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ABSTRACT

The central theme of this thesis is random matrices and their connections to combinatorics and
probability theory. We present the results on correlations of eigenvalues for unitary invariant
Hermitian ensembles, also called the β = 2 Hermitian ensembles, using symmetric functions.

Classical compact groups such as the unitary group, the orthogonal group and the sym-
plectic group have always been the representatives of β = 2 ensembles. These groups are
computationally simple compared to other ensembles due to the compactness of support of
the eigenvalues and the underlying representation theory. The group characters are symmetric
functions in the eigenvalues. Many quantities relating to the correlations of eigenvalues, the
notable ones being the joint moments of traces and joint moments of characteristic polyno-
mials, can be effectively studied using the symmetric function theory and the representation
theory of compact groups. Such a combinatorial approach to computing correlations is highly
successful as it enables calculating the exact formulae and provides a route to compute large
matrix asymptotics.

We develop a parallel theory for Hermitian ensembles, in particular for the Gaussian, La-
guerre and Jacobi ensembles. We provide exact formulae for joint moments of traces and joint
moments of characteristic polynomials in terms of appropriately defined symmetric functions.
As an example of an application, for the joint moments of the traces, we derive explicit asymp-
totic formulae for the rate of convergence of the moments of polynomial functions of Gaussian
unitary matrices to those of a standard normal distribution when the matrix size tends to
infinity.

We also calculate the asymptotics of the moments of characteristic polynomials of Hermitian
ensembles, specifically the Gaussian unitary ensemble, as the matrix size tends to infinity. Our
approach reveals that the even and odd dimensional Gaussian unitary matrices contribute
differently to the moments and combine in a unique way to produce the semi-circle law.
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Notation

The following notation will be consistent throughout the document, unless otherwise stated.

GL(N,F) General linear group of matrices of size N ×N with en-
tries in the field F

M Matrix M = (mij)

MT Transpose of M

M Complex conjugate of M

M † Conjugate transpose of M

M Rescaled matrix with rescaling parameter clearly indi-
cated

N (µ, σ2) The gaussian random variable with mean µ and variance
σ2

∆(x1, . . . , xN ) The N ×N Vandermonde determinant

Sn Symmetric group of size n

f(x) = O(g(x)) There exists some constants c and x0 such that f(x) ≤
cg(x) for x ≥ x0.

f(x) = o(g(x)) There exists some constants c and x0 such that f(x) <

cg(x) for x ≥ x0.

f(x) = ω(g(x)) There exists some constants c and x0 such that f(x) >

cg(x) for x ≥ x0.

f(x) ∼ g(x) The limit f(x)/g(x)→ 1 as x→∞.
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Chapter 1

Introduction

Random matrices are ubiquitous, having numerous applications in a variety of scientific disci-
plines. To mention a few, they can be used to model biological networks [180, 181], the stock
market [204], and quantum systems [245, 246]. Random matrix theory (RMT) is useful to
analyse and understand the universal properties of these systems. All the results covered in
chapters 3–5 concern random matrices. In this chapter, we introduce relevant topics in RMT
and contextualise the present work.

In Sec. 1.1, we define different classes of random matrix ensembles. The history and
development of RMT and a few notable applications are discussed in Sec. 1.2. In Sec. 1.3
and Sec. 1.4, we discuss the limiting behaviour and universal properties of matrix ensembles.
In Sec. 1.5, we discuss the connection between combinatorics and RMT by emphasising the
role of symmetric functions. Surprisingly, RMT is closely connected to number theory [194]. In
Sec. 1.6, we discuss a few number theoretic functions to which our results are connected. One
of the main results of this work is to evaluate the correlations of characteristic polynomials
and traces of powers of matrices. In Sec. 1.8, we discuss some of the applications of these
correlators and mention the results known so far. With the knowledge of these correlations,
we comment in Sec. 1.9 on what can be said about the limiting distributions of certain random
variables.

1.1 Random matrix ensembles

We begin with the definitions of groups that we frequently use.

Definition 1.1.1. Denoted by O(N), the orthogonal group of size N is defined as

O(N) := {A ∈ GL(N,R) : AAT = ATA = I}. (1.1.1)

Here AT denotes the transpose of A.

Definition 1.1.2. Denoted by U(N), the unitary group of size N is defined as

U(N) := {A ∈ GL(N,C) : AA† = A†A = I}. (1.1.2)

Here A† = A
T denotes the conjugate transpose of A.

2



Definition 1.1.3. Denoted by Sp(2N), the symplectic group of size 2N is a subgroup of U(2N)

defined as
Sp(2N) := {A ∈ U(2N) : AΩAT = ATΩA = Ω}, (1.1.3)

where

Ω =

[
0 IN

−IN 0

]
. (1.1.4)

Definition 1.1.4 (Ensemble). A random matrix ensemble is a space of matrices endowed with
a probability measure.

The Lebesgue measure on the space of Hermitian random matrices M is the product of
Lebesgue measures on the independent entries of M :

dM =
∏
i<j

d(ReMij) d(ImMij)
∏
j

dMjj . (1.1.5)

In the context of this thesis, we are interested in studying the spectral properties of Hermitian
random matrices, which we introduce next.

1.1.1 Gaussian random matrices

Definition 1.1.5 (Gaussian unitary ensemble). Abbreviated as GUE, Gaussian unitary matri-
ces have independent complex normal random variables as matrix entries: (i)Mjj are i.i.d. real
Gaussian random variables with mean 0 and variance 1, N (0, 1), and (ii) the real and imagi-
nary parts of Mij, i < j, are i.i.d. real Gaussians with mean 0 and variance 1/2, N (0, 1/2).

The probability measure on the GUE of size N is

P (M) dM =
∏

1≤j<k≤N

1√
π
e−(ReMjk)2 1√

π
e−(ImMjk)2

N∏
j=1

1√
2π
e−

1
2
M2
jj dM

=
1

(2πN )
N
2

e−
1
2

TrM2
dM.

(1.1.6)

One of the most important properties of a GUE matrix is that the probability distribution of
M remains invariant under unitary transformations. Specifically, for an N ×N unitary matrix
U ,

P (UMU †) d(UMU †) = P (M) dM. (1.1.7)

To see this, note that the square of the Hilbert-Schmidt norm ofM is TrM2 which is invariant
under conjugation by U ,

Tr(UMU †)2 = Tr(UM2U †) = TrM2. (1.1.8)

Therefore, the map M → UMU † is an isometry and so the Jacobian determinant is 1.
Usually, we are interested in studying the spectral properties of an ensemble. Thus, it

is convenient to express the probability density in terms of eigenvalues rather than matrix
elements as given in (1.1.6). To do so, denote by x1, . . . , xN the eigenvalues of M . Consider a

3



function f that depends only on the eigenvalues x1, . . . , xN and is symmetric in xj :

f(x1, . . . , xN ) = f(xσ(1), . . . , xσ(N)), (1.1.9)

where σ is an element of the symmetric group SN . The following theorem gives the average of
f over the GUE.

Proposition 1.1.6. The expected value of f(x1, . . . , xN ) over the GUE is the following multiple
integral

E(H)
N [f(x1, . . . , xN )] = c

(H)
2,N

∫ ∞
−∞
· · ·
∫ ∞
−∞

f(x1, . . . , xN )
∏

1≤j<k≤N
|xj − xk|2

N∏
j=1

e−
x2j
2 dxj ,

(1.1.10)
where c(H)

2,N is a normalisation constant.

The superscript (H) stands for Hermite because of the Gaussian factor e−x2/2, and Hermite
polynomials are orthogonal with respect to the Gaussian weight. This notation becomes useful
when we introduce other ensembles corresponding to different weight functions.

To get an insight into the proof, notice that any Hermitian matrix M can be diagonalised
by a unitary transformation U :

M = U


x1 0 . . . 0

0
. . . . . .

...
...

. . . . . . 0

0 . . . 0 xN

U †. (1.1.11)

The matrix elements of M can be expressed in terms of the entries of U and eigenvalues
x1, . . . , xN . Now the unitary invariance property (1.1.7) can be used to integrate the elements
of U , leaving just the eigenvalues.

It is often useful to rewrite the above integral in the Vandermonde determinant notation.
The N ×N Vandermonde matrix is

V (x1, . . . , xN ) :=


xN−1

1 xN−1
2 . . . xN−1

N

xN−2
1 xN−2

2 . . . xN−2
N

...
...

...
1 1 . . . 1

 , (1.1.12)

whose determinant is the Vandermonde determinant ∆(x1, . . . , xN ):

∆(x1, . . . , xN ) := det[xN−kj ]1≤j,k≤N =
∏

1≤j<k≤N
(xj − xk). (1.1.13)

Therefore, (1.1.10) can be re-written as

E(H)
N [f(x1, . . . , xN )] = c

(H)
2,N

∫ ∞
−∞
· · ·
∫ ∞
−∞

f(x1, . . . , xN )|∆(x1, . . . , xN )|2
N∏
j=1

e−
x2j
2 dxj . (1.1.14)
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Different powers of the Vandermonde determinant correspond to different classes of matrix
ensembles. These families have probability densities of the form

ρ
(H)
β,N (x1, . . . , xN ) = c

(H)
β,N |∆(x1, . . . , xN )|β

N∏
j=1

e−
x2j
2 , (1.1.15)

where β = 1, 2, 4 is called the Dyson index [186]. The Dyson index is equal to the dimension
of the division algebra over R of the matrix entries. For example, β is equal to 2 for the
GUE because each matrix entry is a complex number with independent real and imaginary
parts. If β = 1, the ensemble is called the Gaussian orthogonal ensemble (GOE) with just
real matrix entries. The GOE consists of real symmetric matrices and remains invariant under
orthogonal transformations. Finally, β = 4 for the Gaussian symplectic ensemble (GSE), whose
elements are Hermitian quaternionic matrices. As the name suggests, the GSE is invariant
under symplectic transformations. These are the only special values of β for which all the
finite dimensional correlation functions can be explicitly computed in terms of orthogonal
polynomials. These three ensembles are special cases of a much broader class of matrices
called Wigner random matrices1.

Matrix models obtained by generalising β to non-integers were first studied by Dumitriu
and Edelman [76,77]. This model, indexed by β, is called the β−matrix model and consists of
N ×N tridiagonal matrices

1√
2



N (0, 2) χ(N−1)β

χ(N−1)β N (0, 2) χ(N−2)β

. . . . . . . . .

χ2β N (0, 2) χβ

χβ N (0, 2)


, (1.1.16)

where N (0, 2) are independent Gaussian random variables with mean 0 and variance 2, and χjβ
are chi-distributed with jβ degrees of freedom. The probability density of the chi-distribution
is

p(x; r) =
1

2
r−2
2 Γ(r/2)

xr−1e−
x2

2 1x≥0. (1.1.17)

The eigenvalues of β−matrix model have the same joint density given by (1.1.15), which is
why they are also referred as β−Hermite ensembles.

1.1.2 Wishart random matrices

Definition 1.1.7. A complex Wishart matrix is an N ×N Hermitian matrix of the form

M = XX†, (1.1.18)
1A (real, complex, or quaternionic) Wigner matrix is a random matrix M such that (i) Mjk, j < k, are i.i.d.

random variables with mean E[Mjk] = 0 and variance E[|Mjk|2] = 1, (ii) Mjj are i.i.d. real random variables
with mean E[Mjj ] = 0 and E[M2

jk] < ∞. The distribution of the diagonal entries of a Wigner matrix can be
different from the distribution of the off-diagonal entries.

5



where X is a random matrix of size N × m (m ≥ N) containing i.i.d. complex Gaussian
entries.

The joint probability density function (j.p.d.f.) of the entries of the Wishart ensemble is
given by

p(M) ∝ e−
1
2

TrM (detM)m−N , (1.1.19)

which can be expressed in terms of the eigenvalues of M , namely x1, . . . , xN , as

ρ
(L)
2,N (x1, . . . , xN ) = c

(L)
2,N |∆(x1, . . . , xN )|2

N∏
j=1

e−
xj
2 xm−Nj . (1.1.20)

The Wishart ensemble is also known as the Laguerre ensemble due to the presence of the
Laguerre weight xγe−x/2. Similar to the Gaussian case, (1.1.20) is invariant under unitary
transformations, so we call the complex Wishart ensemble as the Laguerre unitary ensemble
(LUE). The Laguerre ensemble extended to other values of β is called the β−Laguerre ensemble,
with j.p.d.f. given by

c
(L)
β,N |∆(x1, . . . , xN )|β

N∏
j=1

e−
xj
2 x

β
2

(m−N+1)−1

j , (1.1.21)

where the superscript (L) stands for Laguerre. Since we choose m ≥ N , the above joint
density is also well defined and normalisable for β = 1, and β = 4 ensembles, namely the
Laguerre orthogonal ensemble (LOE) and the Laguerre symplectic ensemble (LSE). In fact,
the joint law in (1.1.21) is sensible for any m > N − 1 and β > 0 so that the exponent
β
2 (m − N + 1 − 2/β) > 0 ensuring that the j.p.d.f. is normalisable. Similar to β−Hermite
ensembles, there is a tridiagonal representation for β−Laguerre ensembles. Consider the N×N
bidiagonal matrix

X =



χ̃mβ

χ(N−1)β χ̃(m−1)β

. . . . . .

χ2β χ̃(m−N+2)β

χβ χ̃(m−N+1)β


, (1.1.22)

where both χ and χ̃ are chi-distributed random variables with the indicated degrees of freedom.
The eigenvalues of XX† have the same joint density as given in (1.1.21).

Since first introduced by Wishart in 1928 [249], these matrices have found numerous appli-
cations in different areas of science and engineering. They arise in statistics, image analysis,
mathematical finance, quantum systems, quantum gravity and many more, see for exam-
ple [4, 11,38,104,117,158,162,163,210,247,249].

1.1.3 Jacobi random matrices

To complete the triad, we introduce Jacobi ensembles.
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Definition 1.1.8 (Jacobi unitary ensemble). Abbreviated as JUE, this ensemble consists of
N×N Hermitian matricesM constructed as follows. Choose N,m1,m2 ∈ N such that m1 ≥ N
and m2 ≥ N . Let A and B be two matrices of size N × m1 and N × m2, respectively with
standard i.i.d. complex Gaussian normal random variables. Then,

M = AA†/(AA† +BB†). (1.1.23)

The joint eigenvalue density is given by

c
(J)
2,N |∆(x1, . . . , xN )|2

N∏
j=1

xm1−N
j (1− xj)m2−N . (1.1.24)

For general values of β, the j.p.d.f. has the form

c
(J)
β,N |∆(x1, . . . , xN )|β

N∏
j=1

x
β
2

(m1−N+1)−1

j (1− xj)
β
2

(m2−N+1)−1, (1.1.25)

where the superscript (J) stands for Jacobi. The tridiagonal matrix model for the β−Jacobi
ensemble was introduced in [173]. A β−Jacobi ensemble is also referred as β−MANOVA
ensemble because of its connections to multivariate analysis of variance (MANOVA) model.

The explicit matrix construction of β−ensembles play a key role in one-dimensional stochas-
tic differential equations in the large N limit [83, 207, 208]. Furthermore, β−ensembles have
important connections to quantum many body systems [21, 22], Selberg-type integrals [186],
the theory of Jack polynomials [182], and lattice gas theory. For example, the spectral joint
density of β−ensembles can be written as

ρ(x1, . . . , xN ) = cβ,Ne
−βW , (1.1.26)

where

W =
N∑
j=1

v(xj)−
∑
j<k

ln |xj − xk|, (1.1.27)

for some function v(x). The density in (1.1.26) can be interpreted as the probability density
of a system of N particles confined by the potential v(x) and which repel each other by a
logarithmic Coulomb interaction.

In this work, our goal is to study spectral correlations of β = 2 Hermitian ensembles by
developing a theory similar to the one for classical compact groups. As a representative of the
compact groups, we introduce the unitary ensemble below.

1.1.4 Unitary matrices

Definition 1.1.9 (Circular unitary ensemble). Abbreviated as CUE, this ensemble consists of
unitary matrices U(N) endowed with a uniform probability measure.

The uniform probability measure on the space of U(N) is called the Haar measure denoted
as µHaar. One way to express the Haar measure on U(N) is via the Weyl integration formula
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[242]. The eigenvalues of a unitary matrix A lie on the unit circle in the complex plane which
we denote as eiθ1 , . . . , eiθN . Consider a function f(A) := f(θ1, . . . , θN ) that is symmetric under
the permutation of eigenangles θj . Then,∫

U(N)
f(A) dµHaar(A) =

1

(2π)NN !

∫ 2π

0
· · ·
∫ 2π

0
f(θ1, . . . , θN )|∆(eiθ1 , . . . , eiθN )|2 dθ1 . . . dθN .

(1.1.28)
Therefore, the j.p.d.f of the CUE has the form

ρ(eiθ1 , . . . , eiθN ) ∝ |∆(eiθ1 , . . . , eiθN )|2. (1.1.29)

Similar to the other β = 2 ensembles, the Haar measure on U(N) remains invariant under
unitary transformations,

dµHaar(A) = dµHaar(UAU
†). (1.1.30)

Similar arguments outlined in proving Prop. 1.1.6 can be used to prove (1.1.28). For notational
simplicity, we use

EU(N)[f(A)] (1.1.31)

to denote the expectation of f with respect to the Haar measure on the unitary group. When
(1.1.29) is generalised to other values, the ensemble is called the circular β−ensemble with
j.p.d.f. proportional to

|∆(eiθ1 , . . . , eiθN )|β. (1.1.32)

The cases when β = 1 and β = 4 are called the circular orthogonal ensemble (COE) and the
circular symplectic ensemble (CSE), respectively.

1.2 History and applications of random matrices

Although the origins of RMT can be traced back to work by Wishart [249] and James [150,
151, 153] in mathematical statistics, the field gained prominence due to the seminal work of
Wigner [244] in the 1950s. Wigner’s idea is to describe the energy levels of highly excited
heavy nuclei using random matrices. A complex nuclear system is characterised by a Hamilto-
nian operator H, which can be regarded as a matrix in an infinite-dimensional Hilbert space.
Since the details of H are unknown due to the complexity of the system, Wigner argued that
the Hamiltonian could be regarded as a large random matrix from an ensemble satisfying
the prescribed symmetries of H. He showed that the energy levels of the nuclei (given by
the eigenvalues of H) and the eigenvalues of large random matrices have the same statistical
distribution. In addition to demonstrating the semi-circle law (see (1.3.5)) for the mean eigen-
value density, Wigner also provided insights into the nearest neighbour spacing distribution of
eigenvalues, namely the Wigner Surmise. Later, Gaudin and Mehta provided rigorous analysis
for the spacing distribution. They also developed the orthogonal polynomial technique which
is one of the powerful techniques in RMT [123,185,187].

In a series of papers [81, 82] in the 1960s, Dyson introduced the three-fold classification of
Hamiltonians describing the three symmetry classes of random matrices, namely orthogonal

8



(β = 1), unitary (β = 2) and symplectic (β = 4) ensembles. The Hamiltonian under (i) β = 1

symmetry class is time-reversal invariant, (ii) β = 2 symmetry class is not invariant under
time-reversal symmetry and (iii) β = 4 symmetry class is typically associated with quantum
Hamiltonians with half-integer spin particles and without time-reversal symmetry. Dyson also
introduced the circular ensembles and established a link to exactly soluble systems, such as
Calogero-Sutherland models, by developing a model of Brownian motion in the random matrix
ensembles [80].

Since the 1960s, the theory of random matrices has undergone a surge of development and
found numerous applications in mathematical physics. After initial applications to nuclear
physics, RMT was further advanced due to the connections to quantum chaos. Bohigas, Gian-
noni, and Schmit [34] conjectured that the the energy levels of highly excited quantum systems,
whose classical counterparts are chaotic, show the same statistical behaviour as the spectra of
random matrices. In the 1970s, random matrix theory also unified with the theory of disordered
systems. In [84], Edwards and Anderson introduced the replica trick, which along with the work
of Wegner [240], led to a new paradigm in the theory of Anderson localization. The theory of
Anderson localisation is further substantiated by the supermatrix approach due to Efetov [85]
and its further adaptation to RMT by Weidenmueller, Verbaarschot, and Zirnbauer [233].
Random matrices also proved to be very successful in studying the statistics of electronic
transport in quantum-coherent (mesoscopic) samples [23, 188, 189] and the statistics of level
curvatures [116,122,237,238,251]. The Dyson three-fold way of classifying the Hamiltonian is
also broadened to make the theory applicable to quantum chromodynamics [5, 134, 200, 222],
scattering theory [112,117,133,217,218], disordered superconducting structures [9, 252] etc.

