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Abstract: Hydrophobic treatment is one of the most important interventions usually carried out for
the conservation of stone artefacts and monuments. The study here reported aims to answer a general
question about how two polymers confer different protective performance. Two fluorinated-based
polymer formulates applied on samples of Cusa’s stone confer a different level of water repellence
and water vapour permeability. The observed protection action is here explained on the basis of
chemico-physical interactions. The distribution of the polymer in the pore network was investigated
using scanning electron microscopy and X-ray microscopy. The interactions between the stone
substrate and the protective agents were investigated by means of solid state NMR spectroscopy.
The ss-NMR findings reveal no significant changes in the chemical neighbourhood of the observed
nuclei of each protective agent when applied onto the stone surface and provide information on
the changes in the organization and dynamics of the studied systems, as well as on the mobility of
polymer chains. This allowed us to explain the different macroscopic behaviours provided by each
protective agent to the stone substrate.

Keywords: synchrotron soft X-ray microscopy; solid state NMR spectroscopy; 19F NMR; stone
protection; physic-chemical interactions; relaxation times

1. Introduction

The protection of ancient stone monuments and objects is one of the topics of the recent
research in the field of conservation of cultural heritage [1]. Stone materials are affected
by degradation processes such as black crusts, efflorescents, decoesions, etc., caused by
several chemical, physical, and biological factors. Among others, water is one of the main
causes of degradation, playing an important role in many decay mechanisms [2]. It acts in
a direct way through a solubilization action and in an indirect way through freeze/thaw
cycles, pollutant transport, and soluble salt hydration. In addition, water may promote the
growth of biological organisms which may cause material degradation.

It is well known that hydrophobic treatment is one of the most important interventions
usually carried out in the conservation of stone artefacts and monuments, preserving them
against the water [3,4]. The choice of hydrophobic products should be aimed at preventing
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liquid water penetration, to allow vapour leakage, delaying degradation processes, and
to avoid chromatic alterations, leaving open at the same time the stone porosity for water
vapour flow [5,6]. Nowadays, the use of hydrophobic polymers is generally accepted as
being suitable due to their protective action, even if the direction of the research is also
aimed at the development of innovative and inorganic materials [7]. The evaluation of pro-
tection actions is based on the regulations by the European Committee for Standardization
(CEN TC 346) [8,9].

Calcarenites are used in the most important testimony of ancient and modern mon-
uments of Sicilian history. The different lithotypes, possessing different porosity and
mineralogical features [10], are present both in the east (Noto “white type” and Comiso)
and in the west (Palermo, Mazara, Agrigento, Cusa).

Indeed, the performance of a polymeric protective can be different for different litho-
types, as demonstrated in our previous papers [11,12]. In most cases, the choice of the best
protective is made based on a compromise between several factors, such as hydrophobicity
and aesthetic appearance [13].

The reason for the different behaviour of different protectives concerning one specific
lithotype could be seen in the different microscopic interactions that occur, which could
also be connected with the macroscopic behaviour [14].

The interactions between the two materials (stone and polymer) can be responsible for
the variations in the structural organization of the polymers when they are in contact with
the stone surface, and these can depend not only on chemical factors but also on physical
factors related to the porosity and dimensional distribution of pores [15].

For this reason, the goal of this work is to verify the connections between the macroscale
properties and the microscale properties of protected stone material. The work is carried
out on Cusa’s stone, a calcarenite coming from the ancient and renowned quarries of Cusa
near the acropolis of Selinunte (TP), used for the construction of most of the temples in the
archaeological park of Selinunte, the largest in Europe [16], in particular, Temple G, which
is one of the most impressive temples of Magna Grecia.

