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Abstract: It is known that in breast cancer biology, autophagy mainly plays a cytoprotective and anti-
apoptotic role in vitro, being conceivably responsible for cell resistance to drug exposure and a higher
metastatic attitude in vivo. Thus, the development of novel autophagy-targeting agents represents
a valuable strategy to improve the efficacy of anticancer interventions. It is widely acknowledged
that the enormous biodiversity of marine organisms represents a highly promising reserve for the
isolation of bioactive primary and secondary metabolites targeting one or several specific molecular
pathways and displaying active pharmacological properties against a variety of diseases. The aim
of this review is to pick up selected studies that report the extraction and identification of marine
animal-derived extracts or isolated compounds which exert a modulatory effect on the autophagic
process in breast cancer cells and list them with respect to the taxonomical hierarchy of the producing
species. Where available, the molecular and biochemical aspects associated with the molecules or
extracts under discussion will be also summarized.
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1. A Brief Insight into Autophagy and Breast Cancer Cells

The term “macroautophagy”, hereafter referred as “autophagy”, relates to a ubiquitous
cellular function that encompasses the engulfing of selected cytoplasmic components by
double-membrane structures called autophagosomes, as well as their subsequent delivery
to lysosomes and degradation by resident hydrolases. Such a process guarantees the
removal and turnover of damaged and aged cytoplasmic organelles or protein aggregates
and the recycling of breakdown products for reutilization and energy production, which
bring the autophagic flux to completion. Thus, autophagy ensures the maintenance of
cellular homeostasis and, upon upregulation, the active response to different cellular
stresses such as starvation, cancer, infection, and ischemia [1,2]. The machinery and
signalization process of autophagy, which is an evolutionarily conserved, genetically
programmed mechanism, is regulated by the expression of more than 30 autophagy-
related genes (ATGs) in concert with other genes with multiple functions, which also
include autophagy modulation. ATGs are traditionally classified in functional groups
according to whether they operate in the initiation of autophagosome formation, the
elongation of phagophores, maturation of autophagosomes, or fusion with late endosomes
or lysosomes. Their expression undergoes upstream control by an intricate signalization
network which involves AKT/mechanistic targeting of rapamycin (mTOR)-dependent and
independent (e.g., mucolipin Ca++ channel-mediated) pathways, whose understanding
is still incomplete [3,4]. Research on autophagy is a field in constant acceleration due to
its involvement in the whole aspect of life and medical sciences, and therefore, updated
guidelines for standardizing experimentation and monitoring the autophagic process in
diverse organisms and conditions are published on a regular basis up to this day [5].

The role played by autophagy in cancer biology is complex since it exhibits a dual
nature, being involved both in oncogenesis and in oncosuppression in different conditions,
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which take a variety of cell types, cycle phase distributions, genetic makeups, and also
microenvironmental scenarios (e.g., inflammation and hypoxia) into account. Autophagy
may help cancer cell survival and tumor promotion by fulfilling the elevated metabolic and
energetic demands of actively proliferating and migrating cancer cells, thereby allowing
them to overcome oxygen and nutrient deprivation stresses. On the other hand, autophagy
may inhibit neoplastic growth, as demonstrated by the correlation between the depletion
of key autophagy genes and the increased proliferation of various cancer cytotypes [6].

Concerning breast tumor biology and the autophagic flux, the literature data sug-
gest that in each cancer cell subtype (e.g., luminal, HER2-enriched, and above all, the
aggressive triple-negative which exhibits the highest level of basal autophagy), this process
mainly plays a cytoprotective and anti-apoptotic role in vitro, being conceivably respon-
sible for cell resistance to drug exposure and a higher metastatic attitude in vivo. It is
highly indicative that expression of the LC3B autophagosome marker was found to be
higher in node-positive vs. node-negative primary breast tumors and associated with
an increased nuclear grade and shortened survival, and that higher expression of the
autophagy-promoting factor Beclin-1 in triple-negative breast cancers (TNBCs) was corre-
lated with an increase of lymph node and distant metastases in patients [7,8]. On the other
hand, a number of autophagy-restraining isolated compounds and secretomes, including
the histone deacetylase inhibitors and conditioned media which were examined in [9–12],
have been shown to restore the inhibition of survival, the impairment of cell cycle pro-
gression, and the induction of cell death programs in breast cancer cell cultures [13–15].
Thus, with the warning to take the specific breast cancer subtype and treatment used into
consideration, nevertheless, the cumulative preclinical data obtained prompt the develop-
ment of novel autophagy-targeting agents as a valuable strategy to improve the efficacy of
anticancer interventions.

