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Wederive a general quantummaster equation for the dynamics of a scalar bosonic particle interactingwith
a weak, stochastic and classical external gravitational field. The dynamics predicts decoherence in position,
momentum and energy. We show how our master equation reproduces the results present in the literature by
taking appropriate limits, thus explaining the apparent contradiction in their dynamical description.
Our result is relevant in light of the increasing interest in the low energy quantum-gravity regime.

I. INTRODUCTION

One of the greatest predictions of general relativity is the
existence of gravitational waves, which can be thought
of as small perturbations of the metric propagating
through spacetime at the speed of light [1–4]. They are
of fundamental interest in many branches of physics, such
as cosmology, theoretical physics and astrophysics, and
their recent first detection [5–9] has opened thrilling new
horizons for research and a huge effort is being put into the
construction of ever more sophisticated detectors [10].
Most gravitational waves that arrive on the Earth

are produced by different unresolved mechanisms and
sources [11,12], and thus result in a stochastic perturbation
of the flat spacetime background. Within the framework of
quantum theory, this stochastic background affects the
dynamics of matter propagation [13,14] and, when the
quantum state is in a superposition, it leads to decoherence
effects, as typical of noisy environments. Since quantum
superpositions are very sensitive to small variations of
the surrounding environment, quantum interferometers
have the potential to detect a stochastic gravitational
background [15–17].
Different models for the description of this phenomenon

have been proposed [18–24]. However, they do not agree
on the decoherence mechanism (the preferred basis and
rates) at which it takes place. With this work we clarify this
issue. We derive a general nonrelativistic model of gravi-
tational decoherence starting from the dynamics of a scalar
bosonic field coupled to a weak gravitational perturbation.
We show how this model recovers the results present in the
literature as appropriate limiting cases.

The paper is organized as follows. In Sec. II we derive
the equations of motion in Hamiltonian form for a scalar
bosonic field minimally coupled to a weakly perturbed flat
metric. We then specialize such equation to the non-
relativistic regime in Sec. III and proceed with the canoni-
cal quantization of the bosonic field in the single particle
sector, obtaining a Schrödinger-like equation for a test
particle interacting with a weakly perturbed gravitational
field. In Sec. IV we specialize to the case of a stochastic
gravitational perturbation and derive the corresponding
master equation. We discuss the decoherence effect in
Secs. V and VI with explicit reference to the preferred
eigenbasis and characteristic decoherence time. In the same
sections we show under which assumptions our master
equation is able to reproduce the apparently contradictory
results of [19–23], thus solving the preferred basis puzzle.

II. HAMILTONIAN EQUATIONS OF MOTION

We first derive the equations of motion (EOM) for a
scalar bosonic field minimally coupled to linearized grav-
ity. We start from the action for the charged Klein Gordon
field in curved spacetime [25]:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
L ð1Þ

with the Lagrangian density:

L ¼
�
c2gμν∇μψ

�∇νψ −
m2c4

ℏ2
ψ�ψ

�
; ð2Þ

where ∇μ is the covariant derivative with respect to the
Christoffel connection. We write the metric as the sum of a
flat background ημν ¼ diagðþ−−−Þ, and a perturbation hμν:
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gμν ¼ ημν þ hμν: ð3Þ

We are interested in studying the dynamics of the Klein
Gordon field in the presence of a weak gravitational
perturbation. Therefore we perform a Taylor expansion of
the action around the flat backgroundmetric and truncate the
series at the first perturbative order. Thus, we obtain the
effective Lagrangian Leff acting on flat spacetime:

S ¼
Z

d4x

�
c2
�
ημν∂μψ

�∂νψ −
m2c2

ℏ2
ψ�ψ

��
1þ trðhμνÞ

2

�

− c2hμν∂μψ
�∂νψ þOðh2Þ

�

≕
Z

d4xðLeff þOðh2ÞÞ: ð4Þ

Note that in doing sowe are implicitly restricting the analysis
to the class of reference frames in which the coordinates are
described by rigid rulers, which are negligibly affected by the
gravitational perturbation. This assumption though reason-
able, as measuring devices are held together by intramo-
lecular and intermolecular forces, is arbitrary (it may be
possible that a gravitational perturbation bends a measuring
device).
The equations of motion for the matter field are obtained

(at first order in the perturbation hμν) from the Euler-
Lagrange equations:

∂Leff

∂ψ� − ∂α
∂Leff

∂∂αψ
� ¼ 0 ð5Þ

and in the harmonic gauge [26] they read

�
−∂2

t þ c2ð1þ h00Þ∇2 þ 2ch0i∂t∂i þ c2hij∂i∂jþ

−
m2c4

ℏ2
ð1þ h00Þ þOðh2Þ

�
ψ ¼ 0: ð6Þ

We are interested in the description of the dynamics of a
positive energy particle system in the nonrelativistic limit.
In such a limit, the particle and antiparticle sectors are
noninteracting with one another, that is to say, the EOM (6)
can be recast to a system of two uncoupled equations,
one for each species sector. While this is evident and
straightforward for the free case, for an interacting theory
the decoupling is very complicated and achievable only
perturbatively.
The first step is to explicitly express the field in a two

component form. This can be done following the Feshbach-
Villars formulation [27]. Accordingly we define a new
field:

Ψ ¼
�
ϕ

χ

�
ð7Þ

such that

ψ ¼ ϕþ χ

iℏð∂t − ch0i∂iÞψ ¼ mc2ðϕ − χÞ: ð8Þ

We note that such a formulation does not allow for a
probabilistic interpretation of the field Ψ, as the conserved
charged Q associated to the internal Uð1Þ symmetry
(ψ → eieψ ; ψ� → e−ieψ�) via Noether’s Theorem reads

Q¼ 2emc2
Z

d3xðϕ χ Þσ3
�
1þ trðhμνÞ

2
−h00

��
ϕ

χ

�
ð9Þ

instead of the required

ρ ¼ 2emc2
Z

d3xðϕ χ Þσ3
�
ϕ

χ

�
: ð10Þ

We therefore apply the transformation:

T ¼
�
1þ trðhÞ

4
− h00

2

�
Ψ → TΨ

ð11Þ

so that, in the new representation, the squared modulus of
the field can be regarded as a probability density in the
nonrelativistic limit.
With the help of Eq. (8) and after some algebra (see

Appendix A) the EOM (6) read

iℏ∂tΨ ¼ ½mc2σ3 þ EþO�Ψ; ð12Þ

where

E ¼ mc2

2
h00σ3 −

ℏ2

2m
ð1þ h00Þσ3∇2 −

ℏ2

2mc
∂tðh0iÞσ3∂i

−
ℏ2

2m
hijσ3∂i∂j þ iℏch0i∂i −

iℏ
2
∂t

�
trðhμνÞ

2
− h00

�

−
�
ℏ2

4m
∇2ðh00Þ − iℏ2

8m
∇2ðtrðhμνÞÞÞ

�
σ3 ð13Þ

O ¼ imc2

2
h00σ2 −

iℏ2

2m
ð1þ h00Þσ2∇2 −

iℏ2

2mc
∂tðh0iÞσ2∂i

−
iℏ2

2m
hijσ2∂i∂j −

�
iℏ2

4m
∇2ðh00Þ − iℏ2

8m
∇2ðtrðhμνÞÞ

�
σ2

ð14Þ
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are respectively the diagonal and antidiagonal parts of the
Hamiltonian K ¼ mc2σ3 þ EþO, and σi, i ¼ 1, 2, 3 are
the Pauli matrices.
In the next section we will decouple the EOM to then

take the nonrelativistic limit.

III. NONRELATIVISTIC LIMIT
AND CANONICAL QUANTIZATION

We want to find a representation of the two component
field Ψ in which the EOM (12) are diagonal. This
representation can be found in the nonrelativistic limit
following the Foldy-Wouthuysen method [28], which
allows one to write perturbatively (at any order in v

c) two
decoupled equations, one for each component of the field.
The method is operatively characterized by the application
of an appropriate transformation U:

Ψ → Ψ0 ¼ UΨ ð15Þ

K → K0 ¼ UðK − iℏ∂tÞU−1

¼ mc2σ3 þ E0 þO0 þOðh2Þ ð16Þ
such that, in the new representation, the antidiagonal
part O0 is of higher order in v

c than the diagonal E0. By
neglecting O0 one recovers two decoupled equations. By
performing iteratively the transformation, one can always
find a representation of the two component field for which
the EOM are diagonal at any desired order in v

c.
In our case, we have that the task is easily achieved by

applying the subsequent transformations:

U ¼ e−iσ3O=ð2mc2Þ

U0 ¼ e−iσ3O
0=ð2mc2Þ

U00 ¼ e−iσ3O
00=ð2mc2Þ

ð17Þ

after which, with some algebra (see Appendix B), the EOM
read

iℏ∂tΨ ¼ HΨ

¼
�
mc2

�
1þ h00

2

�
σ3 −

ℏ2

2m

�
1þ h00

2

�
∇2σ3

−
ℏ2

2m
hij∂i∂jσ3 þ iℏch0i∂i þ

iℏ
2
∂tðh00Þ

−
iℏ
4
∂tðtrðhμνÞÞ þ

ℏ2

8m
∇2ðtrðhμνÞÞσ3

�
Ψ

þOðc−4Þ þOðh2μνÞ: ð18Þ
Note that as the transformations (17) are generalized
unitary [29], they preserve the conserved charge in (9),
i.e., the probability density in the nonrelativistic limit.

In the nonrelativistic limit the EOM (18) do not mix the
two components ϕ and χ of the field (up to a very small
correction). As we are interested in the dynamics of
particles only, we restrict the analysis to the first field
component ϕ.
Since the dynamics preserves the probability density, we

are allowed to apply the canonical quantization prescription
and impose the equal time commutation relations:

½ϕ̂ðt;xÞ; ϕ̂ðt;x0Þ� ¼ ½ϕ̂†ðt;xÞ; ϕ̂†ðt;x0Þ� ¼ 0

½ϕ̂ðt;xÞ; ϕ̂†ðt;x0Þ� ¼ δ3ðx − x0Þ ð19Þ

to obtain the EOM for the quantum field. The equation thus
obtained does not allow for the creation or annihilation of
particles. We can thus safely project it onto a single particle
sector to obtain the single particle Schrödinger equation:

iℏ∂tjϕðtÞi ¼ ðĤ0 þ ĤpÞjϕðtÞi ð20Þ

with

Ĥ0 ¼ mc2 þ p̂2

2m

Ĥp ¼ mc2

2
h00ðt; x̂Þ − ℏ2

8m
fh00ðt; x̂Þ; p̂2g þ c

2
fh0i; p̂ig

−
1

4m
fhijðt; x̂Þ; p̂ip̂jg þ

ℏ2

8m
∇2ðtr½hμνðt; x̂Þ�Þ

þ iℏ
2
∂tðh00ðt; x̂ÞÞ −

iℏ
4
∂tðtr½hμνðt; x̂Þ�Þ; ð21Þ

where x̂, p̂ are respectively the single particle position and
the momentum operator. Note that the anticommutators
between the gravitational perturbation (which is a function
of the position operator) and the particle’s momentum
operator need to be included in the quantization prescription
in order to guarantee the Hermiticity of the Hamiltonian.
The term H0 is the standard free Hamiltonian plus an
irrelevant global phase mc2 that can be reabsorbed with
the transformation:

jϕðtÞi → eimc2t=ℏjϕðtÞi: ð22Þ

The term Ĥp is a perturbation that encodes the interaction
between the scalar bosonic particle and a weak, otherwise
generic, gravitational perturbation. We note that Eq. (20)
correctly reduces to the usual Schrödinger equation for a
particle in an external static Newtonian potential:

GRAVITATIONAL DECOHERENCE: A GENERAL … PHYS. REV. D 103, 104041 (2021)

