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Abstract: By using an abstract coincidence point theorem for sequentially
weakly continuous maps the existence of at least one positive solution is ob-
tained for a periodic second order boundary value problem with a reaction term
involving the derivative u’ of the solution u; the so called convention term. As
consequence of the main result also the existence of at least one positive solution
is obtained for a parameter-depending problem.
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1 Introduction

The aim of this paper is to obtain new existence results for the following periodic
boundary value problem

{ —u" 4+ M(t)u = f(t,u,u’) in (0,7) (1.1)
w(T) — u(0) = w/(T) —u'(0) =0, '
where T' > 0, M : [0,T] — R is a continuous and positive function and f :
[0,T] x R x R — R is a continuous function with f(¢,0,0) # 0, for every
t e [0,17.

As usual, here we say that problem (1.1) has a convention term because the
nonlinearity f depends both on the function u and its derivative u'.

Concerning boundary value problems there is a well consolidated literature
where many pioneering results are obtained by several scholars using different
tools, as for instance, a priori bounds and topological degree [8, 10, 22]; upper
and lower methods [7, 14, 24] and fixed point theory [1] and [11].

In particular, as pointed out in [25], the application of the fixed point theo-
rem in studying problem (1.1) is strictly connected to the sign properties of the
Green’s function associated to the linear homogeneous problem, that is f = 0.
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Recently, many authors paid attention to this topic and very interesting
results are pointed out in [2, 5, 12, 13, 15, 18, 20, 26, 27].

Here, for obtaining our main results, we apply a coincidence point theorem
for sequentially weakly continuous maps [3], see Theorem 2.1 below, in the
variational setting used in [23]. Such approach in spirit is based on an useful
version of K. Fan’s fixed point theorem [9] contained in [4]. However, we do not
use the Green’s function to get the solutions of problem (1.1). Moreover, we
do not require any asymptotic growth condition on the nonlinearity f at zero
and/or at infinity. We just assume condition (3.2) below, together f(¢,0,0) # 0,
for every t € [0,T] to guarantee the existence of a nontrivial solution which
become positive provided that f(¢,0,0) > 0 for every t € [0,T].

However, as far as we know, there are few papers dealing with problem
(1.1). For example, in [19], applying a coincidence degree theorem and when

the nonlinear term is of the form f(¢,z,y) = h(t)g(x,y), the existence of at least

g(z,y)
[z|+]y]

one positive solution is ensured in terms of the relative behaviors of for

|z| + |y| near 0 and +oo, where

(H) h : [0,T] = [0,400) and g : [0,4+00) x R — [0,400) are continuous,
h(t) # 0.

Furthermore, for the readers interested to the applications of periodic BVP in
physics and engineering, we again mention [19] and the references therein.

On the other hand, it seems that much more attention is paid to problems
without convention terms and depending from a positive parameter A. An
example is the following

{ —u” + M(t)u = Ag(t,u) in (0,7)

w(T) — u(0) =/ (T) — v/ (0) = 0, (1.2)

where T > 0, M : [0,7] — R is a continuous and positive function and g :
[0,7] x R — R is a continuous function.

In this case, many existence, non-existence and multiplicity results have
been obtained, for instance, in [12, 13, 16, 17, 20, 21, 27], requiring suitable
asymptotic behaviors of the “slope” f(t,u)/u of f at zero and at infinity.

Finally, for the sake of completeness, we wish to stress that in [3] and [6] a
similar approach to those proposed in the present note has been adopted for the
study of a Dirichlet and a Neumann boundary value problem respectively.

2 Preliminaries

We recall that the weak derivative of a function u € L'([0,7]) is a function
v’ € L'([0,T]) such that

T T
/ w(t)g (1) dt = — / o (£)o(t) dt
0 0

for every ¢ € C%°, where C7 is the space of indefinitely differentiable T-periodic
functions (see [23]).
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Let us denote by Hr the Sobolev space of functions u € L?([0,7]) having a
weak derivative u’ € L%([0,T]), while

HZ ={u€ Hp: v € Hr}.

According to ([23, pp. 6-7]), for every u € HZ one has that

/OT u'(t) dt = /OT u’'(t) dt =0,

hence the periodic conditions w(7T") — u(0) = v/(T") — «/(0) = 0 hold. Moreover,
if we endow HZ with the norm

Jull = lJullz + [|u'[l2 + [Ju"||2
for every u € H2 and on C([0,T]) we consider the norm

luller = max{|ulloo, [[v]loc},

H2 is compactly embedded in C*([0,T7), see [23, Proposition 1.2]. In particular,

if w € H7 observe that
T T ¢
/ u(s) +/ </ u' () dw) ds
0 0 s

1
Fllull + el < T2 ufla + T2 |

IN

< maX{T_l/Q, T1/2}Hu||

for every ¢ € [0,T]. Thus, if we put

ep = max{T /2 T2}, (2.1)
one can conclude that
[ulloo < erllull- (2.2)
Similarly one can obtains
[0 o0 < erlul, (2.3)
namely
[uller < erllull- (2.4)

Incidentally, observe that if 0 < T < 1 then ¢y =T ~1/2 and one can realize
the equality in (2.4) choosing u constant. Namely, if 0 < T' < 1 the constant
introduced in (2.1) is the best one of the embedding. Some sharp estimates for
the norms of functions in Hp can be found in [23, Proposition 1.3].

