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ABSTRACT
Everyday digital tasks can highly benefit from systems that rec-
ommend the right information to use at the right time. However,
existing solutions typically support only specific applications and
tasks. In this demo, we showcase EntityBot, a system that captures
context across application boundaries and recommends informa-
tion entities related to the current task. The user’s digital activity is
continuously monitored by capturing all content on the computer
screen using optical character recognition. This includes all applica-
tions and services being used and specific to individuals’ computer
usages such as instant messaging, emailing, web browsing, and
word processing. A linear model is then applied to detect the user’s
task context to retrieve entities such as applications, documents,
contact information, and several keywords determining the task.
The system has been evaluated with real-world tasks, demonstrat-
ing that the recommendation had an impact on the tasks and led to
high user satisfaction.
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1 INTRODUCTION
Many of our everyday digital tasks involve integrating and reusing
information that we have created and accessed before [7]. For ex-
ample, writing a document may involve web searching and pulling
together information from several existing sources such as, other
documents, emails, spreadsheets, instant messages, data analyses,
and other entities. Researchers have studied recommendations of-
fered to users contextually while they are performing specific tasks
[1–3, 5, 8, 12, 13]. In [5], contextual text and image queries are
performed based on the text written by the user in a word pro-
cessing application, and, in [13], reference recommendations are
shown in a similar scenario. It has been a long standing aim to au-
tomatically model users based on digital traces to make inferences
about their tasks to improve recommendation services. Conven-
tionally, user models are built from explicit behavioral data [9],
such as the queries users submit, links or menu options clicked, or
items browsed, and they are specific to certain applications, such as
news browsing [4], personal information management tools [10], or
search rankings [14]. Such observations of explicit behavioral data
are usually specific to an application or system and can harness the
data model which is structured based on prior knowledge about
the content.

In [11] we introduce EntityBot, a system that supports everyday
digital tasks with cross-app rich entity recommendation. EntityBot
builds an unsupervised model of a user’s topical activities from dig-
ital activity monitoring data. Subsequently, the model is used to de-
tect the user’s context from unseen user activity and automatically
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retrieve relevant entities such as people, applications, documents,
or keywords based on their current task (see video illustration1).
The EntityBot was evaluated in a study with 13 participants who
volunteered for digital activity monitoring for 14 days2. The results
from the real-time context-aware entity recommendation experi-
ment using this data suggest that the system provides high user
satisfaction and usefulness of the recommendation in realistic task
scenarios.

2 DEMONSTRATION DESCRIPTION
The demonstration will be based on a predefined user model trained
with interactional data regarding two fictitious tasks. During this
demonstration, conference participants will receive an explanation
of the two tasks and will be invited to choose one task to resume.
As the participants start performing actions, such as typing a query
on a web browser, the system will respond by showing relevant
entity recommendations in real-time.

3 ENTITYBOT COMPONENTS
The system consists of three main components. A digital activity
monitoring system extracts entities across application boundaries.
An online machine learning method learns about user interests
in real-time based on SM data and, if available, explicit feedback
(source code on github3). A user interface (UI) presents the list of
recommended entities.

3.1 Digital Activity Monitoring
The digital activity monitoring system is comprised of four modules.
The first module is a screen monitoring (SM) system that captures
screenshots of active windows at 2-second intervals. SM is devel-
oped into two versions: a Mac OS version and an MS Windows
version. We utilized Accessibility API to implement both versions.
Both perform an identical function that saves the screenshots of ac-
tive windows as images. The second module is an optical character
recognition (OCR) system that detects and extracts text from the
screenshots. We utilized Tesseract 4.0 4 for the OCR system. The
third module is Entity Extraction (EE) system detects and extracts
available entities from the OCR-processed screenshots. We utilized
the IBM Bluemix Natural Language Understanding API 5 to extract
two types of entities that included people’s names and keywords.
The last module is OS logger that collects information associated
with the screenshots recorded, such as names of active applications,
titles of active windows, available URLs of web pages, or available
file paths of documents that are stored on the computer. In addition,
the OS logger also collects timestamps of when the screenshots are
captured.

3.2 Modeling and Recommendation
The modeling approach receives digital activity monitoring data
and prepares recommendations for display on the UI. The user
may provide explicit feedback on recommended entities to help the
1https://youtu.be/pCMVpl_T4P0
2Participants could stop/resume the monitoring at any time. The study received ethical
approval from the University of Helsinki in Finland
3https://github.com/HIIT/Entity-Recommendation-for-Everyday-Digital-Tasks
4https://github.com/tesseract-ocr/tesseract/wiki
5https://www.ibm.com/watson/services/natural-language-understanding/

system update recommendations. In our solution, the relationship
between entities is established mainly based on their co-occurrence
and partially through temporal closeness. We define a user con-
text at each time step as a vector. User contexts in our setting
include OCR-processed screenshots, recorded OS information, and
extracted entities from EE systems. Inspired by the bag-of-words
model, a context is represented as a bag of individual entities (appli-
cations, keywords, named entities, and non-keyword terms). The
logged contexts are stored in the matrix X ∈ R |E |× |C | , where the
element (i, j) describes the tf-idf weighting of the entity i in con-
text j, E and C are the sets of entities and observed contexts. Due
to large number of context vectors and thousands of entities, we
compress X into lower-dimensional spaces, such that co-occurring
entities should get similar representations. For that, we perform
truncated singular value decomposition (truncated SVD) on X to
get the projection matrixWK ∈ R |C |×K that enables us to project
entities into a latent K-dimensional space. We defined the user
interest as a linear model in this latent space,

rE = XWKθ , (1)

where rE ∈ R |E | is the vector containing relevance of all entities
(we use rEi to refer to the ith element) and θ is the K-dimensional
latent user interest.

