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Abstract: We study the wave inequality with a Hardy potential

∂ttu − ∆u +
λ
|x|2 u ≥ |u|

p in (0,∞) × Ω,

where Ω is the exterior of the unit ball in RN , N ≥ 2, p > 1, and λ ≥ −
(N−2

2
)2, under the inhomogeneous

boundary condition
α ∂u∂ν (t, x) + βu(t, x) ≥ w(x) on (0,∞) × ∂Ω,

where α, β ≥ 0 and (α, β) ≠ (0, 0). Namely, we show that there exists a critical exponent pc(N, λ) ∈ (1,∞]
for which, if 1 < p < pc(N, λ), the above problem admits no global weak solution for any w ∈ L1(∂Ω) with∫
∂Ω w(x) dσ > 0, while if p > pc(N, λ), the problem admits global solutions for some w > 0. To the best of

our knowledge, the study of the critical behavior for wave inequalities with a Hardy potential in an exterior
domain was not considered in previous works. Some open questions are also mentioned in this paper.
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1 Introduction
In this paper, we are concerned with the study of existence and nonexistence of global weak solutions to the
wave inequality

�u + λ
|x|2 u ≥ |u|

p in (0,∞) × Ω. (1.1)

Here, � := ∂tt − ∆ is the wave operator, Ω = {x ∈ RN : |x| ≥ 1}, N ≥ 2, p > 1, and λ ≥ −
(N−2

2
)2. We will

investigate (1.1) under the inhomogeneous boundary condition

α ∂u∂ν (t, x) + βu(t, x) ≥ w(x) on (0,∞) × ∂Ω, (1.2)

where α, β ≥ 0, (α, β) = ̸ (0, 0), w ∈ L1(∂Ω), and ν denotes the outward unit normal vector on ∂Ω relative to Ω.
Notice that (1.2) includes di�erent types of inhomogeneous boundary conditions. Namely, the Dirichlet type
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boundary condition (in the case (α, β) = (0, 1))

u(t, x) ≥ w(x) on (0,∞) × ∂Ω,

the Neumann type boundary condition (in the case (α, β) = (1, 0))

∂u
∂ν (t, x) ≥ w(x) on (0,∞) × ∂Ω,

and the Robin type boundary condition (in the case α = 1 and β > 0)

∂u
∂ν (t, x) + βu(t, x) ≥ w(x) on (0,∞) × ∂Ω.

Let us consider the semilinear wave equation{
�u + V(x)u = |u|p in (0,∞) ×RN ,
(u(0, x), ∂tu(0, x)) = (u0(x), u1(x)) in RN ,

(1.3)

where V = V(x) is a potential, and let pc(N) be the positive root of the quadratic equation

(N − 1)p2 − (N + 1)p − 2 = 0.

In the special case V ≡ 0, (1.3) has been investigated by several authors. Namely, John [12] proved that, if the
initial values are compactly supported and nonnegative, then for N = 3 and 1 < p < pc(3) = 1+

√
2, nontrivial

solutions must blow-up in �nite time, while if p > pc(3), global solutions exist for small initial values. Next,
a similar result has been derived by Glassey [6] in the case N = 2. In [19], Sha�er proved that in the case
N ∈ {2, 3}, pc(N) belongs to the blow-up case. Georgiev et al. [5] (see also [15, 21]) proved that, if p > pc(N)
and N ≥ 3, then global solutions exist for small initial values. A blow-up result was shown by Sideris [20] (see
also [9, 18]) in the case 1 < p < pc(N) and N ≥ 4. In [23], Yordanov and Zhang proved that for all N ≥ 4, pc(N)
belongs to the blow-up case.

In [22], Yordanov and Zhang studied (1.3) when N ≥ 3 and V is a nonnegative potential satisfying the
following conditions:
“There exist functions ϕi ∈ C2(RN), i = 0, 1, such that

∆ϕ0 − Vϕ0 = 0 and ∆ϕ1 − Vϕ1 = ϕ1,

where C−10 ≤ ϕ0(x) ≤ C0 and 0 < ϕ1(x) ≤ C1(1 + |x|)
−(N−1)

2 e|x| with positive constants Ci, i = 0, 1”.
It was shown that, if the initial values are nonnegative and compactly supported, then a blow-up occurs

when 1 < p < pc(N).
In [7], Hamidi and Laptev considered semilinear evolution inequalities of the form

∂ku
∂tk

− ∆u + λ
|x|2 u ≥ |u|

p in (0,∞) ×RN , (1.4)

where k ≥ 1 (integer), N ≥ 3 and λ ≥ −
(N−2

2
)2. It was shown that when the initial values are nonnegative, if

λ ≥ 0 and 1 < p ≤ 1 + 2
s* + 2

k

or

−
(
N − 2
2

)2
≤ λ < 0 and 1 < p ≤ 1 + 2

−s* + 2
k
,

where s* < s* are the roots of the polynomial

s2 + (N − 2)s − λ = 0,

then (1.4) admits no nontrivial global weak solution.
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The study of blow-up phenomena for semilinear wave equations in exterior domains was considered by
many authors (see e.g. [8, 10, 11, 13, 14, 24, 25] and the references therein). In particular, Zhang [24] studied
the semilinear wave equation

