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ABSTRACT1

In this paper we propose a methodology for valuing future annuity contracts based on the
Least-Squares Monte Carlo approach. We adopt, as first step, a simplified computational
framework where just one risk factor is taken into account, and then we extend it intro-
ducing other sources of risk. We give a brief description of the valuation procedure and
provide some numerical illustrations. Furthermore, to test the efficiency of the proposed
methodology, we compare our results with those obtained by applying a straightforward
and time-consuming approach based on nested simulations. Finally, we present some
possible applications in the context of de-risking strategies for pension plans and in the
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valuation of guaranteed annuity options.

KEYWORDS: LSMC, Life annuities, Longevity risk, Stochastic mortality
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1. Introduction

Over the 20th century, due to health improvements and medical advances, it has
become evident that people tend to live longer and longer. Indeed, the mortality of
individuals over time has exhibited many stylized features. In particular, looking at the
survival curve for most developed countries around the world, it is immediately clear that
mortality levels are decreasing as time passes by, leading to an increase in individual’s
life expectancy. As a consequence, life insurance companies and pension providers need
to face the so-called longevity risk.

The actuarial literature has increasingly focused, in the last decades, on studying
and proposing several methods for managing and evaluating this source of risk. The
importance of modelling and transferring such a risk is argued in Blake et al. (2013).
In particular, it is highlighted how the new longevity-linked capital market instruments
could help in facilitating the development of annuity markets and hedging the long-term
viability of retirement incomes. As a further consequence, we may recall the non-negligible
impact on liabilities of insurers and pension plans, as studied in Oppers et al. (2012).

Recently, some attention has been devoted to the valuation of life annuity contracts
issued at a distant future time. This problem has many sources of uncertainty, among
which the most relevant are future interest rate and mortality levels. In this regard,
Denuit (2008) and Hoedemakers et al. (2005) suggest comonotonic approximations of the
life annuity conditional expected present value. Moreover, Cairns (2011), Dowd et al.
(2011) and Liu (2013) propose an approach based on a Taylor series approximation of the
involved conditional expectation.

The problem of valuing future annuity contracts is getting prominent since it is im-
plicitly present in many contexts such as pricing guaranteed annuity options (GAO) and
pension de-risking strategies, i.e. buy-ins and buy-outs. The pricing of GAOs has been
faced by many authors (see Ballotta and Haberman, 2003, 2006; Biffis and Millossovich,
2006; Boyle and Hardy, 2003). Concerning the valuation of pension buy-ins and buy-outs,
instead, Lin et al. (2017) develop models for pricing both investment and longevity risks
embedded in these strategies. Then, Arık et al. (2018) focus in pricing pension buy-outs
under dependence between mortality and interest rates. As we will see, facing such a
problem requires computing a number of conditional expectations involved in the valua-
tion of annuity contracts at different future times. Hence, avoiding the straightforward
and time-consuming approach based on nested simulations would be quite relevant.

For this reason, in this paper we propose a simulation based method to estimate the
distribution of future annuity values which is able to strongly decrease the computational
demand and at the same time preserves the accuracy of computations. The methodology
described in what follows provides an application of the well-established Least-Squares
Monte Carlo algorithm (LSMC), originally proposed by Longstaff and Schwartz (2001)
for pricing American-type options. The most important advantage of this method is its
flexibility to accommodate any type of Markov mortality model, and the possibility to
be extended to more complicate frameworks without increasing the complexity of the
involved computations. Further, we investigate some variants of the LSMC method in
order to improve the accuracy and the robustness of the algorithm. To this end, we exploit
the control variates method as suggested by Rasmussen (2005).
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The paper is structured as follows. In the next section we introduce the problem under
scrutiny and describe our assumptions and the methodology used to solve it, in Section 3
we present a numerical example, and in Section 4 we provide some practical applications.
In Section 5, we draw some conclusions.

2. Problem and methodology

The ever-increasing interest on adequately evaluating life insurance products or retire-
ment incomes at a future time relates to the need of providing a reliable valuation of the
cost of life expectancy, and to prevent somehow possible insolvency issues. In this paper,
our primary goal is to simulate the distribution of the value of an immediate life annuity
contract issued to an individual aged x+ T at a future time horizon T .

We define the current value at the future time T > 0 of a unitary immediate annuity
for an individual then aged x+ T as

ax+T (T ) =
+∞∑
i=1

B(T, T + i) ipx+T (T ) , (1)

where B(T, T + i) is the i-th years discount factor prevailing at time T > 0 and ipy (T ) is
the i-th years survival probability for an individual aged y at time T .
The quantities B(T, T + i) and ipy(T ) appearing in Equation (1) are both random vari-
ables at time 0 (today), and consequently also ax+T (T ) is random. More precisely, these
variables are expectations conditional on the information available at time T .

To evaluate these conditional expectations we need models for describing the stochastic
evolution of both interest and mortality rates. Under some circumstances, some closed
form formulae for computing them are available, for instance when affine processes are
used (see Biffis, 2005), but in general this is not guaranteed. As previously mentioned,
a straightforward approach would rely on a simulation within simulation procedure, also
known as nested simulations; however, since it is quite computationally time-consuming,
we are going to propose an application of the LSMC method.

Model framework

In order to evaluate Equation (1), we need to deal with interest and mortality risks.
In this Section, we define the computational frameworks which are used to build some
numerical results. In a first stage, we assume a stochastic mortality dynamics with a
constant interest rate; after, we consider the case in which also the dynamics of interest
rates is stochastic.

To this end, we assume to act with a (selected) risk-neutral measure, under which
interest and mortality rates are stochastically independent.

Stochastic mortality dynamics

As already discussed, one of the main risk factors affecting the value of an annuity
contract is mortality. Hence, we need to adopt a stochastic mortality model in order to
mimic its possible evolution over time. To this end, we use the Poisson version of one of
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the most significant and widely applied stochastic mortality models, i.e. the M7 model
(see Cairns et al., 2009). Hence, we assume that the number of deaths at age x and
calendar year t, Dx;t, is Poisson distributed with parameter Ex;tmx;t, where Ex;t and mx;t

denote the central exposure and the central death rate, respectively. Moreover, according
to Cairns et al. (2009), we assume that the force of mortality is constant over each year
of age and calendar and equal to the corresponding central death rate mx;t, modelled as

logmx;t = κ
(1)
t + (x− x̄)κ

(2)
t +

(
(x− x̄)2 − σ̂2

x

)
κ
(3)
t + γt−x,

where x̄ is the average age, σ̂2
x is the average value of (x− x̄)2,

{
κ
(i)
t , i = 1, 2, 3

}
are time

indexes, and γt−x accounts for the cohort effect.

Therefore, by exploiting the fact that κt =
{
κ
(1)
t , κ

(2)
t , κ

(3)
t , γt

}
is usually modelled as

a Markov process, we have:

ipx+T = E [exp {− (mx+T ;T + · · ·+mx+T+i−1;T+i−1)} | κT ] ,

and, within this framework, we can rewrite Equation (1) as

ax+T (T ) = E

[
ω−T−x∑
i=1

exp {− (ir +mx+T ;T + · · ·+mx+T+i−1;T+i−1)} | κT

]
, (2)

where ω is the ultimate age and r the constant interest rate.

Stochastic interest rate model

If in a first stage we consider a constant interest rate framework, we then move to
extend the complexity of the model by allowing for uncertainty in the future level of the
risk-free interest rate.