2. The Marine Animal Species as a Source of Bioactive Molecules

The marine environment, which occurs in three-quarters of the globe’s surface in seas
and oceans, is the largest habitat on earth, featuring an enormous level of biodiversity with
many still unknown species, and it is not yet exploited extensively in terms of bioactive
natural products. Marine biotechnology and pharmacology represent key ever-evolving
issues based on the utilization of marine natural resources [16,17]. In fact, animal adaptation
processes for the different and sometimes hostile aquatic environments have led to the
promotion and accumulation of a remarkable genetic and biochemical variability, with
the consequence that the compounds produced often display prominent differences with
respect to those from terrestrial species. Within this context, for example, biotic factors such
as the need for interindividual signalization and defense against predators, infective agents,
and UV radiations prompted sessile species to develop complex strategies via chemical
communication through very disparate metabolites, which is known to encompass different
taxonomic lineages and even kingdoms. The study of these unique marine species-derived
metabolites, whose peculiar chemical scaffolds can also be utilized for the design of analogs
with increased bioavailability and efficacy and less toxicity, offering great potential for the
development of new classes of molecules aimed at various applications, encompassing
health management, biomaterial engineering, and environmental remediation [18,19].

Thus, to cite just a few examples, anticancer compounds have been found among the
primary and secondary metabolites of starfishes and Mediterranean ascidians [20,21], and
extracts or isolated molecules obtained from marine invertebrates have been proven to
exert a modulatory effect on collective cell migration, a process at the basis of different
biological events such as neoplastic cell metastasization and wound repair [22]. Chemicals
with histone deacetylase inhibitory properties, whose wide range of potential biomedical
applications is generally acknowledged, have also been extracted and identified in prepa-
rations from marine invertebrates [23]. The contribution of marine vertebrates to the food,
biomedical, and pharmaceutical sectors has been mainly provided by fish oils, containing
long-chainω−3 polyunsaturated fatty acids, vitamin E, essential aminoacids, and bioactive
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peptides exerting antioxidant, anti-allergic, and angiotensin-I-converting enzyme (ACE)
inhibitory effects. On the other hand, the processing of by-products of fish, shrimps, crabs,
and squids have also been proven to be abundant sources of chitin, lipids, and proteins,
granting a number of beneficial properties such as being antimicrobial, anticancer, and
anticoagulant, among others [24,25].

It is well-known that invertebrates are endowed with a remarkable ability to regenerate
tissue and organs, and that the efficiency of this process is guaranteed by an appropriate
regulation of autophagy. In addition, autophagy is a survival mechanism allowing aquatic
organisms to withstand different stress conditions, such as hyperthermia and exposure to
toxic compounds [26,27]. By considering the things mentioned, the aim of this review is
to pick up selected studies that report the extraction and identification of marine animal-
derived mixed fractions or isolated compounds which exert a modulatory effect on the
autophagic process in breast cancer cells and list them with respect to the taxonomical
hierarchy of the producing species. Where available, the molecular and biochemical aspects
associated with the molecules or extracts under discussion will be also summarized.

3. Autophagy Modulators from Porifera

Most of the information available in the literature on compounds targeting autophagy
in breast tumor cells come from studies performed on demosponges (“siliceous sponges”).
These species belong to the phylum Porifera, the oldest metazoan group on Earth, to
which sessile organisms belong, displaying a simple structure and being endowed with
specialized cells that are not organized into tissues and organs. The cells lining the internal
system of canals and chambers (“choanocytes”) ensure filtering activity, whereas the rest of
the body is filled with a collagenous matrix (“mesohyl”) harboring cells, sponging fibers,
and skeletal spicules and covered by a skin made of T-shaped or flat pinacocytes [28]. The
data on the autophagy modulators obtained from these organisms will be presented and
discussed in chronological order.

The genus Haliclona (Grant, 1841; Demospongiae, Haplosclerida: Chalinidae) in-
cludes demosponges widely distributed around the world and, in particular, populat-
ing the North Sea, the western Mediterranean Sea and the Atlantic Ocean. They show
a relatively smooth surface with several pores and can be found as encrusting species
growing over coral rubbles [29]. In 2013, Yamazaki et al. [30] reported the cytotoxic
activity of the pentacyclic alkaloid papuamine (1S,2E,4E,6S,7R,12S,14R,20R,22S,27R)- 15,19-
diazapentacyclo[18.7.0.06,14.07,12.022,27]heptacosa-2,4-diene, Figure 1), the major constituent
of these sponges, in MCF-7 breast cancer cells.
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 Figure 1. 2D structure of papuamine. (https://pubchem.ncbi.nlm.nih.gov/compound/Papuamine,
accessed on 26 March 2021).

