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ABSTRACT. Evaluation of NMRD curves obtained by the FFC-NMR relaxometric technique is a valuable tool for analyzing the 
microscopic dynamics of condensed matter systems. However, quantitative data analysis involves several conceptual and 
practical issues. Moving forward from previous literature approaches, we propose a new analysis method, relying on the 
elaboration of the inverse integral transform of the NMRD curve. Our approach results in a true heuristic method, able to 
unambiguously individuate the dynamic domains in the system, thereby avoiding the possible introduction of any element of 
discretion. Analysis of some datasets relevant to real samples, suggests the possibility that the results obtained with the heuristic 
method may be actually led back to some distinct physical/chemical features of the systems.

Fast-Field-Cycling (FFC) NMR relaxometry1 is a powerful 
and versatile tool for investigating the molecular dynamics of 
condensed matter (either solid, amorphous or liquid, or even 
heterogeneous systems). This technique has found 
interesting applications in several fields, spanning from 
polymers and new materials, to soil and environmental 
science, as well as ionic liquids,2 proteins,3 dairy products,4 
and so on. However, a critical issue for its exploitation is the 
regression analysis of the NMRD dispersion curves, from 
which physically sensible information can be obtained. 

The FFC technique evaluates how the longitudinal 
relaxation rate (R1) or the relevant relaxation time (T1 = 1/R1) 
of a spinning nucleus varies on changing the strength of an 
applied magnetic field. According to the general theory 
developed by Bloch et al. for homonuclear dipolar 
relaxation,5 R1 depends on the nuclear Larmor frequency by 
the relationship:

(1)𝑅1 = (𝑇1) ―1 = 𝐾[𝑱1(𝜔𝐿) + 4𝑱2(2𝜔𝐿)]
Here J1 and J2 are the spectral density functions that, 

through the spin Hamiltonians, can be led back to the 
autocorrelation function of the relaxing nucleus. Hence, 
Bloembergen, Purcell and Pound derived the well-known 
relationship6 (the so-called “BPP” model given in equation 2) 
for the proton relaxation in a simple system undergoing a 
single dynamical process:

𝑅1 = (𝑇1) ―1 =
3

10
𝜇2

0𝛾4

ℏ2𝑟6
𝐻𝐻

( 𝜏𝑐

1 + (𝜔𝐿𝜏𝑐)2 +
4𝜏𝑐

1 + 4(𝜔𝐿𝜏𝑐)2) =

(2) = 𝐶𝐻𝐻( 𝜏𝑐

1 + (𝜔𝐿𝜏𝑐)2 +
4𝜏𝑐

1 + 4(𝜔𝐿𝜏𝑐)2)
where rHH is the internuclear distance and c is the 

correlation time, i.e. the average time needed for a molecule 
to rotate one radian or to move for a distance as large as its 
radius of gyration. The regression analysis of the NMRD 
dispersion curve enables to find valuable information on the 
microscopic dynamics of the system. Noticeably, in the range 
of low magnetic fields exploited by FFC, relaxation becomes 
faster as molecular motion slows down.

Dealing with complex systems is more complicated. In 
principle, based on equation 1, one should derive the exact 
expression for R1 from the relevant autocorrelation function. 
Attempts in this sense can be found in literature. For instance, 
Korb et al. have treated the relaxometric behavior of proteins 
by a power-type law, developed assuming that relaxation can 
be rationalized in terms of spin-phonon interactions in a 
system where protons “form a spin communication network 
described by a fractal dimension”.7 Furthermore, Anoardo 
applied an approach, previously proposed by Torrey for the 
translational diffusion, to describe the behavior of viscous 
oils.5b Similar treatments are highly descriptive, but have an 
applicability limited only to specific systems. In alternative, 
“model-free” analyses have become quite popular. The 
conceptual issues of this approach have been clearly 
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described in his seminal papers by Halle,8 who proposed the 
well-known mathematical treatment of NMRD curves 
(equation 3) as a linear combination of Lorentzian terms, the 
number of which must be discretionally/empirically set, i.e.:

(3)𝑅1 =
1

𝑇1
= ∑

𝑖

𝑐𝑖𝜏𝑖

1 + (𝜔𝜏𝑖)2

Here ci are empirical weight coefficients, from which an 
average correlation time <c> can be calculated as: <c> = 
(icii)/(ici). More recently, Kruk et al. proposed a valuable 
model free method for the analysis of NMRD profiles of 
proteins,3 based on the following expression:

R1(L) = R0 + RHH + RNH (4)

where R0 is an offset keeping into account very “fast” 
molecular motions (c < 1 ns), RHH describes proper 1H-1H 
relaxation as a sum of three BPP-like components, i.e.:

(5)𝑅𝐻𝐻 =  ∑3
𝑖 = 1[𝐶𝐻𝐻

𝑖 ( 𝜏𝑖

1 + (𝜔𝜏𝑖)2 +
4𝜏𝑐𝑖

1 + 4(𝜔𝜏𝑖)2)]
Finally, RNH describes the occurrence of the so-called 

“quadrupolar dips”, i.e. the sudden enhancement of the 
relaxation rate due to the quadrupolar coupling with 14N (if 
present):
𝑅𝑁𝐻 = 𝐶𝑁𝐻

[ (1
3 + 𝑠𝑒𝑛2Θ𝑐𝑜𝑠2Φ)( 𝜏𝑄

1 + (𝜔 ― 𝜔 ― )2𝜏2
𝑄

+
𝜏𝑄

1 + (𝜔 + 𝜔 ― )2𝜏2
𝑄
) +

(1
3 + 𝑠𝑒𝑛2Θ𝑠𝑒𝑛2Φ)( 𝜏𝑄

1 + (𝜔 ― 𝜔 + )2𝜏2
𝑄

+
𝜏𝑄

1 + (𝜔 + 𝜔 + )2𝜏2
𝑄
) +

(1
3 + 𝑐𝑜𝑠2Θ)( 𝜏𝑄

1 + (𝜔 ― (𝜔 + ― 𝜔 ― ))2𝜏2
𝑄

+
𝜏𝑄

1 + (𝜔 + (𝜔 + ― 𝜔 ― ))2𝜏2
𝑄
)]

(6)

where Q is the correlation time for the N-H quadrupolar 
interaction, + and - are the relevant characteristic 
frequencies,  and  are two angles accounting for “the 
orientation of the 1H–14N dipole–dipole axis with respect to 
the principal axis system of the electric field gradient at the 
position of 14N”;2a finally, the coefficient CNH can be led back 
to the gyromagetic ratios and the average interaction 
distance of the nuclei through the expression:

(7)𝐶𝑁𝐻 =
2
3 ∙

𝜇2
0𝛾2

𝑁𝛾2
𝐻

ℎ2𝑟6
𝑁𝐻

We have been recently interested in the FFC 
characterization of porous systems and, in particular, of 
nanosponges (NSs).9 These interesting organic materials are 
hyper-reticulated polymers or co-polymers obtained by 
joining supramolecular host units (usually cyclodextrins, but 
also calixarenes or pillararenes) with suitable linker units.10 
Because of their permeability to aqueous media, NSs can find 
applications as sorbents for both organic and inorganic 
pollutants, drug carrier systems and functional supports for 
nanosized catalysts. Surprisingly, for various reasons their 
porosimetric/textural parameters can be hardly determined 
by BET/BJH techniques.9a, 11 Therefore, based on similar 
studies in soil science,12 from the FFC data of water-saturated 
NSs we succeeded in defining a suitable porosimetric 
connectivity index (PCI),9a able to quantify the functional 