In this regard, we assume that the interest rate dynamics is described through a
CIR process which states that the instantaneous spot interest rate r obeys the following
stochastic differential equation

dr(t) = α(r̄ − r(t))dt+ σ
√
r(t)dW (t), (3)

where α indicates the strength of the mean reversion process governing r, r̄ is the long-
term mean instantaneous spot interest rate, σ is the interest-rate volatility parameter,
and W (t) is a standard Wiener process.

We know that, under a CIR stochastic interest rate model, the time-T price of a
zero-coupon bond with maturity τ , given r(T ), is

B(T, τ) = E
[
e−

∫ T+t
T r(t)dt | r(T )

]
= exp{A(τ − T )− C(τ − T )r(T )}, (4)

where

A(τ − T ) =
2αr̄

σ2
ln

[
2γe(γ+α)(τ−T )/2

(γ + α) (eγ(τ−T ) − 1) + 2γ

]
,

γ =
√
α2 + 2σ2,

C(τ − T ) =
2
(
eγ(τ−T ) − 1

)
(γ + α) (eγ(τ−T ) − 1) + 2γ

.

7



DEAMS Research Paper 2/2021

Then Equation (1) can be rewritten as follows

ax+T (T ) = E

[
ω−T−x∑

i=1

exp

{
−

(∫ T+i

T

r(t)dt+mx+T ;T + · · ·+mx+T+i−1;T+i−1

)}
| rT ,κT

]
. (5)

The analytic solution in Equation (4) will be used in the construction of the bench-
mark; specifically, we firstly produce different possible values of r(T ) using the SDE in
Equation (3), and then we calculate the discount rate through Equation (4). Concerning
instead the LSMC algorithm, we will not exploit this analytic solution but the represen-
tation of B

(
T, τ

)
in terms of conditional expectation in order to check the reliability of

the proposed methodology in a fully simulated framework.

Valuation procedure

The previously introduced framework does not produce a closed form formula for (2),
as typically the central death rates have a lognormal distribution so each exponent in
(2) involves the sum of lognormal variables. Hence, a possible strategy is to evaluate the
involved conditional expectation through simulation based methods.

A straightforward approach would rely on a nested simulations procedure. This strat-
egy requires first to simulate all relevant risk factors up to time T (outer scenarios); then,
for each simulated time T value of such factors, one would need to simulate forward
starting from that particular value (inner simulations), and finally compute conditional
expectations by averaging across all inner simulations. It follows that this method can be
computationally expensive, in particular when several annuity values (at different times
and/or ages) are needed.

Therefore, in order to reduce the computational complexity, we propose an alternative
methodology based on the LSMC approach. It consists on estimating each annuity value
at time T by means of a few inner simulations. Obviously, this would lead to biased
estimates. Nevertheless, the bias can be reduced by regressing them on a set of basis
functions.

Therefore, the LSMC method essentially consists in modelling Equation (1) as a linear
combination of basis functions depending on the T -time state vector of the risk factors,
zT . Hence

ax+T (T ) ≈ ãx+T (T ) =
M∑
j=1

βjej (zT ) ,

where ej (zT ) is the j-th basis function in the regression, the βjs represent the coefficients
to be estimated, and M is the number of basis functions.

Therefore, the LSMC approach involves two main steps: firstly, we need to perform
simulations of the future evolution of the risk factors; then, we use regression across
the simulated trajectories in order to obtain estimates of future annuity values. In this
way, the conditional expectation is evaluated through regression taking into account the
information available at time T (i.e. the simulated values of the state vector zT exploited
as predictor). Moreover, this method allows to obtain an estimate of the probability
distribution of annuity values at future time horizon T for individuals aged x+ T at that
date. Note that a single set of simulations, without increasing the computational demand,
can be used for different ages and time horizons.
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3. Numerical results

In this Section we provide some numerical examples by considering two main scenarios:
a constant interest rate framework and stochastic mortality evolution, and then we extend
the previous model by assuming that also interest rates are stochastic.

Concerning the dynamics of mortality over time, we exploit in both frameworks the
M7 mortality model, which has been fitted to the Italian male population data over the
period 1965 − 2016 and ages 35 − 89 obtained through the Human Mortality Database.
Further, we assume that year 2016 corresponds to the evaluation time 0 (today).

To check the accuracy of the estimates, we compare them with those obtained through
a nested simulations algorithm, so that the latter act as benchmarks for evaluating the
efficiency and the accuracy of the LSMC procedure (see Boyer and Stentoft, 2013).

Constant interest rate framework

In this section, we provide an example based on an immediate life annuity issued to an
individual aged 65 at different future time horizons T ∈ {5, 10, 15, 20, 30, 40, 50}. The
risk-free interest rate is set at the (constant) level r = 0.03. Moreover, we simulate a differ-
ent number of outer trajectories of future mortality

(
i.e. n ∈ {1000, 5000, 10000, 20000}

)
.

As basis functions, we use polynomials in three or four variables (depending on whether
the cohort term is used or not) with degree p ∈ {1, 2, 3, 4}. All the results are then
compared with a benchmark obtained through a nested simulations procedure consist-
ing in simulating 20000 × 20000 scenarios; in total this amounts to 400 millions inner
simulations.

Table 1 reports some statistics of the distributions of future annuity values obtained
through the two valuation algorithms. Looking at the results, it immediately turns out
that, as the time horizon T increases, the distribution changes. Specifically, its mean
increases, which is quite reasonable and in line with the ever-increasing life expectancy
registered in the last decades. In addition, its standard deviation increases as well, which
implies a more dispersed distribution. This result also seems to be reasonable due to
the higher uncertainty caused by the longer time horizon. Furthermore, it seems that the
distribution tends to be increasingly left-skewed, which implies a longer left tail, hence the
distribution is concentrated on the right tail (i.e. higher values of the annuity contract).
Finally, we see that the kurtosis increases, meaning that we recognize a heavier tailed
distribution, hence a greater propensity to result in extreme annuity values with respect
to the Gaussian case.
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Table 1. Distribution of annuity values at time horizon T for individuals aged 65 in
year 2016+T . MC 20000×20000 simulations. LSMC 20000×1 simulations, Polynomials
order p = 4.

Mean Std Dev Skewness Kurtosis 10th perc. Median 90th perc.