A more detailed molecular examination of the effect exerted on MCF-7 cells by the alka-
loid at concentrations at or greater than 5 µM demonstrated the expression of LC3, a central
component of the autophagy process, as revealed by confocal microscopic observations of
the time-dependent increase of LC3-associated fluorescence intensity from 4 h of exposure
onward. In addition, the accumulation of the lipidated LC3-II form, a standard marker for
autophagosomes [5], from early stages of cell incubation with papuamine was observed

https://pubchem.ncbi.nlm.nih.gov/compound/Papuamine
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through Western blot experiments by Kanno et al. [31]. According to their hypothesis,
which was also advanced in the light of the collateral assays performed, papuamine could
target mitochondria, inducing their dysfunction and membrane depolarization and leading
to their sequestration into autophagosomes (“mitophagy”) [32]. Then, the subsequent
JNK activation and release of cytochrome C would conceivably trigger the decrease of cell
survival and the promotion of apoptotic cell death. Interestingly, papuamine was shown to
exhibit synergy when coadministered with doxorubicin to MCF-7 cells, probably on the
basis of a shared activation of JNK phosphorylation [33], thus suggesting the introduction
of the alkaloid in a combined chemotherapy regime for the treatment of breast cancer. The
anticancer effect of papuamine on non-small cell lung cancer cells was also reported [34].

Haliclona caerulea (Hechtel, 1965; Demospongiae, Haplosclerida: Chalinidae) is a blue
sponge populating the shallow waters, dredged channels, and artificial lagoons of the
Pacific and Western Central Atlantic oceans. It is characterized by a skin studded with
thick-walled, volcano-shaped oscula protruding from its smooth surface (Figure 2) [35].
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Figure 2. A specimen of H. caerulea demosponge. Author: Chaloklum Diving (CC BY 3.0); http:
//eol.org/data_objects/31317401 (accessed on 26 March 2021).

From this sponge, Carneiro et al. [36] isolated halilectin-3, an N-acetyl group-binding
heterotrimeric lectin classified as a pigment protein since it interacts with the hydrophobic
blue chromophore-597. Subsequently, when Nascimento-Neto et al. [37] examined the
effect of the molecule on MCF-7 breast cancer cells, they found that cell adhesion was
impaired, and cell cycle arrest at the G1 phase, apoptosis, and autophagy were induced.
In particular, the latter represented the earliest effect of halilectin-3 treatment, which was
proven to upregulate MAP1LC3B gene expression and accumulate LC3-II vs. unlipidated
LC3-I molecules already at 6 h from administration. Conceivably, autophagy was triggered
by lectin-induced downregulation of BCL2 and upregulation of TP53 genes, the latter also
likely being responsible for cell cycle impairment. On the other hand, although the exact
mechanism of apoptosis promotion was not clarified, in light of the increased expression of
both caspase-8 and -9 observed, it was speculated that the impaired adhesion-dependent
anoikis and some signalization by potential lectin binding to the surface receptors might
induce both the intrinsic and extrinsic apoptosis pathway.

Cliona celata (Grant, 1826; Demospongiae, Clionaida: Clionaidae) is a cosmopolitan
organism showing a body composed of a large network of inhalant sieve-like openings
(Figure 3). It is a perforating sponge which creates holes in limestones or other calcareous
surfaces, such as oysters’ shells, which they live on.

http://eol.org/data_objects/31317401
http://eol.org/data_objects/31317401
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Figure 3. A specimen of C. celata demosponge (licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License) [38].

From methanolic extracts of this organism, Keyzers et al. [39] isolated four aminos-
teroids (clionamine A–D), which appeared to be able to induce autophagosome formation in
MCF-7 breast cancer cells, as revealed by the accumulation of cytoplasmic green fluorescent
protein (GFP)-LC3 puncta, that being clionamine A ((1R,2S,4S,7S,8R,9S,12S,13S,16S)-16-
amino-7-[(E)-3,4-dimethylpent-1-enyl]-7-hydroxy-9,13-dimethyl-5-oxapentacycloicosan-6-
one; Figure 4A), the most powerful autophagy stimulator. Subsequently, total synthesis
of one of the aminosteroids (clionamine B) ((1R,2S,4S,7S,8R,9S,12S,13S,16S,18S)-16-amino-7-
hydroxy-9,13-dimethyl-7-(4-methylpentyl)-5-oxapentacyclo[10.8.0.02,9.04,8.013,18]icosan-6-
one; Figure 4B) was obtained for the first time, starting from the plant sapogenin tigogenin,
and the synthetic compound was proven to strongly promote autophagy in MCF-7 cells
with a potency similar to that of clionamine A [40].
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Figure 4. 2D structures of (A) clionamine A (https://pubchem.ncbi.nlm.nih.gov/compound/Cliona
mine-A#section=Structures, accessed on 26 March 2021) and (B) clionamine B (https://pubchem.nc
bi.nlm.nih.gov/compound/Clionamine-B#section=2D-Structure, accessed on 26 March 2021).

