

RESEARCH ARTICLE

Theoretical spectroscopic study of acetyl (CH₃CO), vinoxy (CH₂ CHO), and 1-methylvinoxy (CH₃COCH₂) radicals. Barrierless formation processes of acetone in the gas phase [version 1; peer review: awaiting peer review]

Hamza El Hadki¹, Victoria Guadalupe Gámez², Samira Dalbouha^{1,3}, Khadija Marakchi¹, Oum Keltoum Kabbaj¹, Najia Komiha¹, Miguel Carvajal ^{104,5}, Maria Luisa Senent Diez 102

V1 First published: 30 Sep 2021, 1:116

https://doi.org/10.12688/openreseurope.14073.1

Latest published: 30 Sep 2021, 1:116

https://doi.org/10.12688/openreseurope.14073.1

Abstract

Background: Acetone is present in the earth's atmosphere and extraterrestrially. The knowledge of its chemical history in these environments represents a challenge with important implications for global tropospheric chemistry and astrochemistry. The results of a search for efficient barrierless pathways producing acetone from radicals in the gas phase are described in this paper. The spectroscopic properties of radicals needed for their experimental detection are provided.

Methods: The reactants were acetone fragments of low stability and small species containing C, O and H atoms. Two exergonic bimolecular addition reactions involving the radicals CH₃, CH₃CO, and CH₃COCH₂, were found to be competitive according to the kinetic rates calculated at different temperatures. An extensive spectroscopic study of the radicals CH₃COCH₂ and CH₃CO, as well as the CH₂CHO isomer, was performed. Rovibrational parameters, anharmonic vibrational transitions, and excitations to the low-lying excited states are provided. For this purpose, RCCSD(T)-F12 and MRCI/CASSCF calculations were performed. In addition, since all the species presented non-rigid properties, a variational procedure of reduced dimensionality was employed to explore the far infrared region.

Open Peer Review

Reviewer Status AWAITING PEER REVIEW

Any reports and responses or comments on the article can be found at the end of the article.

¹Laboratoire de Spectroscopie, Modélisation Moléculaire, Matériaux, Nanomatériaux, Eau et Environnement, LS3MN2E/CERNE2D, Faculté des Sciences Rabat, Université Mohammed V, Rabat, BP1014, Morocco

²Departamento de Química y Física Teóricas, IEM-CSIC, Unidad Asociada GIFMAN, CSIC-UHU, Madrid, 28006, Spain

³Equipe de recherche : Matériaux et Applications Environnementales, Laboratoire de Chimie Appliquée et Environnement, Département de chimie, Faculté des Sciences d'Agadir, Université Ibn Zohr, Agadir, B.P 8106, Morocco

⁴Departamento de Ciencias Integradas, Centro de Estudios Avanzados en Física, Matemática y Computación; Unidad Asociada GIFMAN, CSIC-UHU, Universidad de Huelva, Huelva, 21071, Spain

⁵Instituto Universitario Carlos I de Física Teórica y Computacional, University of Granada, Granada, Spain

Results: The internal rotation barriers were determined to be V_3 =143.7 cm⁻¹ (CH₃CO), V_2 =3838.7 cm⁻¹ (CH₂CHO) and V_3 =161.4 cm⁻¹ and V_2 =2727.5 cm⁻¹ (CH₃COCH₂).The splitting of the ground vibrational state due to the torsional barrier have been computed to be 2.997 cm⁻¹, 0.0 cm⁻¹, and 0.320 cm⁻¹, for CH₃CO, CH₂CHO, and CH₃ COCH₂, respectively.

Conclusions: Two addition reactions, $H+CH_3COCH_2$ and CH_3+CH_3CO , could be considered barrierless formation processes of acetone after considering all the possible formation routes, starting from 58 selected reactants, which are fragments of the molecule. The spectroscopic study of the radicals involved in the formation processes present non-rigidity. The interconversion of their equilibrium geometries has important spectroscopic effects on CH_3COCH_2 , but is negligible for CH_2CHO .

Keywords

acetone, CH3CO, CH2CHO, CH3COCH2, radical, spectrum, barrierless, LAM

This article is included in the Excellent Science gateway.

Corresponding author: Maria Luisa Senent Diez (ml.senent@csic.es)

Author roles: El Hadki H: Data Curation, Investigation; Gámez VG: Data Curation, Formal Analysis, Investigation, Resources, Software, Visualization; Dalbouha S: Data Curation, Formal Analysis, Investigation, Visualization; Marakchi K: Conceptualization, Data Curation, Investigation, Validation; Kabbaj OK: Formal Analysis, Supervision, Validation; Komiha N: Conceptualization, Formal Analysis, Funding Acquisition, Investigation, Project Administration, Validation; Carvajal M: Conceptualization, Funding Acquisition, Investigation, Methodology, Project Administration, Validation, Writing – Original Draft Preparation; Senent Diez ML: Conceptualization, Formal Analysis, Funding Acquisition, Investigation, Methodology, Project Administration, Resources, Software, Supervision, Writing – Original Draft Preparation, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 872081. This work was also supported by the Ministerio de Ciencia, Innovación y Universidades of Spain through the grants EIN2019-103072 and FIS2016-76418-P; the CSIC i-coop+2018 program under the grant number COOPB20364; the CTI (CSIC) and CESGA and to the "Red Española de Computación" for the grants AECT-2020-2-0008 and RES-AECT-2020-3-0011 for computing facilities. MC also acknowledges the financial support from the Spanish National Research, Development, and Innovation plan (RDI plan) under the project PID2019-104002GB-C21 and the Consejería de Conocimiento, Investigación y Universidad, Junta de Andalucía and European Regional Development Fund (ERDF), Ref. SOMM17/6105/UGR. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2021 El Hadki H *et al.* This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: El Hadki H, Gámez VG, Dalbouha S *et al.* Theoretical spectroscopic study of acetyl (CH ₃CO), vinoxy (CH ₂CHO), and 1-methylvinoxy (CH ₃COCH ₂) radicals. Barrierless formation processes of acetone in the gas phase [version 1; peer review: awaiting peer review] Open Research Europe 2021, 1:116 https://doi.org/10.12688/openreseurope.14073.1

First published: 30 Sep 2021, 1:116 https://doi.org/10.12688/openreseurope.14073.1

Plain language summary

In addition to its industrial applications, acetone (CH₃COCH₃), the smallest ketone, is present in gas phase environments such as the earth's atmosphere and extraterrestrial sources. The knowledge of its chemical history in these environments, as well as that of other volatile molecular species, represents a challenge with important implications for global tropospheric chemistry. Organic radicals can play important roles in the chemical evolution.

In this paper gas phase barrierless processes and the corresponding properties were studied at different temperatures. Probable exergonic bimolecular addition processes, which reactants are acetone fragments or small neutral species observed in the gas phase sources containing C, O and H atoms, were described. In addition, this paper is devoted to the theoretical spectroscopic study of three radicals: the acetyl radical (CH₃CO), the vinoxy radical (CH₂CHO), and the 1-methylvinoxy radical (CH₃COCH₂). The three systems were acetone fragments and potential reactants. Our main objective is to provide the theoretical point of view to help further spectroscopic studies of these not-yet-fully characterized species that can play important roles in the gas phase chemistry.

Introduction

In addition to its industrial applications, acetone (CH₃COCH₃), the smallest ketone, is present in gas phase environments such as the earth's atmosphere and the interstellar medium^{1–5}. The knowledge of its chemical history in these environments, as well as that of other volatile molecular species, represents a challenge with important implications for global tropospheric chemistry and astrochemistry. Organic radicals can play important roles in the chemical evolution of the terrestrial atmosphere and extra-terrestrial gas phase sources.

Atmospheric acetone arises from both natural and anthropogenic sources^{1,2}. It is naturally produced by vegetation that emits large quantities of nonmethane organic compounds. In the troposphere, these biogenic compounds can undergo photolysis and react with OH and NO₃ radicals, and ozone, resulting in the formation of oxygenated products such as ketones^{2,5,6}. On the other side, acetone is a major source of hydrogen oxide radicals (HO_x) and peroxyacetyl nitrate through photolysis^{2,6}. Decomposition of acetone can occur in the presence of OH to produce radicals such as CH₃COCH₂⁷. The OH-initiated oxidation of acetone in the presence of NO in air has been shown to form the acetonoxy radical [CH₃COCH₂O], which undergoes rapid decomposition under atmospheric conditions to form HCHO and CH₃CO¹.

Acetone was the first ten-atom molecule to be detected in the interstellar medium^{4,5}. Recently, it has been observed in the gas phase in various extraterrestrial environments^{8,9}. It is generally accepted that organic compounds are formed in the interstellar medium on ice mantles, although the possibility of gas phase processes is not ignored¹⁰. At the temperatures and pressures of the interstellar medium, barrierless processes can be competitive with respect to those involving ice mantles¹¹. Barrierless processes involve low stability species such as radicals, charged or unsaturated molecules¹¹.

Following the same methodology employed in a previous work¹¹, for this paper, gas phase barrierless processes and the corresponding kinetic rates were studied at different temperatures. Probable exergonic bimolecular addition processes, the reactants which are acetone fragments or small neutral species observed in the gas phase sources containing C, O and H atoms, are described. In addition, this paper is devoted to the theoretical spectroscopic study of three radicals: the acetyl radical (CH₃CO), the vinoxy radical (CH₂CHO), and the 1-methylvinoxy radical (CH₃COCH₂). The three systems were acetone fragments and potential reactants. Our main objective is to provide perspective from the *ab initio* calculations and to help further spectroscopic studies of these three, not yet fully characterized species that can play important roles in the gas phase chemistry involving organic molecules, such as diacetyl or pyruvic acid^{12,13}.

The rotational spectra of CH₃CO and CH₂CHO were measured by Hirota *et al.*¹⁴, Endo *et al.* and Hansen *et al.*^{15,16}, respectively. As far we know, experimental rotational parameters are not available for CH₃COCH₃.

The vibrational spectra of the CH₃CO, CH₂CHO, and CH₃COCH₂ radicals were studied in Ar matrices by Jacox¹⁷, Shirk *et al.*¹⁸, and Lin *et al.*¹⁹, respectively, whereas Das and Lee²⁰ addressed the infrared spectrum of CH₃CO in solid p-H₂. In the gas phase, previous measurements corresponding to CH₂CHO^{21–27} and CH₃COCH₂²⁸ are accessible, whereas for CH₃CO experimental vibrational data in the gas phase are unavailable.

Low-lying electronic transitions were previously measured for the three radicals. The CH₃CO radical photodecomposes into CH₃+CO in the visible region¹⁷. The ground electronic state presented a doublet

multiplicity character. In addition, three excited electronic doublet states have been explored²⁹⁻³². Band centers were determined to lie at 2.3 eV²⁹ and in the 200-240 nm (5.1-6.2 eV) region³⁰. Maricq *et al.*³¹ observed bands at 217 nm (2.3 eV) and in the 240-280 nm (4.4-5.1 eV) region, which were confirmed by Cameron *et al.*³². For the CH₂CHO isomer, the A(A") \leftarrow X(A") and B(A") \leftarrow X(A") transitions has been centered at 1.0 eV^{26,33,34} and at 3.6 eV^{22-25,33,35,36} using different experimental techniques. The B(A") \leftarrow X(A") transition of CH₃COCH₂ was found at 3.4 eV by Williams *et al.*^{37,38} who also provided internal rotation barriers. To our knowledge, all the previous experimental data concerned doublet states. No information is available concerning quartet states. Since one of our objectives was to localize the excited states, all the previous data is summarized with our results.

