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Abstract

The catalytic oxidation of benzyl alcohol with O2 is a promising option for the

production of benzaldehyde, from both environmental and economical view-

points. In particular, highly dispersed MnOx systems feature good activity and

selectivity in a wide range of temperatures, although deactivation phenomena

by over-oxidation and/or poisoning of active sites are generally recorded. On

this account, a density functional theory study was performed on cluster-sized

catalyst models, namely Mn4O8 and over-oxygenated Mn4O9 fragments, to pre-

dict the reactivity pattern of MnOx catalysts in the selective aerobic oxidation

of benzyl alcohol. Several pathways concur to determine the whole reaction pro-

cess and all of them were compared to unveil the atomistic details of the alcohol

oxidation mechanism. Moreover, assuming that the consecutive formation of

benzoic acid affects the activity-stability pattern of the MnOx based catalyst,

also the benzaldehyde oxidation mechanism was computationally addressed. A

systematic comparison of the benzyl alcohol and benzaldehyde oxidation mech-

anisms on the Mn4O8 and Mn4O9 fragments reveals some experimental strate-

gies to test the reaction mechanisms and design alternative catalytic routes

to decrease undesired parasitic reactions leading to catalyst deactivation. The
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matching structural, energetic and kinetic data are published in the Data in

Brief journal [1].

Keywords: MnOx based catalysts, oxidative dehydrogenation, catalyst

deactivation, reaction mechanisms, DFT

1. Introduction

The selective oxidation of alcohols to the corresponding carbonyl compounds

is an important class of industrial reactions for the production of fine chemi-

cals. In particular, many studies have been devoted to the selective oxidation

of benzyl alcohol to benzaldehyde, because of extensive uses of the latter in cos-

metics, perfumery, dyestuff and pharmaceutical industries, as the second most

important aromatic molecule after vanillin [2–4].

Various oxidizing reagents, such as permanganate and dichromate, are cur-

rently employed for the benzaldehyde manufacture processes, although high cost

and co-generation of toxic wastes raise severe environmental and economical

concerns [5].

Accordingly, Green Chemistry guidelines recommend the heterogeneous cat-

alytic oxidation of benzyl alcohol with oxygen as the most advantageous op-

tion for the benzaldehyde manufacture [6]. In this respect, although supported

noble-metal catalysts (e.g. Au, Pt, Pd) exhibit good performance under mild

reaction conditions [7–15], high costs and deactivation phenomena, due to over-

oxidation and/or fouling of active sites, are severe drawbacks for their industrial

exploitation [16, 17].

On the other hand, recent literature data on transition metal-oxide cata-

lysts document high activity and selectivity of bare and promoted MnOx sys-

tems in the selective aerobic oxidation of benzyl alcohol to benzaldehyde in

a wide range of temperature [18–25]. However, activity loss and the need of

regeneration-rejuvenation procedures are generally reported also for such cata-

lysts [6, 26–31]. The latter even shows deactivation phenomena related to the

over-oxidation of benzyl alcohol to benzoic acid [32] but the intimate aspects
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concerning both the formation of benzoic acid and its role in poisoning the

catalyst still deserve investigation. Recent synergistic approaches involving ex-

perimental investigations and quantum chemistry calculations, mostly based on

Density Functional Theory (DFT), showed to be important in highlighting the

fundamental aspects of catalytic reactions enabling the development of effective

catalysts and processes [33].

In particular, catalysis performed by clusters involving precise numbers of

atoms is a new research area in which the experimental-computational strat-

egy has shown very promising perspectives [33–39]. In fact, the multifaceted

panorama of the cluster structures and properties was investigated to design

new catalysts whose characteristics could be tuned either changing the elemen-

tal nature, sizes and shapes of the clusters or dispersing them on supports having

peculiarly addressed features [40–46].

This paper presents a systematic computational study, in the frame of the

DFT paradigm, aimed at shedding light on the catalytic mechanisms, even in-

cluding catalyst deactivation phenomena, which occur in the selective aerobic

oxidation of benzyl alcohol to benzaldehyde on MnOx cluster-sized catalysts

[32, 47]. In particular, the role of possible over-oxidizing species, which could

potentially lead to the formation of benzoic acid, is investigated. Namely, the

role of the oxygen species produced on (or displaced from the bulk to) the cata-

lyst surface, of the O2 (coming from the gas phase) and of the water molecules

(formed during the reaction) was taken into consideration and analyzed. This

was done in the hypothesis that benzoic acid or other oxidized intermediates

could play a role in the deactivation of the catalyst [32, 47]. The identification of

these surface intermediates and especially of the paths determining their genesis

could indeed suggest some corrections to be made into the process in order to

improve the selectivity to benzaldehyde.
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2. Computational Details

