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Grant/Award Number: 19-26143X

Abstract
The article is focused on a two-dimensional geometrically nonlinear formu-
lation of a Bernoulli beam element that can accommodate arbitrarily large
rotations of cross sections. The formulation is based on the integrated form
of equilibrium equations, which are combined with the kinematic equations
and generalized material equations, leading to a set of three first-order dif-
ferential equations. These equations are then discretized by finite differences
and the boundary value problem is converted into an initial value problem
using a technique inspired by the shooting method. Accuracy of the numeri-
cal approximation is conveniently increased by refining the integration scheme
on the element level while the number of global degrees of freedom is kept
constant, which leads to high computational efficiency. The element has been
implemented into an open-source finite element code. Numerical examples
show a favorable comparison with standard beam elements formulated in the
finite-strain framework and with analytical solutions.
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1 INTRODUCTION

Highly slender fiber- or rod-like components represent essential constituents of mechanical systems in many fields of
application such as civil, mechanical, and biomedical engineering. It is widely recognized that slender bodies can be effi-
ciently modeled applying a beam theory instead of a three-dimensional continuum mechanics theory. Kirchhoff proposed
the first beam formulation which includes large three-dimensional deformations1,2, and Reissner completed the theory
for two-dimensional3 as well as three-dimensional cases4 with two additional deformation measures representing the
shear distortion of beam segments.

Reissner’s finite-strain beam theory is one of the most important geometrically nonlinear models, subsequently
extended and used by many other authors for two- and three-dimensional5,6 analysis of static as well as dynamic
problems.7 Simo developed a dynamic formulation for Reissner’s beam8 and together with Vu-Quoc initiated the finite
element implementation.9-13 He also introduced the useful concept of a geometrically exact beam, based on recasting
Reissner’s theory in a form which is valid for any magnitude of displacements and rotations.

In this article, a geometrically nonlinear beam model is constructed in the two-dimensional setting. The model
remains applicable when the rotations of beam sections become arbitrarily large and it properly accounts for the effect
of curvature on the change of distance between end sections measured along the chord. The axial strain is computed in
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a geometrically exact way while the cross section is assumed to remain rigid, planar, and perpendicular to the deformed
beam axis; the last assumption means that the shear distortion is neglected. The material is described by Hooke’s law,
understood as a linear relation between the Biot strain and its work-conjugate stress (in the present context, the first
Piola–Kirchhoff stress). An extension to a nonlinear material law would be relatively straightforward.

In contrast to standard displacement-based finite element approaches, the proposed formulation exploits the equi-
librium equations in their strong form and does not need any a priori chosen shape functions for the kinematic
approximation. Based on equilibrium, the relevant internal forces (normal force and bending moment) are expressed
in terms of the left-end forces and moment and the displacement and rotation functions, and then linked to the defor-
mation variables (axial extension and curvature) using generalized material equations that describe the behavior of an
infinitesimal beam segment. Substitution into the kinematic equations then leads to a set of three first-order differential
equations for two displacement components and the rotation. These equations are integrated numerically, using an
explicit finite difference scheme.

On the global level, the governing equations are assembled using the standard procedure and the element is treated as
a standard beam element with six degrees of freedom that represent joint displacements and rotations. For given values
of these degrees of freedom, the unknown left-end forces and moment that enter the numerical scheme are determined
by local, element-level iterations that lead to satisfaction of the compatibility conditions. After that, the contribution of
the element to the nodal equilibrium equations as well as the tangent element stiffness matrix are evaluated. As a result,
the beam element can remain arbitrarily long and accuracy is increased not by a reduction of the element size but by
reduction of the finite difference integration step, while keeping the number of global degrees of freedom fixed and low.

The article is structured as follows. Section 2 presents the basic assumptions and the derivation of the fundamental
equations describing the beam model, which have the form of three first-order ordinary differential equations. An ana-
lytical solution for the limit case of axial inextensibility is briefly summarized (the details are provided in Appendix A).
Section 3 shows how to treat the fundamental equations numerically in a general case by an efficient procedure that
exploits the idea of the shooting method. Numerical examples encompassing simple one-beam problems, several frames
and a honeycomb lattice are studied in Section 4, and the accuracy and efficiency of the proposed approach are evalu-
ated by comparison with analytical solutions and to numerical results from the literature. Finally, the conclusions are
summarized and possible extensions are discussed in Section 5.

2 BEAM MODEL: GOVERNING EQUATIONS AND ANALYTICAL
SOLUTION

2.1 Basic assumptions and variables

Let us consider an initially straight beam of length L, deforming in a plane. A local coordinate system is constructed such
that the origin is placed at the centroid of the “left” end section, the x-axis passes through the centroid of the “right” end
section, and the z-axis is rotated by 90◦ clockwise, see Figure 1. Of course, which end is considered as the left one is a
matter of choice, but once this choice is made, it is considered as fixed. The left end will be referred to by subscript a and
the right end by subscript b.

In-plane displacements and rotations of the end sections lead to deformation of the beam. During the deformation
process, all cross sections are assumed to remain planar and perpendicular to the deformed beam centerline. The motion

F I G U R E 1 Kinematics of deformation of the presented nonlinear beam model
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of each section is characterized by displacements of its centroid, us and ws, and by the rotation, 𝜑, which is taken as
positive if the section rotates counterclockwise.

The displacements u and w at a generic point with initial coordinates (x, z) can be expressed in terms of the sectional
rotation and centerline displacements as

u = us + z sin𝜑, (1)
w = ws − z (1 − cos𝜑). (2)

These relations are nonlinear and remain valid for arbitrarily large rotations. In the spirit of the standard beam theory,
the change of distance from the centerline caused by transversal strains is neglected, that is, coordinate z that corresponds
to the signed distance from the centerline is not adjusted.

Equations (1)–(2) follow from the assumption that the cross sections remain planar. The additional assumption of
perpendicularity to the deformed centerline leads to relations

sin𝜑 = −
w′

s√
(1 + u′

s)2 + w′2
s

= −
w′

s

𝜆s
, (3)

cos𝜑 =
1 + u′

s√
(1 + u′

s)2 + w′2
s

=
1 + u′

s

𝜆s
, (4)

which can be deduced from the geometry of the infinitesimal triangle shown in Figure 1. Primes denote derivatives with
respect to the axial coordinate x, and

𝜆s =
√

(1 + u′
s)2 + w′2

s (5)

is the centerline stretch. Based on (1)–(5), the stretch of a generic fiber with coordinate z is evaluated as

𝜆 =
√
(1 + u′)2 + w′2 =

√
(1 + u′

s + z𝜑′ cos𝜑)2 + (w′
s − z𝜑′ sin𝜑)2

=
√
(𝜆s cos𝜑 + z𝜑′ cos𝜑)2 + (−𝜆s sin𝜑 − z𝜑′ sin𝜑)2 = 𝜆s + z𝜑′. (6)

This means that the stretch, and thus also the Biot strain, defined as 𝜀B = 𝜆 − 1, varies across the depth of the section
in a linear fashion. In contrast to that, the Green–Lagrange strain, 𝜀GL = (𝜆2 − 1)∕2, would be described by a quadratic
function of z.

The description in terms of Biot strain leads to simpler equations, and so, as a prototype linear elastic model, we will
develop the governing equations based on the strain energy density

int(𝜆) =
1
2

E(𝜆 − 1)2 (7)

considered as a quadratic function of the Biot strain, with parameter E representing the Young modulus. Conceptually,
there is no problem with replacement of this assumption by another hyperelastic law or even by an inelastic stress–strain
law, if needed.

It is worth noting that since shear distortion is neglected here and the stress–strain law on the level of each fiber is
essentially uniaxial, the role of the stress that is work-conjugate to the Biot strain is played by the first Piola–Kirchhoff
stress. In what follows, the Biot strain will be denoted simply by

𝜀 = 𝜆 − 1. (8)

2.2 Variational derivation of equilibrium equations

The equilibrium state can be found by exploiting the principle of minimum potential energy. The total potential
energy,
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Ep = Eint + Eext (9)

is the sum of the strain energy, Eint, and the energy of external forces, Eext. In this work, we neglect body forces and we
consider the beam structure to be loaded only at its joints. The strain energy of one beam,

Eint = ∫
L

0 ∫A
int(𝜆) dA dx (10)

is calculated by integrating the strain energy density over the volume of the beam.
For prescribed joint displacements and rotations, the energy of external forces vanishes and the equilibrium state is

found by minimizing functional Eint over all kinematically admissible states that are characterized by functions us, ws,
and 𝜑 satisfying the kinematic boundary conditions and the perpendicularity constraint expressed by Equations (3)–(4).
The first variation of the beam strain energy is evaluated as

𝛿Eint = ∫
L

0 ∫A

dint

d𝜆
𝛿𝜆 dA dx = ∫

L

0 ∫A
𝜎 (𝛿𝜆s + z 𝛿𝜑′) dA dx = ∫

L

0
(N 𝛿𝜆s + M 𝛿𝜅) dx, (11)

where

𝜎 = dint

d𝜀
= dint

d𝜆
(12)

is the stress work-conjugate with the Biot strain, and

N = ∫A
𝜎 dA, (13)

M = ∫A
z𝜎 dA (14)

are the normal force and the bending moment.
For the material model based on strain energy density taken as a quadratic function of the Biot strain, the stress can

be expressed as

𝜎 = E(𝜆 − 1) = E (𝜆s − 1 + z𝜑′) = E𝜀s + zE𝜅, (15)

where

𝜀s = 𝜆s − 1 =
√

(1 + u′
s)2 + w′2

s − 1 (16)

is the strain at the centerline and

𝜅 = 𝜑′ (17)

is the curvature. Since the stress is linearly distributed across the depth of the section, one can evaluate the integrals in
(13)–(14) analytically and derive the standard relations between the internal forces and the deformation variables:

N = ∫A
(E𝜀s + zE𝜅) dA = EA𝜀s, (18)

M = ∫A
(zE𝜀s + z2E𝜅) dA = EI𝜅. (19)

Here, A is the sectional area and I is the sectional moment of inertia.
To proceed from the first variation 𝛿Eint described by (11) to the stationarity conditions for functional Eint, we have

to realize that 𝜆s and 𝜅 are not the primary independent fields, and so their variations need to be expressed in terms of
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the centerline displacement variations, 𝛿us and 𝛿ws. It turns out to be convenient to keep working for a while with the
rotation, 𝜑, and its variation, 𝛿𝜑, as auxiliary fields which can later be expressed in terms of the primary ones. From (5)
and (17), one gets

𝛿𝜆s =
(1 + u′

s) 𝛿u′
s + w′

s 𝛿w′
s

𝜆s
= cos𝜑 𝛿u′

s − sin𝜑 𝛿w′
s, (20)

𝛿𝜅 = 𝛿𝜑′. (21)

Substitution of these expressions into (11) and integration by parts leads to

𝛿Eint = ∫
L

0

(
N cos𝜑 𝛿u′

s − N sin𝜑 𝛿w′
s + M 𝛿𝜑′) dx =

= [N cos𝜑 𝛿us − N sin𝜑 𝛿ws + M 𝛿𝜑]L
0 − ∫

L

0

(
(N cos𝜑)′𝛿us − (N sin𝜑)′𝛿ws + M′ 𝛿𝜑

)
dx. (22)

If the displacements and rotations of the end sections are considered as prescribed, their variations are zero
and the boundary terms in (22) vanish. Inside the beam, the variation of the rotation is not independent of
the displacement variations, because of the perpendicularity constraint. Based on (3)–(4), it is possible to show
that

𝛿𝜑 = −
sin𝜑 𝛿u′

s + cos𝜑 𝛿w′
s

𝜆s
(23)

and, consequently,

− ∫
L

0
M′ 𝛿𝜑 dx = ∫

L

0
M′ sin𝜑 𝛿u′

s + cos𝜑 𝛿w′
s

𝜆s
dx =

=
[

M′ sin𝜑 𝛿us + cos𝜑 𝛿ws

𝜆s

]L

0
− ∫

L

0

(
M′

𝜆s
sin𝜑

)′

𝛿us dx − ∫
L

0

(
M′

𝜆s
cos𝜑

)′

𝛿ws dx. (24)

Taking into account that the boundary terms vanish and substituting back into (22), we finally obtain

𝛿Eint = −∫
L

0

(
(N cos𝜑)′𝛿us − (N sin𝜑)′𝛿ws +

(
M′

𝜆s
sin𝜑

)′

𝛿us +
(

M′

𝜆s
cos𝜑

)′

𝛿ws

)
dx. (25)

The stationarity condition 𝛿Eint = 0 for all admissible variations 𝛿us and 𝛿ws yields differential equations

−(N cos𝜑)′ −
(

M′

𝜆s
sin𝜑

)′

= 0, (26)

(N sin𝜑)′ −
(

M′

𝜆s
cos𝜑

)′

= 0, (27)

which represent the strong form of equilibrium equations. Due to their special form, it is possible to perform closed-form
integration and write

−N cos𝜑 − M′

𝜆s
sin𝜑 = Xab, (28)

N sin𝜑 − M′

𝜆s
cos𝜑 = Zab, (29)

where Xab and Zab are integration constants, which physically correspond to the components of the left-end force,
that is, the force acting between the left end section of the beam and the joint to which this section is attached
(Figure 2A).
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(A) (B) (C)

F I G U R E 2 Deformed beam: (A) end forces and moments, (B) displacements and rotations, and (C) free-body diagram with left-end
forces and internal forces at a generic section

From relations (28)–(29), it is possible to express

N = −Xab cos𝜑 + Zab sin𝜑, (30)

M′

𝜆s
= −Xab sin𝜑 − Zab cos𝜑. (31)

Based on (3)–(4), Equation (31) can be recast as

M′ = Xabw′
s − Zab(1 + u′

s) (32)

and yet another integration leads to

M = −Mab + Xab(ws − wa) − Zab(x + us − ua), (33)

where the integration constant Mab represents the left-end moment (Figure 2A), and ua = us(0) and wa = ws(0) are the
displacements at the left end (Figure 2B).