T = 5 MC 13.65110 0.17810 -0.09301 2.96378 13.42178 13.65369 13.87852

LSMC 13.65221 0.17765 -0.09354 2.94450 13.42258 13.65587 13.87793

T = 10 MC 13.85305 0.24099 -0.15187 3.01885 13.54231 13.85969 14.15719

LSMC 13.85527 0.23900 -0.15067 3.12398 13.54861 13.86207 14.15362

T = 15 MC 14.65545 0.27960 -0.23850 3.06219 14.28781 14.66690 15.00814

LSMC 14.30860 0.26243 -0.19230 3.09234 13.96858 14.31593 14.63883

T = 20 MC 14.65545 0.27960 -0.23850 3.06219 14.28781 14.66690 15.00814

LSMC 14.65588 0.27676 -0.22483 3.12117 14.29383 14.66667 15.00440

T = 30 MC 15.42633 0.25877 -0.33438 3.14273 15.08635 15.44058 15.74709

LSMC 15.42780 0.25820 -0.34241 3.15839 15.08894 15.44244 15.74712

T = 40 MC 15.64073 0.29064 -0.41765 3.21743 15.25552 15.66414 15.99685

LSMC 15.64056 0.28999 -0.41974 3.18686 15.25324 15.66416 15.99541

T = 50 MC 15.84853 0.30152 -0.51156 3.33996 15.44801 15.87344 16.21229

LSMC 15.84871 0.29998 -0.49213 3.28021 15.45142 15.87253 16.21280

Concerning the validation procedure, we can see from Table 1 that the LSMC approach
provides quite accurate estimates. Moreover, the reliability of the proposed approach is
evidenced by the fact that the obtained distribution overlaps substantially with the one
produced through nested simulations; this is also confirmed by the Kolmogorov–Smirnov
test (KS, see Table 2). In addition, we have constructed the Q-Q plots by considering
the distribution obtained through nested simulations as the theoretical one, and these
graphs, once again, confirm the goodness of the proposed method in approaching this
kind of problem (see Figure 1).
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Fig. 1. Q-Q plots of future annuity value distributions for an individual aged 65 at
different future times T ∈ {5, 10, 15, 20, 30, 40, 50}. MC 20000 × 20000 simulations;
LSMC 20000× 1 simulations, Polynomials up to order p = 4.
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Further, for a more comprehensive analysis, we checked whether the LSMC approach
tends to over- or under-estimate the quantities of interest. In this regard, in Table 2 we
report the frequency with which the LSMC mean estimates lie inside the 95% confidence
interval obtained through the nested simulations procedure or outside (on the left or on
the right, respectively). We can see that, in each of the considered scenarios, most of the
time the estimates tend to lie outside the confidence interval. Moreover, there is evidence
of over-estimation which could be due to biases stemming from the regression.

To improve the accuracy and the stability of the LSMC approach, we may rely on some
variance reduction techniques (e.g. control variates or antithetic variates methods) or we
may slightly increase the number of inner trajectories. In this regard, Table 3 shows the
same quantities already presented in Table 2 obtained by slightly increasing the number
of inner trajectories (i.e. 10 inner paths) for each outer level.

Table 2. Frequency of hitting the confidence intervals (columns 1 to 3) and KS Test
(columns 4 and 5). MC 20000 × 20000 simulations. LSMC 20000 × 1 simulations, Poly-
nomials order p = 4.

Left Inside Right KS Stat. Value p-value

T = 5 20.355% 47.005% 32.640% 0.0056 0.9124

T = 10 22.850% 28.460% 48.690% 0.0082 0.5199

T = 15 32.775% 28.480% 38.745% 0.0055 0.9228

T = 20 34.165% 26.765% 39.070% 0.0048 0.9777

T = 30 19.460% 33.265% 47.275% 0.0045 0.9874

T = 40 34.475% 28.020% 37.505% 0.0021 1.0000

T = 50 35.220% 33.045% 31.735% 0.0026 0.9999

12
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Table 3. Frequency of hitting the confidence intervals (columns 1 to 3) and KS Test
(columns 4 and 5). MC 20000 × 20000 simulations. LSMC 20000 × 10 simulations,
Polynomials order p = 4.

Left Inside Right KS Stat. Value p-value

T = 5 16.195% 72.675% 11.130% 0.00275 1.0000

T = 10 17.600% 71.565% 10.835% 0.00235 1.0000

T = 15 14.695% 75.845% 9.460% 0.00205 1.0000

T = 20 16.210% 73.385% 10.405% 0.00240 1.0000

T = 30 16.145% 74.855% 9.000% 0.00185 1.0000

T = 40 22.600% 62.665% 14.735% 0.00145 1.0000

T = 50 25.470% 55.820% 18.710% 0.00125 1.0000

Concerning the variance reduction techniques, we adopt the control variates method
to improve the accuracy of the LSMC approach (see Appendix A for further details). The
corresponding results are reported in Table 4.

Table 4. Frequency of hitting the confidence intervals (columns 1 to 3) and KS Test
(columns 4 and 5). MC 20000× 20000 simulations. LSMC with control variates based on
20000× 1 simulations and sub-optimal θ = −1, Polynomials order p = 4.

Left Inside Right KS Stat. Value p-value

T = 5 14.590% 65.885% 19.525% 0.0023 1.0000

T = 10 12.105% 49.370% 38.525% 0.0052 0.9535

T = 15 20.280% 62.655% 17.065% 0.0024 1.0000

T = 20 29.130% 46.410% 24.460% 0.0034 0.9999

T = 30 11.745% 61.580% 26.675% 0.0031 1.0000

T = 40 27.690% 45.510% 26.800% 0.0016 1.0000

T = 50 17.335% 55.910% 26.755% 0.0014 1.0000

If we compare Tables 2 and 4, we can see that the control variates technique effectively
improves the stability and the accuracy of the LSMC method. However, we can see from
Tables 3 and 4 that increasing the number of inner simulations would be more helpful.

Furthermore, we investigate how the choice of the order of polinomials affects the re-
sults. For this purpose, we consider polynomials of degree p ∈ {1, 2, 3, 4} and for each
of the considered scenarios we perform the KS test in order to measure the statistical
distance between the two distributions (LSMC and MC). In particular, Table 5 reports
the case of a LSMC algorithm and nested simulations procedure constructed on 20000×1
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and 20000× 20000 trajectories, respectively.

Table 5. KS test statistic value and the corresponding p-value (in brackets) obtained by
varying the order of the polynomials and the time horizon T . Results refer to the future
annuity value distribution for an individual aged 65 at future time T . LSMC: 20000× 1
simulations. MC: 20000× 20000.

Ord. 1 Ord. 2 Ord. 3 Ord. 4

T = 5
0.00525 0.00480 0.00415 0.00560

(0.94567) (0.97532) (0.99532) (0.91242)

T = 10
0.00745 0.00605 0.00775 0.00815

(0.63559) (0.85759) (0.58530) (0.51994)

T = 15
0.01400 0.00480 0.00525 0.00550

(0.03968) (0.97532) (0.94567) (0.92282)

T = 20
0.01740 0.00405 0.00515 0.00475

(0.00469) (0.99665) (0.95353) (0.97773)

T = 30
0.02125 0.00365 0.00405 0.00450

(0.00024) (0.99935) (0.99665) (0.98741)

T = 40
0.03220 0.00155 0.00185 0.00205

(1.973e-09) (1.000) (1.000) (1.000)

T = 50
0.03850 0.00240 0.00210 0.00260

(2.669e-13) (1.000) (1.000) (1.000)

If we look at Table 5 by row, we can see that using higher order of polynomials helps to
improve the approximation of the desired distribution up to a certain order. The results
seem to be totally coherent with the convergence analysis of the LSMC algorithm discussed
in Bauer and Ha (2013). Essentially, higher polynomial orders need to be coupled with
an increase in the number of simulations in order to achieve better results, see Table 6.

14
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Table 6. KS test statistic value and the corresponding p-value (in brackets) obtained by
varying the order of the polynomials and the number of outer simulations. Results refer
to the future annuity value distribution for an individual aged 65 at future time T = 20.
LSMC: n× 1 simulations. MC: 20000× 20000 simulations.

n = 1000 n = 5000 n = 10000 n = 20000

Ord. 1
0.04705 0.02435 0.02370 0.01740

(0.02950) (0.01742) (0.00112) (0.00469)

Ord. 2
0.04495 0.01410 0.00925 0.00405

(0.04262) (0.40421) (0.61832) (0.99665)

Ord. 3
0.04845 0.01580 0.00870 0.00515

(0.02287) (0.27081) ( 0.69394 ) (0.95353)

Ord. 4
0.05035 0.01575 0.00810 0.00475

(0.01599) (0.27422) (0.77421) (0.97773)

For a more comprehensive analysis, we perform multiple runs of the LSMC algorithm
in order to check the variability of the corresponding estimates. In particular, we run 100
times the LSMC method, by varying both the number of outer scenarios and the future
time horizon T . We report in Table 7 the mean absolute percentage error (MAPE) for each
scenario computed with respect to the corresponding benchmark value. Figure 2 shows
the boxplots relative to the 100 mean estimates obtained through the LSMC approach
for an annuity contract issued to an individual aged 65 at the future time T = 30.

