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A B S T R A C T   

Interpretability is fundamental in healthcare problems and the lack of it in deep learning models is currently the 
major barrier in the usage of such powerful algorithms in the field. The study describes the implementation of an 
attention layer for Long Short-Term Memory (LSTM) neural network that provides a useful picture on the in
fluence of the several input variables included in the model. 

A cohort of 10,616 patients with cardiovascular diseases is selected from the MIMIC III dataset, an openly 
available database of electronic health records (EHRs) including all patients admitted to an ICU at Boston’s 
Medical Centre. For each patient, we consider a 10-length sequence of 1-hour windows in which 48 clinical 
parameters are extracted to predict the occurrence of death in the next 7 days. Inspired from the recent de
velopments in the field of attention mechanisms for sequential data, we implement a recurrent neural network 
with LSTM cells incorporating an attention mechanism to identify features driving model’s decisions over time. 

The performance of the LSTM model, measured in terms of AUC, is 0.790 (SD = 0.015). Regard our primary 
objective, i.e. model interpretability, we investigate the role of attention weights. We find good correspondence 
with driving predictors of a transparent model (r = 0.611, 95% CI [0.395, 0.763]). Moreover, most influential 
features identified at the cohort-level emerge as known risk factors in the clinical context. 

Despite the limitations of study dataset, this work brings further evidence of the potential of attention 
mechanisms in making deep learning model more interpretable and suggests the application of this strategy for 
the sequential analysis of EHRs.   

1. Introduction 

Automated decision support systems are currently one of the most 
challenging goals in medical research. Given the great steps forward 
made by Artificial Intelligence (AI) in several fields for complex tasks, as 
automated driving, algorithmic trading, plant production management, 
customer behaviour, fraud detection, financial loan approval, great 
expectation has been put on the development of automated systems for 
medical applications. 

One of the most common complex tasks that a clinician is going to 
face is the prognostic evaluation of a patient. Based on clinical and 
instrumental parameters, physicians must be able to timely recognize a 
worsening of the disease and act consequently, modifying patients’ 

treatment, in order to avoid an adverse outcome. This evaluation could 
be supported by an algorithm that integrate vast amount of information 
more efficiently and yield more precise predictions. The way has been 
paved by the recent awareness of the potential enclosed in large 
amounts of raw data and the consequent effort to make electronic health 
records (EHRs) available for machine learning research. EHRs are the 
whole set of digital clinical data produced at single-patient level in 
health care institutions, that despite being raw and noisy, represent a 
valuable source of information for several reasons: data can be extracted 
in massive volumes; information spans the assistance provided by 
different units of the hospital (clinical units, laboratories, prescriptions, 
etc.); data can be recorded through time to form a well-ordered sequence 
of events. 

Abbreviations: AUC, Area under the curve; ECG, Electrocardiogram; EHR, Electronic health records; ICU, Intensive care unit; LOCF, Last observation carrier 
forward; LSTM, Long short-term memory; NN, Neural network; RNN, Recurrent neural network; ROC, Receiving operator curve. 
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However, research in machine learning for disease risk prediction 
has proceeded with some problems. Compared to other fields, massive 
datasets that are required for these algorithms are difficult to obtain, 
mainly due to the sensitivity of personal medical information. The 
resulting scarcity of shared benchmarks to evaluate competing models 
and the difficulty in measuring the methodological progress had con
sequences on the transferability in practical settings [1]. 

If data availability is an obstacle that could be possibly overcome in 
the next future with the adoption of new strategies for data sharing [2], 
there is another important issue which is far from being solved. Most of 
the machine learning algorithms, in particular deep learning algorithms, 
produce models that are hard to be interpreted. Commonly referred as 
black-box models, such models charge the performance improvement 
with a cost: models are that complex that underlying mechanism cannot 
be grasped and only indirect analysis can be applied to get an insight 
into the role of the different input features. 

