau-
reshyn et al. [19] has been applied for the offline calculation of TCTs. In addition, the di-
mensions of the simulated vehicle were considered in calculations so that, among all the 
pedestrian–vehicle front-end contact points in a potential collision, the one leading to the 
lowest T2 and TAdv values has been selected. Then, the obtained values were time-trans-
lated (by 1, 2, and 3 s backward) to compose the ground-truth target matrix. 

Finally, before being inputted to the GRU, each feature (and target) was standard-
ized; i.e., it was subtracted by its minimum value and divided by the distance between its 
minimum and maximum value computed on the training set, to remain in an acceptable 
range with respect to the activation functions. 

3. Methodology 

3.1. Gated Recurrent Unit (GRU) 
Due to their extended success in many time-series applications [38–43], RNNs were 

employed to implement the proposed learning system. In particular, the GRU architecture 
was selected because of its increased robustness with respect to vanilla RNNs and of its 
expressive power that matches the more sophisticated LSTM networks, but which is 
achieved with less training effort. 

The working mechanism of GRU networks is now described generally [11,12]. Based 
on the input feature vector input and previous output, each GRU learning neuron per-
forms different operations using so-called “gate” operators. The “update” gate decides 
the amount of past information to be forwarded to the future, while the “forget” gate fo-
cuses on which part of the past information to forget. In more detail, let us suppose 𝑥𝑥𝑡𝑡 to 
be the feature vector available at the 𝑡𝑡 step of the time-series, ℎ𝑡𝑡 to be the hidden state, 
and 𝑦𝑦𝑡𝑡 to be the output vector. These vectors are used by the GRU in the following oper-
ations: 

𝑧𝑧𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑧𝑧𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑧𝑧ℎ𝑡𝑡−1) (1) 

𝑓𝑓𝑡𝑡 = 𝜎𝜎�𝑊𝑊𝑓𝑓𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑓𝑓ℎ𝑡𝑡−1� (2) 

ℎ�𝑡𝑡 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ�𝑊𝑊𝑐𝑐𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑐𝑐(𝑟𝑟𝑡𝑡 ⊙ ℎ𝑡𝑡−1)� (3) 
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ℎ𝑡𝑡 = (1 − 𝑧𝑧𝑡𝑡) ⊙ℎ𝑡𝑡−1 + 𝑧𝑧𝑡𝑡 ⊙ ℎ�𝑡𝑡 (4) 
which are applied for all the temporal states 𝑡𝑡 happening during the series, i.e., from 𝑡𝑡 =
0 to 𝑡𝑡 =  𝑇𝑇 with 𝑇𝑇 being the series length (at 𝑡𝑡 = 0, ℎ0 is set to be a zero vector). The 
before mentioned “update” gate and “forget” gate are implemented by Equations (1) and 
(2) respectively. 𝑊𝑊𝑧𝑧, 𝑈𝑈𝑧𝑧, 𝑊𝑊𝑓𝑓, 𝑈𝑈𝑓𝑓, 𝑊𝑊𝑐𝑐, and 𝑈𝑈𝑐𝑐 are weight vectors that are optimized dur-
ing the training phase of the GRU, 𝜎𝜎(∙) is an activation function that is implemented as a 
sigmoid, while ⊙ is the element-wise product. For a better comprehension, the flow of 
operations is visualized in Figure 3. 

 
Figure 3. Schematic representation of the operation flow performed by a GRU cell. 

These particular operations allow a network to produce more meaningful gradients 
than vanilla RNNs during the learning phase, ultimately making GRUs acquire enhanced 
long-term relations between features. To additionally improve the quality and abstract-
ness of such feature relations, the learning model can be organized as stacked layers of 
GRUs. 

In the setting of this work, a GRU composed of two layers each with 𝑁𝑁 neuron cells 
has been used. The first GRU layer receives in input the feature vector 𝑥𝑥𝑡𝑡 =
�𝐴𝐴(𝑡𝑡),𝑇𝑇2(𝑡𝑡), 𝑣𝑣𝑣𝑣(𝑡𝑡), 𝑣𝑣𝑝𝑝(𝑡𝑡), 𝑟𝑟0(𝑡𝑡),𝜙𝜙(𝑡𝑡)�, which is the sensory information (described in Section 
2.4) available at the temporal step 𝑡𝑡 of the time-series representing the driver’s maneuver. 
At the same temporal step, the second GRU layer gets the feature representation output-
ted by the first GRU layer. After those, a final dense output layer with as many neurons 
as the outputs was applied to predict the target values. Overall, the role of the GRU layers 
is to abstract a meaningful representation that summarizes the driver’s maneuver up to 
time-step 𝑡𝑡. In turn, such higher-level features are exploited by the output layer that pro-
duces the predicted future T2 and TAdv states. 