The Gaussian 09 package [48] was employed for all the calculations. These

were performed in the DFT framework by using the M06-L exchange-correlation

functional [49], which showed to be valid in treating inorganic compounds that

involve transition metals also when dispersion interactions were relevant. Its re-

liability for the calculation of barrier heights is demonstrated in previous works

for a large number of chemical reactions [50–52] and its accuracy can be quan-

tified by an averaged mean unsigned error of ca. 10 kJ mol−1. The Stuttgart

’97 Relativistic Small Core effective potential along with its valence double zeta

basis set [53, 54] was used for the Mn atoms whereas the cc-pvDZ basis set

was employed for lighter elements. Minima and transition states related to the

reaction mechanisms, thoroughly discussed in terms of vibrational zero-point

(ZPVE) corrected energies, were characterized by inspection of the harmonic

vibrational frequencies. Interaction energies, namely adsorption (∆Eads) and

desorption (∆Edes) energies, were evaluated as the difference between the energy

of the adsorbed system and the energies of its constituents. For the interaction

energies, basis set superposition error (BSSE) estimated by means of counter-

poise procedure [55] is reported. In case of desorption steps, the associated

Gibbs free energy (∆Gdes) is also given, to get an idea of the expectedly signif-

icant role of entropy changes in these event. A kinetic analysis of the catalytic

processes was performed following an original approach derived by the classic

one of Christiansen [56] and detailed in the Data in Brief (DiB) journal [1]. This

method was applied, using ZPVE corrected energies, to compare both the dif-

ferent pathways determining the single reaction mechanisms and the latter ones

among themselves [57]. The mutual influence between the various mechanisms

studied was conversely not taken into consideration because unimportant with

respect of the following discussion and conclusions.
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3. Results and discussion

3.1. Catalytic fragments and starting benzyl alcohol adsorption modes

Previous mechanistic results reported by Gueci et al. [32] are summarized

in the catalytic cycle of Figure 1. This, in particular, shows the catalytic ben-

zaldehyde oxidation mechanism already proposed after having examined all the

possible ways of interaction of the considered molecular substrates with all the

plausible adsorption sites present in the different catalytic fragments (Mn4O7,

Mn4O8, Mn4O9) involved [32]. The catalytic cycle presents a starting Mn4O8

catalytic model cluster — representative of the Mn(IV) sites characterizing the

cluster-sized MnOx fragments present on the surface of real catalysts [6] — that,

undergoing transient structural modifications, rules benzyl alcohol oxidation to

benzaldehyde, following a complex reaction mechanism. Two benzyl alcohol

molecules are transformed into two benzaldehyde and two H2O molecules, in

aerobic conditions.

[Figure 1 about here.]

The Gibbs free energy difference for this process was calculated to be −181.4

kJ mol−1. It has to be noticed that, in order to close the catalytic cycle hence to

restore the pristine catalyst, gas-phase O2 is involved and one Mn4O9 fragment

is produced along the process. Notably, these fragments may originate either by

adsorption of O2 (from the gas phase) on the pre-reduced cluster (i.e. Mn4O7)

or by bulk O-atoms diffusion to the surface and/or by surface diffusion of the

latter (i.e. spillover).

In fact, several studies performed on MnOx catalysts actually revealed a

certain degree of mobility of surface oxygen species [25, 58–60]. In support of

this hypothesis, Oxygen Temperature Programmed Desorption (O2-TPD) anal-

ysis performed both on pristine and promoted MnOx catalysts showed patterns

characterized by overwhelming exposures of Mn(IV) active sites [6, 32].

To probe the effects of this phenomenon into the title reaction, hence to

investigate the catalytic behavior of a locally over-oxygenated cluster showing a
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supposed Mars–van Krevelen (MvK) like mechanism [61], another Mn4O9 frag-

ment, aside the complementary one [62] already considered in the second step of

the cycle of Figure 1, was additionally taken into consideration in this study. Its

optimized geometry, with the most stable spin multiplicity characterizing the

same fragment (2S+1 = 11), is reported in Figure 2, where the atom labels that

will be used in the following are also shown in the left panel [63]. In the right,

conversely, an alternative view allows one to distinguish two catalyst halves,

arbitrarily labeled top (t) and down (d), with respect to the plane crossing the

manganese atoms.

[Figure 2 about here.]