�u = |u|p in (0,∞) × Ω (1.5)

under the inhomogeneous Neumann boundary condition

∂u
∂ν (t, x) = w(x) on (0,∞) × ∂Ω, (1.6)

where N ≥ 3, w ∈ L1(∂Ω), w ≥ 0, and w ≢ 0. Namely, it was shown that (1.5)–(1.6) admits as critical exponent
the real number p* = 1 + 2

N−2 , i.e. if 1 < p < p*, then (1.5)–(1.6) admits no global weak solution, while if
p > p*, global solutions exist for some w > 0. Later, the same critical exponent was obtained for (1.5) under
the inhomogeneous Dirichlet boundary condition [10]

u(t, x) = w(x) on (0,∞) × ∂Ω, (1.7)

and the Robin boundary condition [8]

∂u
∂ν (t, x) + u = w(x) on (0,∞) × ∂Ω. (1.8)

To enlarge the literature reviewon themain topic of this article,we recall the studyof blow-upof solutions
carried out by Mohammed et al. [17], for fully nonlinear uniformly elliptic equations. Also, we mention the
recent work of Bahrouni et al. [1], where the authors dealt with a class of double phase variational functionals
related to the study of transonic �ow, and established useful integral inequalities. In a series of remarkable
papers, Cîrstea and Rădulescu [2–4] focused on special classes of semilinear elliptic equations (namely, lo-
gistic equations) and linked the nonregular variation of the nonlinearity at in�nity with the blow-up rate of
the solutions. They also established existence and uniqueness results for related problems, in the cases of
homogeneous Dirichlet, Neumann or Robin boundary condition.

To the best of our knowledge, the study of critical behavior for wave inequalities with Hardy potential in
an exterior domain was not considered in previous works. In this paper, we investigate the critical behavior
for (1.1) under the inhomogeneous boundary condition (1.2). Namely, we will show that there exists a critical
exponent pc(N, λ) ∈ (1,∞] for which, when 1 < p < pc(N, λ) and

∫
∂Ω w(x) dσ > 0, (1.1)–(1.2) has no global

weak solution; when p > pc(N, λ), the problem admits global solutions for some w > 0.
Before presenting our results, let us mention in which sense the solutions to (1.1)–(1.2) are considered.

Let
O = (0,∞) × Ω and ∂O = (0,∞) × ∂Ω.

We introduce the test function space

Φα,β =
{
φ ∈ C2c (O) : φ ≥ 0,

∂φ
∂ν ∂O

≤ 0 if α = 0, α ∂φ∂ν + βφ
∂O

= 0
}
,

where C2c (O) denotes the space of C2 functions compactly supported inO. Notice thatΩ is closed and ∂O ⊂ O.

De�nition 1.1. A function u ∈ Lploc(O) is a global weak solution to (1.1)–(1.2), if∫
O

|u|pφ dx dt + Lφ(w) ≤
∫
O

u
(
�φ + λ

|x|2 φ
)
dx dt, (1.9)

for all φ ∈ Φα,β, where

Lφ(w) =



1
α

∫
∂O

w(x)φ dσ dt if α > 0,

−1
β

∫
∂O

w(x)∂φ∂ν dσ dt if α = 0.
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Now, we are ready to state our main results. We discuss separately the cases λ = −
(N−2

2
)2 and λ > −

(N−2
2
)2.

For λ ≥ −
(N−2

2
)2, let

λN =

√(
N − 2
2

)2
+ λ.

Theorem 1.1. Let N ≥ 2, α, β ≥ 0, (α, β) = ̸ (0, 0) and λ = −
(N−2

2
)2.

(i) If N = 2, w ∈ L1(∂Ω) and
∫
∂Ω

w(x) dσ > 0, then for all p > 1, (1.1)–(1.2) admits no global weak solution.

(ii) If N ≥ 3, w ∈ L1(∂Ω) and
∫
∂Ω

w(x) dσ > 0, then for all

1 < p < 1 + 4
N − 2 ,

(1.1)–(1.2) admits no global weak solution.
(iii) If N ≥ 3 and

p > 1 + 4
N − 2 ,

then (1.1)–(1.2) admits global solutions (stationary solutions) for some w > 0.

Theorem 1.2. Let N ≥ 2, α, β ≥ 0, (α, β) = ̸ (0, 0) and λ > −
(N−2

2
)2.

(i) If w ∈ L1(∂Ω) and
∫
∂Ω

w(x) dσ > 0, then for all

1 < p < 1 + 4
N − 2 + 2λN

,

(1.1)–(1.2) admits no global weak solution.
(ii) If

p > 1 + 4
N − 2 + 2λN

,

then (1.1)–(1.2) admits global solutions (stationary solutions) for some w > 0.

Remark 1.1. Let

pc(N, λ) =


∞ if N − 2 + 2λN = 0,

1 + 4
N−2+2λN if N − 2 + 2λN > 0.

From Theorems 1.1 and 1.2, one deduces that,
(i) if 1 < p < pc(N, λ) and

∫
∂Ω

w(x) dσ > 0, then (1.1)–(1.2) has no global weak solution;

(ii) if p > pc(N, λ), then (1.1)–(1.2) admits global solutions for some w > 0.

