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Abstract
Estimating the wear of the single electrical parts of a home appliance without resorting to a large number of sensors is

desirable for ensuring a proper level of maintenance by the manufacturers. Deep learning techniques can be effective tools

for such estimation from relatively poor measurements, but their computational demands must be carefully considered, for

the actual deployment. In this work, we employ one-dimensional Convolutional Neural Networks and Long Short-Term

Memory networks to infer the status of some electrical components of different models of washing machines, from the

electrical signals measured at the plug. These tools are trained and tested on a large dataset (502 washing cycles � 1000 h)

collected from four different washing machines and are carefully designed in order to comply with the memory constraints

imposed by available hardware selected for a real implementation. The approach is end-to-end; i.e., it does not require any

feature extraction, except the harmonic decomposition of the electrical signals, and thus it can be easily generalized to

other appliances.

Keywords Long short term memory � One-dimensional convolutional neural network � Memory efficiency �
Washing machine

1 Introduction

The reliability of a home appliance is an important com-

ponent of its quality, thus tools for guaranteeing an

appropriate level of maintenance are highly desirable for

the manufactures. A possible, but expensive, way to ensure

predictive maintenance is equipping the appliance with

many sensors that report wear. Another approach (made

possible by the availability of devices such as smart-plugs

[8]), is based on the electrical signals drawn from the grid

(physical quantities rather easy to measure), that can be

used, employing appropriate machine learning tools, to

infer the status of different components and raise mainte-

nance intervention requests. Deep learning has proven to be

effective when dealing with time series data (see, for

instance, [15]) and is attractive for its ability to
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automatically extract features from data, thus not requiring

a thorough knowledge of the monitored appliances.

In a previous work by some of the authors [3], deep

learning tools have been investigated as a means to infer

the activity status of some internal components of washing-

machines, from the electrical signals measured at the plug.

In particular, Convolutional Neural Networks (CNNs)

and Long Short-Term Memories (LSTMs) have been

employed: the former, only to classify the binary status of

the electrovalves, the heater and the drain pump; the latter,

for the same classification problems and, moreover, to

provide an estimate of the drum speed (a regression

problem). Results have shown that good performance can

be achieved using LSTMs for the regression, and CNNs for

the classification problem. Here, we expand the mentioned

study, focusing only on the classification problem (Fig. 1),

and we take into account hardware and memory con-

straints, as a premise for the actual deployment on an

appropriate micro-controller. Such constraints turn out to

have significant consequences, that allow for comple-

menting the analysis carried out in [3]. Deep learning

techniques have been already employed for similar tasks.

In [22] and [19], deep learning tools have been used to

detect the energy consumption of each appliance of a

household, from aggregate measurements of voltage and/or

current in the distribution system. The use of an evolu-

tionary type of neural network, the Group Method Data

Handling (GMDH), is proposed in [9] in order to predict

the energy consumption of a smart home. In [24], a com-

parison is carried out of several deep learning tools (such as

recurrent neural networks, LSTMs and auto-encoders)

aimed at predicting energy consumption patterns in a

building, detecting anomalies of usage that generate an

increase in energy consumption and the device that causes

them. In [25] a CNN-based multitasking learning method is

used on the C-MAPSS dataset to highlight the correlation

of the remaining useful life (RUL) estimation of a complex

system with the detection of its health status. Abstracting

from specific application under exam, embedding deep

learning architectures into low-cost microcontrollers is an

open challenge that engineers and data scientists are

tackling from several directions [7]. Currently, the three

main trends are (1) scaled-down AI with pruning and

weight quantization [2, 14, 17, 29, 30]; (2) the use of

simplified or approximated activation functions [4, 20, 31];

(3) the use of recursive NN structures (like e.g., LSTMs

and Gated recurrent Units, GRU) [28].

While the main focus of these approaches is on image

processing applications, in this work we address instead the

problem of developing an embedded-AI solution for clas-

sification applied to time-series data.

The process of developing an effective embedded-AI

solution, for target platforms with limited memory and hard

computational constraints, is far from trivial and involves

several steps, among which the most important are the

choice of the network structure, the type of activation

functions and the value of the training hyperparameters.

Here, we face the former and the latter.

The remainder of the paper is organized as follows. The

problem is stated in Sect. 2, along with a brief description

of the machine learning tools that have been employed. In

Sect. 3 the dataset and its pre-processing are described.