The fraction on the left-hand side of (31) physically corresponds to the shear force, Q, which plays here only an aux-
iliary role and is not linked to any deformation variable by a constitutive law, because the shear distortion is neglected.
Of course, Equations (30)–(31) and (33) could be constructed as equilibrium equations from a free-body diagram, as
illustrated in Figure 2C. The present derivation shows that they can be consistently derived by closed-form integration
of stationarity conditions obtained from the principle of minimum potential energy. These equations properly take into
account geometric effects and remain accurate for arbitrarily large rotations.

2.3 Fundamental equations of the present approach

2.3.1 General case

In the standard displacement-based approach, relations (18)–(19) that link the internal forces to the deformation vari-
ables, combined with an expression for the rotation derived from (3) or (4) and with relations (16)–(17) that express
the deformation variables in terms of the centerline displacement functions, would be substituted into the differential
equations of equilibrium (26)–(27). As an alternative, one can start from equations

𝜑′ = 𝜅, (34)

u′
s = 𝜆s cos𝜑 − 1, (35)

w′
s = −𝜆s sin𝜑, (36)
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which easily follow from (3)–(4) and (17). The centerline displacements us and ws as well as the rotation𝜑 are considered
here as primary unknown functions that will be computed by integration of the above first-order differential equations.
To this end, we must express the deformation variables 𝜅 and 𝜆s on the right-hand sides in terms of the primary vari-
ables, which can be achieved by combining the inverted form of equations (18)–(19) that link the internal forces to the
deformation variables with the integrated equilibrium equations (30) and (33). The resulting equations read

𝜑′ = −Mab + Xab(ws − wa) − Zab(x + us − ua)
EI

, (37)

u′
s =

(
1 + −Xab cos𝜑 + Zab sin𝜑

EA

)
cos𝜑 − 1, (38)

w′
s = −

(
1 + −Xab cos𝜑 + Zab sin𝜑

EA

)
sin𝜑, (39)

and they indeed form a set of three first-order differential equations for three unknown functions.
Equations (37)–(39) are considered as the fundamental equations of the present approach. Interestingly, they could

be reduced to a single second-order differential equation for the unknown rotation. Differentiating (37) and substituting
from (38)–(39), we obtain

EI𝜑′′ +
(

1 + −Xab cos𝜑 + Zab sin𝜑
EA

)
(Xab sin𝜑 + Zab cos𝜑) = 0. (40)

In addition to the primary unknown functions and given sectional stiffnesses EA and EI, the fundamental
equations (37)–(39) contain constants Xab, Zab, and Mab, which are usually unknown. Integration of (37)–(39) generates
three additional integration constants. In total, we have six unknown constants that can be determined from six boundary
conditions (three at each end section). In problems that involve analysis of a single beam, the structure of boundary con-
ditions depends on the way the beam is supported. This is illustrated by an example in Appendix A.5. On the other hand,
in the context of structural analysis of a frame, the joint displacements and rotations play the role of global unknowns that
are determined by iteratively solving the joint equilibrium equations. On the beam element level, the basic tasks are (1)
to compute the end forces and moments that correspond to prescribed values of the end displacements and rotations, and
(2) to evaluate the corresponding element tangent stiffness matrix. Numerical procedures for task 1 will be elaborated in
Section 3.1 and for task 2 in Section 3.2.

2.3.2 Special cases: Axial inextensibility and moderate rotations

A special case is the axially inextensible/incompressible beam model, characterized by EA → ∞ and 𝜀s = 0. The funda-
mental equations (37)–(39) then reduce to

𝜑′ = −Mab + Xab(ws − wa) − Zab(x + us − ua)
EI

, (41)

u′
s = cos𝜑 − 1, (42)

w′
s = −sin𝜑, (43)

and Equation (40) reduces to

EI𝜑′′ + Xab sin𝜑 + Zab cos𝜑 = 0. (44)

The axially inextensible model can be treated analytically; see Appendix A and Section 2.4. However, in the con-
text of general frame analysis, the analytical approach would lead to numerical problems, because the combinations
of end displacements would not be completely arbitrary (they would be restricted by an inequality resulting from the
incompressibility constraint) and the joint displacements could not be considered as unconstrained unknowns.
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For small or moderate rotations, the exact equations could be approximated. For instance, keeping only terms up to
the first order in 𝜑, we can replace (38)–(39) by

u′
s =

−Xab + Zab 𝜑

EA
, (45)

w′
s = −

(
1 − Xab

EA

)
𝜑 (46)

and (40) by

EI𝜑′′ +
(

1 − Xab

EA

)
Zab +

(
Xab −

X2
ab − Z2

ab

EA

)
𝜑 = 0. (47)

One needs to be careful when combining small rotations with axial inextensibility. Setting EA → ∞ in (45), we would
obtain u′

s = 0. However, if EA → ∞ is used in (38), the equation reduces to u′
s = cos𝜑 − 1 and the approximation for

moderate rotations should keep a quadratic term. The resulting equations are then

u′
s = −1

2
𝜑2, (48)

w′
s = −𝜑, (49)

EI𝜑′′ + Zab + Xab𝜑 = 0. (50)

Differentiating (50) and substituting 𝜑 = −w′
s according to (49), we end up with the well-known equation describing

buckling of an axially compressed straight beam,

EIwIV
s + Xabw′′

s = 0. (51)

Equation (48) can then be used to estimate the relative displacement of the beam ends caused by second-order
effects,

ΔL = u(L) − u(0) = ∫
L

0
u′

s dx = −1
2∫

L

0
w′2

s dx. (52)

2.4 Analytical solution

Interestingly, the fundamental equations in their reduced form (41)–(44), valid for the inextensible case, admit an analyt-
ical solution in terms of elliptic functions and elliptic integrals. The derivation of this solution is presented in Appendix
A. For a beam segment without an inflection point, the resulting expressions for the rotation and displacements have the
form

𝜑(x) = 2 arcsin(k̃ sn(ã + b̃x, k̃)) − 𝛼, (53)

us(x) = Cu − (1 + cos 𝛼) x − 2k̃ sin 𝛼
b̃

cn(ã + b̃x, k̃) + 2 cos 𝛼
b̃

EJ(am(ã + b̃x, k̃), k̃), (54)

ws(x) = Cw − (sin 𝛼) x + 2k̃ cos 𝛼
b̃

cn(ã + b̃x, k̃) + 2 sin 𝛼
b̃

EJ(am(ã + b̃x, k̃), k̃), (55)

where “sn” and “cn” are the elliptic sine and cosine, “am” is the Jacobi amplitude function, and EJ is the incomplete
elliptic integral of the second kind. The relation of constants k̃, ã, b̃, 𝛼, Cw, and Cu to the beam properties (EI and L) and
boundary conditions is described in detail in Appendix A.
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Based on the general solution, it is possible to derive analytical expressions for a cantilever loaded at its free end by
an arbitrarily inclined force. As shown in Appendix A, the applied force, F, and the displacements of the left end of a
cantilever fixed at its right end, ua and wa, can be expressed in terms of the left-end rotation,𝜑a; see formulas (A71)–(A73).
These expressions will later be used as benchmarks. Nevertheless, the analytical or semianalytical approach is applicable
only to simple cases, and general frame analysis needs to be based on numerical methods, which will be developed in the
following section.

3 NUMERICAL PROCEDURES

3.1 Evaluation of end forces and moments

Analytical formulas such as (53)–(55) are useful only if the elliptic functions and elliptic integrals are already imple-
mented by efficient algorithms. Moreover, these analytical solutions are valid only under the restrictive assumption of
axial inextensibility. A more flexible and straightforward approach is to construct approximate solutions of the funda-
mental differential equations using standard numerical procedures. Numerical treatment will be based on the full form
of fundamental equations (37)–(39), because inextensibility would lead to numerical problems (e.g., infinite axial stiff-
ness for a straight beam under tension) and the assumption of small or moderate rotations would induce a large error if
the beams deform substantially.

Suppose that the displacements and rotations of the end section of a beam element are prescribed. It is convenient
to decompose the motion of the beam into (A) the rigid-body motion dictated by the displacements and rotation of the
left end and (B) the deformation of the beam (stretching and bending of the beam centerline) during which the left end
remains fixed. Phase A is easy to handle as a simple geometric transformation, and so we focus first on phase B, leaving
the implementation of phase A to Section 3.1.2.

3.1.1 Shooting method

In a shooting method14, a two-point boundary value problem is converted into an initial value problem, which is more
convenient for numerical solution by finite differences, marching from one boundary point to the other. The missing
(unspecified) initial condition(s) at the starting point is assigned a tentative value, and the differential equation is then
integrated numerically along the interval of interest. If the boundary condition at the terminal point is not satisfied, the
assumed initial value is iteratively adjusted, usually based on linearization of the mapping that links the assumed initial
value to the value at the terminal point that enters the prescribed boundary condition. The shooting method has found
a variety of applications. For instance, recently it has been applied to the equations of geometrically exact 3D nonlinear
Cosserat static rods under large displacements15.

In the present context, the first partial task is to evaluate the right-end displacements ub, wb, and 𝜑b if the left-end
displacements ua, wa, and 𝜑a and the left-end forces Xab, Zab, and Mab are given. In phase B, the rotation 𝜑 and displace-
ments us and ws in (37)–(39) are taken with respect to a corotational coordinate system attached to the left end section,
and so the conditions to be imposed at the left end read

𝜑(0) = 0, (56)

us(0) = 0, (57)

ws(0) = 0. (58)

They can be understood as initial conditions that make the solution of differential equations (37)–(39) unique, pro-
vided that the left-end forces Xab and Zab and moment Mab are known. The solution can be constructed numerically, using
a suitable finite difference scheme.

The interval [0,L] is divided into N numerical segments of length Δx = L∕N, with grid points xi = i Δx,
i = 0, 1, 2, … N, and approximate values of the rotation, centerline displacements, and internal forces at these grid points
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are denoted as 𝜑i, ui, wi, Ni and Mi, i = 0, 1, 2, … N. The derivatives in (37)–(39) are replaced by finite differences. The
simplest approach is based on the following explicit scheme:

1. Set initial values 𝜑0 = 0, u0 = 0 and w0 = 0.
2. For i = 1, 2, … N evaluate

Mi−1 = −Mab + Xabwi−1 − Zab(xi−1 + ui−1), (59)

𝜑i−1∕2 = 𝜑i−1 +
Mi−1

EI
Δx
2
, (60)

Ni−1∕2 = −Xab cos𝜑i−1∕2 + Zab sin𝜑i−1∕2, (61)

ui = ui−1 +
[(

1 +
Ni−1∕2

EA

)
cos𝜑i−1∕2 − 1

]
Δx, (62)

wi = wi−1 −
(

1 +
Ni−1∕2

EA

)
sin𝜑i−1∕2 Δx, (63)

Mi = −Mab + Xabwi − Zab(xi + ui), (64)

𝜑i = 𝜑i−1∕2 +
Mi

EI
Δx
2
. (65)

3. The resulting displacement and rotation values at the right end are u(L) = uN , w(L) = wN and 𝜑(L) = 𝜑N .

As indicated in (60) and (65), the rotation is integrated in two half-steps, one of them based on the curvature at xi−1 and
the other at xi. The first half-step allows to get an approximation of the rotation at midstep,𝜑i−1∕2, which is then exploited
for evaluation of the normal force and centerline strain at midstep and to integration of the centerline displacement in
one single step based on the central difference scheme. This allows evaluation of the curvature at the end of the step, and
thus the second half-step for the integration of the rotation remains explicit, even though it is based on the backward
finite difference formula. For simplicity, the sectional stiffnesses EI and EA are considered as constant, but it would be
straightforward to extend the algorithm to beams with variable section. In this case, EA in (62)–(63) would be replaced
by EAi−1∕2 while EI in (60) and (65) would be replaced by EIi−1 and EIi, respectively.

Of course, the left-end forces and moment, Xab, Zab and Mab, which are needed to run the algorithm, are not known
in advance. If we somehow estimate their values and prescribe zero initial values of the kinematic quantities (as specified
in step 1), we can run the algorithm and determine the values of right-end displacements and rotation, us(L), ws(L), and
𝜑(L). The values of the left-end forces and moment then need to be adjusted such that the resulting kinematic quantities
at the right end satisfy the yet unused boundary conditions

𝜑(L) = 𝜑b, (66)

us(L) = ub, (67)

ws(L) = wb (68)

in which ub, wb, and 𝜑b are prescribed displacements and rotation of the right end with respect to the left end that arise
during phase B of the deformation process (after rigid-body motion A during which the whole beam translates and rotates
with its left end).

In fact, the suggested approach is a special version of the shooting method. For a given set of end displacements
and rotations, the initial estimate of Mab, Xab, and Zab can be constructed based on linear beam theory, or on the
values at the end of the previous step if the calculation is done in the context of an incremental iterative structural
analysis.