The above statements show that the exponent pc(N, λ) is critical for (1.1)–(1.2).
Notice that in the case λ = 0, one has

pc(N, 0) =


∞ if N = 2,

1 + 2
N−2 if N ≥ 3,

which is the same critical exponent obtained for the semilinear wave equation (1.5) under the inhomogeneous
Neumann boundary condition (1.6) (see [24]), the inhomogeneous Dirichlet boundary condition (1.7) (see [10]),
and the inhomogeneous Robin boundary condition (1.8) (see [8]).
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Remark 1.2. From Theorems 1.1 and 1.2, we deduce that pc(N, λ) is also critical for the exterior problem
−∆u + λ

|x|2 u ≥ |u|p in Ω,

α ∂u∂ν + βu ≥ w on ∂Ω.

(1.10)

Namely, if 1 < p < pc(N, λ) and
∫
∂Ω

w(x) dσ > 0, then (1.10) admits no weak solution, while if p > pc(N, λ), then

(1.10) admits solutions for some w > 0.

Remark 1.3. At this time, if N − 2 + 2λN > 0, we do not know whether p = pc(N, λ) belongs to the nonexistence
case or not. This question is open.

Remark 1.4. (i) In this paper, the inhomogeneous term w depends only on the variable space. It would be
interesting to study the critical behavior for (1.1)–(1.2) when w = w(t, x).

(ii) It would be also interesting to study the critical behavior for (1.1)–(1.2) when w ≡ 0.

The rest of the paper is organized as follows. In Section 2, we establish some lemmas and provide some esti-
mates that will be used in the proofs of ourmain results. Section 3 is devoted to the proofs of Theorems 1.1 and
1.2. Namely, we �rst prove the nonexistence results (parts (i) and (ii) of Theorem 1.1, and part (i) of Theorem
1.2), next we prove the existence results (part (iii) of Theorem 1.1 and part (ii) of Theorem 1.2).

2 Preliminaries
For λ ≥ −

(N−2
2
)2, let ∆λ be the di�erential operator de�ned by

∆λ := ∆ −
λ
|x|2 .

For α, β ≥ 0 and (α, β) = ̸ (0, 0), we introduce the function Hα,β de�ned in Ω by

Hα,β(x) =


H(1)
α,β(x) if λ = −

(N−2
2
)2 ,

H(2)
α,β(x) if λ > −

(N−2
2
)2 ,

where
H(1)
α,β(x) = |x|

2−N
2

[
α +
(
β + (N − 2)α

2

)
ln |x|

]
and

H(2)
α,β(x) = |x|

2−N
2 +λN

[
β +
(
N − 2
2 + λN

)
α +
((

2 − N
2 + λN

)
α − β

)
|x|−2λN

]
.

One can check easily that Hα,β is a nonnegative solution to the exterior problem
−∆λHα,β = 0 in Ω,

α
∂Hα,β
∂ν + βHα,β = 0 on ∂Ω.

We need also to introduce two cut-o� functions. Let η, ξ ∈ C∞(R) be such that

η ≥ 0, η ≢ 0, supp(η) ⊂ (0, 1)
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and
0 ≤ ξ ≤ 1, ξ (s) = 1 if |s| ≤ 1, ξ (s) = 0 if |s| ≥ 2.

For 0 < T < ∞, let

HT(x) = Hα,β(x)ξ
(
|x|2

T2θ

)`

, x ∈ Ω

and

ηT(t) = η
(
t
T

)`

, t > 0,

where ` ≥ 2 and θ > 0 are constants to be chosen later.

Lemma 2.1. For all ` ≥ 2, θ > 0, and su�ciently large T, the function

φT(t, x) := ηT(t)HT(x), (t, x) ∈ O

belongs to the test function space Φα,β.

Proof. It can be easily seen that φT ≥ 0, and for su�ciently large T, φT ∈ C2c (O). On the other hand, for
1 < |x| < 1 + ϵ (ϵ > 0 is su�ciently small), one has

∇HT(x) = ξ
(
|x|2

T2θ

)`

∇Hα,β(x) + 2`T−2θ|x|Hα,β(x)ξ
(
|x|2

T2θ

)`−1
∇ξ
(
|x|2

T2θ

)
.

By the de�nition of the cut-o� function ξ , since T is supposed to be large enough, one obtains

∇HT(x) = ∇Hα,β(x), 1 < |x| < 1 + ϵ.

Similarly, one has

HT(x) = Hα,β(x)ξ
(
|x|2

T2θ

)`

= Hα,β(x), 1 < |x| < 1 + ϵ.

Then, since Hα,β satis�es the boundary condition

α
∂Hα,β
∂ν + βHα,β = 0 on ∂Ω,

one deduces that
α ∂φT∂ν + βφT

∂O
= η(t)

(
α
∂Hα,β
∂ν + βHα,β ∂Ω

)
= 0.

Next, we take α = 0. If λ = −
(N−2

2
)2, for r = |x|, one has

∂HT
∂ν ∂Ω

=
∂Hα,β
∂ν ∂Ω

= −
∂H(1)

α,β
∂r r=1

= −β < 0. (2.1)

If λ > −
(N−2

2
)2, one has

∂HT
∂ν ∂Ω

=
∂Hα,β
∂ν ∂Ω

= −
∂H(2)

α,β
∂r r=1

= −2λNβ < 0. (2.2)

Hence, if α = 0, in both cases, we have
∂HT
∂ν ∂Ω

< 0,

which yields (since η ≥ 0)
∂φT
∂ν ∂O

≤ 0,

and the lemma is proved.