Theoretical techniques have also been applied to the study of the three radicals³⁹⁻⁴¹. Mao *et al.*³⁹ have determined vertical excitation energies to four excited doublet states of CH₃CO using multireference single and double excitation configuration interaction. The work of Yamaguchi *et al.*⁴⁰ focused on the CH₂CHO, and CH₃COCH₃ radicals.

For this new paper, we tackle to different spectroscopic properties with special attention to the far infrared region, relevant for the interpretation of rovibrational spectra. This new paper is organized as follows: The "computational tools" section under the Methods contains information about the electronic structure computations and computer codes. The next section presents the results and the discussion about the barrierless formation processes of acetone and the corresponding kinetic rates; the spectroscopic characterization of the radicals using two different procedures (one of them suitable for species with large amplitude vibrations and the far infrared region), is explored. Our recent studies of acetone⁴² and the CH₃OCH₂ radical⁴³ are examples of this last procedure. Finally, the conclusions are drawn.

Methods

Computational tools

Different levels of electronic structure theory were combined taking into consideration the computational requirements of the reactive processes and the spectroscopic studies.

Formation processes. The search for the possible barrierless formation processes was performed using the Searching Tool for Astrochemical Reactions (STAR) online tool⁴⁴. This statistical tool contains a broad and comprehensive molecular database. Implemented algorithms search for all the likely combinations of reactants leading to a specific molecular species. The processes producing the desired molecule and some subproducts are automatically rejected if the viability of these last species cannot be confirmed according to the Gibbs free energy. The viability is considered confirmed when species are listed in the data base. The corresponding minimum energy paths were computed using the density functional theory (DFT)⁴⁵ and the 6-311+G(d,p) basis set⁴⁶ as it is implemented in the GAUSSIAN 16 software⁴⁷. The thermochemical properties were determined by optimizing the geometry with the CBS-QB3 procedure⁴⁸, a complete basis set model implemented in GAUSSIAN modified for the use of the B3LYP hybrid density functional. The corresponding kinetic rate constants were computed using POLYRATE version 2017 software⁴⁹.

Spectroscopic and geometrical properties. The ground electronic state structure of the three radicals and the corresponding harmonic frequencies were computed using explicitly correlated coupled cluster theory with single and double substitutions, augmented by a perturbative treatment of triple excitations, RCCSD(T)-F12^{50,51} implemented in MOLPRO version 2012.1⁵². The default options and a basis set denoted by AVTZ-F12, were employed. AVTZ-F12 contains the aug-cc-pVTZ (AVTZ)⁵³ atomic orbitals, the corresponding functions for the density fitting, and the resolutions of the identity. The core-valence electron correlation effects on the rotational constants were introduced using RCCSD(T)⁵⁴ and the cc-pCVTZ basis set (CVTZ)⁵⁵.

The three radicals can be defined as nonrigid molecules because they show large amplitude motions that interconvert different minima of the potential energy surface (PES). Then, two different theoretical models were combined to determine the spectroscopic parameters, vibrational second order perturbation theory (VPT2)⁵⁶ implemented in GAUSSIAN, and a variational procedure of reduced dimensionality which is detailed in our papers^{57–59}.

If VPT2 is applied, a unique minimum is postulated to exist in the potential energy surfaces, the radicals are assumed to be semi-rigid and all the vibrations are described as small displacements around the equilibrium geometry. For CH,CO, CH,CHO, and CH,COCH,, anharmonic spectroscopic frequencies were obtained

from anharmonic force fields, computed using second order Møller-Plesset theory (MP2) and the VQZ, VQZ, and AVTZ basis sets⁵², respectively.

If the variational procedure is applied, the non-rigidity is taken into account and the minimum interconversion is considered implicitly. For this purpose, RCCSD(T)-F12/AVTZ potential energy surfaces were computed, and later on they were vibrationally corrected at the MP2/VQZ, MP2/VQZ, and MP2/AVTZ level of theory, respectively.

Vertical excitation energies to the excited electronic states were computed using MRCI/CASSCF theory $^{60.61}$. For the two small radicals, the active space was constructed with eight a' and four a' orbitals and 13 electrons. The five a' internal orbitals, doubly occupied in all the configurations, were optimized. In the case of CH_3COCH_2 , the active space was built using nine a' and four a' orbitals and fifteen electrons, whereas eight a' orbitals were optimized but they were doubly occupied in all the configurations.

Results and discussion

Barrierless formation processes of acetone: the function of radicals

In the gas phase, efficient reactions for competing with formation processes on ice surfaces are those which follow barrierless pathways and involve low stability species. To establish some limits to the present work, we choose the set of reactants shown in Table 1. In principle, they obey the following conditions: (1) they enclose the atomic elements H, C, and O constituents of acetone; (2) they contain at most eleven atoms, as the objective is to select chemical routes of increasing molecular complexity; (3) they have been detected in the gas phase of the ISM or, at least, they are listed as probably detectable species. We detail this procedure in our previous paper on the $C_3O_3H_6$ isomers¹¹.

All the possible chemical routes starting from the selected reactants were automatically generated by the STAR software⁴⁴. This statistical tool contains a broad and comprehensive molecular database. Implemented algorithms search for all likely combinations of reactants leading to a specific molecular species. The processes producing the desired molecule and some by-products are automatically rejected if the viability of these last species cannot be confirmed. The tool selects the exergonic processes for which the exchange of Gibbs free energies is negative ($\Delta G < 0$). The selected processes must occur following a limited number of steps. The number of steps is considered to concur with the sum of breaking and forming bonds. To quantify them, the maximum number of necessary elementary steps (MNES) parameter is defined.

In principle, 75 exergonic processes are derived from STAR. For all of them, ΔG was computed by optimizing the geometry using the CBS-QB3 procedure⁴⁸. Fourteen final exergonic reactions for which MNES < 3 were found, but only two of them could be considered as barrierless processes (see Table 2). Energy profiles proving these findings were computed at the M05-2X/6-311+G(d,p) level of theory^{45,46}. They represent minimum energy paths.

Table 1. List of selected reactants (N₂ = number of atoms).

N _a	Reactants
1	•н
2	H ₂ ; ³ O ₂ ; C ₂ ; OH•; CH•; OH+; CH+; CO•+; CO
3	C ₃ ; HOC+; C ₂ H•; H ₂ O; C ₂ O; H ₂ O•+; ³ CH ₂ ; H ₃ +; CO ₂ ; HCO+; HCO•
4	$HOCO^+; I-C_3H^+; CH_3^+; H_2CO; HCOH; C_3O; HCOO^+; C_2H_2^+; HOCO^+; H_3O^+; HCCO$
5	•CH ₂ OH; C ₄ H•; CH ₃ O•; C ₄ H-; HCOOH; CH ₄ ; I-C ₃ H ₂ ; CH ₂ CO
6	C ₂ H ₄ ; CH ₃ CO*; CH ₃ OH;*CH ₂ CHO; HC ₂ CHO; H ₂ C ₄ ; HC ₄ H
7	CH ₃ CHO; CH ₂ CHOH; CH ₃ C ₂ H
8	CH ₂ CHCHO; CH ₃ OCH ₂ •; CH ₃ CHOH
9	CH ₃ C ₄ H; CH ₃ CH ₂ OH; CH ₃ COCH ₂ •; CH ₃ CCH ₃ ; CH ₃ CHCH ₂

Table 2. Rate constants (cm³molecule-1 s-1).

	Reaction	200K		298K	500K	1000K
		CVT	μVΤ	CVT	CVT	CVT
1	H• + CH ₃ COCH ₂ → CH ₃ COCH ₃	6.3E-21	0.0E+00	2.6E-17	8.2E-15	5.2E-13
2	CH ₃ • + CH ₃ CO• → CH ₃ COCH ₃	6.0E-21	0.0E+00	2.4E-17	2.3E-14	3.3E-12

The kinetic rate constants of the processes are summarized in Table 2. They were evaluated using the single-faceted variable-reaction-coordinate variational transition state theory (VRC-VTST)^{62,63} implemented in POLYRATE⁴⁹. The rate constants obey the following equation:

$$k(T,s) = \frac{\hbar^2}{2\pi} g_e \frac{\sigma_1 \sigma_2}{\sigma^{\neq} Q_1 Q_2} \left(\frac{2\pi}{\mu k_B T} \right)^{\frac{3}{2}} \int dE \, e^{-E/K_B T} \, dJ \, N(E,J,s) \tag{1}$$

In this equation, s and T denote the reaction coordinate and the temperature, respectively; g_e represents the rate between the electronic partition function of the transition state and the product of the electronic partition function of the two reactants; μ , Q_1 and Q_2 designate the reduced mass and the rotational partition functions of the reactants. J is the angular momentum quantum number and N (E, J, s) represents the number of allowed states corresponding to the E energy. σ_1 , σ_2 , and σ^{\neq} denote the cross-sections for the two reactants and for the transition states.

The starting points of the rate computation were the M05-2X/6-311+G(d,p) energies, geometries and harmonic fundamentals of reactants and products computed along the pathways. The s reaction coordinate was allowed to vary from 1.8 to 4.2 Å with intervals of 0.2 Å. The rates were computed at fifteen different T (200, 210, 220, 230, 240, 250, 260, 280, 298, 300, 400, 500, 700, 900 and 1000K). The number of allowed states was determined in a Monte Carlo simulation considering all the possible orientations. The rates at 200K (middle point of the interstellar Hot Core temperature range, 100-300K), 298K (room temperature), and 500K, corresponding to the 29 barrierless processes, are shown in Table 2. Rates were computed using the canonical variational transition state theory (CVT), which is the conventional theory. However, as CVT is not recommended for very low temperatures, rates at 200K were also computed using microcanonical variational transition state theory (μ VT) with multidimensional semiclassical approximations for tunneling and nonclassical reflection 64,65.

Spectroscopic characterization of CH₃CO, CH₂CHO, and CH₃COCH₃

Ground electronic state: equilibrium structures. The study of the rovibrational properties of acetone and its monosubstituted isotopologues using *ab initio* calculations was the aim of a previous work from some of the authors of the present paper⁴². In this new paper, we attend, using a similar methodology, the structural and spectroscopic parameters of the three radicals, CH₃CO, CH₂CHO, and CH₃COCH₂, involved in acetone gas phase processes.

Table 3 collects the RCCSD(T)-F12/AVTZ structural parameters and the equilibrium rotational constants of the preferred geometries of the three radicals in their ground electronic state. The three geometries can be classified in the C_s point group. The MRCI/CASSCF/AVTZ dipole moment components are also shown. Figure 1 represents those preferred geometries.