In our previous paper, the effectiveness of the protective treatment of three formu-
lations (the polysiloxane Wacker 290 and two fluorinated elastomers, Fluoline HY and
Fluo AQ of CTS s.r.l.) was investigated using water absorption by capillarity, water vapour
permeability and colorimetric tests [12]. The obtained results show that all three formula-
tions conferred protective properties, but Fluo AQ is the protective agent giving the best
performance. The Fluo AQ guarantees a permeability similar to that of natural stone and
drastically reduces the water absorption, thus giving it high water repellence. Conversely,
the Fluoline HY significantly reduces the water vapour permeability of the stone and shows
little water repellence.

Here, the distribution of the polymer in the pore network was investigated by scan-
ning electron microscopy and X-ray microscopy. Scanning electron microscopy studies
provide relevant clues about the location of the products inside the porous matrix of
stones [17,18]. However, in order to conduct a more in-depth investigation and obtain
information concerning, for example, the adhesion of products to stone grains, the use of
advanced techniques like X-ray microscopy allows us to improve the amount and quality of
the acquired information in terms of the dimensional scale of investigation and identifiable
chemical elements [19,20]. The characterization of the fluorinated polymeric materials
and their structural organization following the interactions with the stone substrate was
performed using solid state NMR. In particular, 19F MAS NMR spectroscopies allowed us
to analyse the molecular interactions involving the polymer directly on the coated stone
surface. In addition, the spin–lattice relaxation times, T1, and the spin–spin relaxation
times, T2, were evaluated in order to provide information on the variations of the mobility
of both the backbone chains of the polymers and the side chains, respectively. In fact, the
variation of the polymer chain mobility can act as evidence of their different structural
organization when they are applied on the porous system [21], suggesting the formation or
not of a homogeneous surface film that justifies the water repellence or an accumulation of
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the material inside the pores that it could cause a significant reduction in the water vapour
permeability of the stone.

2. Materials and Methods
2.1. Polymer Formulations

The two protective polymer formulations were provided by CTS s.r.l. The Fluoline
HY® is a commercial protective agent based on a fluorinated elastomer consisting of
vinylidene fluoride and hexafluoropropene copolymers at 3 wt.% in a 1:1 mixture (w/w)
of acetone/butyl acetate. The Fluo AQ is a protective product under testing based on a
fluorinated elastomer dispersed in water, with a concentration of the active content of
about 5 wt.%.

2.2. Distribution of Polymers Inside the Porous Matrix of Stone

In order to investigate the distribution of the polymer inside the stone matrix by means
of scanning electron microscopy and soft X-ray synchrotron microscopy, the specimens of
the stone treated with fluorinated polymers were cut to obtain a 1 mm thick cross section
cut perpendicularly to the treated surfaces, spanning to a depth of 5 mm, showing both
external and internal parts of the stone. The dimensions were properly tailored to enable
performing the correct placement in the sample stage of the equipment.

2.3. Scanning Electron Microscopy (SEM)

The cross sections were observed in scanning electron microscopy by using a Phenom
Pro X, Phenom-World (Eindhoven, The Netherlands) with an optical magnification range
of 20–135×, an electron magnification range of 80–130,000×, maximal digital zoom of
12×, acceleration voltages of 15 kV, a backscattered electron detector (BSD) and energy
dispersive X-ray spectrometer (EDS) detectors, with a nominal resolution of 10 nm or less.
The microscope was equipped with a temperature-controlled (25 ◦C) sample holder. The
samples were positioned on an aluminium stub using adhesive carbon tape.

2.4. Soft X-ray Synchrotron Microscopy (Elettra)

The TwinMic microscope [22] was set up in reflection mode by using the method
proposed by Raneri et al. [23]. The microscope operated in scanning mode. A zone plate
with diffractive optics of 600 microns in diameter and a 50 nm outermost zone focused the
incoming monochromatized X-ray photons on the sample plane, while the sample was
raster scanned across the microprobe. Perpendicular profiles of the stone section were
recorded at 1 keV energy X-ray source by collecting the X-ray fluorescence signal, where
the highest sensitivity to fluorine was obtained. The X-ray fluorescence (XRF) spectra
were acquired for areas at different depths from the surface. On one of the samples, XRF
maps were acquired also at 2 keV on 18 adjacent zones, 80 × 80 µm2 each, and then were
post-processed by merging and stitching all of them into a single image, covering a total
area of 240 × 480 µm2. XRF maps were acquired in several zones, at different depth from
the surface, at 1 and 2 keV with a spot size of 1.2 or 2 microns in diameter, respectively,
and 4 s acquisition time per pixel. All XRF spectra were analysed by PyMCA software [24],
determining the areas of the elements’ peaks after background subtraction.

