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Abstract: Cognitive impairment after a stroke has a direct impact on patients’ disability. In particular,
impairment of Executive Functions (EFs) interferes with re-adaptation to daily life. The aim of this
study was to explore whether adding a computer-based training on EFs to an ordinary rehabilitation
program, regardless of the specific brain damage and clinical impairment (motor, language, or
cognitive), could improve rehabilitation outcomes in patients with stroke. An EF training was
designed to have minimal motor and expressive language demands and to be applied to a wide range
of clinical conditions. A total of 37 stroke patients were randomly assigned to two groups: a training
group, which performed the EF training in addition to the ordinary rehabilitation program (treatment
as usual), and a control group, which performed the ordinary rehabilitation exclusively. Both groups
were assessed before and after the rehabilitation program on neuropsychological tests covering
multiple cognitive domains, and on functional scales (Barthel index, Functional Independence
Measure). The results showed that only patients who received the training improved their scores
on the Attentional Matrices and Phonemic Fluency tests after the rehabilitation program. Moreover,
they showed a greater functional improvement in the Barthel scale as well. These results suggest that
combining an EF training with an ordinary rehabilitation program potentiates beneficial effects of
the latter, especially in promoting independence in activities of daily living.

Keywords: executive functions; stroke patients; cognitive training; rehabilitation; brain lesion

1. Introduction

Stroke is a cerebrovascular accident, due to ischemia or hemorrhage, which causes
loss of brain function. This disorder is characterized by a fast and focal development
of neurologic symptoms along with motor, language, and other cognitive impairments.
According to the World Health Organization, stroke is the second leading cause of death
and the third leading cause of disability [1]. More than two-thirds of stroke survivors have
limitations to live independently or have catastrophic impact in their daily life. Cognitive
dysfunctions affect more than one third of these patients, may persist for years after stroke,
and strongly contribute to disability. Prospective studies have shown that the cognitive
status is a key factor in post-stroke recovery [2,3]. Patients with cognitive deficits at
three months are 2.4 times more likely to have dependent living, irrespective of age and
severity of physical impairment [4]. Given these prognostic implications, an adequate and
timely cognitive assessment, together with an appropriate rehabilitative intervention, are
of paramount importance.

Impairment of executive functions (EFs) represents one of the most common cognitive
sequelae of stroke. Depending on the definition and instruments used for its assessment,
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the prevalence of executive dysfunction after stroke ranges from 19% to 75% [5]. In spite of
this, some of them are ‘invisible’ to the patient’s awareness. Namely, while motor, language,
and memory impairments are more apparent, deficits involving some EFs (such as working
memory, sustained and shifting attention) are more insidious or manifest when patients
fully return to the complex demands of daily life [6]. Therefore, even the treatment plans
risk neglecting them.

EFs refer to high-level cognitive operations that direct lower-level processes toward
goal-oriented actions [7]. This class of cognitive functions encompasses multiple abilities,
including planning, problem solving, criterion setting, multitasking, working memory,
cognitive control, inhibition, switching, and monitoring. All these functions are strongly
interrelated but also separable and independent [8,9]. The complexity of EFs makes them
very sensitive to brain changes resulting from stroke [10]. EF impairment is expected to
generate cascade effects on other cognitive functions and to reduce the capacity to regain
independence in activities of daily living [11]. Furthermore, it affects the ability to adapt to
new or problematic situations, such as when alternative movement strategies are necessary
to compensate for limb weakness or when planning in advance a sentence is required
for rehabilitating verbal communication. Therefore, executive dysfunctions greatly affect
the quality of a patient’s life and self-sufficiency, resulting in everyday difficulties across
diverse neurological conditions [12–14].

Studies that investigated the role of executive functioning in recovery after stroke have
found that this is a strong predictor for recovery of motor functions as well as dependence
in daily living after discharge [15–17]. Previous systematic reviews on EF rehabilitation in
stroke [5,18,19] concluded that high-quality evidence about the effect of EF rehabilitation
is still limited but encouraging. In particular, computer-based rehabilitation programs,
which are being increasingly used in clinical practice, are promising, although their effect
on the improvement of cognitive functions after stroke and, more importantly, in activities
of daily living, still needs further evidence [19]. Of note, some studies found benefits
of using a combined approach to cognitive rehabilitation in brain injury, that is, to use
computer-based rehabilitation programs in addition to conventional programs [20].