The three radicals display internal rotation that interconvert equivalent minima separated by barriers. θ_1 and θ_2 denote the CH $_3$ and the CH $_2$ torsional coordinates, respectively. Using RCCSD(T) theory, the energy barriers were computed to be V_3 =143.7 cm $^{-1}$ (CH $_3$ CO), V_2 =3838.7 cm $^{-1}$ (CH $_2$ CHO), and V_3 =161.4 cm $^{-1}$ and V_2 =2727.5 cm $^{-1}$ (CH $_3$ COCH $_2$). A third coordinate, α (the CH $_2$ wagging) interacts strongly with the CH $_2$ torsion in two of the three species. Figure 2 represents one-dimensional cuts of the ground electronic state potential energy surfaces that emphasize the torsional barriers.

It could be concluded that in CH_3CO and CH_3COCH_2 , the methyl torsional barrier is very low (V_3 <200 cm⁻¹). A complex distribution of the torsional energy levels can be expected. With respect to the CH_2 torsion, the barrier in CH_3COCH_2 is ~0.70 $V_2^{CH2-CHO}$ and of the same order of magnitude as in $CH_3OCH_2^{43}$.

Table 3. RCCSD(T)-F12/AVTZ relative energies (E, E^{ZPVE}, in cm⁻¹), internal rotation barriers (V₃, V₂, in cm⁻¹). Rotational constants (in MHZ), MRCI/CASSCF/AVTZ dipole moment (in D) and equilibrium structural parameters (*distances*, *in Å*, *angles*, *in degrees*) of acetyl, vinoxy, and 1-methylvinoxy radicals.

	CH ₃ CO ^a (X ² A')	CH ₂ CHO (X ² A")	CH ₃ COCH ₂ b (X ² A")
E	0.0	2514.2	-
Ezpve	0.0	2498.8	-
V_2	-	3838.7	2727.5
V_3	143.7	-	161.4
A_{e}	84134.35	67084.88	10934.76
B_{e}	9982.57	11456.25	9115.74
C _e	9444.29	9785.20	5128.93
$\mu_{\rm a}$	0.2423	0.9465	0.5444
μ_{b}	2.3244	2.6175	1.3272
μ_c	0.0	0.0	0.0
μ	2.3281	2.7834	1.4346
CH₃CO		CH ₂ CH	0
C1C2	1.5116	C1C2	1.4325
O3C1	1.1816	O3C2	1.2290
H4C2	1.0912	H4C2	1.1014
H5C2=H6C2	1.0892	H5C1=H6C1	1.0809
O3C1C2	128.3	O3C2C1	122.8
H4C2C1	110.7	H4C2C1	117.0
H5C2C1=H6C2C1	108.4	H5C1C2	119.0
H4C2C1O3	0.0	H6C1C2	120.9
H5C2C1H4=-H6C2C1H4	121.6		
CH ₃ C	OCH ₂		
C1C2	1.5129	C2C1O4	121.6
C1C3	1.4467	H5C2C1	109.5
O4C1	1.2291	H6C2C1=H7C2C1	110.2
H5C2	1.0869	C1C3H8	118.1
H6C2=H7C2	1.0917	H9C3H8	119.9
H8C3	1.0803	H5C2C1C3	180.0
Н9СЗ	1.0814	H6C2C1H5= -H7C2C1H5	120.8
C2C1C3	117.9		
a) E=-152.989163 a.u.; b) E=-192.240093 a.u.			

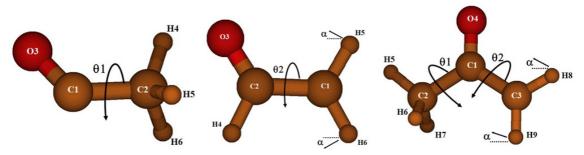


Figure 1. The preferred geometries of the CH,CO, CH,CHO, and CH,COCH, radicals.

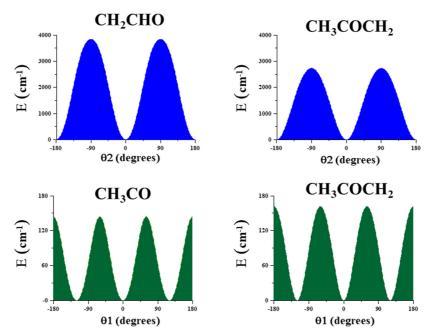


Figure 2. Internal rotation barriers.

Excited electronic states. Previous theoretical and experimental works resolved doublet multiplicity character of the electronic ground states. Nevertheless, using MRCI/CASSCF/AVTZ theory, we have identified the lowest excited electronic states to assure a clean enough ground electronic state to apply the used rovibrational models. Results are shown in Table 4 and were compared with previous experimental data^{22–26,29,31,33–38} or data from theoretical works^{39,40}.

The first excited electronic state of CH₃CO and CH₃COCH₂ is a doublet state lying around 2 eV above the ground state. Vibronic effects are expected in the spectral region of the ground electronic state studied in this work. In the case of the CH₃CO radical, the computed value is in good agreement with experiments²⁹. For CH₂CHO, the vertical excitation to the first excited state was computed to be 1.4 eV in agreement with the experimental value of 1.0 eV^{26,33,34}. As a consequence, the first excited state can perturb the region of the H-stretching overtones. For the three species, the following higher excited states (doublets and quartets) lie over 4 eV.

Ground electronic state rovibrational properties. The vibrational energy levels have been obtained using the following formula:

$$E = \sum_{i} \omega_{i}^{RCCSD(T) - F12} \left(v_{i} + \frac{1}{2} \right) + \sum_{i \ge j} x_{ij}^{MP2} \left(v_{i} + \frac{1}{2} \right) \left(v_{j} + \frac{1}{2} \right)$$
 (2)

Table 4. Vertical excitation energies to the low-lying electronic states (in eV) computed with MRCI/CASSCF/AVTZ.

	С	H ₃ CO ^a	CH ₂ CHO ^b			(H ₂ ^c	
	Calc.	Previous works		Calc.	Previous works		Calc.	
X ² A′	0.0	-	X ² A"	0.0		X ² A"	0.0	
A ² A"	2.4	2.33 ²⁹ 2.6 ³⁹	A ² A'	1.4	1.0 ^{26,33,34}	A ² A'	2.2	
B ² A′	6.2	5.8 ³⁰ (4.4-5.2) ³¹ 4.9 ³⁹	B ² A"	4.4	3.57 ^{22-25,33,35,36} 3.4 ⁴⁰	a ⁴ A′	5.0	
a ⁴ A"	6.3		a ⁴ A′	4.9		B ² A"	5.7	3.4 ^{37,38} 3.5 ⁴⁰
b ⁴ A'	6.7		C ² A′	5.4		b ⁴ A"	6.4	
C^2A''	7.0	6.7 ³⁹	b ⁴ A"	7.2		C^2A'	6.8	

a) 29 Visible Absorption Spectrum; 30; Flash photolysis and kinetic spectroscopy; 31 Ultraviolet spectrum; 39 MR(SD)CI calculations;

where ω_i represents the RCCSD(T)-F12 harmonic fundamentals and x_{ij} are the MP2 anharmonic constants. These last values were computed using VPT2 theory and harmonic force fields MP2/AVQZ (in the case of the small radicals) and MP2/AVTZ (in the case of CH₃COCH₂). In Table 5, the computed fundamentals are compared with previous measured values in Ar¹⁶⁻¹⁸ and p-H₂²⁰ matrices, and in the gas phase²¹⁻²⁸.

The ground vibrational state rotational constants and the centrifugal distortion constants are shown in Table 6. The rotational constants were computed using the RCCSD(T)-F12 equilibrium parameters of Table 3 and the following equation, proposed and verified in previous studies^{42,65-67}:

$$\begin{split} B_0 &= B_e \left(RCCSD(T) \text{-}F12/AVTZ \right) + \Delta B_e^{\text{core}} \left(RCCSD(T)/CVTZ \right) \\ &+ \Delta B_{\text{vih}} \left(MP2/AVnZ \right) \end{split} \tag{3}$$

Here, ΔB_e^{core} takes into account the core-valence-electron correlation effect on the equilibrium parameters. It can be evaluated as the difference between $B_e(CV)$ (calculated by correlating both core and valence electrons) and $B_e(V)$ (calculated by only correlating the valence electrons). ΔB_{vib} represents the vibrational contribution to the rotational constants derived from the VPT2 α_{ir} vibration-rotation interaction parameters.

Rotational parameters of CH₃CO were compared with the experimental values of Hirota *et al.*¹⁴, whereas those of CH₂CHO were compared with the data of Endo *et al.*¹⁵. For this second radical, the agreement between computed and measured rotational constants is excellent (A_0^{CAL} - A_0^{EXP} = 95.3 MHz, B_0^{CAL} - B_0^{EXP} = -1.7 MHz, and C_0^{CAL} - C_0^{EXP} = 3.2 MHz). However, for CH₃CO, the concurrence is also excellent for B_0 and C_0 , but the A_0 result is outside tolerance limits (A_0^{CAL} - A_0^{EXP} = 1147.5 MHz, B_0^{CAL} - B_0^{EXP} = -3.4 MHz, and C_0^{CAL} - C_0^{EXP} = 0.5 MHz). Generally, for many molecules, the computed B_0 and C_0 using Equation (3) are more accurate than A_0 . However, the difference expressed as A_0^{CAL} - A_0^{EXP} = 1147.5 MHz is too large in comparison to what was expected. Since the three rotational constants were computed simultaneously, the error could be derived from the experiments and from the effective Hamiltonian used for assignments. For methyl isocyanate⁶⁸, we found a similar situation, where it is proven that previous experimental works provided very contradictory A_0 constants.

b) 22–25,36 Laser induced fluorescence; 26,34 Photoelectron spectroscopy; 33 Photochemical modulation spectroscopy; 35 Photodissociation spectroscopy; 40 MRCISD+Q/cc-pVDZ

c) 37,38 laser induced fluorescence; 40 MRCISD+Q/cc-pVDZ

Table 5. Anharmonic fundamentals^{a,b,c} (in cm⁻¹).

			CH ₁	_s co
			Calc.	Obs.d [Ref]
ν(a')	V ₁	CH ₃ st	2988	2989.1 (19) ²⁰
	V ₂	CH ₃ st	2919	2915.6(29) ²⁰
	V ₃	CO st	1900	1880.5 (100) ²⁰ ; 1875 ¹⁷ ; 1842 ¹⁸
	V ₄	CH ₃ b	1427	1419.9(80) ²⁰ ; 1420 ¹⁷
	V ₅	CH ₃ b	1331	1323.2(109) ²⁰ ; 1329 ^{17,18}
	V ₆	HCC b	1021	
	V ₇	CC st	833	836.6(45) ²⁰
	V ₈	OCCb	464	468.1(28) ²⁰
ν(a")	V ₉	CH3 st	2997	2990.3(42) ²⁰
	V ₁₀	CH ₃ b	1429	1419.9(80) ²⁰
	V ₁₁	CH₃ b	931	
	V ₁₂	CH ₃ tor	82	
			CH ₂	СНО
ν(a')	V ₁	CH st	3133	
	V ₂	CH st	3035	
	V ₃	CH st	2813	2827.91 ²¹
	V ₄	CCO st	1465	1528 ²²⁻²⁶
	V ₅	CH ₂ b	1435	1486 ²⁵
	V ₆	OCH b	1365	24,25
	V ₇	CC st	1132	1143 ^{22,23,25-27}
	V ₈	CC st	950	957 ²⁵
	V ₉	CCO b	495	22-23,25-27
ν(a")	V ₁₀	H ₄ wag	954	703 ²⁵
	V ₁₁	CH ₂ wag	729	557 ²⁵
	V ₁₂	CH ₂ tor	402	402(4) ²⁵
			CH ₃ C	OCH ₂
ν(a')	ν ₁	CH ₂ st	3145	
	V ₂	CH ₃ st	2024	
	V ₃	CH ₂ st	3040	
	V_4	CH ₃ st	2927	
	V ₅	CO st	1541	1554.1 ¹⁶ , 1558.9 ¹⁶
	V ₆	CH ₃ b	1449	
	V ₇	CH ₂ b	1440	1419.32 ¹⁶
	V ₈	CH ₃ b	1365	1377.51 ¹⁶
	V ₉	CCH b	1243	1247 ²⁸
	V ₁₀	CCH b	1051	

	CH ₃ COCH ₂										
			Calc.	Obs.d [Ref]							
	V ₁₁	CCH b	910								
	V ₁₂	CC st	813								
	V ₁₃	OCC b	521	515 ²⁸							
	V ₁₄	CCCb	385								
ν(a")	V ₁₅	CH₃ st	2971								
	V ₁₆	CH ₃ b	1440								
	V ₁₇	CH₃ b	1001								
	V ₁₈	CH ₂ wag	732								
	V ₁₉	CH ₃ b	500								
	V ₂₀	CH ₂ tor	343								
	V ₂₁	CH ₃ tor	77								

a) st= stretching; b=bending;wag=wagging; tor=torsion.