Throughout this paper, C denotes a positive constant (independent of T) whose value may change from line
to line.
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Lemma 2.2. For all 0 < T < ∞ and ` ≥ 2, we have
∞∫
0

ηT(t) dt = CT .

Proof. By the de�nition of the function ηT , and using the properties of the cut-o� function η, one obtains
∞∫
0

ηT(t) dt =
∞∫
0

η
(
t
T

)`

dt

=
T∫

0

η
(
t
T

)`

dt

= T
1∫

0

η(s)` ds,

and the lemma is proved.

Lemma 2.3. Let m > 1. For all 0 < T < ∞ and ` ≥ 2m
m−1 , we have

∞∫
0

ηT(t)
−1
m−1 |η′′T(t)|

m
m−1 dt ≤ CT1−

2m
m−1 .

Proof. It can be easily seen that

|η′′T(t)| ≤ CT−2η
(
t
T

)`−2
, 0 < t < T .

Hence, one obtains
∞∫
0

ηT(t)
−1
m−1 |η′′T(t)|

m
m−1 dt =

T∫
0

ηT(t)
−1
m−1 |η′′T(t)|

m
m−1 dt

≤ CT
−2m
m−1

T∫
0

ηT(t)`−
2m
m−1 dt

= CT1−
2m
m−1

1∫
0

η(s)`−
2m
m−1 ds,

which yields the desired estimate.

Lemma 2.4. Let λ = −
(N−2

2
)2. For all θ > 0, ` ≥ 2, and su�ciently large T, we have∫

Ω

HT(x) dx ≤ CT
θ(N+2)

2 ln T .

Proof. By the de�nition of the function HT (as well as the function Hα,β), and the properties of the cut-o�
function ξ , for su�ciently large T, one has∫

Ω

HT(x) dx =
∫
Ω

H(1)
α,β(x)ξ

(
|x|2

T2θ

)`

dx

=
∫

|x|>1

|x|
2−N
2

[
α +
(
β + (N − 2)α

2

)
ln |x|

]
ξ
(
|x|2

T2θ

)`

dx
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≤ T
θ(N+2)

2

∫
T−θ<|y|<

√
2

|y|
2−N
2

[
α +
(
β + (N − 2)α

2

)
ln
(
Tθ|y|

)]
dy.

Observe that
β + (N − 2)α

2 = 0 ⇐⇒ β = 0 and N = 2.

So, if β = 0 and N = 2, one obtains∫
Ω

HT(x) dx ≤ αT
θ(N+2)

2

∫
T−θ<|y|<

√
2

|y|
2−N
2 dy

≤ αT
θ(N+2)

2

∫
0<|y|<

√
2

|y|
2−N
2 dy

≤ CT
θ(N+2)

2

√
2∫

ρ=0

ρ
N
2 dρ,

that is, ∫
Ω

HT(x) dx ≤ CT
θ(N+2)

2 . (2.3)

If β > 0 or N ≥ 3, one obtains β + (N−2)α
2 > 0 and∫

Ω

HT(x) dx ≤ CT
θ(N+2)

2 ln T
∫

T−θ<|y|<
√
2

|y|
2−N
2 dy

≤ CT
θ(N+2)

2 ln T

√
2∫

ρ=0

ρ
N
2 dρ,

that is, ∫
Ω

HT(x) dx ≤ CT
θ(N+2)

2 ln T . (2.4)

Hence, (2.3) and (2.4) yield the desired estimate.

Lemma 2.5. Let λ > −
(N−2

2
)2. For all θ > 0, ` ≥ 2, and su�ciently large T, we have∫

Ω

HT(x) dx ≤ CTθ(
N+2
2 +λN).

Proof. In this case, one has

Hα,β(x) = H(2)
α,β(x) = O

(
|x|

2−N
2 +λN

)
, as |x| → ∞.

Hence, for su�ciently large T, we obtain∫
Ω

HT(x) dx =
∫

|x|>1

H(2)
α,β(x)ξ

(
|x|2

T2θ

)`

dx

= TNθ
∫

T−θ<|y|<
√
2

H(2)
α,β(T

θy)ξ (|y|2)` dy

≤ CTθ(
N+2
2 +λN)

∫
0<|y|<

√
2

|y|
2−N
2 +λN dy
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= CTθ(
N+2
2 +λN)

√
2∫

ρ=0

ρ
N
2 +λN dρ,

which yields the desired estimate.

Lemma 2.6. Let λ = −
(N−2

2
)2 and m > 1. For all θ > 0, ` ≥ 2m

m−1 , and su�ciently large T, we have∫
Ω

HT(x)
−1
m−1 |∆λHT |

m
m−1 dx ≤ CTθ(

N+2
2 −

2m
m−1 ) ln T .