3.2. Implementation Details 
In this section, the details of the implemented procedure to train the proposed GRU 

model are given. 
A grid search strategy was employed to determine the most important architectural 

and training hyperparameters such as the number of neurons 𝑁𝑁 of the GRU, the learning 
rate values, and the learning rate drop factor [44]. The first was tried across the values 64, 
128, and 256, the second among 0.05, 0.01, and 0.005, and the third one considering the 
values 0.40, 0.60, and 0.80 [23]. For each iteration of the grid search, a k-fold cross-valida-
tion procedure with five folds was implemented to get the best configuration of the model 
across different distributions of the employed dataset. In each fold, the full dataset was 
split subject-wise in training and test sets using a 4:1 ratio, resulting in 68 subjects for 
training and 17 for testing. For the T2 task, the model has been trained to minimize the 
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RMSE between its predictions and the ground-truth T2 targets. For the TAdv task instead, 
the GRU model was optimized by the minimization of the Binary Cross Entropy loss com-
puted between the model’s predictions and TAdv ground-truth categorizations. For all 
the experiments, the learning procedure has been conducted for 1000 epochs using the 
Adam optimizer [45]. A weight decay with a factor of 0.0005 was added as a regularization 
term. The initial learning rate was decayed by the considered values every 50 epochs. A 
Synthetic Minority Over-Sampling Technique (SMOTE) [46] has been implemented to im-
prove the performance of the model with respect to the test data distribution. This proce-
dure generates new samples of the minority class by interpolating their features. For this 
work, SMOTE allowed achieving a 1:1 ratio between majority and minority classes that 
initially was 3:1. Finally, after each epoch, the model was executed on the validation set 
to assess its generalization capabilities to new maneuvers. The model obtaining the lowest 
loss function score on such tests, hence the most general one, was retained as the final 
learned model. 

4. Results 

The aim of this study was to develop a GRU model that could predict, up to 3 s ahead 
in time, the level of severity of vehicle–pedestrian encounters in inner-city traffic. In this 
regard, two equivalent approaches have been identified [9], i.e., (1) using multiple GRUs 
to separately model the supplementary safety indicators (T2 and TAdv) that allow the in-
teraction severity to be estimated, or (2) using a single Recurrent Neural Network as a 
sequence classifier to directly label near-accident events, based on relevant mobility fea-
tures of V2P encounters. It is worth pointing out that although the two approaches con-
sidered are equivalent from the standpoint of the final outcome (i.e., the prediction of se-
verity levels ahead in time), Approach (1) would allow more flexibility in labeling the 
pedestrian’s near-accidental events, since TCTs’ threshold values that are different from 
those considered in this study could be selected to classify the risk level of V2P interac-
tions (e.g., using specific threshold values for geographic contexts of system operation, 
which are derived from studies of local/national driving behaviors) [23]. In what follows, 
we refer by the acronyms GRUT2 and GRUTADV to the GRU models predicting T2 and TAdv, 
respectively. Differently, to make the comparison between the two approaches presented 
previously, the severity classification model resulting from Approach (1) is presented as 
M-GRUSL, whereas that of Approach (2) is presented as S-GRUSL. 

In this section, the generalization capabilities of the trained models are evaluated for 
each time horizon (i.e., 1 s, 2 s, 3 s ahead) based on commonly used evaluation metrics, 
which are different for classification (i.e., Accuracy, Precision, Recall, Specificity, False 
Alarm Rate (FAR), and Area Under the Curve (AUC)) and regression problems (i.e., Mean 
Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Root Mean Squared Er-
ror (RMSE)), and averaging their scores over the five test folds. These metrics are briefly 
presented throughout the discussion to make the models’ evaluation clearer to the reader; 
however, more detailed descriptions can be found in [9,23,47]. Moreover, to prevent pre-
dictions from reacting with a delay especially for longer time horizons [8], an additional 
metric to evaluate T2’s time-series regression, which is usually applied in multi-step-ahead 
prediction problems [47], has been considered, namely the Modified Index of Agreement 
(𝑚𝑚𝑚𝑚) [48]. In fact, 𝑚𝑚𝑚𝑚 is able to concurrently consider differences in observed and pre-
dicted means and variances, providing a better evaluation of model predictions than tra-
ditional metrics. 