Table 6. Vibrational ground state rotational constants (in MHz) and centrifugal distortion constants corresponding to the symmetrically reduced Hamiltonian parameters (III^r representation^a).

	CH	I₃CO		сн₂сно
	Calc.	Exp.b	Calc.	Exp.c
A ₀	84094.27	82946.73	66773.15	66677.85679(159)
B _o	9952.09	9955.46	11445.40	11447.0460(55)
C ₀	9427.41	9426.95	9762.15	9758.9065(53)
$\Delta_{_{\! J}}$	0.009448	0.01188 (21)	0.009422	0.0096468(22)
$\Delta_{\rm K}$	2.756343		1.312964	1.307
$\Delta_{ m JK}$	0.124574		-0.084559	-0.083045(137)
d ₁	-0.000948		-0.002006	0.0021215(101)
d ₂	0.000512		-0.000129	0.0384(26)
H _j	0.000041		0.000014	
H_{κ}	0.897964		0.078700	
H_{jk}	-0.001033		-0.000287	
Нкј	-0.630725		-0.006429	
h ₁	0.000004		0.000007	
h ₂	-0.000014		0.000001	
h ₃	0.000001		0.000000	

b) 16–18 Measured in Ar matrix; 20 in pH₂ solid; 21–28 in the gas phase.

c) Emphasized in bold transitions for which important Fermi displacements are predicted.

d) Experimental uncertainties, when available, are given in parentheses in units of the last quoted digit.

	CH ₃ COCH ₂												
	Calc.	Exp.b	Calc.	Exp.c									
A ₀	10949.35		H _J	0.000024									
B _o	9054.05		H _K	-0.000014									
C ₀	5110.78		H _{JK}	-0.000088									
$\Delta_{\rm j}$	0.010134		H _{KJ}	0.000078									
$\Delta_{\rm K}$	0.004463		h ₁	0.000006									
$\Delta_{ m JK}$	-0.013811		h ₂	0.000003									
d ₁	-0.000763		h ₃	0.000002									
d ₂	-0.000596												

- a) The z-axis was selected to coincide with the x-Eckart axis in CH₃CO and CH₃CHO, and with the z-Eckart axis in CH₃COCH₃.
- b) Computed from the A, (B±C)/2, and D values of Ref. 14.
- c) Ref 15.

The far infrared region

For the three radicals, the energy levels corresponding to the large amplitude motions were computed using a variational procedure of reduced dimensionality, where the vibrational coordinates responsible for the non-rigidity were considered to be separable from the remaining vibrations. Then, an adiabatic approximation is applied on the basis of the vibrational energies. Since the method takes into consideration the minimum interconversion describing the tunneling effects in the barriers, it is more suitable for nonrigid species than VPT2, although this last theory provides a useful preliminary depiction. With VPT2, the methyl torsional fundamental of CH₃CO was computed to be 82 cm⁻¹ and the fundamental frequency of the central bond torsion of CH₂CHO was found at 402 cm⁻¹ (see Table 5). The CH₃COCH₂ radical presents two interacting internal rotations which VPT2 frequencies computed to be 77 cm⁻¹ (CH₃ torsion) and 343 cm⁻¹ (CH₂ torsion). In principle, models in one-dimension (1D) or two-dimensions (2D) seems sufficient.

However, as we employed a flexible model where the remaining vibrational modes were allowed to be relaxed during the torsions, a third vibrational mode, the CH_2 wagging, must be considered explicitly as it is strongly coupled with the CH_2 torsion. Fermi interactions, predicted using VPT2, show that the separability between the CH_2 wagging and the CH_2 torsion is not suitable. Then, CH_2CHO and CH_3COCH_2 require (at least) to use 2D and a three-dimension (3D) model, respectively. For the most general case, the 3D Hamiltonian for J=0 must be defined as $^{57-59}$:

$$H(\theta_{1}, \theta_{2}, \alpha) = -\sum_{i=1}^{3} \sum_{j=1}^{3} \left(\frac{\partial}{\partial q_{i}}\right) B_{q_{i}q_{j}}(\theta_{1}, \theta_{2}, \alpha) \left(\frac{\partial}{\partial q_{j}}\right) + V^{eff}(\theta_{1}, \theta_{2}, \alpha)$$

$$q_{i}q_{j} = \theta_{1}, \theta_{2}, \alpha$$
(4)

where $B_{\text{gial}}(\theta_1, \theta_2, \alpha)$ are the kinetic energy parameters^{57–59}; the effective potential is the sum of three terms:

$$V^{\text{eff}}(\theta_1, \theta_2, \alpha) = V(\theta_1, \theta_2, \alpha) + V'(\theta_1, \theta_2, \alpha) + V^{\text{ZPVE}}(\theta_1, \theta_2, \alpha)$$
 (5)

Here, $V(\theta_1, \theta_2, \alpha)$ represents the *ab initio* potential energy surface; $V'(\theta_1, \theta_2, \alpha)$ is the Podolsky pseudopotencial and $V^{\text{ZPVE}}(\theta_1, \theta_2, \alpha)$ represents the zero point vibrational energy correction^{57–59}. For the 1D and 2D model, the corresponding operators depending on θ_1 (CH₂CO) or θ_2 and α (CH₂CHO) can be easily derived

from Equation (4) removing variables. A possible analytical expression for the potential can be the product of a double Fourier series and a Taylor series:

$$\begin{split} V^{\text{eff}}(\theta_{1}, &\theta_{2}, \alpha) = \sum \sum \sum [A_{\text{mnl}} \cos(3m\theta_{1}) \cos(2n\theta_{2}) \alpha^{21} + A_{\text{m-nl}} \cos(3m\theta_{1}) \sin(2n+1)\theta_{2} \alpha^{21+1} \\ &+ A_{\text{-m-nl}} \sin(3m\theta_{1}) \sin(2n\theta_{2}) \alpha^{21} + A_{\text{-mnl}} \sin(3m\theta_{1}) \cos(2n+1)\theta_{2} \alpha^{21+1}] \\ &\qquad \qquad m = 0, 1, 2; n = 0, 1, 2; l = 0, 1, 2, 3, 4 \end{split} \tag{6}$$

Similar expressions can be used for the kinetic parameters. In the most general 3D case, the Hamiltonian symmetry properties correspond to the totally symmetric representation of $G_{12}^{\ 69}$, the molecular symmetry group (MSG) of the CH_3COCH_2 radical. Three-dimensional series corresponding to the six representations, four non degenerate A_1 , A_1 , A_2 , and A_2 , and two double-degenerate, E and E are presented in Table 7. The MSG of the radical CH_3CO is G_6 with three irreducible representations, and that of CH_2CHO is G_4 with four irreducible representations A^+ , A^- , B^+ and B^- (based on effects of the symmetry operators (56) and E^*).

The kinetic parameters and the *ab initio* potential energy surface were determined from a grid of N selected geometries, corresponding to selected values of the independent coordinates. When 1D, 2D, or 3D models are employed, 1, 2 or 3 internal coordinates are frozen at selected values, whereas $3N_a$ -7 (1D), $3N_a$ -8 (2D) and $3N_a$ -9 (3D) (N_a =number of atoms) are allowed to be relaxed in all the calculated N geometries. For the CH,COCH, radical:

a) Geometries corresponding to four values of the H5C2C1C3 dihedral angle (0°, 90, -90° and 180°) were selected. The methyl torsional coordinate is defined as:

$$\theta_1$$
=(H5C2C1C3+ H6C2C1C3+ H7C2C1C3-360°)/3

For CH₃CO, the angles H₂C2C1O3 (x=4,5,6) define the methyl torsional coordinate.

Table 7. Three-dimensional wavefunctions according to MSG G_{12} (m,n,l=0,1,2,...).

A ₁ ′	E _a '
$cos(3m\theta_1) cos(2n\theta_2) \alpha^{2l}$ $cos(3m\theta_1) sin (2n+1)\theta_2 \alpha^{2l+1}$	$\cos(3m\pm1)\theta_1\cos(2n\theta_2)\alpha^{2l}$ $\cos(3m\pm1)\theta_1\sin(2n+1)\theta_2\alpha^{2l+1}$
$\sin(3m\theta_1)\sin(2n\theta_2)\alpha^{2l}$ $\sin(3m\theta_1)\cos(2n+1)\theta_2\alpha^{2l+1}$	$\cos(3m\pm1)\theta_1 \sin(2n\theta_2) \alpha^{2l} \\ \cos(3m\pm1)\theta_1 \cos(2n+1)\theta_2 \alpha^{2l+1}$
A ₂ '	E _b '
$\cos(3m\theta_1)\sin(2n\theta_2)\alpha^{2l}$ $\cos(3m\theta_1)\cos(2n+1)\theta_2\alpha^{2l+1}$	$\sin(3m\pm1)\theta_1 \sin(2n\theta_2) \alpha^{2l} \\ \sin(3m\pm1)\theta_1 \cos(2n+1)\theta_2 \alpha^{2l+1}$
$\sin(3m\theta_1)\cos(2n\theta_2)\alpha^{2l}$ $\sin(3m\theta_1)\sin(2n+1)\theta_2\alpha^{2l+1}$	$\sin(3m\pm1)\theta_1\cos(2n\theta_2)\alpha^{2l}$ $\sin(3m\pm1)\theta_1\sin(2n+1)\theta_2\alpha^{2l+1}$
A ₁ "	E _a "
$\mathbf{A_1''}$ $\cos(3m\theta_1)\sin(2n\theta_2)\alpha^{2l+1}$ $\cos(3m\theta_1)\cos(2n+1)\theta_2\alpha^{2l}$	$\mathbf{E_a''}$ cos(3m±1) θ_1 sin(2n θ_2) α^{2l+1} cos(3m±1) θ_1 cos(2n+1) θ_2 α^{2l}
$\cos(3m\theta_1)\sin(2n\theta_2)\alpha^{2l+1}$	$\cos(3m\pm1)\theta_1 \sin(2n\theta_2) \alpha^{2l+1}$
$\cos(3m\theta_1)\sin(2n\theta_2)\alpha^{2l+1}$ $\cos(3m\theta_1)\cos(2n+1)\theta_2\alpha^{2l}$ $\sin(3m\theta_1)\cos(2n\theta_2)\alpha^{2l+1}$	$\cos(3m\pm1)\theta_1 \sin(2n\theta_2) \alpha^{2l+1} \cos(3m\pm1)\theta_1 \cos(2n+1)\theta_2 \alpha^{2l} \cos(3m\pm1)\theta_1 \cos(2n\theta_2) \alpha^{2l+1}$
$\cos(3m\theta_1)\sin(2n\theta_2)\alpha^{2l+1}$ $\cos(3m\theta_1)\cos(2n+1)\theta_2\alpha^{2l}$ $\sin(3m\theta_1)\cos(2n\theta_2)\alpha^{2l+1}$ $\sin(3m\theta_1)\sin(2n+1)\theta_2\alpha^{2l}$	$\cos(3m\pm1)\theta_1 \sin(2n\theta_2) \alpha^{2l+1}$ $\cos(3m\pm1)\theta_1 \cos(2n+1)\theta_2 \alpha^{2l}$ $\cos(3m\pm1)\theta_1 \cos(2n\theta_2) \alpha^{2l+1}$ $\cos(3m\pm1)\theta_1 \sin(2n+1)\theta_2 \alpha^{2l}$