Proof. For all x ∈ Ω, one has

−∆λHT(x) =
(
−∆ + λ

|x|2

)[
H(1)
α,β(x)ξ

(
|x|2

T2θ

)`
]

= −∆
[
H(1)
α,βξ

(
|x|2

T2θ

)`
]
+ λ
|x|2H

(1)
α,βξ

(
|x|2

T2θ

)`

= −ξ
(
|x|2

T2θ

)`

∆H(1)
α,β(x) − H

(1)
α,β∆ ξ

(
|x|2

T2θ

)`

− 2∇H(1)
α,β ·∇ ξ

(
|x|2

T2θ

)`

+ λ
|x|2H

(1)
α,β(x)ξ

(
|x|2

T2θ

)`

= −ξ
(
|x|2

T2θ

)`

∆λH(1)
α,β(x) − H

(1)
α,β(x)∆ ξ

(
|x|2

T2θ

)`

− 2∇H(1)
α,β(x) ·∇ ξ

(
|x|2

T2θ

)`

,

where “ · ” denotes the inner product in RN . Since ∆λH(1)
α,β = 0, it holds that

−∆λHT(x) = −H(1)
α,β(x)∆ ξ

(
|x|2

T2θ

)`

− 2∇H(1)
α,β(x) ·∇ ξ

(
|x|2

T2θ

)`

,

which yields
|∆λHT(x)|

m
m−1

≤
(
H(1)
α,β(x)

∣∣∣∣∣∆ ξ
(
|x|2

T2θ

)`
∣∣∣∣∣ + 2|∇H(1)

α,β(x)|

∣∣∣∣∣∇ ξ
(
|x|2

T2θ

)`
∣∣∣∣∣
) m

m−1

≤ C

H(1)
α,β(x)

m
m−1

∣∣∣∣∣∆ ξ
(
|x|2

T2θ

)`
∣∣∣∣∣

m
m−1

+ |∇H(1)
α,β(x)|

m
m−1

∣∣∣∣∣∇ ξ
(
|x|2

T2θ

)`
∣∣∣∣∣

m
m−1


and
HT(x)

−1
m−1 |∆λHT(x)|

m
m−1

≤ CH(1)
α,β(x)ξ

(
|x|2

T2θ

) −`
m−1
∣∣∣∣∣∆ ξ

(
|x|2

T2θ

)`
∣∣∣∣∣

m
m−1

+ CH(1)
α,β(x)

−1
m−1 |∇H(1)

α,β(x)|
m
m−1 ξ

(
|x|2

T2θ

) −`
m−1
∣∣∣∣∣∇ ξ

(
|x|2

T2θ

)`
∣∣∣∣∣

m
m−1

.

Hence, it holds that ∫
Ω

HT(x)
−1
m−1 |∆λHT(x)|

m
m−1 dx ≤ C

(
I1(T) + I2(T)

)
, (2.5)

where

I1(T) =
∫
Ω

H(1)
α,β(x)ξ

(
|x|2

T2θ

) −`
m−1
∣∣∣∣∣∆ ξ

(
|x|2

T2θ

)`
∣∣∣∣∣

m
m−1

dx
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and

I2(T) =
∫
Ω

H(1)
α,β(x)

−1
m−1 |∇H(1)

α,β(x)|
m
m−1 ξ

(
|x|2

T2θ

) −`
m−1
∣∣∣∣∣∇ ξ

(
|x|2

T2θ

)`
∣∣∣∣∣

m
m−1

dx.

Now, let us estimate Ii(T), i = 1, 2. Using the properties of the cut-o� function ξ , for su�ciently large T, one
has

I1(T) =
∫

Tθ<|x|<
√
2Tθ

H(1)
α,β(x)ξ

(
|x|2

T2θ

) −`
m−1
∣∣∣∣∣∆ ξ

(
|x|2

T2θ

)`
∣∣∣∣∣

m
m−1

dx

= Tθ(N−
2m
m−1 )

∫
1<|y|<

√
2

H(1)
α,β(T

θy)ξ (|y|2)
−`
m−1 |∆ ξ (|y|2)`|

m
m−1 dy.

On the other hand, it can be easily seen that for 1 < |y| <
√
2, one has

|∆ ξ (|y|2)`| ≤ Cξ (|y|2)`−2.

Hence, it holds that

I1(T) ≤ CTθ(N−
2m
m−1 )

∫
1<|y|<

√
2

H(1)
α,β(T

θy)ξ (|y|2)`−
2m
m−1 dy

≤ CTθ(N−
2m
m−1 )

∫
1<|y|<

√
2

H(1)
α,β(T

θy) dy. (2.6)

By the de�nition of the function H(1)
α,β, one has

H(1)
α,β(T

θy) = T
θ(2−N)

2 |y|
2−N
2

[
α +
(
β + (N − 2)α

2

)
ln
(
Tθ|y|

)]
, 1 < |y| <

√
2.

Observe that
β + (N − 2)α

2 = 0 ⇐⇒ β = 0 and N = 2.

Hence, if β = 0 and N = 2, one obtains∫
1<|y|<

√
2

H(1)
α,β(T

θy) dy = αT
θ(2−N)

2

∫
1<|y|<

√
2

|y|
2−N
2 dy = CT

θ(2−N)
2 .

If β > 0 or N ≥ 3, for su�ciently large T, one obtains∫
1<|y|<

√
2

H(1)
α,β(T

θy) dy = CT
θ(2−N)

2 ln T
∫

1<|y|<
√
2

|y|
2−N
2 dy = CT

θ(2−N)
2 ln T .