Benzyl alcohol adsorption on the Mn4O9 fragment, provided that it actually

involves the Mn(D) atom bearing the extra oxygen, may occur either on the

side where the O1 and O3 sites are facing upward or on the other side, leading

to Mn(D)t and Mn(D)d adducts, respectively (see Figure 3). In both cases

the benzyl alcohol molecule interacts with the catalyst by its oxygen atom,

moreover, in the Mn(D)d adsorption geometry an interaction between the phenyl

fragment and the Mn(A) site is also observed. According to these findings, the

Mn(D)d adsorption system looks to be more stable than the Mn(D)t one, being

the corresponding interaction energies −165.4 kJ mol−1 (BSSE= 19.4 kJ mol−1)

and −135.5 kJ mol−1 (BSSE= 28.1 kJ mol−1), respectively.

[Figure 3 about here.]

The geometrical characteristics and the structural parameters for the two

adsorption modes are summarized in Table 1.

[Table 1 about here.]

The main differences essentially rely in the ability of the organic molecule to

approach the manganese site, for the most part concerning the interaction dis-

tance of the Mn(D) site with the oxygen atom and the aromatic ring of benzyl
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alcohol, Mn(D)−O and Mn(D)−C6H5, respectively, and the consequent varia-

tion of the dihedral angle Θ(O-C-C-C), involving the interacting oxygen and the

unsaturated plus a couple of aromatic carbon atoms of the reacting catalytic

substrate. The parameter values in Table 1 indicate that the stabilization of the

system originates from a stronger interaction of the cluster with the aromatic

ring.

[Figure 4 about here.]

It has also to be mentioned that the benzyl alcohol adsorption increased the

system spin multiplicity from 11 to 13, irrespective of the considered geometry.

The investigated mechanism reported throughout essentially occurs on the 2S+

1 = 13 spin multiplicity surface.

In fact, decreasing/increasing of spin multiplicity, occurring as a result of

spin coupling/uncoupling, was found along the reaction path, commonly for

species where hydrogen atoms are transferred from the adsorbate to the cluster.

The spin multiplicity of the species are always reported along with energetic

informations in the corresponding figures. In all cases, an average spin contam-

ination of ca. 2% was found, with maximum values of 6.3%, 2.9% and 3.3%,

among the species with 2S + 1 = 11, 13 and 15 in the order.

In the next section the selective oxidation mechanisms of benzyl alcohol to

benzaldehyde on the Mn4O9 cluster are detailed. The mechanisms will be la-

beled as the adsorption geometries from which they start, i.e. Mn(D)d and

Mn(D)t. The mechanistic findings, of course, have to be related with the

ones already obtained in the oxidation of the second benzyl alcohol molecule

(∆Eads = −190.0 kJ mol−1, BSSE= 22.5 kJ mol−1, 2S + 1 = 11) on a Mn4O9

fragment, involved in the cycle of Figure 1.

3.2. Benzyl alcohol oxidation to benzaldehyde

The first step in the Mn(D)d reaction pathway is the hydroxyl hydrogen

transfer to the Od′ site, overcoming an energy barrier of 69.8 kJ mol−1 (Figure

4). From this point, the reaction can proceed following three different ways: i)
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the second hydrogen atom is transferred to the O3 site with an energy barrier of

96.3 kJ mol−1 and a (H+H)/Mn4O9−C6H5-CHO system, in a spin multiplicity

state of 15, is formed, ii) the adsorbed molecule rotates so that one hydrogen of

the CH2 moiety points towards the Od′′ site, requiring 4.7 kJ mol−1 of energy,

iii) the hydrogen bonded to the Mn4O9 cluster flips downward.

In the first case an over-hydrogenated catalyst with an extra oxygen atom

would be obtained after benzaldehyde desorption. The hydrogen hopping in the

direction of one of the extra oxygen on the Mn4O9 fragment would lead to a

water molecule, whose desorption could restore the Mn4O8 fragment; however

this resulted energetically almost impossible. On the contrary, the involvement

of an adsorbed O2 from the gas phase (even after the desorption of water) would

lead to an unlikely hyper-oxygenated Mn4O10 fragment. Given this and realizing

that the energy barriers of the other two reaction paths, having common origin,

are much lower, this reaction way was not further investigated.

The second reaction path continues with the CH2 hydrogen being transferred

to the Od′ site, overcoming a high energy barrier of 150.7 kJ mol−1. The

so formed system exhibit a hydrogen bond between the carbonyl oxygen of

benzaldehyde and the closest H of a kind of hydrogen peroxide species adsorbed

on the Mn(D) site.

Also in this case the same considerations apply as regards the elimination

of water through the adsorption of one O2 molecule while it is still difficult to

restore the Mn4O8 fragment through the formation of H2O after the eventual

transformation of the H2O2-like moiety.