The foregoing algorithm defines a certain mapping of the left-end forces and moment on the right-end displacements
and rotation. Formally we can write
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ub = g(fab), (69)

where

ub =
⎛⎜⎜⎜⎝

ub

wb

𝜑b

⎞⎟⎟⎟⎠ , fab =
⎛⎜⎜⎜⎝

Xab

Zab

Mab

⎞⎟⎟⎟⎠ . (70)

For a given column matrix ub, equation (69) represents a set of three nonlinear equations for unknowns collected in
column matrix fab. The solution is found by the Newton–Raphson method, using the recursive formula

𝛿f (k)
ab = G−1

(
f (k)

ab

)(
ub − g

(
f (k)

ab

))
, f (k+1)

ab = f (k)
ab + 𝛿f (k)

ab , k = 0, 1, 2, … , (71)

where

G =
𝜕g
𝜕fab

(72)

is the Jacobi matrix of mapping g.
The entries of the Jacobi matrix are evaluated numerically using the differentiated version of the computational

scheme. Suppose that the input values Xab, Zab, and Mab are changed by infinitesimal increments dXab, dZab, and dMab.
Linearization of Equations (59)–(65) around the currently considered solution leads to

d𝜑i−1∕2 = d𝜑i−1 +
Δx
2EI

[−dMab + dXabwi−1 + Xabdwi−1 − dZab(xi−1 + ui−1) − Zabdui−1] , (73)

dNi−1∕2 = −dXab cos𝜑i−1∕2 + Xab sin𝜑i−1∕2d𝜑i−1∕2 + dZab sin𝜑i−1∕2 + Zab cos𝜑i−1∕2d𝜑i−1∕2, (74)

dui = dui−1 +
dNi−1∕2

EA
cos𝜑i−1∕2 Δx −

(
1 +

Ni−1∕2

EA

)
sin𝜑i−1∕2d𝜑i−1∕2 Δx, (75)

dwi = dwi−1 −
dNi−1∕2

EA
sin𝜑i−1∕2 Δx −

(
1 +

Ni−1∕2

EA

)
cos𝜑i−1∕2d𝜑i−1∕2 Δx, (76)

d𝜑i = d𝜑i−1∕2 +
Δx
2EI

[−dMab + dXabwi + Xabdwi − dZab(xi + ui) − Zabdui] . (77)

The values of du0, dw0, and d𝜑0 are set to zero, because the initial zero values of u0, w0, and 𝜑0 are fixed and remain
unaffected by changes of Xab, Zab, and Mab.

If we set dXab = 1 and dZab = dMab = 0, the resulting values of duN , dwN , and d𝜑N will correspond to the first column
of the Jacobi matrix. They are evaluated using the adapted scheme

d𝜑i−1∕2 = d𝜑i−1 +
Δx
2EI

(wi−1 + Xabdwi−1 − Zabdui−1) , (78)

dNi−1∕2 = − cos𝜑i−1∕2 + Xab sin𝜑i−1∕2d𝜑i−1∕2 + Zab cos𝜑i−1∕2d𝜑i−1∕2, (79)

dui = dui−1 +
dNi−1∕2

EA
cos𝜑i−1∕2 Δx −

(
1 +

Ni−1∕2

EA

)
sin𝜑i−1∕2d𝜑i−1∕2 Δx, (80)

dwi = dwi−1 −
dNi−1∕2

EA
sin𝜑i−1∕2 Δx −

(
1 +

Ni−1∕2

EA

)
cos𝜑i−1∕2d𝜑i−1∕2 Δx, (81)

d𝜑i = d𝜑i−1∕2 +
Δx
2EI

(wi + Xabdwi − Zabdui) . (82)

The additional two columns of the Jacobi matrix are obtained in an analogous fashion, setting dZab = 1 or
dMab = 1.
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3.1.2 Transformation to global coordinates

Suppose that the shooting method described in the previous section has been implemented. The computed displacements
u as well as the end forces fab are expressed in an auxiliary coordinate system xz with the origin located at the left end of
the beam in the deformed configuration and with the x-axis in the direction of the tangent to the deformed centerline at
the left end. Now we would like to link them to the components expressed with respect to the global coordinate system,
which will be denoted by a superscript G.

The initial geometry is described by global coordinates of the joints connected by the beam, that is, xG
a and zG

a at the
left end and xG

b and zG
b at the right end, from which we can compute the beam length

Lab =
√

(xG
b − xG

a )2 + (zG
b − zG

a )2, (83)

and the angle

𝛼0,ab = arctan
zG

b − zG
a

xG
b − xG

a
, (84)

that indicates how the undeformed beam axis deviates (clockwise) from the global axis xG. Strictly speaking, formula (84)
gives the correct result only if xGb > xGa and the rule for evaluation of 𝛼0,ab would need to be split into several cases if
the whole range had to be covered. However, we will not really use the angle 𝛼0,ab as such but rather its sine and cosine,
which are conveniently expressed as

cos 𝛼0,ab =
xG

b − xG
a

Lab
, (85)

sin 𝛼0,ab =
zG

b − zG
a

Lab
. (86)

In the deformed configuration, the auxiliary coordinate system xz is rotated with respect to the global system xGzG

clockwise by angle

𝛼ab = 𝛼0,ab − 𝜑G
a . (87)

We can imagine that, during phase A, the beam first moves as a rigid body such that it gets translated by uG
a and wG

a
and then rotated about the left end by𝜑G

a counterclockwise. Only then, during phase B, the right end is moved to its actual
position in the deformed configuration and the right end section is rotated by 𝜑b = 𝜑G

b − 𝜑G
a . The displacements of the

right end experienced during phase B and expressed with respect to the auxiliary axes are

ub = (uG
b − uG

a ) cos 𝛼ab + (wG
b − wG

a ) sin 𝛼ab + Lab(cos𝜑G
a − 1), (88)

wb = −(uG
b − uG

a ) sin 𝛼ab + (wG
b − wG

a ) cos 𝛼ab + Lab sin𝜑G
a , (89)

and the rotation is

𝜑b = 𝜑G
b − 𝜑G

a . (90)

Therefore, if the global displacements are prescribed, the local displacements with respect to the auxiliary coordinate
system can be evaluated—they represent components of column matrix ub. The corresponding column matrix fab, for-
mally evaluated as g−1(ub), has components Xab, Zab, and Mab. Here, Mab is directly the end moment acting at the left end,
while the end forces must be transformed to the global coordinate system, which leads to

XG
ab = Xab cos 𝛼ab − Zab sin 𝛼ab, (91)
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ZG
ab = Xab sin 𝛼ab + Zab cos 𝛼ab. (92)

Finally, the forces at the right end,
XG

ba = −XG
ab, (93)

ZG
ba = −ZG

ab, (94)

are easily obtained from equilibrium, and the moment at the right end is

Mba = −Mab + Xabwb − Zab(Lab + ub). (95)

It is convenient to rewrite transformation rules (88)–(92) in the matrix notation as

ub = T(𝜑G
a ) (uG

b − uG
a ) + l(𝜑G

a ), (96)

fG
ab = TT(𝜑G

a ) fab, (97)

where

T(𝜑G
a ) =

⎛⎜⎜⎜⎝
cos(𝛼0,ab − 𝜑G

a ) sin(𝛼0,ab − 𝜑G
a ) 0

−sin(𝛼0,ab − 𝜑G
a ) cos(𝛼0,ab − 𝜑G

a ) 0
0 0 1

⎞⎟⎟⎟⎠ , l(𝜑G
a ) = Lab

⎛⎜⎜⎜⎝
cos𝜑G

a − 1
sin𝜑G

a

0

⎞⎟⎟⎟⎠ . (98)

Combining this with equation

fab = g−1(ub) (99)

that formally describes the evaluation of the left-end forces fab by iterative solution of the set of nonlinear equations
g(fab) = ub, we get

fG
ab = TT(𝜑G

a ) g−1(T(𝜑G
a )(uG

b − uG
a ) + l(𝜑G

a )). (100)

This is the relation between the global components of joint displacements and global components of end forces on
beam ab. To make it more readable, we rewrite it as

fG
ab = TT g−1(T(uG

b − uG
a ) + l), (101)

bearing in mind that matrices T and l depend on the left-end rotation, 𝜑G
a .

3.2 Stiffness matrix

In the simplified notation, the differentiated form of Equations (96)–(97) reads

dub = T (duG
b − duG

a ) +
[
T′ (uG

b − uG
a ) + l′

]
d𝜑G

a , (102)

dfG
ab = TT dfab + T′Tfab d𝜑G

a , (103)

where

T′(𝜑G
a ) =

𝜕T(𝜑G
a )

𝜕𝜑G
a

=
⎛⎜⎜⎜⎝

sin(𝛼0,ab − 𝜑G
a ) − cos(𝛼0,ab − 𝜑G

a ) 0
cos(𝛼0,ab − 𝜑G

a ) sin(𝛼0,ab − 𝜑G
a ) 0

0 0 0

⎞⎟⎟⎟⎠ , (104)
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l′(𝜑G
a ) =

𝜕l(𝜑G
a )

𝜕𝜑G
a

= Lab

⎛⎜⎜⎜⎝
−sin𝜑G

a

cos𝜑G
a

0

⎞⎟⎟⎟⎠ . (105)

Combining this with the differentiated form of (99),

dfab = G−1 dub, (106)

we get

dfG
ab = TTG−1 [T(duG

b − duG
a ) +

[
T′(uG

b − uG
a ) + l′

]
d𝜑G

a
]
+ T′Tfab d𝜑G

a

= TTG−1T(duG
b − duG

a ) +
[
TTG−1 [T′(uG

b − uG
a ) + l′

]
+ T′Tfab

]
d𝜑G

a , (107)

which is the differentiated form of (101).
Based on (107), we can set up the first three rows of the element tangent stiffness matrix (in global coordinates). The

fourth row is minus the first row, and the fifth row is minus the second row, because of relations (93)–(94). The sixth
row is a bit more difficult to compute, one needs to differentiate the expression for the right-end moment, Mba. From the
moment equilibrium condition written with respect to the centroid of the right end section in the deformed state, we get*

Mba = −Mab + XG
ab(Lab sin 𝛼0,ab + wG

b − wG
a ) − ZG

ab(Lab cos 𝛼0,ab + uG
b − uG

a ), (108)

and the infinitesimal increment can be expressed as

dMba = −dMab + (Lab sin 𝛼0,ab + wG
b − wG

a ) dXG
ab − (Lab cos 𝛼0,ab + uG

b − uG
a ) dZG

ab

+ XG
ab (dwG

b − dwG
a ) − ZG

ab (duG
b − duG

a ). (109)

Consequently, the sixth row can be constructed as a linear combination of the first, second and third row with
coefficients Lab sin 𝛼0,ab + wG

b − wG
a , −Lab cos 𝛼0,ab − uG

b + uG
a and −1, resp., added to the row (ZG

ab,−XG
ab, 0,−ZG

ab,X
G
ab, 0).

However, this does not even have to be done, since we know that the stiffness matrix must be symmetric and we already
know its sixth column, except for the last (i.e., diagonal) entry. So it is sufficient to copy the entries from the sixth column
into the sixth row and put

k66 = (Lab sin 𝛼0,ab + wG
b − wG

a ) k16 − (Lab cos 𝛼0,ab + uG
b − uG

a ) k26 − k36 (110)

on the diagonal.

4 NUMERICAL EXAMPLES

A nonlinear beam element based on the proposed approach has been implemented into OOFEM,16,17 an object-oriented
finite element code. To verify the implementation and demonstrate the potential of the suggested approach, several
problems involving beams and frames will be solved.

4.1 Pure bending of a cantilever beam

The first test, serving as a benchmark, deals with a cantilever of length L and bending stiffness EI loaded by a concentrated
end moment M on its right end. Recent studies have examined the performance of the developed elements under large
rotations by solving this problem using meshes ranging from three up to a hundred of elements.18,19 The exact solution

*Equation (108) is equivalent with (95), just written here in terms of the global components.
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to this problem is a circular arc with radius R = EI∕M. To deform the rod into a full closed circle, an end moment M =
2𝜋EI∕L needs to be applied. In this example, the loading is increased in six load steps, making the rod wind around itself
at the end of the sixth step. The deformed shape of the beam at the end of each step is depicted in Figure 3A. The solution
of the present model is compared with the one obtained by employing the geometrically exact finite beam element by
Simo and Vu-Quoc10 with a mesh of eight elements. The exact solution is reported as well. The overall agreement is good,
and a detailed inspection reveals that the simulation based on the present model, which uses only one two-noded element
(i.e., only three global unknowns), is closer to the analytical solution.

The example demonstrates that the present model allows for a dramatic reduction of the number of global degrees of
freedom, but of course the number of segments N used for numerical integration of the governing equations (37)–(39)
must be chosen high enough to provide a good approximation. The results presented graphically in Figure 3A have been
obtained using 100 segments. A close-up view of a part of the sixth step circle is showed in Figure 3B for calculations
in which 8, 10, 20, and 50 numerical segments are employed. To ease the interpretation of the results, we connect the
displaced grid points by straight segments, even though the curvature is constant along the beam and one could eas-
ily construct a more realistic visual representation. In contrast to standard finite elements, for which shape functions
allow interpolation of the displacement field on the basis of nodal values, here the displacement field is uniquely defined
exclusively at the grid points. The values at those points are sufficiently accurate even for a coarse grid.

Considering that the exact ratio between the normalized moment ML∕EI and the dimensionless curvature L∕R is
unitary, we have calculated the dimensionless ratio MR∕EI based on the radius of curvature at the midspan of the
beam (L = L∕2) and its relative error with respect to the exact solution. The results for the state at the end of the sixth
load step are reported in Table 1. They illustrate how the integration grid refinement reduces the error. When a tradi-
tional finite element simulation with eight elements is replaced by the present method with eight integration segments
located within one single finite element, the accuracy remains the same. The error is proportional to the square of
the integration grid spacing, and high accuracy can be achieved without changing the number of the global degrees of
freedom.

4.2 Williams toggle

Another relatively simple yet much more interesting problem is the so-called Williams toggle, for which Williams20 pro-
vided experimental data as well as an approximate analytical solution. Physically, the toggle consists of two symmetrically
placed and rigidly connected straight beams whose axes slightly deviate from the horizontal direction, see Figure 4A. The
small angle between the beam axis and the horizontal direction is denoted as 𝜓 and the initial length of each beam as L.
The toggle is loaded by a vertical force P.