The goal of the present study was to evaluate the efficacy of a computerized training
program aimed at potentiating EFs in patients with stroke. The peculiarity of the program
is that it was aimed to be combined with ordinary rehabilitation programs (on speech,
language, motor functions, etc.) and that its tasks demand minimal selective attention,
expressive language, and motor resources. As such, it could be administered to a wide
range of patients, regardless of the specific brain damage and deficits, even to those patients
with severe impairments but preserved basic motor (movement of one hand) and language
(comprehension of simple sentences) functions. The underlying hypothesis was that if
EFs regulate more basic functions, from motor to more cognitive ones, then, strengthening
EFs would support the recovery of these functions. Therefore, the combination of this EF
training program with an ordinary rehabilitation, which could involve conventional as well
as computerized interventions, both tailored to the patient (such as cognitive rehabilitation
on specific attention, memory, and EFs), would improve final rehabilitation outcomes,
especially daily life functions.

To this end, a training group and a well-matched control group were tested at two
time points, before (T0) and after (T1) rehabilitation. The training group performed a
computerized training to potentiate EF, in addition to the standard rehabilitation program
(i.e., treatment as usual). The training was designed based on a brain-based EF model
inspired by the ROBBIA model [9,21–23], and was adaptive. The control group underwent
the standard rehabilitation program only. To evaluate the efficacy of the training program
on the final rehabilitation outcomes, patients’ performance on a battery of standardized
tests covering multiple cognitive domains, and scores on functional scales were measured
at T0 and T1. We hypothesized a greater improvement in cognitive functions and in
independence in daily life in the group that underwent the EF training compared to the
control group.
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2. Materials and Methods
2.1. Procedure

The study was conducted at the IRCCS San Camillo Hospital, Venice (Italy), a special-
ized rehabilitation hospital. The protocol was conducted in compliance with the Declaration
of Helsinki and received formal approval by the local Ethical Committee. All patients
signed an informed consent prior to their participation. Exclusion criteria were: age below
18 years, premorbid ischemic or hemorrhagic stroke, comorbid neurological (e.g., epilepsy)
or neurodegenerative (e.g., multiple sclerosis, dementia) disorder, premorbid or comorbid
brain damage other than stroke (e.g., traumatic brain injury, tumor), psychiatric disorders,
unstable medical conditions, sensory impairments that prevent processing and recogni-
tion of visual stimuli (e.g., agnosia or color blindness), dyslexia/alexia, severe vigilance
or verbal comprehension deficits, impaired motor control of both hands. Patients were
enrolled in the study during their hospitalization and were randomly assigned to one of
the two groups. A single-blind randomized controlled design was adopted and a stratified
randomization procedure guaranteed a balance of the two groups in terms of age, sex, edu-
cation, time from event, and stroke severity, as assessed by the neurological examination.
All participants received an inpatient rehabilitation program, based on their needs, in accor-
dance with the routines at the clinic. The rehabilitation program could include: neuromotor
rehabilitation (e.g., robotic gait training, virtual reality, and cycling), speech rehabilitation
(e.g., conversational therapy, reading, and writing), occupational therapy (daily living
activities, group activities, and garden therapy activities that engage patient in all stages
of plant cultivation and care), and optokinetic stimulation, but also neuropsychological
rehabilitation on specific cognitive abilities, such as visuo-spatial exploration, sustained
attention, working memory, problem solving, planning, and performance monitoring. The
typical rehabilitation program for stroke patients usually lasts from two to three months.