A direct computation based on (2.4) shows that for every r > 0

B, ={uc H%: ||lul| <r} C{uec C(0,1]): |lullcr < crr}. (2.5)

The following coincidence point theorem represents the key tool for the proof
of our main results.
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Theorem 2.1. Let X, Y be real Banach spaces, let K be a weakly compact,
conver subset of X, and let F, G be sequentially weakly continuous functions
from K into Y, that is, if x,, — x in K then F(x,) — F(z) and G(z,) — G(x)
in'Y. Assume that F~1(y) is a nonempty conver set for all y € G(K). Then
there exists ©og € K such that F(xg) = G(zo).

3 Main results

Here is the first existence result for the considered periodic problem.

Theorem 3.1. Let f:[0,7] x R x R — R be a continuous function. Put

7= & , (3.1)
erVT [L+ (T + 1D)(|M ]l e + p)]
with p1 = mingego, ) M(t), and assume that there exists v > 0 such that
|f(t7x7y)| STeT (32)

max
(t,z,y)€[0,T] X [—r,r] X [—7,T]

Then, problem (1.1) admits at least one classical solution @ such that
(@), a'(t),a"(t)) € [=r,r] x [=r,r] x [=([|M]loc + 7)r, (| M ]| + 7)7].

Proof. We will apply Theorem 2.1 with X = H2 YV = X* K = B,, being
p=o,and F, G : X — X* the functions defined as follows

Flu)(u) = / (! (1) (£) + M(Byu(t)o(t)) dt,

Gu)(v) = / St ult), o (1)) dt

for every u, v € X. Indeed, K is weakly compact in view of the reflexivity of
X, while the compactness of the embedding of X into C1([0,T]) assures that
both F' and G are sequentially weakly continuous functions from X to X*.
We claim that

G(K) C F(K). (3.3)

Fix w* € G(K) and let w € K be such that G(w) = w*. Put

g(t) = f(t,w(t), w'(t))

for all t € [0,T] and observe that g € C°([0,7]). Hence, applying the Minty-
Browder theorem (or the Lax-Milgram theorem) in the space Hr, the following
problem
—u" 4+ M(t)u = g(t) in (0,7)
(3.4)
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admits a unique weak solution w,, € Hr and, in particular, thanks to the
classical regularity theory, one has that u, € C?([0,7]) and it is a classical
solution.

If we localize u,, € H} and prove that

Uy € B, (3.5)

we can conclude that (3.3) holds, since F(uy,) = G(w) = w*.
To this end, we first point out that

lglleo
Uy || oo S - 3.6
ol < 12 (3.6)
1Mo

e, oo < T ( +1) llgle, (3.7)

I

and 1]
oo < (M | 1) 19l (3.8)

Indeed, fix k = Hgﬂ“’ and put ¢(t) = (uy — k). Obviously ¢ € Hp and

@' = uy, - X{u,>k}- Hence, from (3.4) one has

T T
/ (up @’ + M (t)uwp) dt =/ gy dt
0 0
that is

0 < /OT M () (ug — k) (e — k)T dt
T

IN

/0 (U)X a2y + M (1) (i = k) (u — k)T dt

_ /T(g — M(t)k)(u,, — k)* dt <0,
0

and this implies that (v, — k)(u, — k)T = 0, namely

uy(t) < k (3.9)
for every t € [0, T]. Arguing in a similar way, one has that

—k < uy () (3.10)

for every t € [0,T]. Clearly (3.9) and (3.10) lead to (3.6).
Moreover, since ., (0) = u,(T), there exists tg € (0,7) such that u,(t9) = 0
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and, in view of (3.6), for every t € [0,T] one has

t
/ ull (s) ds
to

/ (M(8)1ua(s) — 9(5)) ds

to

T(IM ot + 9ll)
M||so

T(” ” +1) 190l
1

Jun (D) =

IN

IN

namely (3.7) holds.
Exploiting again that u, is a classical solution of problem (3.4), from (3.6) one

derives M|
o < (P50 1) i

and (3.8) is verified.

Now observe that from (2.5) it follows that ||w|c1 < r, hence, in view of as-

sumption (3.2), ||g|lcc < 7-7. Putting together (3.6)-(3.8) and this last estimate,

one has

VT r
[t 2 + [lugy |2 + Il ll2 < (e 1+ (T + D ([M]lec + p)]r = i

namely (3.5) holds and (3.3) is verified.
It is simple to verify that F is injective, hence F~1(w*) = {u,} for every
w* € G(K) and all the assumptions of Theorem 2.1 are satisfied. Thus, there
exists @ € K such that

F(#)(v) = G@)(v)

for every v € H2. But C3° C H% implies that @ € Hr, being M (¢)a— f (¢, @, ')
its weak derivative. The regularity theory assures that @ € C?([0,T]) and it is
a classical solution of (1.1). The proof is complete since ||i||o0, and ||’ ||oo can
be estimated recalling (2.5), while ||@”/||c can be estimated exploiting the fact
that @ solves (1.1). O

As a consequence of the previous result, we can state the main constant sign
periodic solution theorem.