b) The procedure for defining the coordinates involving the CH_2 group comprises 3 ghost atoms, X_p , X_{CL} , and X. X_p and X defining, respectively, the torsional and wagging coordinates assuring the optimization of $3N_a$ -8 in CH_2CHO and $3N_a$ -9 in CH_3COCH_2 using the available GAUSSIAN⁴⁷ and MOLPRO software⁵². Figure 3 shows the distributions of real and ghost atoms in CH_4COCH_3 .

During the geometry optimization, X_p and X_{CL} were frozen in the plane defined by the three carbon atoms; C3-X could wag outside the plane formed by C3C1C2 but remained perpendicular to C3- X_p ; the C3- X_p and C3- X_{CL} "bonds" stood perpendicular and collinear to C3-C1, respectively; the real atoms H8 and H9 remained in a plane defined by the X, C3, and X_p atoms. Then, the independent α and θ_2 variables and the corresponding selected values were defined as:

$$\alpha = < XC3X_{CL} (\alpha = 0^{\circ}, \pm 15^{\circ}, \pm 30^{\circ}, \pm 45^{\circ})$$

 $\theta_2 = X_p C3C1C2 (\theta_2 = 180^{\circ}, 150^{\circ}, 120^{\circ}, 90^{\circ})$

A similar procedure was used for CH₂CHO.

The linear fit of the N *ab initio* energies to Equation (6) (R²=0.99999; σ =1.096 cm¹ (CH₃COCH₂)) produced V(θ_1 , θ_2 , α). The kinetic parameters $B_{q_1q_2}(\theta_1,\theta_2,\alpha)$ and the pseudopotential V'(θ_1 , θ_2 , α) were determined using the procedure described in 57 and 58 for the N geometries and fitted to an expansion formally identical to Equation (6). To determine V^{ZPVE}(θ_1 , θ_2 , α), harmonic frequencies were computed in all the N geometries. Details are shown in 56. The expansion coefficients of the effective potential are provided in Table 8. The A₀₀₀ coefficients of the kinetic parameters are shown in Table 9. Figure 4 displays two bidimensional cuts of the 3D-effective potential of CH₃COCH₂. On the left side of the figure, the two coordinates correspond to the CH₃ and CH₂ torsions. On the right side, the two coordinates are those involving the CH₂ group (torsion and wagging).

The energy levels were computed variationally by solving the Hamiltonian of Equation (4), using the symmetry adapted series shown in Table 7 as trial wave functions. Details concerning the classification of the levels computed in 2D and 3D can be found in 11. Table 10 collects the variational energy levels and the transitions computed using VPT2.

In CH₃CO, the A₁/E splitting of the ground vibrational state was evaluated to be 2.997 cm⁻¹, as was expected given the very low torsional barrier (V₃=143.7 cm⁻¹). The methyl torsional fundamental v₁₂ (1 \leftarrow 0), computed to be 82 cm⁻¹ with VPT2, present two components: 104.265 cm⁻¹ (A₂ \leftarrow A₁) and 73.659 cm⁻¹ (E \leftarrow E). Figure 5 can help understand the distributions of levels and subcomponents. Excitation of the low amplitude motions v₈ (OCC bending), v₇ (C-C stretching), and v₁₁ (CH₃ deformation) computed using VPT2 were inserted among the v₁₂ excitations, computed variationally.

In CH₂CHO, the two independent fundamentals treated variationally were v_{12} (1 0 \leftarrow 0 0) and v_{11} (0 1 \leftarrow 0 0). Both were computed to be 402 cm⁻¹ and 729 cm⁻¹ using VPT2. The variational results were v_{12} =398.436 cm⁻¹ (A⁻ \leftarrow A⁺, B⁻ \leftarrow B⁺) and v_{11} =745.727 cm⁻¹ (A⁻ \leftarrow A⁺, B⁻ \leftarrow B⁺). The first one was in agreement with the experimental data (402±4 cm⁻¹³⁵) whereas large differences with the experimental work (557 cm⁻¹³⁵) were observed for the CH₂ wagging. Both works, experimental and theoretical, need to be revisited in the future to establish the wagging mode. The separation between splitting components (in the ground and first vibrational excited

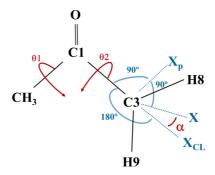


Figure 3. The ghost atoms defining the CH_2 torsional ($X_pC3C1C2$) and the wagging ($XC3X_{c1}$) coordinates, in CH_3COCH_2 .

Table 8. Expansion coefficients of the potential energy surfaces (in $\mbox{cm}^{-1})^a.$

CH ₃ CO												
A,			М	A _I		N	1	A _i		N	1	
66.53	8		0	-71.867	-71.867 3 5.329			6	·			
сн₂сон												
\mathbf{A}_{nl}		N	L	A _{nl}		N	L	A _{nl}	N	L		
2308.050)	0	0	0.572		2	2	-4.161		-1	1	
-1958.05	4	2	0	-0.6x10	4	2	4	0.7x10	4	-1	3	
-55.340		4	0	-0.046		4	2	-3.838		-3	1	
38.721		6	0	0.1x10 ⁻	4	4	4	-0.11x10)-3	-3	3	
0.589		0	2	0.001		6	2	0.534		-5	1	
0.10x10 ⁻³	3	0	4	-0.2x10	-5	6	4	-0.1×10	-4	-5	3	
CH ₂ COCH ₃												
A _{mnl}	N	М	L	A _{mnl}	N	М	L	A _{lmn}	N	М	L	
1936.238	0	0	0	-0.12x10 ⁻³ 2		0	4	0.1x10 ⁻⁵	4	3	4	
-1432.135	2	0	0	0.069	4	0	2	0.008	-1	3	1	
-61.140	4	0	0	-0.4x10 ⁻⁴	-0.4x10 ⁻⁴ 4		4	-0.1×10 ⁻⁴	-1	3	3	
-2.543	6	0	0	0.019	6	0	2	-1.108	-3	3	1	
-149.629	0	3	0	-0.10x10 ⁻⁴	6	0	4	-0.5x10 ⁻⁴	-3	3	3	
-0.521	0	6	0	0.062	-1	0	1	-0.033	-5	3	1	
0.379	0	0	2	0.007	-1	0	3	0.5x10 ⁻⁴	-5	3	3	
0.23x10 ⁻³	0	0	4	2.883	-3	0	1	0.038	-2	-3	2	
72.044	2	3	0	0.001	-3	0	3	-0.1×10 ⁻⁴	-2	-3	4	
-1.843	2	6	0	-0.112	-5	0	1	-0.013	-4	-3	2	
-3.507	4	3	0	-0.5x10 ⁻⁴	-5	0	3	0.2x10 ⁻⁵	-4	-3	4	
-0.023	4	6	0	-0.005	0	3	2	-0.056	-6	-3	2	
0.378	6	3	0	0.1x10 ⁻⁴	0	3	4	0.3x10 ⁻⁴	-6	-3	4	
0.347	6	6	0	-0.001	0	6	2	0.304	1	-3	1	
-73.592	-2	-3	0	-0.023	2	3	2	0.3x10 ⁻⁴	1	-3	3	
6.280	-4	-3	0	0.1x10 ⁻⁵	0	6	4	-1.382	3	-3	1	
0.559	2	0	2	0.003	4	3	2	0.6x10 ⁻³	3	-3	3	

a) M=3m; N=2n or 2n+1; L=2l or 2l+1; M \geq 0 \Rightarrow $cos~3m\theta_{_1}$, M < 0 \Rightarrow $sin~3m\theta_{_1}$; N \geq 0 \Rightarrow $cos~N\theta_{_2}$; N < 0 \Rightarrow $sin~N\theta_{_2}$;

Table 9. A_{mnl} (m=0, n=0, l=0) coefficients of the kinetic energy parameters (in cm⁻¹)^a.

	A ₀₀₀ (B _{aa})	A ₀₀₀ (B _{bb})	A ₀₀₀ (B _{cc})	A ₀₀₀ (B _{ab})	A ₀₀₀ (B _{ac})	A ₀₀₀ (B _{bc})
CH ₃ CO	9.8515	-	-	-	-	-
CH₂CHO		11.9647	35.8187	-	-	0.000
CH ₃ COCH ₂	5.7225	9.9603	34.3821	-0.1792	0.000	0.000

a) $a=CH_3$ torsion; $b=CH_2$ torsion; $c=CH_2$ wagging

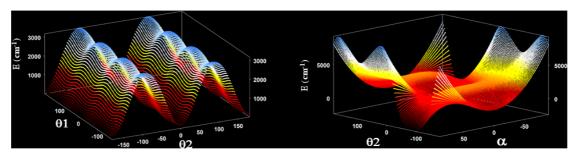


Figure 4. Two dimensional cuts of the 3D potential energy surface of CH₃COCH₂.

Table 10A. Low-lying vibrational energy levels (in cm⁻¹)^a of the CH $_3$ CO, CH $_2$ CHO and CH $_3$ COCH $_2$ radicals computed variationally or using the vibrational second order perturbation theory. Variational energy levels are classified using the m, n and l quanta corresponding to the θ_1 , θ_2 , and α coordinates according to the excitation energy. The irreducible representations are given according to the MSG G_6 , G_4 and G_{12} , respectively.