permeability of the materials to aqueous media. Our previous 
study dealt with cyclodextrin-based materials reticulated with 
bis-urethane linker moieties. Therefore, their NMRD curves 
appeared ideal candidates to be treated by means of Kruk’s 
equation. However, various problems have been 
encountered in performing such a regression analysis. In fact, 
the number i of BPP components in the second term (RHH) of 
equation (4) cannot be fixed a priori to three, as in the original 
Kruk’s approach, but must be adapted empirically. This, 
again, introduces an undesirable degree of discretion in data 
processing. It is worth mentioning here that the choice of 
three terms is not analytically justified in the reference study.3a 
A further problem arises from the fact that relative errors on 
R1 are roughly constant along the explored L range, whereas 
absolute errors are not. This treacherously involves that data 
recorded at the lowest magnetic field values are statistically 
overweighed, thereby affecting the convergence and the 
overall reliability of the fitting procedure.

In order to overcome the conceptual issues arising from 
the discretion degree of the model-free approaches, we 
considered the possibility to set up a new model-free-based 
regression procedure relying on Kruk’s method. We reasoned 
that a complex system might be viewed as a continuum of 
different dynamic domains liable to be described in terms of 
a BBP-like function, each having its own c value. Hence, a 
normalized distribution function f(c) could be defined, which 
describes the overall microscopic dynamics of the system, 
and thus the term RHH present in equation (5) can be 
transformed into an integral form as:

(8)𝑅𝐻𝐻 = ∫∞
0 [𝐶𝐻𝐻( 𝜏𝑐

1 + (𝜔𝜏𝑐)2 +
4𝜏𝑐

1 + 4(𝜔𝜏𝑐)2)]𝑓(𝜏𝑐)𝑑𝜏𝑐

Noticeably, according to equation 2, the coefficient CHH 
should depend on the average internuclear interaction 
distance rHH, which cannot be granted to be the same for 
different possible dynamic domains. Thus, rHH should be 
considered as a function of c, as well, and equation 8 can be 
re-formulated as:

(9)𝑅𝐻𝐻 = ∫∞
0 [( 𝜏𝑐

1 + (𝜔𝜏𝑐)2 +
4𝜏𝑐

1 + 4(𝜔𝜏𝑐)2)]𝑓 ∗ (𝜏𝑐)𝑑𝜏𝑐

with f*(c) = CHH·f(c). Having available the function R(L) 
defined by the experimental dataset, the problem reduces to 
retrieve an inverse integral transform, with the BPP-like term 
functioning as the kernel. From a mathematical standpoint, 
this is considered an “ill-posed problem”,13 hard to solve 
analytically. We tried to smartly approach it by setting up a 
home-made numerical integration procedure (further details 
are provided in the Supporting Information). In other words, 
the function f*(c) can be numerically built, in such a way that 
each calculated R1 value achieves the best fit to the relevant 
experimental value, according to the well assessed criterion 
of the square residuals sum minimization. In doing this, the 
entire procedure must keep into account the simultaneous 
optimization of the offset R0 and the six parameters relevant 
to the quadrupolar dips term RNH (if 14N is present in the 

Page 2 of 12

ACS Paragon Plus Environment

Analytical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



sample, i.e. CNH, Q, +, -,  and ). Moreover, in order to 
fix the problem of the possible statistical data overweighing, 
we conveniently defined the variable c = Log10(c), and the 
function: l*(c) = [2.303·10c·f*(10c)]1/2, in such a way to 
further transform the integral expression 9 into:

(10)𝑅𝐻𝐻 = ∫∞
―∞( 10

𝜆𝑐

1 + (𝜔 ∙ 10
𝜆𝑐)2 +

4 ∙ 10
𝜆𝑐

1 + 4(𝜔 ∙ 10
𝜆𝑐)2)[𝑙 ∗ (𝜆𝑐)]2𝑑𝜆𝑐

This ensures that the f* function assumes only positive 
values. The function l*(c) is finally built via numerical 
integration, with the aid of the algorithms implemented into 
the MS ExcelTM software package, by applying the square 
residuals minimization criterion to Log10(R(L)), i.e. in order to 
minimize the SSQ* value defined as:

   (11)𝑆𝑆𝑄 ∗ =  ∑𝑖[𝐿𝑜𝑔(𝑅(𝜔𝑖)𝑒𝑥𝑝𝑒𝑟𝑖𝑚.) ― 𝐿𝑜𝑔(𝑅(𝜔𝑖)𝑐𝑙𝑐𝑑.)]2

We tested this approach on some selected datasets 
acquired from literature. In particular, we analyzed data 
relevant to: i) anhydrous -cyclodextrin;9a ii) a dry 
nanosponge prepared by reacting anhydrous -cyclodextrin 
with four equivalents of hexamethylene-bis-isocyanate;9h iii) a 
sample of 24-months aged Parmigiano Reggiano cheese.4 
Moreover, for useful comparison, we also collected and 
analyzed a dataset relevant to a sample of water-saturated 
commercial cellulose (data are reported in the Supporting 
Information). Results are illustrated in Figures 1-4. 

As a first observation, in all the cases examined the obtained 
[l*(c)]2 distribution functions (and thus the corresponding 
f*(c) functions) did not result into broad continuous curves, 
as it could have been reasonably expected, but rather into a 
set of very narrow distributions, or even Kronecker’s delta-like 
peaks. The latter finding is particularly meaningful, because it 
implies that the R(L) function defined by each experimental 
dataset can be actually transformed into a c values spectrum. 
Thus, the proposed analysis constitutes a true heuristic 
algorithm, able to identify the dynamic domains that 
characterize the relaxometric behavior of the samples, the 
relevant c values of which can be immediately deduced. 
Hence, the contributions to the NMRD curves pertaining to 
each dynamic domain, identified by the relevant c peak, can 
be easily calculated (as depicted in the lower sections of 
Figures 1-4). 

 

Figure 1. Spectrum of c values (up) and NMRD curve (down) for 
the anhydrous -cyclodextrin sample.

Figure 2. Spectrum of c values (up) and NMRD curve (down) for 
the cyclodextrin-bis-urethane-based nanosponge sample.
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Figure 3. Spectrum of c values (up) and NMRD curve (down) for 
the Parmigiano-Reggiano sample.

Figure 4. Spectrum of c values (up) and NMRD curve (down) for 
the water saturated cellulose sample.

These considerations suggested the idea that the identified 
domains could be possibly related to distinct structural or 
physico-chemical features of the samples. However, before 
attempting such an analysis, some issues had to be 
addressed. In particular, we had to establish suitable criteria 
for estimating the indetermination on the c values found 
(and the other regression parameters as well) and, in general, 
for assessing the reliability of the method, in order to identify 
possible artifacts. For this purposes, we exploited a Monte-
Carlo approach14 (see the Supporting Information for details) 
based on the generation of suitable virtual datasets, which 
were subjected to the same heuristic procedure described 
hereinabove. As a result, peak clusters were generated for 
each sample. These clusters, in turn, enable to 
unambiguously individuate as many “bona fide” dynamic 
domains; hence, standard deviations for the relevant c values 
could be easily calculated. Furthermore, close inspection of 
the [l*(c)]2 distributions showed that, beside the main peaks, 
“baseline” values are seldom null, and that some peaks 
occurring in the c spectra are very “small”. One could 
question how much information is truly contained in the 
baseline and minor peaks. Therefore, a further criterion was 
needed to decide whether a peak is really significant or 
should be rather considered as a sort of background noise. 
We can reasonably suggest that a peak should be accepted 
as carrying real information if it provides, for at least one 
experimental point, a contribution larger than the relevant 
uncertainty. We verified that in all the cases examined herein, 
the contribution from the baseline is always below the 
significance limit proposed, whereas all the identified peaks 
satisfy the aforementioned criterion.