Section 4 outlines the performance index for networks

evaluation, and the hardware constraints. Sections 5 and 6

describe, respectively, the adopted architecture for the

CNNs and LSTMs, and the hyperparameters settings

complying with the memory restrictions. In Sect. 7,

experimental results are reported and, finally, the conclu-

sions are drawn in Sect. 8.

Dataset

∼ 1000 hours
502 washing cycles

13 Inputs3 Outputs

13 Inputs Deep Learning Tool

CNN
LSTM

Test

Training

ON/OFF status of:

Heater
Drain Pump
Electrovalves

Fig. 1 General layout of the

investigated application. A

smart-plug [8] provides periodic

measurements of specific

electrical quantities during the

operating cycles of an

appliance. The resulting data are

used first to train a model and,

subsequently, to test it. The

obtained model is able to

provide a prediction of the

activity status of some

components, on the basis of 13

different input signals
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2 Problem statement and tools

We face the problem of estimating the status of some

components (referred to as ‘‘electrical loads,’’ or simply

‘‘loads’’) of different washing machine models, based on

electrical quantities measured at the plug. The collection of

periodic measurements constitutes a time series. The esti-

mation should be performed at any time, based on the time

series collected to that time. Among the many tools that

allow for making predictions from time series, we inves-

tigate the one-dimensional CNNs and the LSTMs. Both the

tools are state-of-the-art approaches that have been proven

successful in many challenging applications involving time

series [10, 18, 21, 32–34].

More specifically, the problem can be stated as follows:

design a network that reaches a satisfactory performance

in estimating the status of the electrical loads, from the

electrical quantities measured at the plug, and is compliant

with given memory constraints (details are outlined in

Sect. 4). This means that even if a network with better

performance can be obtained, it is discarded whenever its

memory demand exceeds the above mentioned limit. The

promoted network will, therefore, be the best performing

network attainable given the maximum available memory.

The trade-off between memory demand and performance is

a fundamental issue when trying to port a neural network to

a micro-controller. That is the case, for example, of the

deployment of neural networks into a smart-plug [8]: a

device developed for connecting low-cost household

appliances, with no connection capability to the Internet, to

a home network system.

We report now some basic facts about CNNs and

LSTMs, necessary to understand the design choices to be

described next.

2.1 One-dimensional CNNs

Although historically developed for 2D data (images),

CNNs can be used on one-dimensional data, such as the

electrical signals drawn from the grid, recasting the net-

works architecture in a multi-channel one-dimensional

CNN. The general layout of a one-dimensional CNN is

shown in Fig. 2. The employed network architecture is

described in detail in Sect. 5.1.

It consists of a first convolutional hidden layer, which

operates over a one-dimensional sequence (i.e., the filters

slide along a single dimension), directly followed by a

pooling layer able to reduce data size (it combines the

results of neuron clusters of one layer into a single neuron

in the next layer). Additional pairs of convolutional and

pooling layers are usually included in the network which

then ends in a dense fully connected layer, able to interpret

the features extracted by the convolutional part of the

model. In order to be able to use more than one electrical

time series as input, each signal has been treated as a dif-

ferent channel of the CNN input layer.

2.2 LSTMs

LSTMs are able to learn arbitrarily long term dependencies

in time series thanks to a system of gating units that reg-

ulates the information flow through the network. A generic

LSTM cell is outlined in Fig. 3.

The LSTMs cell core is the state c, that flows along the

entire cell with only few linear interactions.

Gates are a way to remove or add information to this

state. They consist of a gate activation function r and a

multiplier operator �: The former outputs a number

between 0 and 1 quantifying the transit permission of each

component (i.e., 1 allows totally the transit, 0 precludes the

transit).

Each LSTM cell has three gates. The first is called forget

gate and selects the information that is allowed access to

the cell. The second one, called input gate, decides which

new information to store in the cell state, and with the help

of a state activation function (rc) creates a vector of new

candidate values that could be added to the state. The last

one, the output gate, selects which part of the state to let

out of the cell. The output of this gate activation function is

multiplied by the state of the cell that has been previously

passed into a rc layer.

3 Dataset description

We deal with the estimation problem in terms of supervised

learning, i.e., we construct a training set composed of

observations (values of the predictor variables, those that

are actually measured and upon which the prediction

depends) and corresponding target values (the values to be

predicted). A learning machine is then trained, based on the

training set, to predict the correct target values given the

predictor values. The performance of the trained machine

(referred to as a model) is evaluated on a set called test set,

not employed for the training. The training and test sets are

built based on the data collected by performing several

washing cycles on four different washing machine models.