Clinicians take the responsibility of final decisions and are supposed 
to justify their actions with causal relationships, in accordance with the 
principles of the domain. Nevertheless they are not new to black-box 
algorithms [3]. Currently, in their practice, medical doctors base clin
ical decision on information without fully understanding how it is 
generated (e.g. result of specialistic laboratory analysis, output from 
medical machineries). This practice is obviously well accepted and the 
reason is the application of regulatory procedures that guarantee reli
ability, thus promoting trust in such information. For the same reason, 
research in machine learning interpretability is fundamental. Otherwise, 
even in front of an improvement in accuracy, the compromise on model 
transparency and accountability will hardly be accepted in the medical 
context. In addition to this, it is worth mentioning that safety and lia
bility of AI application are becoming imperative aspects for the new 
regulating legal frameworks, which are emerging (in particular in the 
European area [4]) to protect individual fundamental rights related to 
human dignity and privacy protection. 

Despite an intrinsic limit in the black-box problem, due to the 
impossibility of finding explanations at the same time simple and with 
perfect fidelity with respect to a model that is supposed to be highly 
complex [5], improvements on interpretability can provide important 
information on models’ behaviour and help to provide the trustwor
thiness needed for its usage [6]. In this view, desirable objectives of 
interpretability techniques are: the detection of potential bias in the 
training data, unfairness of the algorithms (for certain social groups or 
individuals), generalization failures and more in general, providing in
sights to further improvements of the model [7]. 

Perhaps the most emblematic example of black-box models are deep 
neural networks (NN), which are made by a multitude of computational 
blocks organized in layers and inter-connected, each one learning 
weights to create a custom processing of input information. Among the 
types of NN particularly suited for data-streams and time-series data, 
Recurrent Neural Networks (RNN) are gaining popularity in prediction 
tasks based on EHRs [8], as well as the development of these architec
tures that enhance interpretability. One of the most promising ap
proaches seem to be the attention models, that help the algorithm to 
focus on relevant elements in the sequence of data. In addition to 
improved performance, attention mechanisms have been shown to 
provide elements for clinical interpretation [9–11]. In particular, a 
recent study has described an attention model that acts at the level of 
input variables and facilitate interpretability in the case of EHRs [12]. 

In the light of the above considerations, we have investigated a deep 
learning approach for mortality risk prediction in cardiovascular pa
tients that incorporate an attention layer, which can be related to vari
able importance. To this aim, we analyse the MIMIC III dataset [13], a 
collection of EHRs of an Intensive Care Unit (ICU) at the Beth Israel 
Deaconess Medical Centre. Patients data as demographic information, 
vitals, labs, procedures and medications, were extracted from the 
informative system of the hospital, de-identified and arranged in a 
database which is currently available for research purposes. Our task is 

focused on cardiovascular diseases for two main reasons. The first one is 
related to possible benefits in the clinical practice. Evaluation of the 
severity of patients admitted to ICUs is a problem that has been widely 
studied and the standard approach consists in the application of general 
scores (like SAPS [14], APACHE [15]) that take in consideration only a 
small set of input variables. However, currently there is no risk score 
specifically developed for cardiological critical care, that could provide 
an accurate prognostic prediction giving the heterogeneous mix of 
conditions encountered in modern ICU [16]. The second reason is linked 
to the main purpose of this study: having restricted our analysis on a 
group of quite homogeneous patients, we can more easily compare the 
finding of our interpretability investigation (in term of impact of input 
features) with the clinical knowledge in disease managing. Our research 
group can count on a long-standing collaboration with expert cardiol
ogists. In line with the setting of standard prognostic scoring systems, 
that are typically measured in the first 12–24 h, we collect measure
ments in the first 10 h of admission at the ICU and use them to estimate 
the risk of mortality within the first 7 days of hospitalization. 

2. Material and methods 

2.1. Data 

The study considers all patients of the MIMIC III database with pri
mary diagnosis falling into a cardiovascular category. The selection is 
done based on the discharging ICD9 diagnostic codes (see Table A1 in 
Appendix A for the full list of codes included). In case of multiple stays 
per patient, given that our outcome of interest is mortality we only 
consider the last hospitalization. The setting of our study is illustrated in 
Fig. 1: starting from the moment of the first record of vital signs, mea
surements are collected in 10 h that are divided in 10 1-hour windows 
(windows length was arbitrarily set to match the time-resolution of 
variables after a first exploration of the data). Such variables are used to 
predict death in the next 146-hours window (7 days). Since our aim is to 
predict mortality using the first 10 h measurements, we excluded sub
jects who died or were discharged within the 10 h. 