After comparing the models’ performance under different hyperparameter combina-
tions, the most appropriate values for each GRU model have been selected: the initial 
learning rate is set to 0.001 for the GRUTADV model and 0.005 for both GRUT2 and S-GRUSL 
models, whereas the learning rate drop factor is 0.8 for all considered models. The unit 
number 𝑁𝑁 within the GRU memory is 64 for GRUT2, 256 for GRUTADV, and 128 for S-
GRUSL. Tables 2 and 3 present the evaluation metrics scores, validated on the five test 
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folds, distinguishing by model and prediction time horizon (standard deviations on the 
five folds are shown in brackets). In addition, Figure 4 presents the empirical cumulative 
distribution probability (ECDP) of the absolute prediction error over each fold for the 
GRUT2 model. Conversely, Figures 5 and 6 show the Receiver Operating Characteristic 
curve (ROC) for the GRUTADV and S-GRUSL models, respectively. This curve, which plots 
recall as a function of FAR, is a comprehensive metric to evaluate classification models’ 
performance [23], since the closer the area under the ROC curve (AUC) is to 1, the better 
the prediction quality. Finally, Table 4 summarizes the performance of the severity classi-
fication models, M-GRUSL and S-GRUSL, averaging the test results over folds and time ho-
rizons. 

Table 2. Experimental results (means and standard deviations) for T2 and TAdv models. 

GRUT2 Train Set Test Set      
Horizons RMSE MAE MAPE RMSE 𝒎𝒎𝒎𝒎   

1s 0.282 (0.017) 0.221 (0.024) 4.539 (0.371) 0.327 (0.033) 0.943 (0.003)   
2s 0.386 (0.014) 0.319 (0.029) 6.617 (0.437) 0.465 (0.042) 0.902 (0.007)   
3s 0.497 (0.036) 0.415 (0.034) 9.048 (0.483) 0.587 (0.054) 0.852 (0.007)   

GRUTADV Train Set Test Set      
Horizons AUC Accuracy Precision Recall Specificity FAR AUC 

1s 0.997 (0.001) 0.974 (0.003) 0.919 (0.017) 0.914 (0.023) 0.985 (0.004) 0.015 (0.004) 0.997 (0.001) 
2s 0.995 (0.001) 0.968 (0.004) 0.892 (0.027) 0.902 (0.020) 0.980 (0.005) 0.020 (0.005) 0.994 (0.001) 
3s 0.992 (0.002) 0.962 (0.007) 0.880 (0.029) 0.874 (0.054) 0.978 (0.006) 0.022 (0.006) 0.991 (0.004) 

Table 3. Experimental results (means and standard deviations) for severity classification models. 

 M-GRUSL Test Set      
 Horizons Accuracy Precision Recall Specificity FAR  
 1s 0.971 (0.003) 0.879 (0.049) 0.844 (0.068) 0.986 (0.006) 0.014 (0.006)  
 2s 0.967 (0.005) 0.884 (0.052) 0.792 (0.107) 0.987 (0.007) 0.013 (0.007)  
 3s 0.958 (0.009) 0.873 (0.036) 0.700 (0.095) 0.988 (0.002) 0.012 (0.002)  

S-GRUSL Train Set Test Set      
Horizons AUC Accuracy Precision Recall Specificity FAR AUC 

1s 0.998 (0.001) 0.984 (0.004) 0.932 (0.029) 0.917 (0.042) 0.992 (0.005) 0.008 (0.005) 0.998 (0.001) 
2s 0.997 (0.001) 0.981 (0.006) 0.911 (0.043) 0.907 (0.027) 0.989 (0.006) 0.011 (0.006) 0.997 (0.002) 
3s 0.996 (0.002) 0.974 (0.006) 0.887 (0.038) 0.873 (0.057) 0.987 (0.006) 0.014 (0.006) 0.995 (0.002) 

Table 4. Test results comparison between severity classification models. 

Test Results Comparison 
Mean Values over Time Windows and Folds (and Standard Deviations) 

Accuracy Precision Recall Specificity FAR AUC 
M-GRUSL Performance 0.965 (0.008) 0.879 (0.043) 0.779 (0.105) 0.987 (0.005) 0.013 (0.005) - 
S-GRUSL Performance 0.980 (0.006) 0.910 (0.039) 0.899 (0.045) 0.989 (0.006) 0.011 (0.006) 0.996 (0.002) 
Percentage Variation +1.55% +3.53% +15.40% +0.20% −15.38% - 