104041-3

3



iℏ∂tjϕðtÞi ¼
�
p̂2

2m
−mΦ

�
jϕðtÞi

Φ ¼ −
c2h00

2
ð23Þ

if we consider the external gravitational field to be of the
same form of that of the Earth.
The generalization of Eq. (20) to an extended body is not

an easy task, as one needs to take into account the degrees
of freedom of all the elementary particles that constitute the
body. However, it is rather simple to obtain the dynamics
for just the center of mass if we assume that the internal
degrees of freedom are frozen and cannot be excited by the

gravitational perturbation as in the case of a rigid body. In
such an approximation it is convenient to define the center
of mass (X̂) and relative coordinate (r̂i) operators:

X̂ ¼ R
d3r r m̂ðrÞ

M

r̂i ¼ x̂i − X̂
ð24Þ

and their canonical conjugates, respectively P̂ and k̂i,
where m̂ðrÞ is the mass density operator [30] and M ¼R
d3r m̂ðrÞ is the total mass. Upon tracing out the relative

degrees of freedom, the Hamiltonian for the center of mass
of a rigid body reads

Ĥ ¼ Mc2 þ P̂2

2M
þ
Z

d3rh00ðr; tÞmðX̂þ rÞc2 −
Z

d3rh00ðr; tÞ fmðrþ X̂Þ; P̂2g
8M2

þ c
Z

d3rh0iðr; tÞ fmðrþ X̂Þ; P̂ig
2M

−
Z

d3rhijðr; tÞ fmðrþ X̂Þ; P̂iP̂jg
4M2

þ ℏ2c2

8M

Z
d3r∇2ðtr½hμνðr; tÞ�ÞmðX̂þ rÞ

M

þ iℏc2

2

Z
d3r∂t

�
h00ðr; tÞ − 1

2
trðhμνðr; tÞÞ

�
mðX̂þ rÞ

M
: ð25Þ

Equation (25) was derived following the work of [31]
where, however, the authors only consider the special case
with h0i ¼ hij ¼ 0.
In the next section we will specialize to the case of a

(weak) stochastic gravitational background.

IV. STOCHASTIC GRAVITATIONAL
PERTURBATION: SINGLE PARTICLE

MASTER EQUATION

The motivation to consider a stochastic weak gra-
vitational perturbation is given by the interest towards
Stochastic semiclassical gravity (an attempt to self-
consistently describe the backreaction of the quantum
stress-energy fluctuations on the gravitational field, without
having to invoke the quantization of the latter; see for
example [32,33] for a review and further references), and
by the interest in a stochastic gravitational background
(see for instance [11,12]), which we have already briefly
introduced in Sec. I.
If the metric is random Eq. (20) becomes a stochastic

differential equation. As a consequence the predictions are
given by taking the stochastic average over the random
gravitational field. We then need to specify its stochastic
properties.
We assume the noise to be Gaussian and with zero mean.

The first assumption is justified by the law of large
numbers, while the second by our choice of taking from

the very beginning the Minkowski spacetime as the back-
ground spacetime around which the metric fluctuates. For
the sake of simplicity, we also assume the different
components of the metric fluctuation to be uncorrelated.
This means that the noise is fully characterized by

E½hμνðx; tÞ� ¼ 0

E½hμνðx; tÞhμνðy; sÞ� ¼ α2fμνðx; y; t; sÞ; ð26Þ

where E½·� denotes the stochastic average and α represents
the strength of the gravitational fluctuations. The two point
correlation function fðx; y; t; sÞ is a real function of order 1,
i.e., 0 ≤ jfμνðx; y; t; sÞj ≤ 1.
We move to the density operator formalism [34]:

Ω̂ðtÞ ¼ jϕðtÞihϕðtÞj: ð27Þ

As the only characterization of the noise is given by the
stochastic average [Eq. (26)], we study the dynamics of the
averaged operator:

ρ̂ðtÞ ¼ E½Ω̂ðtÞ�: ð28Þ

Let us consider the von Neumann equation for the
averaged density matrix:
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∂tρ̂ðtÞ ¼ −
i
ℏ
½Ĥ0ðtÞ; ρ̂ðtÞ� −

i
ℏ
E½½ĤpðtÞ; Ω̂ðtÞ��

≡ E½L½ ^ΩðtÞ��; ð29Þ

where L½·� denotes the Liouville superoperator.
Equation (29) is in general difficult to tackle, because

of the stochastic average, but it can be solved pertur-
batively by means of the cumulant expansion [35] (see
Appendix C). With the further help of the Gaussianity, zero
mean, uncorrelation of different components, we can
rewrite Eq. (29) in Fourier space [36] as

∂tρ̂ ¼ −
i
ℏ
½Ĥ0; ρ̂ðtÞ�

−
α2

ℏ8

Z
d3qd3q0

ð2πÞ3
Z

t

0

dt1f̃
00ðq; q0; t; t1Þ

mðqÞmðq0Þ
4M2

·

·

�	
eiq·X̂=ℏ;

�
P̂2

4M
þMc2

2

�

;

�	
eiq

0·X̂t1
=ℏ;

�
P̂2

4M
þMc2

2

�

; ρ̂ðtÞ

��

−
α2c2

ℏ8

Z
d3qd3q0

ð2πÞ3
Z

t

0

dt1f̃
0iðq; q0; t; t1Þ

mðqÞmðq0Þ
4M2

·

· ½feiq·X̂=ℏ; P̂ig; ½feiq0·X̂t1
=ℏ; P̂ig; ρ̂ðtÞ��

−
α2

ℏ8

Z
d3qd3q0

ð2πÞ3
Z

t

0

dt1f̃
ijðq; q0; t; t1Þ

mðqÞmðq0Þ
4M2

·

·

�	
eiq·X̂=ℏ;

P̂iP̂j

2M



;

�	
eiq

0·X̂t1
=ℏ;