We follow the keywords-documents connection idea in [6] to
connect the interest to the relevance of contexts by assuming that
the relevance of a context is a weighted sum of the relevance of
entities that have appeared in it as:

rCj =

|E |∑
i=1

p(i |j)r
E
i , (2)

where rCj refers to the relevance of the jth context (with some
abuse of notation), and p(i |j) is the likelihood of the ith entity being
present in the jth context. This likelihood is not available, but it
can be approximated based on the logged contexts (i.e., X ). We
normalize the columns of X so that elements of each context vector
sum up to one and denote the resulting matrix as X̂ . Using this
approximation and writing Equation 2 in a vector format gives
rC = X̂⊤rE . Finally, by using Equation 1 we can directly connect
the user interest to contexts

rC = X̂⊤XWKθ . (3)

In the online phase of the study, the recent "contexts" are fed
to the model to predict the user interest. In addition, the user can
provide explicit feedback on the recommended entities through
the user interface. The feedback is connected through the shared
user interest θ . By assuming a Multivariate Gaussian prior on θ ,
we can complete the Bayesian inference loop and compute the
posterior of θ after receiving explicit feedback and recent contexts.
The posterior has a closed form solution and is employed to estimate
the expected relevance of entities and contexts (Equations 1 and
3) which respectively are used to rank all entities (of different
types: people, keywords, and applications) and contexts (with their
corresponding linked documents) to be recommended to the user.
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Figure 1: Two states of EntityBot’s user interface [11]. Recommended entities are displayed within four rows, here with five
items each: people, applications, documents, and topics. The user can select entities of interest by clicking on them, which
updates the recommendations. Example: In (a), the user sees entities related to her current work. She notices figures she
has made for one of her papers (a1). She clicks on “Illustrator” (an application for editing vector graphics) (a2), then on the
topic “diagram” (a3). (b) As a result, the entities of interest are displayed in the top area (b1) and the system updates the
recommendations accordingly with the user’s selection. In the documents row, she selects an illustration (b2) that she will
modify for use in her new paper.

3.3 User Interface
Figure 1 illustrates EntityBot’s UI. It implements three specific
features: 1) showing the entities being recommended by the system,
2) allowing the selection of entities of interest by the user (explicit
feedback), and 3) allowing direct action on entities when relevant.
In the following, we describe how each feature was implemented
in our experimental setup.

3.3.1 Showing the entities being recommended by the system. Rec-
ommended entities are displayed within four rows of five items,
with one row per entity type—that is, people, applications, docu-
ments, and topics (as keywords). Each document has a hyperlink
below the icon that facilitates access to the actual content. We
implemented a script for the hyperlink that upon user click auto-
matically opens the document using the path of the file, the URL of
the webpage, and the unique ID of the email. In each row, the rec-
ommended entities are ranked horizontally from left to right. Since
the main purpose is to show a small variety of the most relevant
entities, the ranking is not visually emphasized. As users perform
their tasks, the system progressively updates the recommendations
and the changes are reflected on the UI.

3.3.2 Allowing the selection of entities of interest by the user (ex-
plicit feedback). Every recommended entity displayed on the UI can
be selected with a click. As a result, the selected entity, or entity
of interest, appears in the area at the top, and the overall recom-
mendations (in every row) are updated, taking the selection into
account (i.e., positive feedback on the selected entity is sent to the
system). More entities can then be selected and added to the entities
of interest at the top of the screen, providing an explicit way to
influence the recommendations. Entities of interest can be removed
from the selection by clicking the cross that appears at their upper-
right-hand corner when the mouse cursor hovers over their icon.
Removal of an entity of interest from the selection sends neutral
feedback on the selected entity to the system, which updates the

recommendations accordingly. The entire selection of entities of
interest can be reset by clicking the “Clear selection” button on the
right.

3.3.3 Allowing direct action on entities when relevant. An impor-
tant feature of the system is that it makes the recommendations
actionable. While work on translating recommended people and
keywords into potential actions is ongoing, the present version sim-
ply allows one to open recommended applications and documents
directly.

4 CONCLUSIONS
In this demo, we introduce EntityBot [11] to the RecSys commu-
nity. EntityBot supports everyday digital tasks by predicting the
information needs of the users and providing them with the right
information at the right time through interactive entity recommen-
dations.
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