(B)(A)

L

M

Exact solution

Presented model

Simo and Vu-Quoc

R = L / 2π

Exact solution

8 segments

10 segments

20 segments

50 segments

F I G U R E 3 Pure bending of a cantilever beam subjected to end moment: (A) deformed shapes of the cantilever beam subjected to tip
moment M = 2𝜋EI∕L obtained in six load steps and (B) close-up view of the solution at the end of the sixth step using 8, 10, 20, and 50
integration segments
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T A B L E 1 Pure bending of a cantilever beam
subjected to end moment: evaluation of errors caused by
numerical integration along the beam element

Model MR∕EI Error (%)

Exact 1 –

Simo and Vu-Quoc,10 1.0262 2.617

Eight segments 1.0262 2.617

10 segments 1.0166 1.664

20 segments 1.0041 0.412

40 segments 1.0010 0.103

80 segments 1.0003 0.026

Owing to symmetry (including expected symmetry of the solution), it is sufficient to model the toggle by a single ele-
ment clamped at one end and vertically sliding at the other end, with zero rotation and zero horizontal displacement,
see Figure 4B. The resulting model has only one degree of freedom—the vertical displacement wG

2 . In fact, if the load
control is replaced by direct displacement control, which is perfectly legitimate here, the model has no global unknowns
and the equilibrium diagram can be constructed simply by evaluating the end forces for a series of prescribed displace-
ments at the right end. In the local coordinate system of the beam, the displacement components are u2 = −wG

2 sin𝜓 and
w2 = wG

2 cos𝜓 . Once the end forces are computed, the applied force P = −X21 sin𝜓 + Z21 cos𝜓 is readily evaluated.
Williams tested two toggles with members of length L = 12.94 in., made of aluminum alloy strips characterized by

sectional stiffnesses EA = 1.885 ⋅ 106 lb and EI = 9.27 ⋅ 103 lb⋅in.2. The experimental results were reported for two geome-
tries, one with 𝜓 = 0.0247 and the other with 𝜓 = 0.02985. The first case gives a monotonic load–displacement curve
while the second case leads to the snap-through behavior: the load–displacement curve exhibits a local maximum fol-
lowed by a local minimum, between which the equilibrium state would be unstable under load control (but remains stable
under displacement control). The experimental data are represented by individual points (filled markers) in Figure 5A
while the approximate analytical solution derived by Williams are shown as the solid/dashed curves with hollow sym-
bols and the results of our numerical simulation as the solid/dashed curves with no symbols. Blue color, solid lines, and
square markers refer to the first case (𝜓 = 0.0247) while red color, dashed lines, and circular markers to the second case
(𝜓 = 0.02985). Since Williams performed his tests under load control, the descending branch of the load–displacement
diagram could not be measured. Taking into account that the measured values must be quite sensitive to small changes
in the initial geometry, the overall agreement between experimental and numerical results can be considered as very
good. The simplified analytical solution derived by Williams is visually indiscernible from the present numerical solu-
tion, except for a limited range of displacements between 0.4 and 0.6 in. in the second case (𝜓 = 0.02985, red curves in
Figure 5A). In this range, the numerical solution is closer to experimental results than the simplified analytical one.

The numerical results plotted in Figure 5A have been obtained with 40 integration segments, to ensure high accuracy.
The effect of the number of segments is demonstrated in Figure 5B. Already for 10 segments, the numerical error is
comparable with the experimental one, and for 20 segments the complete computed curve is almost indiscernible from
the curve obtained with 40 segments. In general, the errors are very small in the initial range up to the snap-through point
(local maximum of the load–displacement curve), even for a simulation with just five integration segments.

(A) (B)

F I G U R E 4 (A) Williams toggle and (B) its computational model that makes use of symmetry
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F I G U R E 5 Williams toggle: (A) comparison of the present numerical results with the experimental data and approximate analytical
solution by Williams and (B) effect of the number of segments used for numerical integration (for toggle 2)

4.3 Buckling

The proposed beam element can efficiently handle highly nonlinear response, including potential loss of stability. Let us
show a simple example that illustrates how instability phenomena can be treated.

Same as in Section 4.1, the example deals with a cantilever, but this time loaded by a concentrated force that induces
axial compression. For a cantilever of length L, the buckling length is Lb = 2L and the corresponding Euler critical load
is evaluated using the well-known formula

PE = EI𝜋2

L2
b

= EI𝜋2

4L2 . (111)

However, the derivation of this classical formula is based on the assumption of axial incompressibility. The adjusted
derivation valid for axially compressible columns is presented in detail in Appendix B, and the resulting generalized
version of formula (111) is shown to be

Pcr =
EA
2

(
1 −

√
1 − 4EI𝜋2

EAL2
b

)
≈ EI𝜋2

L2
b

(
1 + EI𝜋2

EAL2
b

)
. (112)

The approximation is valid if Pcr ≪ EA, which is always the case here.
Numerically, the axially compressed cantilever can be described by a single element connecting two nodes. Node 2

is fixed and the displacements and rotation of node 1 play the role of global degrees of freedom. If the beam is perfectly
straight and the applied force P is perfectly aligned with the beam axis, the numerically computed solution corresponds
to axial compression and degrees of freedom w1 and 𝜑1 remain equal to zero. The beam is uniformly compressed and,
since we use here a model based on Biot strain, displacement u1 is proportional to the applied force P. Of course, this type
of solution becomes unstable if the applied force exceeds the critical one.

The loss of stability can be detected by checking the eigenvalues of the tangent structural stiffness matrix. Initially,
all eigenvalues are positive, which indicates that the tangent stiffness matrix is positive definite and the solution of the
equilibrium equations corresponds to a minimum of potential energy, that is, to a stable state. Stability is lost when at least
one eigenvalue becomes negative, and the onset of instability is characterized by the smallest eigenvalue equal to zero.

In numerical studies, the problem is treated in the dimensionless form—the beam length L and the flexural stiffness EI
are set to 1, which means that the dimensionless value of the applied force in fact corresponds to PL2∕EI and the computed
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T A B L E 2 Dimensionless critical force evaluated numerically from the criterion of zero
minimum eigenvalue

EAL2∕EI = 10,000 EAL2∕EI = 100

Number of segments PcrL2∕EI Error (%) PcrL2∕EI Error (%)

2 2.4007834 5.163 2.343695 5.037

4 2.4982684 1.312 2.4364486 1.279

8 2.5231468 0.329 2.4600893 0.321

16 2.5293985 0.082 2.4660281 0.080

32 2.5309635 0.020 2.4675146 0.020

64 2.5313548 0.005 2.4678863 0.005

128 2.5314527 0.001 2.4679792 0.001

displacement to u1∕L. The behavior of the model is affected by the axial sectional stiffness EA, which corresponds to
the dimensionless slenderness parameter EAL2∕EI. This parameter is the square of the ratio L∕i where i =

√
I∕A is the

sectional radius of inertia. For instance, for the strip used by Williams and described in Section 4.2, the span-to-depth ratio
is L∕h ≈ 53, which certainly represents an extremely slender beam, and parameter EAL2∕EI is in this case approximately
equal to 34,000. In our simulations, we will typically consider EAL2∕EI =10,000 or 100, the latter choice representing a
rather deep beam.

The numerical solution naturally depends on the number of segments used for integration of the governing equations
on the element level. As seen in Table 2, the critical force evaluated from the condition of zero minimum eigenvalue
quickly converges as the number of segments increases, but the limit value is affected by the slenderness parameter.

In the dimensionless format (i.e., for L and EI set to 1), the Euler critical load is PE = 𝜋2∕4 ≈ 2.4674. For highly
accurate numerical simulations (a sufficiently high number of integration segments and very short incremental steps, at
least in the vicinity of the critical state), the onset of instability occurs at Pcr ≈ 2.531 for EA = 100 and at Pcr ≈ 2.468 for
EA =10,000. This is correct, because Euler formula (111) is exact for the ideal case of an axially incompressible beam.
The generalized formula (112) gives 2.531485 for EA = 100 and 2.46801 for EA = 10,000 if the “exact” expression is used,
in perfect agreement with the loads for which the onset of instability has been detected by highly accurate numerical
evaluation of the tangent stiffness matrix and its minimum eigenvalue. The approximate formula (i.e., the last expression
on the right-hand side of (112)) gives 2.5283 for EA = 100 and 2.46801 for EA = 10,000. In the former case (deep beam),
the approximation induces a difference of about 0.13% compared with the exact formula, while in the latter case (slender
beam), the first six valid digits of the resulting value remain the same.

For loads exceeding the critical one, the straight-beam solution becomes unstable and thus physically irrelevant, and
it would be desirable to compute the bifurcated stable solution that describes the actual shape of the buckling beam.
A rigorous approach would be to find the eigenvector associated with the zero eigenvalue of the stiffness matrix at
the onset of buckling and then search for a branch of the equilibrium diagram that bifurcates from the main one in
the direction given by this eigenvector. Sophisticated techniques of this kind have been proposed and developed in the
literature.

As an alternative, one can simply perturb the original problem and change the equilibrium diagram with a bifurcation
point into an equilibrium diagram which closely follows one of the bifurcated stable branches but does not pass through
a critical point. This is typically achieved by breaking symmetry of the original problem. In our case, we can consider, for
example, the load as slightly eccentric, or the beam as slightly curved.

Making use of the first option, we combine the applied force P with an applied moment M = Pe where e is a fixed small
eccentricity. The obtained equilibrium diagrams are plotted in Figure 6 by thin lines. The thick lines in the same figure
correspond to the original, unperturbed problem, that is, to the load applied with zero eccentricity. To follow the bifurcated
stable branch instead of the main branch that becomes unstable for loads exceeding the critical one, the equilibrium
iteration after each increment of applied force is started from a perturbed trial state, obtained by solving an auxiliary
equilibrium problem for loading by a small applied moment added to the previously applied force. This moment is similar
to the moment Pe due to eccentricity but this time it is not considered as the actual part of applied loads—it is used to
generate a perturbed initial state for equilibrium iterations and then removed when the actual axial loading is increased.
As a result, the final converged state corresponds to the original problem of an axially loaded straight beam. If the load
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is below the critical level, the iteration necessarily converges to the trivial solution (i.e., the axially compressed beam
remains straight), because this is the only solution of the equilibrium equations. On the other hand, if the load is above
the critical level, there exist three equilibrium states, one of which is unstable (straight beam) while the other two are
stable (buckling to one or the other side). An iterative process that starts from an unsymmetric state is likely to end up on
one of the two stable bifurcated branches. This is indeed confirmed by numerical simulations.

The solid curves plotted in Figure 6 have been computed for parameter EAL2∕EI set to 10,000 using load increments
ΔP = 0.05 EI∕L2. Up to P = 2.45 EI∕L2, the solution obtained when the load is axial and the iterations start from a per-
turbed state remains on the main branch, that is, the lateral displacement w1 and the rotation 𝜑1 remain zero (up to the
tolerated numerical error) while the axial displacement u1 increases proportionally to the applied load (due to the high
axial stiffness, it also appears to be almost zero in the diagrams). On the other hand, the solutions obtained when the load
is considered as eccentric gradually deviate from the straight main branch.

Figure 6A shows the full equilibrium diagrams for loads up to P = 6 EI∕L2. On this scale, the thick and thin solid
curves almost coincide, except for the immediate vicinity of the bifurcation point. To better assess the difference, the
diagrams in Figure 6B,C are limited to the range of normalized load PL2∕EI between 2 and 3. For eccentricity e = 10−3L,

(A)

(C)

(B)

F I G U R E 6 Equilibrium diagrams for a compressed cantilever: (A) full range, (B,C) close-up around bifurcation point. Computed with
EAL2∕EI = 10,000 and step size ΔPL2∕EI = 0.05. Thick lines correspond to zero eccentricity, thin lines to eccentricity e∕L = 10−3 in parts (A)
and (B) and e∕L = 10−4 in part (C), and dashed lines to the analytical solution in the axially incompressible case (EA → ∞)
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the deviation from the main branch becomes quite pronounced (Figure 6B) while for a reduced eccentricity e = 10−4L it
is much less important (Figure 6C). For comparison, the dashed curves show the analytical solution derived for an axially
incompressible beam in Appendix A.5 and described by formulas (A71)–(A73).

4.4 Frames

As a more challenging example, let us consider two problems of large deflection of frames: a square frame loaded at
the midpoints of a pair of opposite sides (Figure 7A) and a square-diamond frame loaded at two vertices with hinges
(Figure 10A). Analytical solutions for the deflections and bending moments were presented by Kerr21 for the square frame
loaded at the midpoints of a pair of opposite sides and by Jenkins et al.22 for the diamond-shaped frame. The elliptic
integrals were numerically evaluated and presented in a tabulated form by Mattiasson23 based on the procedure described
by King,24 which has shown excellent convergence properties and highly accurate results. For this reason, other authors
often consider Mattiasson’s solutions as analytical ones.25,26

Owing to symmetry, only a quarter of each frame needs to be analyzed. In our simulations, it is sufficient to use a
mesh consisting of two elements for the square frame (Figure 7B) and a single-element mesh for the diamond frame
(10b). In the figures, the applied force is oriented such that it induces compression, but the simulations cover the opposite
orientation leading to tension, too. Mattiasson23 neglected axial as well as shear deformations. To be able to compare our
numerical results with his, we need to set the axial stiffness to a sufficiently large value. However, our simulations can
also work with lower, more realistic values.

The results are again presented in the dimensionless form, with all quantities normalized by suitable combinations
of the flexural stiffness EI and beam length L. In numerical simulations, EI and L are set to unity and the input values of
axial stiffness EA and applied force P have the meaning of dimensionless parameters EAL2∕EI and PL2∕EI. The computed
displacements then correspond to dimensionless fractions u∕L and w∕L, and bending moments to ML∕EI.