The data collected within a washing cycle are referred to as

a sequence. During data acquisition, four different types of

washing cycles have been performed (cotton, delicate,

synthetic, wool), each of which is characterized by a dif-

ferent maximum spinning speed and maximum tempera-

ture. In order to cover a wide range of realistic operating

settings, tests have been performed by varying some

operating parameters (Table 1), complying with the
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constraints imposed by the selected cycle. Each recorded

sequence contains data of a complete washing cycle per-

formed with fixed operating parameters. The entire dataset

is summarized in Table 2).

The recorded samples are acquired each 0.5s and consist

of: the real and imaginary parts of current harmonics (1st,

3rd and 5th harmonics), the real and imaginary parts of

voltage harmonics (1st, 3rd and 5th harmonics) and the

cumulative energy drawn from the grid, which constitute

the predictor variables; the heater status, the drain pump

status, and the electrovalves status that, conversely, are the

target variables. The choice of current and voltage har-

monics as inputs for the networks is motivated by the

observation that it is well known from power-electrical

theory that each electrical device type possess a typical

signature in the domain of current harmonics. Therefore,

the harmonics can be regarded as data features for the

problem under considerations, whose extraction from raw

signals can be performed by conventional algorithms (e.g.,

FFT over sliding windows). The networks therefore are

implicitly required to learn, from the training set, the har-

monic signature of the electrical loads even in case of

possible simultaneous activations.

The whole dataset is composed of 544 sequences, cor-

responding to 1137 hours of washing time. In Table 2, the

number of sequences used for training and test are reported.

The dataset splitting has been done manually once, by

assigning each sequence to the training or testing set in

order to ensure that the different operating conditions are

represented roughly equally in both sets. The proportion

between training and test data is approximately 80% and

20%.

The training process has been performed differently for

CNNs and LSTMs. In the former, a fivefold cross-valida-

tion is performed on the training set in order to select the

best model. The LSTMs tuning, conversely, relies on

Bayesian optimization. For the latter, a random subset

Input layer Hidden and

max pooling layers

. . .

Fully connected

and soft max layers

Se
gm

en
t
w
in
do

w
si
ze

Fig. 2 General layout of a one-

dimensional CNN. The exact

description of the model used in

the present application is

provided in Sect. 5.1, while the

tuned hyperparameters values

are in Sect. 6.1

σ σ σc σ

× +

×
×
σc

ct−1

ht−1

xt

ct

ht

Fig. 3 General layout of a LSTM cell. The exact description of the

model used in the present application is provided in Sect. 5.2, while

the tuned hyperparameters values are in Sect. 6.2

Table 1 Operating parameters

of washing machines during

data collection

Supply voltage Load (laundry) Spinning speed Temperature

Ranges of values 230 V Full 0 Room

187 V no load maximum 90�C

Table 2 Number and total duration of the training and test sequences

collected

Training Test Total

Sequences 434 110 544

Duration (h) 1002 135 1137
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consisting of 20% of the training data has been used for the

validation. All the details concerning the hyperparameters

tuning are reported in Sect. 6. The final performance

highlighted in Sect. 7 are obtained feeding the resulting

models with the test data.

Given the collected data, the preparation of the actual

training and test sets is a non-trivial task that encompasses

some design choices and must possibly address a class

imbalance problem. We discuss the mentioned issues in the

following.

3.1 Segmentation

CNNs require to be fed with fixed-size data. We have thus

decided to segment each recorded sequence into subse-

quences (segments) and recast the problem in terms of

subsequence-to-label classification. To each input subse-

quence, a single output (label) is assigned and the resulting

model has to map input subsequences into output labels

(Fig. 2). The subsequence length is a design parameter,

affecting the architecture of the CNN, and will be dis-

cussed later on. The assignment criterion is a design choice

as well: one could, for instance, take the target value cor-

responding to the last sample of the segment, or the median

target of the whole segment; many different choices are

possible. Based on an exploratory analysis, we decided to

set the label of a segment as the target of the central sample

of the considered segment; indeed, with such a choice we

observed better performing classifiers. Although these

results suggest that, for the considered problem, future

samples improve the prediction of the current output, we

did not investigate any further, and kept the labeling

method fixed.