As expected, the quality of predictions increases if the time horizon decreases, no 
matter which model is considered. This result suggests that there is a strong correlation 
between the selected mobility features at time 𝑡𝑡 and the desired target at time 𝑡𝑡+1. In 
contrast, this correlation becomes weaker for longer time horizons, and as a result, distin-
guishing the expected target becomes more difficult. For example, considering the GRUT2 
model (Table 2), all evaluation metrics get slightly worse as the time-step gets longer both 
in training and testing stages. However, focusing on the test RMSE (column 5, Table 2), 
i.e., the square root of the mean squared difference between predicted and observed val-
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ues, its worsening is characterized by a deviation close to one-tenth of a second: the max-
imum deviation, equal to 0.138 s, is measured moving from the 1s (RMSE = 0.327 s) to the 
2s (RMSE = 0.465 s) prediction time-frame, whereas the prediction quality worsens by 
0.122 moving from 2 s to 3 s (RMSE = 0.587 s). Therefore, the results obtained are on the 
whole satisfactory, as also shown by the other parameters: the test MAE (column 3, Table 
2), i.e., the mean absolute error, was on each time scale less than half a second; the 90th 
percentile of the absolute error (Figure 4), i.e., the value of the prediction error (in absolute 
value) which is exceeded in no more than 10% of time sequences, is equal to 0.472 s (aver-
aged over the five folds) at the 1 s, 0.696 s at the 2 s, and 0.967 s at the 3 s prediction time-
frame; the 𝑚𝑚𝑚𝑚 parameter is always greater than 0.850 whatever the prediction time hori-
zon, proving the close agreement between the observed and forecast curves. 

 
(a) (b) (c) 

Figure 4. Cumulative distribution probability of absolute prediction errors over the five test folds: (a) 1 s; (b) 2 s; (c) 3 s 
ahead. 

 
(a) (b) (c) 

Figure 5. Receiver Operating Characteristic curves of the GRUTADV model for each test fold: (a) 1 s; (b) 2 s; (c) 3 s ahead. 
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(a) (b) (c) 

Figure 6. Receiver Operating Characteristic curves of the S-GRUSL model for each test fold: (a) 1 s; (b) 2 s; (c) 3 s ahead. 

Regarding the prediction quality of classification models, it is first necessary to re-
mind the reader that in a binary classification problem, samples are labeled as positive 
and negative so that evaluation metrics can be computed through the confusion matrix. 
The latter is a representation of the model’s classification accuracy, since it makes clear 
whether the system is mislabeling one class with another: each row of the confusion ma-
trix represents the instances in an actual class, whereas each column represents those in a 
predicted class. Thus, the number of “true positives” (correctly classified positives), “true 
negatives” (correctly classified negatives), “false positives” (actual negatives classified in-
correctly), and “false negatives” (actual positives classified incorrectly) can be defined. 
For a better understanding, a schematic representation of the confusion matrix is shown 
in Figure 7. 

 
Figure 7. Schematic representation of the confusion matrix. 

To properly evaluate the TAdv classification model, samples in the “collision course” 
class have been labeled as positives. Thus, the recall (column 5, Table 2) of the GRUTADV 
model, representing the proportion of actual positive samples classified correctly, proves 
that the system is able to predict very accurately (values are greater than 0.870) whether 
the V2P interaction is moving or not moving on a collision course, whatever the prediction 
time-frame (despite the slight worsening discussed previously). Similarly, the AUC val-
ues (last column of Table 2), greater than 0.995 at each time horizon, confirm the high 
accuracy of the binary classifier. Differently, Figure 5 shows the effect of data distribution 
variability over the folds by ROC curves: as the time window gets longer, differences be-
tween folds are more evident, i.e., data distribution becomes sparser, and the model loses 
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slightly in generalization capability. However, the performance is still more than accepta-
ble. 

For the S-GRUSL model and the combined M-GRUSL model, samples within the “un-
safe” severity class have been labeled as positives. In the following, since the AUC calcu-
lation for a model that results from the combination of two GRU subsystems cannot be 
performed, the comparison between Approaches (1) and (2) is mainly based on accuracy 
and recall metrics (columns 3 and 5 of Table 3). Analysis of results on the test set shows 
an improved ability of the S-GRUSL model to label serious conflict interactions in near-
accident events, especially over longer prediction timeframes. The accuracy of the S-
GRUSL model, i.e., the proportion of samples (positive and negative) classified correctly 
among all samples, is always higher than 0.970 on each timescale in contrast to the M-
GRUSL model, which only on the shortest time frame (1 s) reaches the value of 0.971. The 
situation gets even worse for the M-GRUSL model to the advantage of the S-GRUSL model 
in terms of recall (columns 5, Table 3). In fact, the percentage gain in recall score (+15.40%, 
fourth column of Table 4) by moving from the M-GRUSL to S-GRUSL model is noteworthy. 

These results show that the combined model, due to the nonlinear error propagation 
from the single models (GRUT2 and GRUTADV), fails to generalize satisfactorily (as also ev-
idenced by the standard deviations over folds) and performs significantly lower than S-
GRUSL. This finding is not trivial since, in many multi-step-ahead prediction problems, 
complex models (e.g., multiple GRUs) have performed better than equivalent simple 
models, such as a single GRU [9]. 

In conclusion, despite the good results obtained in individual modeling of the T2 and 
TAdv safety parameters, the S-GRUSL model achieved the best performance, with an ac-
curacy of 0.980, recall of 0.899 and AUC of 0.996 (averaged over the time windows and 
folds, Table 4) in predicting near-accidental events of V2P encounters. 