In addition to the rehabilitation program, the training group received the EF training
as well. The training lasted 10 sessions, about one hour each, distributed over a mean of
15.7 days ± 2.3 SD. Both groups were assessed with a battery of neuropsychological tests
at T0 (before training and rehabilitation or rehabilitation only), and at T1 (after training
and rehabilitation or rehabilitation only). The time interval between T0 to T1 lasted about
40 days (45 days ± 19.5 for the training group, 40 days ± 16.3 for the control group,
t(35) = 1.14, p = 0.439). Furthermore, measures on independency in activities of daily living
were assessed at hospital admission and at hospital discharge (3.5 months ± 1.3 for the
training group, 4.2 months ± 2 for the control group, t(35) = 1.22, p = 0.229), by means of
functional scales.

2.2. Participants

Patients were consecutively selected according to their hospital admission, scrutinized
according to the exclusion criteria, and then approached to ask for participation. A total of
43 patients, admitted from January 2018 through August 2020, were enrolled. Three patients
were lost to follow-up assessment (T1), whereas three patients discontinued rehabilitation
(see Figure S1 for a detailed patient flow). The final sample included 18 patients in the
training group and 19 patients in the control group. Patients’ characteristics, namely
age, sex, education, and Mini-Mental State Examination (MMSE) standardized score [24];
TIB standardized score (Italian version of the National Adult Reading Test [25]), etiology
(ischemic or hemorrhagic), time since event, symptoms reported at the hospital admission,
and the rehabilitation programs completed during hospitalization are summarized in
Table 1. Two participants were left-handed (one in the training group, one in the control
group), and one was ambidextrous (in the training group). The a priori power calculation
had estimated a sample of 16 patients per group in order to detect a small effect of training
(partial η2 = 0.04), with a statistical power (1 − β) of 0.80, a significance level (α) of 0.05,
and a repeated-measures correlation of 0.7 (G*Power 3 software [26]).
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Table 1. Demographic characteristics of the two patients’ groups. Mean (and standard deviation)
or frequencies are reported in cells. MMSE: Mini-Mental State Examination; TIB: Italian version of
the National Adult Reading Test. P-values were obtained from independent sample t-tests (Age,
Education, MMSE, TIB, and Time since event) or chi-square (M/F, Etiology, Symptomatology, and
Rehabilitation program) statistics.

Training Group
(n = 18)

Control Group
(n = 19) p

Age (years) 64.6 (12.7) 64.9 (12.7) 0.946
M/F 12/6 14/5 0.728

Education (years) 9.4 (4) 9.3 (4.2) 0.925
MMSE 25.1 (2.5) 24.6 (3.3) 0.557

TIB 106.1 (9.4) 101.1 (11.7) 0.189
Time since event (months) 3.1 (2.4) 4.2 (3.4) 0.259

Etiology
Ischemia 13 12

0.999Hemorrhage 6 6

Lesion side
Left hemisphere 7 7

0.956Right hemisphere 9 11
Bilateral 1 1

Symptomatology
Aphasia, dysartria 6 10

0.671
Neglect 7 8

Sensory-motor impairments
(e.g., hemiplegia/

hemiparesis)
18 19

Cortical visual impairments
(e.g., hemianopsia) 4 2

Rehabilitation program
Speech therapy 5 9

0.803
Motor therapy 18 18

Occupational therapy 8 8
Neuropsychological rehab 12 17

No significant differences at baseline were observed between groups with regard to
age (t(35) = 0.068, p = 0.946), sex (χ2 = 0.218, p = 0.728), education (t(35) = 0.094, p = 0.925),
MMSE (t(31) = 0.512, p = 0.613), TIB (t(31) = 1.342, p = 0.189), time since event (t(35) = 1.14,
p = 0.259), etiology (χ2 = 0.013, p = 0.999), lesion side (χ2 = 0.09, p = 0.687), symptomatology
(χ2 = 1.55, p = 0.671), and type of rehabilitation (χ2 = 0.992, p = 0.803).

Structural information of brain lesions was obtained from regular MRI (T1-weighted,
T2-weighted and/or FLAIR scans) or computed tomography (CT). Figure 1 describes the
overlap of patients’ lesions (two patients were excluded from this lesion overlap image due
to poor data quality).
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Figure 1. Lesion coverage proportion maps of training and control groups. Lesions were manually segmented and overlaid
onto the reference standard brain template by means of the clinical toolbox [27,28]. The percentage values represent the
lesion overlap within (A,B) and between (C) groups.

