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Extracellular vesicles derived from gut microbiota in inflammatory bowel 
disease and colorectal cancer
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The human gut microbiome encompasses inter alia, the myriad bacterial species that create the optimal host-micro-
organism balance essential for normal metabolic and immune function. Various lines of evidence suggest that dys-
regulation of the microbiota-host interaction is linked to pathologies such as inflammatory bowel disease (IBD) and 
colorectal cancer (CRC). Extracellular vesicles (EVs), found in virtually all body fluids and produced by both eukaryotic 
cells and bacteria are involved in cell-cell communication and crosstalk mechanisms, such as the immune response, 
barrier function and intestinal flora. This review highlights advancements in knowledge of the functional role that 
EVs may have in IBD and CRC, and discusses the possible use of EVs derived from intestinal microbiota in therapeutic 
strategies for treating these conditions.
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INTRODUCTION

In the last few years, the intestinal microbiota has 
become a focus of prolific research for its pivotal role 
in human health and disease. It is understood that our 
gut hosts more than 1000 bacterial species, defined as 
our hidden metabolic “organ” for its immense impact 
on human wellbeing. The gut microbiota consists of a 
multispecies microbial community composed of bacteria, 
viruses, yeast, fungi, and others capable of establishing 
symbiosis with the host organism1,2. In particular, about 
90% of the total microbiome of the mammalian gut is 
represented by two main commensal bacteria groups: 
Firmicutes (gram-positive bacteria) and Bacteroidetes 
(gram-negative bacteria) (ref.3). The microbial commu-
nity has been shown to be implicated in several processes 
ranging from energy harvest and storage4, to normal in-
testinal development through several mechanism, among 
which the processes that lead to the formation of short 
chain fatty acids (SCFA), such as butyrate involved in 
intestinal homeostasis 5. Furthermore, some commensal 
bacteria (e.g. Bacteroides fragilis) participate at the syn-
thesis of vitamins, such as B vitamins, with an important 
role in the maintenance of immune homeostasis6. It has 
been demonstrated that commensal bacteria shape oth 
innate and adaptive immunity7. In particular, the host-

commensal microbiota communication is triggered from 
soluble mediators and extracellular vesicles (EVs) that 
can diffuse through the mucin layer, influencing the mat-
uration and development of the digestive and immune 
system8,9. From a physical point of view, this is guaran-
teed by the separation of commensal bacteria from the 
epithelial layer by of a highly compact mucus layer which 
prevents the entry of bacteria10. A mechanism that favors 
the host-commensal bacteria interaction involves EVs 
derived from bacteria that carry molecules with signal-
ing properties, in combination with other mechanisms. 
The EVs released by commensal bacteria can be taken 
up by eukaryotic host cells modulating changes, as well 
as alteration of the gene expression11. For example, EVs 
derived from B. fragilis are enriched in immunomodula-
tory molecules (i.g. capsular lipolysaccharide A, PSA) 
which induces protection against colitis by an autoph-
agy pathway that involves genes associated with IBD, 
Nucleotide Binding Oligomerization Domain Containing 
2 (NOD2) and Autophagy related 16 like 1 (ATG16L1) 
(ref.12). Likewise, bacterial EVs when absorbed by macro-
phages can induce a massive release of pro-inflammatory 
cytokines, such as Tumor Necrosis Factor alpha (TNF-α) 
and interleukin -6 (IL-6). By contrast, EVs released from 
the bacterium Campylobacter jejuni possess cytotoxic 
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activity able to induce an immune response in the host13, 
and EVs-derived from Bacteroides thetaiotaomicron have 
the ability to cross the intestinal mucosal barrier reaching 
the intestinal cells and initiating a localized inflammation 
process14. Despite the important functions of bacterial 
EVs, to date, the mechanism of biognesis remains poorly 
known vis a vis that of eukaryotic cells. Consequently, 
it is plausible to think of an involvement of EVs derived 
from intestinal microbiota in the systemic inflammatory 
responses with an important role in the development of 
colorectal cancer (CRC). Here, we review the different 
mechanisms of inter-cellular communication between bac-
terial and host cells in CRC and their potential effect on 
inflammatory bowel disease (IBD) (ref.15-19).