5. Conclusions 
In this study, it has been shown that a simple Deep Learning system, based on GRU 

cells, can predict ahead in time changes in the severity level of V2P encounters in inner-
city traffic. The proposed system uses a gradient-descent optimizer to learn how to label 
V2P interaction severity by exploiting individual driving features and traffic scene prop-
erties. Such an approach differs from previous studies in the two TCTs considered to clas-
sify the pedestrian’s near-accident events, namely T2 and TAdv, which can be computed 
either when the road users are on a crossing or a collision course. The trained model, 
which directly predicts the severity level class (i.e., “safe” or “unsafe”) up to 3 s ahead in 
time, provides satisfactory and promising results (accuracy = 0.980, recall = 0.899, and 
AUC = 0.996) for enhancing current PAEB systems. In fact, the proposed system could be 
applied to warn drivers of the anomalous or hazardous interaction with a pedestrian, to 
anticipate a braking maneuver, as well as to enhance vehicle deceleration, with the aim of 
pursuing an improvement in transportation safety, with regard to pedestrians, within the 
inner-city traffic. 

6. Future Research 
Future research perspectives opened by the current study include (1) comparing the 

presented multi-step-ahead prediction system to a physical trajectory prediction system; 
(2) generalizing the proposed GRU models to different and more complex encounter sce-
narios; (3) modifying the system for online learning and operation; and (4) validating the 
prediction system with data acquired during real vehicle–pedestrian encounters. 

Indeed, a more thorough baseline for comparing the presented approach with those 
most widely used in the literature should first be established. Further research efforts are 
also needed on a wider cohort of drivers, as well as on different drivers’ groups (such as 
young inexperienced drivers, experienced and expert drivers, older drivers, etc.), in dif-
ferent urban environments and driving situations to consider as many behavioral compo-
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nents (such as aggressiveness and anxiety) and interaction patterns as possible. Well be-
fore the online system validation (i.e., the validation of the calibrated system on data ac-
quired in the real-world scenarios), it will be necessary to integrate the risk assessment 
model (e.g., the S-GRUSL) with an automated object detection system (e.g., the Mask R-
CNN) and test their coordinated real-time operation (along with the car sensing system) 
in collecting reliable mobility data during driving simulations in both simple and complex 
urban scenarios. At this stage, there may be a need to introduce specific learning subsys-
tems for the evaluation of the more complex scenarios (e.g., the ego-vehicle’s concurrent 
interaction with surrounding vehicles and pedestrians), along with a method to merge the 
predictions given by each subsystem. The further transition to a real vehicle application 
will require an additional functional requirement: although the risk assessment model 
(i.e., the presented prediction system) is essential for the good functional safety of an 
PAEB system, the key to achieving active pedestrian collision avoidance is to control the 
vehicle dynamics. For this purpose, it will be mandatory to design the upper- and lower-
layer controllers which, after receiving the control signal (i.e., the likely occurrence of a 
collision) from the RAM, are in charge of outputting the deceleration value required for 
safe stopping and controlling the vehicle subsystems (i.e., throttle opening and brake line 
pressure regulation) to realize the control of the actual vehicle deceleration, respectively. 
The control strategy proposed by Yang et al. [18], based on fuzzy neural network and PID 
(Proportional Integral Derivative controller) theory, could represent a handy reference for 
the implementation of control modules. Thereafter, using a properly equipped vehicle, 
the developed automatic emergency braking pedestrian collision avoidance system will 
have to be online validated in vehicle–pedestrian test scenarios established by the Euro-
NCAP standards [49]. 

In conclusion, this research represents a valuable contribution to the study, under-
standing, and knowledge of the interaction processes between road users in an urban en-
vironment and, consequently, to improving the sustainability of transportation infrastruc-
tures. 

Author Contributions: Conceptualization, M.M., M.D., C.M., A.M. and N.B.; methodology, M.M., 
M.D., C.M., A.M. and N.B.; software, M.M. and M.D.; validation, M.M., M.D., C.M., A.M. and N.B.; 
formal analysis, M.M.; investigation, M.M.; resources, N.B.; data curation, M.M.; writing—original 
draft preparation, M.M. and M.D.; writing—review and editing, M.M., M.D., C.M., A.M. and N.B.; 
visualization, M.M., M.D., C.M., A.M. and N.B.; supervision, M.M., M.D. and N.B.; project admin-
istration, N.B. and A.M.; funding acquisition, N.B. All authors have read and agreed to the pub-
lished version of the manuscript. 

