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Impact of vaccine supplies and delays 
on optimal control of the COVID-19 pandemic: 
mapping interventions for the Philippines
Carlo Delfin S. Estadilla1* , Joshua Uyheng2, Elvira P. de Lara‑Tuprio1, Timothy Robin Teng1, 
Jay Michael R. Macalalag3 and Maria Regina Justina E. Estuar4 

Abstract 

Background: Around the world, controlling the COVID‑19 pandemic requires national coordination of multiple inter‑
vention strategies. As vaccinations are globally introduced into the repertoire of available interventions, it is impor‑
tant to consider how changes in the local supply of vaccines, including delays in administration, may be addressed 
through existing policy levers. This study aims to identify the optimal level of interventions for COVID‑19 from 2021 
to 2022 in the Philippines, which as a developing country is particularly vulnerable to shifting assumptions around 
vaccine availability. Furthermore, we explore optimal strategies in scenarios featuring delays in vaccine administration, 
expansions of vaccine supply, and limited combinations of interventions.

Methods: Embedding our work within the local policy landscape, we apply optimal control theory to the compart‑
mental model of COVID‑19 used by the Philippine government’s pandemic surveillance platform and introduce four 
controls: (a) precautionary measures like community quarantines, (b) detection of asymptomatic cases, (c) detection 
of symptomatic cases, and (d) vaccinations. The model is fitted to local data using an L‑BFGS minimization procedure. 
Optimality conditions are identified using Pontryagin’s minimum principle and numerically solved using the forward–
backward sweep method.

Results: Simulation results indicate that early and effective implementation of both precautionary measures and 
symptomatic case detection is vital for averting the most infections at an efficient cost, resulting in > 99% reduction 
of infections compared to the no‑control scenario. Expanding vaccine administration capacity to 440,000 full immu‑
nizations daily will reduce the overall cost of optimal strategy by 25% , while allowing for a faster relaxation of more 
resource‑intensive interventions. Furthermore, delays in vaccine administration require compensatory increases in the 
remaining policy levers to maintain a minimal number of infections. For example, delaying the vaccines by 180 days (6 
months) will result in an 18% increase in the cost of the optimal strategy.

Conclusion: We conclude with practical insights regarding policy priorities particularly attuned to the Philippine 
context, but also applicable more broadly in similar resource‑constrained settings. We emphasize three key takeaways 
of (a) sustaining efficient case detection, isolation, and treatment strategies; (b) expanding not only vaccine supply 
but also the capacity to administer them, and; (c) timeliness and consistency in adopting policy measures.
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Background
In the year since the emergence of the global coronavirus 
disease 2019 (COVID-19) pandemic, national policies 
have had to decisively manage diverse issues of resource 
availability, institutional capacity, and collective behav-
ioral change [1–3]. Striking the right balance of multiple 
strategies at the right time has been vital for implement-
ing successful pandemic responses [4, 5]. Mathematical 
modelling has helped scientists and policymakers incor-
porate emergent discoveries about COVID-19 with exist-
ing knowledge to design effective interventions [6, 7].

In early 2021, the global introduction of vaccination as 
a viable counter to the disease prompts new analytical 
efforts. Regional inequalities introduce challenges to the 
global vaccine supply chain which may disrupt a straight-
forward vaccine rollout for a significant proportion of 
various national populations [8, 9]. Important questions 
emerge with respect to how governments may adequately 
adjust existing policies available for pandemic control in 
relation to multiple scenarios.

This paper undertakes an optimal control study of 
policies to control the COVID-19 outbreak in the Phil-
ippines, a developing country that may be particularly 
vulnerable to experiencing challenges to vaccine rollouts. 
Amidst large-scale preparations for the evaluation, selec-
tion, and distribution of vaccines, ongoing policies to 
respond to the pandemic continue to inform the Philip-
pine government’s strategies for pandemic management 
[10]. Questions around their optimal implementation 
are particularly salient for developing countries that face 
heavier burdens from both the pandemic and overly 
restrictive quarantine measures [11]. This study therefore 
asks: How should the Philippine government implement 
existing strategies of community quarantine and case 
detection in conjunction with the introduction of vaccine 
rollouts?

Related work
Mathematical modelling for forecasting COVID‑19 
outbreaks
Since the beginning of the COVID-19 pandemic, the 
academic literature has witnessed a vast surge of mod-
elling studies. Existing reviews highlight the importance 
of compartmental models of COVID-19, in connection 
with other models based on time series forecasting and 
machine learning [12, 13]. Compartmental models math-
ematically encode known and emerging information 
about the transmission dynamics of the disease and have 
been locally applied across numerous contexts around 
the world, including major sites of COVID-19 transmis-
sion like China, India, Brazil, the United States, and the 
United Kingdom [14–18].

Mathematical modelling efforts have been beneficial 
for forecasting and intervention assessment [19–21]. 
For instance, in the United Kingdom, a stochastic, age-
structured transmission model was used to quantify the 
costs and mortalities of unmitigated outbreaks without 
interventions, highlighting the need for sustaining com-
bined control efforts [22]. In another example, an age-
structured model with social contact matrices was used 
to compare the impacts of different reopening strategies 
on the relative reduction of cases in different regions in 
China [23].