Random matrix theory also had a profound impact on quantum field theory. The seminal
work of ’t Hooft [143, 228] suggests that the partition function in field theory is dominated
by planar diagrams, also called planar Feynmann diagrams. Brézin, Itzykson, Parisi and
Zuber [42] showed that a similar expansion also holds for random matrix ensembles when
the matrix size is large. The combinatorial factors that appear in quantum field theory also
arise in random matrices, which in the RMT context can be studied using the loop equation
method [10, 91]. Due to the connection between random matrices and integrable systems, the
theory of 2d quantum gravity has links to Painlevé transcendents and Toda/KdV hierarchies
[1, 2, 97,124,167,230].

In mathematics, random matrix theory went through advancements independent of those
in theoretical physics. Some of the important results are with regards to integration measures
of random matrix ensembles [144]. Harish-Chandra [139] evaluated a unitary matrix integral
which is well known as the Harish-Chandra-Itzykson-Zuber integral [139, 149]. Selberg [212]
considered the N dimensional generalisation of the Euler integral, which is now famously re-
garded as the Selberg integral. Other crucial quantities are zonal polynomials and Jack poly-
nomials. Since James [152] introduced zonal polynomials, they found numerous applications
in mathematical statistics. Jack polynomials relate the integrand of Selberg integral to the
eigenvalue density function of circular β ensembles. In a series of papers, Voiculescu [235,236]
discovered that random matrices and operator algebras are strongly related to each other
resulting in a big breakthrough in the development of free probability theory.

In 1973, Dyson and Montgomery [194] discovered that the asymptotic limit of the two-point
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correlation function of the zeros of the Riemann zeta function on the critical line is same as
the two-point correlation function of the GUE. Since then, a considerable volume of literature
concerns the connections between number theory and random matrix theory. An important
result in this direction is due to Keating and Snaith [171]. They provided powerful pieces
of evidence favouring a very intimate connection between the moments of the Riemann zeta
function (and other L-functions) along the critical line and the properties of characteristic
polynomials of random matrices.

In terms of the statistics of the eigenvalues, Marchenko and Pastur [183] described the spec-
tra of large random covariance matrices while Wigner focused on those of Gaussian matrices.
Tracy and Widom [231] studied the statistics of the largest eigenvalue in Gaussian ensembles,
which is infamously regarded as the Tracy-Widom distribution. The Tracy-Widom distribution
arises in combinatorial problems such as the distribution of the length of the longest increasing
subsequence of random permutations [17] and polynuclear growth models [205].

One of the reasons for the success of RMT is universality. The universality conjecture states
that the fluctuations of the eigenvalues of large random matrices are independent of the choice
of the distribution of matrix elements for general RMT ensembles. The universality results are
first verified using the orthogonal polynomial technique [202] which resulted in development
of the Riemann-Hilbert approach to the asymptotics of orthogonal polynomials [33,64]. More
recently, the universality results are extended to Wigner matrices [90, 161, 229]. Erdős [89]
gave an excellent historical account on the development of various proofs of the universality
conjecture.

Enormous progress has been made in random matrix ensembles of non-Hermitian matrices,
extending the work of Wigner, Ginibre and Girko. In addition, sparse random matrices,
random band matrices, heavy-tailed random matrices, Euclidean random matrices, and random
matrices with external sources have also been considered. In this short review, we have seen
the importance and applications of random matrices to wide-ranging fields. We would also
like to mention that the given set of references are a selected few that influenced the area.
The scope of RMT is not limited to the indicated. Some of the fascinating examples of RMT
include the Airline boarding problem [14]; waiting times for buses in Cuernavaca, Mexico [16];
and the distances between parked cars in London [211].

1.3 Limiting distributions

In this section, we shall focus on the most notable distributions in RMT, the limiting eigenvalue
distributions of β = 2 Gaussian, Laguerre and Jacobi ensembles as the matrix size N →∞.

We begin with a Wigner matrix M of size N . The correct scaling to compute the limiting
eigenvalue distribution can be easily fixed by the following heuristic arguments. We start with
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the order of magnitude of the mean and the second moment of the eigenvalues:

1

N

N∑
j=1

xj =
1

N
TrM =

1

N

N∑
j=1

Mjj , (1.3.1)

1

N

N∑
j=1

x2
j =

1

N
TrM2 =

1

N

N∑
i,j=1

M2
ij . (1.3.2)

Since Mjj are i.i.d. Gaussians with mean 0, the first moment converges to zero by the strong
law of large numbers. As there are approximately N2/2 independent terms in TrM2, we have
TrM2 = O(N2). Due to an additional factor of 1/N in (1.3.2), the order of magnitude of
eigenvalues is O(

√
N). Therefore the eigenvalues should be rescaled by 1/

√
N in order to see

a deterministic limiting behaviour.
To study the limiting distribution, consider the normalised counting function of the eigen-

values x1, . . . , xN ,
1

N

N∑
j=1

δxj . (1.3.3)

The measure in (1.3.3) is also called the empirical spectral measure.

Theorem 1.3.1 (Semi-circle law). Let M be a random N×N Wigner matrix with eigenvalues
x1, . . . , xN , and let

µ(M) =
1

N

N∑
j=1

δ xj√
N

. (1.3.4)

Then as N → ∞, µ(M) converges (in mean and almost surely) to a deterministic limit
%sc(x) dx, where %sc is given by

%sc(x) =

 1
2π

√
4− x2, if −2 ≤ x ≤ 2,

0, otherwise.
(1.3.5)

This is the Wigner’s semi-circle law. The essence of Thm. 1.3.1 is that the sequence of
random measures µ(M) converge to a deterministic measure. Standard techniques such as
the moment method, Stieltjes transform method, or tools from the free probability theory can
be used to prove Thm. 1.3.1, see for example [93]. In Fig. 1.1a, we numerically illustrate the
semi-circle law for GUE matrices. From Fig. 1.1a, it is clear that there is a non-zero probability
of finding the eigenvalues outside the support [−2, 2] for any finite matrix size N . Thus, we
sometimes call the edges of the semi-circle as soft edges.

Theorem 1.3.2 (Marchenko-Pastur law). For a random Wishart matrix of size N as given by
(1.1.18), as m→∞ and N →∞ such that c = N/m ∈ (0, 1], the empirical spectral distribution
converges (in mean and almost surely) to a deterministic limit ρcmp(x) dx,

1

N

N∑
j=1

δ xj
2N

→ ρcmp(x) dx. (1.3.6)
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Here ρcmp is the Marchenko-Pastur distribution [183] parametrised by c,

ρcmp(x) =

 1
2πx

√
(x− c−)(c+ − x) if c− ≤ x ≤ c+,

0, otherwise,
(1.3.7)

and c± = (1± c−1/2)2.

In Fig. 1.1b, we show that the eigenvalue distribution of the LUE converges to the Marchenko-
Pastur distribution for two values of c which are less than 1. For any value of c < 1, all the
eigenvalues are positive real numbers. For c < 1, the edges of the distribution are soft, i.e.
there is a non-zero probability of finding the eigenvalues outside the support [c−, c+]. But as
c→ 1, more eigenvalues accumulate near 0. At c = 1, the origin becomes a hard edge, i.e., no
eigenvalues are present to the left of the origin.

It is worth noting that the scaling of the eigenvalues of Wishart matrices is O(N), unlike the
scale O(

√
N) for Gaussian ensembles. The Marchenko-Pastur law is the analogue for Wishart

random matrices of the Wigner semi-circle law for Hermitian matrices.
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(a) Convergence of the density of eigenvalues of
GUE matrices to the semi-circle law as matrix size
N increases.

0 2 4 6 8 10 12 14 16

0

0.1

0.2

0.3

0.4

0.5

(b) Convergence of the density of eigenvalues of
LUE matrices to the Marchenko-Pastur law for two
different ratios of N/m = c. In both cases N =
100.

Figure 1.1: Numerical check of the semi-circle law and the Marchenko-Pastur law for β = 2
Gaussian and Laguerre ensembles in (a) and (b), respectively. In both (a) and (b), 2000
matrices are sampled.

For the Jacobi ensemble, several limiting distributions are possible depending on the relative
sizes of parameters m1 and m2 to N [51, 78,239]. Here we state the results for β = 2.

Theorem 1.3.3. For a JUE matrix of size N , we have the following limits for the empirical
spectral distribution as N,m1,m2 →∞.

— If m1 +m2 − 2N = o(N), then [78]

1

N

N∑
j=1

δxj →
1

π
√
x(1− x)

dx. (1.3.8)
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— If m1/N → p1 > 1 and m2/N → p2 > 1 such that p1 + p2 > 2, then [78]

1

N

N∑
j=1

δxj →
p1 + p2

2π

√
(ξ+ − x)(x− ξ−)

x(1− x)
1[ξ−,ξ+] dx, (1.3.9)

where

ξ± =

(√
p1

p1 + p2

(
1− 1

p1 + p2

)
±

√
1

p1 + p2

(
1− p1

p1 + p2

))2

. (1.3.10)

— If m1 +m2 − 2N = ω(N) and m1−N
m1+m2−2N → λ, then [78]

1

N

N∑
j=1

δxj → δλ, (1.3.11)

where δλ is a deterministic measure that depends on λ. Here f(x) = ω(g(x)) indi-
cates that there exists some constants c and x0 such that f(x) > cg(x) for x ≥ x0 (In
Prop. 1.3.4, we give an explicit expression for δλ for certain ratios of parameters m1,m2

and N).

The mode of convergence in (1.3.8), (1.3.9) and (1.3.11) is convergence in probability.

In (1.3.8), both m1 and m2 grow sub-linearly in N . In (1.3.9), m1 and m2 grow linearly
with N and the limiting distribution in this case is clearly different from the sub-linear case.
In (1.3.11), m1 and m2 grow much faster than N . In this super-linear case one can recover the
Marchenko-Pastur law with a proper scaling.

Proposition 1.3.4. If N/m1 → c1 ∈ (0, 1] and m2 = ω(N2), then [155]

1

N

N∑
j=1

δm2
N
xj
→ ρc1mp(x) dx, (1.3.12)

as N,m1,m2 →∞. Here ρc1mp is the Marchenko-Pastur density with parameter c1.

In Fig. 1.2, all three cases in (1.3.8), (1.3.9), and (1.3.12) are illustrated for the JUE matrices.
The limiting distributions such as the semi-circle law and the Marchenko-Pastur law are not

specific to β = 2 ensembles. For example, all β−Hermite ensembles have the same deterministic
limit for the spectral density when properly normalised:

lim
N→∞

1

N

N∑
j=1

δ√ 2
βN

xj
→ %sc(x) dx. (1.3.13)

Similarly for the β−Laguerre,

lim
N→∞

1

N

N∑
j=1

δ xj
βN

→ %cmp(x) dx, (1.3.14)
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where c = N/m. For β−Jacobi ensembles, Prop. 1.3.4 can be rephrased as follows. If
Nβ/2m1 → c1 ∈ (0, 1] and m2 = ω(N2), then as N,m1,m2 →∞,

1

N

N∑
j=1

δm2
N
xj
→ 2

β
ρc1mp(2x/β) dx, (1.3.15)

where ρc1mp is the Marchenko-Pastur density with parameter c1.
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(a) Here 1000 matrices are sampled with parame-
ters N = 500, m1 = 425 and m2 = 475. The solid
line represents the density in the R.H.S. of (1.3.8).
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(b) Here 1000 matrices are sampled with parame-
ters N = 500, m1 = 750 and m2 = 1000. The solid
line represents the density in the R.H.S. of (1.3.9).
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(c) Here 2000 matrices are sampled with parameters N = 400, m1 = 440, and m2 = 8000. The solid
line represents the density in the R.H.S. of (1.3.12).

Figure 1.2: Comparison between the asymptotic densities in (1.3.8), (1.3.9), and (1.3.12). The
data is obtained by numerical diagonalisation of JUE matrices. In all the figures, c1 = m1/N
and c2 = m2/N where N is the size of the JUE matrix, see (1.1.24).

1.4 Universality

There are several notions of universality that one can think of in random matrix theory. In
the previous section we saw that the density of eigenvalues of a particular ensemble (Gaussian,
Laguerre) converges to a limiting distribution (semi-circle law, Marchenko-Pastur law). This
can be interpreted as a universal behaviour as it is observed in all of the matrices from a given
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ensemble.
The other notion of universality, which is the one that we are interested in, is specific to β.

The explicit j.p.d.f. of β−ensembles has the form

ρ(x1, . . . , xN ) = cβ,N
∏

1≤j<k≤N
|xj − xk|β

N∏
j=1

e−v(xj), (1.4.1)

where v(x) is a real valued function that grows sufficiently fast as |x| → ∞. The eigenvalues
are confined by v(x) but repel each other because of the Vandermonde determinant. This
repulsion increases with β and different values of β give rise to different universality classes.
For instance, the spacings between the eigenvalues of all β = 2 ensembles are described by
the same law when the matrix size is large [186]. In other words, as long as the matrices
have a certain symmetry, all the details on how the matrix is constructed are washed out for
sufficiently large matrices.

To formulate the notion of universality precisely, we will focus on β = 2 universality class.
Consider the j.p.d.f.

ρ(x1, . . . , xN ) = c2,N

∏
1≤j<k≤N

(xj − xk)2
N∏
j=1

w(xj), (1.4.2)

where w(x) is a weight function (for example, it can be chosen to be one of the Gaussian,
Laguerre or Jacobi weights). Define the k−point correlation function RN,k to be the marginal

RN,k(x1, . . . , xk) =
N !

(N − k)!

∫
ρ(x1, . . . , xN ) dxk+1 . . . dxN . (1.4.3)

For all the random matrix ensembles discussed so far, RN,k can be written in terms of a kernel
KN (x, y) defined as

KN (x, y) := (w(x)w(y))
1
2

N−1∑
j=0

ϕj(x)ϕj(y)

(ϕj , ϕj)
, (1.4.4)

where ϕj(x) are the orthogonal polynomials of degree j with respect to w(x) under the inner
product

(ϕj(x), ϕk(x)) =

∫
ϕj(x)ϕk(x)w(x) dx = cjδjk (1.4.5)

for some constant cj . The kernel KN (x, y) can also be expressed via the Christoffel-Darboux
formula as

KN (x, y) = (w(x)w(y))
1
2
AN−1

AN

1

(ϕN−1, ϕN−1)

ϕN (x)ϕN−1(y)− ϕN−1(x)ϕN (y)

x− y
, (1.4.6)

where Aj is the leading coefficient of ϕj . The k−point correlation function can be expressed
in terms of KN by the relation [186]

RN,k(x1, . . . , xk) = det[KN (xi, xj)]1≤i,j≤k. (1.4.7)

We now give the statement for universality.
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Theorem 1.4.1. Let s be a point in the bulk2 of the spectral density of the scaled eigenvalues.
Then, as N →∞, [33,64,202],

1

(KN (0, 0))k
RN,k

(
s+

x1

KN (0, 0)
, . . . , s+

xk
KN (0, 0)

)
→ det[Ksin(xi, xj)]1≤i,j≤k, (1.4.8)

where
Ksin(x, y) =

sinπ(x− y)

π(x− y)
(1.4.9)

is the sine kernel.

Brézin and Zee [43] used the orthogonal polynomial method and provided heuristic argu-
ments for the universality of the sine kernel. The first rigorous proof was given by Pastur and
Shcherbina [202] using the orthogonal polynomials technique. Later Bleher and Its [33] and
Deift et al. [64] took the Riemann-Hilbert approach to study universality.

The scaling in (1.4.8) is justified as follows. Note that

RN,1(x) = Nρ(x) = KN (x, x) (1.4.10)

is nothing but the mean eigenvalue density. This is because for any interval B = [a, b] on the
real line, ∫

B
RN,1(x1) dx1 =

∫
1B(x1)RN,1(x1) dx1

= N

∫
1B(x1)ρ(x1, . . . , xN ) dx1 . . . dxN

=

∫  N∑
j=1

1B(xj)

 ρ(x1, . . . , xN ) dx1 . . . dxN

= Expected number of points in B.

(1.4.11)

Hence KN (0, 0) gives the density of expected number of eigenvalues at the origin. The scaling
x/KN (0, 0) ensures that the expected number of eigenvalues per unit interval is 1, and that the
large N limit in (1.4.8) is finite. Since the kernel (1.4.4) involves orthogonal polynomials, it can
be expressed as an integral by exploiting the integral representation of orthogonal polynomials.
Then, standard tools such as the steepest-descent method can be used to prove the universality
in (1.4.8).

The universality result states that in the large N limit, the limiting behaviour of the scaled
eigenvalues is independent of the weight w and depends only on the invariance properties of
the ensemble. We now give examples for two different ensembles, namely the GUE and the

2Here ’bulk’ indicates that we choose s well within the interior of the spectrum, and not close to the edges.
For a point close to the edge, the scaling is different from KN (0, 0).
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CUE to illustrate the universal behaviour. For the GUE,

KN (x, x) = w(x)
N−1∑
j=0

H2
j (x)

(Hj , Hj)

= w(x)
1

(HN−1, HN−1)
[H ′N (x)HN−1(x)−HN (x)H ′N−1(x)],

(1.4.12)

where Hn(x) are classical Hermite polynomials that satisfy∫ ∞
−∞

Hn(x)Hm(x)e−
x2

2 dx =
√

2πn!δnm. (1.4.13)

By using

H ′n(x) = xHn(x)−Hn+1(x),

Hn(0) =

(−1)
n
2

n!

2
n
2 n

2
!
, if n is even,

0, otherwise,

(1.4.14)

and Stirling’s approximation for the factorial

n! ∼
√

2πnn+ 1
2 e−n, (1.4.15)

it can be readily seen that

KN (0, 0) =

√
N

π
+O

(
1√
N

)
. (1.4.16)

Therefore, the correct scaling is O(
√
N) which we saw previously in (1.3.4). When the eigen-

value statistics are considered at the origin, as N →∞, (1.4.8) becomes(
π√
N

)k
R

(H)
N,k

(
πx1√
N
, . . . ,

πxk√
N

)
→ det[Ksin(xi, xj)]1≤i,j≤k. (1.4.17)

For the CUE, all the eigenvalues lie on the unit circle. The weight w(θ) = 1 and polynomials
that are orthogonal on the unit circle are ϕj(θ) = eijθ. When the order of the magnitude of
scaling is O(N), as N →∞, (1.4.8) reads to be(

2π

N

)k
R
U(N)
N,k

(
2πx1

N
, . . . ,

2πxN
N

)
→ det[Ksin(xi, xj)]1≤i,j≤k. (1.4.18)

If the statistics are studied at a point close to the edge of the limiting spectrum, a different
type of universality is observed. In this case, the scaling is different from KN (0, 0). When s is
close to the soft edge (such as near 2 or -2 in the semi-circle law (1.3.5)), the limiting kernel is
called the Airy kernel which depends on the Airy function. If the edge is hard (such as the left
edge of the Marchenko-Pastur law when c = 1), then the limiting kernel is the Bessel kernel.
Similarly, β = 1 and β = 4 ensembles have a different limiting kernel that involve Pfaffians
instead of determinants as given in (1.4.8). For complete details, see [98,186]. In the rest of the
thesis, we restrict our attention to β = 2 ensembles unless otherwise stated, omitting explicit
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dependence on β.

1.5 Symmetric function theory and random matrix theory

A function f in n variables x1, . . . , xn is symmetric if it remains the same after interchanging
xi with xj for i 6= j:

f(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)), (1.5.1)

where σ is an element in the symmetric group Sn. Symmetric functions appear naturally
in random matrix theory because the joint density in (1.4.1) remains invariant under the
permutation of eigenvalues. In this section, we will discuss a few applications of symmetric
functions in random matrix theory.

Naturally, permutations and partitions of integers are inseparable from symmetric func-
tions. A partition λ of n ∈ N is a non-increasing sequence of integers

λ1 ≥ · · · ≥ λl > 0, l ∈ N, (1.5.2)

such that
λ1 + · · ·+ λl = n. (1.5.3)

Of many symmetric functions, the Schur functions defined by

Sλ(x1, . . . , xn) :=
det[xλk+n−k

j ]1≤j,k≤n

det[xn−kj ]1≤j,k≤n
, (1.5.4)

for
λ = (λ1, . . . , λl, 0, . . . , 0︸ ︷︷ ︸

n−l

), l ≤ n, (1.5.5)

play a distinguished role. The application of symmetric functions to random matrices is best
illustrated using the results from the unitary ensemble. The Schur functions arise as the
irreducible characters of the unitary group. For two partitions λ and µ,

EU(N)[Sλ(U)Sµ(U †)] = EU(N)[Sλ(eiθ1 , . . . , eiθN )Sµ(e−iθ1 , . . . , e−iθN )] = δλµ, (1.5.6)

where eiθj , j = 1, . . . , N , are the eigenvalues of U . This orthogonality relation for the Schur
functions is proven to be a powerful tool in computing integrals with respect to the Haar
measure on the unitary group. For example, the expectation

EU(N)

[
f(U)

]
, (1.5.7)

for any f(U) that is symmetric in the eigenvalues of U , can be readily computed by first
expressing f in terms of the Schur functions and then using the orthogonality relation (1.5.6).
It is not always easy to find such an expansion for arbitrary f but is possible for sufficiently
nice functions. When f(U) is TrU j , the Frobenius-Schur duality can be used to express the
traces of powers of U in terms of the Schur functions via the characters of the symmetric group.