The LSTMs, conversely, do not need to be fed by

observations of the same length, hence segmentation is not

needed [16]. Notwithstanding, we did perform segmenta-

tion for the LSTMs as well, in combination with over-

sampling and/or undersampling, to alleviate the classes

imbalance problem (see Sects. 3.2 and 6.2 for further

details). Once the recorded sequences have been segmented

into subsequences, two different strategies can be followed

to train and employ LSTMs, i.e., the same subsequence-to-

label approach employed for CNNs, and the subsequence-

to-subsequence classification. The latter consists in map-

ping input subsequences into output subsequences of the

same length and has a remarkable advantage over the

former: it allows, at inference phase, to feed the network

with an entire unsegmented sequence. Clearly, feeding the

network with the actual acquired sequence, during the

operation of the deployed device, has the advantage that

there is no need to store segments, but it is sufficient to pass

the measures sample-wise, as they are acquired; provided

that the classification performance is acceptable, the

memory requirements of such approach are independent of

the length of the actual subsequences employed for train-

ing. For the sake of comparison, we have performed both

subsequence-to-label and subsequence-to-subsequence

classification when using LSTMs; in the latter, data seg-

mentation was performed only for the training.

The segmentation process is defined by two parameters:

the window size (i.e., the number of samples per segment)

and the stride (number of samples between the first sample

of two consecutive segments). For both CNNs and LSTMs,

the stride was set to 1. Each segment is composed of:

ns ¼ nu � s; ð1Þ

values, where nu is the number of inputs (13 in our case)

and s is the window size (length of the segment). Since the

number of inputs is fixed, the only parameter to tune is the

window size. On the one hand, this value has to be large

enough to contain sufficient information for a correct

estimation, on the other, it should be as small as possible to

avoid unnecessary memory consumption.

In the subsequence-to-subsequence approach of LSTMs,

each target segment simply consists of the target values

corresponding to the predictor segment and is entirely

considered for the performance evaluation.

3.2 Class balancing

As shown in Table 3, the recorded sequences exhibit a high

class imbalance, caused by the dominance of the OFF

status. Class imbalance is a well-known problem in

Machine Learning [6, 12] and must be properly addressed.

On the one hand, one can attempt to establish a class

balance acting on the training set; on the other, the per-

formance metric that the learning algorithm seeks to

maximize can be modified to cope with unbalance. In

either case, the metric for evaluating the performance of

the classifier must take the imbalance into account. Several

methods have been proposed in literature ( [5, 6]) to reduce

the effect of class imbalance acting on the training set. Two

well-known methods are:

– oversampling: duplicate randomly chosen segments of

the less common class; such a random information-

duplication procedure may lead, however, to a huge

Table 3 Percentage of ON and OFF samples for each load

Heater Drain pump Electrovalves

OFF samples 86% 87% 98%

ON samples 14% 13% 2%
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increase of dataset size and, in addition, to overfitting

[5];

– undersampling: delete randomly chosen segments of

the most common class, thus reducing the dataset size

(possibly at the cost of deleting relevant information for

the nets training process [6]).

We have applied both, and we report comparative results in

Sect. 6.

As far as the evaluation metric is concerned, it is

described in Sect. 4.

4 Performance indices and memory
constraints

The trained models will be evaluated in terms of 1) the

classification performance, i.e., the capability of inferring

the correct value of the target variables, and 2) their

memory footprint, i.e., the memory occupied by the

deployed model in the target device.

4.1 Performance Indices

As already mentioned, each load can assume two values:

ON or OFF, leading to three different binary classification

problems (a different network is trained for each load).

Due to class imbalance, in the present scenario the ac-

curacy (ratio of correct predictions to the total) is not

enough for a proper evaluation of the performance. Hence,

two other indices, precision and recall [11], are computed

for each network. Their harmonic mean, the F1-score, is

finally used as evaluation metric of the network

performance:

F1 ¼ 2� precision� recall

precisionþ recall
: ð2Þ

In particular, two F1-scores are computed for each net-

work: one for evaluating the capability of predicting the

ON status, and the other for the OFF status. The goal of this

work is training a classifier in which both these indices are

as close to 100% as possible.

4.2 Memory Constraints

A 32-bit Cortex-M microcontroller [1], with 64 kB flash

memory and 32 kB RAM, is available for the real-time

implementation on the real appliances. Such a microcon-

troller, besides the computations required by the neural

networks at inference time, has to perform simultaneously

several other operations, such as the extraction of the

harmonic information from voltage and current samples,

and the management of input–output peripherals.

Accordingly, an upper bound to the memory available for

the networks has been set to 12 kB, which corresponds to 4

kB for each of the three networks (the three classifiers, one

for each load). This is a rather tight constraint that, as

shown in Sect. 6, has ultimately led us to discard CNNs

and promote LSTMs.