EXTRACELLULAR VESICLES DERIVED FROM 
GUT BACTERIAL

Currently, the ubiquity of EVs in all the kingdoms of 
life, iks well-known, underlining their high evolutionary 
importance20. All gram-negative and some gram-positive 
bacteria constitutively generate EVs from the outer mem-
brane and accordingly, namely outer membrane vesicles 
(OMVs) (Ref. 20,21). Briefly, OMVs are characterized by an 
external lipopolysaccharide sheet and an internal phos-
pholipid sheet, enriched in membrane and surface pro-
teins given their origin. Unlike mammalian EVs, OMVs 
are particularly enriched in cell wall components, pepti-
doglycans, lipopolysaccharides (LPS), phospholipids, as 
well as soluble proteins, and others22. Although OMVs are 
passively produced under natural conditions, they may be 
released in greater numbers in response to stress, either 
via explosive cell lysis or actively23. However, the exact 
mechanism that results in outer membrane budding re-
mains unknown making it challenging to unravel the basic 
mechanisms of vesicle transport. In consideration of  this, 
several models for OMV biogenesis are currently being 
discussed, as well as autolysin24, DNA fragments25,26, bio-
film formation27,28, toxin delivery29, antibiotic resistance30, 
and the transfer of nucleic acids31-33. Generally, they have 
ranges from less than 100 nm to a few hundred nanome-
ters, and are considered to be distinct communication sys-
tem between cells and cooperation including multicellular 
development, quorum sensing, and virulence factors34-36. 
Also, OMVs surrounding bacteria can protect from viral 
attack for example by absorbing viruses37, or to excrete 
misfolded proteins following to stress response38. In ad-
dition to this knowledge, it should be added that, OMVs 
have the immunogenic capacity to carry a wide spectrum 
of endogenous antigens, and the natural self-adjuvanticity 
exerted by toll-like receptor (TLR) agonists, such as LPS 
(ref.39). Considering this, we will briefly discuss the pro-
cess of Gram negative and Gram positive EVs biogenesis.

Gram-negative bacteria
The first identified of the presence of OMVs in gram-

negative bacteria dates back to 1960s by observing bac-
terial structure by electron microscopy40. Gram-negative 
bacteria have two main pathways for vesicle biogenesis. 

Brefly, the first pathway of formation involves the bleb-
bing of the outer membrane of the bacterial envelope 
with generation the OMV, while the second involves 
the explosive cell lysis with formation of vesicles of the 
outer-inner membrane (OIMV) and explosive vesicles of 
the outer membrane (EOMV) (ref.41). EVs produced by 
Gram-negative bacteria secreted EVs with sizes ranging 
from 10 to 400 nm by breaking the connection directly in 
specific areas42-43. This process can lead to the incorpora-
tion of peptidoglycan and fragment of OM-peptidoglycan 
bridging proteins in the OMV44, since they have a cell wall 
consisting of a thin layer of peptidoglycan in the periplas-
mic space between two double layers of membrane, the 
inner (or cytoplasmic) membrane and the outer one41.
The outer membrane contains LPS and many membrane-
bound proteins and channels, such as porins, that inter-
vene in the non-vesicle mediated transport41.Given this 
architecture, the outer membrane of Gram-negative is 
known to engage Toll-like receptor 4 (TLR4)(Ref.45). Gram-
negative EVs carry bacterial components including pro-
teins, peptiglycan, LPS, O-antigen, nucleic acid, enzymes 
and other moleculs44-49, and probably the different bio-
genesis route is responsible of a different composition. 
Gram-negative EVs are involved in intra-and-intercellular 
communication and mediating a plethora of biological 
processes. Accordingly, they can also deliver their cargoes 
(e.g toxins and virulence factor) to prokaryotic kingdoms 
and eukaryotic cells regulating many processes including 
host-pathogen interaction, regulation of the host immune 
response, and others50,51. Of note, intraluminal DNA from 
gram-negative EVs has been observed to be enriched in 
specific regions of the bacterial chromosome and to be 
involved in virulence, stress response, antibiotic resistance 
and metabolism52.