18



For a proof of this result and a modern introduction to Frobenius-Schur duality, see [44] (also
see (2.1.82) in Ch. 2). Diaconis and Shashahani [72] precisely used this change of basis trick
to prove

EU(N)

[ k∏
j=1

(TrU j)aj (TrU j)bj
]

= E
[ k∏
j=1

(
√
jZj)

aj (
√
jZj)

bj
]
, (1.5.8)

where aj , bj are integers and Zj are independent complex Gaussian normal random variables.
The details of the proof are explained in Sec. 3.3 of Ch. 3. Diaconis and Shashahani also
computed the correlations of traces for orthogonal and symplectic groups using symmetric
functions. Dehaye [62] provided an alternative proof for correlations for symplectic and special
orthogonal groups using symmetric functions and gave a combinatorial description of these
results.

As a consequence of (1.5.8), we have that the consecutive powers of traces have a limiting
Gaussian distribution:

lim
N→∞

P (TrU ∈ B1, . . . ,TrUk ∈ Bk) =
k∏
j=1

P (
√
jZ ∈ Bj), (1.5.9)

where Z is a standard complex normal, and B1, . . . , Bk are any Borel sets.
For a different form of f such as

f(U) =
N∏
j=1

f(eiθj ), (1.5.10)

an alternate approach to find the expected value of f is via the Weyl integration formula,

EU(N)[f(U)] =
1

(2π)NN !

∫ 2π

0
· · ·
∫ 2π

0
|∆(eiθ1 , . . . , eiθN )|2

N∏
j=1

f(eiθj )dθj = DN (f), (1.5.11)

where DN (f) is a Toeplitz determinant with symbol f ,

DN (f) = det[f̂j−k]1≤j,k≤N , (1.5.12)

and f̂j are the Fourier coefficients

f̂j :=
1

2π

∫ 2π

0
f(eiθ)e−ijθ dθ, j = 0,±1,±2, . . . (1.5.13)

Johansson [156] proved (1.5.9) and gave a sharp estimate to the rate of convergence by using
(1.5.11) and the Strong Szegő limit theorem [227]. Alternatively, and surprisingly, the result
in (1.5.9) provides a new proof of the Strong Szegő’s theorem using the theory of symmetric
functions [45].

Due to a natural connection to partitions and permutations, the symmetric function the-
ory unifies several theorems in combinatorics; and establishes a bridge between random matrix
theory and combinatorics. For example, consider a permutation σ ∈ Sn. An increasing subse-
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quence of σ is a sequence 1 ≤ j1 < · · · < jk ≤ n such that

σ(j1) < · · · < σ(jk). (1.5.14)

The length of the longest increasing subsequence of a random permutation, denoted by Ln,
and the largest eigenvalue of a GUE matrix have the same asymptotic probability distribution,
namely the Tracy-Widom distribution [17]. If P (Ln ≤ l) denotes the probability that Ln ≤ l,
then Gessel [125] showed that the generating function for P (Ln ≤ l) is a Toeplitz determinant.
A series of papers [17, 18, 35, 159, 199] show that under the Plancherel measure, the first k
parts (λ1, . . . , λk) of a random partition λ = (λ1, λ2, . . . ) behave statistically as the first k
eigenvalues of a GUE matrix in the large matrix size limit. All these classic results can be
proved by exploiting the combinatorial nature of the problem and using symmetric functions.

This thesis closely studies quantities in (1.5.8) for Hermitian ensembles using the symmetric
function theory. Different symmetric functions and their properties are discussed in detail in
Ch. 2.

1.6 Number theory and random matrix theory

In 1973, Montgomery [194] proved that the form factor (the Fourier transform of the two-point
correlation function of the eigenvalues) statistic F (τ) of the GUE and the form factor statistic
of the zeros of the Riemann zeta function high up the critical line was identical for a certain
range of τ . This was the beginning of a new study of the zeta function through the lens of
random matrices. The properties of the Riemann zeros, difficult to study when approached
from a number-theoretic perspective, can be studied effectively using random matrices.

For s ∈ C, the Riemann zeta function ζ(s) is defined by

ζ(s) :=

∞∑
n=1

1

ns
. (1.6.1)

For Re(s) > 1, ζ(s) is absolutely convergent. In this regime, ζ(s) can be expressed as a product
over primes p, known as the Euler product :

ζ(s) =
∏
p

1

1− p−s
. (1.6.2)

The equivalence between the sum and the product formulas is a manifestation of the Funda-
mental Theorem of Arithmetic.

Riemann showed that ζ(s) can be analytically continued to the whole complex plane except
for the simple pole at s = 1. As a consequence, we have a functional equation for the zeta
function

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1− s)ζ(1− s), (1.6.3)

which relates ζ(s) for Re(s) > 1/2 to its values in the other half plane. Here Γ(z) is the
standard analytical continuation of the factorial.

From the functional equation and using other symmetries that the zeta function enjoys,
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the Riemann hypothesis asserts that the zeros of the zeta function lie on the line Re(s) = 1/2.
Under this assumption, we denote the zeros with ζ(1

2 + it) where t ∈ R. The number of t such
that 0 < t ≤ T scale as

N(T ) ∼ T

2π
log

T

2πe
+O(log T ), as T →∞, (1.6.4)

which implies that the mean spacing between one zero at 1/2 + it and the next one is of order
2π/ log t.

Studies suggest that the correlations of the Riemann zeros and the CUE (or GUE, as the
statistics are the same for these two ensembles in the large matrix limit that we deal with, see
Sec. 1.4) are identical. In Fig. 1.3, we compare the eigenvalues of a 50 × 50 Haar distributed
unitary matrix and 50 consecutive zeros of the zeta function. The eigenvalues and zeros show
similar repulsion in contrast to uniformly picked random points on the unit circle.

(a) 50 points picked uniformly
at random on the unit circle.

(b) Eigenvalues of a random
50 × 50 Haar distributed uni-
tary matrix.

(c) 50 consecutive zeros of the
zeta function starting from the
251st zero. The data is taken
from [179] and the zeros are
scaled to lie on the unit circle.

Figure 1.3: Comparison of random points on the unit circle (a) with the eigenvalues of the
CUE (b) and the Riemann zeros high up the critical line (c).

Let U be a unitary matrix of size N with eigenvalues eiθ1 , . . . , eiθN . Rescale the eigenangles
θj , as done in (1.4.18), so that the mean spacing is 1,

φj =
N

2π
θj . (1.6.5)

Dyson’s results [81] on pair correlation indicate that

lim
N→∞

EU(N)

[
1

N

∣∣{φl, φm : a ≤ φm − φl ≤ b}
∣∣] =

∫ b

a

(
δ(x) + 1−

(
sin(πx)

πx

)2
)
dx. (1.6.6)

As with the unitary case, rescale the zeros of the zeta function so that the mean spacing is 1,

un =
tn
2π

log
tn
2π
. (1.6.7)
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Montgomery’s conjecture on pair correlation is that

lim
T→∞

1

T
|{ul, um ∈ [0, T ] : a ≤ um − ul ≤ b}| =

∫ b

a

(
δ(x) + 1−

(
sin(πx)

πx

)2
)
dx. (1.6.8)

Since the non-trivial zeros are correlated as the eigenvalues of unitary matrices, we model
the zeta function with a function whose zeros are these eigenvalues, namely the characteristic
polynomial. Studies by Katz and Sarnak [168,168] show that orthogonal and symplectic groups
can model other families of L−functions. The characteristic polynomial of U ∈ U(N) is given
by

Z(U, θ) = det(I − Ue−iθ) =
N∏
j=1

(1− ei(θj−θ)). (1.6.9)

Theorem 1.6.1. [Keating-Snaith [172]] Let A be a Haar distributed unitary matrix and Re(n) >

−1/2. Then for any N ,

EU(N)

[
|Z(U, θ)|2n

]
=

N∏
j=1

Γ(j)Γ(2n+ j)

(Γ(n+ j))2
. (1.6.10)

In the limit N →∞, (1.6.10) simplifies to

lim
N→∞

EU(N)

[
|Z(U, θ)|2n

]
= γU (n)Nn2

(1.6.11)

with

γU (n) =
G2(n+ 1)

G(2n+ 1)
, (1.6.12)

where G(z) is the Barnes G-function that satisfies the following functional equation with the
normalisation G(1) = 1,

G(z + 1) = Γ(z)G(z). (1.6.13)

Conjecture 1.6.2. The moments of the zeta function given by

1

T

∫ T

0
|ζ
(

1
2 + it

)
|2n dt. (1.6.14)

are conjectured to behave as

lim
T→∞

1

T

∫ T

0
|ζ
(

1
2 + it

)
|2n dt = aζ(n)γζ(n)

(
log

T

2π

)n2

, (1.6.15)

where aζ(n) is given by the following product over primes p,

aζ(n) =
∏
p

(
1− p−1

)n2

 ∞∑
j=0

1

pj

(
Γ(n+ j)

j!Γ(n)

)2
 , (1.6.16)

and γζ(n) is a function that depends on n.

Except for the first two non-trivial values of n (n = 1, 2) [136,148], γζ(n) remained unknown
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for a long time. There are conjectures [54,55] and bounds [140,141,206,220] available for γζ(n)

on the assumption of Riemann hypothesis, but a guess on its precise form came into light using
the results from RMT. By modelling the zeta function with the characteristic polynomial of
a unitary matrix and identifying N = log T

2π , Keating and Snaith [172] used their moment
results to conjecture that

γζ(n) = γU (n) (1.6.17)

for Re(n) > −1/2.
When n is an integer (1.6.12) simplifies to

γU (n) =
n−1∏
j=0

j!

(n+ j)!
. (1.6.18)

Under the conjecture in (1.6.17), for n ∈ N, (1.6.15) and (1.6.11) simplifies to

lim
T→∞

1

T

∫ T

0
|ζ
(

1
2 + it

)
|2n dt = aζ(n)

(
log

T

2π

)n2 n−1∏
j=0

j!

(n+ j)!
, (1.6.19)

lim
N→∞

EU(N)

[
|Z(U, θ)|2n

]
= Nn2

n−1∏
j=0

j!

(n+ j)!
. (1.6.20)

Similar results hold for the characteristic polynomials of Hermitian ensembles. For a
rescaled GUE matrix M = M/

√
N , Brezin and Hikami [40] proved that, as N →∞,

enNe−nN
t2

2 E(H)
N

[
det(t−M)2n

]
= (2π%sc(t))

n2
Nn2

n−1∏
j=0

j!

(n+ j)!
. (1.6.21)

Here t is a point in the bulk of the spectrum. In addition to Nn2 and the common factor∏n−1
j=0

j!
(n+j)! , the asymptotic moments depend on the limiting distribution, namely the semi-

circle law given in (1.3.5). For the unitary case, the limiting distribution is the uniform measure
on the unit circle, 1/(2π), which is cancelled by the factor 2π in (1.6.20). Other Hermitian
ensembles, such as the LUE and JUE, also have a structure similar to (1.6.21). For the LUE,
up to a factor, the Laguerre weight replaces the Gaussian weight and the Marchenko-Pastur
law replaces the semi-circle law.

When t is near the edge of the spectrum, a scaling different from
√
N is required to obtain

finite results in the limit N → ∞. For asymptotics of characteristic polynomials of the GUE
in this domain, see [41].

1.7 Characteristic polynomials

Characteristic polynomials of random matrices are of independent interest for several reasons.
They have connections to number theory as discussed in Sec. 1.6, combinatorics [71, 223],
quantum chaos [12], and many more. We will review some of these connections in this section.

When the characteristic polynomial of a matrix M of size N is expanded in the spectral
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variable,

det(t−M) =
N∑
j=0

(−1)jScj(M)tN−j , (1.7.1)

the coefficient Scj(M) is called the jth secular coefficient. When M is a unitary matrix, the
moments of secular coefficients count the number of magic squares. Magic squares of order n
are squares matrices of size n, whose entries are non-negative integers (1, . . . , n2) and whose
rows and columns add up to the same number. We have [71]

EU(N)[|Scj(M)|2n] = Number of magic squares of size n

whose rows and columns sum to j.
(1.7.2)

To compute the higher correlations, consider two partitions λ = (λ1, . . . , λk) and λ̃ = (λ̃1, . . . , λ̃k).
We have [71]

EU(N)

[ k∏
j=1

Scλj (M)Scλ̃j (M
†)

]
= Nλλ̃, (1.7.3)

where Nλλ̃ counts the number of non-negative integer matrices of size k such that the jth row
and the jth column sum to λj and λ̃j , respectively. Similar combinatorial results hold for the
other two compact groups O(N) and Sp(2N) [71].

For the GUE, the expectation of the characteristic polynomial is

E(H)
N [det(t−M)] =

N∑
j=0

(−1)jE(H)
N [Scj(M)]tN−j = HN (t), (1.7.4)

where HN (t) is the Hermite polynomial of degree N . Due to the symmetries involved, the odd
secular coefficients are zero, and the even secular coefficients are given by

E(H)
N [Sc2j(M)] = (−1)j

N !

2jj!(N − 2j)!
. (1.7.5)

Hermite polynomials are combinatorial in nature: HN (x) is the matching polynomial of a
complete graph KN with N vertices. In other words, E(H)

N [|Sc2j(M)|] counts the number of
2j matchings in the complete graph KN . In [71], Diaconis and Gamburd gave a combinatorial
interpretation for higher moments of secular coefficients and characteristic polynomials. For the
unitary group, Diaconis and Gamburd also computed the limiting distribution of the secular
coefficient Scj for a fixed j. Recently, Najnudel, Paquette and Simm [196] studied the limiting
distribution of secular coefficients Scj for circular β−ensembles as both j and the size matrix
N tend to infinity. They also proved the long standing conjecture that the middle secular
coefficient of the CUE of size N tends to zero as N → ∞. For the Gaussian, Laguerre, and
Jacobi β−ensembles, secular coefficients are studied in [190].

The probability distribution of a characteristic polynomial can be fully described by the
moments

EN [det(t−M)n], (1.7.6)
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or more generally by the correlations

EN

 k∏
j=1

det(tj −M)

 . (1.7.7)

Here M can be a GUE, LUE, or JUE matrix, and EN [· · · ] denotes the ensemble average.
Results in [19,36,40,224] show that these correlations can be written in terms of a determinant
of orthogonal polynomials for β = 2 Hermitian ensembles. In its precise form,

EN

 k∏
j=1

det(tj −M)

 =
1

∆(t1, . . . , tk)
det[ϕN+k−l(tm)]1≤l,m≤k, (1.7.8)

where ϕn(x) are monic Hermite, Laguerre and Jacobi polynomials for the GUE, LUE and
JUE, respectively. The moments can be recovered from (1.7.8) by letting tj → t for all j. For
a broad class of β = 2 ensembles, Brezin and Hikami [40] calculated the large N asymptotics
of the moments. For the GUE, using the integral representation for orthogonal polynomials,
Brezin and Hikami showed that in the Dyson limit, N → ∞, tl − tm → 0 and N(tl − tm) is
finite, the moments are equal to (1.6.21).

In Sec. 1.6, we compared the positive moments of random matrices to the positive moments
of the zeta-function and noticed the universal features in both cases. Similarly, it is equally
interesting to compare the negative moments of characteristic polynomials with the negative
moments of the zeta function. The negative correlations are given by

EN

 k∏
j=1

1

det(Tj −M)

 . (1.7.9)

For (1.7.9) to be well defined we require Im(Tj) 6= 0. Strahov and Fyodorov [224] computed the
negative moments and compared with the negative moments of the zeta function conjectured
by Gonek [129]. For example, for a rescaled GUE matrix M = M/

√
N , the negative moments

of the characteristic polynomial behave asymptotically as

E(H)
N

[
det

(
t+

iα

4πN%sc(t)
−M

)−n
det

(
t− iα

4πN%sc(t)
−M

)−n]

=(2π)nenNe−nN
t2

2

(
2πN%sc(t)

α

)n2

,

(1.7.10)

which should be compared to

lim
T→∞

1

T

∫ T

1

∣∣ζ(1
2 + α

log T + it
)∣∣−2n

dt ∼

(
log T

2π

α

)n2

. (1.7.11)

Both (1.7.10) and (1.7.11) are similar when 2πN%sc is identified with log T
2π .

Another motivation to study negative moments is due to an observation by Berry and
Keating [31]. We have seen that the eigenvalues of random matrices repel from each, and
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clusters of eigenvalues are very unlikely. Then, it is natural to ask to what extent the clusters
are dominant. Berry and Keating addressed this question by showing that the degeneracies in
the spectrum can determine the divergences of the negative moments. The asymptotics of the
negative moments for β = 1, 2, 4 ensembles are studied in [31] with a specific focus on the GOE
in [110]. The universality results for β = 2 Hermitian ensembles can be found in [224]. For
arbitrary values of β, the large N limits for circular β and β−Jacobi ensembles are computed
in [96].

Yet another important class of correlations involve ratios of characteristic polynomials such
as

EN

 p∏
j=1

q∏
k=1

det(tj −M)

det(Tk −M)

 . (1.7.12)

To understand why objects in (1.7.12) are useful, consider the resolvent matrix (x −M)−1.
The eigenvalue density can be recovered from the resolvent as follows:

ρ(x) =
1

π
lim

Im(x)→0−
Im Tr

1

x−M
. (1.7.13)

The trace of the resolvent can be written as

Tr
1

x−M
= − ∂

∂y

det(x−M)

det(y −M)

∣∣∣
y=x

. (1.7.14)

Clearly, the ratios of characteristic polynomials play a key role in extracting the density of
eigenvalues, and correlations of the form in (1.7.12) are useful to extract the multi-point cor-
relation functions. The general correlations in (1.7.12) also found applications in quantum
chaos [12,86,132]. For example, (1.7.12) can be used in modelling scattering matrices in quan-
tum systems. They are also used for extracting generating functions for the local density of
states and the level curvatures.

The correlation functions of both ratios and products of characteristic polynomials of β = 2

Hermitian ensembles can be expressed in terms of determinants involving orthogonal polyno-
mials and their Cauchy transforms [19,120] as follows:

EN

 p∏
j=1

q∏
k=1

det(tj −M)

det(Tk −M)

 = (−2πi)M−1

∏N−1
j=N−q c

−1
j

∆(t)∆(q)

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ϑN−q(T1) ϑN−q+1(T1) . . . ϑN+p−1(T1)
...

...
ϑN−q(Tq) ϑN−q+1(Tq) . . . ϑN+p−1(Tq)

ϕN−q(t1) ϕN−q+1(t1) . . . ϕN+p−1(t1)
...

...
ϕN−q(tp) ϕN−q+1(tp) . . . ϕN+p−1(tp)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(1.7.15)

The polynomials ϕn(x) are monic orthogonal polynomials with respect to a weight w(x) that
satisfy ∫

ϕn(x)ϕm(x)w(x) dx = cnδnm, (1.7.16)

26



and ϑn(x) is the Cauchy transform of the monic orthogonal polynomial,

ϑn(x) =
1

2πi

∫
ϕn(y)w(y) dy

y − x
, Im(x) 6= 0. (1.7.17)

Strahov and Fyodorov [224] studied the universal properties of characteristic polynomials in the
bulk of the spectrum for β = 2 Hermitian ensembles by using the Riemann-Hilbert approach.
Akemann and Fyodorov [6] extended these results by analysing the universality properties of
β = 2 ensembles at all the three regimes: the soft edge, the bulk and the hard edge of the
spectrum.

For β = 1, 4, the correlations in (1.7.15) can be expressed in terms of Pfaffians [36]. In
addition to the GUE, Borodin and Strahov [36] also considered the bulk scaling asymptotic
limits of ratios of characteristic polynomials for the GOE and the GSE. The mixed correlations
of characteristic polynomials have also been studied for complex random matrix models [8]
and non-Hermitian random matrices with independent entries [3]. Moving away from the
Dyson values for β, a duality relation exists for products and inverse products of characteristic
polynomials [65]. The second order correlation of characteristic polynomials for β−Hermite
ensembles are considered in [225]. Desrosiers and Liu calculated the correlations in (1.7.7)
and computed the scaling limits for Gaussian, Laguerre and Jacobi ensembles for arbitrary β
in [66]. They also studied the mixed correlations for β−ensmebles in [67].

The correlations in (1.7.12) can be studied using several methods. Some of the standard
techniques are the Riemann-Hilbert method, the super-symmetric technique and its modifica-
tions, the orthogonal polynomial method, and the integrals of Selberg type. In the present
work, we study them in a new approach using the theory of symmetric functions on par with
the results from classical compact groups.