Consider first the square frame shown in Figure 7. Its response under compressive loading is characterized by the
load–displacement diagrams in Figure 8A, with the dashed red curve corresponding to the vertical deflection w3 and the
solid blue curve to the horizontal displacement u1 (both normalized by L). Empty markers represent Mattiasson’s data
and the crosses indicate three states for which the deformed shapes are plotted in Figure 9A. Analogous results for the
case of tensile loading are presented in Figure 8B in terms of the load–displacement diagrams and in Figure 9B in terms
of the deformed shapes at three selected states.

The agreement of our results with Mattiasson’s solution is seen to be excellent. For compression, the response after
reaching the load level PL2∕EI = 3.3942 (second cross in Figure 8A) loses its physical meaning because of nonphysi-
cal penetration of node 3 into its mirrored counterpart (see the deformed shape red colored in Figure 9A). The present
numerical results have been computed using 30 integration segments per element and with the axial stiffness parameter
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F I G U R E 7 Square frame: (A) Geometry and applied loads (case of compression) and (B) one-quarter model that exploits symmetry,
leading to five global unknowns
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(A) (B)

F I G U R E 8 Square frame: load–displacement curves for (A) compression loading and (B) tension loading. With reference to Figure 7B,
horizontal displacement u is reported at node 1 (solid blue line) while vertical displacement w is reported at node 3 (dashed red line). Square
and circular empty markers represent Mattiason’s solution. Crosses indicate three states for which the deformed shapes are plotted in Figure 9

(A) (B)

F I G U R E 9 Square frame: deformed shapes (scale factor equal to 1) for (A) compression loading and (B) tensile loading. The
corresponding points in the load–displacement diagrams are indicated in Figure 8 by “+” symbols

EAL2∕EI set to 106. This value is fully sufficient to get very close to the inextensible limit. If the parameter is increased
to 107, the relative change of the vertical displacement at the end of the simulation (i.e., at load level PL2∕EI = 4) is only
3 ⋅ 10−6. Even for EAL2∕EI = 104, the relative change with respect to the inextensible case would be 3 ⋅ 10−4, which is still
negligible. On the other hand, EAL2∕EI = 102 would lead to a relative change of 2.9% in the vertical displacement and
1.3% in the horizontal displacement, which may already play some role. Still lower values of the axial stiffness parameter
are not relevant because they correspond to deep beams for which the beam theory with neglected shear distortion would
be inappropriate.

The choice of the axial stiffness parameter reflects the geometry of the frame (shape of the cross section and
span-to-depth ratio). Let us now explore the effect of a numerical parameter—the number of integration segments per
element. The “high-precision” value (i.e., the value computed with an extremely high number of integration segments)
of normalized displacement w3∕L computed at load level PL2∕EI = 4 is 1.177368 for EAL2∕EI =10,000 and 1.211001 for
EAL2∕EI = 100. The values obtained for various numbers of integration segments per element and the corresponding rel-
ative errors are summarized in Table 3. Already for eight segments, the discretization error is below 1%, and it decreases
proportionally to the square of the segment size.

The example of the square frame loaded in compression can further be exploited for illustration of convergence prop-
erties of the proposed numerical method. The objective is to explore how the computational procedure converges if a very
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T A B L E 3 Square frame: evaluation of errors in displacement caused by numerical integration along
the beam elements

EAL2∕EI = 10,000 EAL2∕EI = 100

Number of segments Displacement Error (%) Displacement Error (%)

8 1.221452 0.863 1.187822 0.888

10 1.217680 0.551 1.184051 0.568

20 1.212668 0.138 1.179036 0.142

40 1.211418 0.0344 1.177785 0.0354

80 1.211105 0.0086 1.177472 0.0089

160 1.211027 0.0022 1.177394 0.0022

320 1.211008 0.0006 1.177374 0.0005

→ ∞ 1.211001 0 1.177368 0

T A B L E 4 Square frame loaded by compression: average numbers of global
iterations per step, depending on (EAL2∕EI, 𝜀tol) where EAL2∕EI = 100 or 10,000 is the
axial stiffness parameter and 𝜀tol = 10−3 or 10−9 is the tolerance

𝚫PL2∕EI (100, 10−3) (100, 10−9) (10000, 10−3) (1000, 10−9)

4 6 8

2 4 5.5

1 4 5

0.5 3 4 5.125 6.75

0.25 2 4 4 5.438

large load increment is applied. The model deals with five global unknowns (u1, u2, w2, 𝜑2, and w3), which are found
iteratively by Newton–Raphson equilibrium iterations. In each iteration, the end forces and the tangent stiffness need to
be evaluated for given values of the global unknowns, and this evaluation is also performed iteratively, using the tech-
nique described in Section 3.1. Each iterative process uses a certain error tolerance, which can influence the number of
iterations needed to satisfy the underlying equations with sufficient accuracy.

It turns out that the numerical scheme is more robust for lower values of the axial stiffness parameter. For EAL2∕EI =
100 (considered as low), it is possible to apply the total load PL2∕EI = 4 in one single step, starting from the undeformed
configuration. The error (defined as the norm of the unbalanced forces normalized by the same factor EI∕L2 as the actual
load) first increases from 4.0 to 43.9, but after six iterations it is below 10−3 and after eight iterations below 10−9. For
EAL2∕EI = 1000, the maximum step size is ΔPL2∕EI = 1.99, and for EAL2∕EI =10,000, it is ΔPL2∕EI = 0.6, which means
that the whole diagram depicted in Figure 8A can be covered respectively in three or seven incremental steps. Of course,
larger steps require more global Newton–Raphson iterations.

For comparison, Table 4 shows the average numbers of global iterations per step needed to increase the load to
PL2∕EI = 4, depending on the step size, axial stiffness parameter, and relative tolerance (maximum allowed norm of
unbalanced forces normalized by EI∕L2). In each row, the step size is indicated in the first column and the other columns
contain the average numbers of iterations per step for various combinations of parameters (EAL2∕EI, 𝜀tol), in each case
specified in the column heading. For sufficiently short steps, convergence is very regular. For instance, for EAL2∕EI = 100
and step size ΔPL2∕EI = 0.25, the whole curve is covered in 16 steps and, in each step, two iterations are sufficient to
bring the error below 10−3 and two additional iterations bring the error below 10−9. On the other hand, for larger steps or
higher axial stiffness, more iterations are needed in the initial part of the iterative process, during which the evolution of
error is typically less regular. Once the computed approximation gets close to the exact solution, quadratic convergence
is observed and the error is easily reduced from 10−3 to 10−9 in at most two iterations.

Let us now proceed to the diamond frame shown in Figure 10. The corresponding load–displacement diagrams are
plotted in Figure 11 and the deformed shapes are shown in Figure 12. Red color in Figure 10 corresponds to the deflection
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F I G U R E 10 Diamond frame: (A) Geometry and applied loads (case of compression) and (B) one-quarter model that exploits
symmetry, leading to three global unknowns

(A) (B)

F I G U R E 11 Diamond frame: load–displacement curves for (A) compression loading, (B) tension loading. With reference to Figure 10B,
horizontal displacement u is reported at node 1 (solid blue line) while vertical displacement w is reported at node 2 (dashed red line). Hollow
squares ad circles represent Mattiason’s solution. Crosses indicate three states for which the deformed shapes are plotted in Figure 12

w2 and blue color to the horizontal displacement u1. Circular and square empty markers represent Mattiason’s solution
while dashed and solid lines represent our solutions. The agreement of the present numerical results with Mattiason’s
solution is again excellent.

4.5 Honeycomb lattice

4.5.1 Problem description

In the last example we consider a material with internal microstructure that corresponds to a two-dimensional elastic
honeycomb lattice. Samples of such material will be subjected to prescribed displacements that would induce uniax-
ial tension or compression if the material behaved as a homogeneous continuum. The objective is to study the size
effect, that is, to investigate how the macroscopic response of a finite sample deviates from the limit behavior of an
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(A) (B)

F I G U R E 12 Diamond frame: deformed shapes (scale factor equal to 1) for the (A) compression loading, (B) tension loading. The
corresponding points in the load–displacement diagrams are indicated in Figure 11 by “+” symbols
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F I G U R E 13 Honeycomb lattices: (A) regular hexagonal cell with numbering of nodes and global coordinate system, (B) 3 × 3 lattice,
and (C) 11 × 11 lattice

infinite lattice, which can be under certain conditions described using a hexagonal unit cell with imposed periodicity
conditions.

The unit cell is a regular hexagon consisting of six beam elements of length a, as shown in Figure 13A. Larger assem-
blies are obtained by stacking the cells horizontally and vertically in a honeycomb pattern. For instance, the assembly in
Figure 13B will be referred to as the 3 × 3 pattern. It can be considered as consisting of three layers; the odd layers con-
tain three cells each while the even layer contains two full cells and two half-cells. Similarly, the assembly in Figure 13C
represents the 11 × 11 pattern.

The projected dimensions of the unit cell are B1 = a
√

3 horizontally and H1 = 2a vertically. In general, an n × n lattice
has width Bn = na

√
3 and height Hn = (3n + 1)a∕2. The lattices are loaded by tension or compression in the vertical

direction. The loading is applied by prescribed monotonically increasing vertical displacements w at n bottom nodes
with coordinate z = Hn, while the n top nodes with coordinate z = 0 are constrained vertically (prescribed displacements
w = 0). All nodes are free to move horizontally, only one node (an arbitrary one) is fixed horizontally in order to suppress
rigid body translations.

4.5.2 Hexagonal unit cell with periodic conditions

For uniaxial tension or compression of an infinite lattice in the vertical direction, the solution can be expected to exhibit
periodicity and symmetry with respect to the horizontal and vertical axes of each hexagonal cell (unless it is disturbed
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by instabilities, which are currently disregarded). Periodicity conditions combined with symmetry lead to zero rotations
of all joints. Moreover, due to symmetry, vertical beams 1-6 and 3-4 deform only axially, and the deformation of the four
inclined beams can be obtained by mirroring the deformation pattern of one of them (Figure 14A). Consequently, it is
sufficient to analyze only one selected inclined beam with one end clamped and the other forced to displace vertically and
allowed to move horizontally (Figure 14B). Once the forces in this beam are computed, the axial force in vertical beams
is obtained from equilibrium and the macroscopic strain and stress can be evaluated.

In the incompressible limit, the behavior of the inclined beam in Figure 14B can be described analytically. One can
even further reduce the problem to a cantilever of length a∕2 shown in Figure 14C, because the inflection point must be
located at midspan of the original beam of length a. When the cantilever is analyzed in its local coordinate system, the
problem is equivalent to the one solved in Appendix A.5 and depicted in Figure A1, with the direction of the applied force
inclined by 𝛼 = 2𝜋∕3 with respect to the beam axis in the undeformed state (Figure 14D). Formulas (A65)–(A68) derived
in the appendix are directly applicable, with cantilever length L set to a∕2.

The end-point displacements ua and wa given by (A66)–(A67) refer to the local beam coordinates, but their projection
onto the direction of the applied force, uF , which can be evaluated from (A68), corresponds to one half of the difference
between global vertical displacements of nodes 5 and 6 of the unit cell. Since the vertical displacements of nodes 6 and 1
are the same (due to inextensibility of the vertical beam that connects these nodes), the difference between global vertical
displacements of nodes 5 and 1 is 2 uF , and the corresponding macroscopic normal strain in the periodic lattice in the
vertical direction is

𝜀z =
2uF

3H1∕4
= 4uF

3 a
. (113)

The force F evaluated from (A65) can be converted into the macroscopic normal stress

𝜎z =
F

tB1∕2
= 2F

ta
√

3
. (114)

Here, t denotes the out-of-plane thickness.
Based on formulas (A65) and (A68) and on the transformation of displacement and force into strain and stress given

by (113)–(114), it is possible to construct the stress–strain diagram. In (A65) and (A68), the force and the displacement
are expressed as functions of the rotation of the free end, which plays the role of a parameter. In the analysis presented in
Appendix A.5, F is considered as a positive quantity that represents the magnitude of the force, and the oriented direction
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F I G U R E 14 Hexagonal unit cell with periodic conditions: (A) deformed cell under tension, (B) upper left inclined beam with
boundary conditions that follow from periodicity and double symmetry, (C) upper half of the inclined beam, and (D) rotated cantilever (the
straight dashed line is the undeformed shape)
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is taken into account by an appropriate choice of angle 𝛼. For tension, 𝛼 needs to be set to 2 𝜋∕3. Since the analytical
solution derived in Appendix A.5 is valid for 𝛼 between 0 and 𝜋, vertical compression of the honeycomb lattice needs to
be handled by setting 𝛼 = 𝜋∕3 and adding negative signs in front of the fractions in (113)–(114).

The macroscopic stress–strain curves extracted from the results obtained for one hexagonal cell with imposed peri-
odicity are plotted in both parts of Figure 15. The dashed curve labeled as “PerAnal” represents the analytical solution
derived for axially inextensible beams while the almost overlapping solid curve labeled as “Per” has been obtained by
a numerical simulation of the inclined beam 5-6 considered as extensible, with the contribution of the vertical (also
extensible) beam 6-1 added in closed form. The dimensionless stress plotted in Figure 15 is the actual macroscopic stress
divided by the normalizing factor EI∕(ta3). The simulations have been performed with a relatively high normal stiffness
characterized by the dimensionless parameter EAa2∕EI = 10,000. The numerical and analytical results are in very good
agreement and the “PerAnal” and “Per” curves slightly differ only in the regime of high tension, as seen more clearly in
Figure 16.