Table 7. This table illustrates the MAPE of the mean estimates. Each value was
computed by considering a sample of 100 estimated measures. The benchmark value is
based on a nested simulations algorithm with 20000 × 20000 simulations. LSMC n × 1
simulations, polynomials order p = 4.

n = 1000 n = 5000 n = 10000 n = 20000

T = 5 0.0527% 0.0216% 0.0163% 0.0115%

T = 10 0.0609% 0.0253% 0.0200% 0.0126%

T = 15 0.0621% 0.0285% 0.0221% 0.0179%

T = 20 0.0618% 0.0289% 0.0211% 0.0184%

T = 30 0.0514% 0.0237% 0.0156% 0.0140%

T = 40 0.0576% 0.0304% 0.0240% 0.0234%

T = 50 0.0544% 0.0265% 0.0199% 0.0193%
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Fig. 2. Box-plots relative to the 100 mean estimates obtained by considering different
numbers of outer scenarios and different polynomial orders. Age 65 at time T = 30.
LSMC n × 1 simulations, varying polynomial orders p. The red line is the benchmark
value based on 20000× 20000 simulations.

As we can see from Table 7 and Figure 2, increasing the simulated outer scenarios
helps the LSMC algorithm to converge. In addition, looking at Figure 2, it seems that, if
the number of simulations is taken fixed, the choice of the polynomial order does not affect
the reliability of the desired quantity at least for the mean estimate of the distribution.
However, we may be interested in analysing the performance of the LSMC in estimating
some extreme values of the distribution. In this regard, we present in Table 8 and Figure
3 the MAPE and box-plots relative to the 90-th percentile estimates for an immediate
life annuity issued to an individual aged 65 at time T = 30, respectively. Once again,
each box-plot was generated by considering 100 estimates, by varying the number of outer
simulations and the order of the polynomials.
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Table 8. MAPE of the 90-th percentile estimates computed with the LSMC method for
the immediate life annuity issued to an individual aged 65 at time T = 30 by varying the
number of outer simulations n and the polynomial order p ∈ {1, 2, 3, 4}. Each value was
computed by considering a sample of 100 estimated percentiles. Benchmark value based
on 20000× 20000 simulations.

Ord. 1 Ord. 2 Ord. 3 Ord. 4

n = 1000 0.1010% 0.0682% 0.0688% 0.0738%

n = 5000 0.0893% 0.0371% 0.0366% 0.0371%

n = 10000 0.0875% 0.0329% 0.0306% 0.0308%

n = 20000 0.0842% 0.0245% 0.0230% 0.0229%
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Fig. 3. Box-plots relative to the 90-th percentile estimates of the immediate life annuity
distribution issued to an individual aged 65 at time T = 30. Each box-plot was generated
by considering 100 estimates by varying the number of simulations n and the order of the
involved polynomials. The red line corresponds to the 90-th percentile estimate obtained
through nested simulations (20000× 20000).
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From Table 8 and Figure 3, it is evident that, for higher number of simulations, we
need to exploit higher polynomial orders. Indeed, we can see from Table 8 that, by
simulating 1000 trajectories, it is sufficient to use a lower polynomial order (i.e. p = 2);
instead, once we increase the simulated trajectories, then we need to increase at the same
time p. Moreover, by looking at Figure 3, it seems that the LSMC approach tends to
overestimate the desidered quantity in all the scenarios. However, the magnitude of such
overestimation is quite negligible (see Table 8).

Note that we can exploit as basis functions other types of polynomials. For instance,
we have conducted a similar analysis by using the so-called orthogonal polynomials (such
as Hermite, Legendre, Laguerre and Chebyshev). However, here we do not report the
corresponding results since they turned out to be quite similar to the previously discussed
and hence, at least in this simplified framework, they do not provide any significant
improvement.

Finally, in Figure 4 we compare the accuracy of the LSMC method with and without
control variates and the LSMC approach with a greater number of inner scenarios. In
particular, Figure 4 shows the MAPEs relative to the mean and the 90-th percentile
estimates obtained by varying the number of outer trajectories.
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Fig. 4. MAPEs relative to the mean (left) and the 90-th percentile (right) estimates of the
immediate life annuity distribution issued to an individual aged 65 at time T = 5 obtained
by running 100 times the LSMC method (LSMC), the LSMC approach with control
variates (LSMC CV), and the LSMC method with 10 inner trajectories. Monomials up
to order p = 4 have been employed. Benchmark values based on 20000×20000 simulations.

As we can see from Figure 4, as the number of outer simulations increases, the level
of accuracy of the three algorithms converges. In addition, we can see that applying the
control variates technique or increasing the number of inner trajectories produces similar
results in terms of accuracy in each of the considered cases. We have conducted a similar
analysis by varying the future time horizon T , and we have obtained similar outcomes.

Now let us examine the speed of the LSMC algorithm and the nested simulations one.
Table 9 shows the runtime of the two approaches for different numbers of outer simulations
and a specific time horizon (i.e. T = 20). Note that we conducted all experiments using
a custom-built workstation equipped with an Intel® Xeon® Silver 4116CPU 2.10 GHz
processor with 64 GB of RAM and Windows 10 Pro for Workstation operating system.
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Table 9. Time in seconds demanded by the two approaches. MC based on n × 20000
simulations. LSMC based on n×1 simulations, Polynomials order p = 4. Individual aged
65 at time T = 20.

n = 1000 n = 5000 n = 10000 n = 20000

LSMC 16.23 74.45 148.53 294.00

MC 274.58 1350.07 2784.07 5564.53

LSMC / MC 5.91% 5.52% 5.34% 5.28%

From Table 9, we can appreciate in each of the considered scenarios how the LSMC
outperforms the nested simulation method. In addition, as we have seen, one possible
choice to improve the accuracy of the results would be to slightly increase the number of
inner trajectories employed in the LSMC setting (see Table 3). For this reason, in Table
10 we investigate in terms of time the cost of such a procedure.

Table 10. Time in seconds demanded by the LSMC method based on n× 1 and n× 10
simulations. Polynomials order p = 4. Individual aged 65 at time T = 20.

Inner n = 1000 n = 5000 n = 10000 n = 20000

1 16.23 74.45 148.53 294.00

10 20.89 97.21 195.04 394.10

1 / 10 77.69% 76.59% 76.17% 74.62%

We can see from Table 10 that increasing the inner scenarios from 1 to 10, as expected,
leads to an increase in the computational time (e.g. it costs around 25% more).

Stochastic interest rate framework

In this Section, we provide numerical examples on the estimation of future annuity
values by considering the two main risk factors affecting the value of the policy under
scrutiny, e.g. future mortality and interest rate levels. For this purpose, we assume
that the interest rate dynamics is described by a CIR process (see Section 2), while the
evolution of mortality is still described through the M7 mortality model. We set the
parameters entering the SDE in Equation (3) as follows: r0 = 0.04, α = 0.2, r̄ = 0.04 and
σ = 0.1, as in Dowd et al. (2011). Again, we consider an annuity contract which will be
issued to an individual aged 65 at different future times T ∈ {5, 10, 15, 20, 30}.