For the classical compact groups such as U(N), O(N), and Sp(2N), the correlations of
characteristic polynomials,

EN

[∏p
j=1 det(I + a−1

j A†)
∏q
k=1 det(I + ap+kA)∏r

n=1 det(I − bnA)
∏s
m=1 det(I − bmA†)

]
, A ∈ {U(N), O(N), Sp(2N)}, (1.7.18)

can be studied by taking advantage of the representation-theoretic properties of the groups.
It turns out that the characters of these groups are symmetric polynomials in the eigenvalues.
By realising that the characteristic polynomial is also a symmetric polynomial in the eigen-
values and the spectral variable, expressing it in terms of the group’s characters and using
the orthogonality of characters gives a concise way of computing them. In [46], Bump and
Gamburd precisely used this technique to study correlations of characteristic polynomials of
U(N), O(N), Sp(2N) and provided a beautiful combinatorial interpretation of these moments.
The results for the unitary group are discussed in detail in Ch. 3.

One of the main goals of this thesis is to develop a parallel theory for β = 2 Hermitian
ensembles. Though the group structure is not available for Hermitian matrices, we will show
how to use the theory of symmetric functions to study characteristic polynomials in Ch. 3.
These results then permit a combinatorial approach to study large N limits of characteristic
polynomials. Much of Ch. 5 focuses on computing these limits and demonstrating under what
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circumstances we recover the semi-circle law in (1.6.21).

1.7.1 Mixed moments

To complete our representative but not exhaustive review of moments, we consider moments
of characteristic polynomials along with their derivatives. To keep it simple, we consider the
results for the unitary group. Recall that the characteristic polynomial of a unitary matrix U
of size N is

Z(U, θ) = det(I − Ue−iθ) =
N∏
j=1

(1− ei(θj−θ)), (1.7.19)

where eiθ1 , . . . , eiθN are the eigenvalues of U . We are interested in the mixed moments involving
both moments and derivatives of characteristic polynomials,

FN (k, n) = EU(N)

[
|Z(U, 0)|2n−2k|Z ′(U, 0)|2k

]
. (1.7.20)

For our purpose, it turns out to be beneficial to work with

ZU (θ) = e
iN
2

(π+θ)e−
i
2

∑N
j=1 θjZ(U, θ) (1.7.21)

than the characteristic polynomial Z(U, θ). For Re(k) > −1/2 and Re(n) > Re(k) − 1/2,
define

F̃N (k, n) := EU(N)

[
|ZU (0)|2n−2k|Z ′U (0)|2k

]
. (1.7.22)

Note that F̃ (0, n) is precisely the 2nth moment of the characteristic polynomial considered in
Thm. 1.6.1. For integer values of n and k, Hughes [146] computed F̃N (k, n) and computed its
large N limit. Additionally, Hughes also shows that the limit

F̃ (k, n) = lim
N→∞

1

Nn2+2k
F̃N (k, n) (1.7.23)

exists and is analytic in n whenever Re(n) > k − 1/2 for k ∈ N. Dehaye [63] later used the
symmetric function theory to derive formulae for F̃ (k, n) for n, k ∈ N in terms of sums over
partitions. The main interest to study mixed moments in (1.7.22) is due to the connection
with number theory to study the Riemann zeta function. Assuming Riemann hypothesis, a
series of conjectures [53,135,146] indicate that F̃ (k, n) is related to

lim
T→∞

1

T

1(
log T

2π

)n2+2k

∫ T

0
|ξ(1

2 + it)|2n−2k|ξ′(1
2 + it)|2k dt, (1.7.24)

where
ξ(t) = eiν(t)ζ(1

2 + it), (1.7.25)

with
ν(t) := Im

[
log
(
π−

it
2 Γ(1

4 + it
2 )
)]
. (1.7.26)

In general, there is a substantial interest to extend the results of Hughes and Dehaye to non-
integer values of k. As a first step in this direction, Winn [248] considered the mixed moments
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for half-integer values of k, k = (2m− 1)/2 for m ∈ N. Note that the power of the integrand
in (1.7.22) is still an integer, but an odd integer for the first time. Basor et al. investigated
the limiting quantities of (1.7.22) using Riemann Hilbert methods, and gave an epxression for
F̃ (k, n) in terms of Painlevé transcendents. In a very recent paper, Assiostis, Keating and
Warren [13] extended the results for arbitrary real values of n and positive real values of k for
n > −1/2, k < n+ 1/2 and gave a probabilistic interpretation of F̃ (k, n).

Correlation functions involving products and ratios of half-integer powers,

EN

[
det(t1 −M) . . . det(tp −M)

det1/2(T1 −M) . . . det1/2(Tq −M)

]
(1.7.27)

arise in applications of RMT to quantum chaotic systems. The correlations involving only
the half-integer powers of product of characteristic polynomials can be reduced to (1.7.27) by
multiplying and dividing the numerator and denominator with corresponding factors. Fyodorov
and Nock [114] studied the quantity in (1.7.27) for the GOE and evaluated the large N limits
using the formalism of supersymmetry. For the simplest case p = 1 and q = 1, they recovered
the determinantal structure similar to correlations involving only integer powers. For any p and
q, the underlying structure of (1.7.27) still remains to be explored. Correlations involving half-
integer powers, or more generally any real powers, is a very new and active area of research. In
this thesis, we are concerned only with the positive and negative integer powers of characteristic
polynomials.

1.8 Spectral moments

The spectral properties of a matrix M can be extracted from the traces TrM j of powers of
M . For example, one way of proving the semi-circle law is the moment method, which requires
computing the moments EN [TrM j ] and comparing them with the moments of the semi-circle
law, known as the Catalan numbers. These numbers play a key role in combinatorics and count
a variety of objects ranging from lattice paths to the number of polygon triangulations [221].
This suggests that the traces TrM j are also combinatorial objects. The moment EN [TrM j ]

can be written as a sum over paths of a graph, and the large N limit of moments of these traces
can be obtained by carefully counting the number of paths that gives a non-zero contribution,
for more details see [79].

Moments of the form
EN [TrM j ] (1.8.1)

are well studied for different Hermitian ensembles. For the GUE, they count graphs of certain
genus g embedded on surfaces: the 2gth coefficient of the large N expansion of (1.8.1) counts
the number of pairings of 2g vertices in a regular polygon, see for example [154]. Building on the
ideas of ’t Hooft [143], Brézin, Itzykson, Parisi, and Zuber [42] initiated the connection between
random matrices and enumeration problems which led to the start of the random matrix theory
of 2d quantum gravity. The averages in (1.8.1) with respect to the GOE and GSE also admit
a combinatorial interpretation with corresponding coefficients related to certain maps [195].

The Laguerre and Jacobi moments in (1.8.1) have applications to quantum cavities and
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study electrical conductance properties [59, 60, 178, 191, 192, 198, 234]. For the GUE, LUE
and JUE, explicit expressions of (1.8.1) in terms of hypergeometric polynomials can be found
in [58]. For the time being, we return to our paradigmatic β = 2 Gaussian ensemble. Towards
the end of this section, we will come back to the Laguerre and Jacobi ensembles.

Moments involving more than one trace are of interest, the simplest example being

EN [TrM l TrMm]. (1.8.2)

One can recursively find these moments using the Harer-Zagier recursion [138]. But to the
writer’s knowledge, no explicit expressions valid for all l and m are available. More generally,
one can consider moments of the form

EN
[∏

j

(TrM j)bj
]

(1.8.3)

for any sequence of integers bj . For the GUE, these mixed moments count the number of
ribbon graphs on two-dimensional oriented surfaces [32, 138, 143, 228], see details in App. A.
These ribbon graphs, also called Feynmann graphs, are indispensable in quantum field theory.
For the special case when all bj ’s are the same, the moments E(H)

N [(TrM j)n] for j ≥ 3 count
polygon numbers on Riemann surfaces [32,87]. These combinatorial connections are one of the
main motivations of studying GUE correlators; see [25,49,68,69,75,88,169,203].

In similar spirit to the GUE, LUE and JUE correlators are also combinatorial in nature,
and can be expressed in terms of double and triple monotone Hurwitz numbers [57, 126, 127].
Hurwitz numbers count factorisations in the symmetric group and can be computed using the
character theory of the symmetric group. This problem is equivalent to Hurwitz’s original
motivation to count branched coverings of the Riemann sphere with specified ramification
data [147]. Monotone Hurwitz numbers count a restricted subset of these coverings [130].

Having discussed why the joint moments of traces are important, we shall now explore
a method to compute these moments. A convenient way to compute the correlations is by
studying the generating functions of TrM j . The resolvent can be defined as

W1(x) := EN
[
Tr

1

x−M

]
=
∞∑
j=0

1

xj+1
EN [TrM j ]. (1.8.4)

The moments in (1.8.3) can be obtained from the correlations of resolvents3

Wk(x1, . . . , xk) = EN
[
Tr

1

x1 −M
. . .Tr

1

xk −M

]
=

∑
j1,...,jk

1

xj1+1
1 . . . xjk+1

k

EN
[
TrM j1 . . .TrM jk

] (1.8.5)

using the loop equations for Wk. For more details and introduction to the loop equation
method, see [92]. Also see [101,250].

3We are not concerned with convergence issues while interchanging the summation and integration as we
treat the expansion in (1.8.5) as a formal series in variables.
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1.9 Central limit theorem

We have seen in Sec. 1.3 that with a proper rescaling, the empirical spectral measure converges
to a non-random measure. This result can be viewed as an analogue of the Law of large numbers
of probability theory. An alternative way to describe this limit law is as follows. Consider any
bounded continuous function f , then,

lim
N→∞

1

N

N∑
j=1

f(xj) =

∫
f(x)ρ(x) dx, (1.9.1)

where xj ’s are appropriately scaled eigenvalues and ρ is the limiting distribution. An interesting
question to ask is what are the fluctuations of the linear statistic

∑
j f(xj) around ρ. This can

be thought as analogue of the central limit theorem (CLT) of probability theory. This is far
from a trivial question as the eigenvalues of random matrices are highly correlated. A variety
of studies show that these fluctuations are asymptotically Gaussian [15,24,56,70,131,157,174,
176,197,216,219].

When f in (1.9.1) is a monomial, we get TrM j whose correlations are discussed in the
previous section. Often it is convenient to replace the monomials with a better structured
entity, such as polynomials orthogonal with respect to the asymptotic eigenvalues density. For
the GUE, the limiting spectral density is the semi-circle law, and Chebyshev polynomials are
orthogonal with respect to this density.

Johansson [157] showed that for a wide class of Hermitian matrices, the random variable

Xk = TrTk(M)− EN [TrTk(M)], k ∈ N, (1.9.2)

converges in distribution to a Gaussian random variable as N →∞. Here Tk is the Chebyshev
polynomial of the first kind of degree k. For the (rescaled) GUE in particular,

(X1, . . . , Xk)
d
=⇒
(√

1
2 r1, . . . ,

√
k

2 rk

)
, (1.9.3)

where d
=⇒ denotes convergence in distribution and rj ’s are independent real Gaussian random

variables with mean 0 and variance 1. Similar results hold for Laguerre and Jacobi ensembles.
Much of Ch. 4 involves computing the moments of Xk and estimating the error between these
moments and the moments of scaled Gaussians for a finite matrix size N .

1.10 Overview

To prove the original results in this work, we heavily rely on ideas and tools from the the-
ory of symmetric functions. It transpires that the correlations of quantities we study can be
formulated in terms of the symmetric functions. We exploit this connection in all the subse-
quent chapters. In Ch. 2, we introduce various symmetric functions and review the relevant
properties.

In Ch. 3, we attempt to provide a new and a concise way of computing correlations of
various fundamental quantities. We apply the results from Ch. 2 to study joint moments of
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traces and correlations of characteristic polynomials of β = 2 Hermitian matrices.
In Ch. 4, we study the moments of variables Xk for β = 2 Gaussian, Laguerre, and

Jacobi ensembles. Various approaches, such as the Riemann Hilbert method [30], the Stein’s
method [176] etc., have already been taken to prove the CLT. In this chapter, we use the
moment method with the information about the joint moments of traces computed in 3 to
comment on the CLT.

The whole of Ch. 5 is devoted to the largeN limits of moments of characteristic polynomials.
We do this by using the properties of symmetric polynomials and provide a combinatorial
method to study asymptotics. The last chapter summarises the work.

1.11 Authorship

Original research can be found within all subsequent chapters, and here we emphasise where
such results can be found. Where the results have appeared in papers (either published or
submitted), we give the relevant reference. Additional details are given within the introduction
to the respective chapters regarding authorship and, for those based on existing papers, how
the chapters differ from the respective manuscripts.

1. In Ch. 2, we introduce symmetric functions along with their properties. Most of the
material is taken from the book Symmetric functions and Hall polynomials by Macdonald.
Relevant references are given at places where we deviate from the book. This chapter
also has some new results, which we indicate appropriately.

2. Theorems 3.2.2 and 3.2.3 are the main results in Ch. 3 which appear in a paper Symmet-
ric function theory and unitary invariant ensembles with Prof. Jon Keating and Prof.
Francesco Mezzadri, submitted.

3. The main result of Ch. 4 is Thm. 4.1.5 which is also a part of the paper Symmetric
function theory and unitary invariant ensembles.

4. The asymptotic results in Ch. 5 are also a joint work with Prof. Jon Keating and Prof.
Francesco Mezzadri. The results appear in the paper On the moments of characteristic
polynomials, submitted.
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Chapter 2

Symmetric function theory

2.1 Symmetric functions and their properties

Symmetric functions appear naturally in random matrix theory since the joint eigenvalue
density (1.1.26) is invariant under the permutation of eigenvalues. They are useful whenever an
algebraic or combinatorial structure of the ensemble needs to be studied. Symmetric functions
are indispensable in this work. Here we give a thorough review of these functions and provide
all necessary tools to prove results in the upcoming chapters.

2.1.1 Partitions

The objects we study are parametrised by partitions. Here we introduce the notation and
terminology of partitions and recall some of their properties.

Definition 2.1.1. A partition λ is an ordered sequence of positive integers (λ1, λ2, . . . , λl)

satisfying
λ1 ≥ λ2 ≥ · · · ≥ λl. (2.1.1)

Here l ≡ l(λ) is the length of the partition. We denote the weight of the partition as

|λ| = λ1 + · · ·+ λl. (2.1.2)

We do not distinguish partitions that only differ by a string of zeros at the end,

λ = (λ1, . . . , λl) = (λ1, . . . , λl, 0, . . . , 0). (2.1.3)

For example, (4, 2, 1, 0, 0) and (4, 2, 1) are the same partitions with length 3 and weight 7.
An alternate way of representing a partition λ is by indicating the frequency of an integer

that appears in λ:

λ = (1b12b2 . . . kbk) = (k, . . . , k︸ ︷︷ ︸
bk

, . . . , 2, . . . , 2︸ ︷︷ ︸
b2

, 1, . . . , 1︸ ︷︷ ︸
b1

), (2.1.4)

which means that exactly bj parts of λ are equal to j for 1 ≤ j ≤ k. In this notation, length
l(λ) = b1 + · · · + bk and weight |λ| = b1 + 2b2 + · · · + kbk. For example, 4 has a total of 5
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partitions listed below:

(4)

(3, 1)

(2, 2) ≡ (22)

(2, 1, 1) ≡ (122)

(1, 1, 1, 1) ≡ (14)

(2.1.5)

We use the notation λ ` n to denote that λ is a partition of n.

Definition 2.1.2 (Dominance order). Given two partitions λ = (λ1, . . . , λl) and µ = (µ1, . . . , µl),
we say that λ dominates µ, µ � λ, if

λ1 + · · ·+ λi ≥ µ1 + · · ·+ µi, ∀i ≥ 1, (2.1.6)

where it is understood that λi = 0 if i > l(λ) (similarly for µ).

Dominance order is only a partial order because there exists partitions λ and µ so that
neither λ � µ nor µ ≺ λ. For example, (4, 1, 1) and (3, 3) cannot be compared under dominance
order. Therefore, a total order on partitions, such as defined below, is useful sometimes. Note
that µ � λ implies that |µ| ≤ |λ| which further indicates that λ and µ can be partitions
corresponding to different integers.

Definition 2.1.3 (Lexicographic order). A total ordering on the set of partitions is defined by
saying that λ > µ if for some j we have λk = µk for all k < j, and λj > µj.

By comparing the two orderings on the set of partitions, it is clear that if µ � λ then λ > µ,
but the other way is not necessarily true.

Proposition 2.1.4. Let # par(n) to be the total number of partitions of n. The generating
function for partition number is

∑
n≥0

# par(n) tn =

∞∏
i=1

1

1− ti
. (2.1.7)

Proof. The right hand side of (2.1.7) can be expanded as

∏
i=1

1

1− ti
=
∏
i=1

(1 + ti + t2i + . . . )

= (1 + t+ t2 + . . . )(1 + t2 + t4 + . . . )(1 + t3 + t6 + . . . ) . . .

(2.1.8)

The partition number # par(n) is the coefficient of tn because a term that has nth power in the
above expansion is obtained by selecting tb1 from the first factor, t2b2 from the second factor,
and so on such that b1 + 2b2 + · · · = n. Hence every tn in the expansion (2.1.8) comes from a
partition of n, with the exponent of t resulted by summing the integers smaller than or equal
to n. �
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No closed-form expressions for partition numbers are known but there are recursive relations
which can be used to compute # par(n) exactly. The precise estimate for asymptotics of
# par(n) is first obtained by Hardy and Ramanujan [137],

# par(n) ∼ 1

4n
√

3
e
π
√

2n
3 , n→∞. (2.1.9)

Definition 2.1.5 (Young diagram). A partition can be represented with a Young diagram or
Ferrers’ diagram which is a left adjusted table of |λ| boxes and l(λ) rows such that the first row
contains λ1 boxes, the second row contains λ2 boxes, and so on.

In other words, a Young diagram of λ is the set (i, j) ∈ Z2 such that i ≥ 0 and λi ≥ j ≥ 0.
With each pair (i, j) we associate a box at the ith row and the jth column where the row index
i increases from top to bottom and the column index j increases from left to right.

Definition 2.1.6 (Conjugate partition). The conjugate partition λ′ is defined by transposing
the Young diagram of λ along the main diagonal.

Young diagram of λ Young diagram of λ′

(2.1.10)

In the above example λ = (4, 2, 2, 1), |λ| = 9 and l(λ) = 4. Clearly l(λ′) = λ1, l(λ) = λ′1 and
λ′′ = λ. Suppose ν = λ′, then (i, j) ∈ λ iff (j, i) ∈ ν. Hence,

j ≤ λi ⇐⇒ i ≤ νj . (2.1.11)

Definition 2.1.7 (Sub-partition). We denote a sub-partition µ of λ by µ ⊆ λ if the Young
diagram of µ is contained in the Young diagram of λ. The set-theoretic difference between λ

and µ denoted by λ− µ is called a skew-diagram.

For example, if λ = (4, 2, 2, 1) and µ = (2, 2), then µ is a sub-partition of λ and the
skew-diagram λ− µ is the shaded region in the picture below:

(2.1.12)

Definition 2.1.8 (Young tableau). Given a totally ordered finite alphabet of symbols and a
partition λ, a Young tableau is a Young diagram of shape λ with each cell of the diagram filled
with a symbol from the alphabet.
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Definition 2.1.9. A standard Young tableau (SYT) of shape λ is a filling of the Young diagram
with numbers such that each row and each column forms an increasing sequence. This implies
that the alphabet should have at least max(l(λ), λ1) numbers.

Definition 2.1.10. A semi standard Young tableau (SSYT) is a filling with entries weakly
increasing in each row and strictly increasing in each column.

In Young tableau, SYT and SSYT some numbers can be repeated provided they obey
the required condition. The weight of the tableau is the sequence obtained by recording the
number of times each number appears. Given below are the examples of standard and semi
standard tableau of shape λ = (4, 2, 2, 1). We chose the alphabet of n to be the first n natural
numbers {1, . . . , n}.

5 1 2 3

1 2

4 5

3

1 5 6 7

2 8

3 9

4

1 1 3 3

2 5

4 7

6

A Young tableau A SYT of shape λ, A SSYT of shape λ,

of shape λ with the weight: (1, . . . , 1) weight: (2, 1, 2, 1, 1, 1, 1)

alphabet {1, 2, 3, 4, 5}.

(2.1.13)

Definition 2.1.11 (Content and Hook-length). A cell (i, j) in λ is located at the ith row and
the jth column and its content is given by j− i. The hook Hλ(i, j) is the set of cells (a, b) such
that a = i and b ≥ j or a ≥ i and b = j. The hook-length hλ(i, j) is the size of the set Hλ(i, j).

As an example, the following figures give the content and the hook length of each cell in λ
for λ = (4, 2, 2, 1).

0 1 2 3

−1 0

−2 −1

−3

7 6 2 1

4 2

3 1

1

Contents of λ Hook lengths of λ

(2.1.14)

The hook length of λ at (i, j) is given by

hλ(i, j) = λi + λ′j − i− j + 1. (2.1.15)

The hook length formula expresses the number of standard Young tableaux of shape λ, denoted
by fλ, as

fλ =
|λ|!∏

(i,j)∈λ hλ(i,j)
. (2.1.16)

Proposition 2.1.12. Let λ be a partition such that λ1 ≤ q and λ′1 ≤ p. Then the p + q
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numbers
λi + p− i (1 ≤ i ≤ p), p− 1 + j − λ′j (1 ≤ j ≤ q), (2.1.17)

are a permutation of {0, . . . , p+ q − 1} [182].