2.5. Characterization of Polymer Formulations

The two polymer formulations were characterized in the form of polymeric films in
order to simulate the coating on the surface of the substrate stone. The polymeric films
were obtained by pouring 30 g of each formulation into a capsule of a 10 cm diameter Petri
dish and evaporating the solvent under a ventilated hood at room temperature.
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2.6. Study of Interactions

The interactions between the stone substrate and each protective agent were investi-
gated using two samples obtained by cutting the surface layer of two specimens treated
with Fluoline HY and Fluo AQ, respectively, using a Dremel mini drill.

2.7. Solid-State NMR Spectroscopy

All spectra were acquired by using a Bruker Avance II 400 (9.4T) spectrometer operat-
ing at 400.15, 100.61 and 376.50 MHz for the 1H, 13C and 19F nuclides, respectively. Fifty
milligrams of each sample were packed in 4 mm diameter zirconia rotors for the 13C and
29Si nuclide experiments and 2.5 mm for the 19F experiments. All rotors were sealed with
KEL-F caps. 19F MAS NMR spectra were acquired at a rotation frequency of the magic
angle of 10 kHz, a 90◦ pulse duration of 4 µs, 128 scans and a delay time between one
scan and the next of 3 s. The external reference standard used was polytetrafluoroethylene
(−123 ppm). 13C {19F} CP-MAS NMR spectra were acquired at a rotation frequency of the
magic angle of 10 kHz, a pulse duration on 19F nuclei of 2.5 µs, contact time of 1 ms, a
delay time of 3 s, with 7000 scans. The Hartmann–Hahn condition was optimized on a
Teflon sample. 13C {1H} CP-MAS NMR spectra were acquired at a magic angle rotation
frequency of 10 kHz, a pulse duration on 1H of 2.5 µs, contact time of 1.5 ms, a delay time
of 3 s, with 5000 scans. The Hartman–Hahn condition was optimized on an adamantane
sample which was also used as a chemical shift reference (29.5 and 38.6 ppm).

The spin–lattice relaxation times, T1F, were calculated by inversion recovery pulse
sequence (180-τ-90), using a delay time in a range from 0 to 10 s; The spin–spin relax-
ation times, T2F, were calculated by pulse sequence Carr–Purcell–Meiboom–Gill (CPMG)
(90-τ-180), using a delay time ranging from 0.1 to 10 ms.

3. Results and Discussion
3.1. Penetration Depth and Distribution of the Polymer in the Pore Network

Several SEM micrographs of each cross section were acquired and for each of them, two
spots were analysed for the determination of the elemental composition. Two representative
analyses are reported in Figure 1.

The SEM micrographs revealed morphological features of the stone’s porosity, which
is mainly constituted by connected pores of hundreds of microns in size. The presence
of protective agents is not visible, thus making it impossible to gain evidence about their
distribution inside the pore network and their penetration depth. The EDS spectra of all
stone spots show the signals of calcium, silicon, oxygen, carbon, potassium and chlorine,
which can be attributed to calcite, quartz and feldspars [12], and the signal of fluorine,
which is related to the presence of the protective agents, observed inside the pores.