Gram-positive bacteria
In the 1990s, it was discovered that Gram-positive 

bacteria (Bacillus subtilis and Bacillus cereus) were also 
able to release membrane vesicles53. Unlike gram-negative 
bacteria, gram-positive bacteria lack an outer membrane 
and present a thick peptidoglycan layer composing their 
cell walls41. To date, the specific mechanisms behind the 
release of EVs in Gram-positive bacteria are not fully un-
derstood, but support for the hypothesis that describes the 
origin of the EVs from the cytoplasmic membrane named 
as cytoplasmic membrane vesicles (CMVs) (ref.41,54). 
Consequently, EVs-secreted from Gram-positive bacte-
ria do not show the characteristic toxicity of the LPS, 
the main component of the bilayered lipids of OMVs, 
but are particularly enriched in lipoteichoic acid (LTA) 
that might engage the Toll-like receptor 2 (TLR2) (ref.55). 
This difference in composition makes it possible to distin-
guish EVs from gram positive bacteria56,57. EVs secreted 
by gram-positive bacteria intervene in the pathogen-host 
interaction and in the regulation of inflammatory pro-
cesses by their molecules cargo58. For example, it has been 
demonstrated that the pneumococcal surface protein A 
(PspA), expressed by all strains of Streptococcus pneu-
moniae, when introducted into a gram-negative Salmonella 
enterica strain and, in turn, released into EVs, is capable 
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of conferring immunity to mice treated with the latter 59. 
For their safety features and others, EVs released from 
gram-positive bacteria are currently under investigation 
as an antigen adjuvant for vaccine candidate60. 

POTENTIAL OF BACTERIAL EVS IN IBD AND CRC

EVs play an important role in carcinogenesis, particu-
larly in cancer progression and growth. They interacting 
with a variety of cells within the tumour microenviron-
ment favoring cell proliferation, angiogenesis (e.g. thourgh 
the induction of vascular endothelial growth factor 
(VEGF) expression and the autocrine activation of its 
receptor), promoting metastases, and transmitting chemo-
resistence abilities to nearby cells. Also, EVs might play a 
role in the induction of immune tolerance in cancer cells, 
for example, by modulating the activity of T cells61,62. EVs 
have been studied in many pathological and non- patho-
logical conditions, including CRC and IBD. IBD forms 
a group that encompasses chronic autoimmune diseases 
that affect the gastrointestinal tract. They are emerging as 
an inflammatory component coupled with immune dys-
regulation responsible for the damages to the gastrointes-
tinal tract63. Regardless of source of the EVs, they can be 
released by immune cells (i.e. macrpghages, monocytes 
and dendritic cells), intestinal epithelial cells (IECs), stem 
cells, tumor cells, and others. Besides, EVs from some 
nutritional sources have attracted interest due to the fact 
that they are ingested daily and therefore are generally 
considered safe. For example, breast milk contains a di-
versity of biologically active components like EVs that, 
together with the microbiota, assist in mucosal tissue, 
immune system and microbiome development and main-
tenance64. This highlights that EVs do not just regulate 
gut microbiome communities, but actively participate in 
the disharmony between bacteria and their hosts. Here 
the focus on associations that are the focus of greatest 
attention, that is, the possibility of a link between the gut 
microbiota and a chronic gastrointestinal disease, i.e IBD, 
as well as the onset of CRC (Table1). 