Proof. It can be seen that all the numbers lie between 0 and p+ q− 1. For 1 ≤ i ≤ p, we have
q ≥ λ1 ≥ λi ≥ 0. Thus,

0 ≤ λi + p− i < p+ q. (2.1.18)

For 1 ≤ j ≤ q, we have p ≥ λ′1 ≥ λ′i ≥ 0. Thus,

0 ≤ p− 1 + j − λ′j < p+ q. (2.1.19)

Now it is sufficient to show that there are no repetitions among these numbers. The sequence
λi+p−i is strictly decreasing by definition as i runs from 1 to p. So there can be no repetitions.
Similarly p − 1 + j − λ′j is strictly increasing as j runs from 1 to q. Now it remains to show
that λi + p− i 6= p− 1 + j − λ′j for 1 ≤ i ≤ p and 1 ≤ j ≤ q. In other words, we require

λi + λ′j + 1 6= i+ j. (2.1.20)

There are two cases: If j ≤ λi then using (2.1.11) i ≤ λ′j . So, λi +λ′j + 1 > λi +λ′j ≥ i+ j. On
the other hand, if j > λi then i > λ′j which implies that λi + λ′j + 1 < λi + λ′j ≤ i+ j. Thus,
(2.1.20) is always satisfied. �

Proposition 2.1.13. It follows that [182]

∏
(i,j)∈λ

(1− thλ(i,j)) =

∏
j≥1

∏λj+p−j
k=1 (1− tk)∏

j<k(1− tλj−λk−j+k)
. (2.1.21)

Proof. Let

fλ,p =

p∑
j=1

tλj+p−j . (2.1.22)

Then,

fλ,p + tp+q−1fλ′,q(t
−1) =

p∑
j=1

tλj+p−j +

q∑
j=1

tp−1+j−λ′j

= 1 + t+ · · ·+ tp+q−1

=
1− tp+q

1− t
.

(2.1.23)

By interchanging λ with λ′ in (2.1.23) and setting q = l(λ′) = λ1, we get

fλ′,λ1 + tp+q−1fλ,p(t
−1) =

λ1∑
j=1

tλ
′
j+λ1−j +

p∑
j=1

tλ1−λj−1+j =

λ1+p−1∑
j=0

tj . (2.1.24)
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In other words,
λ1∑
j=1

thλ(1,j) +

p∑
j=2

tλ1−λj−1+j =

λ1+p−1∑
j=1

tj , (2.1.25)

where hλ(1, j) are the hook lengths corresponding to the first row of λ. Applying this identity
for partitions (λj , λj+1, . . . ), and then summing over j = 1, . . . , l(λ) leads to

∑
(i,j)∈λ

thλ(i,j) +
∑
j<k

tλj−λk−j+k =
∑
j≥1

λj+p−j∑
k=1

tk, (2.1.26)

from which it follows that

∏
(i,j)∈λ

(1− thλ(i,j))
∏
j<k

(1− tλj−λk−j+k) =
∏
j≥1

λj+p−j∏
k=1

(1− tk). (2.1.27)

�

Corollary 2.1.14. The product of the hook lengths of λ is

∏
(i,j)∈λ

hλ(i, j) =

∏
j≥1(λj + p− j)!∏

j<k(λj − λk − j + k)
. (2.1.28)

Proof. Multiplying both sides of (2.1.21) with (1−t)−|λ| and setting t = 1 proves the result. �

Proposition 2.1.15. Consider a partition λ such that l(λ) ≤ n. Denote the content of each
cell by cλ(i, j). Then [182]

∏
(i,j)∈λ

(1− tn+cλ(i,j)) =

∏
j≥1

∏λj+n−j
k=1 (1− tk)∏

j≥1

∏n−j
k=1(1− tk)

. (2.1.29)

Proof. The numbers n+ cλ(i, j) in the ith row of λ are n− i+ 1, . . . , n− i+ λi. Thus we have
the above equality. �

The given results are just a few among several other interesting properties of partitions. For
more results, readers can refer to [182].

2.1.2 Symmetric functions

A function f is symmetric if it is invariant under the permutation of its arguments. For
λ = (λ1, λ2, . . . ), let

Xλ = xλ11 xλ22 . . . . (2.1.30)

A homogeneous symmetric function of degree n is the formal power series

f(x1, x2, . . . ) =
∑
λ

cλX
λ, (2.1.31)
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such that cλ ∈ R and every term in the sum has the same degree. If the number of variables
is finite, we have symmetric polynomials instead of symmetric functions.

More formally, consider the ring of polynomials Q[x1, . . . , xn] in n independent variables
with rational coefficients. The polynomial is symmetric if it is invariant under the action of
the symmetric group Sn. Symmetric polynomials form a graded subring

Λn = Q[x1, . . . , xn]Sn , Λn =
⊕
k≥0

Λkn, (2.1.32)

where Λkn consists of homogeneous symmetric polynomials of degree k including the zero poly-
nomial. The number of variables is usually irrelevant and it is convenient to work with sym-
metric functions instead of polynomials. Define the graded ring of symmetric functions in
infinitely many variables x1, x2, . . . to be

Λ =
⊕
k≥0

Λk. (2.1.33)

The elements in Λ are no longer polynomials but are formal sums of monomials. The space of
symmetric functions has several important bases usually indexed by partitions. Here we list
some of these bases.

The monomial symmetric functions are

Mλ =
∑
α

Xα, (2.1.34)

where α is summed over all distinct permutations of λ. For instance,

M(1,1)(x1, x2, x3) = x1x2 + x1x3 + x2x3,

M(3,1,1)(x1, x2, x3) = x3
1x2x3 + x1x

3
2x3 + x1x2x

3
3.

(2.1.35)

Polynomials Mλ such that l(λ) ≤ n and |λ| = k forms a Z−basis of Λkn. The Mλ when λ runs
over all partitions of length ≤ n forms a Z−basis of Λn.

Next are the complete symmetric functions hr,

hr =


∑
|µ|=rMµ, r ≥ 0,

0, r < 0.
(2.1.36)

Equivalently, if the number of variables is n,

hr(x1, . . . , xn) =
∑

1≤i1≤i2≤···≤ir≤n
xi1xi2 . . . xir , (2.1.37)

and hr = 0 for r < 0. The generating function for the hr is

H(t) =
∑
r≥0

hrt
r =

∏
j≥1

1

1− xjt
. (2.1.38)
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We define
Hλ = hλ1hλ2 . . . (2.1.39)

which form a Z−basis of Λ. A few examples of Hλ are

H(1,1)(x1, x2, x3) = (x1 + x2 + x3)2,

H(3,1,1)(x1, x2, x3) =
(
x3

1 + x3
2 + x3

3 + x2
1x2 + x1x

2
2 + x2

1x3 + x1x
2
3

+x2
2x3 + x2x

2
3 + x1x2x3

)
(x1 + x2 + x3)2.

(2.1.40)

For each r ≥ 0, the rth elementary symmetric function er is

er =
∑

i1<i2<···<ir

xi1xi2 . . . xir , (2.1.41)

and er = 0 for r < 0. The generating function for the er is

E(t) =
∑
r≥0

ert
r =

∏
j≥1

(1 + xjt). (2.1.42)

Similar to the complete symmetric functions,

Eλ = eλ1eλ2 . . . (2.1.43)

forms a Z−basis of Λ. Examples of Eλ are

E(1,1)(x1, x2, x3) = (x1 + x2 + x3)2,

E(3,1,1)(x1, x2, x3) = x1x2x3(x1 + x2 + x3)2.
(2.1.44)

Clearly, from (2.1.38) and (2.1.42), one has

H(t)E(−t) = 1. (2.1.45)

Equivalently, for all n ≥ 1, we see that

n∑
r=0

(−1)rerhn−r = 0. (2.1.46)

Since Λ = Z(e1, e2, . . . ), the er are algebraically independent over Z. Therefore, we can
define a homomorphism ω of graded rings,

ω : Λ→ Λ (2.1.47)

by
ω(er) = hr. (2.1.48)

Using (2.1.46), it can be readily seen that ω2 = 1, i.e. ω is an involution. Solving (2.1.46) for
er, we obtain

er = det(h1−j+k)1≤j,k≤r. (2.1.49)
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Dually, we obtain
hr = det(e1−j+k)1≤j,k≤r. (2.1.50)

Next, we define the rth power sum function as

pr =
∑
j

xrj = m(r). (2.1.51)

for r ≥ 1. The generating function for the pr is

P (t) =
∑
r≥1

prt
r−1 =

∑
j≥1

∑
r≥1

xrjt
r−1

=
∑
j≥1

xj
1− xjt

=
∑
j≥1

d
dt

log
1

1− xjt
,

(2.1.52)

so that
P (t) =

d
dt

log
∏
j≥1

1

1− xjt
=

d
dt

logH(t) =
H ′(t)

H(t)
. (2.1.53)

Similarly, one can show that

P (−t) =
E′(t)

E(t)
. (2.1.54)

From (2.1.53) and (2.1.54), we obtain

rer =
r∑
j=1

(−1)j−1pjer−j , (2.1.55)

rhr =
r∑
j=1

pjhr−j . (2.1.56)

The above equations are called the Newton’s identities, and they can be used to express the
p’s in terms of the h’s and the e’s, and vice versa. Newton’s formulae can also be written in a
determinant. By treating the e’s to be the known functions in (2.1.55) and solving for the p’s
gives

pr =

∣∣∣∣∣∣∣∣∣∣
e1 1 0 . . . 0

2e2 e1 1 . . . 0
...

...
...

...
rer er−1 er−2 . . . e1

∣∣∣∣∣∣∣∣∣∣
. (2.1.57)

Likewise, by treating the e’s to be unknown functions and the p’s to be known, we obtain

r! er =

∣∣∣∣∣∣∣∣∣∣∣∣∣

p1 1 0 . . . 0

p2 p1 2 . . . 0
...

...
...

...
pr−1 pr−2 pr−3 . . . r − 1

pr pr−1 pr−2 . . . p1

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.1.58)
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The dual relations of (2.1.57) and (2.1.58) are

(−1)r−1pr =

∣∣∣∣∣∣∣∣∣∣
h1 1 0 . . . 0

2h2 h1 1 . . . 0
...

...
...

...
rhr hr−1 hr−2 . . . h1

∣∣∣∣∣∣∣∣∣∣
,

r!hr =

∣∣∣∣∣∣∣∣∣∣∣∣∣

p1 −1 0 . . . 0

p2 p1 −2 . . . 0
...

...
...

...
pr−1 pr−2 pr−3 . . . −r + 1

pr pr−1 pr−2 . . . p1

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(2.1.59)

For example,

e2 =
1

2
(p2

1 − p2), h2 =
1

2
(p2

1 + p2), (2.1.60)

and
p2 = e2

1 − 2e2 = −h2
1 + 2h2. (2.1.61)

If we define
Pλ = pλ1pλ2 . . . (2.1.62)

then from the Newton identities, it is clear that the Pλ forms a Q−basis of Λ. Since the
involution ω interchanges the e’s and the h’s, from (2.1.55) and (2.1.56) we have

ω(pr) = (−1)r−1pr, (2.1.63)

for r ≥ 1. For any partition λ,
ω(Pλ) = (−1)|λ|−l(λ)Pλ. (2.1.64)

Similar to (2.1.53) and (2.1.54), the generating functions for the er and the hr can be written
in terms of the generating function for the pr.

Proposition 2.1.16. Consider a partition λ = (1b12b2 . . . ) and let

zλ =
∏
j≥1

jbjbj !. (2.1.65)

Then [182],

E(t) =
∑
λ

(−1)|λ|−l(λ) 1

zλ
Pλt
|λ|, (2.1.66)

H(t) =
∑
λ

1

zλ
Pλt
|λ|. (2.1.67)
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Proof. From (2.1.53),

H(t) =
∏
j≥1

exp

(
pj
j
tj
)

=
∏
j≥1

∞∑
bj=0

1

jbjbj !
p
bj
j t

jbj

=
∑
λ

1

zλ
Pλt
|λ|.

(2.1.68)

Now applying the involution ω proves the first line of the proposition. �

Next in the list are Schur polynomials Sλ given by

Sλ(x1, . . . , xn) =
det(xλk+n−k

j )1≤j,k≤n

det(xn−kj )1≤j,k≤n

=
1

∆(x)

∣∣∣∣∣∣∣∣∣∣
xλ1+n−1

1 xλ1+n−1
2 . . . xλ1+n−1

n

xλ2+n−2
1 xλ2+n−2

2 . . . xλ2+n−2
n

...
...

...
xλn1 xλn2 . . . xλnn

∣∣∣∣∣∣∣∣∣∣
,

(2.1.69)

where
∆(x) = det(xn−kj )1≤j,k≤n =

∏
1≤j<k≤n

(xj − xk) (2.1.70)

is the Vandermode determinant. We define Sλ(x) = 0 when l(λ) > n. If l(λ) < n, we append
n−l(λ) zeros at the end of λ so that λl+1 = · · · = λn = 0. The Vandermonde determinant is an
alternating polynomial i.e. a polynomial which changes sign under the permutation of variables.
Since ∆(x) is an alternating polynomial of the lowest possible degree, it is a factor of every
other alternating polynomial. Clearly, the determinant in the numerator is also alternating,
and hence divisible by the Vandermonde determinant. Thus, Sλ is a symmetric polynomial in
the variables x1, . . . , xn. The Sλ form a Z−basis of Λ, and Sλ such that |λ| = k ≥ 0 forms a
Z−basis of Λk.

A Schur polynomial may be defined combinatorially as a sum of monomials,

Sλ =
∑

T∈SSYT(λ)

XT =
∑

T∈SSYT(λ)

xt11 x
t2
2 . . . xtnn , (2.1.71)

where the summation is over all semi standard Young tableau T of shape λ. Here tj counts
the occurrences of j in T .

For example,
S(1,1)(x1, x2, x3) = x1x2 + x2x3 + x1x3. (2.1.72)

The monomials in the R.H.S. arise from the SSYT

1

2

2

3

1

3
(2.1.73)
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As another example,

S(3,1,1)(x1, x2, x3) = x3
1x2x3 + x1x

3
2x3 + x1x2x

3
3 + x2

1x
2
2x3 + x2

1x2x
2
3 + x1x

2
2x

2
3, (2.1.74)

and these summands arise from the SSYT

1 1 1
2
3

1 2 2
2
3

1 3 3
2
3

1 1 2
2
3

1 1 3
2
3

1 2 3
2
3

(2.1.75)

The combinatorial way of computing the Schur polynomials (2.1.71) becomes cumbersome
quickly. On the other hand, the determinantal formula is more reliable for explicit polynomial
expressions.

The Schur functions Sλ can be expressed as a polynomial in the complete symmetric func-
tions hr and the elementary symmetric functions er. These expansions are called the Jacobi-
Trudi identities. Here we state these results and standard proofs can be found in [105, 182].
For the first Jacobi-Trudi identity, we have

Sλ = det(hλi−i+j)1≤j,k≤l(λ) =

∣∣∣∣∣∣∣∣∣∣
hλ1 hλ1+1 . . . hλ1+l(λ)−1

hλ2−1 hλ2 . . . hλ2+l(λ)−2
...

...
...

hλl−l(λ)+1 hλl−l(λ)+2 . . . hλl

∣∣∣∣∣∣∣∣∣∣
. (2.1.76)

Dually, the second Jacobi-Trudi identity is

Sλ = det(eλ′i−i+j)1≤j,k≤l(λ′) =

∣∣∣∣∣∣∣∣∣∣
eλ′1 eλ′1+1 . . . eλ′1+l(λ′)−1

eλ′2−1 eλ′2 . . . eλ′2+l(λ′)−2
...

...
...

eλ′l−l(λ′)+1 eλ′l−l(λ′)+2 . . . eλ′l

∣∣∣∣∣∣∣∣∣∣
. (2.1.77)

Clearly,
S(r) = hr, and S(1r) = er. (2.1.78)

From (2.1.76) and (2.1.77), it follows that

ω(Sλ) = Sλ′ . (2.1.79)

The Schur polynomials can also be expressed as a linear combination of the monomial sym-
metric polynomials,

Sλ =
∑
µ

KλµMµ, (2.1.80)

where µ is a partition of |λ|. Here Kλµ are Kostka numbers: non-negative integers that count
the number of SSYT of shape λ and weight µ. The values of Kλµ for |λ| = |µ| = 3 are listed
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below:

K(3)(3) = K(3)(2,1) = K(3)(1,1,1) = 1,

K(2,1)(3) = 0, K(2,1)(2,1) = 1, K(2,1)(1,1,1) = 2,

K(1,1,1)(3) = K(1,1,1)(2,1) = 0, K(1,1,1)(1,1,1) = 1.

(2.1.81)

Like other symmetric polynomials, the power sum polynomials are also related to the Schur
polynomials. Consider µ = (1b12b2 . . . kbk), we have

Pµ =
∑
λ

χλµSλ, Sλ =
∑
µ

χλµ
zµ
Pµ,

zµ =
∏
j

jbjbj !,

(2.1.82)

where χλµ are the characters of the symmetric group Sm, m = |λ| = |µ|. Here λ denotes the
irreducible representation and µ denotes the conjugacy class of Sm. The constant zµ is the
size of the centraliser of an element in the conjugacy class µ. The centraliser, also called the
commutant, of an element g in a group G is the set of elements of G that commute with g.
The above equation is an equivalent way of writing the Frobenius formula for the characters
of the symmetric group. The orthogonality relation for the characters is∑

λ

χλµχ
λ
ν = zµδµν ,

∑
µ

1

zµ
χλµχ

ν
µ = δλν ,

(2.1.83)

Proposition 2.1.17. For any λ such that l(λ) ≤ n, where n is the number of variables [182],

Sλ(1, . . . , 1) =
∏

1≤j<k≤n

λj − λk − j + k

k − j
=

∏
(j,k)∈λ

n+ cλ(j, k)

hλ(j, k)
. (2.1.84)

Proof. First consider the Schur polynomial evaluated at (1, x, x2, . . . , xn−1),

Sλ(1, x, . . . , xn−1) =
det(x(j−1)(λk+n−k))

det(x(j−1)(n−k))
. (2.1.85)

The numerator and the denominator are Vandermonde determinants in the variables xλk+n−k

and xn−k, respectively. Hence,

Sλ(1, x, . . . , xn−1) =

∏
k<j(x

λj+n−j − xλk+n−k)∏
k<j(x

n−j − xn−k)
. (2.1.86)

By using the L’Hôpital’s rule and taking the limit x→ 1, we prove the first equality in (2.1.84).
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To prove the second equality, consider

det(x(j−1)(λk+n−k)) =
∏
k<j

(xλj+n−j − xλk+n−k)

= x
∑
k<j λj+n−j

∏
k<j

(1− xλk−λj−k+j)

= x
∑
j(j−1)λj+

1
6
n(n−1)(n−2)

∏
k<j

(1− xλk−λj−k+j)

= x
∑
j(j−1)λj+

1
6
n(n−1)(n−2)

∏
j≥1

∏λj+n−j
k=1 (1− xk)∏

(i,j)∈λ(1− xhλ(i,j))

= x
∑
j(j−1)λj+

1
6
n(n−1)(n−2)

n−1∏
j=1

n−j∏
k=1

(1− xk)
∏

(i,j)∈λ

1− xn+cλ(i,j)

1− xhλ(i,j)
.

(2.1.87)

We used (2.1.21) in the last but one line, and we used (2.1.29) in the last line. The Vandermonde
evaluated at (1, x, . . . , xn−1) is

∆(1, x, . . . , xn−1) = x
1
6
n(n−1)(n−2)

n−1∏
j=1

n−j∏
k=1

(1− xk). (2.1.88)

Hence,

Sλ(1, x, . . . , xn−1) = x
∑
j(j−1)λj

∏
(i,j)∈λ

1− xn+cλ(i,j)

1− xhλ(i,j)
. (2.1.89)

Now setting x = 1 proves the proposition. �

The Schur polynomial evaluated at all 1’s counts the number of SSYT of shape λ. Next
we have the Pieri formula which provides a way to multiply a Schur function Sλ with another
Schur function of the form S(r),

SλS(r) = Sλhr =
∑
µ

Sµ, (2.1.90)

where the sum µ is over all partitions obtained from λ by adding a total of r boxes to the rows,
but with no two boxes in the same column. That is those µ = (µ1, µ2, . . . ) such that

µ1 ≥ λ1 ≥ µ2 ≥ λ2 ≥ · · · ≥ 0. (2.1.91)

For example,
S(3,1)S(2) = S(5,1) + S(4,2) + S(4,1,1) + S(3,3) + S(3,2,1), (2.1.92)

which can be diagrammatically seen as

(2.1.93)
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Likewise,
SλS(1r) =

∑
ν

Sν , (2.1.94)

where partitions ν are obtained from λ by adding r boxes such that no two boxes are added
in the same row.