2.3. Training Program

The rationale of the program is partially founded on studies conducted in our lab-
oratory and previously in the Don Stuss’ lab, which elaborated a brain-centered model
of EFs based on two distinct domain-general EFs, namely, criterion setting and moni-
toring [9,21–23]. In line with this model, the program included four types of training
tasks, targeting Working Memory (WM), Interference Control and Inhibition (ICI), Task-
Switching (TS), and Monitoring (M). In each task, stimuli consisted of “cards”, displayed
one at a time in the center of a laptop screen. The cards could contain one of the following
stimuli: geometric symbols, words, faces, and objects. Since the training was aimed at
potentiating domain-general processes, regardless of the specific materials, the type of
stimuli varied within and across sessions. The order of the sessions/stimuli was counter-
balanced across patients. The tasks were presented in a fixed order (WM, ICI, TS, and M),
following a hierarchical logic. This logic relies on a hierarchical integrative model [29],
based on developmental evidence, according to which working memory is the component
that develops first, followed by inhibitory control and, finally, cognitive flexibility, which is
built on both of them. The duration of the stimulus presentation was adapted to the single
patient’s performance. Each task lasted approximately 10 min. All tasks were designed
to involve minimal load on selective attention, expressive language, and motor abilities.
Namely, the cards were displayed one at a time on the screen, and in all tasks the response
required only a button press of the spacebar, with the index finger of the dominant hand
(or the index finger of the non-hemiplegic hand), without selecting among alternative keys.
Patients were unaware of all task manipulations. Stimulus presentation and data recording
were controlled by the E-Prime 2 software (Psychology Software Tools, Pittsburgh). Each
patient was tested individually in a quiet and dedicated hospital room, with the continuous
presence of a junior neuropsychologist (R.T. or E.R.), who set up the laptop and assisted
the patient with the instructions.
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2.3.1. Stimuli

Geometric symbols were adapted from a popular US game (www.setgame.com, ac-
cessed on 28 July 2021) and could differ in shape (ovals, diamonds, or flags), color (red,
blue, or green), or number (from one to three). Faces could be female or male, Caucasian
or not, neutral or emotional (adapted from [30]). Objects could be kitchen or garage tools,
unimanual or bimanual, and made with metal or not (adapted from [31]). Words could
refer to animals, fruits, or vegetables and begin with a specific letter. Examples of stimuli
and trials are reported in Supplementary Materials.

2.3.2. Working Memory (WM) Task

The WM task was based on the 1-back paradigm [32]. Patients had to respond
by pressing the spacebar whenever the card was identical to the one presented in the
immediately preceding trial. A simple response time procedure was chosen, instead of the
typical two-choice procedure, in order to unload the selection process.

The task comprised five blocks of 20 trials each (seven targets). The first two blocks
were practice blocks and served to make patients familiarize with the task. During these
blocks, feedback on each trial was provided to ensure instruction understanding. In
the first block, the cards were displayed for 1500 ms and followed by a blank screen
for 3000 ms (Inter-Trial-Interval, ITI). If the patient reached an accuracy >65%, then the
stimulus duration and ITI were increased on the successive blocks to 1000 and 2500 ms,
respectively. If the accuracy level was <65%, then the practice block was repeated until an
accuracy level >65% was reached. If the patient obtained an accuracy level >85% in three
consecutive sessions, a duration manipulation was applied, namely, the ITI duration was
lengthened to load the process of stimuli retention in memory (to 3500, 4000, or 4500 ms).