The sponges of the genus Psammaphysilla, and currently Pseudoceratina (Carter, 1885;
Demospongiae, Verongiida: Pseudoceratinidae), are distributed across the Red Sea and the
Indo-Pacific ocean and display a smooth, conulose, or tuberculate surface and a hard body
with a dense collagenous matrix containing sparse skeletal fibers (Figure 5) [41].

https://pubchem.ncbi.nlm.nih.gov/compound/Clionamine-A#section=Structures
https://pubchem.ncbi.nlm.nih.gov/compound/Clionamine-A#section=Structures
https://pubchem.ncbi.nlm.nih.gov/compound/Clionamine-B#section=2D-Structure
https://pubchem.ncbi.nlm.nih.gov/compound/Clionamine-B#section=2D-Structure
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Figure 5. A specimen of the Psammaphysilla kelleri demosponge (YPM 086046), courtesy of the Yale
Peabody Museum of Natural History. Photo by D. Drew, 2017 (http://peabody.yale.edu, accessed on
26 March 2021).

Psammaplin A ((2E)-3-(3-bromo-4-hydroxyphenyl)-N-[2-[2-[[(2E)-3-(3-bromo-4-
hydroxyphenyl)-2-hydroxyiminopropanoyl]amino]ethyldisulfanyl]ethyl]-2-hydroxyimino-
propanamide; Figure 6), the first one of the phenolic compounds isolated from these
Porifera sponges, is a brominated, tyrosine-derived disulfide dimer initially described as an
antimicrobial and antifungal compound and subsequently proven to act as an enzymatic in-
hibitor against topoisomerase, farnesyl protein transferase, chitinase, histone deacetylases,
and DNA methyltransferases, thereby also demonstrating anticancer activity [23,42–45].
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plin-A#section=2D-Structure, accessed on 26 March 2021).

In 2015, Kim et al. [46] investigated the antitumor effect of psammaplin A as an in-
hibitor of sirtuin-1 (SIRT1) histone deacetylase on doxorubicin-resistant MCF-7/adr human
breast cancer cells, which are strongly susceptible to the cytotoxic effect of the marine
compound. Among the data collected, psammaplin inhibition of SIRT1 was proven to
promote autophagy, as revealed by the increased intracellular formation of acidic vacuolar
organelles and the increased expression level of LC3, ATG-3, -5, -7, and -12, as well as
beclin-1, the latter being a core component of the class III phosphatidylinositol-3 kinase
(PI3K) complex required for autophagosome formation [47]. As a further confirmation of
psammaplin A-promoted autophagic flux, cell exposure to the compound also induced the
downregulation of the p62/SQSTM1 protein, an event linked to autophagosome degrada-

http://peabody.yale.edu
https://pubchem.ncbi.nlm.nih.gov/compound/Psammaplin-A#section=2D-Structure
https://pubchem.ncbi.nlm.nih.gov/compound/Psammaplin-A#section=2D-Structure
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tion [5]. Both knockdown and transfection experiments demonstrated that induction of
autophagy was dependent upon the SIRT1 inhibition pathway. Of note, SIRT1 inhibition
determined the nuclear accumulation of acetylated p53 and the upregulation of its target
genes DRAM, code for the damage-regulated autophagy modulator involved in autophagy
initiation events [48], and CDKN1A, code for p21/WAF1, whose role played in the onset
of autophagy is acknowledged [49]. The anti-breast cancer effect of psammaplin A was
also demonstrated in a xenograft model, indicating that the compound has a potential
therapeutic role for clinical use.

Xestospongia exigua (Kirkpatrick, 1900; Demospongiae, Haplosclerida, Petrosiidae)
populates the shallow lagoons and the fringing reefs of the Indo-Pacific area and displays a
spreading, irregular surface endowed with branches, fingers, blades, and scattered oscula
(Figure 7) [50].
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Figure 7. A specimen of the X. exigua demosponge (YPM 086991), courtesy of the Yale Peabody
Museum of Natural History. Photo by D. Drew, 2018 (http://peabody.yale.edu, accessed on 26
March 2021).