The Littlewood-Richardson rule tells how to multiply two Schur functions Sλ and Sµ for
arbitrary λ and µ. More precisely,

SλSµ =
∑
ν

cνλµSν , (2.1.95)

where cνλµ are non-negative integers and cνλµ = 0 unless |ν| = |λ| + |µ| with µ, λ ⊆ ν. The
coefficients cνλµ count the number of ways of expanding the Young diagram of λ to the Young
diagram of ν by a strict µ expansion. A µ expansion of a Young diagram is obtained by first
adding µ1 boxes according to Piere’s description, and putting 1 in each of these µ1 boxes; then
adding µ2 boxes by putting 2 and so on. The expansion is complete when the last entry of
µ, say µk, is added with integer k. The expansion is strict when the following condition is
satisfied: If the integers in the boxes are listed from left to right starting from the top row and
going down, then each integer a between 1 and k − 1 appears as many times as the the next
integer a+ 1 among the first b entries for any b between 1 and |µ|.

For example,

S(2,1)S(2,1) = S(4,2) + S(4,1,1) + S(32) + 2S(3,2,1) + S(3,1,1,1) + S(23) + S(2,2,1,1). (2.1.96)

The above product S(2,1)S(2,1) can be computed by listing the (2, 1)−expansion of the Young
diagram of (2, 1).

1 1
2

1 1

2

1
1 2

1
1

2

1
2

1

1

1
2

1
1 2

1
1
2

(2.1.97)

The coefficients cνλµ also have the symmetries

cνλµ = cνµλ = cν
′
λ′µ′ . (2.1.98)

The functions Mλ, Eλ, Hλ, Pλ, and Sλ are the most important and useful functions for
our purposes. In the next section, we give some properties satisfied by these polynomials.

47



2.1.3 Orthogonality

Define a scalar product on Λ by imposing the condition that the bases (Mλ) and (Hλ) should
be orthogonal with respect to each other:

〈Mλ, Hµ〉 = δλµ, (2.1.99)

where λ and µ are any two partitions and δλµ is a Kronecker delta.

Proposition 2.1.18. Let xi and yj, j = 1, . . . , n, be any two sequences of independent vari-
ables. Let (vλ) and (wλ), indexed by partitions, be a Q−basis of Λ. Then the following condi-
tions are equivalent [182]:

(i) 〈vλ, wµ〉 = δλµ, ∀λ, µ. (2.1.100)

(ii)
∑
λ

vλ(x)wλ(y) =
∏
j,k

1

1− xjyk
. (2.1.101)

Before proving Prop. 2.1.18, we pause to gather the required identities.

Proposition 2.1.19 (Cauchy determinant). We have

det

(
1

1− xjyk

)
j,k=1,...,n

=
∆(x)∆(y)∏n

j,k=1(1− xjyk)
. (2.1.102)

Proof. We begin with the determinant in the L.H.S. Subtract the first row from the remaining
n− 1 rows by noting that

1

1− xjyk
− 1

1− x1yk
=

xj − x1

1− x1yk

yk
1− xjyk

. (2.1.103)

Factor out the common terms, and subtract the first column from the remaining columns by
noting that

yk
1− xjyk

− y1

1− xjy1
=

yk − y1

1− xjy1

1

1− xjyk
. (2.1.104)

After factoring out the common terms, we are left with a determinant whose first row is
(1, 0, . . . , 0) and the entries in the lower right corner being same as the original matrix entries.
The proposition can be proved inductively by repeating this process. �

Proposition 2.1.20 (Cauchy Identity). We have

(i)
∏
j,k

1

1− xjyk
=
∑
λ

1

zλ
Pλ(x)Pλ(y) (2.1.105)

(ii)
∏
j,k

1

1− xjyk
=
∑
λ

Hλ(x)Mλ(y) (2.1.106)

(iii)
∏
j,k

1

1− xjyk
=
∑
λ

Sλ(x)Sλ(y) (2.1.107)
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Proof. (i) Denote xy to be the sequence of variables xiyj , i, j = 1, 2 . . . . Note that

pr(xy) =
∑
i,j

(xiyj)
r = pr(x)pr(y), (2.1.108)

which implies
Pλ(xy) = Pλ(x)Pλ(y). (2.1.109)

Recall
hr =

∑
λ`r

z−1
λ Pλ, (2.1.110)

and
H(t) =

∑
r

hrt
r =

∏
j

1

1− xjt
. (2.1.111)

By setting t = 1,

∏
j,k

1

1− xjyk
=
∑
r

hr(xy)

=
∑
λ

z−1
λ Pλ(xy)∑

λ

z−1
λ Pλ(x)Pλ(y).

(2.1.112)

(ii) Using (2.1.38), we have

∏
j,k

1

1− xjyk
=
∏
k

H(yk) =
∏
k

∑
j

hj(x)yjk

=
∑
λ

Hλ(x)Mλ(y)

=
∑
λ

Mλ(x)Hλ(y)

(2.1.113)

(iii) This is the most useful and important result among the listed identities. Here we give
three different proofs of (2.1.107) by using some of the definitions and tools introduced so far.
Representation-theoretic-proof: Using the orthogonality of the characters of the symmetric
group and (2.1.82),

∏
j,k

1

1− xjyk
=
∑
λ

1

zλ
Pλ(x)Pλ(y)

=
∑
λ

∑
µ,ν

1

zλ
χµλχ

ν
λSµ(x)Sν(y)

=
∑
µ

Sµ(x)Sµ(y).

(2.1.114)

Symmetric-function-theoretic-proof: First consider the case when the number of variables is
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finite, say n. Let δ = (n− 1, n− 2, . . . , 0), and for any partition λ let

aλ = det(x
λj
j ). (2.1.115)

Clearly
Sλ =

aλ+δ

aδ
, (2.1.116)

where λ+ δ is a partition whose parts are obtained by summing the individual parts of λ and
δ,

λ+ δ = (λ1 + n− 1, λ2 + n− 2, . . . , λn). (2.1.117)

For an element σ ∈ Sn, denote σ · λ to be the permutation of the entries of λ. We have,

aσ·λ = sgn(σ)aλ, (2.1.118)

aλ(y) =
∑
σ∈Sn

sgn(σ)Y σ·λ, (2.1.119)

where Y λ is given in (2.1.30). Recall the first Jacobi-Trudi identity

Sλ =
aλ+δ

aδ
= det[hλi−i+j ]. (2.1.120)

Therefore for α = λ+ δ,

aα = aδ det[hαi−n+j ] = aδ
∑
σ∈Sn

sgn(σ)Hα−σ·δ. (2.1.121)

By using (2.1.106), (2.1.119) and (2.1.121), we obtain

aδ(x)aδ(y)

n∏
i,j=1

1

1− xjyk
= aδ(x)aδ(y)

∑
µ

Hµ(x)Mµ(y)

= aδ(x)
∑
σ∈Sn

∑
µ

sgn(σ)Hµ(x)Y µ+σ·δ

= aδ(x)
∑
σ∈Sn

∑
ν

sgn(σ)Hν−σ·δ(x)Y ν

=
∑
ν

aν(x)Y ν .

(2.1.122)

Using (2.1.118), the sum in the last line is equal to∑
α

aα(x)aα(y) (2.1.123)

for some α such that α1 > α2 > · · · > αn. By writing α = λ+ δ, we arrive at

aδ(x)aδ(y)

n∏
j,k=1

1

1− xjyk
=
∑
λ

aλ+δ(x)aλ+δ(y). (2.1.124)

Now letting n→∞ proves the statement.
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Algebraic proof: Start with the identity (2.1.102) and expand the entries of the determinant
in the L.H.S. as a formal series in x and y variables:

(1− xjyk)−1 = 1 + xjyk + x2
jy

2
k + . . . . (2.1.125)

The coefficient of Y γ , for some γ such that γ1 > γ2 > . . . , in the determinant is aγ(x) where
aγ is the same as in (2.1.115). By the symmetry of the x and y variables we have

det

(
1

1− xjyk

)
= det(1 + xjyk + x2

jy
2
k + . . . )

=
∑
γ

det(x
γj
k ) det(y

γj
k )

=
∑
γ

aγ(x)aγ(y),

(2.1.126)

Therefore,

det

(
1

1− xjyk

)
j,k=1,...,n

=
aδ(x)aδ(y)∏n
j,k=1(1− xjyk)

=
∑
γ

aγ(x)aγ(y), (2.1.127)

Writing γ = λ+ δ for some partition λ and rearranging the above equation proves the propo-
sition. �

We are now ready to prove Prop. 2.1.18.

Proof of Prop. 2.1.18. Let

vλ =
∑
α

aλαMα, wµ =
∑
β

bµβHβ. (2.1.128)

Using (2.1.99), the inner product of vλ and wµ is

〈vλ, wµ〉 =
∑
α

aλαbµα, (2.1.129)

Therefore (2.1.100) is equivalent to ∑
α

aλαbµα = δλµ. (2.1.130)

Using (2.1.106), the identity in (ii) is equal to∑
λ

vλ(x)wλ(y) =
∑
α

Hα(x)Mα(y). (2.1.131)

But, we have that ∑
λ

vλ(x)wλ(y) =
∑
λ

∑
αβ

aλαbλβHα(x)Mβ(y) (2.1.132)
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By comparing (2.1.131) and (2.1.132),∑
λ

aλαbλβ = δαβ, (2.1.133)

which is equivalent to (2.1.130). Therefore, (2.1.100) is equivalent to (2.1.101). �

Proposition 2.1.21 (Dual Cauchy identity). By applying the involution ω to the symmetric
functions in x variables in (2.1.105), (2.1.106) and (2.1.107),

(i)
∏
j,k

(1 + xjyk) =
∑
λ

1

zλ
(−1)|λ|−l(λ)Pλ(x)Pλ(y) (2.1.134)

(ii)
∏
j,k

(1 + xjyk) =
∑
λ

Eλ(x)Mλ(y) =
∑
λ

Mλ(x)Eλ(y) (2.1.135)

(iii)
∏
j,k

(1 + xjyk) =
∑
λ

Sλ(x)Sλ′(y) (2.1.136)

Next, we prove a version of dual Cauchy identity, an essential tool in studying characteristic
polynomials.

Proposition 2.1.22. We have [182]

p∏
i=1

q∏
j=1

(ti − xj) =
∑
λ⊆(qp)

(−1)|λ̃|Sλ(t)Sλ̃(x), (2.1.137)

where λ̃ = (p− λ′q, . . . , p− λ′1).

Proof. For the finite set of variables t1, . . . , tp and y1, . . . , yq, the identity in (2.1.136) becomes

p∏
i=1

q∏
j=1

(1 + tiyj) =
∑
λ⊆(qp)

Sλ(t)Sλ′(y). (2.1.138)

By replacing yj with −1/xj and denoting

1
x

=

(
1

x1
, . . . ,

1

xq

)
, (2.1.139)

we obtain
p∏
i=1

q∏
j=1

(ti − xj) = (−1)pq
q∏
j=1

xpj
∑
λ

Sλ(t)Sλ′(-1/x). (2.1.140)

Moreover,

∆(-1/x) =
1∏q

j=1 x
q−1
j

∆(x). (2.1.141)
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Thus,

(−1)pq
q∏
j=1

xpjSλ′(-1/x) =

∏q
j=1 x

p
j

∆(-1/x)
det

((
−1

xl

)λ′m+q−m
)
l,m=1,...,q

=
(−1)|λ|+

q(q−1)
2

+pq

∆(x)

∣∣∣∣∣∣∣∣
x
p−λ′1
1 . . . x

p−λ′1
q

...
...

x
p+q−λ′q−1

1 . . . x
p+q−λ′q−1
q

∣∣∣∣∣∣∣∣
= (−1)|λ̃|Sλ̃(x).

(2.1.142)

Combining (2.1.140), (2.1.141) and (2.1.142) proves the proposition. �

The stated results are just a few among several other properties of symmetric functions.
Interested readers can refer to [182] for more details.

2.1.4 Multivariate orthogonal polynomials

The Schur polynomials can be generalised by replacing the monomials in the matrix entries
with polynomials. Define

Φµ(x) :=
1

∆(x)

∣∣∣∣∣∣∣∣∣∣
ϕµ1+n−1(x1) ϕµ1+n−1(x2) . . . ϕµ1+n−1(xn)

ϕµ2+n−2(x1) ϕµ2+n−2(x2) . . . ϕµ2+n−2(xn)
...

...
...

ϕµn(x1) ϕµn(x2) . . . ϕµn(xn)

∣∣∣∣∣∣∣∣∣∣
, (2.1.143)

where l(µ) ≤ n and ϕi, i = 0, 1, . . . , are a sequence of polynomials. If l(µ) < n, we append a
sequence of zeros to µ such that µj = 0 for j = l(µ) + 1, . . . , n. When l(µ) > n,

Φµ(x) := 0. (2.1.144)

These Φµ are called generalised Schur polynomials [213]. For example, Choose ϕj(x) to be

ϕj(x) =

j∑
k=0

ajkx
k (2.1.145)

for some coefficients ajk. Then,

Φ(2)(x1, x2, x3) = a11a00

[
a44(x2

1 + x2
2 + x2

3 + x1x2 + x2x3 + x1x3)

+a43(x1 + x2 + x3) + a42] ,

Φ(1,1)(x1, x2, x3) = a00 [a33a22(x1x2 + x2x3 + x1x3) + a33a21(x1 + x2 + x3)

+a21a32 − a22a31] .

(2.1.146)

When ϕj(x) are chosen to be a sequence of polynomials orthogonal with respect to a weight
w(x), then the Φµ are also called multivariate orthogonal polynomials (MOPs) [21,22]. Several
properties such as the Cauchy identity and the dual Cauchy identity can also be generalised
to MOPs.
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We begin with the generalised Jacobi-Trudi identity satisfied by the Φµ. Let ϕj(x) satisfy
a three-term recurrence relation

xϕj(x) = ϕj+1(x) + ajϕj(x) + bjϕj−1(x) (2.1.147)

with ϕ0 = 1 and ϕ−j = 0 for j ∈ N. For the sequence of coefficients aj and bj , define the
polynomials h(j)

r (x1, . . . , xn) recursively by

h(j+1)
r = h

(j)
r+1 + ar+n−1h

(j)
r + br+n−1h

(j)
r−1 (2.1.148)

with the initial data

h(0)
r = Φr(x) =

1

∆(x)

∣∣∣∣∣∣∣∣∣∣
ϕr+n−1(x1) ϕr+n−1(x2) . . . ϕr+n−1(xn)

xn−2
1 xn−2

2 . . . xn−2
n

...
...

...
1 1 . . . 1

∣∣∣∣∣∣∣∣∣∣
. (2.1.149)

Note that the integers j and r can be less than zero, but it can be checked that h(j)
r = 0 if

r + j < 0. For the recursive relation (2.1.148) to be well-defined, extend the coefficients ai
and bi arbitrarily to negative i. Whenever j ≤ r + 2n − 2, the h(j)

r does not depend on the
coefficients ai and bi extended to the negative i.

Lemma 2.1.23. We have [213]

h(j)
r (x1, . . . , xn)− x1h

(j−1)
r (x1, . . . , xn) = h

(j−1)
r+1 (x2, . . . , xn) (2.1.150)

Proof. First set j = 1. By using (2.1.147) and (2.1.148), the L.H.S. of (2.1.150) is

h(1)
r (x1, . . . , xn)− x1h

(0)
r (x1, . . . , xn)

=h
(0)
r+1(x1, . . . , xn) + ar+n−1h

(0)
r (x1, . . . , xn) + br+n−1h

(0)
r−1(x1, . . . , xn)

=
1

∆(x)

∣∣∣∣∣∣∣∣∣∣
0 (x2 − x1)ϕr+n−1(x2) . . . (xn − x1)ϕr+n−1(xn)

ϕn−2(x1) ϕn−2(x2) . . . ϕn−2(xn)
...

...
...

1 1 . . . 1

∣∣∣∣∣∣∣∣∣∣
(2.1.151)
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Subtracting the first column from the remaining columns give

1

∆(x1, . . . , xn)

∣∣∣∣∣∣∣∣∣∣
0 (x2 − x1)ϕr+n−1(x2) . . . (xn − x1)ϕr+n−1(xn)

ϕn−2(x1) ϕn−2(x2)− ϕn−2(x1) . . . ϕn−2(xn)− ϕn−2(x1)
...

...
...

1 0 . . . 0

∣∣∣∣∣∣∣∣∣∣
=

1

∆(x2, . . . , xn)

∣∣∣∣∣∣∣∣∣∣
ϕr+n−1(x2) . . . ϕr+n−1(xn)

ϕn−2(x2)−ϕn−2(x1)
x2−x1 . . . ϕn−2(xn)−ϕn−2(x1)

xn−x1
...

...
ϕ1(x2)−ϕ1(x1)

x2−x1 . . . ϕ1(xn)−ϕ1(x1)
xn−x1

∣∣∣∣∣∣∣∣∣∣
.

(2.1.152)

The determinant in the last can be simplified further. The entry

ϕk(xl)− ϕk(xm)

xl − xm
(2.1.153)

is a polynomial of degree k− 1 in xl and xm. Doing the rows operations on the last n− 2 rows
simplifies the determinant to

h
(0)
r+1(x2, . . . , xn). (2.1.154)

Using (2.1.148), the lemma can be proved by induction in j. �

Proposition 2.1.24. The generalised Jacobi-Trudi formula is [213]

Φµ =

∣∣∣∣∣∣∣∣∣∣
h

(0)
µ1 h

(1)
µ1 . . . h

(l−1)
µ1

h
(0)
µ2−1 h

(1)
µ2−1 . . . h

(l−1)
µ2−1

...
...

...
h

(0)
µl−l+1 h

(1)
µl−l+1 . . . h

(l−1)
µl−l+1

∣∣∣∣∣∣∣∣∣∣
, (2.1.155)

where l = l(µ).

Proof. To make the proof more readable, we use the following notation to denote the permu-
tation of variables xj :

{f(x1, . . . , xn)} =
∑
σ∈Sn

sgn(σ)f(xσ(1), . . . , xσ(n)). (2.1.156)

By the definition of h(0)
r we have

h(0)
r (x1, . . . , xn)∆(x1, . . . , xn) = {h(0)

r xn−1
1 . . . x0

n} = {φr+n−1(x1)xn−2
2 . . . x0

n}. (2.1.157)

Using (2.1.147) and (2.1.148), it can be shown by induction in j that

{h(j)
r xn−1

1 . . . x0
n} = {xj1φr+n−1(x1)xn−2

2 . . . x0
n} (2.1.158)
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for j ≤ r + 2n− 2. Now, consider

∆(x1, . . . , xn) det(h
(k)
µj−j+1)j,k=0,...,l(µ)−1

=



∣∣∣∣∣∣∣∣∣∣
h

(0)
µ1 h

(1)
µ1 . . . h

(l−1)
µ1

h
(0)
µ2−1 h

(1)
µ2−1 . . . h

(l−1)
µ2−1

...
...

...
h

(0)
µl−l+1 h

(1)
µl−l+1 . . . h

(l−1)
µl−l+1,

∣∣∣∣∣∣∣∣∣∣
xn−1

1 . . . x0
n



=



∣∣∣∣∣∣∣∣∣∣
φµ1+n−1(x1) x1φµ1+n−1(x1) . . . xl−1

1 φµ1+n−1(x1)

h
(0)
µ2−1(x1, . . . , xn) h

(1)
µ2−1(x1, . . . , xn) . . . h

(l−1)
µ2−1(x1, . . . , xn)

...
...

...
h

(0)
µl−l+1(x1, . . . , xn) h

(1)
µl−l+1(x1, . . . , xn) . . . h

(l−1)
µl−l+1(x1, . . . , xn),

∣∣∣∣∣∣∣∣∣∣
xn−2

2 . . . x0
n

 .