The outcome variable is defined as a binary label: subjects were 
labelled as 1 if death occurs within the period [t10, tf], 0 if subjects 
survive or discharge happens. Thus, we are interested in death occur
rence, disregarding the time of the event. Predictor variables can be 
divided in 3 categories (see Table A2 in Appendix A for the full list): 
demographic variables, basic information recorded at the admission; 
monitored vitals, measurements of vital functions with continuous- 
monitoring systems; clinical variables, measurements of other clinical 
features (with highly-variable recording time). Categorical variables are 
transformed into dummy variables. After this, the final number of pre
dictors is 48. 

We extract all records related to predictor falling within the 10-hours 
time-window. Different variable types have different recording fre
quencies. Monitored vitals, that are recorded at high frequency, are 
reshaped and aggregated using the mean so that a measurement is ob
tained for each 1 h-window (forming a time-series of 10 steps). De
mographic variables are clearly recorded only once, thus in our setting 

Fig 1. Framework and timeline. Predictors collected in the first 10 h from 
hospitalization were included in a binary classification model to predict mor
tality within 7 days. 
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they are considered constant over time. Remaining clinical variables are 
characterised by a low-frequency recording, thus they are aggregated 
over the 10 h and considered constant over time. In all these procedures, 
the general rule has been to exclude predictors with missing rate ≥25%. 
For the remaining variables, missing values are imputed with a two-step 
procedure: 1) Last Observation Carried Forward (LOCF) (only for 
monitored vitals); 2) Imputation based on sample mean. The resulting 
input dataset consists of 48 variables having 10 repeated measurements 
for each subject (for demographic and clinical variables that are con
stant in time, measurements are duplicated). All variables are 
normalized. 

The problem is designed as a binary classification task where labels 
are fixed, instead predictors are (in part) time-varying. The cohort is 
randomly divided in training and test set (70% and 30% respectively). 
Stratified 10-fold cross-validation was performed on the training set and 
the best model was evaluated on the test set. Similarly to [17], this 
procedure is repeated for 10 times in order to avoid sampling bias due to 
the training-test data split. At the end of the iteration, 10 models are 
evaluated in terms of Area Under the ROC curve (AUC-ROC). 

Unfortunately, some input variables required for standard prognostic 
scoring systems (e.g. Glasgow come score) were not available in MIMIC 
III for the selected cohort, thus a comparison between standard scores 
and our model was not possible at this stage. 

All data processing has been performed with R 4.0.2, including 
packages “pROC” [18] and “caret” [19]. Python 3.7.7 has been used for 
the implementation of the model (described below in Sections 2.2 and 
2.3), which is based on TensorFlow backend and Keras API. The core 
program codes and a tutorial are available on Github (https://github. 
com/ilariagnd/CardioICURisk). 

2.2. Deep learning approach 

Deep learning models have pushed the research on clinical pre
dictions from EHR. In particular, starting from the work of Lipton et al. 
[20], several studies have described successful applications of Recurrent 
Neural Network (RNN) architectures (see [21–23] for very recent works, 
see [24] for a comparative review). In particular, encouraged by the 
recent findings of Harutyunyan et al. [1] for mortality prediction from 
time-series data (a problem very similar to our research question), we 
chose to implement a RNN with Long Short-Term-Memory (LSTM) cells. 

RNN has been originally developed for tasks related to language 
processing, a type of data where observations (i.e. words) appear in an 
ordered sequence that must be taken into account. This setting can be 
applied in the case of time-series problems like the case of our study. 
RNN accomplish this task with a recursive weights estimation together 
with an additional latent variable (called “hidden state”) that is itera
tively updated and keeps memory of the previous steps. 