Optimal control theory for modelling pandemic response
In this work, we utilize optimal control theory to model 
effective pandemic response. Optimal control theory 
refers to a field of study that deals with finding optimal 
solutions to a problem expressed in the form of a non-
linear dynamical system [24, 25]. This helps identify effi-
cient methods of achieving desired outcomes, such as 
cost-effective infection control [15, 26].

Numerous studies have implemented optimal control 
theory toward similar end goals. In the absence of vac-
cines, most early studies focused on non-pharmaceu-
tical interventions, including various combinations of 
rapid testing, contact tracing, and awareness campaigns 
[27–31]. Ullah and colleagues sought to disentangle 
the impacts of quarantine and case detection rates on 
exposed, critical, and hospitalized COVID-19 patients 
[32]. Other research modelled the effect of limited total 
testing resources, through the addition of an isoperimet-
ric constraint to the optimal control problem [33].

Eventually, however, newer research was further able 
to consider the impacts of eventual vaccine availability. 
In an age-structured model, Bonnans and Gianatti stud-
ied minimization of the death toll, cost of confinement, 
and hospitalization peaks discussing a possible extension 
of their model when a vaccine becomes available [34]. 
Libotte and colleagues likewise explored programs for 
vaccine administration within a multi-objective setup, 
determining a set of Pareto optimal strategies that would 
minimize infections while also minimizing the number of 
vaccines needed [35].

Responding to COVID‑19 in the Philippines
The present work specifically investigates the dynamics 
of COVID-19 in the Philippines and aims to identify opti-
mal strategies for efficiently controlling infections. We 
draw on existing modelling efforts by the national pan-
demic surveillance system [36] to derive realistic param-
eters which match existing epidemic trends and available 
intervention strategies in the country [37]. By deploying 
models informed by local parameters of the disease, we 
therefore aim to provide both theoretically optimal and 
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contextually practical recommendations for policymak-
ers [38].

In the Philippines, non-pharmaceutical interventions 
have primarily included phased community quarantines 
and mandated wearing of face masks [39]. Enhancements 
to the capacity of the health system to efficiently detect 
asymptomatic and symptomatic infectious individu-
als have also been key [40, 41]. In early 2021, imminent 
vaccine rollouts posed a salient new factor for pandemic 
control. We therefore sought to design optimal strategies 
for their distribution, and consider appropriate responses 
to potential obstacles which may arise in resource-con-
strained settings.

Aims of the current study
Burgeoning scholarship points to rich global knowledge 
of the effectiveness and efficiency of various policy tools 
against the pandemic. However, both nationally specific 
impacts of the pandemic and the limitations faced by 
intervening bodies highlight the importance of ground-
ing optimal control analysis in the local context.

In this view, the present work therefore aims to achieve 
the following goals. First, we frame pandemic interven-
tions with vaccinations as an optimal control problem to 
identify scenarios for effective pandemic control. Second, 
we explore various vaccination scenarios featuring both 
delays and expansions of vaccine administration. This 
enables a future-oriented analysis of how local policy-
makers may compensate for unforeseen developments in 
the global supply chain. Finally, we perform a systematic 
ablation analysis, whereby we restrict various combina-
tions of available controls to model more limited control 
scenarios.

Methods
Model formulation
To capture the local dynamics of COVID-19 transmission 
in the country, we form a model that utilizes the local 
incidence data from the Department of Health-Epide-
miology Bureau (DOH-EB) [42]. The COVID-19 model 
utilizes six compartments to subdivide the population: 
susceptible (S), exposed (E), infectious but asymptomatic 
(Ia) , infectious and symptomatic (Is) , confirmed (C), and 
removed (R). These compartments are governed by the 
epidemic flow as illustrated in Fig.  1. Compartment S 
consists of individuals who have not been infected with 
COVID-19 but may contract the disease once exposed 
to the virus. Compartment E consists of individuals who 
have been infected but are still within the latency stage 
of the disease. These individuals will eventually become 
infectious, and categorized into two compartments 
depending on the presence ( Is ) or absence ( Ia ) of symp-
toms. Once detected, these infectious individuals will 
move to compartment C, where they will be included 
among the active cases. Individuals in this compartment 
are assumed to be isolated, and hence not capable of 
infecting the susceptible population, and receiving treat-
ment while in isolation. Lastly, compartment R consists 
of individuals who have acquired immunity from the dis-
ease. We assume that those who have recovered from the 
disease acquire permanent immunity and therefore move 
to compartment R.

The movements of individuals toward and out of the 
different compartments are governed by several param-
eters of the model. The transmission rate β is a function 
of the disease transmission rate β0 , based on an assumed 
basic reproduction number R0 , and a reduction factor 
(1− �) . The parameter � reflects the effect of community 

Fig. 1 Diagram of the compartmental model. Disease progression from the susceptible (S) compartment through the exposed (E), asymptomatic 
(Ia) and symptomatic (Is) infectious, confirmed (C), and removed (R) compartments
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quarantine imposed by the government, as well as the 
degree of compliance to minimum health standards, 
which includes practicing proper hygiene, social distanc-
ing, and wearing protective face coverings. Moreover, the 
parameter ψ accounts for the infectiousness of asympto-
matic individuals relative to those who have symptoms. 
The rates of transfer to the two infectious compartments, 
αa for asymptomatic and αs for symptomatic, are both 
dependent on the incubation period τ of the virus.