5 Network architectures

In the following, we describe the architectures of the

deployed networks: a one-dimensional CNN, and an

LSTM. The reported architectural details are instrumental

to the evaluation of the memory requirements of the trained

models.

5.1 One-Dimensional Convolutional Neural
Networks

The architecture of the convolutional neural networks used

in this work consists of:

(i) input layer,

(ii) hidden layer 1,

(iii) max pooling layer 1,

(iv) hidden layer 2,

(v) max pooling layer 2,

(vi) . . .,

(vii) hidden layer Nhl,

(viii) fully connected layer,

(ix) softmax layer,

(x) classification layer;

where Nhl is the number of hidden layers, each of which is

composed of:

(i) a convolutional layer,

(ii) a batch normalization layer,

(iii) a Rectified Linear Unit (ReLU) layer.

The input layer defines the dimension of the input obser-

vations; in our case, each observation has unitary height,

width corresponding to the length of the segments, and

number of channels equal to the number of input signals,

i.e., 13. Each of the Nhl hidden layers has the same

structure: first, the convolutional layer, consisting of a

certain number of linear filters, whose coefficients consti-

tute the trainable parameters of the layer; then, the batch

normalization layer, which is customary to speed up the

training of CNNs and, essentially, learns a rescaling and

shift transform, whose parameters are trainable parameters

as well; finally, the ReLU layer applies the rectifier acti-

vation function ReLUðxÞ ¼ maxðx; 0Þ to each element x of

the output of the previous layer and does not contain

trainable parameters. Architectural parameters such as
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number of filters, filters length, stride and padding must be

properly tuned in order to achieve good results in classi-

fication problems as will be discussed in the next sec-

tion. The hidden layers are interspersed with max pooling

layers, that perform dimensionality reduction by means of a

maximum operation among nearby values and do not

contain trainable parameters.

The last layers are the fully connected layer and the

softmax layer. The former, learns an affine transform

whose parameters (a weighting matrix and a bias vector)

are trainable. Finally, the softmax layer (not containing

trainable parameters) allows to obtain a probability distri-

bution of K probabilities, by applying the softmax

operation:

Yi ¼
exi

PK
k¼1 e

xk
ð3Þ

where K is the total number of classes (2 in our problem),

Yi is the output probability of class i, and xk is the k-th

output of the fully connected layer. Accordingly, during

training, a cross-entropy loss function is employed:

L ¼ �
XK�1

i¼0

Ti logðYiÞ; ð4Þ

where Ti is the target output of each class and Yi is the

output of the network. Further details on the architecture

can be found in [3].

5.2 Long Short-Term Memories

The architecture of the LSTMs employed in the present

work is as follows:

(i) sequence input layer,

(ii) LSTM layer,

(iii) fully connected layer,

(iv) softmax layer.

The LSTM layer is the peculiar layer of this kind of net-

work. Thanks to the system of gating units, represented in

Fig. 3, the network can learn long-term dependencies.

Specifically, the operation performed by each gate is:

yt ¼ rðWxt þ Rht�1 þ bÞ; ð5Þ

where yt is the output of an LSTM gate (e.g., the forget

gate) at time t; xt is the input to the LSTM layer at time t

(the values at time t of the 13 input signals); ht is the output

of the LSTM layer at time t; W, R and b are, respectively,

the input weights, the recurrent weights and the biases

specific of an LSTM gate; r is the gate activation function,

i.e., the nonlinear function that controls the information

flow through the gate. The weights and bias of the fully

connected layer, along with W, R and b, are the trainable

parameters of the LSTM. As far as the loss function is

concerned, we employed the cross-entropy (4).

6 Hyperparameters Setting and Training

In the following, the hyperparameters setting procedures

are explained for each network, along with more detailed

information about their training conditions. The choices

were done pursuing two main objectives: (1) maximize the

network performance, and (2) minimize the memory

requirements. Precisely, since the maximum memory that

can be employed to store the network parameters is fixed

(Sect. 4.2), our efforts have been devoted to achieving the

best performance given the available memory.

6.1 CNNs

Given the structure discussed in Sect. 5.1, the hyperpa-

rameters that need to be tuned are: (1) the length of the

segments, (2) the number of hidden layers, (3) the number

of filters of each convolutional layer, (4) the width of the

filters, (5) the stride and padding of each convolutional and

max pooling layer.