IBD

IBD is the consequence of a dysregulated mucosal 
immune system and has been extensively studied. IBD 
patients have a higher concentration of EVs than the 

healthy subject, thus representing potential biomarkers. 
The expression of such biomarkers within the serum and 
tissues of IBD patients would indicate the onset of a mo-
lecular and genetic imbalance originating probably from 
pro-inflammatory conditions. EVs contain molecules 
from their parental cells, including proteins, lipids, and 
miRNAs, through which they can intervene in different 
processes, including promoting pro-inflammatory condi-
tions71. EVs derived by intestinal luminal aspirate from 
IBD subjects contain markedly higher mRNA and protein 
levels of IL-6, interleukin – 8 (IL-8), and TNF-α than 
those of healthy controls. In detail, EVs are absorbed by 
colonic epithelial cells, resulting in an increase in the level 
of IL-8 expression and subsequent induction of macro-
phage migration by epithelial cells72. IECs are among the 
first to perceive luminal stimuli related to the entry of 
food, pathogens and more capable of triggering the en-
counter with IBD. It has been reported that EVs released 
from IECs play important roles in immune tolerance, 
and can function critically in immune responses in the 
pathogenesis of IBD73. EVs secreted by the IECs interact 
preferentially with dendritic cells (DCs), thus intervening 
in the presentation of exogenous antigens through their 
major histocompatibility complex of class II (MHC-II) 
(ref.73). In this manner, these EVs link local immune cells 
and luminal antigens in a powerful way through medi-
ated transfer of luminal antigenic information and to fa-
cilitate immune surveillance on mucosal surfaces73. EVs 
released by IECs are able to limit expansion of CD4+ T 
cells, and of T helper 1 (Th1) and T helper 2 (Th2). In 
turn, IECs intervene in the interaction between gut mi-
crobiome and immune cells74. EVs luminal play important 
role in the IECs-microbiome-immune system interaction 
to maintain mucosal homeostasis74. Other studies have 
demonstrated that the involvement of EVs in the activa-
tion of macrophages having a key role in the pathogenesis 
of IBD, because they are involved in the maintenance 
of homeostasis and regulation of the intestine75. In the 
IBD microenvironment, EVs inducing Treg, regulatory 
DCs and M2 phenotype macrophages, resulting in im-
munosuppressive action on the host immune system. 
Major histocompatibility complex of class I (MHC-I) 
on the surface of EVs can mediate apoptosis of CD8+T 
cells through regulating the activity of natural killer cells 
and DCs mediating inflammation tolerance76. Besides, in 
the pathogenesis of IBD, have been investigated he heat 
shock protein (Hsp), as Hsp70 particularly enriched in 
EVs (ref.77). Exosomal HSP70 interact with gram-negative 

Table 1. Correlation between gut microbiota diversity and pathological condition.

Pathological condition Increase of some microbes in rela-
tion to the disease

Decrease of some microbes in relation to 
the disease

Ref.

IBD (incl. CD and UC) Gamma–proteobacteria, 
Enterobacteraceae,
Escherichia coli, 
Clostridium spp.

Firmicutes
Bacteroidetes
Lachnospiracheae
Clostridium leptum
Coccoides group

65-67

CRC Fusobacterium spp.
E. coli 

Not dectable 68-70
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bacteria receptors, i.e. TLR4 and gram-positive bacteria 
receptors (TLR2), to stimulate proinflammatory respons-
es and, also, exosomal heat shock protein 72 (HSP72) in 
the functions of IECs (ref.78). The upregulation of heat 
shock protein 60 (Hsp60) in cells typical of inflamma-
tion of the lamina propria (eg CD68 cells), following al-
terations in the homeostasis of the MuMi layer, suggests 
that this chaperonin may be involved in the activation 
of the immune system and therefore in evolution of the 
inflammatory process79. Accordingly, EVs might play a 
pro-inflammatory role during active IBD, by inducing, 
maintaining and regulating the required functions of in-
testinal tissues. These modulatory properties exhibited by 
EVs make them ideal candidates for the treatment and 
prevention of IBD relapses79. Currently, hyperactivation 
of pro-inflammatory pathways is blocked i.e by inhibition 
of tumor necrosis factor TNF-α, gut-homing α4β7 integ-
rin, interleukin 12 (IL-12) (ref.80), given their capacity to 
induce serious negative effects, including infections and 
malignancies81. EVs-derived from enteropathogenic bac-
teria induce the secretion of intestinal mucosa-derived 
EVs carrying an elevated level of C-C motif chemokine 
20 (CCL20) and prostaglandin E2 (PGE2) causing in-
flammation82. Oxidative antimicrobial activity induces an 
increase in proteins in EVs at the interface between the 
intestinal mucosa and the intestinal lumen in IBD patients 
compared to control subjects83. Intestinal microbiota plays 
a major role in the development of IBD (ref.84). In Figure 
1, we show the involvement of gut microbiota in maintain-
ing intestinal homeostasis following activation of inflam-
matory pathways underlies IBD pathogenesis85.