We simulate n ∈ {1000, 5000, 10000, 20000} outer scenarios both for mortality and
interest rates (assuming independence among the two sources of uncertainty). As al-
ready said, the nested simulations approach exploits the analytic solution in Equation (4)
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while the LSMC method is constructed on a fully simulated scenario based on an Euler
discretization setting for the SDE in Equation (3).

Focusing on our proposed methodology, we consider as basis functions employed in
the regression model polynomials with different order p ∈ {1, 2, 3, 4}. Table 11 reports
summary statistics about the obtained distributions of future annuity values by consid-
ering an individual aged 65 at different future times T and applying both the nested
simulation and the LSMC approaches. Figure 5 shows the probability density functions
of the annuity contract value issued to an individual aged 65 at the future time T = 30
obtained by the two methodologies.

Table 11. Distribution of annuity values at time horizon T for individuals aged 65 in
year 2016+T . MC 20000×20000 simulations. LSMC 20000×1 simulations, Polynomials
order up to p = 4.

Mean Std Dev Skewness Kurtosis 10th perc. Median 90th perc.

T = 5 MC 12.72846 1.29133 -0.74746 3.42607 10.92840 12.93567 14.20394

LSMC 12.74919 1.32597 -0.80183 3.67530 10.92036 12.96490 14.24625

T = 10 MC 12.91861 1.36829 -0.90133 3.93803 11.04426 13.16814 14.42813

LSMC 12.94864 1.39122 -0.86954 4.01465 11.06078 13.17963 14.49531

T = 15 MC 13.32751 1.42048 -0.90174 3.99626 11.38111 13.58073 14.89697

LSMC 13.36619 1.44427 -0.86384 4.04043 11.40266 13.60434 14.97452

T = 20 MC 13.65274 1.45657 -0.89477 3.93755 11.64542 13.90389 15.27137

LSMC 13.66774 1.49907 -0.90988 3.98496 11.58720 13.93839 15.31676

T = 30 MC 14.31109 1.54101 -0.91214 4.00030 12.21987 14.59021 16.01540

LSMC 14.31839 1.58931 -0.87445 3.95985 12.15367 14.59332 16.09910
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Fig. 5. Probability density function relatives to future annuity values issued to an in-
dividual aged 65 at future time T = 30 under stochastic interest rate and mortality
framework. LSMC 20000× 1 simulations, Polynomial order p = 2. Benchmark based on
20000× 20000 simulations.

Once again, we can appreciate the reliability of the proposed methodology. Further,
as already recognized in Dowd et al. (2011), incorporating interest rate risk makes the
distribution much more left-skewed. In Table 12 we report the MAPEs relative to the
mean estimates obtained by running 100 times the LSMC algorithm. We can see that,
compared to Table 7, the accuracy gets worst. This is obviously due to the increasing
uncertainty in the valuation process given by the stochastic evolution of the risk-free rate.
Nonetheless, the LSMC method is still able to provide reliable estimates, especially if we
increase the number of outer scenarios.
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Table 12. This table illustrates the MAPE of the mean estimates. Each value was
computed by considering a sample of 100 estimated measures. The benchmark value is
based on a nested simulations algorithm with 20000 × 20000 simulations. LSMC n × 1
simulations, polynomials order p = 4.

n = 1000 n = 5000 n = 10000 n = 20000

T = 5 0.4840% 0.1417% 0.1134% 0.0979%

T = 10 0.3414% 0.2594% 0.1167% 0.0957%

T = 15 0.3519% 0.1409% 0.2236% 0.0997%

T = 20 0.3470% 0.1718% 0.1051% 0.1040%

T = 30 0.3499% 0.2399% 0.1683% 0.1044%

Also in this case we investigate the accuracy of the LSMC in approximating extreme
values of the distribution. In this regard, Table 13 and Figure 6 show the MAPEs and
the boxplots relative to the 90-th percentile estimates obtained by performing 100 times
the LSMC approach (for different polynomial orders and number of simulations). As
we can see, in this case lower polynomial orders are already sufficient to provide a good
performance. This is in line with the theory since in this framework we are considering
one more risk-factor entering as predictor in the regression model, i.e. the interest rate
r(T ) 2.

Table 13. MAPE of the 90-th percentile estimates computed with the LSMC method
for the immediate life annuity issued to an individual aged 65 at time T = 30 by varying
the number of outer simulations n and the polynomial order p ∈ {1, 2, 3, 4}. Each value
was computed by considering a sample of 100 estimated percentiles. Benchmark value
based on 20000× 20000 simulations.

Ord. 1 Ord. 2 Ord. 3 Ord. 4

n = 1000 0.6272% 0.5690% 0.6555% 0.7313%

n = 5000 0.3851% 0.5876% 0.6655% 0.6950%

n = 10000 0.3214% 0.5655% 0.6472% 0.6562%

n = 20000 0.5415% 0.3473% 0.4067% 0.4108%

2If we considered a polynomial order p = 1 or p = 2 and, as in this case, we have 4 risk-factors(
κ
(1)
T , κ

(2)
T , κ

(3)
T , rT

)
, then the number of basis functions would be M = 5 and M = 15, respectively.
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Fig. 6. Box-plots relative to the 90-th percentile estimates of the immediate life annuity
distribution issued to an individual aged 65 at time T = 30 under stochastic interest
rate and mortality. Each box-plot was generated by considering 100 estimates by varying
the number of simulations n and the order of the involved polynomials. The red line
corresponds to the 90-th percentile estimate obtained through nested simulations 20000×
20000.

4. Applications

In this last part of the paper, we present some possible applications in which the
valuation of future annuity contracts plays a relevant role, and hence where our proposed
methodology helps in strongly reducing the computational time, while simultaneously
ensuring a high reliability.

As already mentioned in Section 1, the problem of valuing future annuity contracts
recurs in various contexts, e.g. in developing de-risking strategies for pension providers,
or in predicting their pension shortfall distribution in a future time horizon, or for pricing
purposes such as valuing Guaranteed Annuity Options, just to name a few. In this regard,
the next sections provide numerical applications of the LSMC method in addressing these
issues.
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Pricing pension buy-outs

In this Section, we apply the LSMC methodology for pricing de-risking strategies; in
particular, we focus on pricing pension buy-outs.

In the case of a buy-out, a pension provider transfers part of its assets and pension
liabilities to an insurance company which plays as contractual counterparty. The latter
requires the payment of an amount equal to the actuarial expected present value of possible
future pension plan’s deficit. In the following, we introduce a simplified computational
framework.

Let us consider a pension plan based on a cohort of pensioners N0 at year t = 0 with
age x0. Further, we assume that all pensioners receive the same constant pension benefit,
b, at the end of each year, if alive. We indicate with Lt the pension liability at year t,
which is given by

Lt = Nt · b · ax0+t(t), (6)

where Nt is the number of survivors at the calendar year t, and ax0+t(t) is the value of
an ordinary annuity contract issued to an individual aged x0 + t in year t (with unitary
benefits), see Equations (1) and (2) in Section 2. Then, we denote with At the value of
the pension assets in year t.