Funding: The APC was partly funded by the Department of Engineering and Architecture (DIA), 
University of Trieste, within the framework of the Research Doctorate in Civil-Environmental En-
gineering and Architecture, Cycle XXXIV, A.Y. 2020-2021 (U-GOV codes: 3DOTT10-MIANI-2020, 
D13-CONTR-ACCESSO).  

Data Availability Statement: The data that support the findings of this study are available from the 
corresponding authors upon reasonable request. 

Acknowledgments: Special thanks go to the students at the University of Udine who participated 
in the presented research project. 

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the 
design of the study; in the collection, analyses, or interpretation of data; in the writing of the manu-
script, or in the decision to publish the results. 

References 
1. Centers for Disease Control and Prevention, 2020: “Road Traffic Injuries and Deaths—A Global Problem”. Available online: 

https://www.cdc.gov/injury/features/global-road-safety/index.html (accessed on 19 August 2021). 
2. Shi, E.; Gasser, T.; Seeck, A.; Auerswald, R. The Principles of Operation Framework: A Comprehensive Classification Concept 

for Automated Driving Functions. SAE Intl. J CAV 2020, 3, 27–37. https://doi.org/10.4271/12-03-01-0003. 



Sustainability 2021, 13, 9681 17 of 18 
 

3. Large, D.; Cieslik, I.; Kovaceva, J.; Bruyas, M.P.; Kunert, M.; Krebs, S.; Arbitmann, M. Improving the effectiveness of active 
safety systems to significantly reduce accidents with vulnerable road users-the Project PROSPECT (Proactive Safety for Pedes-
trians and Cyclists). In Proceedings of the 26th Enhanced Safety of Vehicles (ESV) Conference, Eindhoven, The Netherlands, 
10–13 June 2019; pp. 1–16. 

4. Euro NCAP, 2018: “2020 ROADMAP”. Available online: https://www.euroncap.com/en/about-euro-ncap/timeline/ (accessed 
on 19 August 2021). 

5. Rosen, E.; Kallhammer, J.E.; Eriksson, D.; Nentwich, M.; Fredriksson, R.; Smith, K. Pedestrian injury mitigation by autonomous 
braking. Accid. Anal. Prev. 2010, 42, 1949–1957. https://doi.org/10.1016/j.aap.2010.05.018. 

6. Badea-Romero, A.; Paez, F.J.; Furones, A.; Barrios, J.M.; de-Miguel, J.L. Assessing the benefit of the brake assist system for 
pedestrian injury mitigation through real-world accident investigations. Saf. Sci. 2013, 53, 193–201. 
https://doi.org/10.1016/j.ssci.2012.10.004. 

7. Wu, R.; Zheng, X.; Xu, Y.; Wu, W.; Li, G.; Xu, Q.; Nie, Z. Modified Driving Safety Field Based on Trajectory Prediction Model 
for Pedestrian–Vehicle Collision. Sustainability 2019, 11, 6254. https://doi.org/10.3390/su11226254. 

8. Altché, F.; de La Fortelle, A. An LSTM network for highway trajectory prediction. In Proceedings of the 20th IEEE International 
Conference on Intelligent Transportation Systems, Yokohama, Japan, 16–19 October 2017; pp. 353–359. 
https://doi.org/10.1109/ITSC.2017.8317913. 

9. Mozaffari, S.; Al-Jarrah, O.Y.; Dianati, M.; Jennings, P.; Mouzakitis, A. Deep Learning-Based Vehicle Behavior Prediction for 
Autonomous Driving Applications: A Review. arXiv preprint 2020, arXiv: 1912.11676. 

10. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. 
https://doi.org/10.1162/neco.1997.9.8.1735. 

11. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. 
arXiv preprint 2014, arXiv:1412.3555. 

12. Lipton, Z.C.; Berkowitz, J.; Elkan, C. A Critical Review of Recurrent Neural Networks for Sequence Learning. arXiv preprint 
2015, arXiv:1506.00019. 

13. Ortiz, M.G.; Fritsch, J.; Kummert, F.; Gepperth, A. Behavior prediction at multiple time-scales in inner-city scenarios. In Pro-
ceedings of the 2011 IEEE Intelligent Vehicles Symposium, Baden-Baden, Germany, 5–9 June 2011; pp. 1068–1073. 
https://doi.org/10.1109/IVS.2011.5940524. 

14. Khairdoost, N.; Shirpour, M.; Bauer, M.A.; Beauchemin, S.S. Real-time driver maneuver prediction using LSTM. IEEE Trans. 
Intell. Veh. 2020, 5, 714–724. https://doi.org/10.1109/TIV.2020.3003889. 

15. Huang, Z.; Wang, J.; Pi, L.; Song, X.; Yang, L. LSTM based trajectory prediction model for cyclist utilizing multiple interactions 
with environment. Pattern Recognit. 2021, 112, 107800. https://doi.org/10.1016/j.patcog.2020.107800. 