In order to simplify the process of parameter tuning and

reduce the degrees of freedom, we decided to fix the value

of some of the hyperparameters. In particular: (1) padding

was set to zero for each layer; (2) stride was set to one for

convolutional layers and two for max pooling layers; (3)

the window size was set to two for each max pooling layer,

meaning that the dimension of the data is halved by each

pooling operation; (4) inspired by [15], the number of fil-

ters NfðiÞ of the i-th hidden layer (i ¼ 1; . . .;Nhl) was set

according to NfðiÞ ¼ 2iþa, where a 2 N is a constant to be

chosen.

Therefore, the hyperparameters to be tuned are the size

of the segments s, the number of hidden layers Nhl, the

width of the convolutional filters w1; . . .;wNhl, and a. It is
worth noticing that the size of the network is monotonically

increasing with respect to each of the remaining tunable

hyperparameter.

Despite the many heuristics proposed in the literature for

speeding up the tuning of the learner parameters (see, for

instance, [23, 27]), we designed an ad hoc procedure,

motivated by the need of keeping the size of the network as

small as possible. It consists of the following steps:

1. set the hyperparameters to an initial configuration with

low memory footprint;

2. train the CNN and validate it using a fivefold cross

validation approach;
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3. compare the average value of the F1-scores, resulting

from the fivefold cross-validation, with thresholds

expressing the minimum acceptable performance;

4. if the objective is reached, then stop, otherwise modify

the hyperparameters into a more memory-demanding

configuration1, and go to step 2).

We applied several times such procedure, for each load.

For example, for the electrovalves state classification, by

fixing the minimum acceptable F1-score for both classes to

95%, and applying the above procedure, we obtained the

following values:

s ¼ 50; Nhl ¼ 3; w1 ¼ 5; w2 ¼ 4; w3 ¼ 3; a ¼ 2; ð6Þ

that result in a CNN having an F1-score of 97:65% for the

ON class and of 99:82% for the OFF class. In particular, we

report in Fig. 4a the average F1-scores obtained for some

combinations of hyperparameters according to the above

defined heuristic tuning procedure.

It is worth mentioning that the above procedure has been

applied on both oversampled and undersampled training

sets. Although undersampling has the advantage of leading

to a smaller training set, and hence a faster training phase,

oversampling has been finally preferred in terms of net-

work performance. As an example, we report in Table 4 a

comparison between the two methods, in terms of F1-score,

referred to the electrovalves state classification. Appar-

ently, undersampling caused the loss of relevant informa-

tion that, in turn, determined a noticeable decrease of

performance.

The memory footprint of the obtained CNN can be

evaluated as follows.

The number of weights and biases to be stored for the i-

th convolutional layer is

NcnvðiÞ ¼ wi � NfðiÞ � Nfði� 1Þ þ NfðiÞ; ð7Þ

where NfðiÞ and wi are, respectively, the number and the

width of the filters of the i-th convolutional layer, and

Nfð0Þ ¼ nu is the number of inputs to the CNN. Similarly,

the parameters to be stored for the i-th batch normalization

layer are

NbðiÞ ¼ 4� NfðiÞ: ð8Þ

Indeed, each batch normalization layer requires the storage

of the mean and the variance over the whole training set of

the values coming from each filter of the previous layer. In

addition, it requires the storage of an offset and a scale

factor, resulting in four parameters per filter. Finally, the

number of parameters of the fully connected layer is

Nfc ¼
s

2Nhl�1
þ
XNhl

i¼1

1� wi

2Nhl�i

 !

� ny � NfðNhlÞ þ ny; ð9Þ

where s is the length of the input segments to the CNN, and

ny is the number of output classes and wi is the width of the

filters of the i-th convolutional layer. The latter affects the

number of actual inputs to the fully connected layer,

because, due to the absence of padding, each convolution

results in a shorter signal than the original. All the

remaining types of layers, namely max-pooling, softmax

and classification, do not require to store any further

parameter.

Therefore, assuming that the parameters are stored in

single precision floating point arithmetic (32 bit), the

memory size in kB required to store the CNN is:

Mcnn ¼
32

8� 1024

XNhl

i¼1

NcnvðiÞ þ NbðiÞ
 !

þ Nfc

" #

: ð10Þ

None of the well-performing CNNs obtained by applying

several times the heuristic procedure described above led to

the satisfaction of the memory constraints (see Fig. 4b).