This organism proved to be a good source of araguspongine/xestospongine alkaloids,
dimeric 2,9- disubstituted 1-oxaquinolizidines that have been shown to possess a variety
of pharmacological activities [51,52]. In 2015, Akl et al. [53] reported that araguspongine
C ((1R,8R,10S,15R,22R,29S)-9,30-dioxa-11,25-diazapentacyclo[20.6.2.28,11.010,15.025,29]dotria-
contane-1,15-diol; Figure 8) exerted an antiproliferative effect on a panel of breast cancer
cell lines in culture. More detailed analyses aimed at identifying the cause of the accu-
mulation of vacuoles in BT-474 breast tumor cells revealed the dose-dependent ability of
araguspongine C to stimulate autophagy, as revealed by the increase in the accumulation
of fluorescent autophagosomes and the upregulation of the total protein levels of LC3,
Beclin-1, and ATG-5, -7, and -16L1. Molecular studies on the putative mechanism of the ara-
guspongine C promotion of autophagy demonstrated that the compound directly inhibited
the expression and activation of c-Met and HER2 tyrosine kinase receptors which, in turn,
suppressed the downstream signalization by the PI3K/Akt/mTOR pathway. Concurrently,
araguspongine C determined the downregulation of the IP3 receptor by breast cancer
cells. Taken together, these effects of the exposure of araguspongine C were conceivably
responsible for the activation of autophagy and subsequent inhibition of BT-474 cell growth
and proliferation. Interestingly, araguspongine C recently showed promising results in
primary and secondary angiogenesis screening modules, thereby also representing a future
anti-angiogenic drug candidate [54].

http://peabody.yale.edu
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Figure 8. 2D structure of araguspongine C (https://pubchem.ncbi.nlm.nih.gov/compound/Aragus
pongine-C#section=Structures, accessed on 26 March 2021).

Fascaplysinopsis (Demospongiae, Dictyoceratida: Thorectidae) is a rare monotypic
genus as it contains only one species, F. reticulata (Hentschel, 1912; Figure 9), a hermaphroditic
demosponge distributed in the Western Central Pacific area and endowed with a membra-
nous and opaque variform surface with large conules and ridges [55].
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Figure 9. A specimen of the F. reticulata demosponge. Author: Hooper, John (http://www.marine
species.org/aphia.php?p=image&tid=165315&pic=142739, accessed on 26 March 2021). Licensed
under the Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

Extracts of this sponge are rich in the indole alkaloid fascaplysin (3-aza-13-azoniapent-
acyclo[11.7.0.02,10.04,9.014,19]icosa-1(13),2(10),4,6,8,11,14,16,18-nonaen-20-one; Figure 10)
and related compounds endowed with selective cyclin-dependent kinase 4 inhibitory
and DNA intercalation properties [56], which are the basis of the anti-angiogenic and
anticancer properties of both the parental molecule and its derivatives [57–59]. In 2017,
Sharma et al. [60] studied the molecular mechanism of the anti-breast tumor effect ex-
erted by the analog 4-chloro fascaplysin on MDA-MB231 cells and, besides other results
indicating the onset of mitochondrial dysfunction and apoptosis, found that the alkaloid
determined the increase in the number of fluorescent acidic vacuolar organelles and the
upregulation of LC3-II, as revealed by immunoblotting. Their cumulative data depicted
the 4-chloro fascaplysin-triggered growth inhibition of MDA-MB231 cells as being a result
of the simultaneous induction of autophagy and apoptosis, the latter stimulated by the
loss of mitochondrial transmembrane potential. Both events converged in the activation of
caspase-3, and in this case, the Akt/mTOR pathway was also severely abrogated, which
contributed to autophagy promotion. Interestingly, the in vitro data were corroborated by
in vivo evidence of solid tumor growth inhibition in murine models, thereby representing
a preclinical rationale for the development of anti-tumoral therapeutic agents, also in the
light of the very good ADMET profile shown by 4-chloro fascaplysin.

https://pubchem.ncbi.nlm.nih.gov/compound/Araguspongine-C#section=Structures
https://pubchem.ncbi.nlm.nih.gov/compound/Araguspongine-C#section=Structures
http://www.marinespecies.org/aphia.php?p=image&tid=165315&pic=142739
http://www.marinespecies.org/aphia.php?p=image&tid=165315&pic=142739
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Figure 10. 2D structure of fascaplysin (https://pubchem.ncbi.nlm.nih.gov/compound/Fascaplysin#
section=2D-Structure, accessed on 26 March 2021).

The species of the genus Aaptos (Gray, 1867; Demospongiae, Suberitida: Suberitidae)
are tropical and subtropical organisms mainly distributed in the Western Central Atlantic
and Mediterranean areas. They show a spherical or lobate shape and a characteristic radial
skeleton that contains “strongyloxeas”, rhabds which are rounded at one end and pointed
at the other (Figure 11).
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Figure 11. A specimen of the Aaptos pernucleata demosponge. Photographer: C. G. Messing, Diaz,
M.C., Kohler, K.E., Reed, J.K., Ruetzler, K., Van Soest, R.W.M., Wulff, J, and Zea, S. 2010. South Florida.
Publisher: Freeman, Chris (http://porifera.myspecies.info/taxonomy/term/22534, accessed on 26
March 2021 (CC BY-NC 3.0)).