Other parameters in the model include the constant 
recruitment rate A into the S compartment, which is 
driven by new births in the population. To account for 
deaths by natural causes, a constant rate of µ per unit 
time is applied to all compartments in the model. In addi-
tion, deaths due to the disease are included through the 
parameters ǫI and ǫT , affecting the infectious sympto-
matic and confirmed compartments, respectively.

By taking into account the above assumptions, a math-
ematical model is developed, which can be described 
by the following system of six ordinary differential 
equations:

where β = β0(1− �) , αa = c
τ
 , αs =

1−c
τ

 , 
N = S + E + Ia + Is + C + R . The functions S, E, Ia , Is , 
C, and R are differentiable real-valued functions on R . 
Moreover, all parameters are nonnegative constants.

Parameter values
The values of various parameters were determined using 
several sources and methods. Local COVID-19 data [42] 
were used in calculating detection rate ( δa, δs ), post-
detection recovery rate (r), and death rate of COVID-19 
cases ( ǫI , ǫT ). The recruitment rate (A) and natural death 
rate ( µ ) are calculated from population data [43–45]. For 
the other parameters which cannot be computed directly 
from data, we rely on references that estimate their val-
ues. The basic reproduction number of COVID-19 ( R0 ) 
and relative infectiousness of asymptomatic cases ( ψ ) are 
based on estimates by the US Centers for Disease Con-
trol [46]. The incubation rate ( τ ) and symptomatic transi-
tion ( ω ) are obtained from reports by the World Health 

(1)



































































dS

dt
= A− βS

ψIa + Is

N
− µS, S(0) ≥ 0,

dE

dt
= βS

ψIa + Is

N
− (αa + αs + µ)E,E(0) ≥ 0,

dIa

dt
= αaE − (µ+ ω + δa + θ)Ia, Ia(0) ≥ 0,

dIs

dt
= αsE + ωIa − (µ+ ǫI + δs)Is, Is(0) ≥ 0,

dC

dt
= δaIa + δsIs − (µ+ ǫT + r)C ,C(0) ≥ 0,

dR

dt
= θ Ia + rC − µR,R(0) ≥ 0,

Organization [47, 48]. The proportion of asymptomatic 
cases (c) is from Mizumoto et  al. [49] that studied the 
COVID-19 outbreak at the Diamond Princess cruise ship.

We fit the model output to data by employing a curve-
fitting algorithm to estimate the value of the transmission 
reduction rate ( � ), the initial values for the exposed (E(0)), 
infectious asymptomatic ( Ia(0) ), and infectious sympto-
matic ( Is(0) ). In particular, the constrained L-BFGS opti-
mization procedure [50] was utilized to minimize the 
sum of squared errors between the model output and the 
empirical time series. The parameter � is fitted on a per-
month basis starting from March 2020, to coincide with 
the changes in the disease dynamics and the correspond-
ing transmission reduction policies implemented by 
the government that tends to be updated monthly [51]. 
The output is a vector of best-fit transmission reduc-
tion parameters [�1, �2, ..., �n] where n is the number of 
months since March 2020. This fitting procedure is uti-
lized to produce forecasts for the Philippine COVID-19 
epidemic [36]. Following the above parametrization, our 
model fits well to the Philippine data for cumulative cases 
of COVID-19 (Fig. 2). Table 1 summarizes the parameter 
values used in the model.

Model with optimal control
We explore four control strategies to mitigate the 
COVID-19 epidemic-precautionary measures, detection 
of asymptomatic cases, detection of symptomatic cases, 
and vaccination. The definitions of each of these controls 
and how they are incorporated in the model are given 
below: 

1. Precautionary measures ( u1(t) ) refer to government-
led efforts to inhibit possible contacts between sus-
ceptible and infectious individuals by regulating 
public gatherings, closing schools, suspending office 
work, enforcing adherence to health protocols such 
as social distancing, mask-wearing, hand-washing, 

Fig. 2 Fit of model output to data following L‑BFGS optimization 
procedure
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etc. This control affects the transmission rate β and 
is incorporated in the model as a factor ( 1− u1(t) ), 
replacing ( 1− � ). The value of u1(t) represents the 
effort of precaution at time t. A value of 0 indicates 
that no precautionary measure is being practiced, 
and a value of 1 indicates full effort on precaution 
prohibiting any form of infection.

2. Detection of asymptomatic cases ( u2(t) ) entails iden-
tifying and isolating infectious individuals who do 
not have symptoms of COVID-19. This may be done 
through laboratory tests such as reverse transcrip-
tion-polymerase chain reaction (RT-PCR) to deter-
mine whether an individual is infectious or not. A 
positive case is taken to be immediately followed by 
isolation at home or in a dedicated quarantine facility 
to prevent transmission. It is assumed, therefore, that 
after an individual is confirmed to have COVID-19, 
s/he is not able to infect susceptible individuals. We 
incorporate this control to the model by replacing δa 
with a time-varying control function u2(t) . The value 
of u2(t) represents the effort of testing and isolation 
at a given time t. A value of 0 indicates the absence of 
testing and isolating, and a value of 1 indicates test-
ing and isolating all infectious asymptomatic individ-
uals on a given unit of time.