Perpendicular profiles of the stone section were analysed by soft X-ray microscopy.
The emitted X-rays were acquired from areas at different depths from the surface and the
fluorine peak area was used to evaluate if the two fluorinated compounds penetrated the
stone (Figure 2).
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Figure 1. SEM micrographs with respective EDS spectra obtained for stone treated with Fluoline
HY (top) and Fluo AQ (bottom). The coloured points indicate the spots where the EDS analysis was
performed. The colour of the border for the EDS spectra and the atomic concentration results of
spectra data analysis correspond to the spot colour.
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No particular trend is observed for both profiles, and the signal variation of the
fluorine area seems to indicate that the protective agents penetrate into the inner part of the
stone in a non-preferential way, due to the pore distribution, probably due to the partial
accumulation of the polymers in inhomogeneous empty spaces. On the other hand, other
similar protective agents were preferentially accumulated on the first 20 micrometres of
the surface of marble [25] and 4 millimetres of the surface of calcarenite [26].

To deepen the spatial distribution of the protectives, some representative XRF maps
containing the spots at high fluorine content were acquired. The spot size was chosen as 1
µm in diameter as a compromise between the features of interest and being compatible
with the suitable XRF emitted signal. The obtained XRF maps are reported in Figure 3.
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Figure 3. Elemental XRF maps (acquired at 1 keV with 1.2 µm diameter beam size, over an area of
80 × 80 µm2) obtained for Cusa’s stone treated with Fluoline HY (top) and Fluo AQ (down). The
scale bar is 20 µm.

The signal of oxygen refers to the stone’s contribution (due to calcite and quartz), while
the scattering accounts for the stone and the nano-micro-agglomerate’s contribution. The
area where both F and O signals are low corresponds to empty cavities and/or holes. The
map of Fluo AQ shows that fluorine is mostly distributed along the pore’s surface, while
that of Fluoline HY evidences the formation of lumps with a poorly defined distribution
inside the calcarenite porosity.

In order to better understand the distribution of the protective Fluoline HY inside the
calcarenite matrix, a bigger map at the energy of 2 keV was acquired. With this approach,
the number of visible elements was improved, allowing us to see some characteristic stone
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elements, such as Al and Si. Several maps were acquired in sequence in order to obtain an
overview of a wide area. The result of the mapping is reported in Figure 4.
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Figure 4. High-energy elemental XRF maps (acquired at 2 keV with 2 µm diameter beam size, over an
area of 240 × 480 µm2) of the sample treated with Fluoline HY. The third map shows RGB correlation
images for 3 different chemical elements, highlighting their possible co-localization. The scale bar is
50 µm.

The high-energy maps emphasize the quartz grains through silicon signals, the
feldspar correlated to aluminium and the oxygen signal in the other area can be attributed
to the calcite grain. The fluorine distributes in small lumps inside the empty spaces between
the grains.

These findings permit us to describe the distribution of the polymers inside the pore
structure of Cusa’s stone, and in particular led to a deep understanding of the macroscopic
properties observed after the application of the two fluorinated polymers. Generally,
any protective coating must satisfy several requirements, such as good adhesion, water
repellence and a natural water vapour permeability [27,28]. Consequently, it is known that
one of the crucial aspects for good performance is that, after the application of a protective
product, the stone surface must not be sealed and pores must not be completely blocked,
to allow the release of moisture which is often trapped inside [29,30]. As can be seen
from the chemical maps (see Figure 3), Fluo AQ and Fluoline HY are distributed in the
porous system in a different way. In detail, Fluo AQ shows a continuous and homogeneous
distribution along the surface of the pores which is ascribable to a good adhesion of
the polymer to the stone support. Since a good anchoring of the polymer in the pore
structure assures performance implementation especially in terms of hydrophobicity [25],
this justifies the high water repellence conferred to the stone substrate and a vapour
permeability similar to untreated stone. On the contrary, Fluoline HY clogs the pores due
to the small accumulations of the polymer inside the porous system. The pore–clogging
inhibits the vapour transport from inside to the external environment [5]. Furthermore,
the non-adhesion of the polymer along the pore’s surface does not reduce the interaction



Appl. Sci. 2021, 11, 5767 8 of 16

with water, which is retained and/or absorbed, representing a drawback for the stone
protection [23]. This justifies why Fluoline HY significantly reduces the water vapour
permeability of the stone, while also conferring poor water repellence. The results obtained
so far show how X-ray synchrotron microscopy coupled with X-ray fluorescence is a
powerful tool to overcome some drawbacks of classical imaging and to carry out an in-
depth investigation on the spatial distribution of polymers in the stone, allowing one to
correlate micro and macro behaviour for the description of the protective action.