At this point, a detailed analysis of the whole results 
provides a reasonable support to the idea that the dynamic 
domains, identified by the heuristic procedure, actually mirror 
some microscopic features of the samples. Starting from 
native -cyclodextrin (Figure 1), the [l*(c)]2 distribution 
features a set of three main delta peaks centered at c values 
of 1.66 ± 0.25 s, 250 ± 40 ns, 9.5 ± 3.3 ns. A fourth peak at 
66 ns, which does not individuate a cluster in the Monte-Carlo 
simulation, can be reasonably considered an artifact. These 
results immediately lead back to the possible molecular 
motion modes occurring in the system, i.e.: i) the oscillation 
of the mass centers of the cyclodextrin units in the crystalline 
lattice, ii) the torsion and tilting movements15 of subsequent 
glucose units around -glycosidic bridges within the 
oligosaccharide structure, iii) the rotation of the  –CH2OH 
groups of the glucose units, respectively. It is worth noting 
that the occurrence of a null R0 value, indicating the existence 
of no “fast” dynamic domains (c < 1 ns), is consistent with 
the idea that the –CH2OH rotation is significantly slowed 
down by effective hydrogen bonding occurring in the lattice. 

The nanosponge, the Parmigiano Reggiano cheese and 
the water-saturated cellulose samples offered the 
opportunity to test our heuristic-model analysis on some 
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complex systems, such as a natural or artificial polymer or a 
dairy product complex matrix. On one hand, the choice of 
the cheese sample allows a suitable comparison with the 
results obtained with the original Kruk’s approach. On the 
other hand, -cyclodextrin, nanosponge and cellulose are 
interesting because they constitute a set of chemically 
homogeneous systems. 

For the dry nanosponge sample a more complex situation 
occurs (Figure 2) in comparison to -cyclodextrin. This is 
consistent with the fact that the system becomes stiffer and 
more disordered owing to reticulation. Indeed, the c value 
for the slowest domain increases up to 2.6 ± 1.0 s (a further 
minor artifact component appears at 4.6 s). The c values for 
the intermediate domains (250 ± 120 and 69 ± 10 ns) seem 
hardly affected by reticulation. By contrast, even the fastest 
domain slows down (with c = 30 ± 6 ns) and a significant 
offset component (R0 = 3.3 ± 0.8 s-1) appears. The latter 
findings are justified by the reticulated and disordered 
structure of the polymeric material. In fact, the –CH2OH 
groups involved in the reaction with the reticulating agent are 
unable to freely rotate. Conversely, unreacted –CH2OH 
groups are less affected by hydrogen bond formation in the 
disordered structure of the nanosponge. At the same time, 
the possible fast conformational rearrangements of the 
hexamethylene linker chains must be also kept into account. 
Noticeably, the occurrence of a significant microscopic 
disorder is mirrored in the very large indeterminations values 
found. 

Regarding the cheese sample, it is worth preliminary 
mentioning that an average weight content of ca. 30 % in 
water, 34 % in proteins and 28 % in fats can be assumed.4 
Analysis of the relevant c spectrum (Figure 3) shows a 
substantial consistency with the results obtained by applying 
Kruk’s equation 6, which provided: R0 = 4.7 ± 0.6 s-1, c,1 = 3.3 
± 0.5 s, c,2 = 190 ± 10 ns, c,3 = 22 ± 4 ns.4 In fact, on 
applying our heuristic method, the same R0 value (4.3 ± 0.3 
s-1) was obtained within experimental uncertainties. 
Moreover, two main c components at 18.2 ± 1.8 ns and 151 
± 9 ns were found. These are perfectly comparable with the 
aforementioned c,2 and c,3 values. According to literature,3-4 
these components can be conceivably related to the 
occurrence of fast motions pertaining to the water molecules 
embedded in the cheese matrix, and to the conformational 
rearrangements of the alkyl chains of both aminoacid 
residues and fats. Two further c peaks at 0.8 ± 0.4 s and 6.4 
± 2.4 s (with a possible minor artifact at 29.5 s) may be 
related to the slow motions of the macromolecular 
constituents. Good agreement between our results and those 
obtained with Kruk’s equation can be also observed for the 
parameters relevant to the quadrupolar dips. In details, we 
found (in parentheses the corresponding values obtained 
with Kruk’s equation): CNH = 0.87 ± 0.03 (1.2 ± 0.2) ms-2; Q = 
6.72 ± 0.15 (6.5 ± 0.9) s; + = 2.83 ± 0.03 (2.82 ± 0.01) MHz; 