4.5.3 Effect of lattice size

The solutions that satisfy periodicity conditions correspond to the theoretical limit of an infinite lattice filling the whole
plane. To assess the effect of finite size, numerical simulations have been performed on finite n × n lattices exemplified
in Figure 13B,C, with n = 1, 3, 5, and 11. The imposed vertical displacement w and the computed reactions at the bottom
nodes, Ri, i = 1, 2, … n, have been converted into the corresponding average stress and strain,

𝜎 =
∑n

i=1Ri

tBn
, (115)

𝜀 = w
Hn
. (116)

Stress–strain curves obtained in this way are shown in Figures 15A and 16A. A strong size effect is observed—smaller
samples lead to a more compliant response, both in tension and in compression. The overall shapes of all
stress–strain curves are similar. Only a slight nonlinearity is observed in compression while the tensile response
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F I G U R E 15 Honeycomb lattice, complete stress–strain curves: (A) raw results and (B) results with compensation for missing stiff
layer. The curves labeled as “PerAnal” and “Per” correspond to one cell with periodic boundary conditions (respectively based on the
analytical solution for the axially inextensible case and on the numerical solution for EAa2∕EI = 10,000) and the other curves correspond to
lattices consisting of n × n cells with boundary conditions shown in Figure 13B,C (all for EAa2∕EI = 10,000)
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F I G U R E 16 Honeycomb lattice, stress–strain curves for tension: (A) raw results and (B) results with compensation for missing stiff
layer. The curves labeled as “PerAnal” and “Per” correspond to one cell with periodic boundary conditions (respectively based on the
analytical solution for the axially inextensible case and on the numerical solution for EAa2∕EI = 10,000) and the other curves correspond to
lattices consisting of n × n cells with boundary conditions shown in Figure 13B,C (all for EAa2∕EI = 10,000)

is highly nonlinear, with a dramatic increase of tangent stiffness at average strains exceeding 10%. This stiffen-
ing is caused by the fact that the inclined beams initially deform by bending but this relatively soft deformation
mode has a limited capacity and as the inclined beams get aligned with the direction of applied tensile load-
ing, their high axial stiffness is activated. This is nicely illustrated by the deformed shapes in parts (a) and (c) of
Figure 17.

The size effect exhibited by the stress–strain diagrams in Figure 15A is to some extent caused by the fact that the
finite lattices of the kind depicted in Figure 13B,C do not represent a decomposition of the infinite lattice into periodically
repeatable units. Indeed, when we stack two such lattices vertically, an additional layer of vertical beams needs to be
inserted in between, and when we stack them horizontally, the vertical beams on the boundaries that are now glued
together would be doubled.

The first effect turns out to be stronger than the second one. It can be eliminated by adding an extra layer of vertical
beams to the nodes at the bottom of each lattice. The resulting modified lattice would not be practical for testing but its
numerical treatment is straightforward. In fact, it is not even necessary to perform additional numerical simulations of the
modified lattices because the effect of the added layer on the stress–strain diagram can easily be estimated. At a given stress
𝜎 evaluated from (115), the average axial force in the vertical beams is equal to the average reaction, R = 𝜎tBn∕n, and the
contribution of the added layer of axially deformed beams to the vertical displacement on the boundary is Δw = Ra∕EA.
At the same time, the added layer increases the height of the sample by ΔH = a. The corrected average strain is then
estimated as

𝜀 + Δ𝜀 = w + Δw
Hn + ΔH

=
𝜀(3n + 1)a∕2 + Ra∕EA

(3n + 1)a∕2 + a
=
𝜀(3n + 1) + 2𝜎ta

√
3∕EA

3n + 3
= 3n + 1

3(n + 1)
𝜀 + 2ta√

3 (n + 1)EA
𝜎 (117)

from which

Δ𝜀 = − 2
3(n + 1)

𝜀 + 2√
3 (n + 1)

EI
EAa2

𝜎ta3

EI
. (118)

For beams with high axial stiffness, the second term on the right-hand side is usually negligible compared with the
first term. It is expressed as a product of three fractions, the second of which is the reciprocal value of the dimensionless
stiffness coefficient EAa2∕EI, in our example equal to 10,000. In Figure 15, normalized stresses 𝜎ta3∕EI do not exceed 30,
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F I G U R E 17 Honeycomb lattice, deformed shapes at 30% of strain level: (A) 3 × 3 lattice loaded in tension, (B) 3 × 3 lattice loaded in
compression, (C) 11 × 11 lattice loaded in tension, and (D) 11 × 11 lattice loaded in compression. Color maps refer to the normalized
moment, that is, moment divided by the factor EI∕a

and so even for n = 1 the strain correction described by the second term on the right-hand side of (118) is 30∕(10,000 ⋅√
3) ≈ 0.0017. On the other hand, the first term on the right-hand side of (118) is important, especially for small n. The

strain correction Δ𝜀 has the opposite sign than the originally evaluated strain 𝜀, which means that the correction leads to
stiffer response.

Stress–strain diagrams for the modified lattices with an added layer of vertical beams are shown in. The size effect is
reduced, but it is still present, especially for small lattices. The residual size effect originates from softer response of cells
located near the lateral (vertical) boundaries of the sample. For a large lattice, cells that are far from the lateral bound-
aries deform in a pattern similar to the periodic cell, that is, with negligible rotations. On the other hand, cells located
in boundary layers are less constrained and deform more easily. Images of deformed lattices in Figure 17 indicate that
nodes on the lateral boundaries rotate and the deformation is more equally distributed among the vertical and inclined
beams, which reduces the apparent macroscopic stiffness of the sample. Since the affected boundary layers occupy a
relatively larger area fraction in a small sample than in a large one, smaller samples behave as if the material were
softer.
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5 CONCLUDING REMARKS

The geometrically nonlinear formulation of a beam element developed in this article is based on kinematic equations
valid for arbitrarily large rotations of cross sections. These equations are combined with the integrated form of equi-
librium equations and with generalized material equations that link the internal forces to the deformation variables
(curvature and centerline stretch). The resulting fundamental equations have the form of a set of three first-order ordi-
nary differential equations for two displacements and one rotation as basic unknowns. Instead of approximating these
functions by a priori selected shape functions, it is proposed to convert the boundary value problem into an initial
value problem using the idea of the shooting method, and then to adopt a finite difference scheme. Locally the ele-
ment is treated by finite differences but in the context of structural analysis it plays the same role as traditional finite
elements since on the global level the governing equations are assembled in the same way as for a standard beam ele-
ment with six degrees of freedom. The advantage is that accuracy of the numerical approximation can be conveniently
increased by refining the integration scheme on the element level while the number of global degrees of freedom is kept
constant. The element tangent stiffness matrix is constructed based on the Jacobi matrix of the mapping used by the
shooting procedure, and it can be directly passed to the standard assembly procedure leading to the structural stiffness
matrix.

A number of examples have been presented to illustrate the flexibility and efficiency of the proposed approach and
to assess its accuracy and robustness. In all examples, the number of global degrees of freedom has been kept as low
as possible. Spatial refinement has been taken care of by reducing the spacing between auxiliary grid points used for
finite-difference approximation of the fundamental equations. The results have been shown to be in excellent agreement
with previously published numerical results or analytical solutions. For the Williams toggle frames, a good agreement
with experimental data has been observed.

It has been shown that when the integration grid is refined, the error decreases in proportion to the square of
the grid spacing. The accuracy is comparable with results obtained when the beam is discretized by standard finite
elements of the same size as the grid spacing. However, the present approach has the big advantage that no addi-
tional global degrees of freedom need to be introduced when the grid is refined. In the context of an incremental
iterative analysis on the global (structural) level, relatively large increments of nodal displacements and rotations
can be handled. The shooting method adopted on the element level at the same time permits to set up the element
tangent stiffness matrix, which is then processed by a standard assembly procedure to construct the structural tan-
gent stiffness. Linearization of the global equations is consistent, as confirmed by quadratic convergence of the global
Newton–Raphson iteration procedure. This process is more robust for low values of the axial stiffness (reflected by the
dimensionless stiffness parameter EAL2∕EI), and for higher values it works fine provided that the increment size is not
extreme.

To keep the article focused and its size limited, we have presented a basic version of the proposed approach, with a
number of simplifying assumptions. For instance, the stress–strain law has been assumed to be linear elastic, the beam ele-
ment has been considered as two-dimensional and initially straight, and the effect of shear distortion has been neglected.
This relatively simple setting permits to explain the main ideas and highlight the essence of the numerical procedure.
However, extensions and generalizations are possible and some of them are currently being explored. In particular, an
extension to beam elements with initial curvature is potentially attractive and powerful, and it will be described in a
follow-up publication.

An extension of the present approach to beam models with shear would be relatively straightforward. The incorpora-
tion of shear does not affect the overall structure of the fundamental equations. We can easily express the shear force in
a similar way as the normal force in (30) and compute the shear distortion, which would then be added as an extra term
in (34) and later in (37). The numerical scheme would require only slight adjustments.

Another relatively easy extension is the incorporation of concentrated or distributed loads acting at arbitrary locations
along the beam, in addition to nodal loads. A challenging task would be the generalization to three-dimensional beam
models.
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APPENDIX A. NONLINEAR ELASTIC BEAM: ANALYTICAL TREATMENT

A.1 Solution of second-order equation for sectional rotation
The problem described by Equations (37)–(39), which were derived in Section 2.3.1 and form the basis of the algorithms
used in this article, can be handled analytically. It is convenient to start from the transformed version of these equations
given in (40), because it contains the rotation function 𝜑 as the only unknown. Equation (40) is a nonlinear second-order
differential equation in a special form

𝜑′′ + g(𝜑) = 0 (A1)

and it always allows for a formal “analytical” solution. The usefulness of the result depends on the existence of closed-form
expressions for integrals that are arise in the solution process.

To derive a formal analytical solution, let us first multiply (A1) by 2𝜑′ and then express the resulting equation
as (

𝜑′2 + 2G(𝜑)
)
′ = 0, (A2)

where G is the indefinite integral (antiderivative) of g. The resulting first-order equation

𝜑′2 + 2G(𝜑) = C (A3)

can be handled by separation of variables, which leads to

± d𝜑√
C − 2G(𝜑)

= dx (A4)

and finally to the implicit formula for the solution,

±∫
𝜑(x)

𝜑0

d𝜑√
C − 2G(𝜑)

= x − x0. (A5)

Here, C is an arbitrary integration constant, and 𝜑0 is the value of 𝜑 at x = x0. The sign to be used in front of the integral
corresponds to the sign of the first derivative of 𝜑 in the interval of interest.

When this technique is applied to equation (40), the corresponding function g is given by

g(𝜑) = 1
EI

(
1 + −Xab cos𝜑 + Zab sin𝜑

EA

)
(Xab sin𝜑 + Zab cos𝜑)

= Xab

EI
sin𝜑 + Zab

EI
cos𝜑 +

Z2
ab − X2

ab

2EIEA
sin 2𝜑 − ZabXab

EIEA
cos 2𝜑. (A6)

Integration with respect to 𝜑 is easy and the antiderivative of g can be selected as

G(𝜑) = Xab

EI
(1 − cos𝜑) + Zab

EI
sin𝜑 +

Z2
ab − X2

ab

4EIEA
(1 − cos 2𝜑) − ZabXab

2EIEA
sin 2𝜑. (A7)

For initial conditions

𝜑(0) = 𝜑a, (A8)

𝜑′(0) = 𝜅a, (A9)

we obtain integration constant
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C = 𝜅2
a + 2G(𝜑a) (A10)

expressed in terms of the left-end rotation, 𝜑a, and left-end curvature, 𝜅a.
Up to here, everything has been quite straightforward. However, in the next step we need to evaluate the integral on

the left-hand side of (A5), which is given by

∫
d𝜑√

𝜅2
a + 2G(𝜑a) − 2G(𝜑)

= ∫
d𝜑√

c1 + c2 cos𝜑 + c3 sin𝜑 + c4 cos 2𝜑 + c5 sin 2𝜑
. (A11)

In general, this would be very difficult. In the special case of an axially inextensible beam, the problem is simpli-
fied because coefficients c4 and c5, which multiply the terms with cos 2𝜑 and sin 2𝜑, vanish (they contain EA in the
denominator). The remaining coefficients are given by

c1 = 𝜅2
a − 2Xab

EI
cos𝜑a +

2Zab

EI
sin𝜑a = 𝜅2

a + 2Nab

EI
, (A12)

c2 = 2Xab

EI
, (A13)

c3 = −2Zab

EI
(A14)

in which

Nab = −Xab cos𝜑a + Zab sin𝜑a (A15)

is the normal force at the left end section. Let us introduce auxiliary constants,

Fab =
√

X2
ab + Z2

ab, (A16)

A =
√

c2
2 + c2

3 = 2
EI

√
X2

ab + Z2
ab = 2Fab

EI
, (A17)

𝛼 = − arctan c3

c2
= arctan Zab

Xab
(A18)

and a transformed variable,

𝜑̃ = 𝜑 + 𝛼
2

. (A19)

Their purpose is to replace c2 cos𝜑 + c3 sin𝜑 by A cos 2𝜑̃ = A(1 − 2sin2
𝜑̃). Then we can proceed to the integral

∫
𝜑

𝜑a

d𝜑√
c1 + c2 cos𝜑 + c3 sin𝜑

= ∫
(𝜑+𝛼)∕2

(𝜑a+𝛼)∕2

2 d𝜑̃√
c1 + A(1 − 2sin2

𝜑̃)
= 2√

c1 + A∫
(𝜑+𝛼)∕2

(𝜑a+𝛼)∕2

d𝜑̃√
1 − 2A

c1+A
sin2

𝜑̃

= 2√
c1 + A∫

(𝜑+𝛼)∕2

(𝜑a+𝛼)∕2

d𝜑̃√
1 − k2sin2

𝜑̃

, (A20)

where

k =
√

2A
c1 + A

=

√
4Fab

2(Fab + Nab) + EI𝜅2
a
. (A21)

Recall that Fab given by (A16) is the magnitude of the end force, which is by definition nonnegative. It is worth noting
that the denominator of the fraction under the square root in (A21), given by 2(Fab + Nab) + EI𝜅2

a , is also nonnegative
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because Nab ≥ −Fab. This denominator could be zero only if Nab = −Fab and 𝜅a = 0 (equivalent to Mab = 0), which is the
case of uniaxial tension, leading to the trivial solution 𝜑(x) = 0.