3. Detection of symptomatic cases ( u3(t) ) follows the 
same definition as the detection of asymptomatic 
cases but applied to individuals that exhibit symp-
toms of COVID-19. We replace δs by u3(t) to incor-
porate this control to the model. Similarly, a value of 
0 of this control indicates the absence of effort to test 
and isolate symptomatic individuals while a value of 

1 indicates full testing and detection of all sympto-
matic individuals on a given unit of time.

4. Vaccination ( u4(t) ) refers to the full inoculation of 
susceptible individuals for them to acquire protection 
against COVID-19 infection or protection against a 
severe case of the disease. We assume in this paper 
that vaccines give protection against infection, that 
is, an individual who is fully vaccinated gets immu-
nity to COVID-19 over the period considered. Mul-
tiple vaccines with varying effectiveness rates have 
been identified for use against COVID-19 such as 
those developed and manufactured by Pfizer-BioN-
Tech, Moderna, Sinovac, etc. We consider the aver-
age effectiveness rate of the vaccines weighted by the 
usage, denoted by σ , where 0 ≤ σ ≤ 1 . To incorpo-
rate vaccination in the model, we add a rate of trans-
fer from compartment S to R equal to σu4(t) . The 
value of u4(t) represents the effort of vaccination for 
the susceptible population. A value of 0 represents no 
vaccination efforts while a value of 1 represents vac-
cination of all susceptible individuals on a single unit 
of time.

Our goal is to identify the optimal strategy for limiting 
the spread of SARS-CoV-2 in a population using minimal 
cost of controls. In this study, the optimal control prob-
lem minimizes the number of asymptomatic ( Ia ) and 
symptomatic individuals ( Is ) and the control costs. The 
controls are expressed in quadratic forms to incorporate 
nonlinear costs for the implementation of each control 
and to ensure the convexity of the cost function. This 
is a common form of an objective functional in optimal 

Table 1 Summary of parameter values for the COVID‑19 model

Variable Description Value Unit Source

R0 Basic reproduction number 4.0000 None [46]

A Recruitment rate 1309.1 1/day [43, 45]

µ Natural death rate 4.0548× 10
−5 1/day [44]

β0 Baseline transmission rate 0.4343 1/day [46]

� Transmission reduction 0.6500 to 0.8500 1/day [36]

ψ Relative infectiousness of asymptomatic cases 1.0000 None [46]

τ Incubation period 5.0000 Day [48]

c Proportion of asymptomatic infections 0.1800 None [49]

ω Symptomatic transition 0.3300 1/day [47, 49]

θ Recovery rate of asymptomatic 0.0714 1/day [42]

δa Detection rate for asymptomatic 0.1000 to 0.2000 1/day [42]

δs Detection rate for symptomatic 0.1000 to 0.2000 1/day [42]

r Post‑detection recovery rate 0.0855 1/day [42, 48]

ǫI COVID‑19 death rate, undetected 0.0018 1/day [42]

ǫT COVID‑19 death rate, detected 0.0018 1/day [42]
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control problems [25, 52]. The objective functional is rep-
resented by:

where t0 and tf  represent January 1, 2021 and Decem-
ber 31, 2022 respectively, reflecting a 2-year period. The 
parameters wi, i = 1, 2, 3, 4, account for the relative costs 
of implementing controls ui . They represent the weights 
of corresponding terms in the integrand and their impor-
tance in the optimal control problem.

We aim to identify u∗i (t), i = 1, 2, 3, 4, such that

where for Lebesgue integrable ui,

Here, umin
i  and umax

i  are the lower and upper bounds of 
the control ui , representing minimum and maximum 
implementation efforts.

The constraints of the optimal control problem are 
given by:

where

The existence of the optimal solution can be shown using 
standard results in optimal control theory [25, 52]. The 
necessary convexity of the integrand of the objective 
functional, positive definiteness of system (4), and the 
linear dependence of the state differential equations to 
the controls are satisfied in our model.

We apply Pontryagin’s minimum principle [24] to 
determine the necessary conditions using the optimality 
system for our problem (see Additional file 1: Appendix). 
This system is a two-point boundary problem with ini-
tial conditions for the state variables and terminal con-
ditions for the adjoint variables. The solutions are solved 
numerically using a Runge–Kutta fourth-order scheme. 

(2)J (�u) =

∫ tf

t0

(

Ia(t)+ Is(t)+ w1u
2
1(t)+ w2u

2
2(t)+ w3u

2
3(t)+ w4u

2
4(t)

)

dt,

(3)J
(

u∗1,u
∗
2,u

∗
3,u

∗
4

)

= min
U

J (u1,u2,u3,u4),

U =
{

(u1,u2,u3,u4)|u
min
i ≤ ui(t) ≤ umax

i , t0 ≤ t ≤ tf

}

.