At the end of each year, the pension plan must pay the benefits to the survivors,
implying a reduction of the pension portfolio value. In case that the portfolio itself is not
able to cover such payments, the pension buy-out option obliges the insurer to cover the
remaining amount. Therefore, we define such amount as Ot, which can be formalized as
follows:

Ot = max {Lt +Nt · b− At , 0} t = 1, 2, . . . .

Obviously, just after the pensions are paid, the value of the pension portfolio can be
expressed as

At+ = At −Nt · b+Ot = max {At −Nt · b , Lt} t = 1, 2, . . . ,

which will be then re-invested between times t and t+ 1.
Therefore, under this setting, we can define the risk-neutral price of the funding guar-

antee option of the buy-outs as

G = E

[
τ∑
t=1

e−rtOt − e−r(τ+1)Aτ+1

]
, (7)

where τ = max{t : Nt > 0} and, again, we have assumed a constant risk-free interest
rate, r. In addition, the price G can be decomposed in two components

G = GO −GA,

where

GO =
τ∑
t=1

e−rt · E [Ot] ,

GA = e−r(τ+1) · E [Aτ+1] .
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Hence, GO can be interpreted as the actuarial present value of the future contributions
made by the insurer in order to compensate the deficit; and GA as the present value of
the assets, once the cohort becomes extinct, which will be ceeded to the insurer. The
premium in Equation (7) can also be defined as a percentage of the value of the pension
liabilities at time t = 0, i.e.

g =
G

L0

=
GO

L0

− GA

L0

= gO − gA.

Numerical results

Concerning the dynamics of mortality, in order to take into account the difference in
terms of longevity between the target population and that of the retired cohort, we exploit
the Augmented Common Factor mortality model proposed in Li and Lee (2005). Indeed,
in practice, if the value of future annuity contracts in Equation (6) are derived from a
reference population, the number of survivors Nt instead reflects the mortality evolution
of the specific retired cohort belonging to the pension plan. Therefore, we consider as
reference population the italian total one, and we assume that the pension plan consists
of female italian retirees. We exploit data over the period 1960-2016 and range of ages
65− 89 obtained from the Human Mortality Database.

Concerning the dynamics of the pension portfolio, for simplicity we assume that At
follows a Geometric Brownian Motion with drift equal to the risk-free rate r = 0.02, and
volatility σA ∈ {0, 0.05, 0.10, 0.15, 0.20}. Moreover, we assume that at time t = 0 the
pension plan is fully funded, i.e. A0 = L0 = 172299.

We assume that at time t = 0 the pension plan signs a pension buy-out contract for
the cohort of N0 = 10000 female pensioners all aged x0 = 65 at that time, and we fix
as ultimate age ω = 110, i.e. ω − x0 = 45. The mortality table is completed up to the
ultimate age through a log-linear closure.

In order to evaluate Equation (7), we firstly need to evaluate Equation (6) which
depends on the value of future annuity contracts. For this purpose, we apply the LSMC
methodology based on a set of 100000× 1 scenarios of mortality rates. Then, concerning
the regression part of the algorithm, we exploit polynomials up to order p ∈ {1, 2}.

In Tables 14 and 15 we report the value at time t = 0 of a pension buy-out obtained
through the LSMC approach for different values of σA and by varying p.
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Table 14. Price of a pension buy-out contract at time t = 0 obtained by varying the
level of volatility σA. LSMC 100000× 1 simulations, Polynomials up to order p = 1.

σA gO g

0 5.266% 4.561%

0.05 12.010% 4.590%

0.10 22.497% 4.700%

0.15 34.145% 4.968%

0.20 46.858% 5.529%

Table 15. Price of a pension buy-out contract at time t = 0 obtained by varying the
level of volatility σA. LSMC 100000× 1 simulations, Polynomials up to order p = 2.

σA gO g

0 5.261% 4.561%

0.05 12.009% 4.590%

0.10 22.497% 4.700%

0.15 34.145% 4.969%

0.20 46.858% 5.529%

As we can notice from Tables 14 and 15, the higher σA the higher the pension buy-out
price. Moreover, we can see that the choice of the polynomial order has not a relevant
effect on g; similar results were obtained by exploiting higher polynomial orders.

We have reported just a simple numerical application which gives an idea of the poten-
tiality of the LSMC method. Indeed, the approach drastically reduces the computational
time which would be required if a simulation within simulation approach is used. Indeed,
addressing this problem implies the valuation of a sequence of future annuity contracts
(for instance, in this case we need estimates of ax0+t(t) for t = 1, . . . , ω−x0). Specifically,
the computational budget passes from 100000× 100000× (ω − x0) simulations in case of
nested simulations to 100000× 1× (ω − x0) in the LSMC setting.

Pension shortfall

As a further application, we may be interested in approximating the shortfall distri-
bution for a pension provider in a distant future time T , which would be essential for
solvency capital valuations. In this regard, we exploit the same framework introduced in
the previous subsections to approximate the shortfall distribution at time T = 1 year,
but instead of a female retirees cohort a male one is taken into account. In particular, we
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define the pension shortfall after 1 year and discounted at time t = 0 as

S = e−r [L1 − A1+] = e−r [N1 · b · ax0+1(1)− A1+] , (8)

again with r = 0.02, L1 denotes the pension liabilities at time t = 1, and A1+ is the
pension portfolio value just after the pensions are paid at the end of the first year.

In order to evaluate Equation (8), we need to work under two probability measures. A
physical (or real-world) probability measure P over the first year to simulate the possible
evolution of the relevant risk-factors; and the risk-neutral probability measure over the
remaining time horizion (up to the last date in which the pension plan has survivors). In
particular, looking at Equation (8), the number of survivors and the value of the pension
assets at time t = 1 should be valued under P, while ax0+1(1) under the risk-neutral
measure. In this regard, we assume now to start from the dynamics of mortality under
the physical measure P and, to obtain that under the risk-neutral measure, we apply the
valuation method suggested in Wang (2000) (see Appendix B for details).

The exploited mortality data are those already used in the previous subsection. More-
over, we assume that, under P, the pension portfolio value evolves according to a GBM
with constant drift µ = 0.08 and volatility σA ∈ {0.05, 0.10, 0.20}. The hypothesis that
the pension plan is fully funded at the initial time is still valid.

We simulate n = 100000 P-trajectories of the risk-factors up to time t = 1, and then
we project just 1 inner scenario to which is applied the Wang Transform. The LSMC
method is then applied in order to evaluate a66(1), by exploiting polynomials up to order
p ∈ {1, 2, 3}.

We investigate the 1-year shortfall distribution for different values of the longevity risk
premium λ ∈ {0.0456849, 0.1320511, 0.2209899} which were obtained by setting different
values for a65(0)3. For each scenario, we estimate the corresponding Value-at-Risk (VaR)
and Conditional Value-at-Risk (CVaR) at the 99.5-th level, which are usually used for
valuing solvency capital requirements.

Table 16 reports the VaR99.5% and CVaR99.5% of the 1-year shortfall distribution dis-
counted at time t = 0 (see Figure 7) expressed as percentage of the initial pension liabilities
value L0 = 172299, obtained by varying the longevity risk premium λ and the pension
portfolio volatility σA.

3The longevity risk premium were obtained by setting a65(0) = {17.5, 18, 18.5}.
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Table 16. This table reports the 99.5% VaR and CVaR estimates of the pension shortfall
distribution after 1 year, discounted at time t = 0, as a percentage of the initial level of the
pension liabilities for different values of the longevity risk premium λ, different polynomial
order p, and volatility levels σA. Note that L0 = 172299.