P̂iP̂j

2M



; ρ̂ðtÞ

��

−
α2

ℏ8

Z
d3qd3q0

ð2πÞ3
Z

t

0

dt1f̃
μ
μðq; q0; t; t1Þ

q2q02

64M2

mðqÞmðq0Þ
M2

½eiq·X̂=ℏ; ½eiq0·X̂t1
=ℏ; ρ̂ðtÞ��

−
α2

16ℏ4

Z
d3qd3q0

ð2πÞ3
Z

t

0

dt1∂t∂t1 f̃
μ
μðq; q0; t; t1Þ

mðqÞmðq0Þ
M2

½eiq·X̂=ℏ; ½eiq0·X̂t1
=ℏ; ρ̂ðtÞ��

þOðtα4τ3cÞ ð30Þ

where x̂t1 ¼ eiĤ0t1 x̂e−iĤ0t1 . Note that the above equation
becomes exact if ½Ĥ0; Ĥp� ¼ 0 (seeAppendixD). The above
equation describes the dynamics of the rigid body’s center of
mass is in the presence of an external weak, stochastic
gravitational field (with the further assumptions made in this
section), and constitutes the main result of this paper.
In the following we will not consider the effect on the

dynamics due to the derivatives of the metric perturbation,
as in typical experimental situations [5–9] they are negli-
gible and in any case they would not add any further
informative content to the analysis. This means that we
neglect the last line of Eq. (30).

We now restrict our analysis to the Markovian case, i.e.,
we assume the noise to be delta correlated in time:

fμνðx; y; t; sÞ ¼ jμνðx; y; tÞδðt − sÞ: ð31Þ

A further reasonable assumption, motivated by the homo-
geneity of spacetime itself, is that of translational invari-
ance of the two point correlation function:

fμνðx; y; t; sÞ ¼ λuμνðx − yÞδðt − sÞ; ð32Þ

where the factor λ is in principle a generic coefficient with
the dimension of a time. Note that the white noise
assumption makes physical sense only if the correlation
time (τc) of the gravitational fluctuations is much smaller
than the free dynamics’ characteristic time (τfree), or in
the case where the contribution to the dynamics due to
the gravitational perturbation is not affected by the free
evolution dynamics, i.e., the operators describing the
perturbation commute with the free dynamics operator
Ĥ0 (see Appendix D). In such cases, as a first approxi-
mation, we can take λ to be

λ ¼ minðτc; tÞ: ð33Þ

Note that this choice does not affect the generality of the
analysis as we leave uμνðx − yÞ unspecified.
In such a regime Eq. (30) is exact and it is easy to show

that it reduces to
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∂tρ̂ ¼ −
i
ℏ
½Ĥ0; ρ̂ðtÞ� −

α2λc4

4ð2πÞ3=2ℏ5

Z
d3qũ00ðqÞm2ðqÞ½eiq·X̂=ℏ; ½e−iq·X̂=ℏ; ρ̂ðtÞ��

−
α2λ

ð2πÞ3=2ℏ5

Z
d3qũ00ðqÞm

2ðqÞ
M2

�	
eiq·X̂=ℏ;

P̂2

4M



;

�	
e−iq·X̂=ℏ;

P̂2

4M



; ρ̂ðtÞ

��

−
α2λc2

2ð2πÞ3=2ℏ5

Z
d3qũ00ðqÞm

2ðqÞ
M

�
eiq·X̂=ℏ;

�	
e−iq·X̂=ℏ;

P̂2

4M



; ρ̂ðtÞ

��

−
α2λc2

2ð2πÞ3=2ℏ5

Z
d3qũ00ðqÞm

2ðqÞ
M

�	
eiq·X̂=ℏ;

P̂2

4M



; ½e−iq·X̂=ℏ; ρ̂ðtÞ�

�

−
α2λc2

ð2πÞ3=2ℏ5

Z
d3qũ0iðqÞm

2ðqÞ
4M2

½feiq·X̂=ℏ; P̂ig; ½fe−iq·X̂=ℏ; P̂ig; ρ̂ðtÞ��

−
α2λ

ð2πÞ3=2ℏ5

Z
d3qũijðqÞm

2ðqÞ
M2

�	
eiq·X̂=ℏ;

P̂iP̂j

4M



;

�	
e−iq·X̂=ℏ;

P̂iP̂j

4M



; ρ̂ðtÞ

��
: ð34Þ

Equation (34) describes decoherence both in position
and in momentum, as it contains double commutators of
functions of the position, momentum and free kinetic
energy operators respectively with the averaged density
matrix. In particular, we immediately recognize the last
term in the first line of Eq. (34) to give decoherence in
position, that in the second line might give decoherence in

energy (in the regime in which q·X̂
ℏ is small), and that in the

fifth line decoherence in momentum (in the same regime).
In the next section we will investigate under which

conditions Eq. (34) reduces the different models of gravi-
tational decoherence present in the literature.

V. DECOHERENCE IN THE
POSITION EIGENBASIS

In this section we specialize Eq. (34) to the regime in
which the dominant contribution to the decoherence effect
is in the position eigenbasis. This can be done under the
following assumptions:

h00 ≳ h0i

h00 ≳ hij

ΔE ≪ Mc2ð1 − u00ðΔxÞÞ;
ð35Þ

where Δx and ΔE are the quantum coherences of the
system, respectively the position and energy (E ¼ P2

2M). It is
then easy to show that the leading contribution to Eq. (34) is

∂tρ̂ ¼ −
i
ℏ
½Ĥ; ρ̂ðtÞ�

−
α2τcc4

ð2πÞ3=2ℏ5

Z
d3qũ00ðqÞm2ðqÞ

× ½eiq·X̂=ℏ; ½e−iq·X̂=ℏ; ρ̂ðtÞ��
þOðhμiÞ þOðΔEÞ; ð36Þ

where we have safely replaced λ ¼ τc. The above equation
describes decoherence in the position eigenbasis as the
Lindblad operator is a function of the position operator. It
is actually of the same form of the Gallis-Fleming master
equation [37], which describes the decoherence induced on a
particle by collisions with a surrounding thermal gas,
allowing for a collisional interpretation of the result.
To compare with the previous literature on gravitational

decoherence, we must further characterize the spatial
correlation function of the noise and the mass density
distribution. We start by considering the model proposed by
Blencowe [22]. In order to recover an analogous master
equation we must assume the noise to be delta correlated in
space:

u00ðx − x0Þ ¼ l3δ3ðx − x0Þ; ð37Þ

where l is a generic coefficient with the dimension of a
length. Under this assumption Eq. (34), represented in the
position eigenbasis, in fact becomes