For example, in Fig. 5, the CNN memory footprint with
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Fig. 4 F1-score (a) and related memory footprint (b) of the networks
obtained during the heuristic procedure. Each index on the x-axis

corresponds to a particular combination of hyperparameters values

(for the sake of simplicity, eight combinations among the many that

have been tested are reported). The only combination that exceeds the

F1-score threshold is the 8-th, which corresponds to the values of the

hyperparameters in Eq. (6). However, the CNN with these hyperpa-

rameters exceeds the available memory. We denote by

½s; a;Nhl; ðw1; . . .;wNhl
Þ� a hyperparameter combination. The index-

hyperparameters association is the following: 1 ¼ ½20; 1; 2; ð3; 2Þ�,
2 ¼ ½20; 1; 3; ð3; 2; 2Þ�, 3 ¼ ½50; 1; 2; ð5; 4Þ�, 4 ¼ ½20; 2; 2; ð3; 2Þ�,
5 ¼ ½50; 1; 3; ð5; 4; 3Þ�, 6 ¼ ½50; 2; 2; ð5; 4Þ�, 7 ¼ ½20; 2; 3; ð3; 2; 2Þ�,
8 ¼ ½50; 2; 3; ð5; 4; 3Þ� (colour figure online)

1 Each configuration is chosen empirically, taking into account

reasonable constraints, such as the filter being shorter than the signal

to be filtered.
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respect to a is shown (the remaining parameters are set as

per Eq. (6)).

Thus, even if the classification of the load status can be

solved by 1D-CNNs, the size of the obtained networks

prevents their deployment on the available hardware.

6.2 LSTMs

The most important hyperparameter that has to be tuned for

LSTM networks is the number of hidden units, that is, the

state dimension of the network. To this aim, many meth-

ods, such as Bayesian optimization [26] and random search

[13], can be found in literature. However, according to the

problem statement reported in Sect. 2, it seems reasonable

to compute the maximum state dimension allowed by the

available memory. The memory required to store the

weights and biases of an LSTM network is given by the

following formula:

Mlstm ¼ 32

8� 1024
½4 nhnu þ n2h þ nh

� �
þ nhny þ ny�

ð11Þ

where Mlstm is the memory footprint of the network (kB),

32 are the bits required to store a single precision number,

nh is the number of hidden units, nu is the number of inputs

and ny is the number of outputs.

In Fig. 6, the memory required to store the network

parameters in a logarithmic scale is shown (ny ¼ 2). The

number of inputs is nu ¼ 13.

Due to memory constraints, the maximum number of

hidden units that can be employed is 10. Hence, Bayesian

optimization (as proposed in [26]) has been employed to

find the optimal number of hidden units. The goal of the

optimization problem is that of maximizing the F1-score.

The optimization yielded the following result: nh ¼ 10.

Being 10 the maximum allowable value, this result sug-

gests that better performance could be achieved enlarging

the state dimension. For the memory constraints, this is not

possible; on the other hand, in the next section we show

that the results are still satisfactory.

As already mentioned, to deal with the issue of class

imbalance, the use of a class-balancing technique has been

investigated, such as training-set segmentation paired with

undersampling or oversampling (Sect. 3.2). Therefore, the

training has been performed on segments using both the

subsequence-to-subsequence and the subsequence-to-label

approach. In subsequence-to-label, the training and the test

sets have been segmented and the former undersampled

(i.e., some random input–output pairs have been deleted

from the training set in order to achieve a proportion of

50% of output labels). In subsequence-to-subsequence,

undersampling is performed deleting random segments that

contain only OFF samples. After this operation, the 50% of

segments contain only OFF samples and the remaining

50% contain at least one ON. The test set does not require

to be segmented since LSTMs can be used on sequences

regardless their length. Hence, the test operation can be

done on the full test sequences. Undersampling has been

preferred, rather than oversampling, to avoid obtaining a

too large training set.

7 Experimental Results

This section presents the experimental results obtained

running the networks on the test dataset. The main

hyperparameters of the networks have been set as

explained in Sect. 6, while the parameters of the training

algorithm, such as the initial learning rate (LR), its drop

factor and its drop period (in epochs), are reported in

Table 5.

Table 4 CNNs performance with different classes balancing methods.

The oversampling approach results to be the most effective solution

Method F1 class ON F1 class OFF

Undersampling 20:07% 83:72%

Oversampling 97:65% 99:82%

4321
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Fig. 5 Log-scale CNN memory footprint as a function of a (blue

line). The orange line represents the available upper memory bound.