The third reaction path (following the green arrows in Figure 4), with an

energy barrier of 15.8 kJ mol−1, might be the favored one among the three

investigated. Following this step, once the hydrogen bonded to the vicinal Od′

oxygen atom of the the fragment catalysts points downward, one hydrogen of

the −CH2 moiety could be subjected to intramolecular migration to the oxygen

atom or, alternatively, could be transferred either to Od′ or Od′′. Since the

intramolecular shift shows an energy barrier value equal to 181.4 kJ mol−1, the

evolution of the mechanism through this pathway was considered as improbable.
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The rotation of the dehydrogenated alcohol so that the hydrogen of the CH2

moiety points towards Od′′ leads to a species that has a slightly higher energy

(4.2 kJ mol−1) but the following step, i.e. the hydrogen transfer to the catalyst,

needs the overcoming of a prohibitive energy barrier, that is 182.1 kJ mol−1.

It is interesting to note that also in this case a species resembling a hydrogen

peroxide molecule has formed.

The last reaction path considered involves 40.6 kJ mol−1 for the rotation

of the dehydrogenated alcohol, causing the CH2 hydrogen pointing towards the

Od′ site. This is a pretty high value for a torsional energy, probably originated

because the favorable interaction between the phenyl group and the catalyst

fragment is missing in the final structure. When the second hydrogen atom

of the alcohol is transferred to the already protonated Od′ site with an energy

barrier of 78.2 kJ mol−1, the system (C6H5−CHO + H2O)/Mn4O8 is formed.

The latter then evolves in the three isolated components, needing an energy of

79.7 kJ mol−1 (BSSE= 44.6 kJ mol−1), being the ∆Gdes value equal to 12.1 kJ

mol−1.

Figure 5 details the reaction mechanism occurring on the Mn(D)t site. As

found in case of the Mn(D)d adsorption geometry discussed above, it begins

with the hydroxyl hydrogen transfer to the Od′ site, overcoming, this time, an

energy barrier of 91.1 kJ mol−1. The subsequent hydrogen loss occurs in favor

of the closest O2, with an energy barrier of 22.9 kJ mol−1. Thus, a system

consisting of one benzaldehyde molecule adsorbed on a hydrogenated Mn4O9

catalytic fragment, in a spin state of 15, is obtained. Although this fragment

is easily formed, the distance of hydrogen atoms hinders an easy formation

of one water molecule (to be desorbed). Given this and considering that the

only alternative mechanism would involve an O2 molecule producing water and

the already discarded, because unlikely, hyper-oxygenated Mn4O10 fragment,

further investigation neither have been carried out on the product of this para-

sitic mechanism nor alternative mechanism on the Mn(D)t site have been taken

into consideration. As a consequence, the already selected green pathway of

the Mn(D)d site has been identified as the one occurring in the benzyl alcohol
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oxidation on the Mn4O9 cluster considered here.

[Figure 5 about here.]

3.3. Energetics of the reaction occurring on Mn4O8 and Mn4O9 clusters

It is worth to compare the proposed mechanism with that previously sug-

gested for the same reaction occurring on a model Mn4O8 cluster, which could

be assumed as the precursor of the Mn4O9 one. For this purpose, an analysis

based on the Christiansen’s method of the intermediate quasi-stationary concen-

trations, was employed [56]. The matrix approach, which lies at its base, allows

one to determine the rate of a reaction from the knowledge of the probability of

occurrence (per unit of time) of the single elementary steps that compose the

same reaction. These probabilities can be related to the theoretically calculated

energy barriers, using the Eyring’s equation [64–67].

Details on the simplified form of the Christiansen’s method here used, here-

after identified as SCM, are given elsewhere [1]. It should be here underlined

however that by means of SCM it is possible to compare either the different

probability of occurrence characterizing the pathways which contribute to de-

termining a given reaction stoichiometry or also different reactions in order to

establish the most probable among these.

Referring to the title reaction, it can be said that either TOF evaluated at 343

K or the activation energy of the whole reaction, evaluated by an Arrhenius plot

in the temperature range in-between 333 and 363 K, both calculated by the M1

SCM reaction rates (see Table 2), are in well agreement with the corresponding

descriptors experimentally obtained at the same temperatures for the real MnO2

catalysts [1, 6, 47]. In particular, either the experimental or the calculated

TOF/s−1 values resulted equal to 4 · 10−4. Moreover, using SCM, and setting

the temperature at 343 K it is possible to observe that the mechanism marked

by green arrows is the most heuristic, among those ending with the formation

of benzaldehyde in Figure 4, due to the intrinsic difficulty to interconvert the

H2O2-like moieties into the H2O ones.
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[Table 2 about here.]