Theorem 3.2. Let f:[0,T] x R xR — R be a continuous function such that
f(t,0,0) >0 for every t € [0,T]. Let 7 > 0 as defined in (5.1) and assume that

max
(t,z,y)€[0,T]x[0,r] X [—r,r]

\ftzy)| <77 (3.11)

Then, problem (1.1) admits at least one positive classical solution 4 such that
such that

(a(t), ' (t),a"(t)) € (0,r] x (0,7] x [=([M]loc + 7)7, ([Mloc + T)r].
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Proof. We make use of some truncation arguments. Let f [0, T xRxR—=R
be the function defined by

ft,z,y) = { ;Ei, 33 ii i 8. (3.12)

If we consider the following auxiliary periodic problem

{ —u 4 M(tyu = f(t,u,u) i [0,7] (3.13)

uw(T) —u(0) =/ (T) — u(0) =0,

it is evident that the non negative solutions of (3.13) are also constant sign
solutions of problem (1.1). At this point, we can observe that, thanks to (3.11)
and (3.12), f satisfies all the assumptions of Theorem 3.1. Hence, problem
(3.13) admits at least one classical solution @ € C?([0,T]). Finally, the proof is
complete if we verify that

té?ég] a(t) > 0. (3.14)

Suppose (3.14) false, namely, there exists t* € [0, 7] such that

a(t*) = min_a(t) <O0.
a(t”) tg[lolg]u( ) <
Thus, we have that
@(t*) =0, a’(t*)>0. (3.15)

Indeed, if t* € (0,T) then (3.15) is obvious. Otherwise, suppose that t* = 0
(the other case t* = T is analogous). Since 0 is a minimizer of @ one has that
@'(0) > 0, but the periodic boundary conditions lead to @’(0) = 0. Otherwise, if
@'(0) > 0 one has @' (T) > 0 and for ¢ close to T one achieves the contradiction
i(t) < @(T) = @(0) = mingy 7 -

Moreover, if it was @”(0) < 0, since @ € C?([0,T]), one could find a suitable
0 > 0 such that @/(¢t) < 0 for all ¢ € (0,0), in contradiction with the fact that
t* = 0 is a minimizer.

At this point, exploiting (3.15) one is lead to the evident contradiction

0> —a"(t*) + M(£)a(t") = F(t*,alt"), @ (")) = F(*,0,0) > 0.
In conclusion, (3.14) holds and the proof is completed. O

Remark 3.3. The existence of a negative classical solution can be similarly
proved if one assumes that f(¢,0,0) < 0 for every ¢ € [0,7], in place of
f(t,0,0) > 0.

Corollary 3.4. Let T >0, M : [0,T] — R a continuous and positive function
and g : [0,T] x R — R a continuous function. Then, there exists \* > 0 such
that, for each X\ €] —\*, \*[, problem (1.2) admits at least one classical solution.
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Proof. Let 7 as given in (3.1) and put

« T
A* = Tsup | (t )|
max X
>0 o i oy N

:Ie? ﬁXed )\ SuCh (ha( ‘)\| < )\ 3 ll iS Cle Ir tha ere eXiStS r > O S]]Ch
lha a. t th
ax )\g 17 < .
(t,.’c)E[O,Z]x[_rvr] | ( 1’)‘ T1

In few words, the function Ag fulfils condition (3.2) of Theorem 3.1 and our
conclusion follows. O

Example 3.5. The following problem

—u 44 = HEO 0 (1wt in [0,27] (3.16)
u(2m) — u(0) = u'(27) — 4/ (0) = 0, '
admits at least one positive and non constant solution.

Indeed, we can apply Theorem 3.2 if we consider r = 1, M (¢) = 1/2 and put

2 + sin(t)

-2 -y

f(t,x,y) =

for every (t,z,y) € [0,1] x R x R, simple computation shows that

2+ sin(t) 3 4
t = L ——"— A - 1—
[0,1]x[r()r}ﬁ}>(<[—1,1} |f( 7$7y)| [071]X[Ior}%§[_171] 4072 ( z )( Y )
_ 3
o 40m?’
namely (3.11) is satisfied, being 7 = Wlﬂr)' Hence, (3.16) has at least one

positive classical solution wug such that (ug(t),uj(t),us(t)) € (0,1] x (0,1] x

L L 1, 1 f t € [0,1). Finally, it i ¢
—— — or ever . ma. 10 1S eas (6]
2 St(ltn)2  8n(l+m) Y ’ v Y

verify that (3.16) does not admits constant solutions..
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