Hence, in both cases, by (2.6), for su�ciently large T, one deduces that

I1(T) ≤ CTθ(
N+2
2 −

2m
m−1 ) ln T . (2.7)

Next, one has

I2(T) =
∫

Tθ<|x|<
√
2Tθ

H(1)
α,β(x)

−1
m−1 |∇H(1)

α,β(x)|
m
m−1 ξ

(
|x|2

T2θ

) −`
m−1
∣∣∣∣∣∇ ξ

(
|x|2

T2θ

)`
∣∣∣∣∣

m
m−1

dx

= Tθ(N−
m
m−1 )

∫
1<|y|<

√
2

H(1)
α,β(T

θy)
−1
m−1 |∇H(1)

α,β(T
θy)|

m
m−1 ξ (|y|2)

−`
m−1 |∇ ξ (|y|2)`|

m
m−1 dy.
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It can be easily seen that for 1 < |y| <
√
2, one has

|∇ ξ (|y|2)`| ≤ Cξ (|y|2)`−1.

Hence, it holds that

I2(T) ≤ CTθ(N−
m
m−1 )

∫
1<|y|<

√
2

H(1)
α,β(T

θy)
−1
m−1 |∇H(1)

α,β(T
θy)|

m
m−1 ξ (|y|2)`−

m
m−1 dy

≤ CTθ(N−
m
m−1 )

∫
1<|y|<

√
2

H(1)
α,β(T

θy)
−1
m−1 |∇H(1)

α,β(T
θy)|

m
m−1 dy. (2.8)

Elementary calculations show that for su�ciently large T and 1 < |y| <
√
2, we get

H(1)
α,β(T

θy)
−1
m−1 |∇H(1)

α,β(T
θy)|

m
m−1 ≤ CT−θ(

N
2 +

1
m−1 ) if N = 2 and β = 0

and
H(1)
α,β(T

θy)
−1
m−1 |∇H(1)

α,β(T
θy)|

m
m−1 ≤ CT−θ(

N
2 +

1
m−1 ) ln T if N ≥ 3 or β > 0.

Hence, in both cases, for su�ciently large T, one has

H(1)
α,β(T

θy)
−1
m−1 |∇H(1)

α,β(T
θy)|

m
m−1 ≤ CT−θ(

N
2 +

1
m−1 ) ln T, 1 < |y| <

√
2.

Then, by (2.8), one obtains
I2(T) ≤ CTθ(

N+2
2 −

2m
m−1 ) ln T . (2.9)

Finally, (2.5), (2.7) and (2.9) yield the desired estimate.

Lemma 2.7. Let λ > −
(N−2

2
)2 and m > 1. For all θ > 0, ` ≥ 2m

m−1 , and su�ciently large T, we have∫
Ω

HT(x)
−1
m−1 |∆λHT |

m
m−1 dx ≤ CTθ(λN+

N+2
2 −

2m
m−1 ).

Proof. Following the proof of Lemma 2.6, for su�ciently large T, one has∫
Ω

HT(x)
−1
m−1 |∆λHT |

m
m−1 dx ≤ C

(
J1(T) + J2(T)

)
, (2.10)

where
J1(T) ≤ CTθ(N−

2m
m−1 )

∫
1<|y|<

√
2

H(2)
α,β(T

θy) dy (2.11)

and
J2(T) ≤ CTθ(N−

m
m−1 )

∫
1<|y|<

√
2

H(2)
α,β(T

θy)
−1
m−1 |∇H(2)

α,β(T
θy)|

m
m−1 dy. (2.12)

Elementary calculations show that for su�ciently large T and 1 < |y| <
√
2, one has

H(2)
α,β(T

θy) ≤ CTθ(
2−N
2 +λN) (2.13)

and
H(2)
α,β(T

θy)
−1
m−1 |∇H(2)

α,β(T
θy)|

m
m−1 ≤ CTθ(λN−

N
2 −

1
m−1 ). (2.14)

Hence, (2.10), (2.11), (2.12), (2.13) and (2.14) yield the desired estimate.

3 Proofs of the main results
In this section, we prove Theorems 1.1 and 1.2. We �rst establish the nonexistence results.
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3.1 Nonexistence results

We prove below parts (i) and (ii) of Theorem 1.1, as well as part (i) of Theorem 1.2. The proof is based on a
rescaled test-function argument (see [16] for a general account of these methods) and a judicious choice of
the test function.

Proof. Let us suppose that u ∈ Lploc(O) is a global weak solution to (1.1)–(1.2). By (1.9), we obtain∫
O

|u|pφ dx dt + Lφ(w) ≤
∫
O

|u||∂ttφ| dx dt +
∫
O

|u||∆λφ| dx dt, (3.1)

for every φ ∈ Φα,β. Using ε-Young inequality with ε = 1
2 , we get∫

O

|u||∂ttφ| dx dt ≤
1
2

∫
O

|u|pφ dx dt + C
∫
O

φ
−1
p−1 |∂ttφ|

p
p−1 dx dt (3.2)

and ∫
O

|u||∆λφ| dx dt ≤
1
2

∫
O

|u|pφ dx dt + C
∫
O

φ
−1
p−1 |∆λφ|

p
p−1 dx dt. (3.3)