Conversely, as demonstrated by the SCM pathway rate values, reported in

Table 2, the mechanism leading to the formation of benzaldehyde from benzyl

alcohol on the Mn4O8 fragment of Figure 1 is apparently more facile than that

which occurs on the Mn4O9 fragment shown in the same figure. The latter

should occur also more laboriously than the ones taking place on the Mn4O9

fragment of Figure 4. SCM however suggests that the Mn4O9 fragment of Figure

1 is, in fact, more active than the Mn4O8 one up to the aldehyde desorption

step [1]. Conversely, the relative desorption energy, ∆Edes, calculated for the

two processes occurring on Mn4O9 and Mn4O8, 231.7 and 110.8 kJ mol−1 in the

order, proved that the desorption step is more difficult in the former than in the

latter and overall suggests that the aldehyde formed on Mn4O9 could remain

stuck on this fragment. Just to make a qualitative comparison, the probability

per unit of time of benzaldehyde desorption at 343 K from the Mn4O8 fragment

compared to that which occurs from the Mn4O9 fragment is ca. 3 · 1018 times

larger. This SCM result is close in agreement with experimental evidences

already suggesting that the reaction kinetics were controlled by adsorption–

desorption processes [47].

In any case, the process of Figure 4 should be irrelevant with respect to those

of Figure 1 with regard to the selective production of benzaldehyde from benzyl

alcohol. While, that of Figure 5 should occur as a parallel/parasitic pathway

more easily (M5 pathway mechanism of Table 2) but leaving a di-hydrogenated

Mn4O9 fragment difficult to be reconverted in the starting Mn4O8 one [1].

Considering that the Mn4O9 fragments could originate by intra-structural

migration of reticular oxygens (or by surface spillover as in the case of MnOx

dispersed in other metal-oxides, e.g. MnCeOx catalysts [68, 69]), it can be

concluded that strong sticking of benzaldehyde on MnOx fragments could also

occur in the presence of MvK mechanisms. Due to the oxygen diffusion, a

given MvK mechanism has to be associated with an occurrence probability,

function of the temperature, which must be taken into account. Therefore, it
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is possible to infer that at lower temperatures the Mn4O8 cluster should be the

one mainly involved in the beginning reaction mechanism. As the temperature

rises, conversely, the catalytic system, reaching the energy at which the oxygen

diffusion process is triggered, should evolve (also in the initial phases of the

reaction) through the steps occurring on the Mn4O9 fragment of Figure 1, with

a relative change in the benzaldehyde production rate caused by the higher

benzaldehyde desorption energy involved on these over-oxygenated fragment.

3.4. Benzoic acid formation

Previous mechanistic studies indicated that the incipient formation of ben-

zoic acid is at the origin of the progressive activity loss of MnOx catalysts during

the selective benzyl alcohol oxidation to benzaldehyde [47]. This prompted us

to focus on the consecutive oxidation of benzaldehyde on the Mn4O8 cluster to

get insights into the factors triggering the over-oxidation process leading to the

formation of benzoic acid.

It is known that the hydrated form of benzaldehyde, namely gem-diol, can

undergo further oxidation. Taking into consideration this and the findings of

the preceding section, the final arrangement of benzaldehyde and water very

strongly co-adsorbed on the Mn(A) site of the Mn4O8 cluster, produced in

the second benzyl alcohol oxidation step [32] of Figure 1, was identified as the

probable starting point for the benzoic acid formation, eventually through the

intermediate evolution of formed gem-diol.

Figure 6 shows the proposed mechanism in details. The first step involves the

shift of one hydrogen atom of the water molecule to the catalytic fragment, with

an energy barrier of 63.4 kJ mol−1, and then the successive migration of the OH

group on the carbonyl carbon of benzaldehyde, overcoming an energy barrier of

74.5 kJ mol−1. At this point, a comb of different alternative possibilities could

be identified:

a) the hydrogen atom bonded to the carbonyl is transferred to the O2 site

already involved in the previous step. Although benzoic acid formation

12



occurs, with an energy barrier of 118.9 kJ mol−1, the residual hydro-

genated cluster would suffer a strong distortion, hardly admissible in a

real catalytic fragment;

b) after an internal rearrangement for which ca. 22 kJ mol−1 are required, the

hydrogen atom bonded to the carbonyl is transferred either to the second

O2 oxygen or to the O3 site of the C2h Mn4O8 cluster, overcoming energy

barriers of 45.3 kJ mol−1 and 48.8 kJ mol−1, respectively. The formation

of a benzoic acid molecule leaves a (H+H)/Mn4O8 system that can restore

the pristine Mn4O8 fragment by reaction with gas phase O2, similarly to

what happens in the alcohol to aldehyde oxidation mechanism (see Figure

1). The acid ∆Edes was calculated to be 181.8 kJ mol−1 (BSSE= 38.5 kJ

mol−1), being ∆Gdes = 130.7 kJ mol−1. This high value is in agreement

with the experimental results, showing trace amounts of acid adsorbed on

the catalyst [47];