(2.1.159)

Except for the last column, multiply all the other column with x1 and subtract it from the
next column. Then, applying Lemma. 2.1.23 to all the rows except for the first row givesφµ1+n−1(x1)

∣∣∣∣∣∣∣∣
h

(0)
µ2 (x2, . . . , xn) . . . h

(l−2)
µ2 (x2, . . . , xn)

...
...

h
(0)
µl−l+2(x2, . . . , xn) . . . h

(l−1)
µl−l+2(x2, . . . , xn)

∣∣∣∣∣∣∣∣x
n−2
2 . . . x0

n

 . (2.1.160)

By induction this simplifies to

{φµ1+n−1(x1)φµ2+n−2(x2) . . . φµn(xn)} . (2.1.161)

�

Proposition 2.1.25 (Laplace Expansion). Let Ξp,q consist of all permutations σ ∈ Sp+q such
that

σ(1) < · · · < σ(p), σ(p+ 1) < · · · < σ(p+ q). (2.1.162)

Let A = aij be a (p+ q)× (p+ q) matrix, then the Laplace expansion in the first p rows can be
written as

det[aij ] =
∑
σ∈Ξp,q

sgn(σ)

∣∣∣∣∣∣∣∣
a1,σ(1) . . . a1,σ(p)

...
...

ap,σ(1) . . . ap,σ(p)

∣∣∣∣∣∣∣∣×
∣∣∣∣∣∣∣∣
ap+1,σ(p+1) . . . ap+1,σ(p+q)

...
...

ap+q,σ(p+1) . . . ap+q,σ(p+q)

∣∣∣∣∣∣∣∣ . (2.1.163)

Proposition 2.1.26 (Generalised dual Cauchy identity). We have [165]

p∏
i=1

q∏
j=1

(ti − xj) =
∑
λ⊆(qp)

(−1)|λ̃|Φλ(t)Φλ̃(x). (2.1.164)

Here λ̃ = (p− λ′q, . . . , p− λ′1).

Proof. Assume that ϕj are monic. Using the definition of generalised polynomials, Proposi-
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tion 2.1.25 and Proposition 2.1.12, the right-hand side of (2.1.164) can be written as

1

∆p(t)
1

∆q(x)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕp+q−1(t1) ϕp+q−2(t1) . . . 1
...

...
...

ϕp+q−1(tp) ϕp+q−2(tp) . . . 1

ϕp+q−1(x1) ϕp+q−2(x1) . . . 1
...

...
...

ϕp+q−1(xq) ϕp+q−2(xq) . . . 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.1.165)

Now, using column operations we arrive at

1

∆p(t)
1

∆q(x)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

tp+q−1
1 tp+q−2

1 . . . 1
...

...
...

tp+q−1
p tp+q−2

p . . . 1

xp+q−1
1 xp+q−2

1 . . . 1
...

...
...

xp+q−1
q xp+q−2

q . . . 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.1.166)

The determinant in (2.1.166) can be evaluated using the formula for the Vandermonde deter-
minant. We have ∏

1≤i<j≤p
(ti − tj)

∏
1≤i<j≤q

(xi − xj)
p∏
i=1

q∏
j=1

(ti − xj). (2.1.167)

Combining eqs. (2.1.165)–(2.1.167) proves the lemma. �

If ϕj(−x) = (−1)jϕj(x), as for Hermite polynomials, then

Φµ(−x1, . . . ,−xN ) = (−1)|µ|Φµ(x1, . . . , xN ). (2.1.168)

It follows that (2.1.164) becomes

p∏
i=1

q∏
j=1

(ti + xj) =
∑
λ⊆(qp)

Φλ(t1, . . . , tp)Φλ̃(x1, . . . , xq). (2.1.169)

The proof of Prop. 2.1.26 also gives an alternative way to prove the classical dual Cauchy
identity when the polynomials in (2.1.165) are replaced with monomials.

Polynomials Φµ can be expressed as a linear combination of Schur polynomials and other
classical symmetric polynomials. For example

Φµ(x) =
∑
ν⊆µ

κµνSν(x). (2.1.170)

We give the explicit expressions for the coefficients κµν in Ch. 3, Sec. 3.4. For a well-defined
weight w(x), polynomials Φµ satisfy several interesting properties similar to their univariate
analogues. In Ch. 3, we will mention a few of these properties, such as the orthogonality
relations and differential equations satisfied by Φµ.
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Because the Schur polynomials and the multivariate orthogonal polynomials can be ex-
pressed as a ratio of determinants, both Sλ and Φλ defined in (2.1.69) and (2.1.143) are
specific to β = 2 ensembles. Schur polynomials generalised to other values of β are called Jack
polynomials C(α)

λ , α = 2/β, which are homogeneous symmetric polynomials that satisfy the
following properties:

— We say that the monomial xλ11 . . . xλll is of higher weight than xµ11 . . . xµll if λ > µ. The
polynomial C(α)

λ (x) has the form

C
(α)
λ (x) = cλx

λ1
1 . . . xλll + monomials with lower weight, (2.1.171)

where cλ is a constant and the monomial xλ11 . . . xλll is of highest weight.

— The normalisation of C(α)
λ is fixed by the condition

(x1 + · · ·+ xn)j =
∑
λ`j

l(λ)≤n

C
(α)
λ (x1, . . . , xn). (2.1.172)

— The polynomial C(α)
λ (x1, . . . , xn) is an eigenfunction of the differential operator

n∑
j=1

x2
j

∂2

∂x2
j

+
2

α

∑
j 6=k

x2
j

xj − xk
∂

∂xj
. (2.1.173)

All the above conditions define the Jack polynomial C(α)
λ uniquely. The differential operator

in (2.1.173) is the Hamiltonian of a Calogero-Sutherland-type quantum system [21]. The Jack
polynomials that we defined are referred as ’C’ normalised. There are other normalisations
for Jack polynomials, namely the ’P’ and ’J’ normalisations. In the ’J’ normalisation, the
coefficient of the monomial x1 . . . xn in C(α)

λ (x) is n! for |λ| = n. In the ’P’ normalisation, the
coefficient of the monomial of the the highest weight should be 1. For a detailed description
of different normalisations and their uses, the reader is encouraged to refer to [77].

Similar to the Schur polynomials, multivariate orthogonal polynomials can also be defined
for arbitrary β. Throughout this work, we are interested when ϕn(x) in (2.1.143) is one of the
Hermite, Laguerre or Jacobi polynomials. The classical Hermite Hn(x), Laguerre L(γ)

n (x) and
Jacobi polynomials J (γ1,γ2)

n (x) satisfy the differential equations

d2

dx2
Hn(x)− x d

dx
Hn(x) = −nHn(x), (2.1.174)

x
d2

dx2
L(γ)
n (x) + (1 + γ − x)L(γ)

n (x) = −nL(γ)
n (x), (2.1.175)

x(1− x)
d2

dx2
J (γ1,γ2)
n (x) + (γ1 + 1− x(γ1 + γ2 + 2))

d
dx
J (γ1,γ2)
n (x)

= −n(n+ γ1 + γ2 + 1)J (γ1,γ2)
n (x). (2.1.176)

Likewise, the multivariate Hermite, Laguerre and Jacobi polynomials defined for any β are the
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polynomial part of the eigenfunctions of the operators

H(H) =
N∑
j=1

(
∂2

∂x2
j

− xj
∂

∂xj

)
+ 2

N∑
j,k=1
k 6=j

1

xj − xk
∂

∂xj
, (2.1.177)

H(L) =
N∑
j=1

(
xj

∂2

∂x2
j

+ (γ − xj + 1)
∂

∂xj

)
+ 2

N∑
j,k=1
k 6=j

xj
xj − xk

∂

∂xj
, (2.1.178)

H(J) =
N∑
j=1

(
xj(1− xj)

∂2

∂x2
j

+ (γ1 + 1− xj(γ1 + γ2 + 2))
∂

∂xj

)
+ 2

N∑
j,k=1
k 6=j

xj(1− xj)
xj − xk

∂

∂xj
.

(2.1.179)

No explicit expressions for MOPs are available for β 6= 2, but they can be defined using
recursive relations as indicated in [21,22]. In [77], Dumitriu, Edelman and Shuman developed
a Maple package to compute the multivariate orthogonal polynomials for any β.
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Chapter 3

Mixed Moments of Hermitian
ensembles

The basis of this chapter is the paper Symmetric function theory and unitary invariant en-
sembles [165] which is a joint work with J. P. Keating and F. Mezzadri. The present author
entirely carried the project with the advisement from J. P. Keating and F. Mezzadri.

Most of the material in this chapter closely follows [165] except for a few changes. This
chapter is expanded, and more examples are included for better readability. An additional
section, Sec. 3.3, is added in the thesis by the present author for contextualising and a better
understanding of the original results. The background section in [165] is relocated to Ch. 2
where all the necessary tools are introduced. The last section in [165] is moved to Ch. 4 as it
is an application of the results given in this chapter and involves a slightly different topic. The
current text also incorporates one of the appendices in [165].

3.1 Introduction

Many important quantities in random matrix theory, such as the joint moments of traces and
the joint moments of characteristic polynomials, can be calculated exactly for matrices drawn
from the CUE and the other circular ensembles related to the classical compact groups using
representation theory and the theory of symmetric polynomials. In the case of joint moments
of the traces, this approach has proved highly successful, as in, the work of Diaconis and
Shahshahani [72]. For example, for the unitary group we have the following theorem.

Theorem 3.1.1. Consider two sets of positive integers a = (a1, a2, . . . , ak), b = (b1, b2, . . . , bk),
and let Z1, . . . , Zk be independent standard complex normal random variables. For a Haar dis-
tributed unitary matrix M of size N , and for N ≥ max(

∑
j jaj ,

∑
j jbj) [72],

EU(N)

 k∏
j=1

(TrM j)aj (TrM j)bj

 =

k∏
j=1

jajaj ! δab = E

 k∏
j=1

(
√
jZj)

aj (
√
j Zj)

bj

 . (3.1.1)

It is quite remarkable that the mixed moments of traces are exactly equal to that of
complex Gaussians for any finite matrix size N . Similarly, the joint moments of characteristic
polynomials were calculated exactly in terms of Schur polynomials by Bump and Gamburd [46],

60



leading to expressions equivalent to those obtained using the Selberg integral and related
techniques [20, 52,171,172].

Theorem 3.1.2 (Bump and Gamburd [46]). If K,L ∈ N and a1, . . . , aK+L ∈ C, then

EU(N)

 L∏
j=1

det(I + a−1
j M †)

K∏
l=1

det(I + aL+lM)

 =
S(NL)(a1, . . . , aK+L)∏L

l=1 a
N
l

. (3.1.2)

To prove the above theorem, Bump and Gamburd expressed the products of characteristic
polynomials, which are symmetric polynomials in the eigenvalues and variables aj , in the Schur
basis and used the orthogonality of Schur polynomials. Our aim here is to develop a parallel
theory for the classical unitary invariant Hermitian ensembles of random matrices, in particular
for the GUE, LUE, and JUE.

Characteristic polynomials and their asymptotics have been well studied for Hermitian
matrices using orthogonal polynomials, super-symmetric techniques, Selberg and Itzykson-
Zuber integrals, see, for example, [19,36,102,118–120]. Other properties including universality
[39,224], and ensembles with external sources [99,108] have also been considered. Here we give
a symmetric-function-theoretic approach similar to that established by Bump and Gamburd
[46], using multivariate orthogonal polynomials [21, 22] introduced in Ch. 2, to compute the
correlation functions of characteristic polynomials for β = 2 ensembles.

Diaconis and Shashahani [72] used group-theoretic arguments and symmetric functions
to calculate the joint moments of traces of matrices for classical compact groups. Here, using
multivariate orthogonal polynomials, we develop a similar approach to calculate joint moments
of traces for Hermitian ensembles, leading to closed form expressions using combinatorial and
symmetric-function-theoretic methods.

Moments of Hermitian ensembles and their correlators have recently received considerable
attention as discussed in Sec. 1.8 of Ch. 1. Cunden et al. [58] showed that as a function
of their order, the moments are hypergeometric orthogonal polynomials. Cunden, Dahlqvist
and O’Connell [57] showed that the cumulants of the Laguerre ensemble admit an asymptotic
expansion in inverse powers of N of whose coefficients are the Hurwitz numbers. Dubrovin
and Yang [75] computed the cumulant generating function for the GUE, while Gisonni, Grava
and Ruzza calculated the generating function of the cumulants for the LUE in [127] and the
JUE in [126].

This chapter is structured as follows. In Sec. 3.2, we state the results for Hermitian en-
sembles. Since the inspiration behind this work are the results from the unitary group, we
discuss them in Sec. 3.3. After introducing the relevant symmetric polynomials in Sec. 3.4,
we discuss the change of basis among different symmetric functions in Sec. 3.5. Finally, we
calculate the correlations of characteristic polynomials in Sec. 3.6, and the joint moments of
traces in Sec. 3.7.
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3.2 Statements and results for Hermitian matrices

For a partition µ and a weight function w(x), the multivariate symmetric polynomials defined
in (2.1.143) satisfy the orthogonality relation

∫
Φµ(x1, . . . , xN )Φν(x1, . . . , xN )

∏
1≤i<j≤N

(xi − xj)2
N∏
j=1

w(xj) dxj = δµνCµ. (3.2.1)

Here the lengths of the partitions µ and ν are less than or equal to the number of variables
N , and Cµ is a constant which depends on N . These Φµ satisfy Prop. 2.1.26 which we recall
below.

Lemma 3.2.1. Let Φµ be multivariate polynomials given in (2.1.143) with leading coefficient
equal to 1. For λ ⊆ (qp), let λ̃ = (p− λ′q, . . . , p− λ′1). Then, for p, q ∈ N,

p∏
i=1

q∏
j=1

(ti − xj) =
∑
λ⊆(qp)

(−1)|λ̃|Φλ(t1, . . . , tp)Φλ̃(x1, . . . , xq). (3.2.2)

This lemma appears in [98, p.625] for the Jacobi multivariate polynomials for arbitrary β.
In Prop. 2.1.26, we present a different proof for β = 2, which holds for the Hermite and Laguerre
polynomials, too. A key difference in our approach is that we have closed-form expressions for
multivariate polynomials as determinants of univariate classical orthogonal polynomials, while
in the previous literature their construction was based on recurrence relations. This means
that in this thesis formula (2.1.164) becomes a powerful tool and plays a role analogous to that
of the classical dual Cauchy identity for U(N).

We focus in particular on when w(x) in (3.2.1) is a Gaussian, Laguerre and Jacobi weight:

w(x) =


e−

x2

2 , x ∈ R, Gaussian,

xγe−x, x ∈ R+, γ > −1, Laguerre,

xγ1(1− x)γ2 , x ∈ [0, 1], γ1, γ2 > −1, Jacobi.

(3.2.3)

The classical polynomials orthogonal with respect to these weights satisfy∫
R
Hm(x)Hn(x)e−

x2

2 dx =
√

2πm!δmn, (3.2.4a)∫
R+

L(γ)
m L(γ)

n xγe−x dx =
Γ(n+ γ + 1)

Γ(n+ 1)
δnm, (3.2.4b)∫ 1

0
J (γ1,γ2)
n (x)J (γ1,γ2)

m (x)xγ1(1− x)γ2 dx

=
1

(2n+ γ1 + γ2 + 1)

Γ(n+ γ1 + 1)Γ(n+ γ2 + 1)

n!Γ(n+ γ1 + γ2 + 1)
δmn. (3.2.4c)

The identity in (2.1.164) gives a compact way to calculate the correlation functions and mo-
ments of characteristic polynomials of unitary ensembles using symmetric functions. The
results are as follows.
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Theorem 3.2.2. Let M be an N ×N GUE, LUE or JUE matrix and t1, . . . , tp ∈ C. Then,

(a) E(H)
N

[ p∏
j=1

det(tj −M)
]

= H(Np)(t1, . . . , tp)

(b) E(L)
N

[ p∏
j=1

det(tj −M)
]

=

p+N−1∏
j=N

(−1)jj!

L(γ)
(Np)(t1, . . . , tp)

(c) E(J)
N

[ p∏
j=1

det(tj −M)
]

=

p+N−1∏
j=N

(−1)jj!
Γ(j + γ1 + γ2 + 1)

Γ(2j + γ1 + γ2 + 1)

J (γ1,γ2)
(Np) (t1, . . . , tp)

(3.2.5)

Here Hλ, Lγλ, J
(γ1,γ2)
λ are multivariate Hermite, Laguerre and Jacobi polynomials orthog-

onal with respect to the generalised weights in (3.2.1).
Similar to the case of the classical compact groups, correlations of traces of Hermitian

ensembles can be calculated using the theory of symmetric functions. For a partition λ =

(λ1, λ2, . . . , λN ),
∑

j λj ≤ N , define

Cλ(N) :=
N∏
j=1

(λj +N − j)!
(N − j)!

,

Gλ(N, γ) :=

N∏
j=1

Γ(λj +N − j + γ + 1).

(3.2.6)

The constants Cλ(N) and Gλ(N, γ) have several interesting combinatorial interpretations
which are discussed in Sec. 3.5.

Theorem 3.2.3. Let M be an N ×N GUE, LUE or JUE matrix and let µ = (µ1, . . . , µl) be
a partition such that |µ| =

∑l
j=1 µl ≤ N . Then,

(a)

E(H)
N

[ l∏
j=1

TrMµj
]

=


1

2
|µ|
2
|µ|
2

!

∑
λ`|µ| χ

λ
(2|λ|/2)

χλµCλ(N), |µ| is even,

0, otherwise,

(3.2.7)

which is a polynomial in N .

(b)

E(L)
N

[ l∏
j=1

TrMµj
]

=
1

|µ|!
∑
λ`|µ|

Gλ(N, γ)

G0(N, γ)
Cλ(N)χλ

(1|λ|)χ
λ
µ, (3.2.8)

which is a polynomial in N .

(c)

E(J)
N

[ l∏
j=1

TrMµj
]

=
∑
λ`|µ|

Gλ(N, γ1)

G0(N, γ1)
Cλ(N)χλµD

(J)
λ0 , (3.2.9)
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where

D
(J)
λ0 = det

[
1λi−i+j≥0

1

(λi − i+ j)!

Γ(2N − 2j + γ1 + γ2 + 2)

Γ(2N + λi − i− j + γ1 + γ2 + 2)

]
1≤i,j≤N

. (3.2.10)

In the above equations, χλµ are the characters of the symmetric group Sm, m = |λ| = |µ|,
associated to the λth irreducible representation on the µth conjugacy class.

3.3 Results for the Unitary group

The aim of this section is two-fold. Firstly, we highlight the role of symmetric functions to
study correlations and moments of random matrices. Secondly, to understand how the theory
can be generalised to Hermitian ensembles.

Here we review the results of the unitary group by Diaconis and Shashahani; Bump and
Gamburd. They take a representation theoretic approach to calculate the correlations of traces
and characteristic polynomials, and provide a combinatorial interpretation of these results. All
the tools required to prove Thm. 3.1.1 and Thm. 3.1.2 are already introduced in Ch. 2. Any
additional results required are stated within this section.

Both Thm. 3.1.1 and Thm. 3.1.2 can be proved elegantly using the properties of Schur
polynomials. Let eiθ1 , . . . , eiθN be the eigenvalues of M ∈ U(N). Recall the definition of Schur
polynomials indexed by a partition λ,

Sλ(eiθ1 , . . . , eiθN ) =
det[ei(λk+N−k)θj ]1≤j,k≤N

det[ei(N−k)θj ]1≤j,k≤N
, (3.3.1)

for l(λ) ≤ N . If l(λ) < N , we append a sequence of zeros to the tail of λ so that

λ = (λ1, . . . , λl, 0, . . . , 0︸ ︷︷ ︸
N−l

). (3.3.2)

The crucial property of the Schur functions is that they are the characters of the unitary group.
We have the following proposition as a particular case of the Weyl character formula [246].

Proposition 3.3.1. Consider N ∈ N and a partition λ such that l(λ) ≤ N . For A ∈ GL(N,C)

with eigenvalues x1, . . . , xN , define χλ(A) = Sλ(x1, . . . , xN ). Then, the function χλ is the
character of the irreducible analytic representation of GL(N,C), and its restriction to U(N) is
also irreducible.

The Sλ(x1, . . . , xN ) is equal to 0 whenever l(λ) > N . Therefore, as long as λ runs over
partitions with N or fewer parts, we recover all the characters of U(N). Using the Weyl
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integration formula [241,242], the orthogonality relation for the Sλ is

EU(N)

[
Sλ(eiθ1 , . . . , eiθN )Sµ(e−iθ1 , . . . , e−iθN )

]
=

1

(2π)NN !

∫
[0,2π]N

Sλ(eiθ1 , . . . , eiθN )Sµ(e−iθ1 , . . . , e−iθN )
∏

1≤j<k≤N
|eiθj − eiθk |2 dθ1 . . . dθN

=δλµ.

(3.3.3)

Next, we comment on two different ways of proving Thm. 3.1.1 to illustrate the versatility of
symmetric functions.

Proof of Thm. 3.1.1 (Method 1.) : Recall that the power sum polynomial in the eigenvalues is

pj(M) = pj(e
iθ1 , . . . , eiθN ) =

N∑
k=1

eijθk = TrM j . (3.3.4)

Thus, one has
k∏
j=1

(TrM j)aj (TrM j)
bj

= Pµ(M)Pν(M), (3.3.5)

for partitions µ = (1a1 . . . kak) and ν = (1b1 . . . kbk). Recall that the Pµ can be expanded in
the Schur basis as

Pµ =
∑
λ

χλµSλ, (3.3.6)

where χλµ are the characters of the symmetric group that satisfy∑
λ

χλµχ
λ
ν = zµδµν ,

∑
µ

1

zµ
χλµχ

ν
µ = δλν ,

(3.3.7)

with
zµ =

∏
j

jajaj !. (3.3.8)

Expanding Pµ and Pν in the Schur basis and using the orthogonality relation (3.3.3) gives zero
unless µ = ν. This is because

EU(N)

 k∏
j=1

(TrM j)aj (TrM j)
bj

 = EU(N)

[
Pµ(M)Pν(M)

]
=
∑
α

∑
β

χαµχ
β
νEU(N)

[
Sα(M)Sβ(M)

]

=
∑
α

χαµχ
α
ν =

k∏
j=1

jajaj !.