Hence, it follows from (3.1), (3.2) and (3.3) that

Lφ(w) ≤ C

∫
O

φ
−1
p−1 |∂ttφ|

p
p−1 dx dt +

∫
O

φ
−1
p−1 |∆λφ|

p
p−1 dx dt

 , (3.4)

for every φ ∈ Φα,β. By Lemma 2.1 and (3.4), for all ` ≥ 2p
p−1 , θ > 0, and su�ciently large T, one has

LφT (w) ≤ C

∫
O

φ
−1
p−1
T |∂ttφT |

p
p−1 dx dt +

∫
O

φ
−1
p−1
T |∆λφT |

p
p−1 dx dt

 . (3.5)

Now, we shall estimate the terms from the right-hand side of the above inequality. By the de�nition of the
function φT , one has

∫
O

φ
−1
p−1
T |∂ttφT |

p
p−1 dx dt =

 ∞∫
0

ηT(t)
−1
p−1 |η′′T(t)|

p
p−1 dt

∫
Ω

HT(x) dx

 . (3.6)

On the other hand, using Lemma 2.3 with m = p, we obtain
∞∫
0

ηT(t)
−1
p−1 |η′′T(t)|

p
p−1 dt ≤ CT1−

2p
p−1 . (3.7)

Moreover, combining Lemma 2.4 with Lemma 2.5, one deduces that for all λ ≥ −
(N−2

2
)2,∫

Ω

HT(x) dx ≤ CTθ(
N+2
2 +λN) ln T . (3.8)

Hence, by (3.6), (3.7) and (3.8), it holds that∫
O

φ
−1
p−1
T |∂ttφT |

p
p−1 dx dt ≤ CTθ(

N+2
2 +λN)+1− 2p

p−1 ln T . (3.9)

Again, by the de�nition of the function φT , one has

∫
O

φ
−1
p−1
T |∆λφT |

p
p−1 dx dt =

 ∞∫
0

ηT(t) dt

∫
Ω

HT
−1
p−1 |∆λHT |

p
p−1 dx dt

 . (3.10)
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Combining Lemma 2.6 with Lemma 2.7, and taking m = p, one deduces that for all λ ≥ −
(N−2

2
)2,∫

Ω

HT
−1
p−1 |∆λHT |

p
p−1 dx dt ≤ CTθ

(
λN+ N+2

2 −
2p
p−1

)
ln T . (3.11)

Hence, by Lemma 2.2, (3.10) and (3.11), we obtain∫
O

φ
−1
p−1
T |∆λφT |

p
p−1 dx dt ≤ CTθ

(
λN+ N+2

2 −
2p
p−1

)
+1 ln T . (3.12)

Consider now the term from the left-hand side of (3.5). By the de�nition of LφT , if α > 0, one has

LφT (w) =
1
α

∫
∂O

w(x)φT(t, x) dσ dt =
1
α

 ∞∫
0

ηT(t) dt

∫
∂Ω

w(x)HT(x) dσ

 .

By the de�nition of the function HT , and using Lemma 2.2, it holds that

LφT (w) = CT
∫
∂Ω

w(x)Hα,β(x)ξ
(

1
T2θ

)`

dσ.

Since T is supposed to be large enough, by the de�nition of the cut-o� function ξ , we get

LφT (w) = CT
∫
∂Ω

w(x)Hα,β(x) dσ.

On the other hand, by the de�nition of the function Hα,β, for all x ∈ ∂Ω (|x| = 1), one has

Hα,β(x) =


α > 0 if λ = −

(N−2
2
)2 ,

2λNα > 0 if λ > −
(N−2

2
)2 .

Then, for all λ ≥ −
(N−2

2
)2, one obtains

LφT (w) = CT
∫
∂Ω

w(x) dσ, α > 0. (3.13)

If α = 0, by the de�nition of LφT , and using Lemma 2.2, one has

LφT (w) =
−1
β

∫
∂O

w(x)∂φ∂ν dσ dt = −CT
∫
∂Ω

w(x)∂HT∂ν dσ.

Notice that by (2.1) and (2.2), one has

∂HT
∂ν ∂Ω

=


−β < 0 if λ = −

(N−2
2
)2 ,

−2λNβ < 0 if λ > −
(N−2

2
)2 .

Hence, for all λ ≥ −
(N−2

2
)2, one obtains

LφT (w) = CT
∫
∂Ω

w(x) dσ, α = 0. (3.14)

Combining (3.13) with (3.14), one obtains

LφT (w) = CT
∫
∂Ω

w(x) dσ, α, β ≥ 0, (α, β) = ̸ (0, 0). (3.15)
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Now, using (3.5), (3.9), (3.12) and (3.15), we obtain∫
∂Ω

w(x) dσ ≤ C
(
Tθ(

N+2
2 +λN)− 2p

p−1 + Tθ
(
λN+ N+2

2 −
2p
p−1

))
ln T . (3.16)

Observe that for θ = 1, one has

θ
(
N + 2
2 + λN

)
− 2p
p − 1 = θ

(
λN +

N + 2
2 − 2p

p − 1

)
= λN +

N + 2
2 − 2p

p − 1 .

Hence, taking θ = 1 in (3.16), we get ∫
∂Ω

w(x) dσ ≤ CTλN+
N+2
2 −

2p
p−1 ln T . (3.17)

We discuss two cases.

Case 1: λ = −
(N−2

2
)2.