Bioactivity-guided fractionation of the methanolic extracts obtained from these organisms
resulted in the isolation of aaptamine alkaloids, among which isoaaptamine (11-methoxy-2-
methyl-2,6-diazatricyclo[7.3.1.05,13]trideca-1(13),3,5,7,9,11-hexaen-12-ol; Figure 12) was the
most prominent in the active fraction and showed the most potent cytotoxic activity on
T47-D breast cancer cells, as revealed by a short-term MTT assay and long-term colony
formation assay. The anti-proliferative activity of the alkaloid on different tumor cell lines,
including MDA-MB 231, had already been reported by Dyshlovoy et al. [61]. Further
and more detailed studies on the T47-D cell model delineated that the inhibitory effect of
isoaaptamine was based upon the induction of both apoptosis and autophagy, the latter
revealed by the dose- and time-dependent increase of acridine orange-positive vacuoles,
upregulation of LC3-II and p62/SQSTM1, and downregulation of mTOR. In addition,
a significant increase in the generation of reactive oxygen species (ROS), as well as the
disruption of the mitochondrial transmembrane potential, was also demonstrated. Thus,
the cumulative data allowed for the conclusion that isoaaptamine-promoted T-47D cell
apoptosis and autophagy was accomplished via cellular Nrf1/Keap1 antioxidant depletion
and p62-regulated ROS accumulation [62].

https://pubchem.ncbi.nlm.nih.gov/compound/Fascaplysin#section=2D-Structure
https://pubchem.ncbi.nlm.nih.gov/compound/Fascaplysin#section=2D-Structure
http://porifera.myspecies.info/taxonomy/term/22534
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4. Autophagy Modulators from Cnidaria

Cnidaria, also called coelenterates, are animals that share the radial symmetry of the
body, the lack of cephalization, and the organization of cells in tissues, although they lack
organs. In particular, cnidarians possess two cell layers, the ectoderm and the endoderm,
separated by the mesoglea, an elastic jelly-like substance in which a network of supporting
fibers is present. Members of the group, the polyps, secrete external skeletons made
of chitin or calcium carbonate, whereas the alcyoniarians are endowed with an internal
skeleton. Only one member of this phylum has been reported to produce compounds able
to modulate autophagy in breast tumor cells.

Klyxum flaccidum, originally named Alcyonium flaccidum (Tixier-Durivault, 1966; An-
thozoa, Alcyonacea: Alcyoniidae), a coral populating the Western Central Pacific area and
the coasts of Madagascar, forms lobate and quite small colonies. The non-retractile polyps
are clustered on the lobes, and the sclerite-containing mesoglea (the “coenenchyme”)
form cone-shaped prominences (Figure 13) [63]. In 2018, Weng et al. [64] submitted a
small library of purified marine natural molecules to a screening aimed at identifying
potential activators of peroxisome proliferator-activated receptor γ(PPARγ), a therapeutic
target for anticancer therapy [65] in MCF-7 breast tumor cells, and identified the sterol
3β,11-dihydroxy-9,11-secogorgost-5-en-9-one obtained from K. flaccidum [66] as a receptor
activator through a luciferase reporter assay. The sterol was proven to exert a cytotoxic
effect on the neoplastic cells via the induction of caspase 3-dependent apoptosis and au-
tophagy. In particular, it determined the ROS-mediated DNA damage and the decrease of
cyclin D1, cyclin-dependent kinase 6, Bcl-2, phospho-ERK, and phospho-p38, which are
responsible for the impairment of cell cycle progression and onset of apoptosis.
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The promotion of autophagy was revealed by the dose-dependent accumulation of
acidic vesicular organelles in the cytoplasm and the upregulation of LC3-II and p62, the
latter also being confirmed in sterol-treated MDA-MB231 tumor cells. The cumulative data
obtained suggested the translational potential of the compound in breast cancer therapy.

5. Autophagy Modulators from Mollusca

Mollusca are the largest marine phylum and are characterized by a bilateral simmetry,
the absence of segmentation, and the appearance of organs, such as the characteristic
“radula” used for feeding, and a nervous system. Their dorsal body wall (“mantle”) covers
the visceral mass and, in many species, is responsible for the formation of a shell made
of calcium carbonate and conchiolin. In addition, in the case of this phylum, only one
member has been reported to produce compounds able to modulate autophagy in breast
tumor cells.