c) The hydrogen atom on the catalyst rotates freely, from below to above the

plane, then, overcoming an energy barrier of 40.4 kJ mol−1, it migrates to

the carbonyl oxygen of the oxydrilated benzaldehyde, φC(OH)HO, with

the formation of a η2 gem-diol/manganese system, i.e. with both oxygen

atoms of the gem-diol bonded to the same manganese atom and the hy-

droxyl hydrogen atoms on the same side. The latter afterwards evolves

spontaneously into a more stable gem-diol, with a single oxygen atom

bonded to manganese and the hydroxyl hydrogen atoms placed on oppo-

site sides. This species yields the hydrogen atom bonded to quaternary

carbon to the catalyst, with a barrier of 111.7 kJ mol−1, and the proto-

nated carboxylic acid thus formed subsequently releases the proton in a

non-activated process. Benzoic acid and the (H + H)/Mn4O8 system are

eventually obtained.

[Figure 6 about here.]

Although the transformation of benzaldehyde into benzoic acid could be
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induced by the gem-diol intermediate, it can be assumed that the gem-diol does

not evolve into acid since the process is limited by the above energy barrier

(111.7 kJ mol−1). Therefore, benzaldehyde oxidizes directly into acid after path

b), in particular, following the branch in which the largest energy barrier, aside

the one originating the φC(OH)HO formation (common to all the paths), is ca.

49 kJ mol−1. This inference is confirmed applying SCM to the different paths

(see Table 2), ending in the same stoichiometric process reported in Figure 6. In

particular, SCM shows that the chosen mechanism is characterized by a whole

reaction rate which is, at 343 K, ca. 40 times larger than that of the other

one and this mainly depends on the higher desorption energy characterizing

the mechanism of the latter. Indeed, SCM also shows that the more numerous

surface steps of the gem-diol pathway are sometimes less favored with respect

to those of the other two pathways but that the production of benzoic acid via

the gem-diol intermediate is on the whole comparable to that of the faster of

the two. This because the whole processes should be mainly ruled by the acid

desorption energies.

Finally, using once again SCM to juxtapose the two reactions involved in the

whole oxidation mechanisms, namely alcohol −−→ aldehyde and aldehyde −−→

acid processes, it can be observed, referring to the corresponding fastest path-

ways, that the former, when the same concentrations of initial reactant surface

species are considered, would be favored. In fact, the ratio of the corresponding

reaction rate values, mostly determined by the desorption steps of the involved

products [1], is equal to ca. 7 ·1010, at 343 K (see Table 2). These findings that

underline that the rate of the surface steps of the different oxidation processes

are not particularly influent on the whole reaction rates, would seem to confirm

the benzoic acid poisoning role [47] in the selective benzyl alcohol oxidation to

aldehyde on MnOx based catalysts.

3.5. How to use the computational findings in practice

According to the above findings, the co-presence of benzaldehyde and water

on the catalyst is the potential cause of benzoic acid formation, leading to
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catalyst deactivation. In fact, the adsorbed water plays a crucial role in the

reduction of selectivity to benzaldehyde, due to the transfer of one hydroxyl

group from a water to a benzaldehyde molecule. Therefore, it is admissible to

hypothesize that dehydrating the system during the reaction or, as a preventive

strategy, avoiding the formation of water on the cluster, in the presence of

benzaldehyde, could represent a way to limit the acidic by-product formation.

Water formation occurs in two stages of the presented benzyl alcohol to ben-

zaldehyde oxidation mechanism: i) when the O2 adsorbs on the di-hydrogenated

catalytic fragment, (H+H)/Mn4O8, transforming it into the intermediate Mn4O9

species and ii) when one alcohol molecule is oxidized by the different Mn4O9

fragments (see Figures 1 and 4).

Formation of water hence would seem to be related either to the presence

of gas phase oxygen or to the occurrence of MvK mechanisms. Nevertheless,

for the benzyl alcohol to benzaldehyde oxidation on the Mn4O8 cluster (first

step of Figure 1) not oxygen intervention would seem to be required, being O2

conversely necessary, as underlined above, just to eliminate the hydrogen atoms

on the same Mn4O8 fragment after the first alcohol molecule oxidation.

Hence, either to decrease benzoic acid formation or, at least, to test the

network of mechanisms suggested here, it could be possible to carry out the

selective oxidation of benzyl alcohol just on the pristine (Mn4O8) fragments.