2.3.3. Interference Control and Inhibition (ICI) Task

This task was designed to train both “cognitive” and “motor” inhibitory processes.
Again, a series of cards was presented, one at a time, centered on the screen. Participants
were required to respond whenever a card belonging to a specific category appeared
(targets) and not to respond to the other ones. For example, in the case of geometric
symbols, patients were instructed to respond to all red diamonds. In this case, the targets
were cards containing one, two, or three red diamonds only. Cards with red ovals, red
flags, green diamonds, and blue diamonds, represented distractor stimuli, since they share
some but not all features with the target (i.e., color and shape, respectively). All other
cards represented simple no-go stimuli. Alternatively, in the case of faces, participants
could be required to respond to happy female faces. In this case, the targets were happy
Caucasian and non-Caucasian female faces. Happy male faces and neutral female faces
represented distractor stimuli, whereas neutral and sad male faces represented no-go
stimuli. Withholding response to distractor trials required interference control, whereas
withholding response to non-go trials required more general inhibition.

The ICI task comprised four blocks. The first two blocks were for practice and
contained 18 trials each. According to performance levels (< or >65%) on practice blocks,
the stimulus duration was set to 1500 or 1000 ms, and the ITI to 3000 or 2000 ms. The
two successive task blocks had two different target types and contained 64 trials each
(16 targets).

2.3.4. Task-Switching (TS)

Patients were asked to perform the same task as the ICI, namely to detect a target
card. Yet, unlike the ICI task, shorter series of trials (9, 12, or 15) were presented. At the
beginning of each series, the target card was displayed, which was one of the two target
types used in the ICI task. For each series, the target card could be the same as the preceding
series (“repeat series”) or could change (“switch series”). Compared to repeat series, in
switch series participants were required to disengage from the previous/alternative target.

www.setgame.com
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Therefore, commission errors (i.e., responses to cards containing the alternative target)
would reflect a failure of this process. The target cards varied across sessions.

2.3.5. Monitoring Task (M)

As in the TS task, short series of cards (9, 12, or 15) were presented one at a time,
for 1500 ms, in the center of the screen. At the beginning of each series, a target card
was shown. Patients had to detect as soon as possible this card among the series, which
appeared towards the end (at the 8th, 9th, or 14th trial). In “predictable” series, the
presented card followed a certain regularity (such as increasing number of symbols), which
allowed the anticipation of the target occurrence. In “unpredictable” series, the cards
presented in the series were randomly chosen. The M task trained the ability to monitor
events in order to, implicitly, check rules (e.g., [33]). Two practice series were presented
at the beginning, to familiarize with the instructions. Then, six predictable series and six
unpredictable ones were administered. The patient was not aware of the predictability
manipulation.

2.4. Outcome Measures

Two types of outcome measures were analyzed to quantify the effect of training:
performance on neuropsychological tests and scores on functional scales. The neuropsy-
chological test battery assessed short-term and working memory (Digit span forward
and backward, Corsi block-tapping test [34]); attention and processing speed (Attentional
matrices [35], Trail Making Test–A [36]); language (Naming test [37], Phonemic and Se-
mantic fluency [38]); and executive functions (Wisconsin Card Sorting Test, WCST [39,40],
Five Point test [41,42], and Stroop test [43]). Some composite scores were considered:
the error index in the Five Point test, which measures the percentage of perseverative or
rule-breaking errors over the total number of designs [41], and the Stroop Inverse Efficiency
Score (IES), which is derived by dividing mean Stroop interference response time by its
corresponding accuracy. Additionally, the patients were tested with the Barthel Index [44]
and the Functional Independence Measure (FIMTM [45,46]). These scales evaluate the level
of disability in everyday contexts, namely, the dependency on a caregiver. The Barthel
index allows the assessment of changes in the basic daily activities (such as self-care and
locomotion) and consists of 10 items, scored on a five-point Likert scale, with total score
ranging from 0 (totally dependent) to 100 (totally independent). The FIM assesses physical
and cognitive changes in daily contexts (such as self-care and communication abilities) and
consists of 18 items, scored on a seven-point Likert scale, with total score ranging from 18
(totally dependent) to 126 (totally independent). Disability severity did not differ between
the two groups at T0, as indexed by the Barthel (training group: range 0–70, control group:
range 0–65; t(35) = 0.156, p = 0.877) and the FIM score (training group: range 23–82, control
group: range 24–83; t(35) = 0.533, p = 0.597) score.