16. Alahi, A.; Goel, K.; Ramanathan, V.; Robicquet, A.; Fei-Fei, L.; Savarese, S. Social LSTM: Human trajectory prediction in crowded 
spaces. In Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–
1 July 2016; pp. 961–971. https://doi.org/10.1109/CVPR.2016.110. 

17. Huang, Y.; Bi, H.; Li, Z.; Mao, T.; Wang, Z. STGAT: Modeling spatial-temporal interactions for human trajectory prediction. In 
Proceedings of the 17th IEEE International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 
6271–6280. https://doi.org/10.1109/ICCV.2019.00637. 

18. Yang, W.; Zhang, X.; Lei, Q.; Cheng, X. Research on longitudinal active collision avoidance of autonomous emergency braking 
pedestrian system (AEB-P). Sensors 2019, 19, 4671. https://doi.org/10.3390/s19214671. 

19. Laureshyn, A.; Svensson, Å.; Hydén, C. Evaluation of traffic safety, based on micro-level behavioural data: Theoretical frame-
work and first implementation. Accid. Anal. Prev. 2010, 42, 1637–1646. https://doi.org/10.1016/j.aap.2010.03.021. 

20. Várhelyi, A. Drivers’ speed behaviour at a zebra crossing: A case study. Accid. Anal. Prev. 1998, 30, 731–743. 
https://doi.org/10.1016/S0001-4575(98)00026-8. 

21. Baldo, N.; Marini, A.; Miani, M. Drivers’ braking behavior affected by cognitive distractions: An experimental investigation 
with a virtual car simulator. Behav. Sci. 2020, 10, 150. https://doi.org/10.3390/bs10100150. 

22. Zheng, L.; Ismail, K.; Meng, X.H. Traffic conflict techniques for road safety analysis: Open questions and some insights. Can. J. 
Civ. Eng. 2014, 41, 633–641. https://doi.org/10.1139/cjce-2013-0558. 

23. Zhang, S.; Abdel-Aty, M.; Wu, Y.; Zheng, O. Modeling pedestrians’ near-accident events at signalized intersections using gated 
recurrent unit (GRU). Accid. Anal. Prev. 2020, 148, 105844. https://doi.org/10.1016/j.aap.2020.105844. 

24. Hydén, C. The Development of a Method for Traffic Safety Evaluation: The Swedish Traffic Conflicts Technique; Bulletin Lund Institute 
of Technology, Department: Lund, Sweden, 1987. 

25. Kathuria, A.; Vedagiri, P. Evaluating pedestrian vehicle interaction dynamics at un-signalized intersections: A proactive ap-
proach for safety analysis. Accid. Anal. Prev. 2020, 134, 105316. https://doi.org/10.1016/j.aap.2019.105316. 

26. Borsos, A.; Farah, H.; Laureshyn, A.; Hagenzieker, M. Are collision and crossing course surrogate safety indicators transferable? 
A probability based approach using extreme value theory. Accid. Anal. Prev. 2020, 143, 105517. 
https://doi.org/10.1016/j.aap.2020.105517. 

27. Bella, F.; Silvestri, M. Vehicle–pedestrian interactions into and outside of crosswalks: Effects of driver assistance systems. 
Transport 2021, 36, 98–109. https://doi.org/10.3846/transport.2021.14739. 

28. Zhang, Y.; Guo, Z.; Sun, Z. Driving Simulator Validity of Driving Behavior in Work Zones. J. Adv. Transp. 2020, 2020, 4629132. 
https://doi.org/10.1155/2020/4629132. 



Sustainability 2021, 13, 9681 18 of 18 
 

29. Saito, Y.; Raksincharoensak, P. Shared control in risk predictive braking maneuver for preventing collisions with pedestrians. 
IEEE Trans. Intell. Veh. 2016, 1, 314–324. https://doi.org/10.1109/TIV.2017.2700210. 

30. Hou, L.; Duan, J.; Wang, W.; Li, R.; Li, G.; Cheng, B. Drivers’ Braking Behaviors in Different Motion Patterns of Vehicle-Bicycle 
Conflicts. J. Adv. Transp. 2019, 2019, 4023970. https://doi.org/10.1155/2019/4023970. 

31. Bella, F.; Borrelli, V.; Silvestri, M.; Nobili, F. Effects on Driver’s Behavior of Illegal Pedestrian Crossings. Adv. Intell. Syst. Comput. 
2019, 786, 802–812. https://doi.org/10.1007/978-3-319-93885-1_74. 

32. Raven, J.C. Progressive Matrices: A Perceptual Test of Intelligence, 1st ed.; H. K. Lewis & Co. Ltd.: London, UK, 1938. 
33. Field, D.T.; Wann, J.P. Perceiving time to collision activates the sensorimotor cortex. Curr. Biol. 2005, 15, 453–458. 

https://doi.org/10.1016/j.cub.2004.12.081. 
34. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. IEEE Trans. 

Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. https://doi.org/10.1109/TPAMI.2016.2577031. 
35. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 386–397. 

https://doi.org/10.1109/TPAMI.2018.2844175. 
36. Ni, Y.; Wang, M.; Sun, J.; Li, K. Evaluation of pedestrian safety at intersections: A theoretical framework based on pedestrian-

vehicle interaction patterns. Accid. Anal. Prev. 2016, 96, 118–129. https://doi.org/10.1016/j.aap.2016.07.030. 
37. Zheng, L.; Ismail, K.; Sayed, T.; Fatema, T. Bivariate extreme value modeling for road safety estimation. Accid. Anal. Prev. 2018, 

120, 83–91. https://doi.org/10.1016/j.aap.2018.08.004. 
38. Mikolov, T.; Karafiat, M.; Burget, L.; Jan, C.; Khudanpur, S. Recurrent neural network based language model. In Proceedings of 

the 11th Annual Conference of the International Speech Communication Association (INTERSPEECH 2010), Makuhari, Chiba, 
Japan, 26–30 September 2010; pp. 1045–1048. 

39. Fu, R.; Zhang, Z.; Li, L. Using LSTM and GRU neural network methods for traffic flow prediction. In Proceedings of the 31st 
Youth Academic Annual Conference of Chinese Association of Automation (YAC 2016), Wuhan, China, 11–13 November 2016; 
7804912, pp. 324–328. https://doi.org/10.1109/YAC.2016.7804912. 

40. Cao, J.; Li, Z.; Li, J. Financial time series forecasting model based on CEEMDAN and LSTM. Physica A 2019, 519, 127–139. 
https://doi.org/10.1016/j.physa.2018.11.061. 

41. Karevan, Z.; Suykens, J.A.K. Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Netw. 
2020, 125, 1–9. https://doi.org/10.1016/j.neunet.2019.12.030. 

42. Dunnhofer, M.; Martinel, N.; Micheloni, C. Tracking-by-Trackers with a Distilled and Reinforced Model. In Lecture Notes in 
Computer Science, Proceedings of the 15th Asian Conference on Computer Vision (ACCV 2020), Kyoto, Japan, 30 November–4 December 
2020; Ishikawa, H., Liu CL., Pajdla, T., Shi, J., Eds.; Springer: Cham, Switzerland, 2020; pp. 631–650. https://doi.org/10.1007/978-
3-030-69532-3_38. 

43. Dunnhofer, M.; Martinel, N.; Micheloni, C. Weakly-Supervised Domain Adaptation of Deep Regression Trackers via Reinforced 
Knowledge Distillation. IEEE Robot. Autom. Lett. 2021, 6, 5016–5023. https://doi.org/10.1109/LRA.2021.3070816. 

44. MathWorks, 2021: “trainingOptions—Options for Training Deep Learning Neural Network”. Available online: 
https://www.mathworks.com/help/deeplearning/ref/trainingoptions.html (accessed on 19 August 2021). 

45. Kingma, D.P.; Ba, J.L. Adam: A method for stochastic optimization. arXiv preprint 2014, arXiv:1412.6980. 
46. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. Smote: Synthetic minority over-sampling technique. J. Artif. Int. Res. 

2002, 16, 321–357. https://doi.org/10.1613/jair.953. 
47. Papacharalampous, G.; Tyralis, H.; Koutsoyiannis, D. Comparison of stochastic and machine learning methods for multi-step 

ahead forecasting of hydrological processes. Stoch. Environ. Res. Risk Assess. 2019, 33, 481–514. https://doi.org/10.1007/s00477-
018-1638-6. 

48. Krause, P.; Boyle, D.P.; Bäse, F. Comparison of different efficiency criteria for hydrological model assessment. Adv. Geosci. 2005, 
5, 89–97. https://doi.org/10.5194/adgeo-5-89-2005. 

49. Euro NCAP, 2018: “Vulnerable Road User (VRU) Protection”. Available online: https://www.euroncap.com/en/for-engi-
neers/protocols/vulnerable-road-user-vru-protection/ (accessed on 19 August 2021). 

 


	1. Introduction
	2. Data Collection
	2.1. The Car-Driving Simulator Experiment
	2.2. Partecipant Statistics and Experimental Procedure
	2.3. Problem Formulation
	2.4. Low-Dimensional Input Representation
	2.5. Safety Indicators and Severity Classes Generations

	3. Methodology
	3.1. Gated Recurrent Unit (GRU)
	3.2. Implementation Details

	4. Results
	5. Conclusions
	6. Future Research
	References

