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Abstract: By using an abstract coincidence point theorem for sequentially
weakly continuous maps the existence of at least one positive solution is ob-
tained for a periodic second order boundary value problem with a reaction term
involving the derivative u′ of the solution u; the so called convention term. As
consequence of the main result also the existence of at least one positive solution
is obtained for a parameter-depending problem.
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1 Introduction

The aim of this paper is to obtain new existence results for the following periodic
boundary value problem{

−u′′ +M(t)u = f(t, u, u′) in (0, T )
u(T )− u(0) = u′(T )− u′(0) = 0,

(1.1)

where T > 0, M : [0, T ] → R is a continuous and positive function and f :
[0, T ] × R × R → R is a continuous function with f(t, 0, 0) 6= 0, for every
t ∈ [0, T ].

As usual, here we say that problem (1.1) has a convention term because the
nonlinearity f depends both on the function u and its derivative u′.

Concerning boundary value problems there is a well consolidated literature
where many pioneering results are obtained by several scholars using different
tools, as for instance, a priori bounds and topological degree [8, 10, 22]; upper
and lower methods [7, 14, 24] and fixed point theory [1] and [11].

In particular, as pointed out in [25], the application of the fixed point theo-
rem in studying problem (1.1) is strictly connected to the sign properties of the
Green’s function associated to the linear homogeneous problem, that is f ≡ 0.
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Recently, many authors paid attention to this topic and very interesting
results are pointed out in [2, 5, 12, 13, 15, 18, 20, 26, 27].

Here, for obtaining our main results, we apply a coincidence point theorem
for sequentially weakly continuous maps [3], see Theorem 2.1 below, in the
variational setting used in [23]. Such approach in spirit is based on an useful
version of K. Fan’s fixed point theorem [9] contained in [4]. However, we do not
use the Green’s function to get the solutions of problem (1.1). Moreover, we
do not require any asymptotic growth condition on the nonlinearity f at zero
and/or at infinity. We just assume condition (3.2) below, together f(t, 0, 0) 6= 0,
for every t ∈ [0, T ] to guarantee the existence of a nontrivial solution which
become positive provided that f(t, 0, 0) > 0 for every t ∈ [0, T ].

However, as far as we know, there are few papers dealing with problem
(1.1). For example, in [19], applying a coincidence degree theorem and when
the nonlinear term is of the form f(t, x, y) = h(t)g(x, y), the existence of at least

one positive solution is ensured in terms of the relative behaviors of g(x,y)
|x|+|y| for

|x|+ |y| near 0 and +∞, where

(H) h : [0, T ] → [0,+∞) and g : [0,+∞) × R → [0,+∞) are continuous,
h(t) 6≡ 0.

Furthermore, for the readers interested to the applications of periodic BVP in
physics and engineering, we again mention [19] and the references therein.

On the other hand, it seems that much more attention is paid to problems
without convention terms and depending from a positive parameter λ. An
example is the following{

−u′′ +M(t)u = λg(t, u) in (0, T )
u(T )− u(0) = u′(T )− u′(0) = 0,

(1.2)

where T > 0, M : [0, T ] → R is a continuous and positive function and g :
[0, T ]× R→ R is a continuous function.

In this case, many existence, non-existence and multiplicity results have
been obtained, for instance, in [12, 13, 16, 17, 20, 21, 27], requiring suitable
asymptotic behaviors of the “slope”f(t, u)/u of f at zero and at infinity.

Finally, for the sake of completeness, we wish to stress that in [3] and [6] a
similar approach to those proposed in the present note has been adopted for the
study of a Dirichlet and a Neumann boundary value problem respectively.

2 Preliminaries

We recall that the weak derivative of a function u ∈ L1([0, T ]) is a function
u′ ∈ L1([0, T ]) such that∫ T

0

u(t)ϕ′(t) dt = −
∫ T

0

u′(t)ϕ(t) dt

for every ϕ ∈ C∞T , where C∞T is the space of indefinitely differentiable T -periodic
functions (see [23]).
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Let us denote by HT the Sobolev space of functions u ∈ L2([0, T ]) having a
weak derivative u′ ∈ L2([0, T ]), while

H2
T = {u ∈ HT : u′ ∈ HT }.