CH ₃ CO (G ₆)						CH ₂ CHO (G ₄)						
m	Va	riational	VP	Γ2	n I	Va	riational	VP	T2	Exp. [Ref]		
0	A₁ E	0.0 2.997	ZPVE	-	0 0	A ⁺ B ⁺	0.000	ZPVE	-			
1	A ₂	104.265 76.656	V ₁₂	82	1 0	A- B-	398.436	V ₁₂	402	402±4 ³³		
2	A ₁ E	132.180 185.760	2v ₁₂	169				V ₉	495			
3	A ₂	379.440 272.324	3v ₁₂	261	0 1	A- B-	745.727	V ₁₁	729	557 ³³		
4	A ₁	379.849 507.146	4v ₁₂	358	20	A ⁺ B ⁺	792.306	2v ₁₂	782			
			V ₈	464				V ₁₂ V ₉	893			
			V ₁₂ V ₈	549				V ₈	950			
5	A ₂ E	821.806 654.566	5v ₁₂	461				V ₁₀	954			
			2v ₁₂ v ₈	639				2v ₉	993			
			$3v_{12}v_{8}$	734	11	A ⁺ B ⁺	1123.980	V ₁₂ V ₁₁	1107			
6	A₁ E	821.807 1008.819	6ν ₁₂	-				V ₇	1132			
			V ₇	833	3 0	A- B-	1178.128	3v ₁₂	1140			
			V ₁₁	931				V ₁₁ V ₉	1225			
			2v ₈	929				V ₁₂ V ₈	1348			
			$V_{12}V_{7}$	915					1357			
			V ₁₂ V ₁₁	998				V ₆				
					02	A ⁺ B ⁺	1495.772	2v ₁₁	1459			

a) Emphasized in bold transitions where important Fermi displacements are predicted.

Table 10B.

CH ₃ COCH ₂ (G ₁₂)									
m n l	Variational		VPT2		m n l	Variational		VPT2	
000	A ₁ ', A ₁ " E', E"	0.000 0.320	ZPVE	-				V ₂₁ V ₁₉	579
100	A ₂ ', A ₂ " E', E"	84.176 78.053	V ₂₁	77				V ₂₁ V ₁₃	597
200	A ₁ ', A ₁ " E', E"	126.301 147.464	2v ₂₁	146				3v ₂₁ v ₁₄	622
300	A ₂ ', A ₂ " A ₁ ', A ₁ " E', E" E', E"	253.926 255.131 194.827 326.007	3v ₂₁	207				2v ₂₁ v ₁₉	651
010	A ₂ ', A ₂ " E', E"	327.653 328.917	V ₂₀	343				2v ₂₁ v ₁₃	665
			V ₁₄	385	020	A ₁ ', A ₁ " E', E"	639.762 639.650	2v ₂₀	683
110	A ₁ ', A ₁ " E', E"	414.182 407.636	$V_{21}^{}V_{20}^{}$	410	0 0 1	A ₂ ', A ₂ " E', E"	687.576 686.820	V ₁₈	732
210	A ₂ ', A ₂ " E', E"	459.559 412.652	$2v_{21}v_{20}$	468				V ₂₀ V ₁₄	726
			V ₂₁ V ₁₄	472				3v ₂₁ v ₁₉	715
400	A ₁ ', A ₁ " A ₂ ', A ₂ " E', E" E', E"	507.358 507.467 479.993 527.420	4v ₂₁	260				3v ₂₁ v ₁₃	725
310	A ₁ ', A ₁ " A ₂ ', A ₂ " E', E" E', E"	586.289 587.815 613.918 660.732	3v ₂₁ v ₂₀	519				2v ₂₀ v ₂₁	739
			V ₁₉	500					
			2v ₂₁ v ₁₄	551	002	A ₁ ', A ₁ "	1387.228	2v ₁₈	1459
			V ₁₃	521					

a) Emphasized in bold transitions where important Fermi displacements are predicted.

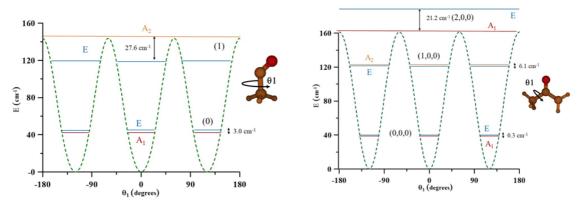


Figure 5. Methyl torsional energy levels of CH₃CO and CH₃COCH₂.

states) was very small due to the height of the torsional barrier V_2 =3838.7 cm⁻¹. For CH₂CHO, the VPT2 model seems to be valid.

In CH₃COCH₂, the A/E CH₃ torsional splitting of the ground vibrational state was computed to be 0.320 cm⁻¹. The two components of the three fundamentals v_{21} (1 0 0 \leftarrow 0 0 0), v_{20} (0 1 0 \leftarrow 0 0 0), and v_{18} (0 0 1 \leftarrow 0 0 0), were computed to be 84.176/77.733 cm⁻¹, 327.653/328.597 cm⁻¹, and 687.576/686.500 cm⁻¹, respectively.

Conclusions

All the possible acetone formation routes starting from 58 selected reactants were automatically generated by the programme STAR. This analysis resulted in 75 exergonic processes involving CH₃, CH₃CO and CH₃COCH₂ radicals of which only 14 went through one or two steps and only two of them could be considered barrierless processes. The latter are the addition process H+ CH₃COCH₂ and CH₃+CH₃CO. Both showed similar kinetic rates. The 75 exergonic processes are collected in Table 11. Figure 6 shows the profiles of the fourteen simplest exergonic reactions processes.

Table 11. Exergonic reactions with reactants (ΔG , in kcal/mol, at 10K and 0.1atm at CBS-QB3 level of theory; MNES is the maximum number of necessary elementary steps).

	Reactions	ΔG	MNES
1	$H^{\bullet} + CH_3COCH_2 \rightarrow CH_3COCH_3$	-94,9	1
2	$CH_3^{\bullet} + CH_3CO^{\bullet} \rightarrow CH_3COCH_3$	-83,4	1
3	$CH_3^{\bullet} + {^{\bullet}CH_2CHO} \rightarrow CH_3COCH_3$	-89,2	2
4	HCO• + CH ₃ COCH ₂ → CH ₃ COCH ₃ +CO	-80,6	2
5	$CH_3O^{\bullet} + CH_3COCH_2 \rightarrow CH_3COCH_3 + H_2CO$	-75,8	2
6	CH ₂ OH• + CH ₃ COCH ₂ → CH ₃ COCH ₃ +H ₂ CO	-67,3	2
7	CHOH + CH ₃ COCH ₂ → CH ₃ COCH ₃ + HCO•	-60,3	2
8	•CH ₂ CHO + CH ₃ COCH ₂ → CH ₃ COCH ₃ + CH ₂ CO	-59,1	2
9	$CH_3CO^{\bullet} + CH_3COCH_2 \rightarrow CH_3COCH_3 + CH_2CO$	-53,3	2
10	$HOCO+ + CH_3CCH_3 \rightarrow CH_3COCH_3 + HOC+$	-32,3	2
11	$HC_2CHO + CH_3CCH_3 \rightarrow CH_3COCH_3 + I-C_3H_2$	-24,0	2
12	$I-H_2C_4 + CH_3COCH_2 \rightarrow CH_3COCH_3 + C_4H^{\bullet}$	-8,9	2
13	$H_2CO+CH_3COCH_2 \rightarrow CH_3COCH_3 + HCO^{\bullet}$	-7,4	2
14	$I-C_3H_2 + CH_3COCH_2 \rightarrow CH_3COCH_3 + I-C_3H^{\bullet}$	-4,6	2
15	³ CH ₂ +CH ₃ CHO→ CH ₃ COCH ₃	-104,9	3
16	CH ₂ CO+CH ₃ CHO→ CH ₃ COCH ₃ + CO	-27,2	4
17	$CH_4 + CH_2CO \rightarrow CH_3COCH_3$	-21,1	4
18	$CH_3O^{\bullet} + CH_3CHOH \rightarrow CH_3COCH_3 + H_2O$	-101,5	4
19	$CH_2OH^{\bullet} + CH_3CHOH \rightarrow CH_3COCH_3 + H_2O$	-92,9	4
20	$CH_2OH^{\bullet} + CH_3CCH_3 \rightarrow CH_3COCH_3 + CH_3^{\bullet}$	-86,5	4
21	$CH_2CHOH + CH_3CCH_3 \rightarrow CH_3COCH_3 + C_2H_4$	-83,0	4
22	CH ₃ • + CH ₃ CHOH → CH ₃ COCH ₃ + H ₂	-75,3	4
23	$CH_3CHO + CH_3CCH_3 \rightarrow CH_3COCH_3 + C_2H_4$	-72,4	4
24	HOCO• + CH ₃ CCH ₃ → CH ₃ COCH ₃ + HCO•	-71,2	4
25	$HOCO+ + CH_3CCH_3 \rightarrow CH_3COCH_3 + HCO+$	-70,0	4
26	$HCOOH + CH_3CCH_3 \rightarrow CH_3COCH_3 + H_2CO$	-61,5	4
27	$CHOH + CH_3CCH_3 \to CH_3COCH_3 + {}^{3}CH_2$	-57,2	4
28	$CH_3COOH + CH_3CCH_3 \rightarrow CH_3COCH_3 + CH_2CHOH$	-51,1	4
29	$CH_3O^{\bullet} + CH_3CHCH_2 \rightarrow CH_3COCH_3 + CH_3^{\bullet}$	-27,4	4