∂tρðx;x0; tÞ ¼ iℏ
2M

ð∇2
x −∇2

x0 Þρðx;x0; tÞ

−
ðα00Þ2τcc4l3

4ℏ2

Z
d3rðmðr−xÞ−mðr−x0ÞÞ2

× ρðx;x0; tÞþOðhμiÞ ð38Þ

which has the same form of the master equation obtained in
[22], and describes decoherence in position. The different
rate is due to the different treatment of the gravitational
noise: Blencowe considers a quantum bosonic thermic bath
whose correlation functions cannot be reproduced by our
classical description of the noise. If we further take the
mass density function to be a Gaussian,

mðrÞ ¼ m

ð ffiffiffiffiffiffi
2π

p
RÞ3 e

−r2=ð2R2Þ ð39Þ
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as it is done in the same work, Eq. (38) then reads

∂tρðx;x0; tÞ ¼ iℏ
2M

ð∇2
x −∇2

x0 Þρðx;x0; tÞ

−
α2M2τcc4l3

4ð ffiffiffi
π

p Þ3ℏ2R3

�
1 − e−

ðx−x0Þ2
4R2

�
ρðx;x0; tÞ

þOðhμiÞ: ð40Þ

To recover the results obtained by Sanchez Gomez [20], we
instead first need to take the mass density function to be
pointlike:

mðrÞ ¼ Mδ3ðrÞ ð41Þ

as in [20], and then to assume the spatial correlation
function to be Gaussian:

ũ00ðq − q0Þ ¼ L3ℏ3δðq − q0Þe−ℏ2q2L2=2; ð42Þ

where L is the correlation length of the noise. With this
choice for the spatial correlation functions it is natural to
assume

τc ¼
L
c

ð43Þ

as it is the only timescale of the system left, and Eq. (36)
represented in the position basis reduces to

∂tρðx;x0; tÞ ¼ iℏ
2m

ð∇2
x −∇2

x0 Þρðx;x0; tÞ

þ 2α2m2c3L
ℏ2

�
e−

ðx−x0Þ2
2L2 − 1

�
ρðx;x0; tÞ ð44Þ

and exactly recovers Sanchez Gomez’s result.
A very similar equation was also obtained by Power and

Percival [21]. Our model is able to qualitatively recover the
shape of the master equation, but not the specific rate which
depends on the fourth power of the noise’s strength, being
the analysis in [21] at higher order in the gravitational
perturbation expansion.
In the next section we will describe under which

assumptions our model is able to describe decoherence
in the momentum and energy eigenbasis thus encompass-
ing the results of Breuer et al. [19] that predict gravitational
decoherence to occur in the energy eigenbasis.

VI. DECOHERENCE IN THE
MOMENTUM EIGENBASIS

In this section we specialize Eq. (34) to the regime in
which the dominant contribution to the decoherence effect
is in the momentum or energy eigenbasis. This is the case
when we can approximate

eiq·X̂=ℏ ∼ 1̂ ð45Þ

i.e., in the case of small q. In this case Eq. (34) reduces to

∂tρ̂¼−
i
ℏ
½Ĥ; ρ̂ðtÞ�

−
α2λ

ð2πÞ3=2ℏ5

Z
d3qũ00ðqÞm

2ðqÞ
M2

�
P̂2

2M
;

�
P̂2

2M
; ρ̂ðtÞ

��

−
α2λc2

ð2πÞ3=2ℏ5

Z
d3qũ0iðqÞm

2ðqÞ
M2

½P̂i; ½P̂i; ρ̂ðtÞ��

−
α2λ

ð2πÞ3=2ℏ5

Z
d3qũijðqÞm

2ðqÞ
M2

�
P̂iP̂j

2M
;

�
P̂iP̂j

2M
; ρ̂ðtÞ

��
:

ð46Þ

In order to recover the results of Breuer et al. [19], the
following hierarchy of the gravitational fluctuation must be
verified:

hij ≫ h0i

hij ≫ h00
ð47Þ

and the spatial correlation functions are chosen to be

ũijðq − q0Þ ¼ δijL3ℏ3δðq − q0Þe−ℏ2q2L2=2: ð48Þ

Also in this case it is natural to choose τc ¼ L=c. We also
assume the mass density distribution to describe a pointlike
particle as in Eq. (41).
Under these assumptions Eq. (46) in fact reduces to

∂tρ̂ ¼ −
i
ℏ
½Ĥ; ρ̂ðtÞ� − α2λ

ℏ2

�
P̂2

2M
;

�
P̂2

2M
; ρ̂ðtÞ

��
: ð49Þ

Equation [19] is indeed the same as the one obtained by
Breuer et al. with the identification:

α2λ ¼ Tc

2
; ð50Þ

where Tc is the spatially averaged correlation time of the
noise present in the same paper [38].
With the same assumptions we are also able to reproduce

the shape of the master equation derived by Anastopoulos
and Hu [23], but not the exact rate. As in the case of the
Blencowe model, this is due to their quantum treatment of
the gravitational noise.