3.2. Characterisation of the Protective Polymer Formulations and Study of the Interactions

Fluoline HY. 19F MAS NMR, 13C {19F} CP-MAS NMR and 13C {1H} CP-MAS NMR
spectra of Fluoline HY film together with the chemical shift assignment are reported in
Figures 5–8 and in Tables 1–3.
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Table 1. Chemical shift assignment of the of 19F MAS NMR spectrum.

Peak Chemicals Shift
(Ppm) Assignment Monomeric Unit

1 −73.22 −(CF2)2−CF(CF3)− HFP
2 −88.67 −CH2−CF2−CH2− VDF
3 −108.96 −CH2−CF2−CF2−CH2− VDF
4 −116.10 −CH2−CF2−CF2−CF(CF3)− HFP
5 −181.59 −(CF2)2−CF(CF3)− HFP

The assignment of the resonances in the 19F MAS spectrum was performed according to the literature [31]. The
signals at −73.22 ppm are due to the HFP units for the side −CF3 (−CF2−CF(CF3)−), and those at −116.10 ppm
are due to the −CF2 group directly linked to the −CF2 of the VDF (−CF2 −CF2CF (CF3)−). The signal at
−181.59 ppm is due to the −CF (−CF2−CF(CF3)−) group. Finally, the signals at −88.67 and −108.86 ppm
were assigned to the VDF units resulting from head-to-tail (−CH2−CF2−CH2−) and head-to-head additions
(−CH2−CF2−CF2−CH2−), respectively.
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Table 2. Assignment of the chemical shift of 13C{19F} CP-MAS spectrum.

Peak Chemicals Shift
(Ppm) Assignment Monomeric Unit

1 124.17 −CF−CF3 HFP
2 122.05 −CH2−CF2−CF−CF3 VDF
3 116.13 −CH2−CF2−CH2- HPF
4 95.33 −CF−CF3 HFP

Table 3. Assignment of the chemical shift of 13C{1H} CP-MAS spectrum.

Peak Chemicals Shift
(Ppm) Assignment Monomeric Unit

1 44.08 −CH2−CF2− VDF
2 118.86 −CH2−CF2− VDF

In the 13C {19F} CP-MAS spectrum, it is worth noting that the intensity of peak 3 due
to CF2 groups is lower than the one of peak 4 due to CF. This is because the −CF2 group in
(−CH2−CF2−CH2−) units receives magnetization only from the two 19F nuclei directly
bonded to it and the −CF group in (−CF−CF3) units receives magnetization both from the
19F atom directly bound to it and from the adjacent −CF3 group, as the cross-polarization
mechanism involves dipolar interactions occurring through space. This finding and the
analysis of the peaks confirmed that the sequence of repetitive units of the Fluoline HY is
that shown in Figure 7.

In the 13C{1H} CP−MAS spectrum (Figure 8), the resonances of the −CH2 signal
groups at 44.08 assigned to the VDF units for the head (CH2) to tail (CF2) additions
(−CF2−CH2−CF2−CH2−) and the resonances at 118.86 ppm that correspond to sp2

hybridized carbons or fluorinated hydrocarbons are present [32].
FLUO AQ. 19F MAS NMR, 13C {19F} CP−MAS NMR and 13C {1H} CP−MAS NMR

spectra of the Fluo AQ film and the chemical shift assignment are reported in Figures 9–11
and in Tables 4–6.
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Table 4. Assignment of the chemical shift 19F MAS NMR spectrum.