2.5. Data Analyses

Statistical analyses were conducted using Statistical Package for the Social Sciences
(SPSS) version 22.0 (IBM SPSS Statistics 2014). All dependent measures, namely, all tests
and scales’ scores, were continuous variables. According to the Kolmogorov–Smirnov
test, some neuropsychological measures were normally distributed (TMT-A, Attentional
matrices, Phonemic fluency, Semantic fluency, Five Point error index, and Barthel index),
whereas some other measures were not (i.e., Digit span forward, Digit span backward,
Corsi block-tapping test, Naming, WCST categories, WCST errors, and Stroop IES, FIM).
In order to examine significant difference in scores between T0 and T1, paired t-tests, or
Wilcoxon signed-rank test for the not normally distributed variables, were computed,
separately for each group. To test group differences in Pre vs. Post changes, an ANCOVA
model was applied to normally distributed variables, which included the score at T1
as a dependent variable, and the score at T0 as covariate (Post ~ Pre + Group + Pre ×
Group). This is considered the best analytical approach for examining data from two-group
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pre-post designs [47,48]. If, on the one hand, it adjusts for pre-treatment measures, it
also takes into account that baseline individual scores affect cognitive training effects,
namely, a negative relationship between a participant’s initial cognitive ability and the
results of training [49,50]. For testing not normally distributed measures, the ANCOVA
was conducted on rank-transformed scores [51,52]. The effect sizes for pre-test –post-test
control group designs were estimated, based on the mean pre–post change in the treatment
group minus the mean pre–post change in the control group, divided by the pooled pre-
test standard deviation (dppc2 [53]). p-values < 0.05 for a two-sided test were considered
statistically significant.

3. Results

Table 2 contains the mean scores (and standard deviations) for each test and group,
at T0 and T1. The paired t-tests showed significant improvement at T1 relative to T0 for
the Attentional matrices (t(17) = 4.23, p = 0.001) and for the Phonemic fluency (t(13) = 2.64,
p = 0.020) scores, in the training group only. A tendency toward significance was also
found in the Digit Span forward score (Z = 1.96, p = 0.05). Interestingly, a significantly
higher proportion of patients in the training group shifted their performance to the normal
range in the Attentional matrices test at T1 relative to T0 (McNemar test = 4.2, p = 0.031).

Table 2. Means and standard deviations (in parentheses) for Pre- (T0) and Post-rehabilitation (T1) sessions. P-values derived
from Wilcoxon signed-rank tests for not normally distributed variables (Digit span forward, Digit span backward, Corsi
block-tapping test, Naming, Wisconsin Card Sorting Test WCST categories and errors, Stroop Inverse Efficiency Score,
and Functional Independence Measure), and from paired t-tests for normally distributed variables (Trail Making Test-A,
Attentional matrices, Phonemic fluency, Semantic fluency, Five Point error index, and Barthel index). The pre-test–post-test
control group effect sizes were computed by the Morris’s formula [53]. In bold p-values < 0.050 and effect sizes > 0.4. N
varies across tests because some participants could not perform all tests due to aphasia or neglect.

Training Group Control Group

T0 T1 n p T0 T1 n p d

Memory
Digit span forward 4.6 (1) 5.2 (0.9) 16 0.050 4.7 (1) 4.9 (0.9) 16 0.331 0.56

Digit span backward 3.5 (0.8) 3.2 (1.1) 16 0.462 3.1 (1.3) 2.7 (1) 16 0.353 0.12
Corsi block-tapping 3.9 (0.9) 4.2 (1) 18 0.19 3.8 (1.1) 4 (0.8) 18 0.589 0.13

Attention and processing speed
Attentional matrices 36.7 (13.5) 42.6 (12.7) 18 0.001 34.3 (10.6) 37.1 (10.2) 19 0.115 0.32

TMT-A (s) 87.1 (46.3) 82.3 (55.3) 17 0.543 77.9 (37.9) 68.9 (28.2) 16 0.077 0.16

Language
Naming 14 (1.4) 14.1 (1.6) 17 0.276 13.8 (1.5) 14.3 (1) 17 0.069 −0.37

Phonemic fluency 24.1 (11.8) 29.1 (11.2) 14 0.020 21.6 (11.3) 22.6 (11.7) 16 0.569 0.41
Semantic fluency 33.8 (13.3) 34.2 (10.7) 9 0.872 25.7 (11.3) 26.6 (8) 15 0.554 −0.05