However, in case of long sequences, with several time-steps, the al
gorithm could suffer from a problem called vanishing/exploding 
gradient. As the word suggests, in the back-forward propagation the 
recursion could easily make the gradient to increase or decrease very 
fast. One of the solutions to this problem is to enrich the structure of the 
net and introduce the LSTM cells that can be represented by the 
following equations [25]: 

It= σ(XtWxi + Ht− 1Whi + bi)

Ft= σ(XtWxf + Ht− 1Whf + bf
)

Ot= σ(XtWxo + Ht− 1Who + bo)

Ct = Ft ⊙ Ct− 1 + It ⊙ tanh(XtWxc + Ht− 1Whc + bc)

Ht = Ot ⊙ tanh(Ct)

Together with the input variables and the hidden state (Ht), LSTM 
include an additional source of information that represent the “long- 

term” memory (Ct) and this is achieved with the use of layers called 
“gates” (It input gate, Ft forget gate, Ot output gate) that are able to filter 
relevant information to be passed in the next time-step. 

In our implementation, hyperparameters tuning followed a grid 
search approach. The result was a LSTM layer with 128 units, sigmoid 
activation function, dropout 20% [12]. Training was performed with 
RMSPROP optimizer (learning rate = 0.001, rho = 0.9, epsilon =
1e− 08) in 20 epochs [26], batch size was 64. 

2.3. Attention mechanism 

Concerning model’s interpretability, a big step forward has been 
made by Kaji et al. [12] and Remy [27]. As showed by the authors, 
attention-based LSTM provide useful output that could facilitate the 
understanding at the level of input variables. Originally developed for 
machine translation models to improve their performance [28], the 
attention mechanism is an additional layer to the LSTM that support 
long-term dependencies by focusing on specific element of the sequence 
(words in case of language translation). Attention based neural network 
have successfully applied for very different problems, like medical 
computer vision tasks [29], analysis of ECG patterns [30] and blood 
pressure response [31]. 

The attention mechanism of Kaji et al. is obtained at the level of input 
variables with a dense layer with softmax activation function, so that for 
each feature j an attention vector aj of length T (number of time-steps) is 
learned with |aj| = 1. Before being fed to the LSTM, input features are 
weighted by attention vectors aj: 

Xnew = A ⊙ X  

where X represents the T × p input data (p number of variables) for a 
single observation and aj is the j-th column of A. In this setting, softmax 
works as a normalization on the time dimension, making it possible to 
interpret ajt as contribution of feature j within a fixed time step t. 

We included in our LSTM a similar attention mechanism. However, 
since we are more interested in understanding the global contribution of 
each feature, we propose to apply the same procedure on the transposed 
input. Using the compact notation of Kaji et al., let’s denote by at the 
vector of length p representing the input at time t, then attention vectors 
are obtained as following: 

at = softmax(xtWt)

with |at | = 1. In this way attention vectors can be used to understand the 
global contribution of the j-th feature aggregating values aj1, ..., ajT 

through time. Then Xnew = A ⊙ X with atbeing the the t-th row of A. Raw 
softmax activations at form an activation map that can be extracted and 
further analysed. A graphical representation describing the structure of 
the model can be found in Appendix A (Figure A1). 

2.4. Analysis of activations 

For each subject we can extract a matrix of values p × T that sum to 
one over the rows (feature dimension) and we calculate the average of 
each column. In this way, for each subject and for each feature we obtain 
a single activation that can be further median-aggregated (because of 
the presence of skewness) over the cohort to obtain a marginal attention 
map for features at population-level. To obtain a robust variable ranking 
based on attention, we calculate the attention map in all the 10-iteration 
models and then order features with respect to the average over the 
iterations. 

We further investigate whether activation could be interpreted as the 
relative importance of input features comparing it with an inherently 
interpretable model. For the sake of brevity, we focus on one single 
model (the first one in our 10 iterations). Given the large number of 
input variables, we opted for a penalized logistic regression model (LR). 
Since we are also dealing with time-varying independent variables, for 
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this model we flatten the time dimension using 4 sample statistics: mean, 
standard deviation, maximum, minimum. Hyperparameters λ (penalty 
weight) and α (indicator parameter for L1 or L2 norm) were also tuned 
with a grid search in a 10-fold cross-validation. 