Peak Chemicals Shift (Ppm) Assignment

1 −79.37 −CF2−CF2−CF3
2 −111.02 −CH2−CF2−CF2−
3 −120.62 −CF2−CF2−CF2−
4 −123.96 −CF2−CF2−CF3

Table 5. Assignment of the chemical shift of 13C{19F} CP-MAS.

Peak Chemicals Shift (Ppm) Assignment

1 120.68 −CF2−CF3
2 114.13 −CF2−CF2−CF2−
3 111.77 −CH2−CF2−CF2−
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Table 6. Assignment of the chemical shift of 13C{1H} CP-MAS spectrum.

Peak Chemicals Shift (Ppm) Assignment

1 176.89 RO−(C=O)−
2 56.84 −O−CH3
3 45.37 −CH2−CF2−
4 (0–40) −CH2−CH2−

In the Fluo AQ 13C{1H} CP−MAS spectrum, signals due to fluorinated and non-
fluorinated alkyl chains, absent in Fluoline HY, are present. From the peaks at 176.89
and 56.84 ppm attributed to the ester carbonyl and to the alkoxy group bound to it
(Figure 11), it is possible to hypothesize that this is an acryl-alkyl-fluorinated polymer.
The broad signal at ~121 ppm is assigned to the −CF2 group bonded to the –CH2 group
(−CH2−CF2−CF2−) [33]. The hypothetical possible structure of Fluo AQ is shown in
Figure 12.
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3.3. Study of the Interactions

In order to obtain information about the behaviour of each protective when applied
on the stone surface and on possible interactions between the two materials, 19F MAS NMR
spectra of the Fluoline HY and Fluo AQ were recorded, together with the T1F and T2F
relaxation times before and after their application on the stone.

19F MAS NMR spectra of Fluoline HY and Fluo AQ after their application on the stone
sample are shown in Figures 13 and 14.
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In the spectra of the Fluoline HY and of Fluo AQ on the stone, chemical shift values
very similar to those of the pure polymers were observed. Nevertheless, by comparing
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these spectra with those of pure polymers, an intensity increase in the spinning side bands
(↓) is observed (see Figures 13a and 14a). This provided evidence that the polymer assumes
preferential orientations inside the stone pores, thus resulting in a more organized and less
mobile material.

This hypothesis was confirmed by the analysis of the spin–lattice relaxation times
(T1F) and spin–spin relaxation times (T2F) shown in Tables 7 and 8.

Table 7. T1F and T2F spin-lattice relaxation times of fluorine nuclei of Fluoline HY.

T1F(S) T2F(Ms)

Peak Chemicals Shift
(Ppm) * Fluoline HY Fluoline HY

on Stone Fluoline HY Fluoline HY
on Stone

1 −73.22 0.50 0.57 0.80 0.72
2 −88.67 0.51 0.60 0.40 0.35

3–4 −108.96
−116.10 0.51 0.60 0.30 0.33

5 −181.59 0.50 0.60 1.50 1.44
* The measurement error is less than 5%.

Table 8. T1F and T2F spin-lattice relaxation times of fluorine nuclei of Fluo AQ.

T1F(S) T2F(Ms)

Peak Chemicals
Shift (Ppm) Fluo AQ Fluo AQ

on Stone Fluo AQ Fluo AQ
on Stone

1 −79.49 0.51 0.56 0.66 0.67
2 −111.34 0.51 – * 0.09 –
3 −120.96 0.51 0.60 0.15 0.14
4 −123.21 0.50 0.53 0.18 0.16

* T1F and T2F for peak 2 of the stone sample treated with Fluo AQ is not reported because the relative signal is
not very intense and the measurement error is too high; The measurement error is less than 5%.

T1F values for the two polymers in contact with the stone are longer than the relaxation
times of the pure materials. This T1F increase suggests that the local molecular motions in
the order of MHz decrease after the application [34].