Crassostrea virginica (Gmelin, 1791; Bivalvia, Ostreida: Ostreidae; Figure 14), known
as the eastern oyster, is a bivalve mollusk endowed with a calcite shell that can be found
naturally in a great diversity of habitats along the coasts of the western Atlantic Ocean
from Canada to Argentina. It is known that oysters are rich sources of the sphingolipid
ceramide N-methylaminoethylphosphonate (CMAEPn; Figure 15), which is concentrated
in their adductor, mantle, gills, and viscera [67,68]. On the other hand, ceramide and other
sphingolipid mediators are involved in the mechanism of signalization that regulates can-
cer progression, and ceramide has been proven to play a key role in cancer chemotherapy
metabolism and efficacy, thus emerging as a potential strategy for restraining carcinogene-
sis [69]. Chintalapati et al. [70] studied the biological bases of the cell death effect exerted
by CMAEPn isolated from C. virginica on hormone-dependent MCF-7 and independent
MDA-MB435 breast cancer cells.
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Figure 15. 2D structure of ceramide N-methylaminoethylphosphonate (https://pubchem.ncbi.nlm.nih.gov/compound/64
44126, accessed on 26 March 2021).

Their results demonstrated that oyster ceramide down-regulated VEGF, EGF, and
PI3K, which control some of the main signalization pathways associated with breast tumor
progression, and inhibited the phosphorylation and degradation of Iκb, which blocks
NfκB nuclear translocation by masking its nuclear localization sequence [71]. In line with
the published data [72–74], these molecular events appeared to stimulate autophagy in
exposed cells, as revealed by the accumulation of fluorescent autophagosomes and the
increase of the beclin-1 protein level. It is noteworthy that CMAEPn was also able to inhibit
angiogenesis in vitro and in vivo, thereby resulting in it being a promising tool relevant to
counteracting breast tumorigenesis.

6. Autophagy Modulators from Echinodermata

Echinodermata are invertebrates characterized by the presence of a hard, spiny cover-
ing or skin, a mesodermal skeleton endowed with calcareous plates or ossicle, and, apart
from a few exceptions, a pentaradial symmetry. This phylum represents the second-largest
grouping of deuterostomes after the chordate, in light of the roughly 7000 extant species
contained. Two species of echinoderms have been reported to produce compounds able to
modulate autophagy in breast tumor cells.

Arbacia lixula (Linnaeus, 1758; Echinoidea, Diadematoida: Arbaciidae, Figure 16) is a
medium-sized deep black sea urchin populating the shallow waters of the Mediterranean
area and the coasts of the Azores, Madeira, and Canary Islands.
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Figure 16. A specimen of the A. lixula sea urchin. Taken from [75].

Holothuria tubulosa (Gmelin, 1788; Holothuroidea, Aspidochirotida: Holothuridae,
Figure 17) is a roughly cylindrical brownish sea cucumber abundant in the sandy or rocky
substrates of the eastern Atlantic Ocean and Mediterranean Sea. This benthic echinoderm,
which displays a tough tegument covered with many dark-colored papillae, represents an
excellent animal system for the study of the morphometric and humoral responses during
tissue repair [76,77].
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Both organisms have been widely used as models to examine the effects of anthro-
pogenic chemical and noise pollution [78–80].
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Figure 17. A specimen of the H. tubulosa sea cucumber. Taken from [81].

On the basis of the acknowledged diverse biological and pharmacological properties
shown by the compounds and extracts from sea urchins and holothurians [82–85], in search
of novel potential anti-breast cancer preparations, crude and <10 kDa-filtered fractions
of cell-free aqueous extracts of the coelomic fluids from A. lixula and H. tubulosa were
administered to MDA-MB231 TNBC cells, and the biological aspects of the observed
cytotoxic effects were investigated [75,81].

Concerning A. lixula’s preparations, the sole filtered extract was proven to promote
autophagic cell activity, as revealed by the accumulation of acidic vesicular organelles
and the increase of the beclin-1, LC3-II, and total LC3 protein levels. Of note, autophagy
upregulation occurred in parallel with ROS overproduction and the blocking of the cell
cycle at the S-phase with no evidence of dissipation of the mitochondrial transmembrane
potential and the onset of apoptosis. The obtained results allowed for the speculation that
(1) the increase of the endogenous ROS levels could be a consequence of cellular metabolic
stress and impairment of the antioxidant system in the absence of mitochondrial potential
dysfunction; (2) autophagy upregulation could be a result of intracellular signalization
switched on by ROS, acting as redox signaling molecules; and (3) autophagy might be
responsible for the blocking of the cell cycle at the S-phase, analogous with the data
produced in [86]. As an alternative, the upregulation of the autophagic activity was
interpreted as a cell repair mechanism aimed at counteracting ROS-induced necrotic death
but ineffective at ensuring cell survival.