Fig. 1. Schematic illustration of involvement of gut 
microbiota in maintaining intestinal homeostasis follow-
ing to activation of inflammatory pathways underlies 

IBD pathogenesis. Both macrophages and DCs actively 
promote the transition from inflammation to the return 
to homeostasis after immune system activation, by in-
ternalizing EVs which mediates an immunomodulatory 
response through Toll-like receptors (TLR2 and TLR4) 
signaling. Once activated, the DCs promote the release of 
anti-inflammatory cytokines, such as IL-4, IL-10, and IL-
22, and down regulating of pro-inflammatory cytokines. 
Also, EVs interacting with intestinal epithelial cells fa-
voring the expression of tight junction proteins and, in 
turn, modulating cytokine secretion, with consequent 
reinforcementof the intestinal barrier. Both mechanisms 
contribute, modulation of the immune response and im-
provement of the gut barrier85.

Microbial dysbiosis is an important contributing factor 
to oncogenesis and tumor progression including colorec-
tal cancer, which may also adversely affect treatment re-
sponse to chemotherapy and immunotherapy86.

CRC

Colorectal cancer (CRC) is one of the most common 
malignant tumors, ranking in the top 3 causes of cancer-
related death worldwide. High-throughput microbiome 
sequencing has shown that patients with CRC have re-
duced bacterial diversity and richness compared with 
those of healthy individuals87. However, conflicting re-
sults make the precise community dynamics between the 
gut microbiota and CRC unclear. It has been shown that 
one of the most consistent bacterial groups associated 
with CRC carcinogenesis is Bacteroides spp., in particular 
Bacteroides fragilis implicated in an increase in inflam-
mation88,89. Furthermore, the intestinal microbiota CRC 