According to ([23, pp. 6-7]), for every u ∈ H2
T one has that∫ T

0

u′(t) dt =

∫ T

0

u′′(t) dt = 0,

hence the periodic conditions u(T )− u(0) = u′(T )− u′(0) = 0 hold. Moreover,
if we endow H2

T with the norm

‖u‖ = ‖u‖2 + ‖u′‖2 + ‖u′′‖2

for every u ∈ H2
T and on C1([0, T ]) we consider the norm

‖u‖C1 = max{‖u‖∞, ‖u′‖∞},

H2
T is compactly embedded in C1([0, T ]), see [23, Proposition 1.2]. In particular,

if u ∈ H2
T observe that

|u(t)| =
1

T

∣∣∣∣∣
∫ T

0

u(s) +

∫ T

0

(∫ t

s

u′(x) dx

)
ds

∣∣∣∣∣
≤ 1

T
‖u‖1 + ‖u′‖1 ≤ T−1/2‖u‖2 + T 1/2‖u′‖2

≤ max{T−1/2, T 1/2}‖u‖

for every t ∈ [0, T ]. Thus, if we put

cT = max{T−1/2, T 1/2}, (2.1)

one can conclude that
‖u‖∞ ≤ cT ‖u‖. (2.2)

Similarly one can obtains
‖u′‖∞ ≤ cT ‖u‖, (2.3)

namely
‖u‖C1 ≤ cT ‖u‖. (2.4)

Incidentally, observe that if 0 < T ≤ 1 then cT = T−1/2 and one can realize
the equality in (2.4) choosing u constant. Namely, if 0 < T < 1 the constant
introduced in (2.1) is the best one of the embedding. Some sharp estimates for
the norms of functions in HT can be found in [23, Proposition 1.3].

A direct computation based on (2.4) shows that for every r > 0

Br = {u ∈ H2
T : ‖u‖ ≤ r} ⊆ {u ∈ C1([0, 1]) : ‖u‖C1 ≤ cT r}. (2.5)

The following coincidence point theorem represents the key tool for the proof
of our main results.
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Theorem 2.1. Let X, Y be real Banach spaces, let K be a weakly compact,
convex subset of X, and let F, G be sequentially weakly continuous functions
from K into Y , that is, if xn ⇀ x in K then F (xn) ⇀ F (x) and G(xn) ⇀ G(x)
in Y . Assume that F−1(y) is a nonempty convex set for all y ∈ G(K). Then
there exists x0 ∈ K such that F (x0) = G(x0).

3 Main results

Here is the first existence result for the considered periodic problem.

Theorem 3.1. Let f : [0, T ]× R× R→ R be a continuous function. Put

τ =
µ

cT
√
T [1 + (T + 1)(‖M‖∞ + µ)]

, (3.1)

with µ = mint∈[0,T ]M(t), and assume that there exists r > 0 such that

max
(t,x,y)∈[0,T ]×[−r,r]×[−r,r]

|f(t, x, y)| ≤ τ · r. (3.2)

Then, problem (1.1) admits at least one classical solution ũ such that

(ũ(t), ũ′(t), ũ′′(t)) ∈ [−r, r]× [−r, r]× [−(‖M‖∞ + τ)r, (‖M‖∞ + τ)r].

Proof. We will apply Theorem 2.1 with X = H2
T , Y = X∗, K = Bρ, being

ρ = r
cT

, and F,G : X → X∗ the functions defined as follows

F (u)(v) =

∫ T

0

(u′(t)v′(t) +M(t)u(t)v(t)) dt,

G(u)(v) =

∫ T

0

f(t, u(t), u′(t)) dt

for every u, v ∈ X. Indeed, K is weakly compact in view of the reflexivity of
X, while the compactness of the embedding of X into C1([0, T ]) assures that
both F and G are sequentially weakly continuous functions from X to X∗.
We claim that

G(K) ⊆ F (K). (3.3)

Fix w∗ ∈ G(K) and let w ∈ K be such that G(w) = w∗. Put

g(t) = f(t, w(t), w′(t))

for all t ∈ [0, T ] and observe that g ∈ C0([0, T ]). Hence, applying the Minty-
Browder theorem (or the Lax-Milgram theorem) in the space HT , the following
problem  −u

′′ +M(t)u = g(t) in (0, T )

u(T )− u(0) = u(T )− u(0) = 0
(3.4)
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admits a unique weak solution uw ∈ HT and, in particular, thanks to the
classical regularity theory, one has that uw ∈ C2([0, T ]) and it is a classical
solution.
If we localize uw ∈ H2