Finally, we represent the individual attention activations (in form of 
heatmap) for two sample subjects admitted to the ICU with similar 
clinical conditions but with different outcome (survived and deceased). 

3. Results 

We obtained a dataset of 10,616 individuals where mortality rate 
was 6.6%. Quality control procedures identified 48 variables as reported 
in Table S2. 

Results of the models are reported in Table 1. On average, the LSTM 
net achieved to predict mortality with AUC-ROC of 0.790 (SD = 0.015). 
In the case of LR, the ability to predict mortality in terms of AUC-ROC is 
1.3% lower compared to LSTM model. Although this is not the main 
purpose of this study, it is worth to note that a regression model is able to 
provide a performance similar to the one of the LSTM. 

Ranking input features by attention weights, we find norepinephrine, 
phenylephrine, creatinine, male, BUN (Blood Urea Nitrogen), age, res
piratory rate, oxygen saturation (SpO2), systolic BP (Blood Pressure), 
paced rhythm in the first 10 positions (Fig. 2). 

The comparison between the attention map values and the regression 
coefficients for a single model is represented in Fig. 3. In the case of LR, 
for each time-varying variable we estimated the coefficients for 4 sta
tistics (min, max, mean, sd), whereas in the LSTM we obtained one 
weight for each variable. Given the way penalized regression algorithm 
deals with correlated variables, it is reasonable to consider only one 
statistics for each input feature and specifically the one with absolute 
maximum value of the regression coefficient. The correlation between 
activations and maximum regression estimates (logit scale) for the 48 
features is 0.611 (95% CI [0.395, 0.763]), which indicates a quite strong 
relationship between the two quantities. Moreover, in the LR model it 
can be observed that for predictors that were originally time-varying and 
then aggregated, the stronger impact on the outcome in most of the cases 
is obtained considering SD, MIN or MAX through the time-windows 
(instead of MEAN). 

So far, attention activations were analysed in aggregated form. An 
interesting aspect of the attention mechanism is the possibility to extract 
the matrix of activations related to a single individual. Fig. 4 represents 
in details the case of two example individuals with very similar clinical 
conditions attributable to heart failure (list of the discharging ICD-9 
diagnostic codes reported in Table A3 in Appendix A): Patient A sur
vived, whereas patient B did not. In this chart it is possible to note that 
Patient A had a very low saturation only in the first hour and such vital 
parameter turned out to be the most attended feature. Saturation was 
the main driving feature also for patient B, but in this case the parameter 
did not improved over time. Such representation suggests that Patient A 
was admitted with a condition of respiratory failure that rapidly 
improved and had a favourable outcome; in the case of Patient B, it was 
not possible to restore a normal blood oxygenation, consequently his 
respiratory rate gradually increased in the attempt to compensate and 
finally he had an adverse outcome. 

4. Discussion 

In this work we implemented a deep learning architecture based on 

multivariate time series to predict an adverse event (death) based on 
electronic health records. Thanks to work of Kaji et al. that has recently 
introduced the attentioned LSTM neural network for the EHRs, we were 
able to apply the same strategy and obtain activation maps at predictors- 
level. 

The results of LSTM are quite far from what obtained by Har
utyunyan et al., that for a similar task (mortality risk prediction using 
MIMIC-III) found a model showing higher performance: AUC-ROC 
0.855, 95% CI [0.835,0.873]. In their case, the cohort was around 
double-sized with respect to the one in analysis here and 17 variables 
were considered for 48 h instead of 10. Those aspects could be related to 
the difference observed in performance. 

Although this is not the main purpose of this study, it is worthy to 
note that adopting a penalised regression model we obtain a perfor
mance very similar to the one of the LSTM, which confirms previous 
findings in similar settings [1,12,32,33]. However, it should be noted 
that despite the high number of predictors included in our study, only a 
fraction of them is time-varying and this could reduce the chance for 
LSTM to detect long range dependencies. 