Concerning H. tubulosa’s extracts, by evaluating the same endpoints as for A. lixula’s
preparations, both the crude and filtered samples were proven to promote autophagy,
although the latter ones appeared more powerful in inducing an early stimulation at 24 h
from exposure. At this time point, autophagy upregulation appeared to parallel mitochon-
drial transmembrane potential dissipation, whereas ROS overproduction was undetectable
and remained unchanged thereafter. Such evidence suggested that the autophagic program
activated by the extracts was of the “mitophagic” type given the absence of apoptotic death,
likely due to the elimination of damaged mitochondria that reduced the intracytoplas-
mic release of cytochrome C, a known inductor of intrinsic apoptosis [87]. On the other
hand, the autophagic clearance of the damaged mitochondria might be responsible for the
inability to detect increased ROS accumulation [88].

The above-discussed results represent a good starting point for the identification of the
water-soluble bioactive component(s) present in the extracts, with the aim to develop novel
prevention or treatment agents efficacious against highly metastatic breast carcinomas.

7. Conclusions

In 2020, the World Health Organization reported the occurrence of 2.3 million women
diagnosed with breast tumors and 685,000 deaths globally, thereby confirming that this
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neoplastic histotype has surpassed lung cancer as the most commonly diagnosed one and
represents the world’s most prevalent neoplasia [89,90]. Since the currently available treat-
ments are not fully working with most breast cancer patients, the procurement of alternative
prevention or therapeutic agents appears to be imperative, including nanomaterials [91,92]
to improve both medication and the quality of life of patients.

It is widely acknowledged that the enormous biodiversity of marine organisms rep-
resents a highly promising reserve for the isolation of bioactive primary and secondary
metabolites targeting one or several specific molecular pathways and displaying active
pharmacological properties against a variety of diseases. Among the anticancer compounds
searched in extracts from marine organisms, in this review, a focus was put on modulators
that control and modify autophagy in breast cancer cells. Table 1 summarizes, in a synoptic
way, the invertebrate species of origin, the substances, and the autophagy modulatory
effects discussed in the text. Attention on the autophagic process has increased over time
due to its critical role in dictating life or death cellular decisions, leading to a wide range
of biomedical applications (e.g., [93,94]). In addition, the role of marine natural products
in the induction and inhibition of autophagy and its outcome in tumorigenesis have been
widely acknowledged [95]. Marine invertebrates have contributed to this field, with a
number of compounds displaying autophagy-regulating properties toward breast tumor
cell models, and demosponges have been the most investigated ones to date. Nevertheless,
despite the extent of the marine environment’s biomedical chest, current research on this
topic is quite limited, and further study efforts are needed to expand the list of tested
bioactives discovered across the different taxonomic groups, as well as in vivo work and
human trials to ensure the effective chemotherapeutic efficacy of marine compounds as
treatment options for breast cancer.

Table 1. Autophagy-modulating substances from marine species.

Organism of Origin Substance Autophagy-Related Effects

Haliclona genus (Porifera) Papuamine Accumulation of total LC3 and LC3-II;
possible mitophagy

H. caerulea (Porifera) Halilectin-3 Upregulation of MAP1LC3B gene
expression; accumulation of LC3-II

C. celata (Porifera) Clionamine A-D increase of cytoplasmic green
fluorescent protein (GFP)-LC3 puncta

Psammaphysilla genus
(Porifera) Psammaplin A

Increase of acidic vacuolar organelles; upregulation of
LC3, ATG-3, -5, -7, -12, and beclin-1; downregulation

of p62/SQSTM1 protein

X. esigua (Porifera) Araguspongine C Increase of fluorescent autophagosomes; upregulation
of total LC3, Beclin-1, ATG-5, -7, and -16L1

F. reticulata (Porifera) Fascaplysin Increase of acidic vacuolar organelles; upregulation of
LC3-II (by 4-chloro-fascaplysin derivative)

Aaptos genus (Porifera) Isoaaptamine
Increase of acridine orange-positive

vacuoles; upregulation of LC3-II and p62/SQSTM1;
downregulation of mTOR

K. flaccidum (Cnidaria) 3β,11-dihydroxy-9,11-
secogorgost-5-en-9-one

Increase of acidic vesicular organelles; upregulation of
LC3-II and p62

C. virginica (Mollusca) N-methylaminoethyl
phosphonate

Increase of fluorescent autophagosomes; upregulation
of beclin-1

A. lixula
(Echinodermata)

Cell-free aqueous extracts of the
coelomic fluid

Increase of acidic vesicular organelles; upregulation of
beclin-1, LC3-II, and total LC3

H. tubulosa
(Echinodermata)

Cell-free aqueous extracts of the
coelomic fluid

Increase of acidic vesicular organelles; upregulation of
beclin-1, LC3-II, and total LC3; possible mitophagy
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