T and prove that

uw ∈ Bρ, (3.5)

we can conclude that (3.3) holds, since F (uw) = G(w) = w∗.
To this end, we first point out that

‖uw‖∞ ≤
‖g‖∞
µ

, (3.6)

‖u′w‖∞ ≤ T
(
‖M‖∞
µ

+ 1

)
‖g‖∞, (3.7)

and

‖u′′w‖∞ ≤
(
‖M‖∞
µ

+ 1

)
‖g‖∞. (3.8)

Indeed, fix k = ‖g‖∞
µ and put ϕ(t) = (uw − k)+. Obviously ϕ ∈ HT and

ϕ′ = u′w · χ{uw≥k}. Hence, from (3.4) one has∫ T

0

(u′wϕ
′ +M(t)uwϕ) dt =

∫ T

0

gϕ dt

that is

0 ≤
∫ T

0

M(t)(uw − k)(uw − k)+ dt

≤
∫ T

0

((u′w)2χ{uw≥k} +M(t)(uw − k)(uw − k)+) dt

=

∫ T

0

(g −M(t)k)(uw − k)+ dt ≤ 0,

and this implies that (uw − k)(uw − k)+ ≡ 0, namely

uw(t) ≤ k (3.9)

for every t ∈ [0, T ]. Arguing in a similar way, one has that

−k ≤ uw(t) (3.10)

for every t ∈ [0, T ]. Clearly (3.9) and (3.10) lead to (3.6).
Moreover, since uw(0) = uw(T ), there exists t0 ∈ (0, T ) such that u′w(t0) = 0
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and, in view of (3.6), for every t ∈ [0, T ] one has

|u′w(t)| =

∣∣∣∣∫ t

t0

u′′w(s) ds

∣∣∣∣
=

∣∣∣∣∫ t

t0

(M(s)uw(s)− g(s)) ds

∣∣∣∣
≤ T (‖M‖∞‖uw‖∞ + ‖g‖∞)

≤ T

(
‖M‖∞
µ

+ 1

)
‖g‖∞,

namely (3.7) holds.
Exploiting again that uv is a classical solution of problem (3.4), from (3.6) one
derives

‖u′′w‖∞ ≤
(
‖M‖∞
µ

+ 1

)
‖g‖∞

and (3.8) is verified.
Now observe that from (2.5) it follows that ‖w‖C1 ≤ r, hence, in view of as-
sumption (3.2), ‖g‖∞ ≤ τ ·r. Putting together (3.6)-(3.8) and this last estimate,
one has

‖uw‖2 + ‖u′w‖2 + ‖u′′w‖2 ≤ τ
√
T

µ
[1 + (T + 1)(‖M‖∞ + µ)] r =

r

cT
= ρ,

namely (3.5) holds and (3.3) is verified.
It is simple to verify that F is injective, hence F−1(w∗) = {uw} for every
w∗ ∈ G(K) and all the assumptions of Theorem 2.1 are satisfied. Thus, there
exists ũ ∈ K such that

F (ũ)(v) = G(ũ)(v)

for every v ∈ H2
T . But C∞T ⊂ H2

T implies that ũ′ ∈ HT , being M(t)ũ−f(t, ũ, ũ′)
its weak derivative. The regularity theory assures that ũ ∈ C2([0, T ]) and it is
a classical solution of (1.1). The proof is complete since ‖ũ‖∞, and ‖ũ′‖∞ can
be estimated recalling (2.5), while ‖ũ′′‖∞ can be estimated exploiting the fact
that ũ solves (1.1).

As a consequence of the previous result, we can state the main constant sign
periodic solution theorem.

Theorem 3.2. Let f : [0, T ] × R × R → R be a continuous function such that
f(t, 0, 0) > 0 for every t ∈ [0, T ]. Let τ > 0 as defined in (3.1) and assume that

max
(t,x,y)∈[0,T ]×[0,r]×[−r,r]

|f(t, x, y)| ≤ τ · r. (3.11)

Then, problem (1.1) admits at least one positive classical solution ũ such that
such that

(ũ(t), ũ′(t), ũ′′(t)) ∈ (0, r]× (0, r]× [−(‖M‖∞ + τ)r, (‖M‖∞ + τ)r].
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Proof. We make use of some truncation arguments. Let f̂ : [0, T ]×R×R→ R
be the function defined by

f̂(t, x, y) =

{
f(t, x, y) if x ≥ 0
f(t, 0, y) if x < 0.