	Reactions	ΔG	MNES
30	$C_{5}H^{\bullet} + CH_{3}CHOH \rightarrow CH_{3}COCH_{3} + C_{5}$	-26,5	4
31	CH ₃ OH+ CH ₃ CHO → CH ₃ COCH ₃ + H ₂ O	-21,7	4
32	$OH^{\bullet} + CH_{3}CHCH_{2} \rightarrow CH_{3}COCH_{3} + H^{\bullet}$	-14,8	4
33	CH ₃ O• + CH ₃ CHO→ CH ₃ COCH ₃ + OH•	-7,7	4
34	CH ₃ CHO + •CH ₂ CHO → CH ₃ COCH ₃ + HCO•	-5,7	4
35	$CH_3CHO + CH_3CHCH_2 \rightarrow CH_3COCH_3 + C_2H_4$	-4,7	4
36	$CH_3CHO + CH_3CHOH \rightarrow CH_3COCH_3 + CH_2OH^{\bullet}$	-2,8	4
37	$CH_3CCH + CH_3CHO \rightarrow CH_3COCH_3 + C_2H_2$	-1,8	4
38	CH• + CH₃CHOH → CH₃COCH₃	-179,6	5
39	$CH_3OH + CH_3CCH_3 \rightarrow CH_3COCH_3 + CH_4$	-94,9	5
40	HOCO [•] + CH ₃ COCH ₂ → CH ₃ COCH ₃ + CO ₂	-94,6	2
41	$^{3}\text{CH}_{2} + \text{CH}_{3}\text{CHOH} \rightarrow \text{CH}_{3}\text{COCH}_{3} + \text{H}^{\bullet}$	-80,8	5
42	$H_2O + CH_3CCH \rightarrow CH_3COCH_3$	-37,8	5
43	$I-C_3H_2 + CH_3CHOH \rightarrow CH_3COCH_3 + C_2H^{\bullet}$	-35,9	5
44	$C_4H^{\bullet} + CH_3CHOH \rightarrow CH_3COCH_3 + C_3$	-33,8	5
45	$H_2C_6 + CH_3CHOH \rightarrow CH_3COCH_3 + C5H^{\bullet}$	-32,7	5
46	$CH_2CO+CH_3COOH \rightarrow CH_3COCH_3 + CO_2$	-31,7	5
47	$C_2H_2+CH_3COOH \rightarrow CH_3COCH_3+CO$	-30,7	5
48	$CH_3OH + CH_3CHCH_2 \rightarrow CH_3COCH_3 + CH_4$	-27,3	5
49	$I-H_2C_4+CH_3COOH \rightarrow CH_3COCH_3 + C_3O$	-24,8	5
50	CH ₂ OH• + CH ₃ CHCH ₂ → CH ₃ COCH ₃ + CH ₃ •	-18,8	5
51	$CH_2CHOH + CH_3CO^{\bullet} \rightarrow CH_3COCH_3 + HCO^{\bullet}$	-10,5	5
52	$^{3}\text{CH}_{2} + \text{CH}_{3}\text{CH}_{2}\text{OH} \rightarrow \text{CH}_{3}\text{COCH}_{3} + \text{H}_{2}$	-91,4	6
53	$C_2H_4 + CHOH \rightarrow CH_3COCH_3$	-89,9	6
54	$CH^{\bullet} + CH_{3}CH_{2}OH \rightarrow CH_{3}COCH_{3} + H^{\bullet}$	-85,7	6
55 56	CHOH + $CH_3CHOH \rightarrow CH_3COCH_3 + OH^{\bullet}$ $I-H_2C_4 + CH_3CHOH \rightarrow CH_3COCH_3 + I-C_3H^{\bullet}$	-55,6 -22,6	6
57	$CH_2OHCHO + CH_3CO^{\bullet} \rightarrow CH_3COCH_3 + I-C_3H$	-17,4	6
58	$CH_2CO + CH_3CHOH \rightarrow CH_3COCH_3 + HCO^{\bullet}$	-17,4	6
59	$C_2H_4 + CH_3CHOH \rightarrow CH_3COCH_3 + CH_3$ C ₂ H ₄ + CH ₃ CHOH \rightarrow CH ₃ COCH ₃ + CH ₃ •	-16,9	6
60	$CH_2CHOH + CH_3CHCH_2 \rightarrow CH_3COCH_3 + C_2H_4$	-15,3	6
61	$I-C_3H^{\bullet} + CH_3CHOH \rightarrow CH_3COCH_3 + C_2$	-14,7	6
62	CH,CHOH + CH,CHOH → CH,COCH, + CH,OH•	-13,4	6
63	CH,OHCHO + CH,CHCH, → CH,COCH, + CH,CHOH	-10,4	6
64	CH ₃ CCH + CH ₃ COOH→ CH ₃ COCH ₃ + CH ₂ CO	-5,3	6
65	$H_2CO + CH_3CHOH \rightarrow CH_3COCH_3 + OH^{\bullet}$	-2,7	6
66	$HOCO+ + CH_3CHCH_2 \rightarrow CH_3COCH_3 + HCO^+$	-2,4	6
67	$H_2CO+C_2H_4 \rightarrow CH_3COCH_3$	-36,8	7
68	CH ₃ CH ₂ OH + CHCO → CH ₃ COCH ₃ + HCO•	-28,5	7
69	$CH_3O^{\bullet} + C_2H_4 \rightarrow CH_3COCH_3 + H^{\bullet}$	-17,7	7
70	CH ₂ CHOH + CH ₃ CHOH → CH ₃ COCH ₃ + CH ₃ O•	-4,8	7
71	$H_2O + CH_3CHCH_2 \rightarrow CH_3COCH_3 + H_2$	-1,3	7
72	$C_2H_2+CH_3OH \rightarrow CH_3COCH_3$	-57,8	8
73	CH ₂ OHCHO + CH ₃ CHCH ₂ → CH ₃ COCH ₃ + CH ₃ CHO	-21,0	8
74	$C_2H_4+CH_3OH \rightarrow CH_3COCH_3+H_2$	-18,2	8
75	$CH_2OH^{\bullet} + C_2H_4 \rightarrow CH_3COCH_3 + H^{\bullet}$	-9,2	8

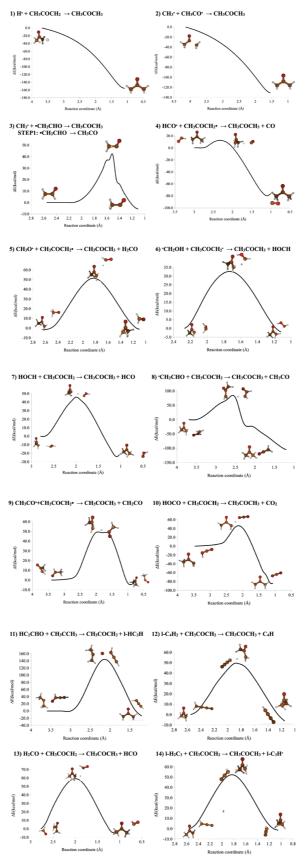


Figure 6. Minimum Energy Paths (MEP) corresponding to the formation processes of acetone computed at the M052X/6-31+G(d.p) level of theory.

The geometrical and spectroscopic properties of some radicals involved in the processes, i.e. CH₃CO, its isomer CH₂CHO, and CH₃COCH₂, were determined by combining the two procedures and various levels of electronic structure theory. The first order properties such as geometries, equilibrium rotational constants, and harmonic fundamentals were determined using RCCSD(T). Using VPT2 and three MP2 anharmonic force fields, centrifugal distortion constants and anharmonic corrections for the spectroscopic parameters were computed.

As the three radicals are nonrigid species, the far infrared region was explored using a variational procedure depending on 1, 2, and 3 independent coordinates. Potential energy surfaces were computed at the RCCSD(T) levels of theory and were vibrationally corrected using MP2. This procedure takes into consideration the interconversion of the minima and allows to determine torsional splittings. In CH₃CO, the A₁/E splitting of the ground vibrational state, was evaluated to be 2.997 cm⁻¹, as was expected given the very low torsional barrier (V₃=143.7 cm⁻¹). The methyl torsional fundamental v₁₂ (1 \leftarrow 0) computed to be 82 cm⁻¹ with VPT2, presented two components to be 104.265 cm⁻¹ (A₂ \leftarrow A₁) and 73.659 cm⁻¹ (E \leftarrow E). In CH₂CHO, the two independent fundamentals v₁₂ (10 \leftarrow 00) and v₁₁ (01 \leftarrow 00) were computed to be v₁₂ =398.436 cm⁻¹ (A² \leftarrow A², B² \leftarrow B²) and v₁₁ =745.727 cm⁻¹ (A² \leftarrow A², B² \leftarrow B²). The separation between splitting components is very small due to the height of the torsional barrier V₂=3838.7 cm⁻¹. For CH₂CHO, the VPT2 model seems to be valid. In CH₃COCH₂, the A/E CH₃ torsional splitting of the ground vibrational state was computed to be 0.320 cm⁻¹. The two components of the three fundamentals v₂₁ (1 0 0 \leftarrow 0 0 0), v₂₀ (0 1 0 \leftarrow 0 0 0), and v₁₈ (0 0 1 \leftarrow 0 0 0), were computed to be 84.176/77.733 cm⁻¹, 327.653/328.597 cm⁻¹, and 687.576/686.500 cm⁻¹, respectively.

Data availability

Underlying data

All data underlying the results are included within the manuscript and no additional data are required.

References

- Mellouki A, Wallington TJ, Chen J: Atmospheric chemistry of oxygenated volatile organic compounds: impacts on air quality and climate. Chem Rev. 2015; 115(10): 3984-4014. PubMed Abstract | Publisher Full Text
- Atkinson R, Arey J: Atmospheric degradation of volatile organic compounds. Chem Rev. 2003; 103(12): 4605–4638.
 PubMed Abstract | Publisher Full Text
- Singh HB, O'Hara D, Herlth D, et al.: Acetone in the atmosphere: distribution, sources, and sinks. JGR Atmospheres. 1994; 99(D1): 1805–1819. Publisher Full Text
- Combes F, Gerin M, Wootten A, et al.: Acetone in interstellar space. Astron Astrophys. 1987; 180: L13–L16. Reference Source
- Snyder LE, Lovas FJ, Mehringer DM, et al.: Confirmation of interstellar acetone. Astrophys J. 2002; 578(1): 245–255. Publisher Full Text
- Folkins I, Chatfield R: Impact of acetone on ozone production and OH in the upper troposphere at high NO_x. JGR-Atmospheres. 2000; 105(D9): 11585–11599. Publisher Full Text
- Caralp F, Forst W, Hénon E, et al.: Tunneling in the reaction of acetone with OH. Phys Chem Chem Phys. 2006; 8(9): 1072–1078.
 PubMed Abstract | Publisher Full Text
- Fuente A, Cernicharo J, Caselli P, et al.: The hot core towards the intermediate-mass protostar NGC 7129 FIRS 2. Astron Astrophys. 2014; 568(A&A): A65–A94. Publisher Full Text
- Lykke JM, Coutens A, Jørgensen JK, et al.: The ALMA-PILS survey: First detections of ethylene oxide, acetone and propanal toward the low-mass protostar IRAS 16293-2422. Astron Astrophys. 2017; 597(A&A): 53–88.
 Publisher Full Text
- Skouteris D, Balucani N, Ceccarelli C, et al.: The Genealogical Tree of Ethanol: Gas-phase Formation of Glycolaldehyde, Acetic Acid, and Formic Acid. Astrophys J. 2018; 854(2): 135–144. Publisher Full Text
- Gámez V, Senent ML: The formation of C₃O₃H₆ structural isomers in the gas phase through barrierless pathways.