(4)



































































dS

dt
= A− (β0(1− u1))S

ψIa + Is

N
− σu4S − µS, S(0) ≥ 0,

dE

dt
= β0(1− u1)S

ψIa + Is

N
− (αa + αs + µ)E,E(0) ≥ 0,

dIa

dt
= αaE − (µ+ ω + u2 + θ)Ia, Ia(0) ≥ 0,

dIs

dt
= αsE + ωIa − (µ+ ǫI + u3)Is, Is(0) ≥ 0,

dC

dt
= u2Ia + u3Is − (µ+ ǫT + r)C ,C(0) ≥ 0,

dR

dt
= θ Ia + rC + σu4S − µR,R(0) ≥ 0,

N = S + E + Ia + Is + C + R.

The state variables are solved forward in time while the 
adjoint variables are solved backwards, referred to as 

Forward–Backward Sweep Method [25]. We update the 
controls using a convex combination of the latest and 
previous values. This process is iterated until the updates 
in the control values are very small or less than the 
machine epsilon.

The initial state values are computed using a com-
bination of data and model fitting. We relied on model 
fitting to data to get the values for E(0), Ia(0) and Is(0) 
[36]. The initial value for confirmed cases (C(0)) is based 
on data from the Department of Health [42]. The initial 
number of removed individuals (R(0)) is assumed to be 
higher than the detected recoveries on January 1, 2021, to 
include recoveries from undetected asymptomatic cases. 
We estimate that this is equal to 450,000, consistent with 
the output of our model [36]. Lastly, the initial suscep-
tible population is estimated to be equal to the whole 
population minus the assumed values for the other com-
partments. Table 3 lists the initial state values used in our 
simulations.

We fix umin
i = 0 for i ∈ {1, 2, 3, 4} while upper bounds 

of the controls are varied to reflect the realistic maximum 
efforts that can be achieved with each control. Results 
from model fitting to data (see Table  1) show that the 
highest value for precaution is 0.85. Direct computations 
from epidemiological data provided by the Department 
of Health [42] show that the minimum monthly average 

Table 2 Lower ( umin
i

 ) and upper ( umax
i

 ) bounds for control 
strategies representing available effort in the Philippines

Control u
min
i

u
max
i

Sources

Precaution ( u1) 0 0.850 [36]

Detection of asymptomatic ( u2) 0 0.200 [42]

Detection of symptomatic ( u3) 0 0.200 [42]

Vaccination ( u4) 0 0.002 [10]

Table 3 Initial values for model states

State Initial value Sources

Susceptible (S) 108,960,983 [45]

Exposed (E) 7000 [36]

Infectious asymptomatic ( Ia) 500 [36]

Infectious symptomatic ( Is) 9000 [36]

Confirmed cases (C) 57,833 [42]

Removed (R) 450,000 [36, 42]
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duration of detection, from symptom onset to confirma-
tion of test results, may take 5 days. We take the inverse 
of this duration as our upper bound for both detection 
controls, hence umax

2
= umax

3
= 0.2 . Lastly, the upper 

bound for vaccination ( u4 ) is based on government proc-
lamations [10]. The boundaries for the control values are 
summarized in Table 2.

The weight parameters wi, i = 1, 2, 3, 4, are adjusted 
to balance the terms in the integrand of the cost func-
tion (2). These parameters reflect the total costs and 
payoffs of implementing each control strategy including 
the cost of the products used (test kits, vaccines, masks, 
etc.), operational costs (personnel salary, rent, procure-
ment, refrigeration units, etc.), opportunity costs for the 
economy due to lockdowns, and so forth. To determine 
the values of the weight parameters, we consider the fact 
that the upper bounds for the controls already reflect 
the realistic and achievable efforts that the Philippine 
government can exert, given the historical and prospec-
tive cost and availability of each control. Recall that the 
upper bounds for precaution, detection of asymptomatic 
cases, and detection of symptomatic cases are based on 
data, and the upper bound for the vaccination control is 
based on government targets. Based on this, we assume 
that a lower umax

i  signifies a relatively higher implemen-
tation cost for the i-th control as implementing the con-
trol beyond this upper bound is not readily available to 
the government. Given this, we rescale the terms in the 
cost function (2) by equating the weight parameters to 
the inverse of the maximum allowable effort for each 
control ( w1 = 1/0.85,w2 = w3 = 1/0.2,w4 = 1/0.002 ). 
This improves the balance of the terms in the cost func-
tion and reduces the bias to implement controls that have 
lower upper bounds.

Limited information is available as of writing to 
estimate the vaccine effectiveness parameter ( σ ) for 
COVID-19. Moreover, various vaccines with different 
effectiveness rates will be deployed in the Philippines as 
they become available [10], making it more difficult to 
give a realistic estimate of this parameter. The best alter-
native is to equate this to the pooled effectiveness of vac-
cines for a similar disease such as influenza, which is at 
σ = 0.7 [53].