(3.12)

If we consider the following auxiliary periodic problem{
−u′′ +M(t)u = f̂(t, u, u′) in [0, T ]
u(T )− u(0) = u′(T )− u(0) = 0,

(3.13)

it is evident that the non negative solutions of (3.13) are also constant sign
solutions of problem (1.1). At this point, we can observe that, thanks to (3.11)

and (3.12), f̂ satisfies all the assumptions of Theorem 3.1. Hence, problem
(3.13) admits at least one classical solution ũ ∈ C2([0, T ]). Finally, the proof is
complete if we verify that

min
t∈[0,T ]

ũ(t) > 0. (3.14)

Suppose (3.14) false, namely, there exists t∗ ∈ [0, T ] such that

ũ(t∗) = min
t∈[0,T ]

ũ(t) ≤ 0.

Thus, we have that
ũ′(t∗) = 0, ũ′′(t∗) ≥ 0. (3.15)

Indeed, if t∗ ∈ (0, T ) then (3.15) is obvious. Otherwise, suppose that t∗ = 0
(the other case t∗ = T is analogous). Since 0 is a minimizer of ũ one has that
ũ′(0) ≥ 0, but the periodic boundary conditions lead to ũ′(0) = 0. Otherwise, if
ũ′(0) > 0 one has ũ′(T ) > 0 and for t close to T one achieves the contradiction
ũ(t) < ũ(T ) = ũ(0) = min[0,T ] ũ.
Moreover, if it was ũ′′(0) < 0, since ũ ∈ C2([0, T ]), one could find a suitable
δ > 0 such that ũ′(t) < 0 for all t ∈ (0, δ), in contradiction with the fact that
t∗ = 0 is a minimizer.
At this point, exploiting (3.15) one is lead to the evident contradiction

0 ≥ −ũ′′(t∗) +M(t∗)ũ(t∗) = f̂(t∗, ũ(t∗), ũ′(t∗)) = f(t∗, 0, 0) > 0.

In conclusion, (3.14) holds and the proof is completed.

Remark 3.3. The existence of a negative classical solution can be similarly
proved if one assumes that f(t, 0, 0) < 0 for every t ∈ [0, T ], in place of
f(t, 0, 0) > 0.

Corollary 3.4. Let T > 0, M : [0, T ] → R a continuous and positive function
and g : [0, T ] × R → R a continuous function. Then, there exists λ∗ > 0 such
that, for each λ ∈ ]−λ∗, λ∗[, problem (1.2) admits at least one classical solution.
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Proof. Let τ as given in (3.1) and put

λ∗ = τ sup
r>0

r

max
[0,T ]×[−r,r]

|g(t, x)|
.

Therefore, fixed λ such that |λ| < λ∗, it is clear that there exists r > 0 such
that

max
(t,x)∈[0,T ]×[−r,r]

|λg(t, x)| < τr.

In few words, the function λg fulfils condition (3.2) of Theorem 3.1 and our
conclusion follows.

Example 3.5. The following problem{
−u′′ + u

2 = 2+sin(t)
40π2 (1− u3)(1− u′4) in [0, 2π]

u(2π)− u(0) = u′(2π)− u′(0) = 0,
(3.16)

admits at least one positive and non constant solution.
Indeed, we can apply Theorem 3.2 if we consider r = 1, M(t) ≡ 1/2 and put

f(t, x, y) =
2 + sin(t)

40π2
(1− x3)(1− y4)

for every (t, x, y) ∈ [0, 1]× R× R, simple computation shows that

max
[0,1]×[0,1]×[−1,1]

|f(t, x, y)| = max
[0,1]×[0,1]×[−1,1]

2 + sin(t)

40π2
(1− x3)(1− y4)

=
3

40π2
,

namely (3.11) is satisfied, being τ = 1
8π(1+π) . Hence, (3.16) has at least one

positive classical solution u0 such that (u0(t), u′0(t), u′′0(t)) ∈ (0, 1] × (0, 1] ×[
−1

2
− 1

8π(1 + π)
,

1

2
+

1

8π(1 + π)

]
for every t ∈ [0, 1]. Finally, it is easy to

verify that (3.16) does not admits constant solutions..
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