For this, it could be appropriate to lower the temperature, hence to reduce

either intra-structural oxygen or spillover surface migrations, and to co-feed the

system, in sequence and cyclically, by benzyl alcohol, O2 and finally CO (see

Table 2). The MnOx based catalysts are indeed also active in the oxidation of

carbon monoxide [68, 69]. This sequential procedure starting with φCH2OH

and characterized by the following stoichiometric processes:

φCH2OH + Mn4O8 −−→ (H + H)/Mn4O8 + φCHO (1)

(H + H)/Mn4O8 + O2 −−→ Mn4O9 + H2O (2)

Mn4O9 + CO −−→ Mn4O8 + CO2 (3)
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could help, as shown by the SCM analysis on steps 2 and 3, see M2 and M9

in Table 2, (by step 2) to eliminate, forming H2O, the hydrogen present on

the stoichiometric (Mn4O8) fragments and (by step 3) to reduce, forming CO2,

the over-oxygenated (Mn4O9) derivatives, shaped in the preceding step, before

another alcohol molecule would undergo oxidation again on Mn4O8. In this way

the apparent catalytic cycle summarized below:

φCH2OH + CO + O2

Mn4O8−−−−→ φCHO + H2O + CO2

would be closed.

It can finally be observed that this reaction design would also limit para-

sitic poisoning processes on Mn4O9 fragments, potentially able to deactivate

the Mn4O8 catalyst. In particular, the oxidation processes of the benzyl alcohol

occurring on Mn4O9, such as the one, represented in Figure 1, that is charac-

terized by the almost irreversible sticking of benzaldehyde able to initiate, in

presence of water, the benzoic acid formation or the other, represented in Fig-

ure 5, which is indeed the fastest oxidation process (see M5 rate value in Table

2) that however leaves the Mn4O9 fragment in a di-hydrogenated form, from

which, as already stated, it is difficult to recover the initial catalytic conditions.

4. Conclusions

A DFT analysis of the benzyl alcohol oxidation on MnOx clusters has been

performed. In addition to one stoichiometric (Mn4O8) cluster, over-oxygenated

(Mn4O9) derivatives, originated by both O2 and/or intra-structural and/or sur-

face spillover oxygenation (MvK mechanism) were considered. Having explored

a wide panorama of possibilities, all the reactions paths have been compared and

it was thus possible to select the most likely mechanism for the benzyl alcohol

oxidation to benzaldehyde. The parallel benzaldehyde to benzoic acid oxidation

has been also addressed in order to find a way to increase the selectivity of the

MnOx based catalysts and to state its, already hypothesized, poisoning role.

The atomistic understanding of the mechanism concerning the benzoic acid for-

mation has allowed us to outline some strategies for experimental work, referred
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to the title reaction. These are addressed: i) to validate the already proposed