Executive functions
WCST cat 4 (2) 4.2 (1.9) 16 0.521 3.2 (2) 3.2 (1.9) 16 0.807 0.13
WCST err 6.6 (4.4) 5.4 (6.3) 16 0.504 7 (4.7) 7.2 (5.1) 16 0.574 −0.41

Five Point error index 24.3 (22.1) 22.5 (24.3) 18 0.802 24.4 (20.3) 18.6 (12.8) 18 0.158 0.25
Stroop IES 45.2 (45.1) 37.5 (15.6) 15 0.532 47.7 (26.4) 44.6 (28.2) 13 0.158 −0.49

Functional scales
Barthel index 25.5 (23.6) 75 (15) 18 <0.001 24.5 (18.5) 66.8 (20) 19 <0.001 0.42

FIM 56.3 (16.7) 92.8 (13.5) 18 <0.001 53.4 (16.4) 87.4 (21.1) 19 <0.001 0.19

Scores on the functional scales revealed significant improvements from the hospital
admission to the discharge for both groups (Barthel index: training group t(17) = 8.83,
p < 0.001; control group t(18) = 9.93, p < 0.001; and FIM: training group t(17) = 9.8, p < 001,
control group t(18) = 8, p < 0.001). All patients, except one patient in the training group and
one patient in the control group, underwent an improvement in the Barthel index above
the minimal detectable change (MDC) expected in test–retest assessment [54].
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In Table 2, the group effect size on the post–pre comparison was reported. This pre-
test–post-test control group size effect was larger than 0.4 in the Digit span, Phonemic
fluency, errors on the WCST, Stroop interference (IES), and, more importantly, in the Barthel
index. In all these measures, the ordinary rehabilitation combined with the training yielded
a larger effect than the ordinary rehabilitation only. Namely, performance at T1 relative to
T0 improved more in the training group relative to the control group in all tests. Only the
Naming accuracy showed a larger positive change in the control group.

The ANCOVA model revealed that, when controlling for T0 scores, a significant
Group effect emerged on the post-rehabilitation scores on the Barthel scale (F(1,33) = 4.2,
p = 0.049, and partial η2 = 0.113). Namely, participants of the training group obtained
higher scores at T1 compared to the control group. In order to explore the association
between pre-rehabilitation Barthel scores and post–pre difference (gain) in Barthel scores,
an ANCOVA with gain as dependent variable, pre-rehabilitation Barthel score as covariate,
and Group as independent variable was performed. The results (see Figure 2) revealed
a negative correlation between gain and pre-rehabilitation Barthel score (main effect of
pre-rehabilitation Barthel score: F(1,33) = 21.32, p < 0.001, and partial η2 = 0.392), and
confirmed an overall higher difference in the training group (F(1,33) = 4.2, p = 0.049, and
partial η2 = 0.113). The interaction was not significant (F(1,33) = 2.12, p = 0.15), meaning
that in both group pre-rehabilitation Barthel score and gain were correlated. As evident in
Figure 2, patients with lower Barthel scores at T0 gained larger benefits than patients with
higher Barthel scores at T0.
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4. Discussion

The aim of this study was to investigate whether a computerized EF training could
boost the effects of stroke rehabilitation when added to an ordinary rehabilitation program,
regardless the specific brain damage and cognitive/motor impairments. To this aim, two
groups of patients with stroke were involved in the study, a group that received the training
in addition to the routine rehabilitation, and a group that received the routine rehabilitation
exclusively. A neuropsychological assessment before (T0) and after (T1) the rehabilitation
was administered to both groups (it is noteworthy that the same amount of time from T0 to



Brain Sci. 2021, 11, 1002 10 of 14

T1 passed for the two groups). Furthermore, the self-sufficiency in the daily activities was
assessed by means of two functional scales.