The memory required by CNNs is always higher than the available

one (colour figure online)
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Fig. 6 Log-scale LSTM memory footprint as a function of the number

of hidden units (blue line). The orange line represent the available

upper memory bound. The memory required by LSTMs fulfills the

constraints only for parameter values less than 10 (colour

figure online)
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Both CNNs and LSTMs have been trained (using the

aforementioned hyperparameters and training algorithm

settings) and tested.

We report the results, in terms of F1-scores, for both,

although the CNN cannot be implemented in the target

microcontroller due to memory size limitations. The results

for the heater status detection, reported in Table 6, are very

good for all the investigated networks. This comes at no

surprise, since the heater status can be detected by only

looking at the real part of the first current harmonic: when

the heater is active it draws a large amount of active power

from the grid, hence the first real current harmonic is

particularly high.

Tables 7 and 8 also show the performance of the net-

works in charge of estimating the status of the drain pump

and of the electrovalves, respectively. The results, in this

case, show that:

1) the CNNs outperform the best performing LSTMs

except in one case;

2) the subsequence-to-subsequence LSTM performs

significantly better than the subsequence-to-label;

Table 5 Other general

parameters settings in the

training algorithm

CNN LSTM

Subsequence-to-label Subsequence-to-subsequence

Optimizer Adam Adam Adam

n. epochs 20 20 120

Mini-batch size 4096 1024 8192

Initial LR 0.01 0.001 0.006

LR drop factor – – 0.8

LR drop period – – 20

Table 6 F1-score performance on heater detection for CNN and LSTM models. The performance is comparable, but the former is discarded due

to the violation of the memory constraint highlighted in Fig. 5

CNN LSTM

Subsequence-to-label Subsequence-to-subsequence

F1 class ON 99:72% 98:95% 99:81%

F1 class OFF 99:95% 99:80% 99:66%

Table 7 F1-score performance on drain pump detection for CNN and

LSTM. CNN and subsequence-to-subsequence LSTM have compa-

rable performance. However, the former is discarded due to the

violation of the memory constraint highlighted in Fig. 5. The

resulting best model is the subsequence-to-subsequence LSTM

CNN LSTM

Subsequence-to-label Subsequence-to-subsequence

F1 class ON 99:57% 85:39% 99:23%

F1 class OFF 99:75% 96:98% 99:87%

Table 8 F1-score performance on electrovalve detection for CNN

and LSTM. CNN and subsequence-to-subsequence LSTM have

comparable performance. However, the former is discarded due to

the violation of the memory constraint highlighted in Fig. 5. The

resulting best model is the subsequence-to-subsequence LSTM

CNN LSTM

Subsequence-to-label Subsequence-to-subsequence

F1 class ON 98:39% 90:09% 98:05%

F1 class OFF 99:87% 99:19% 99:85%
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3) the performance of the best performing LSTMs are

close to that of the CNNs, for the same task.

The Receiver Operating Characteristic (ROC) curves of

each network, for the different load status estimation, are

shown in Fig. 7.

The memory footprint of the CNN networks can be

calculated using Eq. (10) with Ncnvð1Þ ¼ 528,

Ncnvð2Þ ¼ 528, Ncnvð3Þ ¼ 1568, Nbð1Þ ¼ 32, Nbð2Þ ¼ 64,

Nbð3Þ ¼ 128, Nfc ¼ 514 and Nhl ¼ 3, thus resulting in

Mcnn ¼ 13:13kB. Conversely, the memory footprint of the

LSTM network can be calculated using Eq. (11) with

nu ¼ 13, nh ¼ 10 and ny ¼ 2. The resulting required

memory is Mlstm ¼ 3:84kB. In summary, given the small

difference in terms of performance, but the significantly

smaller memory consumption, the LSTMs are preferable to

the one-dimensional CNNs for the considered problem.

8 Conclusion

We have faced the problem of estimating the status of

electrical loads of four models of washing machines from

measurements of signals at the plug. To this aim, we have

trained and tested two state-of-the-art machine learning

tools, namely one-dimensional CNNs and LSTMs, on a

dataset consisting of more than a thousand of hours of

signals acquired during several hundreds of washing

cycles. Besides classification performance, we took into

account the tight constraints in terms of available memory

on the target device. Our results show that, although both

CNNs and LSTMs perform well on the test data, the former

turns out to be too memory demanding given our hardware

constraints, thus cannot be deployed. In addition, we have

experimentally shown that oversampling and undersam-

pling are effective in dealing with the high class imbalance

that such datasets may exhibit.
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