In this case, one has λN = 0. So (3.17) reduces to∫
∂Ω

w(x) dσ ≤ CT
N+2
2 −

2p
p−1 ln T . (3.18)

Moreover, if N = 2, (3.18) reduces to ∫
∂Ω

w(x) dσ ≤ CT2
(
1− p

p−1

)
ln T . (3.19)

Hence, passing to the limit as T → ∞ in (3.19), oneobtains a contradictionwith the assumption
∫
∂Ω

w(x) dσ > 0.

This proves part (i) of Theorem 1.1. If N ≥ 3 and

1 < p < 1 + 4
N − 2 ,

one can check easily that
N + 2
2 − 2p

p − 1 < 0.

Hence, passing to the limit as T → ∞ in (3.18), we obtain a contradiction. This proves part (ii) of Theorem 1.1.

Case 2: λ > −
(N−2

2
)2.

In this case, one has λN > 0. Moreover, it can be easily seen that, if

1 < p < 1 + 4
N − 2 + 2λN

,

then
λN +

N + 2
2 − 2p

p − 1 < 0.

Hence, passing to the limit as T → ∞ in (3.17), we lead to contradiction. This proves part (i) of Theorem 1.2.

3.2 Existence results

Now, we prove the existence results given by part (iii) of Theorem 1.1 and part (ii) of Theorem 1.2.
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Proof of part (iii) of Theorem 1.1. Let N ≥ 3, α, β ≥ 0, (α, β) = ̸ (0, 0), λ = −
(N−2

2
)2, and

p > 1 + 4
N − 2 . (3.20)

For
0 < δ < 1, µ = 2 − N

2 , τ > e
αδ
β−αµ ≥ 1, ε > 0,

let
u(x) = ε|x|µ

(
ln(τ|x|)

)δ , x ∈ Ω. (3.21)

Elementary calculations show that

−∆λu(x) = − ε|x|µ−2
(
ln(τ|x|)

)δ−2 [(µ(N + µ − 2) − λ
) (
ln(τ|x|)

)2 + δ(N + 2µ − 2) ln(τ|x|) + δ(δ − 1)
]

= εδ(1 − δ)|x|µ−2
(
ln(τ|x|)

)δ−2
and

−∆λu(x) − |u(x)|p = εδ(1 − δ)|x|µ−2
(
ln(τ|x|)

)δ−2 − εp|x|µp (ln(τ|x|))δp
= ε|x|µ−2

(
ln(τ|x|)

)δ−2 [δ(1 − δ) − εp−1|x|µp−µ+2 (ln(τ|x|))δ(p−1)+2] . (3.22)

On the other hand, by (3.20), it holds that

µp − µ + 2 = (2 − N)(p − 1)
2 + 2 < 0.

Hence, there exists a constant A > 0 such that

|x|µp−µ+2
(
ln(τ|x|)

)δ(p−1)+2 ≤ A, x ∈ Ω,

which yields (by (3.22))

−∆λu(x) − |u(x)|p ≥ ε|x|µ−2
(
ln(τ|x|)

)δ−2 [δ(1 − δ) − εp−1A] .
Since 0 < δ < 1, taking 0 < ε <

[
δ(1−δ)
A

] 1
p−1 , one obtains

−∆λu(x) − |u(x)|p ≥ 0, x ∈ Ω.

On the other hand, for r = |x|, we have(
α ∂u∂ν + βu

)
∂Ω

=
(
−α ∂u∂r + βu

)
r=1

= ε(ln τ)δ−1
[
(β − αµ) ln τ − αδ

]
:= w. (3.23)

Since τ > e
αδ
β−αµ , we deduce that w > 0. Hence, the function u de�ned by (3.21) is a stationary solution to

(1.1)–(1.2), where w > 0 is given by (3.23). This proves part (iii) of Theorem 1.1.

Proof of part (ii) of Theorem 1.2. Let N ≥ 2, α, β ≥ 0, (α, β) = ̸ (0, 0), λ > −
(N−2

2
)2, and

p > 1 + 4
N − 2 + 2λN

. (3.24)

For
2 − N
2 − λN < δ < min

{
−2
p − 1 ,

2 − N
2 + λN

}
(3.25)

and
0 < ε ≤

[
−δ2 + (2 − N)δ + λ

] 1
p−1 , (3.26)
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let
u(x) = ε|x|δ , x ∈ Ω. (3.27)

Notice that by (3.24), the set of δ satisfying (3.25) is nonempty. Moreover, by (3.25), since λ > −
(N−2

2
)2, one

has
−δ2 + (2 − N)δ + λ > 0.

Elementary calculations show that

−∆λu − |u|p = ε|x|δ−2
[(
−δ2 + (2 − N)δ + λ

)
− εp−1|x|δp−δ+2

]
.

Hence, using (3.25) and (3.26), we obtain

−∆λu − |u|p ≥ ε|x|δ−2
[(
−δ2 + (2 − N)δ + λ

)
− εp−1

]
≥ 0.

On the other hand, for r = |x|, we have(
α ∂u∂ν + βu

)
∂Ω

=
(
−α ∂u∂r + βu

)
r=1

= ε(β − αδ) > 0.

Hence, we deduce that the function u de�ned by (3.27) is a stationary solution to (1.1)–(1.2), where w ≡ ε(β −
αδ) > 0. This proves part (ii) of Theorem 1.2.
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