As regards our primary objective, model interpretability, this work 
contributes to encourage the use of attention layers in LSTM to obtain 
information on the relationship between outcome and predictors. The 
first 10 most important predictors based on attention weights are in line 
with the clinical experience of cardiovascular disease treatment. 
Norepinephrine and phenylephrine are two inotropic drugs used in case 
of haemodynamic instability, a serious condition characterized by un
stable blood pressure, which can cause inadequate blood flow to pe
ripheral organs. Several studies indicate that their use, especially at high 
dosages, is associated with increased mortality [34,35]. Creatinine and 
BUN (Blood Urea Nitrogen) are laboratory biomarkers used to investi
gate renal function. An increase in their values indicates the presence of 
renal failure, which has been shown to correlate with increased mor
tality in patients admitted to intensive care [36]. Male gender and 
advanced age are well-known for being associated with a higher car
diovascular risk [37]. Respiratory rate, oxygen saturation (SpO2), sys
tolic blood pressure are crucial vital parameters constantly monitored in 
intensive care unit, since they can change suddenly in case of clinical 
worsening of the patient. These parameters are normally considered in 
mortality scores and principal morbidities for ICUs [15,38]. Paced 
rhythm is one of the possible heart rhythms detected by telemetry 
monitoring (a continuous registration of ECG) performed in Intensive 
Care Unit. A permanent or temporary pacemaker is needed when the 
conduction system of the heart is damaged and it is necessary to implant 
an external device to generate the electrical impulse which triggers heart 
contraction. 

Activation distributions are also investigated through a comparison 
with an interpretable model, showing that there is a satisfactory 
agreement in terms of variable importance. Of note, when predictors 
that were originally time-varying were aggregated using standard LR 
approach, in most of the cases the stronger impact on the outcome was 
obtained considering their variability (SD) or the extreme values (MIN 
or MAX) through the time-windows instead of their mean, indicating 
that time-to-time variability of the predictor should be considered 
instead of a marginal aggregated value, thus highlighting the need for 
time-series approaches. We are not expecting (nor pursuing) a complete 
agreement between the two variable rankings since it would make no 
sense to get such concordance for a complex non-linear model [5]. 
Instead, this step confirms that activations analysis can be of use in the 
direction of interpretability objectives [39]: detection of bias in the 
training set to ensure impartiality, assess robustness against model 
manipulations and verify the meaningfulness of underlying variables. In 
this view, even though the study was performed on a limited dataset 
where the deep learning approach brought little increase in the perfor
mance, our results confirm the benefits of using attention mechanisms 
for interpretability as an approach suitable for ultrahigh dimensional 
settings, where regularisation methods (widely used and “explainable” 

Table 1 
Models’ results. For each model, the average and standard deviation of AUC- 
ROC of the 10 iterations are reported.  

Model AUC-ROC Mean AUC-ROC SD 

LSTM  0.790  0.015 
LR  0.779  0.013  
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methods) underestimate the level of noise and select spurious correla
tions [40,41]. 

The individualized representation of attention activations in form of 
heatmap show the potential enclosed in these models for personalized 
predictions and the present work contributes to complement the results 
of previous studies. We provide a map that highlights the overall impact 
of variables, which was not possible to obtain in the setting of Kaji et al. 
[12] where the focus was on time-steps and variable ranking could be 

made only within the single time-step. The progress made in the last 
years in the in deep learning research for the medical field shows that 
deep learning models could adequately embody the concept of person
alized risk prediction [42–44]. Attention mechanisms offer the possi
bility to retrieve driving features at patient-level: individual risk 
prediction is paired to individual attention map. Interpretation of acti
vations at the single subject level is not straightforward: more insightful 
clinical interpretations of single cases require the knowledge of the 

Fig 2. Variable ranking based on attention weights. For each variable, the attention weights of the 10-iteration models are represented in a box-plot. Variables are 
ordered with respect to the mean of the 10 values. 