T2F values of Fluoline HY in contact with the stone are shorter than those of pure
Fluoline HY in accordance with the fact that signals 1 and 2 of Fluoline HY in contact with
the stone are broader than the homologous bands of pure polymer (see Figure 13b). This
indicates that even the low-frequency motions involving the side chains are prevented
within the pores of the stone.

T2F of the Fluo AQ does not change after the application on the stone. This pro-
vides evidence that the low-frequency motions of the side chains are not affected by the
confinement effect of the polymer. This could indicate that the partially cross-linked
structure of this polymer could prevent changes in the dynamic state of the side chains
after its application on the stone material. All these findings can be correlated with the
observed macroscopic properties. The crosslinking of the polymeric system could cause
the formation of a more homogeneous surface film. This could be related to the greater
water repellence imparted onto the stone substrate compared to Fluoline HY and to the
unchanged breathability of the stone after treatment, in agreement with the results obtained
from the investigation by X-ray microscopy.

The molecular structure and dynamics of the polymer chains are responsible for a
different structural organization of the polymers in contact with the stone substrate. The
different structural organization of the polymers provides indirect evidence of the different
efficacy of hydrophobic treatments and justifies their observed different spatial distribution,
confirming the correlation with the observed macroscopic properties. These results were
already observed by some of our group for different polymer materials where the optical
or the mechanical properties were correlated to the microscopic motions [35–37].
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4. Conclusions

In this paper, SEM, X-ray microscopy and ss-NMR were used to correlate the micro-
scopic properties with the protective efficacy of two polymeric formulations on Cusa’s
stone. The results obtained by X-ray synchrotron microscopy coupled with X-ray fluores-
cence prove that the performance of both coatings is linked to their distribution within the
stone, which are usually indicated only at the macroscopic level in terms of the permeability
of the stone to water vapour and water repellence. In fact, the Fluo AQ shows greater
affinity with the stone substrate and the formation of a continuous and homogeneous film
adhering to the walls of the pores, without obstructing the empty spaces in which the
water molecules can diffuse, and which confers an important hydrophobic character. On
the contrary, the Fluoline HY clogs the pores, limiting the water vapour permeability. The
interactions with the stone substrate were investigated by comparing the ss–NMR spectra
of Fluoline HY and Fluo AQ in the form of a polymeric film with the corresponding spectra
obtained from the stone samples treated with each protective agent. No changes in the
chemical environment of the observed nuclei were found. The analysis of relaxation times
highlighted the changes in the structural organization and in the dynamics of polymeric
systems. The two protective agents in contact with the stone substrate are less mobile,
probably due to a “confinement effect” also highlighted by the increase in the intensity
of the side bands in the spectra obtained from the stone treated with the protective. The
smaller mobility of the polymeric chains of Fluo AQ, together with its cross-linked organi-
sation, can explain the greater water repellence imparted to the stone substrate compared
to Fluoline HY, in agreement with the X-ray microscopy. The crosslinking of the polymeric
system could cause the formation of a more homogeneous surface film. The study of the
interactions between the protective materials used and the stone substrate is fundamental
for obtaining indirect information on protective treatments and represents an alternative
approach to the traditional methods used up to now. The obtained results show how X-ray
synchrotron microscopy coupled with X-ray fluorescence is a powerful tool to overcome
some drawbacks of classical imaging and to carry out an in-depth investigation on the
spatial distribution of polymers in the stone and how ss-NMR spectroscopy is a powerful
tool to interpret and predict the effectiveness of water repellence treatments for the pro-
tection of stone surfaces knowing the structural characteristics and physical properties of
the polymer. Both techniques are useful for interpreting and correlating micro and macro
behaviour for the description of the protective action. In the future, this approach needs to
be made more thorough and could be applied to other case studies involving other kinds
of protectives. The obtained results are of utmost importance for fundamental research,
but also for manufacturing companies aiming to developing new commercial products,
upgrading existing ones or orienting their end-user handling.
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