experimental mechanism; ii) to test the here proposed reaction network; iii) to

improve, if the proposed mechanism shows eventually to be valid, the selectivity

of the benzyl alcohol oxidation process over MnOx derived catalysts.
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Figure 1: Catalytic cycle on the Mn4O8 cluster. At first, one C6H5-CH2OH molecule is
adsorbed on the Mn4O8 catalytic fragment and oxidized to benzaldehyde; following the ben-
zaldehyde desorption a residual di-hydrogenated catalyst is shaped and transformed into an
intermediate Mn4O9 cluster by the involvement of molecular O2. Finally, the intermediate
catalytic fragment above rules the oxidation of a second benzyl alcohol molecule and returns
to the starting Mn4O8 form, thus closing the catalytic cycle. Two H2O molecules are clearly
formed along with the occurrence of the process.
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Figure 2: Two perspectives of the Mn4O9 fragment, optimized in the spin state 2S + 1 = 11.
On the left, the labels assigned to non-equivalent atoms are shown. On the right, the catalytic
fragment is ideally divided by a plane passing through the four manganese atoms in an upper
region (top), in which both the O1 and O3 oxygens are facing upward, and in a lower one
(down). Notice that Mn(A) and Mn(B) were the indexing used for couples of the same sites
on a Mn4O8 fragment [32] of C2h symmetry (see Figure 1), from which the Mn4O9 fragment
(approximately Cs) was originated.
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Figure 3: Mn(D)t and Mn(D)d adsorption modes of the benzyl alcohol molecule on the Mn4O9
cluster.
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Figure 4: Possible Mn(D)d reaction mechanisms, which consist in the oxidation of a ben-
zyl alcohol (φCH2OH) molecule on the over-oxygenated Mn4O9 cluster. All the minimum
species involved are schematically reported and for the species of particular interest a visual
representation is given. The rectangle represents the starting Mn4O9 cluster. Rectangle with
one Hu or Hd indicates a singly hydrogenated Mn4O9 fragment, indicating the subscripts ”u”
and ”d” that the hydrogen atom points upward or downward. Rectangles with two hydrogens
straightforwardly represent di-hydrogenated fragments and the hydrogen specification inside
intends, instead, to distinguish among the different local topologies (see the corresponding
structures). φCH2O represents dehydrogenated benzyl alcohol while φCHO benzaldehyde.
Energy barriers corresponding to the transition states and energies of all minima with respect
to the species from which the mechanism begins (taken as reference) are also indicated. Ar-
rows not showing any specific energy represent potentially not activated rotations. All values
are expressed in kJ mol−1. Numbers in parentheses are spin multiplicities. The proposed
path is highlighted by green arrows.
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Figure 5: Oxidation of benzyl alcohol to benzaldehyde on the Mn4O9 catalytic cluster, oc-
curring through the Mn(D)t mechanism. Energies of the starting reactants, minima and final
products are relative to that of REF species (benzyl alcohol adsorbed on the catalytic cluster),
while the energy barriers are calculated with respect to the energy of the species preceding the
corresponding transition states. Spin multiplicity for each species is reported in parentheses.
All values are expressed in kJ mol−1. The dotted lines indicate distances not in scale.
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Figure 6: Proposed mechanism for benzoic acid formation. All the minimum species involved
are schematically reported; for the species of peculiar interest a visual representation is also
given. Energy barriers corresponding to the transition states and energies of all minima with
respect to the species from which the mechanism begins (taken as reference) are indicated. All
values are expressed in kJ mol−1. Arrows without any specific energetics represent potentially
not activated rotations. The numbers in parentheses are the spin multiplicities. The rectangle
represents the Mn4O8 fragment, φCHO is the benzaldehyde, therefore φC(OH)HO is the
oxydrilated benzaldehyde, that is the benzaldehyde with one OH moiety bonded, φCOOH
is the benzoic acid and φC(OH)2 the gem-diol. Hs inside the rectangles indicate hydrogen
atoms directly interacting with the Mn4O8 cluster; the subscripts of H, u, O2 and O3, when
present, indicate that the corresponding hydrogen is in the order pointing upward or bonded
to either O2 or O3 oxygen sites.
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Table 1: Significant structural descriptors, namely bond distances and dihedral angles, char-
acterizing the benzyl alcohol adsorption on the Mn4O9 catalytic fragment

Distance/Å Mn(D)t Mn(D)d

Mn(D)−C6H5
a 4.04 2.49

Mn(D)−Od′ 2.03 2.07
Mn(D)−Od′′ 2.04 1.97
Mn(D)−O 2.12 2.24
O−H 0.97 0.97
O−CH2 1.47 1.44

Dihedral angle/◦ Mn(D)t Mn(D)d

Θ(O-C-C-C) -68.9 -22.5
a The C6H5−Mn(D) distance is taken between the

Mn(D) site of the Mn4O9 cluster and the nearest

carbon atom belonging to the phenyl fragment.
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Table 2: Significative pathway mechanisms (M) reported in different figures of the here work
and involved in the oxidation of benzyl alcohol, benzaldehyde and carbon monoxide with their
corresponding reaction rates (s) at 343 K

Pathway Mechanism Reference s/s−1

Figure

M1a 1 9.4 · 10−5

M2b 1 5.9 · 10−6

M3c 1 3.6 · 10−23

M4c (green pathway) 4 8.7 · 10−11

M5c 5 9.4 · 10−2

M6d (pathway ending with H atoms on O2 and O2) 6 3.8 · 10−17

M7d (pathway ending with H atoms on O2 and O3) 6 1.4 · 10−15

M8d (gem-diol pathway, ending with H atoms on O2 and O3) 6 1.4 · 10−15

M9e NAf 9.5 · 10−4

a ΦCH2OH
Mn4O8−−−−−→ ΦCHO

b H2/Mn4O8 + O2 −−→ H2O + Mn4O9

c ΦCH2OH
Mn4O9−−−−−→ ΦCHO

d (ΦCHO + H2O)/Mn4O8 −−→ 2 H/Mn4O8 + ΦCOOH
e CO + Mn4O9 −−→ CO2 + Mn4O8
f The reference figure is here not available. CO oxidation was indeed studied at the same level of calcu-

lation used for the other studied systems (see computational details section). Particulars on the process
energetics and on the optimized cartesian coordinates with the absolute energies of the species involved
in the CO oxidation pathway are elsewhere reported [1] by Gueci et al.
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