Fig. 1. Gut microbiota and intestinal homeostasis in pathogenesis of IBD.
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is characterized by a lower presence of lactic bacteria, 
a greater presence of Fusobacterium and altered levels 
of Bacteroides/Prevotella90. Jung and coworkers demon-
strated the correlation between microbial changes and 
metabolic alterations within EV samples from patients 
with CRC. There was a strong association between the 
abundance of gut flora (Firmicutes and Proteobacteria) 
and relevant candidate metabolites (predominantly amino 
acids) (ref.90). This suggests that altered composition of 
macronutrient-fermenting and degrading bacteria in CRC 
might result in the accumulation of amino acids and the 
depletion of energy sources. Moreover, our findings indi-
cate that EVs secreted by gut microbes carry a dynamic 
range of metabolic information reflecting the host’s nu-
tritional state, metabolism, and immune responses in the 
presence of disease91. The mechanism by which bacteria 
affect carcinogenesis and tumor progression are different, 
for example they could act as tumor promoting entities 
by invoking tolerogenic immune reprogramming of the 
micro environment (TME). It has been proposed that EVs 
secreted by the gut microbiota could drive suppressive 
cellular differentiation in a TLR-dependent manner, to 
indirectly elicit T-lymphocyte anergy92. Also, it has been 
observed that EVs infected by toxins can be released by 
some intestinal bacteria promoting the development of 
CRC by exacerbating an inflammatory condition. For ex-
ample, fragilisin toxin secreted into EVs by Bacteriodes 
fragilis is able to promote tumor growth of the colon medi-
ating both splitting of E-cadherin86 and production of IL-8 
(ref.79). CRC patients have an increase in Bacteroidetes 
which can control inflammation by regulating the differ-
entiation of Tregs. Capsular polysaccharide A released 
by B. fragilis has immunoregulatory properties by which 
it mediates the conversion of CD4 + T cells to Foxp3 
+ Treg via TLR2-mediated signaling. These cells have a 
greater suppressive capacity through increased production 
of the anti-inflammatory cytokine interleukine 10 (IL-10) 
(ref.93). Popēna et all have reported that primary CRC-
derived EVs modulate the immunophenotype and secreto-
ry profile of monocytes and inactive macrophages towards 
M1 type of response whereas metastatic CRC-derived EVs 
induce a mixed M1 and M2 cytokine response in inactive 
macrophages in the THP-1 monocyte differentiation mod-
el. Furthermore, although CRC EVs decrease HLA-DR 
expression in M1 and M2 polarized macrophages, their 
effect on the secretory profile of these cells is negligible94.
Together these studies provide evidence to support the 
notion that there may be two-way IV-mediated communi-
cation between bacteria and human host cells. However, 
to date, there is no mechanistic study investigating how 
bacterial EVs can impact oncogenesis and tumor progres-
sion, and their role is likely to be context-dependent.

CONCLUSION

Various lines of evidence suggest that dysregulation of 
microbiota-host interaction is linked to various patholo-
gies, such as IBD and CRC. An ever-growing number of 
studies have highlighted the key role of EVs as a source 

of diagnostic and prognostic markers or as promising 
pharmaceutical vehicles. Scientific interest in EVs has 
been stimulated due to their key role in cell-cell and cell-
organism communication. Many studies have shown that 
circulating EVs increase in patients with gastrointestinal 
tumors, compared to patients with inflammatory gastroin-
testinal diseases such as IBD95-97. Nevertheless, it is likely 
that the amount of circulating EVs is high in the active 
phase of inflammatory diseases in comparison to healthy 
people98.A higher number of EVs was found in IBD pa-
tients in remission than in healthy donors supporting the 
inflammatory cell recruitment hypothesis99. Recently, one 
study has reported that intestinal luminal fluid is enriched 
in proinflammatory EVs of various origins (e.g secreted 
by cells that structure the intestinal wall or vesicles of 
the bacterial outer membrane) carrying markers IL8, 
IL6, IL10 and TNF (ref.100,101). Apropos CRC, a num-
ber of publications describe the microRNA profile in 
supernatants of epithelial cell line biomarker cultures as 
good biomarker candidates for CRC102. However, there 
is always a tendency to consider the functions of EVs 
on inflammatory gastrointestinal diseases and gastroin-
testinal tumors from the point where EVs originate only 
from eukaryotic cells, neglecting EVs originating from 
the human microbiota. This suggests a possible therapeu-
tic role of AmEV in the treatment of chronic intestinal 
inflammation. Consequently, the administration of EVs 
derived from specific bacterial strains can modulate the 
immune signaling pathways and other related processes. 
Finally, the use of EVs could allow the construction of a 
network of ecological units organized within the intestinal 
microbiota capable of bringing about improvements in a 
number of pathological conditions.

Search strategy and selection criteria
Our aim was to offer an overview of EVs with particu-

lar attention to their possible therapeutic role. Expanding 
therapeutic perspectives towards IBD and CRC could 
guarantee better patient outcomes in terms of disease 
remission and life expectancy. Scientific articles were 
searched using the PubMed adatabases. All searches were 
up to date as of 2020. The search terms used included 
“extracellular vesicles”, “gut microbiota”, “inflammatory 
bowel disease”, “colorectal cancer”.
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