Results
Optimal control strategies for COVID‑19 in the Philippines
Solving the stated optimal control problem in Eqs.  2–4 
generates the optimal levels of precaution ( u1 ), asymp-
tomatic detection ( u2 ), symptomatic detection ( u3 ), 
and vaccination ( u4 ) over the 2-year period from Janu-
ary 1, 2021 to December 31, 2022 (Fig.  3). Notably, the 
maximum feasible vaccination rate must be sustained 
throughout the entire 2-year period. Symptomatic detec-
tion must likewise maintain a high value close to the 
maximum feasible value, lowering slightly in the first 6 
months of 2021. Asymptomatic detection and precau-
tion must likewise be implemented at their maximum 
respective values early in 2021. But asymptomatic detec-
tion may be eased to nearly zero by the second quarter of 
2021, while precaution eases a bit by the second half of 
2021, then is gradually reduced throughout the remain-
der of the 2 years under consideration.

We also simulate a no-control scenario by setting the 
controls to 0 throughout the 2-year period. A dramatic 
difference is observed between the with-control and 
without-control conditions (Fig.  4). Without controls, 
a peak number of 100 million infectious individuals is 
achieved within the first quarter of 2021. Meanwhile, 
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Fig. 3 Optimal control strategy for the COVID‑19 epidemic in the Philippines
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with the optimal implementation of all controls, the total 
number of running infections is driven down quickly 
in early 2021, without ever breaching the 10,000-mark. 
After the full-throttle implementation of all controls in 
early 2021, sustained efforts at detecting symptomatic 
individuals and proactively vaccinating susceptible pop-
ulations may thus be sufficient to prevent the infected 
population from rising. So long as the latter strategies are 
maintained, the majority of the population may slowly 
ease stringent distancing rules and fewer resources need 
to be urgently allocated to asymptomatic detection.

Policy impacts of vaccine delays
With the bottleneck in the global supply of vaccines, it is 
of chief concern when a country can start vaccinating its 
population. It is not far-fetched for countries to experi-
ence delays in vaccination which in turn, would have an 
effect on policy. Here, we look into the impact of vaccine 
delay on the optimal control strategy. To achieve this, 
we add the following constraint to the optimal control 
problem 2–4:

where td is the vaccine delay in days. We first solve for the 
optimal control profiles given vaccine delays of 180, 360, 
and 540 days (Fig. 5). Results reveal that increased efforts 
on the other controls become necessary given longer 
delays in vaccination. Primarily, precautionary measures 
should compensate when vaccines are delayed. Detec-
tion of symptomatic infectious individuals should also be 
strengthened for mitigation if vaccine rollout is slowed 
down.

To further evaluate the effect of vaccine delay, we com-
pute the cost of the optimal strategy in each scenario. The 
cost of the control strategy ( C ) is defined as the integral 
of the last four terms in the cost function of the optimal 
control problem over the time period, specifically:

We observe that the optimal strategy in the no-delay sce-
nario has the least cost and will also result in the least 
number of total infections. Given this, we decided to 

u4(t) = 0, t ∈ [t0, td], t0 ≤ td ≤ tf ,

(5)

C =

∫ tf

t0

(

w1u
2
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2
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compare the cost of the optimal strategy in the scenar-
ios with vaccine delay relative to the no-delay scenario. 
Specifically, given vaccine delays of 30k days, where 
k ∈ {0, 1, 2, 3, ..., 24} , we examine the resulting relative 
cost and total infections of the optimal control strategy 
(Fig. 6).

Based on our simulations, longer delays in vaccination 
result in higher relative costs of the optimal strategy. For 
example, delaying the vaccines by 180 days will result in 
an 18% increase in cost, and delaying the vaccine by 360 
days will increase the cost by 32% , due to the compen-
sation of the other controls. We also observe that delay-
ing the vaccine by 60 days or more will only increase the 
total infections in the optimal strategy by a relatively 
small amount ( < 1000 additional infections). These two 
findings suggest that while the number of infections can 
still be effectively managed when vaccines are delayed, 
vaccine delay may pose more deleterious effects on the 
economy than on the overall health status of the popula-
tion, even if the optimal strategy is implemented and new 
cases are minimized.

Policy impacts of expanding vaccine supply
Recall that the upper bound for the vaccination control 
( umax

4
 ) was fixed based on the vaccination plan by the 

local government. Note however that the actual vaccine 
capacity is unknown and is dependent on negotiations 
and supply. Here, we want to look into whether increas-
ing vaccine supply will have a significant effect on the 
optimal control strategy. To discern this relationship, we 
modify the value of umax

4
 to double and triple the initial 

value. The value of the weight parameter w4 is equal to 
1/umax

4
 in each scenario.

We solve for the optimal control profiles and the result-
ing number of vaccinations if umax

4
= 0.002, 0.004 or 

0.006 (Figs.  7, 8). We observe that increasing the vaccine 
capacity will have a significant impact on the optimal 
control strategy. For the three scenarios considered, the 
maximum vaccination effort must be utilized for almost 
the entire period, but vaccination effort is eased earlier 
if the vaccine capacity is larger. Another important con-
sequence of increasing vaccine capacity is the earlier 
relaxation of the other controls, mainly precautionary 
measures and detection of symptomatic cases.