λ = 0.0456849 λ = 0.1320511 λ = 0.2209899

p σA VaR99.5% CVaR99.5% VaR99.5% CVaR99.5% VaR99.5% CVaR99.5%

0.05 9.210% 10.777% 14.138% 15.715% 18.986% 20.581%

1 0.10 20.587% 23.292% 25.555% 28.236% 30.434% 33.110%

0.20 39.936% 43.901% 44.872% 48.849% 49.752% 53.728%

0.05 9.213% 10.778% 14.145% 15.716% 18.985% 20.582%

2 0.10 20.593% 23.292% 25.561% 28.236% 30.437% 33.110%

0.20 39.935% 43.901% 44.890% 48.850% 49.766% 53.729%

0.05 9.214% 10.779% 14.143% 15.717% 18.985% 20.583%

3 0.10 20.591% 23.292% 25.558% 28.237% 30.435% 33.110%

0.20 39.932% 43.901% 44.893% 48.850% 49.769% 53.729%
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Fig. 7. Distribution of the pension shortfall after 1 year discounted at time t = 0 by
considering different levels of the longevity risk premium λ. LSMC 100000×1, Monomials
order p = 1. σA = 0.05.
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As we can see from Table 16, an increase in the volatility σA as well as in the longevity
risk premium λ (i.e. increasing life expectancy) imply higher levels for both VaR and
CVaR; this is quite reasonable since an unexpected increase in longevity leads to higher
possible losses for pension sponsors. In addition, changing the polynomial order in the
LSMC algorithm does not particularly affect the results.

Pricing Guaranteed Annuity Options

In this Section, we present a further context where future annuity contract values are
needed, and so where our proposed methodology could be applied. In particular, we focus
on estimating the price of a future Guaranteed Annuity Option contract. In addition,
we remind the readers to consult Ballotta and Haberman (2003, 2006), Boyle and Hardy
(2003), and Biffis and Millossovich (2006) for deeper details.

Description

A guaranteed annuity option (GAO) is a contract that provides the policyholder the
right to convert a specific amount at maturity (e.g. benefits embedded in unit-linked
policies) into a life annuity at some guaranteed conversion rate, c (fixed at inception). In
particular, the option is exercised at maturity if the future annuity value prevailing in the
market is greater then the guaranteed annuity (the reciprocal of the conversion rate, c)
granted by the insurer at inception.

Let us consider a policyholder aged x years at the inception date t = 0. We assume
that the amount available at maturity, i.e. at time T > 0, is given by the value of a
reference fund with price process S, and that the guaranteed conversion rate 0 < c < 1 is
fixed at inception. Then, the time-0 value of a GAO with maturity T can be expressed as

V0 = E
[
e−

∫ T
0 (rs+µx+s)dscST max

{
ax+T (T )− 1

c
, 0

}]
, (9)

where ST is the account value at time T which can be converted into an annuity. Therefore,
as we can see from Equation (9), a Guaranteed Annuity Option can be interpreted as a call
option on the annuity value, and the strike is the reciprocal of the guaranteed conversion
rate. We refer to Biffis and Millossovich (2006) for deeper details.

Numerical results

The computational framework is the same as the one introduced in Section 3, hence
we exploit a CIR process and the M7 model for simulating the dynamics of interest rates
and mortality over time, respectively.

In our numerical example, we consider diffent individuals aged x < 65 in 2016 (t = 0),
and that the GAO matures when they reach age x + T = 65; at that time they can
choose to convert the account value ST = 100 into annuities at the conversion rate c = 1

13
.

Therefore, just for simplicity and without loss of generality, we ignore the dynamics of a
hypothetical reference fund.

The LSMC method is then applied to estimate the value of a future annuity contract
which enters in Equation (9), by performing n× 1 simulations of the risk-factors and by
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exploiting polynomials up to order p ∈ {1, 2, 3, 4}. In this case, we compare these results
with respect to the corresponding benchmark based on nested simulations (20000×20000
trajectories). Table 17 reports the price of a GAO for an individual aged x today with
maturity T together with the probability that the option ends in-the-money, obtained by
both the LSMC and the simulation within simulation algorithms.

Table 17. This table reports the price of a Guaranteed Annuity Option with maturity
T for an individual aged x today together with the probability that the option ends in-
the-money. The values are computed both by exploiting the LSMC approach for the
evaluation of the future annuity contracts, and the nested simulations procedure. The
LSMC method is based on 20000 × 1 simulations of the risk factors, polynomials with
order p = 1. Nested simulations based on 20000× 20000 scenarios.

x 60 55 50 45 35

T 5 10 15 20 30

V LSMC
0 2.362 2.594 3.382 3.666 3.970

Pr
[
ax+T (T ) > 1

c

]
LSMC

0.515 0.578 0.684 0.740 0.830

V MC
0 2.353 2.594 3.315 3.614 3.923

Pr
[
ax+T (T ) > 1

c

]
MC

0.480 0.547 0.651 0.716 0.816

As we can see from Table 17, the LSMC method provides quite accurate estimates;
indeed, the mean percentage error among all the prices is around 1%. This result is quite
notable since the nested simulations approach exploits the closed formula in Equation (4),
while the LSMC algorithm is based on a fully simulated framework bringing with itself
all the errors related to the discretization of the interest rate stochastic process.

Moreover, we investigate the accuracy of the LSMC method by performing multiple
runs, varying both the number of outer scenarios, n, and the polynomial order, p. In this
regard, Table 18 and Figure 8 report the MAPEs and box-plots relative to the GAO price
estimates obtained by running 100 times the LSMC and compared to the corresponding
benchmark based on 20000 × 20000 simulations. The results refer to a GAO subscribed
by an individual aged x = 55 today and maturity T = 10.
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Table 18. This table illustrates the MAPE of the GAO price estimates obtained by per-
forming 100 runs of the LSMC method by varying both the number of outer scenarios and
the polyinomial order. The benchmark value is based on a nested simulations algorithm
with 20000 × 20000 simulations. GAO subscribed by an individual aged x = 55 today
with maturity T = 10.

n p = 1 p = 2 p = 3 p = 4

1000 5.009% 7.143% 7.936% 9.435%

5000 2.736% 5.952% 6.179% 6.447%

10000 1.763% 4.827% 4.938% 4.968%

20000 1.464% 4.589% 4.673% 4.684%

2.
2

2.
6

3.
0

3.
4

Polynomial Order

G
A

O
 P

ric
e

n = 1000 n = 5000 n = 10000 n = 20000

p1 p2 p3 p4 p1 p2 p3 p4 p1 p2 p3 p4 p1 p2 p3 p4

Fig. 8. Box-plots relative to the 100 GAO price estimates obtained by considering dif-
ferent numbers of outer scenarios and different polynomial orders. The horizontal red
line refers to the benchmark value obtained through nested simulations (20000 × 20000
trajectories). GAO subscribed by an individual aged x = 55 today with maturity T = 10.

Once again, from Table 18 and Figure 8, we can appreciate the good performance
of the LSMC approach. In particular, we can see that increasing the number of outer
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scenarios helps in decreasing the variability of the LSMC estimates. Moreover, we can
notice that, as in Section 3, increasing the polynomial order is not a profitable choice
due to the higher number of regressors used without increasing sufficiently the number of
outer trajectories.