Fig 3. Comparison between LSTM attention weight and LR estimates. On the x-axis, the absolute value of regression estimates is reported and black dots indicates the 
maximum among the 4 aggregation functions (mean, standard deviation, maximum, minimum). The y-axis corresponds to the predictor activations obtained for 
the LSTM. 
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complete clinical history of patient (which is not possible for MIMIC III). 
However, it should be noticed that such patient-level information could 
not be obtained with more standard statistical approaches: even in the 
presence of high-order interactions, adequate computational capacity, 
and data availability for all possible strata, standard statistical regres
sion approach will produce fixed “subgroup-level” weights. 

There are several limitations in our study. First of all, in our frame
work patients that are discharged or had died before the 10th hour are 
excluded from the study and this is a possible source of selection bias. 
Secondly, the comparison of models’ performance cannot be considered 
conclusive since our working setting suffers from drawbacks: modest 
number of observations, low number of time-varying covariates and lack 
of out-of-sample data for external validation. Third, our investigation on 
activations extracted from the attention mechanism does not provide 
practical recommendations to achieve the objectives of model inter
pretability aforementioned. In particular, the model is not able to 
distinguish between positive and negative associations among pre
dictors and outcome. However, the research in interpretability is very 
active, with new tools and strategies emerging. For example, in a very 
recent work, Lauritsen et al. [21] describes a model that using the 
concepts of global parameter importance estimation and local expla
nation summary, provides not only relevant clinical parameters at 
patient-level for a given point in time, but also a population-based 
prospective, estimating relevance scores across the entire population. 
Fourth, the common choice of AUC-ROC as measure of performance for 
a binary classification problem is not free from concern when dealing 
with imbalanced data. In this situation a global measure summarises 
results over regions of the ROC space that would not be used in practice. 

Also in this direction new methods and strategies are emerging, like the 
one recently proposed by Carrington et al. that introduces a new inter
pretation of AUC based on groups of predicted risks, making it possible 
to interpret the model’s performance in each group and to realize where 
the model could be weak [45]. 

Further development of our investigation could be the implementa
tion of LSTM with time-sequence also as output targets. In such settings, 
where the aim is to model the time-to-event for the endpoint, trans
parent statistical methodologies suitable to carry out the comparison 
would be survival regression approaches. LSTM could be compared with 
joint longitudinal and survival models [46] and frailty survival models 
[47], that handle endogenous time-varying covariates and time-to-event 
outcomes, as long as the dimensions of the dataset (both in number of 
observations and in number of variables) are limited, otherwise 
computational complexity for these approaches could be a serious issue. 
Another avenue for future research could be the use of more complex 
input data from different sources and modalities (like time-based data, 
unstructured text, images, omics data) and extend interpretability 
analysis to models incorporating such information fusion. As suggested 
by Holzinger et al. [48], this could be achieved investigating the algo
rithm class known as Graph Neural Networks, that are based on multi- 
modal embeddings and can be used either with attention mechanisms 
to identify relevant graphs structures (in terms of edges and nodes) or in 
combination with model-agnostic interpretability techniques. 

5. Conclusions 

In this study, we approached the problem of interpretability in time- 

Fig 4. Individual-level attention map. The cases of Patient A and Patient B are presented. For each individual, we report (from bottom to top): heatmap representing 
the value on input features; heatmap representing the value of attention activations; barplot reporting the time-average contribution of each feature. 

I. Gandin et al.                                                                                                                                                                                                                                  



Journal of Biomedical Informatics 121 (2021) 103876

7

series deep learning models. EHRs were considered to predict the risk of 
mortality within 7 days from ICU admission for a cohort of cardiovas
cular patients. We implemented an attention model aimed to explore the 
role of individual variables in predictions. Thanks to the comparison 
with a transparent model and clinical interpretation of a single-case, we 
obtained evidence that the method leads to the identification of relevant 
predictors. 

More efforts are required in interpretability research to identify tools 
and strategies that can be used both by data scientist, in models’ 
developing phase to ensure reliability, and by final users in clinical 
practice, in order to make timely and context-aware decisions, and our 
study supports the way of attention mechanisms. We believe this chal
lenge cannot be avoided in the next future if deep learning algorithms 
will be integrated in clinical decision support systems. 
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