VII. CONCLUSIONS

In this paper we have derived a general model of
decoherence for a nonrelativistic quantum particle interact-
ing with a weak stochastic gravitational perturbation.
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We have specialized such an equation to the Markovian
limit under some further reasonable assumptions on the
stochastic properties of the gravitational noise motivated
by simplicity arguments and cosmological models and
observations.
We have extended our model to the description of the

center of mass of a rigid extended body, which is a more
realistic and experimentally interesting scenario.
Our Markovian master equation predicts decoherence in

position, momentum and energy as it contains, among other
terms, double commutators of functions of the position,
momentum and free kinetic energy operators with the
averaged density matrix.
We were able to successfully recover other results

present in the literature as appropriate limiting cases of
our general master equation.
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APPENDIX A: FESHBACH
VILLARS FORMALISM

Here we provide explicit calculation for the derivation
of Eq. (12).
Let us first rewrite Eq. (6) as

ðiℏ∂t − iℏch0i∂iÞ2ψ ¼ ½ℏ2c∂tðh0iÞ∂i − ℏ2c2ð1þ h00Þ∇2

− ℏ2c2hij∂i∂j þm2c4ð1þ h00Þ�ψ
þOðh2Þ ðA1Þ

and the system of Eq. (8) as

iℏð∂t − ch0i∂iÞψ þmc2ψ ¼ 2mc2ϕ

iℏð∂t − ch0i∂iÞψ −mc2ψ ¼ −2mc2χ:
ðA2Þ

Casting Eq. (A1) in the above system we get

iℏð∂t − ch0i∂iÞϕ ¼ mc2

2
ðϕ − χÞ þ m2c4

2mc2
ð1þ h00Þðϕþ χÞ

−
ℏ2

2m
ð1þ h00Þ∇2ðϕþ χÞ

−
ℏ2

2m
hij∂i∂jðϕþ χÞ

þ ℏ2

2mc
∂tðh0iÞ∂iðϕþ χÞ ðA3Þ

iℏð∂t−ch0i∂iÞχ¼−
mc2

2
ðϕ−χÞþ−

m2c4

2mc2
ð1þh00ÞðϕþχÞ

þ ℏ2

2m
ð1þh00Þ∇2ðϕþχÞ

þ ℏ2

2m
hij∂i∂jðϕþχÞ

−
ℏ2

2mc
∂tðh0iÞ∂iðϕþχÞ: ðA4Þ

Recalling now that Ψ ¼ ðϕχÞ and exploiting the Pauli
matrices, the system reduces to

iℏ∂tΨ ¼
�
mc2σ3 þ

mc2

2
h00½σ3 þ iσ2� þ iℏch0i∂i

−
ℏ2

2m
ð1þ h00Þ½σ3 þ iσ2�∇2

−
ℏ2

2mc
∂tðh0iÞ½σ3 þ iσ2�∂i

−
ℏ2

2m
hij½σ3 þ iσ2�∂i∂j

�
Ψ

≕HΨ: ðA5Þ

Upon applying the transformation (11), the EOM trans-
form as

H → K ≔ THT−1 þ iℏT∂tðT−1Þ ðA6Þ

and read exactly as Eq. (12) of the main text.

APPENDIX B: FOLDY WOUTHUYSEN METHOD

Here we illustrate the Fouldy Wouthuysen method
applied to Eq. (12). Let us consider the transformations:

K → K0 ¼ UðK − iℏ∂tÞU−1 ðB1Þ

and specialize U to Eq. (17), i.e.,

U ¼ e−iσ3O=ð2mc2Þ ≕ eiS: ðB2Þ

With the help of the BCH identity,

K0 ¼ eiSðK − iℏ∂tÞe−iS

¼ K þ i½S;K� þ i2

2!
½S½S;K�� þ i3

3!
½S½S½S;K��� þ � � �

þ ℏ

�
− _S −

i
2
½S; _S� þ 1

6
½S; ½S; _S�� þ � � �

�
: ðB3Þ

Recalling that

K ¼ mc2σ3 þ EþO ðB4Þ
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and noticing that

½σ3;E� ¼ 0 ðB5Þ

fσ3;Og ¼ 0 ðB6Þ

½σ3O; σ3� ¼ −2O ðB7Þ

½σ3O;E� ¼ σ3½O;E� ðB8Þ

½σ3O;O� ¼ 2σ3O2 ðB9Þ

it is not difficult to check that

K0 ¼ mc2σ3 þ E0 þO0; ðB10Þ

where

E0 ¼ Eþ σ3

�
O2

2mc2
−

O4

8m3c6

�
−

i
8m2c4

½O; _O�

−
1

8m2c4
½O; ½O;E�� þ � � � ðB11Þ

O0 ¼ 1

2mc2
σ3½O;E� − O3

3m2c4
þ i
2mc2

σ3 _Oþ � � � : ðB12Þ

We note that O0 is of order c−1, meaning that we need to
perform a further transformation if we want nontrivial
diagonal EOM. The transformation that we perform is

U0 ¼ e−iσ3O
0=ð2mc2Þ ðB13Þ

after which the Hamiltonian reads

K00 ¼ mc2σ3 þ E0 þO00 þ � � � ðB14Þ

with

O00 ¼ σ3
2mc2

½O0;E0� þ i
2mc2

σ3 _O0 þ � � � : ðB15Þ

As O00 ∼Oðv3c3Þ we need to perform a final transformation:

U00 ¼ e−iσ3O
00=ð2mc2Þ: ðB16Þ

Finally the Hamiltonian reads

H ≔ K000 ¼ mc2σ3 þ E0 þOðc−4Þ: ðB17Þ

It is easy to note that the only (other than E) contribution to
E0 at the desired order is

σ3
2mc2

O2 ¼ σ3
2mc2

	
imc2

2
h00σ2;−

iℏ2

2m
∇2σ2




þOðh2Þ þOðc−4Þ

¼ ℏ2

4m
ðh00∇2 þ∇2ðh00ÞÞσ3 þOðh2μνÞ

þOðc−4Þ ðB18Þ

so that the Hamiltonian becomes

H ¼ mc2
�
1þ h00

2

�
σ3 −

ℏ2

2m

�
1þ h00

2

�
∇2σ3

−
ℏ2

2m
hij∂i∂jσ3 þ iℏch0i∂i þ

iℏ
2
∂tðh00Þ

−
iℏ
4
∂tðtrðhμνÞÞ þ

ℏ2

8m
∇2ðtrðhμνÞÞσ3

þOðc−4Þ þOðh2μνÞ ðB19Þ

as in Eq. (18) of the main text.