The findings showed that only the patients’ group that received the training improved
performance on the Attentional matrices and on the Phonemic fluency test, at T1 relative
to T0. The effect sizes computed for pre-test–post-test control group designs revealed a
moderate effect of training in Digit span, Phonemic fluency, errors on the WCST, and Stroop
interference. Both groups significantly improved in their independency in activities of daily
living after rehabilitation, as measured by the Barthel and FIM scales. Remarkably, the
training group obtained significantly larger improvement on the Barthel scale compared
to the control group. This result suggests that the training boosted the effects of routine
rehabilitation in the level of independence in activities of daily living. Although the FIM
scale was expected to be more sensitive than the Barthel scale, in fact our results are
consistent with previous studies that compared the two scales and found that the Barthel
scale has good responsiveness in detecting changes after rehabilitation in patients with
stroke [55].

The results on neuropsychological outcomes revealed that the training could improve
functions not directly targeted by the training, such as visual selective attention (Attentional
matrices) and verbal fluency (Phonemic fluency). This transfer effect to “near” cognitive
functions is in line with the study hypotheses, and confirms previous evidence on the
near transfer effects of EF trainings in healthy individuals [56] as well as in mild cognitive
impairment [57] and brain-injured patients [58]. Moreover, the effects of the training on
abilities not directly targeted by the training, such as on activities of daily living, provides
support to the idea that the training of EFs might support the improvement of other “far”
abilities (e.g., [59]).

As in this study, a previous randomized controlled trial has examined the effect of
adding a computer-based training of working memory to routine rehabilitation programs
in patients with working memory deficit following brain damage (e.g., stroke or trauma),
and has shown greater improvements in the training group compared to the control one,
not only in cognitive tests but also in Hospital Anxiety and Depression Scale scores [60].
Moreover, previous evidence documented the effectiveness of non-computer-based EF
trainings (e.g., the Goal Management Training) in improving daily life activities when
applied to patients with executive dysfunctions after various acquired brain injuries [61,62].
Unlike these investigations, the present work did not limit the training to patients with
EF impairments and considered post-stroke patients only. We identified very few similar
studies in the literature (summarized in Table S1), which combined a computerized atten-
tion and EF training with conventional rehabilitation in stroke patients, not specifically
impaired on EF. Only two of them, out of five, found larger improvements in the trained
compared to the control group on non-cognitive aspects, that is, higher patients’ satisfaction
with the results of treatment [63] and lower anxiety and depression symptoms [64]. None
of them, however, could observe greater improvement in daily living activities.

The improvements observed in this study might be attributed to some methodological
strengths and novelties of the training. Namely, (i) it relied on minimal motor, language
and attention requirements, therefore, all patients, even with multiple and/or severe
impairments, could benefit from it; (ii) it was inspired by a brain-based model [9,21]; and
(iii) it followed a hierarchical structure. Given the close correlation between EF changes
and executive control fronto–parietal brain networks [65,66], we might speculate that the
training had acted by reinforcing these networks (see [67]), although further replication
with neuroimaging extension is desirable to confirm this hypothesis.

In order to test the robustness of the present findings and the maintenance of its effect
over time, there is a need for further investigations adopting larger samples, a quantitative
severity index, a more symmetric distribution of lesion’s side across patients, and a long-
term follow-up. Furthermore, in order to maximize the likelihood of meaningful and stable
gain and to obtain a larger effect size, the effect of additional training sessions should be
assessed [68].
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5. Conclusions

In conclusion, although these results are preliminary given the relatively low sample
sizes, they suggest that adaptive computerized trainings on EFs added to conventional
rehabilitation treatment, regardless of the specific stroke lesions and impairments, might
be effective in potentiating/promoting recovery not only of related cognitive processes but
also of broader functional abilities. We summarize the main contribution of this work in
the finding that boosting EFs in an adaptive and theory-grounded manner might optimize
functional recovery in post-stroke patients, even in cases where EF disorders are not
specifically present. This training approach could potentially be applied to a wide range of
clinical conditions, although the patients’ characteristics that would benefit the most from
it should be investigated in future studies.
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