Comparing the relative cost and the resulting total 
infections reveals that increasing the vaccine capacity by 
double or triple the initial amount will reduce the cost 
of the optimal strategy (Table 4). We observe a 25% cost 
reduction when vaccine supply is doubled, and 37% cost 
reduction when vaccine supply is tripled, coupled with 
a slight reduction in the total number of infections. This 
reinforces the proposition that dedicating more resources 
to vaccinations is more favorable in the long run owing to 
the reduced efforts necessary for implementing the other 
interventions.

Managing cost and impacts of pandemic control strategies
Finally, to integratively consider the dynamics of all 
interventions, we analyzed the results of a control setup 
featuring all interventions in conjunction with ablated 
control scenarios featuring various subsets of the pro-
posed controls. We compared outcomes for optimized 
single control, dual control, and triple control strategies 
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to simulate scenarios when the other controls are not 
available, as well as to shed light on their contributions to 
controlling the epidemic, and highlight the significance 
of implementing all four in concert. To do this, controls 

that are not being implemented in each scenario are fixed 
at 0. Full details on various control profiles are available 
in Additional file 1: Appendix.
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We compare all possible combinations of the controls 
in terms of both their cost and the infections averted 
relative to the no-control scenario (Fig.  9). Intuitively, 
an ideal scenario entails low cost and high infections 
averted. Strikingly, the control scenarios appear to cluster 
into three major categories. First are low cost, low impact 
strategies, which do not entail high costs, but also do not 
effectively curb infections. These correspond to interven-
tion programs that do not mobilize sufficient resources to 

address the health crisis and subsequently do not achieve 
the desired impact. We observe here that this cluster of 
intervention combinations primarily exclude precaution-
ary measures like community quarantines, meaning vari-
ous scenarios implementing only vaccinations and case 
detection strategies. This entails that, even if these strat-
egies might be less costly-especially from an economic 
perspective-than prolonged lockdowns, they may not be 
sufficient on their own to control outbreak trajectories. 
Especially in the early months of 2021, it will be vital for 
local governments to limit unnecessary contact between 
individuals, and enforce such procedures reliably and 

consistently. Otherwise, even maximally implemented 
case detection and vaccination strategies will not be able 
to protect a significant proportion of the population from 
infection.

The second category represents the worst-case sce-
nario: high cost, low impact strategies. These indicate 
attempts by governing entities to invest resources in 
public health interventions, which ultimately still do not 
effectively control outbreaks. This therefore presents a 
severe misuse of resources without achieving desired 
outcomes. Note here that these intervention combina-
tions primarily exclude efficient detection of sympto-
matic cases. This means that without efficient detection 
of symptomatic cases—even at full implementation of 
precautionary quarantine measures, vaccinations, and 
overall high costs to the economy at large-few infections 
will be averted.

The final category represents the most favorable cat-
egory of interventions. Here, medium cost, high impact 
strategies pertain to scenarios involving some investment 
of resources, directed towards the most efficient policy 
levers. This results in an effective minimization of infec-
tions, thereby constituting well-targeted policy decisions 
that achieve the objective of controlling the pandemic. 
Now we see that both precautionary measures and effi-
cient symptomatic case detection are vital to achieving 
this set of outcomes. Even if these interventions do intro-
duce higher costs, they can effectively quell outbreak 
trajectories early on. Moreover, in these setups, their 
implementation is even given an allowance for relaxation 
over time if executed effectively and consistently in the 
early months. This therefore reduces costs from a broader 
perspective, as overall fewer infections arise nationally, 
and fewer resources are demanded to address them.

Discussion
In this study, we studied optimal strategies for controlling 
the spread of COVID-19 in the Philippines. We consid-
ered existing policy interventions as well as the introduc-
tion of vaccination rollouts to quell outbreak trajectories. 
Dramatic differences were detected in simulated infec-
tions depending on which controls were prioritized. In 
particular, we observed the importance of early and effec-
tive implementation of precautionary measures like com-
munity quarantines, coupled with efficient detection of 
symptomatic cases. Furthermore, we found that even if 
vaccinations alone do not constitute an efficient response 
to the pandemic, expanding vaccine supply relaxes the 
need for these more resource-intensive interventions. 
Meanwhile, although less than ideal, delays in vaccine 
administration may also be compensated through the 
remaining policy levers.

Table 4 Total infections and relative cost for optimal control 
strategy when upper bound for vaccination ( umax

4
 ) is increased

u
max
4

Relative cost Total infections

0.002 1.0000 75,997

0.004 0.7517 75,306

0.006 0.6303 74,653
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Fig. 9 A menu of control strategies visualized according to 
infections averted (x‑coordinate) and cost (y‑coordinate). Points 
are sized by infections averted, such that larger points symbolize 
control strategies that avert more infections. Points are also colored 
by cost, such that bluer points incur lower costs, and redder 
points incur higher costs. u1‑Precautionary measures, u2‑detection 
of asymptomatic cases, u3‑detection of symptomatic cases, u4
‑vaccination
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These insights bear particular consequences for poli-
cies in developing countries like the Philippines [1, 2]. 
Here, we highlight three key takeaways. First, more than 
a year into the pandemic, it remains crucial to sustain 
efficient case detection, isolation, and treatment strate-
gies, particularly for symptomatic cases. In the Philip-
pines, where long-term states of community lockdown 
have prevailed as the government’s response to short-
term fluctuations in COVID-19 cases [39], our findings 
suggest that an optimal, cost-effective strategy would 
actually entail relaxations to such measures—but only 
under the condition that symptomatic case detection is 
properly implemented. Hence, improving the capacity 
of the local health system to identify, process, and man-
age these cases efficiently should be a top priority beyond 
cyclically adjusting quarantine levels [54].