Now we can substitute the right-hand side of (A20) into (A5), setting x0 = 0 and 𝜑0 = 𝜑a and selecting the sign in
front of the integral as sgn 𝜅a, so that it agrees with the sign of 𝜑′ at x = 0. If the curvature at the left end, 𝜅a, happens to
be zero (in cases when the end moment Mab vanishes), the sign should correspond to the expected sign of the curvature
for small positive values of x, which can be deduced from 𝛼 and 𝜑a.

The integral on the left-hand side of (A5) is evaluated for function

G(𝜑) = Xab

EI
(1 − cos𝜑) + Zab

EI
sin𝜑, (A22)

which is the reduced version of (A7) valid for an axially inextensible beam (EA → ∞). Constant C is substituted from
(A10) and the integral is expressed based on (A20). The resulting equation

2 sgn 𝜅a√
c1 + A∫

(𝜑(x)+𝛼)∕2

(𝜑a+𝛼)∕2

d𝜑̃√
1 − k2sin2

𝜑̃

= x (A23)

implicitly defines function 𝜑(x) that describes the sectional rotation.

A.2 Mathematical tools: Elliptic integrals and elliptic functions
The integral on the right-hand side of (A23) is recognized as one of the elliptic integrals. Before we proceed with the
solution, let us recall the definitions of elliptic integrals and elliptic functions, which will later be used in analytical expres-
sions describing the rotation and displacement functions. A systematic overview can be found in standard mathematical
literature, for example, in Reference 27.

The incomplete elliptic integral of the first kind is given by

FJ(𝜑, k) = ∫
𝜑

0

dt√
1 − k2sin2t

. (A24)

If the upper bound in the integral is set to 𝜋∕2, we obtain the complete elliptic integral of the first kind,

K(k) = FJ(𝜋∕2, k) = ∫
𝜋∕2

0

dt√
1 − k2sin2t

. (A25)

The Jacobi amplitude function am(x, k) is the inverse of FJ with respect to𝜑, with k considered as a fixed parameter (again,
usually in the range between 0 and 1). This means that

am(x, k) = 𝜑 (A26)

is equivalent with

x = FJ(𝜑, k). (A27)

The elliptic sine and elliptic cosine are defined as

sn(x, k) = sin(am(x, k)), (A28)
cn(x, k) = cos(am(x, k)) (A29)

and belong to the family of Jacobi elliptic functions. Another useful member of this family is the so-called delta
amplitude

dn(x, k) =
√

1 − k2 sn2(x, k). (A30)
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Finally, the incomplete and complete elliptic integrals of the second kind are defined as

EJ(𝜑, k) = ∫
𝜑

0

√
1 − k2sin2t dt, (A31)

E(k) = EJ(𝜋∕2, k) = ∫
𝜋∕2

0

√
1 − k2sin2t dt. (A32)

In the above expressions, parameter k is usually considered in the range between 0 and 1. The integrals in (A24)
and (A31) are well defined even for k > 1 as long as 𝜑 remains below arcsin(1∕k). However, some implementations of
incomplete elliptic integrals and elliptic functions consider the case of k > 1 as inadmissible, for any 𝜑. One can then
exploit the transformation

FJ(𝜑, k) = ∫
𝜑

0

dt√
1 − k2sin2t

= 1
k∫

arcsin(k sin𝜑)

0

ds√
1 − k−2sin2s

= 1
k

FJ(arcsin(k sin𝜑), 1∕k) (A33)

and use function FJ with parameter k > 1 replaced by its reciprocal value, k̃ = 1∕k < 1. Based on (A33), we can also write

am(x, k) = arcsin
sin am(kx, 1∕k)

k
. (A34)

In terms of the elliptic sine function, formula (A34) can be rewritten in an elegant form

sn(x, k) = 1
k

sn
(

kx, 1
k

)
. (A35)

Analogous expressions can be derived for the other elliptic functions and for the incomplete elliptic integral of the second
kind. In summary, the expressions useful for conversion of k into its reciprocal value read

am(x, k) = arcsin(k̃ sn(x∕k̃, k̃)), (A36)

sn(x, k) = k̃ sn(x∕k̃, k̃), (A37)

cn(x, k) = dn(x∕k̃, k̃), (A38)

dn(x, k) = cn(x∕k̃, k̃), (A39)

FJ(𝜑, k) = k̃ FJ(𝜑̃, k̃), (A40)

EJ(𝜑, k) = EJ(𝜑̃, k̃)∕k̃ + (k̃ − 1∕k̃) FJ(𝜑̃, k̃) (A41)

in which k = 1∕k̃ and k sin𝜑 = sin 𝜑̃.

A.3 Expressions for rotation and displacement functions
Let us get back to the beam deformation problem. Making use of the definition of the incomplete elliptic integral of the
first kind, FJ, Equation (A23) can be written as

2 sgn 𝜅a√
c1 + A

(
FJ

(
𝜑(x) + 𝛼

2
, k
)
− FJ

(
𝜑a + 𝛼

2
, k
))

= x (A42)

from which

𝜑(x) = 2 am (a + bx, k) − 𝛼, (A43)
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where

a = FJ

(
𝜑a + 𝛼

2
, k
)
, (A44)

b =
√

c1 + A
2

sgn 𝜅a. (A45)

This is the analytical solution for the sectional rotation 𝜑 as function of the local coordinate x. Auxiliary constants 𝛼,
k, c1 and A depend on the end forces and moment at the left end of the beam and on the rotation of the left end section
(note that 𝜅a = −Mab∕EI). Of course, not all of these variables are prescribed in advance and they need to be determined
from appropriate boundary conditions.

Based on expression (A43) for the sectional rotation, it is possible to evaluate

sin𝜑(x) = 2 cos 𝛼 sn(a + bx, k) cn(a + bx, k) − sin 𝛼 (1 − 2 sn2(a + bx, k)), (A46)

cos𝜑(x) = 2 sin 𝛼 sn(a + bx, k) cn(a + bx, k) + cos 𝛼 (1 − 2 sn2(a + bx, k)). (A47)

When this is substituted into the right-hand sides of (35)–(36) with 𝜆s set to 1 (in accordance with the assumption of
axial inextensibility), integration of the resulting equations leads to analytical expressions for displacement functions,

us(x) = Cu − x − 2
bk2 dn(a + bx, k) sin 𝛼 +

( 2
bk2 EJ(am(a + bx, k), k) + x − 2x

k2

)
cos 𝛼, (A48)

ws(x) = Cw + 2
bk2 dn(a + bx, k) cos 𝛼 +

( 2
bk2 EJ(am(a + bx, k), k) + x − 2x

k2

)
sin 𝛼 (A49)

in which Cu and Cw are integration constants that need to be determined from the boundary conditions.
In cases when k > 1, the derived formulas for the sectional rotation and centerline displacements can be transformed

into expressions that use parameter k̃ = 1∕k. It is worth noting that the case of k > 1 arises if A > c1, which is equivalent
to 2Fab(1 + cos(𝜑a + 𝛼)) > M2

ab∕EI. Making use of identities (A36), (A39) and (A41), we obtain

𝜑(x) = 2 arcsin(k̃ sn(ã + b̃x, k̃)) − 𝛼, (A50)

us(x) = Cu − x − 2k̃
b̃

cn(ã + b̃x, k̃) sin 𝛼 +
(

2
b̃

EJ(am(ã + b̃x, k̃), k̃) − x
)

cos 𝛼, (A51)

ws(x) = Cw + 2k̃
b̃

cn(ã + b̃x, k̃) cos 𝛼 +
(

2
b̃

EJ(am(ã + b̃x, k̃), k̃) − x
)

sin 𝛼, (A52)

where

k̃ = 1
k
=
√

c1 + A
2A

=

√
2(Fab + Nab) + EI𝜅2

a

4Fab
=

√
sin2𝜑a + 𝛼

2
+

M2
ab

4EIFab
, (A53)

ã = ka =
√

2A
c1 + A

FJ

(
𝜑a + 𝛼

2
, k
)
= FJ

(
arcsin

(
1
k̃

sin 𝜑a + 𝛼
2

)
, k̃
)
, (A54)

b̃ = kb =
√

2A
c1 + A

sgn 𝜅a

2
√

c1 + A =
√

A
2

sgn 𝜅a =
√

Fab

EI
sgn 𝜅a. (A55)

It is worth noting that the solution described by (A43) or (A50) is valid only as long as the sign of the curvature does
not change. If the sign changes inside the interval of interest (0,L) that represents the analyzed beam of length L, formula
(A43) can be used only up to the inflection point of the deformed centerline. A systematic treatment of deformed shapes
with inflection points is presented in Appendix A.6 and leads to formula (A83).
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(A) (B)

α

F

L

a b

α

F φα

F I G U R E A1 Cantilever fixed at its right end and loaded at its left end by an inclined force: (A) Geometry in the undeformed state and
(B) deformed state with 𝛼 denoting the inclination angle of the applied force (positive clockwise) and 𝜑a denoting the left-end rotation
(positive anticlockwise)

A.4 Special cases: Straight beam and uniformly curved beam
The special case with zero denominator in (A21) needs to be treated separately. This happens only if Mab = 0 and Nab =
−Fab, the latter condition leading to sin(𝜑a + 𝛼) = 0. Inspection of the original equation (40) with initial conditions𝜑(0) =
−𝛼 and 𝜑′(0) = 0 shows that, in this particular case, the solution is 𝜑(x) = −𝛼, that is, it is constant. The first derivative,
𝜑′(x), identically vanishes, which explains why the general solution procedure developed in Section A.1 is not applicable
to this particular case (recall that the procedure started by multiplying both sides of the original equations by function
𝜑′(x)).

Another special case arises when Mab ≠ 0 and Xab = Zab = 0, because then c1 = 𝜅2
a , A = 0, 𝛼 is undetermined and

k = 0. For k = 0, functions FJ and “am” reduce to identities, that is, FJ(𝜑, 0) = 𝜑 and am(x, 0) = x. Formulas (A44)–(A45)
yield a = 𝜑a∕2 and b = 𝜅a∕2, and the rotation function is according to (A43) given by

𝜑(x) = 2a + 2bx = 𝜑a + 𝜅ax. (A56)

This is the case of a beam with constant curvature, loaded at its end sections only by two moments of the same
magnitude but opposite orientations.

A.5 Example: Cantilever loaded by an inclined force
As a more challenging example, consider a cantilever fixed at its right end and loaded at its left end by a force of magnitude
F along an inclined line. The horizontal and vertical components of the applied force correspond to the left-end forces Xab
and Zab, and formula (A18) indicates that parameter 𝛼 used by the analytical solution is equal to the angle by which the
oriented direction of the force deviates from the x-axis, measured clockwise. Therefore, this angle can be directly denoted
as 𝛼 and considered as a given quantity, as shown in Figure A1. The left-end moment, Mab, is set equal to zero.

Without loss of generality, we can assume that 𝛼 ∈ [0, 𝜋), and it is reasonable to expect that the curvature 𝜅(x) has a
negative sign for x ∈ (0,L] and that 𝛼 + 𝜑a ∈ [0, 𝜋]. Auxiliary constants needed to construct the analytical solution are
now evaluated as follows:

k̃ = sin 𝛼 + 𝜑a

2
, (A57)

ã = FJ
(
arcsin 1, k̃

)
= FJ(𝜋∕2, k̃) = K(k̃), (A58)

b̃ = −
√

F
EI
. (A59)

Note that 𝛼 is a given angle while the value of the left-end rotation, 𝜑a, is related to the applied force F and increases
from 0 to positive values that never exceed 𝜋 − 𝛼 (unless 𝛼 = 𝜋, in which case the beam is under axial tension and 𝜑a
remains equal to 0). Parameter k̃ given by (A57) never exceeds 1, and so it is preferable to use elliptic functions and elliptic
integrals with parameter k̃ and not k. In the evaluation of parameter b̃ according to formula (A55), we have replaced
sgn𝜅a, which would be zero, by the signum of the curvature in the neighborhood of the left end, which is expected to be
−1 if 𝛼 ∈ (0, 𝜋). This explains the negative sign in (A59).
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The analytical solution for the rotation function is given in (A50), and substitution into boundary condition 𝜑(L) = 0
leads to

2 arcsin(k̃ sn(ã + b̃L, k̃)) − 𝛼 = 0, (A60)

which is satisfied if

ã + b̃L = FJ

(
arcsin

(
1
k̃

sin 𝛼
2

)
, k̃
)
. (A61)

Based on expressions (A57)–(A59) for k̃, ã and b̃, it is possible to rewrite (A61) as an equation linking the applied force,
F, to the left-end rotation, 𝜑a:

L
√

F
EI

= K
(

sin 𝛼 + 𝜑a

2

)
− FJ

(
arcsin

√
1 − cos 𝛼

1 − cos(𝛼 + 𝜑a)
, sin 𝛼 + 𝜑a

2

)
. (A62)

Instead of solving this nonlinear equation numerically for each given value of F, one can use a parametric descrip-
tion with 𝜑a considered as a control parameter that varies in a suitable range. It is convenient to introduce auxiliary
functions

B(𝜑) = K
(

sin 𝛼 + 𝜑
2

)
− FJ

(
arcsin

√
1 − cos 𝛼

1 − cos(𝛼 + 𝜑)
, sin 𝛼 + 𝜑

2

)
, (A63)

D(𝜑) = EJ

(
arcsin

√
1 − cos 𝛼

1 − cos(𝛼 + 𝜑)
, sin 𝛼 + 𝜑

2

)
. (A64)

Function B(𝜑a) represents the right-hand side of (A62), and D(𝜑a) will prove to be useful in the formulas for
displacements.