- = 2.12 ± 0.04 (2.09 ± 0.03) MHz;  = 2.15 ± 0.02 (2.10 ± 
0.03) rad;  = 4.7 ± 1.5 (5.3 ± 0.2) rad. 

Finally, for the water saturated cellulose an R0 value of 0.84 
± 0.11 s-1 and three main c components can be found at 2.8 
± 1.4 s, 460 ± 160 ns and 79 ± 10 ns (with a minor 
component at 22 ± 12 s, Figure 4). Once again, the R0 
contribution may be attributed to water molecules motions, 
which are likely slower than in the cheese sample, due to the 
highly structuring effect of the hydroxylated polysaccharide 
backbone. The components at 79 and 460 ns may account 
for the rotation of the glucose –CH2OH units, and to the 
torsion and tilting movements of the glucose residues around 
the -glycosidic bridges, respectively. All these movements 
appear to be slower than in the case of the cyclodextrin 
sample. This can be justified by considering the well-known 
occurrence of a stiffer hydrogen bonding network in 
cellulose, as compared to the amylose-related molecules 
where -glycosidic bridges occur. The other components at 
long c values may account for the slow translational motions 
of the macromolecular backbone.

In conclusion, we set up a heuristic analysis method of 
NMRD relaxometric curves. This consists in retrieving the 
relevant integral inverse transform (with the well-known BPP 
function as the kernel), by means of a suitable numerical 
integration. The main strength points in our analysis are: i) the 
fact that unlike ordinary “model-free” analysis methods, no 
element of discretion is introduced; ii) surprisingly, a c values 
spectrum is achieved, thereby pointing out at the existence 
of well identified dynamic domains. The latter observation 
poses the question of how much physical significance can be 
attributed to the obtained c values. After testing our 
heuristic-model analysis on some datasets for real samples, it 
seems that the c components individuated may be actually 
related to some structural features. Of course, caution is 
needed in performing any attribution, as long as complex 
matrixes are considered. However, the results shown herein 
suggest that our analysis method reasonably seem of general 
applicability. Future work will be indeed needed (and is 
currently in progress) to gain further evidences and insights, 
in comparison with independent results from different 
techniques. As a final remark, we are also perfectly aware that 
the reliability and informativeness of the heuristic method 
proposed here critically depends on the inversion routine 
used. Our home-made procedure may indeed appear 
rudimentary (and probably is), and is largely liable of 
improvement. However, our final goal in proposing it as a 
new tool for the analysis of NMRD curves, was also to 
stimulate both a debate in the scientific community regarding 
the possibilities of free-model based analyses, and the search 
for a more rigorous and elegant mathematical approach.

Supporting Information
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The Supporting Information is available free of charge on the 
ACS Publications website.
i) Further information on the implementation of the heuristic 
algorithm, ii) Experimental details and iii) Relaxometric data for 
the water-saturated commercial cellulose sample (PDF).
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Figure 1. Spectrum of τc values (up) and NMRD curve (down) for the anhydrous β-cyclodextrin sample. 
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Figure 2. Spectrum of τc values (up) and NMRD curve (down) for the cyclodextrin-bis-urethane-based 
nanosponge sample. 
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Figure 3. Spectrum of τc values (up) and NMRD curve (down) for the Parmigiano-Reggiano sample. 
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Figure 4. Spectrum of τc values (up) and NMRD curve (down) for the water saturated cellulose sample. 
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