APPENDIX C: CUMULANT EXPANSION

In this section we derive Eqs. (30) and (34) with the help
of the cumulant expansion method [35]. We start by giving
a brief presentation of the method, which is generally
speaking a very useful tool for the solution of stochastic
differential equations (SDEs), to eventually apply it to our
specific cases of interest.
Let us consider the generic multiplicative SDE:

_̂ΩðtÞ ¼ ½Aþ αBðtÞ�Ω̂ðtÞ; ðC1Þ

where Ω̂ is a density operator, A a constant super-
operator, BðtÞ a random superoperator with finite correla-
tion time τc, and α the parameter measuring the magnitude
of the fluctuations. Of this form is Eq. (29) of the main
text. Our goal in this section will be to solve such an
equation.
In the interaction picture, Eq. (C1) reads

Ω̂ðtÞ ¼ etA ˜̂ΩðtÞ ðC2Þ

_̃̂
ΩðtÞ ¼ αe−tABðtÞetA ˆ̃Ω≡ αB̃ðtÞ ˆ̃ΩðtÞ: ðC3Þ

Its formal solution is

ˆ̃ΩðtÞ ¼ T½eα
R

t

0
B̃ðsÞds� ˆ̃Ωð0Þ: ðC4Þ

Note that Eq. (C4) represents the solution only for a given
realization of the random process, while in experiments one
is typically interested in averaged effects. We therefore
consider the averaged differential equation:
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∂t
ˆ̃ρðtÞ ¼ E½αB̃ðtÞΩ̂ðtÞ�; ðC5Þ

where we recall ρ̂ ¼ E½Ω̂�. Its formal solution reads

ˆ̃ρðtÞ ¼ E½T½eα
R

t

0
B̃ðsÞds�� ˆ̃Ωð0Þ ðC6Þ

which is in most cases though of any practical use. In
order to alternatively solve the averaged dynamics we
note that, as BðtÞ is indeed a random variable, by definition

it follows that E½eα
R

t

0
B̃ðsÞds� is a moment generating

function. We can then apply the standard cumulant expan-
sion method (for all practical purposes a series expansion
of the exponential, for more details see chapter III. 4
of [35]). With such a method, we intend to find the
generator of the averaged dynamics governing the statis-
tical operator ρ̂ðtÞ, i.e., the nonstochastic superoperator G
such that

∂t
ˆ̃ρðtÞ ¼ GðtÞ ˆ̃ρðtÞ: ðC7Þ

Upon applying the cumulant expansion to Eq. (C6), we
obtain

ˆ̃ρðtÞ ¼ T

�
exp

	
α

Z
t

0

dt1⟪B̃ðt1Þ⟫

þ α2

2

Z
t

0

dt1dt2⟪B̃ðt1ÞB̃ðt2Þ⟫þ � � �

þ αm

m!

Z
t

0

dt1…dtm⟪B̃ðt1Þ…B̃ðtmÞ⟫þ � � �

�

Ω̃ð0Þ;

ðC8Þ

where ⟪B̃ðt1Þ…B̃ðtmÞ⟫ denotes the mth cumulant. Note
that each term in the cumulant expansion is of order
Oðαmτm−1

c tÞ. In the case of a Gaussian and white noise
however, all terms with m greater than 2 vanish [39].
Furthermore, In most physically interesting cases [like for
Eq. (29), where the stochastic noise has zero mean], the
dominant contribution to Eq. (C8) is given by the second
order term. Equation (C8) therefore reads:

ˆ̃ρðtÞ ¼ T½eα2
R

t

0

R
t1
0

dt1dt2E½B̃ðt1ÞB̃ðt2Þ�� ˆ̃Ωð0Þ ðC9Þ
Eq. (C9) is simpler than Eq. (C8), but we are still not able to
straightforwardly extract the generator of the dynamics G
from it. In order to do so, we make use of the disentangling
theorem [40] as it is presented in [41]. We therefore define a
generic nonstochastic time dependent superoperator KðtÞ
and the relative evolution superoperator:

Vðt; t1Þ ¼ T½e
R

t

t1
dt0Kðt0Þ�: ðC10Þ

With the help of Vðt; t1Þwe can define a new representation

for ˆ̃ΩðtÞ and B̃ðtÞ as
ˆ̃ΩðtÞ ¼ Vðt; 0Þ ˆ̃ΩkðtÞ ðC11Þ

B̃kðtÞ ¼ Vðt; 0Þ−1B̃ðtÞVðt; 0Þ ðC12Þ

so that Eq. (C8) reads

ˆ̃ρðtÞ¼T½e
R

t

0
Kðt1Þdt1 �

·T½eα2
R

t

0

R
t1
0

dt1dt2E½B̃kðt1ÞB̃kðt2Þ�−
R

t

0
Kkðt1Þdt1 � ˆ̃Ωð0Þ: ðC13Þ

We then conveniently choose KðtÞ such that

Kkðt1Þ ¼ α2
Z

t1

0

dt2E½B̃kðt1ÞB̃kðt2Þ� ðC14Þ

and we are able to cancel the terms of order α2τc in the
second factor of Eq. (C13) [41]. Note that the superoperator
KðtÞ is to be intended as a time local superoperator,
i.e., even if defined through the integral expression in
Eq. (C14), the time ordering in eq. (C13) will order
the whole operator KðtÞ only according to the time t.
Furthermore, note that the expression for K is implicit:

Kðt1Þ¼α2
Z

t1

0

dt2E½B̃ðt1ÞVðt1;t2ÞB̃ðt2ÞVðt1;t2Þ−1� ðC15Þ

as on the rhs Vðt1; t2Þ depends on K itself. Noticing
that K is of Oðα2τcÞ, we perform a perturbative expansion
in ατc (K ¼ K1 þK2 þK3 þ � � �) in order to obtain its
explicit expression. The first term (K1) is obtained by
neglecting the action of Vðt1; t2Þ on B̃ðt2Þ in Eq. (C14)
so that