5. Conclusions

In this paper we faced the problem of approximating future annuity values. We pro-
posed a methodology, based on the LSMC approach, which turned out to be quite accu-
rate. Our results highlight the need of developing reliable actuarial models able to capture
the source of risk arising from longevity and interest rate. These are not negligible as-
pects, especially for solvency purposes. Further, the paper has shown many contexts in
which the valuation of future annuity contracts plays a relevant role, and hence where
the LSMC algorithm helps in reducing the computational demand by preserving at the
same time the accuracy of any desired quantities. The LSMC method turned out to
be quite flexible to accomodate any computational framework withouth increasing the
computational complexity.

APPENDIX A

Least-Squares Monte Carlo with Control Variates

Among the variance reduction techniques, the control variates method is the most
effective approach to improve the efficiency of Monte Carlo simulation (see Glasserman,
2004). The idea is to exploit the information about the errors in estimates of known
quantities to reduce the error in an estimate of an unknown quantity. It consists in
replacing the random variable of interest, Y , with a new random variable Z which has
the same expectation. In particular, we have the new random variable Z defined as

Z = Y − θ (X − E [X]) ,

where X is the control variate, θ is a (real-valued) parameter, and the term X − E [X]
serves as a control in estimating E [Y ]. Then, an estimator of E [Z] can be its sample
mean

Z̄ (θ) =
1

n

n∑
i=1

(Yi − θ (Xi − E [X])) . (A1)

It can be shown that the variance of the estimator defined in Equation (A1) is minimized
if

θ =
Cov [Y, X]

Var [X]
.

A similar idea can be exploited also in a LSMC framework as suggested by Rasmussen
(2005), and further empirically applied by Mozgin (2010), where a new random variable
with the same conditional expectation needs to be identified.
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Control Variate: the GAPC family

Let us consider the mathematical framework defined in Section 3 where only mortality
risk is taken into account, and denote with A

(i)
x+T (T ) the value of the annuity contract

referring to the i-th outer scenario obtained by averaging across the few inner simulations.
Then, we define the new set of observations as{

A
(i)
x+T (T )− θ

(
M

(i)
x+T (T, l)− E

[
M

(i)
x+T (T, l) | zT

])}
i=1,...,n

,

where zT is the state-vector, and Mx+T (T, l) is the control variate defined as follows

Mx+T (T, l) =
l−1∑
h=0

mx+T+h,T+h.

In what follows, we compute the conditional expectation of the control variate which
has then been used to obtain the numerical results in Section 3. In particular, we con-
sider the class of Generalized-Age-Period-Cohort stochastic mortality models where we
know that, under a Poisson setting, the logs of mortality rates are modelled through the
following equation:

logmx;t = αx +
N∑
i=1

β(i)
x κ

(i)
t + β(0)

x γt−x, (A2)

where αx is a static-age function, N ≥ 0 is an integer indicating the number of age-period
terms describing the mortality trends, with each time index κ

(i)
t contributing in specifying

the mortality trend and β
(i)
x modulating its effect across ages, and γt−x accounts for the

cohort effect with β
(0)
x modulating its effect across ages. We assume that the period

indexes follow a multivariate random walk with drift as in Cairns et al. (2006, 2011),
Haberman and Renshaw (2011) and Lovász (2011), i.e.

κt = δ + κt−1 + εt, κt =


κ
(1)
t

κ
(2)
t
...

κ
(N)
t

 , εt ∼ N(0,Σ),

where δ is the vector of drift parameters, and Σ is the N ×N variance-covariance matrix
of the multivariate white noise εt.

Hence, we have that, conditional on κT ,

κT+h | κT ∼ N(hδ + κT , hΣ).

Our first objective is to determine the distribution of mx+h;T+h | zT , where zT =
[κT , γT−x] is the state-vector. To this end, we define the vectors

βx+h =


β
(1)
x+h

β
(2)
x+h
...

β
(N)
x+h

 , µh =


κ
(1)
T + hδ(1)

κ
(2)
T + hδ(2)

...

κ
(N)
T + hδ(N)

 ,
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and the variance-covariance matrix

Σh =


σ2
ε1

ρε1ε2σε1σε2 . . . ρε1εNσε1σεN
ρε1ε2σε1σε2 σ2

ε2
. . . ρε2εNσε2σεN

...
...

. . .
...

ρε1εNσε1σεN ρε2εNσε2σεN . . . σ2
εN

 · h.
Therefore, we can write

mx+h;T+h | zT = eαx+h+βᵀ
x+h·µh+β

(0)
x+hγT−x | zT ∼ exp

{
N
(
αx+h + βᵀ

x+h · µh + β
(0)
x+hγT−x , βᵀ

x+hΣhβx+h

)}
,

and so, we have that mx+h;T+h | zT is log-normally distributed

mx+h;T+h | zT ∼ LN
(
αx+h + βᵀ

x+h · µh + β
(0)
x+hγT−x , βᵀ

x+hΣhβx+h

)
. (A3)

It follows that

E [mx+h;T+h | zT ] = eαx+h+βᵀ
x+h·µh+β

(0)
x+hγT−x+

1
2
βᵀ
x+hΣhβx+h .

Considering the control variate

Mx+T (T, l) =
l−1∑
h=0

mx+T+h,T+h,

we have that its conditional expectation can be easily computed as

E [Mx+T (T, l) | zT ] = E

[
l−1∑
h=0

mx+h;T+h | zT

]
= mx;T +

l−1∑
h=1

E [mx+h;T+h | zT ]

= mx;T +
l−1∑
h=1

eαx+h+βᵀ
x+h·µh+β

(0)
x+hγT−x+

1
2
βᵀ
x+hΣhβx+h .

Concerning the optimal level of θ, Rasmussen (2005) suggests to eventually estimate the
second and cross-product moments through a linear combination of basis functions. However,
in our numerical experiments we have fixed θ at a sub-optimal level.

APPENDIX B

The Wang Transform

The Wang Transform method consists essentially in distorting the cumulative distri-
bution of a random variable Y . This yields a new risk-adjusted cumulative distribution of
cash-flows that can be discounted at the risk-free rate. Specifically, Wang (2000) defines
the following risk-adjusted distribution, that we take as risk-neutral one

F̃Y (y) = Φ
[
Φ−1(FY (y))− λ

]
, (B1)
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where FY (y) is the CDF of the random variable Y under the physical measure P, Φ is the
CDF of a standard normal random variable, and λ is the risk premium.

Accordingly to Lin and Cox (2005), in the context of longevity risk transfer, the Wang
transform in Equation (B1) can be explicitly written as

F̃T (x,0)(i) = Φ
[
Φ−1

(
FT (x,0)(i)

)
− λ
]
,

where T (x, 0) is the lifetime of a person aged x at time 0. The last equation can also be
written as

iq̃x,0 = Φ
[
Φ−1 (iqx,0)− λ

]
, (B2)

where iqx,0 is the probability that a person aged x at time 0 dies before age x + i, i =
1, 2, . . . .

In bulk annuities, the market price of risk λ > 0, that we assume constant over time,
reflects the level of both systematic and firm-specific unhedgeable longevity risk assumed
by the insurer.

We can determine λ from a longevity security, so that at time 0 the price of the security
is the discounted expected value under the transformed probability ip̃x,0 = 1− iq̃x,0. For
instance, the price of an immediate life annuity contract for an individual aged x at time
t = 0 would be

ax;0 =
ω−x∑
i=1

e−ri · ip̃x,0 =
ω−x∑
i=1

e−ri ·
(
1− Φ

[
Φ−1 (iqx,0)− λ

])
. (B3)
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