- Formation and spectroscopic characterization of methoxy acetic acid. *Astrophys J.* 2021; **913**: 21–37. Publisher Full Text
- Senent ML, Moule DC, Smeyers YG, et al.: A Theoretical Spectroscopic Study of the ĀʿA_n(S_n) ← X˙A_g(S_o), n → π˙ Transition in Biacetyl, (CH₃CO)₂. J Mol Spectrosc. 1994; 164: 66–78. Publisher Full Text
- Senent ML, Dalbouha S: Large amplitude motions of pyruvic acid (CH₃-CO-COOH). Molecules, "Terahertz spectroscopy and dynamics of low-frequency modes involving large amplitude molecular motions. *Molecules*. MDPI, 2021; 26(14): 4269–4282. PubMed Abstract | Publisher Full Text | Free Full Text
- Hirota E, Mizoguchi A, Ohshima Y, et al.: Interplay of methylgroup internal rotation and fine and hyperfine interaction in a free radical: Fourier transform microwave spectroscopy of the acetyl radical. Mol Phys. 2007; 105(5-7): 455-466. Publisher Full Text
- Endo Y, Nakajima M: Fourier-transform microwave spectroscopy of the vinoxy radical, CH₂CHO. J Mol Spectrosc. 2014; 301: 15–19.
 Publisher Full Text
- Hansen N, Mäder H, Temps F: Rotational transitions of the CH₂CHO radical detected by pulsed laser photolysis-molecular beam-Fourier-transform microwave spectroscopy. J Mol Spectrosc. 2001; 209(2): 278–279. Publisher Full Text
- Jacox ME: The reaction of F atoms with acetaldehyde and ethylene oxide. Vibrational spectra of the CH₃CO and CH₂CHO free radicals trapped in solid argon. J Chem Phys. 1982; 69(3): 407-422.
 Publisher Full Text
- Shirk JS, Pimentel GC: Potential functions and the bonding in the XCO free radicals. J Am Chem Soc. 1968; 90(13): 3349–3351.
 Publisher Full Text
- Lin MY, Huang TP, Wu PZ, et al.: Infrared spectra of the 1-methylvinoxide radical and anion isolated in solid argon. J Phys Chem A. 2019; 123(22): 4750–4754. PubMed Abstract | Publisher Full Text
- 20. Das P, Lee YP: Bimolecular reaction of CH₃ + CO in solid p-H₂:

- infrared absorption of acetyl radical (CH₃CO) and CH₃-CO complex. *J Chem Phys.* 2014; **140**(24): 244303.
 PubMed Abstract | Publisher Full Text
- Utkin YG, Han JX, Sun F, et al.: High-resolution jet-cooled and room temperature infrared spectra of the v₃ CH stretch of vinoxy radical. J Chem Phys. 2003; 118(23): 10470–10476. Publisher Full Text
- Inoue G, Akimoto H: Laser-induced fluorescence of the C₂H₃O radical. J Chem Phys. 1981; 74(1): 425–433.
 Publisher Full Text
- DiMauro LF, Heaven M, Miller TA: Laser induced fluorescence study of the B²A" → X ²A" transition of the vinoxy radical in a supersonic free jet expansion. J Chem Phys. 1984; 81(5): 2339–2346.
 Publisher Full Text
- 24. Wan R, Chen X, Wu F, et al.: Observation of new vibronic transitions in the B² A"-X² A" manifold of the CH₂CHO radical. J Chem Phys Lett. 1996; 260(5-6): 539-544. Publisher Full Text
- Brock LR, Rohlfing EA: Spectroscopic studies of the B ²A" -X ²A" system of the jet-cooled vinoxy radical. J Chem Phys. 1997; 106(24): 10048–10065.
 Publisher Full Text
- Yacovitch TI, Garand E, Neumark DM: Slow photoelectron velocity-map imaging spectroscopy of the vinoxide anion. J Chem Phys. 2009; 130(24): 244309.
 PubMed Abstract | Publisher Full Text
- Mead RD, Lykke KR, Lineberger WC: Spectroscopy and dynamics of the dipole-bound state of acetaldehyde enolate. J Chem Phys. 1984; 81(11): 4883–4892.
 Publisher Full Text
- Yacovitch TI, Garand E, Neumark DM: Slow photoelectron velocity-map imaging of the i-methylvinoxide anion. J Phys Chem A. 2010; 114(42): 11091–11099.
 PubMed Abstract | Publisher Full Text
- Rajakumar B, Flad JE, Gierdzak T, et al.: Visible absorption spectrum of the CH₃CO radical. J Phys Chem A. 2007; 111(37): 8950–8958.
 - PubMed Abstract | Publisher Full Text
- Adachi H, Basco N, James DGL: The acetyl radical studied by flash photolysis and kinetic spectroscopy. J Chem Phys Lett. 1978; 59(3): 502–505.
 Publisher Full Text
- Maricq MM, Szente JJ: The UV spectrum of acetyl and the kinetics of the chain reaction between acetldehyde and chlorine. J Chem Phys Lett. 1996; 253(3-4): 333-339. Publisher Full Text
- Cameron M, Sivkumaran V, Dillon TJ, et al.: Reaction between
 OH and CH₃CHO. Phys Chem Chem Phys. 2002; 4(15): 3628–3638.

 Publisher Full Text
- Hunziker HE, Kneppe H, Wendt HR: Photochemical modulation spectroscopy of oxygen atom reactions with olefins. J Photochem. 1981; 17(2): 377–387. Publisher Full Text
- Alconcel LS, Deyerl HJ, Zengin V, et al.: Structure and energetics of vinoxide and the X(²A'¹) and A(²A¹) vinoxy radicals. J Phys Chem A. 1999; 103(46): 9190–9194.
 Publisher Full Text
- Osborn DL, Choi H, Mordaunt DH, et al.: Fast beam photodissociation spectroscopy and dynamics of the vinoxy radical. J Chem Phys. 1997; 106(8): 3049–3066.
 Publisher Full Text
- Nagai H, Carter RT, Huber JR: Spectroscopy and dynamics of selected rotational levels in the B² A" state of the vinoxy radical. J Chem Phys Lett. 2000; 331(5–6): 425–432. Publisher Full Text
- Williams S, Zingher E, Weisshaar JC: B ← X Vibronic Spectra and B-State Fluorescence Lifetimes of Methylvinoxy Isomers. J Phys Chem A. 1998; 102(13): 2297–2301.
 Publisher Full Text
- Williams S, Harding LB, Stanton JF, et al.: Barrier to methyl internal rotation of 1-methylvinoxy radical in the X(²A") and B(²A") states: experiment and theory. J Phys Chem. 2000; 104: 10131–10138.
- Mao W, Li Q, Kong F, et al.: Ab initio calculations of the electronic states of acetyl radical. J Chem Phys Lett. 1998; 283(1): 114–118.
 Publisher Full Text
- Yamaguchi M, Inomata S, Washida N: Multireference configuration interaction calculation of the B²A".X²A" transition of halogen- and methyl-substituted vinoxy radicals. J Phys Chem A. 2006; 110(45): 12419–12426.
 PubMed Abstract | Publisher Full Text

- Bennett DI, Butler LJ, Werner HJ: Comparing electronic structure predictions for the ground state dissociation of vinoxy radicals. J Chem Phys. 2007; 127(9): 094309.
 PubMed Abstract | Publisher Full Text
- Dalbouha S, Mogren Al-Mogren M, Senent ML: Rotational and torsional properties of various monosubstituted isotopologues of acetone (CH₃-CO-CH₃) from explicitly correlated ab initio methods. ACS Earth & Space Chem. 2021; 5(4): 890-899.
 Publisher Full Text
- Yazidi O, Senent ML, Gámez V, et al.: Ab initio spectroscopic characterization of the radical CH₃OCH₂ at low temperatures. J Chem Phys. 2019; 150(19): 194102. PubMed Abstract | Publisher Full Text
- Gámez V, Galano A, Patiño-Leyva O, et al.: Searching tool for astrochemical reactions. STAR v.1. Reference Source
- Zhao Y, Schultz NE, Truhlar DG: Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. J Chem Theory Comput. 2006; 2(2): 364–82.
 Publisher Full Text
- Krishnan R, Binkley JS, Seeger R, et al.: Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys. 1980; 72(1): 650–54.
 Publisher Full Text
- Frisch MJ, Trucks GW, Schlegel HB, et al.: Gaussian 16, Revision C.01. Gaussian, Inc., Wallingford CT, 2016. Reference Source
- Montgomery JA, Frisch MJ, Ochterski JW, et al.: A complete basis set model chemistry. VI. Use of density functional geometries and frequencies. J Chem Phys. 1999; 110(6): 2822–2827.
 Publisher Full Text
- Polyrate-version 2017-C, Zheng J, Bao JL, et al.: University of Minnesota: Minneapolis, 2017.
 Reference Source
- Knizia G, Adler TB, Werner HJ: Simplified CCSD(T)-F12 methods: theory and benchmarks. J Chem Phys. 2009; 130(5): 054104.
 PubMed Abstract | Publisher Full Text
- Werner HJ, Adler TB, Manby FR: General orbital invariant MP2-F12 theory. J Chem Phys. 2007; 126(16): 164102.
 PubMed Abstract | Publisher Full Text
- Werner HJ, Knowles PJ, Manby FR, et al.: MOLPRO. version 2012.1, a package of ab initio programs.
 Reference Source
- Kendall RA, Dunning TH, Harrison RJ: Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J Chem Phys. 1992; 96(9): 6796–6806. Publisher Full Text
- Knowles PJ, Hampel C, Werner HJ: Coupled cluster theory for high spin, open shell reference wave functions. J Chem Phys. 1993; 99(7): 5219.
 Publisher Full Text
- Woon DE, Dunning Jr TH: Gaussian basis sets for use in correlated molecular calculations. V. Core-valence basis sets for boron through neon. J Chem Phys. 1995; 103(11): 4572–4585.
 Publisher Full Text
- Barone V: Anharmonic vibrational properties by a fully automated second-order perturbative approach. J Chem Phys. 2005; 122(1): 14108.
 PubMed Abstract | Publisher Full Text
- Senent ML: Ab initio determination of the torsional spectra of acetic acid. Mol Phys. 2001; 99(15): 1311–1321.
 Publisher Full Text
- Senent ML: Determination of the kinetic energy parameters of non-rigid molecules. J Chem Phys Lett. 1998; 296(3-4): 299-306.
 Publisher Full Text
- Senent ML: Ab initio determination of the roto-torsional energy levels of trans-1,3-butadiene. J Mol Spectrosc. 1998; 191(2): 265–275.
 PubMed Abstract | Publisher Full Text
- Werner HJ, Knowles PJ: An efficient internally contracted multiconfiguration-reference configuration interaction method. J Chem Phys. 1998; 89(9): 5803–5814. Publisher Full Text
- Knowles PJ, Werner HJ: An efficient method for the evaluation of coupling coefficients in configuration interaction calculations. Chem Phys Lett. 1988; 145(6): 514–522. Publisher Full Text
- Nyden MR, Petersson GA: Complete basis set correlation energies. I. The asymptotic convergence of pair natural

- orbital expansions. J Chem Phys. 1981; **75**(4): 1843–1862. Publisher Full Text
- Georgievskii Y, Klippenstein SJ: Variable reaction coordinate transition state theory: Analytic results and application to the C₂H₃+H→C₂H₄ reaction. J Chem Phys. 2003; 118(12): 5442–5455. Publisher Full Text
- Löhle A, Kästner J: Calculation of reaction rate constants in the canonical and microcanonical ensemble. J Chem Theory Comput. 2018; 14(11): 5489–5498.
 - PubMed Abstract | Publisher Full Text
- Georgievskii Y, Klippenstein SJ: Long-range transition state theory. J Chem Phys. 2005; 122(19): 194103.
 PubMed Abstract | Publisher Full Text
- 66. Boussesi R, Senent ML, Jaïdane N: Weak intramolecular interaction effects on the torsional spectra of ethylene glycol,

- an astrophysical species. *J Chem Phys.* 2016; **144**(16): 164110. PubMed Abstract | Publisher Full Text
- Motiyenko RA, Margulès L, Senent ML, et al.: Internal rotation of OH group in 4-hydroxy-2-butynenitrile studied by millimeterwave spectroscopy. J Phys Chem A. 2018; 122(12): 3163–3169.
 PubMed Abstract | Publisher Full Text
- Dalbouha S, Senent ML, Komiha N, et al.: Structural and spectroscopic characterization of Methyl Isocyanate, Methyl Cyanate, Methyl Fulminate, and Acetonitrile N-oxide using highly correlated ab initio methods. J Chem Phys. 2016; 145(12): 124309.
 - PubMed Abstract | Publisher Full Text
- 69. Bunker R, Jensen P: **Molecular Symmetry and Spectroscopy.** NRC Research Press, Ottawa, 1989. **Reference Source**