Second, policymakers need to consider how to expand 
not just vaccine supply, but also the capacity to adminis-
ter them. This includes both logistical concerns regard-
ing the strategic use of facilities to vaccinate individuals, 
inform the public regarding vaccine availability and eli-
gibility, as well as reducing vaccine hesitancy through 
culturally sensitive health promotion programs that 
strengthen public trust [3, 55, 56]. Only when such health 
communication objectives are accomplished and collec-
tive behavioral change is initiated can the vaccination 
strategies posited in this work be made feasible. Other-
wise, even procuring sufficient supplies of vaccines will 
not achieve its intended effects to stop local outbreaks. 
Initial efforts along these lines are underway by the Phil-
ippine National Vaccine Operations Center, for which 
our model results strongly reaffirm the urgency.

Third, timeliness and consistency must be emphasized 
in adopting policy measures [4, 5]. Across all favorable 
scenarios simulated, high levels of key interventions were 
needed in the early months of 2021, with relaxations pro-
jected only mid-2021 or in 2022. Systems for detecting 
existing cases, while preventing new ones, are needed for 
vaccinations to meaningfully impact outbreak trajecto-
ries and reduce overall costs—especially as these systems 
need to be robustly sustained in the event of potential 
delays in acquiring sufficient vaccines for the entire popu-
lation. This ensures that even if developing countries like 
the Philippines do not hold sway over the global supply 
chain of vaccines, the pandemic may still be kept under 
control through means over which local policymakers do 
wield authority.

It is worth noting that the conclusions of this work rest 
on several assumptions. These assumptions constrain the 
interpretation of our findings but likewise point to prom-
ising avenues for future work [6, 7]. A number of limita-
tions pertain to the realism of our model. For instance, 
we assume a total population that is unaffected by 

immigration and emigration flows. This can be a source 
of confounding given that, despite additional precau-
tions in travel protocols, relevant susceptible, exposed, 
and infectious populations, in reality, include individuals 
who may leave or arrive within national borders. Further-
more, ordinary differential equation models of diseases, 
such as the one utilized in this paper, assume homogene-
ous mixing of individuals in the population. That is, our 
model assumes that a susceptible individual has a uni-
form chance of being infected by any infectious individ-
ual, regardless of their geographic proximity. However, in 
an archipelago such as the Philippines, this assumption 
of free-mixing does not necessarily hold due to different 
patterns of movement within the country and the ten-
dency of the outbreaks to be concentrated within more 
urban areas. In relation to this heterogeneity, we further 
hypothesize that a multi-region approach to mitigation 
such as in [57] will further lower the total cost of the opti-
mal control strategies. Hence, though we do not include 
such migratory flows and heterogeneity in our analysis, 
extensions may valuably consider these factors as well.

We additionally assume that vaccines work by transi-
tioning individuals to a removed compartment. However, 
it is not the case that all vaccines guarantee 100% immu-
nity for all individuals. Additionally, for parsimony, our 
model does not incorporate a number of wide-ranging 
issues which remain pressing to address, yet are beyond 
the scope of this work. These include: prioritized vaccina-
tions of various segments of the population, lesser-known 
dynamics of reinfection with COVID-19, the variabil-
ity in the economic cost of the controls, the impact of 
emerging variants of the pathogen, documented distinc-
tions between being protected from symptoms while 
being able to transmit the virus to others, or the practi-
cal circumstances of administering vaccines requiring 
multiple doses [58, 59]. With regard to this latter limi-
tation, we specifically do not model potential logistical 
impediments in vaccine scheduling or temporary states 
of partial protection resulting from initial doses [60]. 
Such considerations therefore place caveats on the impli-
cations of our results, further highlighting the need for 
robust investment in these strategies when translating 
them into real-world policies. These factors may likewise 
be modelled with greater precision in succeeding work as 
growing knowledge continues to accumulate in line with 
close monitoring by the scientific community [61].

Conclusions
This study applies optimal control theory to an epidemio-
logical model to calculate the optimal efforts required for 
precautionary measures, asymptomatic case detection, 
symptomatic case detection, and vaccination to mitigate 
the impact of the COVID-19 pandemic. Using parameter 
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values suitable to the Philippines, we show that precau-
tionary measures and symptomatic case detection are 
essential interventions to minimize infections at an effi-
cient cost. Furthermore, relaxation of measures is feasible 
after an early and maximal implementation of all con-
trols. Our results also highlight that increasing vaccina-
tion capacity and timely acquisition of vaccines are key to 
reducing the total implementation cost, leading to earlier 
relaxation of the other non-pharmaceutical interventions 
in the optimal strategy. This work provides a quantita-
tive reference for drafting policies designed to control the 
pandemic in the most efficient manner.
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COVID‑19: Coronavirus disease 2019.
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