For a given series of values of 𝜑a, the corresponding forces

F = EI
L2 B2(𝜑a) (A65)

can be evaluated from (A62). The displacement functions are then given by (A51)–(A52), in which integration constants
Cw and Cu are determined from boundary conditions us(L) = 0 and ws(L) = 0. The resulting displacements at the left end
of the cantilever turn out to be

ua = us(0) = L(1 + cos 𝛼) − L sin 𝛼
B(𝜑a)

√
2 cos 𝛼 − 2 cos(𝛼 + 𝜑a) −

2L cos 𝛼
B(𝜑a)

(
E
(

sin 𝛼 + 𝜑a

2

)
− D(𝜑a)

)
, (A66)

wa = ws(0) = L sin 𝛼 + L cos 𝛼
B(𝜑a)

√
2 cos 𝛼 − 2 cos(𝛼 + 𝜑a) −

2L sin 𝛼
B(𝜑a)

(
E
(

sin 𝛼 + 𝜑a

2

)
− D(𝜑a)

)
. (A67)

The end displacement projected onto the direction of applied force is then easily evaluated as

uF = ua cos 𝛼 + wa sin 𝛼 = L(1 + cos 𝛼) − 2L
B(𝜑a)

(
E
(

sin 𝛼 + 𝜑a

2

)
− D(𝜑a)

)
. (A68)

As a special case, consider an axially compressed cantilever, characterized by 𝛼 = 0. For 𝜑 > 0, the auxiliary functions
defined in (A63)–(A64) simplify to

B(𝜑) = K
(

sin 𝜑
2

)
, (A69)

D(𝜑) = 0, (A70)
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and thus formulas (A65)–(A67) yield

F = EI
L2 K2

(
sin 𝜑a

2

)
, (A71)

ua = 2L
⎛⎜⎜⎜⎝1 −

E
(

sin 𝜑a
2

)
K
(

sin 𝜑a
2

)⎞⎟⎟⎟⎠ , (A72)

wa =
2L sin 𝜑a

2

K
(

sin 𝜑a
2

) . (A73)

We have excluded the case of 𝜑a = 0, which leads to undetermined fractions in the definitions of B and D. However,
the derived formulas (A71)–(A73) have no singularity at 𝜑a = 0. Since E(0) = 𝜋∕2 and K(0) = 𝜋∕2, we obtain from (A71)
the Euler critical force F = EI𝜋2∕(4L2) and from (A72)–(A73) zero displacements ua and wa at the onset of buckling of a
perfectly straight cantilever.

The analytical solution derived for 𝛼 = 0 is used as a reference in Section 4.3. Other special cases, 𝛼 = 𝜋∕3 and 𝛼 =
2𝜋∕3, are exploited in the analysis of a periodic hexagonal cell in Section 4.5.

A.6 Analytical solution with an inflection point
The solution described by (A43) or (A50) is valid only as long as the sign of the curvature does not change. If the sign
changes inside the interval of interest [0,L] representing a beam of length L, these formulas can be used only up to the
inflection point of the deformed centerline. Let us denote the initial coordinate of the inflection point by xin and the
corresponding value of rotation by 𝜑in = 𝜑(xin). The curvature sign changes from sgn 𝜅a to sgn 𝜅b = −sgn 𝜅a at point
x = xin characterized by the condition 𝜑′(xin) = 0, which is the case if 2G(𝜑in) = C where C is the integration constant
defined in (A10) and G is the function defined in (A22).

Suppose that xin and 𝜑in are known. Equations (A23) and (A42)–(A43) are valid for x ∈ [0, xin]. By substituting x = xin
and 𝜑 = 𝜑in into (A42), we get the identity

2 sgn 𝜅a√
c1 + A

(
FJ

(
𝜑in + 𝛼

2
, k
)
− FJ

(
𝜑a + 𝛼

2
, k
))

= xin. (A74)

For x ∈ [xin,L], Equation (A42) is replaced by

−
2 sgn 𝜅a√

c1 + A

(
FJ

(
𝜑(x) + 𝛼

2
, k
)
− FJ

(
𝜑in + 𝛼

2
, k
))

= x − xin. (A75)

The key point here is that the values of auxiliary constants c1, A, k, and 𝛼 are the same as for x ∈ [0, xin]. Therefore, it is
possible to eliminate xin by taking the sum of (A74) and (A75), which leads to

2 sgn 𝜅a√
c1 + A

(
2FJ

(
𝜑in + 𝛼

2
, k
)
− FJ

(
𝜑(x) + 𝛼

2
, k
)
− FJ

(
𝜑a + 𝛼

2
, k
))

= x. (A76)

The formal analytical solution valid for x ∈ [xin,L] thus reads

𝜑(x) = 2am

(
2FJ

(
𝜑in + 𝛼

2
, k
)
− FJ

(
𝜑a + 𝛼

2
, k
)
− (sgn 𝜅a)

√
c1 + A

2
x, k

)
− 𝛼. (A77)

This expression still contains the rotation at the inflection point, 𝜑in. We will now show how 𝜑in could be deter-
mined, but at the same time it will turn out that its value is actually not needed, because the integral that corresponds to
FJ ((𝜑in + 𝛼)∕2, k) can be converted into a quantity that depends only on the given parameters.

As already mentioned, 𝜑in satisfies condition 2G(𝜑in) = C, which can be rewritten as
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Xab

EI
(1 − cos𝜑in) +

Zab

EI
sin𝜑in = Xab

EI
(1 − cos𝜑a) +

Zab

EI
sin𝜑a +

1
2
𝜅2

a (A78)

and further transformed into

cos(𝜑in + 𝛼) = cos(𝜑a + 𝛼) −
EI

2Fab
𝜅2

a . (A79)

Therefore, the value of 𝜑in, representing the rotation at the inflection point (i.e., a local extreme of the rotation), can be
expressed as

𝜑in = ± arccos
(

cos(𝜑a + 𝛼) −
EI

2Fab
𝜅2

a

)
− 𝛼 + 2n𝜋, (A80)

where the sign before arccos and the integer n are selected depending on the value of 𝜑a and the sign of 𝜅a such that
sgn(𝜑in − 𝜑a) = sgn 𝜅a and |𝜑in − 𝜑a| is minimized among all roots satisfying this constraint.

In fact, what matters more than the precise value of𝜑in is that if 𝜑̃ is set to (𝜑in + 𝛼)∕2, the denominator of the integral
in (A23) vanishes. In other words, 𝜑̃in = (𝜑in + 𝛼)∕2 satisfies condition

1 − k2sin2
𝜑̃in = 0 (A81)

from which

𝜑̃in = ± arcsin 1
k
. (A82)

Consequently, when we evaluate the analytical solution (A77), the term that depends on 𝜑in can be according to (A82)
expressed as

FJ

(
𝜑in + 𝛼

2
, k
)
= FJ (𝜑̃in, k) =

1
k

FJ

(
arcsin (k sin 𝜑̃in) ,

1
k

)
= 1

k
FJ

(
±𝜋

2
,

1
k

)
= ±1

k
K
(1

k

)
. (A83)

The sign to be selected in (A83) corresponds to the sign of 𝜑̃in, which is the same as the sign of 𝜅a. Making use of (A83)
with the proper sign, formula (A77) can be rewritten as

𝜑(x) = 2 am

(
2 sgn 𝜅a

k
K
(1

k

)
− FJ

(
𝜑a + 𝛼

2
, k
)
− (sgn 𝜅a)

√
c1 + A

2
x, k

)
− 𝛼, xin ≤ x ≤ L, (A84)

in which

xin =
2 sgn 𝜅a√

c1 + A

(1
k

K
(1

k

)
− FJ

(
𝜑a + 𝛼

2
, k
))

. (A85)

APPENDIX B. CRITICAL LOAD FOR AN AXIALLY COMPRESSIBLE CANTILEVER

Stability of an elastic equilibrium state can be evaluated based on the second variation of the potential energy functional.
Formally, the second variation of a functional Π(u) can be defined as the second Gateaux derivative, that is, as

𝛿2Π(u, 𝛿u) = d2Π(u + h 𝛿u)
dh2

|||h=0
. (B1)

When this definition is applied to the potential energy of a beam Ep given by (9), considered as a functional dependent on
centerline displacement functions us and ws, a careful processing of formula (B1) leads to a relatively lengthy expression.
However, we are primarily interested in stability of the solution that corresponds to a beam that still remains straight but
is uniformly compressed.
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To be specific, consider a cantilever of length L, fixed at its right end and loaded at its left end by a compressive force P.
The state of uniform compression is characterized by displacement functions us(x) = (𝜆s − 1)(L − x) and ws(x) = 0 where

𝜆s = 1 − P
EA

(B2)

is a given positive constant that represents the (uniform) stretch of the beam axis. The load P > 0 is considered as com-
pressive, and so 0 < 𝜆s < 1. The second variation of potential energy evaluated for such a particular state turns out to
be

𝛿2Ep(𝛿us, 𝛿ws) = ∫
L

0
EA

(
𝛿u′2

s + 𝜆s − 1
𝜆s

𝛿w′2
s

)
dx + ∫

L

0

EI
𝜆2

s
𝛿w′′2

s dx. (B3)

The dependence on the state at which the second variation is taken (i.e., on us and ws) is not marked explicitly on the
left-hand side of (B3), because the presented expression for the second variation is not valid for general us and ws but only
for the special case of a uniformly compressed beam, which is fully described by the scalar parameter 𝜆s.

If there exist admissible variations 𝛿us and 𝛿ws for which 𝛿2Ep < 0, the considered equilibrium state (straight uni-
formly compressed beam) is unstable. To find the critical load associated with the onset of instability, we look for the
minimum value of P (and thus maximum value of 𝜆s) for which 𝛿2Ep ≤ 0 for some nonzero combination of admissible
variations 𝛿us and 𝛿ws. Since the contribution of 𝛿us to the right-hand side of (B3) is always nonnegative, the most “dan-
gerous” case occurs when 𝛿us = 0. Also, since (B3) contains only the first and second derivatives of function 𝛿w but not
the function itself, we can introduce function 𝛿𝜑 = −𝛿w′

s and then search for nonzero 𝛿𝜑 that satisfies boundary condition
𝛿𝜑(L) = 0 (clamped right end) and the inequality

∫
L

0
EA𝜆s − 1

𝜆s
𝛿𝜑2 dx + ∫

L

0

EI
𝜆2

s
𝛿𝜑

′2 dx ≤ 0. (B4)

It is clear that if 𝜆s ≥ 1, the left-hand side of (B4) is positive for any nonzero 𝛿𝜑. Therefore, stability cannot be lost in
tension (for the present model). The question is what happens in compression, when the factor (𝜆s − 1)∕𝜆s multiplying
𝛿𝜑2 becomes negative. Since we restrict attention to 𝜆s > 0, condition (B4) can be rewritten as

EA
EI
𝜆s(1 − 𝜆s) ≥ ∫ L

0 𝛿𝜑
′2 dx

∫ L
0 𝛿𝜑2 dx

(B5)

and finally, based on (B2), it can be converted into

P
EI

(
1 − P

EA

) ≥ ∫ L
0 𝛿𝜑

′2 dx

∫ L
0 𝛿𝜑2 dx

. (B6)

To find the critical value of P, we need to minimize the right-hand side of (B6) over the set of all nonzero functions 𝛿𝜑
that satisfy the boundary condition 𝛿𝜑(L) = 0. Minimization of the fraction on the right-hand side of (B6) can be replaced
by minimization of the numerator subject to the constraint that the denominator be equal to 1. Introducing a Lagrange
multiplier Λ to enforce this constraint, we end up with the differential eigenvalue problem

𝛿𝜑′′ + Λ 𝛿𝜑 = 0 (B7)

supplemented by boundary conditions 𝛿𝜑′(0) = 0 and 𝛿𝜑(L) = 0. The smallest eigenvalue Λ = 𝜋2∕(4L2) then repre-
sents the minimum value of the fraction on the right-hand side of (B6), attained by setting 𝛿𝜑(x) = cos 𝜋x

2L
. Conse-

quently, stability of the solution that corresponds to a uniformly compressed beam is lost if the applied load satisfies
condition

P
EI

(
1 − P

EA

) ≥ 𝜋2

4L2 . (B8)
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In the limit of EA → ∞, the left-hand side of (B8) reduces to P∕EI and the smallest load for which the condition holds is
the Euler critical load

PE = EI𝜋2

4L2 . (B9)

For a finite value of EA, the critical load

Pcr =
EA
2

(
1 −

√
1 − EI𝜋2

EAL2

)
= EA

(
1
2
−
√

1
4
− PE

EA

)
(B10)

is found as the smaller root of the quadratic equation

P
EI

(
1 − P

EA

)
− 𝜋2

4L2 = 0. (B11)

Typically, EA ≫ PE, and the “exact” expression from formula (B10) can be approximated as follows:

Pcr =
EA
2

(
1 −

√
1 − 4PE

EA

)
≈ EA

2

(
1 −

(
1 − 2PE

EA
−

2P2
E

(EA)2

))
= PE

(
1 + PE

EA

)
. (B12)

This confirms that Pcr → PE as EA → ∞, which is not so obvious from (B10).
It is worth noting that the largest possible critical load Pcr = EA∕2 is obtained from formula (B10) for EA = 4PE and

stability would never be lost if EA < 4PE, that is, if EAL2∕EI < 𝜋2. However, this is already far from the range in which the
adopted assumptions are physically meaningful. The objective here is to describe slender beams, which buckle at strains
that can still be considered as small. This is true only if Pcr ≪ EA or, equivalently, EI𝜋2 ≪ 4EAL2. The calculations in the
article have been done for EAL2∕EI = 100 and 10,000, which is indeed much larger than 𝜋2.