K1ðtÞ ¼ α2
Z

t1

0

dt2E½B̃ðt1ÞB̃ðt2Þ�: ðC16Þ

The next term (K2) is of order Oðα4τ2cÞ, and is obtained
upon plugging the above expression in Eq. (C10):

K2ðt1Þ ¼
Z

t1

0

dt2E½B̃ðt1ÞT½e
R

t1
t2

dt0K1ðt0Þ�B̃ðt2Þ

· T½e−
R

t1
t2

dt0K1ðt0Þ��: ðC17Þ

Higher order terms can be obtained in a similar fashion.
This procedure can be repeated for the other terms of the
cumulant expansion, so to obtain a disentangled expression
at the desired order in α and τc, see [41] for the explicit
construction in a more general case. It follows that at
Oðα2τcÞ Eq. (C8) reads

ˆ̃ρðtÞ ¼
�
T
h
e
R

t

0
Kðt1Þdt1þOðα4τ2cÞ

i

· T
h
eα

2
R

t

0

R
t1
0

dt1dt2E½B̃kðt1ÞB̃kðt2Þ�−
R

t

0
Kkðt1Þdt1

i�
ˆ̃Ωð0Þ:

ðC18Þ
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Equation (C18) is the formal solution of the differential
equation:

∂t
ˆ̃ρðtÞ ¼ α2

Z
t

0

dt0E½B̃ðtÞB̃ðt0Þ� ˆ̃ρðtÞ þOðα4τ3ctÞ ðC19Þ

which in the original representation reads

∂tρ̂ðtÞ ¼
�
Aþ α2

Z
t

0

dt0E½BðtÞeAðt−t0ÞBð0Þê−Aðt−t0Þ�
�
ρ̂ðtÞ

þOðα4τ3ctÞ: ðC20Þ

In order to apply this result to Eq. (29), the mapping from
Eq. (C20) is given by

	
A ¼ − i

ℏ ðĤ0;L − Ĥ0;RÞ
αB ¼ − i

ℏ ðĤp;L − Ĥp;RÞ;
ðC21Þ

where the subscripts L and R denote the fact that the
operator is acting respectively on the left and on the right of
the density operator Ω̂ (i.e., ALARΩ̂ ¼ AΩ̂A). The final
result (at order α2τc) is

∂tρ̂¼−
i
ℏ
½Ĥ0; ρ̂ðtÞ�

−
1

ℏ2

Z
t

0

dt1E½½ĤpðtÞ;½eiĤ0ðt1−tÞĤpðt1Þe−iĤ0ðt1−tÞ; ρ̂ðtÞ���

ðC22Þ

precisely as in Eq. (30) of the main text.

APPENDIX D: RECOVERING MARKOVIAN
MASTER EQUATION

In this section we specialize Eq. (C20) to interesting
limiting cases. We also recover the Markovian master
equation (34) of the main text.
We start by considering the special case in which the

stochastic superoperator B can be factorized as

BðtÞ ¼ hiðtÞF iðtÞ; ðD1Þ

where hiðtÞ is a (collection of) stochastic process(es) and
F iðtÞ a nonstochastic superoperator. Of this form is in fact
the stochastic superoperator B defined in Eq. (C21) through
the explicit expressions of Eq. (25) of the main text.
We then notice that Eq. (C20) becomes exact if ½A;B�¼0.

In this case in fact ½B̃ðtÞ; B̃ðt1Þ� ¼ 0¼ ½B̃kðtÞB̃kðt1Þ�, so that
K ¼ K1, and the factor inside the second time ordering in
Eq. (C20) vanishes. It follows that Eq. (C20) can be further
simplified as

∂tρ̂ðtÞ¼
�
Aþα2

Z
t

0

dt0Dijðt; t0ÞF ið0ÞF jð0Þ
�
ρ̂ðtÞ; ðD2Þ

where Dijðt; t0Þ ¼ E½hiðtÞhjðt − t0Þ� is the time correlation
function of the noise. As a very rough approximation we
take the time correlation function to be a Heaviside theta
function [42]:

DijðtÞ ¼ σijΘðt − τcÞ; ðD3Þ

where τc is the correlation time of the noise, and σij
depends on the explicit form of B. In this case Eq. (D2)
reads

∂tρ̂ðtÞ ¼
�
Aþ α2λσijF ið0ÞF jð0Þ

�
ρ̂ðtÞ; ðD4Þ

where λ ¼ minðt; τcÞ.
A different interesting scenario to consider is when the

Markovian limit of Eq. (C20) can be taken, i.e., when the
correlation time (τc) of the noise is much smaller than
the characteristic time (τfree) of the free dynamics, and the
limit τc=τfree → 0 can be taken. In this limit the action of
eAðt1−tÞ on B [and more generally of any of the evolution
superoperators employed in the derivation of Eq. (C20)]
will vanish to zero and Eq. (C20) reads [43]

∂tρ̂ðtÞ¼
�
Aþα2

Z
∞

0

dt0Dijðt;t0ÞF ið0ÞF jð0Þ
�
ρ̂ðtÞ: ðD5Þ

This equation can be further simplified noticing that in the
limit τc=τfree → 0 the time correlation function is naturally
replaced by a Dirac delta function:

DijðtÞ ¼ σijδðt − τcÞ ðD6Þ

and Eq. (D5) consequently reads

∂tρ̂ðtÞ ¼
�
Aþ α2τcσijF ið0ÞF jð0Þ

�
ρ̂ðtÞ: ðD7Þ

As a final remark, note that the factor τc in the above
equation can be safely replaced with λ, as the error made
lies within the boundaries of the validity of the Markovian
approximation.
Upon substituting the explicit expression for hiðtÞ and

F iðtÞ according to Eqs. (D1), (C21), and (25) and given the
stochastic properties of the noise [Eqs. (26) and (32)], we
recover Eq. (34) of the main text.
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