(3.3.9)

�
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In the next method, we re-derive (3.1.1) from the identities for Toeplitz determinants. A
Toeplitz determinant of size N with symbol f is defined by

DN (f) := det[f̂j−k]1≤j,k≤N , (3.3.10)

where f is an integrable function on the unit circle with Fourier coefficients

f̂j :=
1

2π

∫ 2π

0
f(eiθ)e−ijθ dθ, j = 0,±1,±2, . . . . (3.3.11)

Toeplitz determinants are intimately connected to random matrices, and are closely related to
polynomials orthogonal with respect to the weight f on the unit circle [227]. This connection
is best described by the following identity, sometimes called the Heine’s identity [186],

DN (f) = EU(N)

 N∏
j=1

f(eiθj )

 =
1

(2π)NN !

∫
[0,2π]N

∏
1≤j<k≤N

|eiθj − eiθk |2
N∏
j=1

f(eiθj ) dθj .

(3.3.12)

Proposition 3.3.2. Let Xl and Ym be two complex polynomials,

Xl(z) =
l∏

i=1

(1− aiz),

Ym(z) =
m∏
j=1

(1− bjz),
(3.3.13)

with |ai| < 1 and |bj | < 1 for every i, j. If l ≤ N or m ≤ N , then [26]

DN

(
1

Xl(eiθ)Ym(e−iθ)

)
=

l∏
i=1

m∏
j=1

1

1− aibj
. (3.3.14)

Proof. The Toeplitz structure of the determinant in (3.3.14) can be manipulated to prove the
proposition. Alternatively, it can be proved using symmetric functions and the representation
theory of U(N). Recall (2.1.107) from Prop. 2.1.20 in Ch. 2,

∏
j,k

1

1− xjyk
=
∑
λ

Sλ(x)Sλ(y). (3.3.15)
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Therefore, we see that

DN

(
1

Xl(eiθ)Ym(e−iθ)

)
= EU(N)

 l∏
p=1

m∏
q=1

N∏
r=1

1

(1− apeiθr)(1− bqe−iθr)


=
∑
µ,λ

Sλ(a)Sµ(b)EU(N)[Sλ(M)Sµ(M)]

=
∑
µ,λ

Sλ(a)Sµ(b)δλµ

=

l∏
i=1

m∏
j=1

1

1− aibj
.

(3.3.16)

�

Proof of Thm. 3.1.1 (Method 2.) : From (2.1.105) in Prop. 2.1.20, one has

∏
j

1

1− xjt
=
∑
n

tn
∑
λ`n

1

zλ
Pλ(x). (3.3.17)

Choose any two sets of variables x = (x1, . . . , xN ) and y = (y1, . . . , yN ). If xy denotes the
sequence of N2 variables xpyq, 1 ≤ p, q ≤ N , then

pj(xy) =
∑
p,q

(xpyq)
j = pj(x)pj(y). (3.3.18)

Consider t, s ∈ C such that |t| < 1 and |s| < 1. Therefore,

N∏
j,k=1

1

1− xjykt
=
∑
n

tn
∑
λ`n

1

zλ
Pλ(x)Pλ(y). (3.3.19)

If we let yk to be the eigenvalues of M , yk = eiθk , and xj to be the variables aj or bj , then

N∏
j,k=1

1

1− ajeiθkt
=
∑
n

tn
∑
λ`n

1

zλ
Pλ(a)Pλ(M), (3.3.20)

N∏
j,k=1

1

1− bje−iθks
=
∑
n

sn
∑
λ`n

1

zλ
Pλ(b)Pλ(M). (3.3.21)

According to Prop. 3.3.2, for the Toeplitz symbol

f(eiθ) =
N∏
j=1

1

(1− ajeiθt)(1− bje−iθs)
, (3.3.22)

the Toeplitz determinant is

DN (f) =

N∏
j,k=1

1

1− ajbkts
=
∑
n

(ts)n
∑
λ`n

1

zλ
Pλ(a)Pλ(b). (3.3.23)
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After (i) multiplying the identities in (3.3.20) and (3.3.21), and integrating over the Haar
measure of the unitary group, and (ii) subtracting the result from (3.3.23) gives∑

n,m≥0

tnsm
∑
λ`n

∑
µ`m

(
z−1
λ z−1

µ EU(N)

[
Pλ(M)Pµ(M)

]
− δλµz−1

λ

)
Pλ(a)Pµ(b) = 0. (3.3.24)

The above relation is valid as long as the Pλ forms a basis for symmetric polynomials of degree
|λ| in N variables. Therefore, we end up with

EU(N)

[
Pλ(M)Pµ(M)

]
= δλµzλ (3.3.25)

whenever |λ| ≤ N and |µ| ≤ N . �

In the above proof, Method 1 involves only the representation theory of U(N). On the other
hand, Method 2 connects the algebraic properties (Toeplitz determinants) and representation-
theoretic-properties (symmetric functions) of the unitary group. Next, we prove the results for
characteristic polynomials.

Proof of Thm. 3.1.2. We begin the proof by rewriting the L.H.S. of (3.1.2) as

EU(N)

 L∏
j=1

det(I + a−1
j M †)

K∏
l=1

det(I + aL+lM)


=

 L∏
j=1

a−Nj

EU(N)

[
det(M)L

L+K∏
k=1

det(I + akM)

]
.

(3.3.26)

Recall the dual Cauchy identity from Prop. 2.1.21 in Ch. 2,∏
j,k

(1 + xjyk) =
∑
λ

Sλ(x)Sλ′(y). (3.3.27)

If xj are the eigenvalues of M and yk are the variables ak,

det(I + akM) =
∑
λ

Sλ(a1, . . . , aL+K)Sλ′(M), (3.3.28)

where λ runs through all partitions such that l(λ) ≤ L+K and l(λ′) ≤ N . According to the
Jacobi-Trudi identity (2.1.77),

detML = Sµ(M), (3.3.29)

where µ = (LN ) is a rectangular partition with L rows and N columns. An example of a
rectangular partition is shown in Fig. 3.1. Inserting (3.3.28) and (3.3.29) in (3.3.26), and using
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(3.3.3) results in

EU(N)

 L∏
j=1

det(I + a−1
j M †)

K∏
l=1

det(I + aL+lM)

 =

 L∏
j=1

a−Nj

EU(N)

[
detML

L+K∏
k=1

det(I + akM)

]

=

 L∏
j=1

a−Nj

∑
λ

Sλ(a)EU(N)[Sλ′(M)S(LN )(M)]

=

 L∏
j=1

a−Nj

S(NL)(a).

(3.3.30)

In the last line, we used the fact that λ = (NL) if λ′ = (LN ). �

N

L

Figure 3.1: A rectangular partition of shape λ = (NL) with L rows and N columns.

Corollary 3.3.3. When L = K = p and aj = 1, j = 1, . . . , 2p, in Thm. 3.1.2, we recover the
moments of the characteristic polynomial:

EU(N)

[
|det(I −M)|2p

]
=

N−1∏
j=0

j!(j + 2p)!

(j + p)!2
. (3.3.31)

Proof. From Thm. 3.1.2, one sees that

EU(N)

[
|det(I −M)|2p

]
= S(N2p)(1, . . . , 1). (3.3.32)

Recall (2.1.84),

Sλ(1, . . . , 1︸ ︷︷ ︸
2p

) =
∏

1≤j<k≤2p

λj − λk − j + k

k − j
. (3.3.33)

The result in (3.3.31) can be immediately recovered by computing Sλ(1, . . . , 1) for λ = (N2p).
�

In addition to the positive correlations, negative correlations

EU(N)

[
1∏r

n=1 det(I − bnM)
∏s
m=1 det(I − bmM †)

]
, (3.3.34)
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or more generally, mixed correlations

EU(N)

[∏p
j=1 det(I + a−1

j M †)
∏q
k=1 det(I + ap+kM)∏r

n=1 det(I − bnM)
∏s
m=1 det(I − bmM †)

]
, (3.3.35)

are very useful. For example, we have already encountered an application of (3.3.34) in cal-
culating the mixed moments of traces in Thm. 3.1.1. The Toeplitz determinant in Prop. 3.3.2
is precisely the expected value of the inverse of characteristic polynomials. Bump and Gam-
burd [46] calculated these mixed correlations of characteristic polynomials in terms of the
Littlewood-Schur symmetric functions [182], also called the hook Schur functions [29].

Similar results hold for other compact groups. For the orthogonal and symplectic groups,
suitable symmetric functions replace the Schur functions. For more details, the reader is
encouraged to refer to [46,72].

For the classical compact groups, Schur polynomials and their generalisations are the char-
acters of U(N), O(N) and Sp(2N). As discussed, they have been used extensively to calculate
correlation functions of characteristic polynomials and joint moments of the traces. Although
group theoretic tools are not available for the set of Hermitian matrices, multivariate orthogo-
nal polynomials play the role of Schur functions for the GUE, LUE and JUE. In the following
sections, we will present the results for correlations of traces and characteristic polynomials
for the Hermitian ensembles.

3.4 Multivariate Hermite, Laguerre, and Jacobi polynomials

Multivariate orthogonal polynomials Φµ are defined by the determinantal formula in (2.1.143).
One can check by straightforward substitution that up to a constant, the Φµ coincide with those
in (3.2.1). When ϕj in (2.1.143) are the Hermite, Laguerre and Jacobi polynomials we have
the multivariate generalizations Hµ, L(γ)

µ and J (γ1,γ2)
µ . These polynomials can be expressed as

a linear combination of Schur polynomials,

Φµ(x) =
∑
ν⊆µ

κµνSν(x). (3.4.1)

For the Hermite, Laguerre and Jacobi multivariate polynomials we set the leading coefficient
κµµ in consistency with the definitions (3.2.4) and (2.1.143),

κ(H)
µµ = 1, κ(L)

µµ =
(−1)|λ|+

1
2
N(N−1)

Gλ(N, 0)
,

κ(J)
µµ =

(−1)|λ|+
1
2
N(N−1)

Gλ(N, γ1 + γ2)Gλ(N, 0)

N∏
j=1

Γ(2N + 2λj − 2j + γ1 + γ2 + 1).

(3.4.2)

The Hermite polynomials in (3.2.4) are monic. This fact is reflected in the multivariate Her-
mite polynomial as κ(H)

µµ = 1. On the other hand, we chose non-monic Laguerre and Jacobi
polynomials in (3.2.4) to be consistent with the literature. As a result, the coefficients κ(L)

µµ

and κ(J)
µµ are different from 1.

The analogy between multivariate orthogonal polynomials and Schur functions becomes
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apparent by comparing definitions (2.1.69) with (2.1.143). The classical Hermite, Laguerre
and Jacobi polynomials satisfy second order Sturm Liouville problems. Similarly, their multi-
variate generalizations are eigenfunctions of second-order partial differential operators, known
as Calogero–Sutherland Hamiltonians,

H(H) =

N∑
j=1

(
∂2

∂x2
j

− xj
∂

∂xj

)
+ 2

N∑
j,k=1
k 6=j

1

xj − xk
∂

∂xj
,

H(L) =
N∑
j=1

(
xj

∂2

∂x2
j

+ (γ − xj + 1)
∂

∂xj

)
+ 2

N∑
j,k=1
k 6=j

xj
xj − xk

∂

∂xj
,

H(J) =
N∑
j=1

(
xj(1− xj)

∂2

∂x2
j

+ (γ1 + 1− xj(γ1 + γ2 + 2))
∂

∂xj

)
+ 2

N∑
j,k=1
k 6=j

xj(1− xj)
xj − xk

∂

∂xj
.

(3.4.3)

These multivariate polynomials are orthogonal with respect to the measures

dµ(H)(x) =
N∏
j=1

e−
x2j
2

∏
1≤j<k≤N

|xj − xk|2 (3.4.4)

dµ(L)(x) =

N∏
j=1

xγj e
−xj

∏
1≤j<k≤N

|xj − xk|2 (3.4.5)

dµ(J)(x) =

N∏
j=1

xγ1j (1− xj)γ2
∏

1≤j<k≤N
|xj − xk|2 (3.4.6)

These generalised orthogonal polynomials obey similar properties to their univariate coun-
terparts [21]. The differential equations in (3.4.3) are also related to the Dyson Brownian
motion.

3.5 Change of basis between symmetric functions

Before proceeding to proving the main results stated in Sec. 3.2, it is important to understand
how the multivariate polynomials can be expressed in the basis of other symmetric polynomials.
In this section, we give expressions for the change of basis between multivariate polynomials
and Schur polynomials. The identities introduced in Ch. 2 can be used to further express
multivariate polynomials in terms of other symmetric polynomials.

We begin with the following proposition, which is a very useful tool involving polynomials
as matrix entries in the determinant.

Proposition 3.5.1. If φj(x), 0 ≤ j ≤ N − 1, is a sequence of monic polynomials of degree j,
then

det[φN−j(xk)]1≤j,k≤N = det[xN−jk ]1≤j,k≤N =
∏

1≤j<k≤N
(xj − xk). (3.5.1)
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Proof. Let
φj(x) = xj + aj−1x

j−1 + · · ·+ a0 (3.5.2)

for some sequence ai. The coefficients ai can be different for each polynomial φj(x). Since the
determinant is unchanged by performing row or column operations, we do the following trick.
We start with the Vandermonde determinant

det[xN−jk ]1≤j,k≤N =

∣∣∣∣∣∣∣∣∣∣
xN−1

1 xN−1
2 . . . xN−1

N
...

...
...

x1 x2 . . . xN

1 1 . . . 1

∣∣∣∣∣∣∣∣∣∣
. (3.5.3)

If φN−1(x) = xN−1 +
∑N−2

j=0 ajx
j , multiply the last row by a0, the last but one row by a1 and

so on. Now add them to the first row so that the first row becomes

(φN−1(x1), . . . , φN−1(xN )). (3.5.4)

Repeat this process for other rows going from top to bottom. Since φj are monic, φ0 = 1.
Therefore, no operations are required for the last row. �

Proposition 3.5.2. If φj(x), 0 ≤ j ≤ N−1 is a sequence of polynomials with leading coefficient
Aj, then

det[φN−j(xk)]1≤j,k≤N =

N−1∏
j=0

Aj

 det[xN−jk ]1≤j,k≤N . (3.5.5)

In the rest of the section, we mainly focus on the GUE but the same approach can be used for
the LUE and the JUE.
Gaussian Ensemble. Let M be an N ×N GUE matrix. The j.p.d.f. of the eigenvalues is

ρ(H)(x1, . . . , xN ) =
1

Z
(H)
N

∆2(x)
N∏
i=1

e−
x2i
2 ,

Z
(H)
N = (2π)

N
2

N∏
j=1

j!.

(3.5.6)

Denote by Hn(x) the Hermite polynomials normalised according to (3.2.4a). Given a partition
λ with l(λ) ≤ N , the multivariate Hermite polynomials are given by

Hλ(x) =
1

∆(x)

∣∣∣∣∣∣∣∣∣∣
Hλ1+N−1(x1) Hλ1+N−1(x2) . . . Hλ1+N−1(xN )

Hλ2+N−2(x1) Hλ2+N−2(x2) . . . Hλ2+N−2(xN )
...

...
...

HλN (x1) HλN (x2) . . . HλN (xN )

∣∣∣∣∣∣∣∣∣∣
, (3.5.7)
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and satisfy the orthogonality relation

〈Hλ,Hµ〉 :=
1

Z
(H)
N

∫
RN
Hλ(x)Hµ(x)∆2(x)

∏
i

e−
x2i
2 dxi = Cλ(N)δµλ,

Cλ(N) =
N∏
i=1

(λi +N − i)!
(N − i)!

.

(3.5.8)

Since λi ≥ 0, the constant Cλ(N) is a polynomial in N of degree |λ|. It turns out that it
has a nice interpretation in terms of the characters of the symmetric group. Let (i, j) ∈ λ,
1 ≤ j ≤ λi, denote a node in the Young diagram of λ. The roots of Cλ(N) are i − j, where
i runs across the rows from top to bottom and j across the columns from left to right of the
Young diagram. For example, if λ = (4, 3, 3, 1), the roots of Cλ(N) are

0 −1−2−3
1 0 −1
2 1 0
3

(3.5.9)

Proposition 3.5.3. We have [170]

Cλ(N) =

l(λ)∏
j=1

(λj +N − j)!
(N − j)!

=
∏

(i,j)∈λ

(N − i+ j)

=
|λ|!

dimVλ

∑
µ`|λ|

χλµ
zµ
N l(µ) = |λ|!Sλ(1N )

dimVλ
.

(3.5.10)

The constant zλ is given in (2.1.82) and dimVλ is the dimension of the irreducible representa-
tion, labelled by λ, of the symmetric group S|λ|,

dimVλ = |λ|!
∏

1≤j<k≤l(λ)(λj − λk − j + k)∏l(λ)
j=1(λj + l(λ)− j)!

. (3.5.11)

Proof. Recall

Sλ(1, . . . , 1︸ ︷︷ ︸
N

) =
∏

1≤j<k≤N

λj − λk − j + k

k − j
. (3.5.12)

Combining the above result with (3.5.11) proves that

Cλ(N) = |λ|!Sλ(1N )

dim Vλ
. (3.5.13)

Since Pλ(1N ) = N l(λ), using (2.1.82) gives

Cλ(N) =
|λ|!

dim Vλ

∑
µ

χλµ
zµ
pµ(1N )

=
|λ|!

dim Vλ

∑
µ

χλµ
zµ
N l(λ).

(3.5.14)
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Schur polynomials can be expressed in terms of multivariate Hermite polynomials,

Sλ =
∑
ν⊆λ

ψ
(H)
λν Hν =

b |λ|
2
c∑

j=0

∑
ν`g(j)

ψ
(H)
λν Hν , g(j) =

2j, |λ| is even,

2j + 1, |λ| is odd.
(3.5.15)

The function g(j) takes care of the fact that polynomials of odd and even degree do not mix
similar to the one variable case. The first summation in (3.5.15) running over all lower order
partitions takes care of the fact that Hλ are, unlike Sλ, not homogeneous polynomials. For
example, when |λ| is even, the only partitions that appear in (3.5.15) are those with weight
|ν| = |λ|−2k, k = 0, . . . , |λ|2 , and ν ⊆ λ. The following proposition gives an explicit expression
for the coefficients ψ(H)

λν .

Proposition 3.5.4. If λ is a partition of length L and ν is a sub-partition of λ such that
|λ| − |ν| = 0 mod 2 and N ≥ L, then ψ(H)

λν is a polynomial in N given by

ψ
(H)
λν =

1

2
|λ|−|ν|

2

D
(H)
λν

L∏
j=1

(λj +N − j)!
(νj +N − j)!

, (3.5.16)

where

D
(H)
λν = det

[
1λj−νk−j+k=0 mod 2

((
λj − νk − j + k

2

)
!

)−1
]
j,k=1,...,L

. (3.5.17)

Proof. Let λ = (λ1, . . . , λL, 0, . . . , 0) and ν = (ν1, . . . , νl, 0, . . . , 0). Here l is the length of ν
and N − l is the length of the sequence of zeros added to ν. From (3.5.8) and the fact that
ν ⊆ λ, l ≤ L, it follows that

ψ
(H)
λν =

〈Sλ,Hν〉
〈Hν ,Hν〉

=
1

Z
(H)
N 〈Hν ,Hν〉

∫
RN

Sλ(x)Hν(x)∆2
N (x)

N∏
i=1

e−
x2i
2 dxi

=
1

Z
(H)
N 〈Hν ,Hν〉

∫
RN

N∏
i=1

e−
x2i
2 dxi

×

∣∣∣∣∣∣∣∣∣∣
xλ1+N−1

1 . . . xλL+N−L
1 HN−L−1(x1) . . . 1

xλ1+N−1
2 . . . xλL+N−L

2 HN−L−1(x2) . . . 1
...

...
...

...
xλ1+N−1
N . . . xλL+N−L

N HN−L−1(xN ) . . . 1

∣∣∣∣∣∣∣∣∣∣
×

∣∣∣∣∣∣∣∣∣∣
Hν1+N−1(x1) . . . Hνl+N−l(x1) HN−l−1(x1) . . . 1

Hν1+N−1(x2) . . . Hνl+N−l(x2) HN−l−1(x2) . . . 1
...

...
...

...
Hν1+N−1(xN ) . . . Hνl+N−l(xN ) HN−l−1(xN ) . . . 1

∣∣∣∣∣∣∣∣∣∣
.

(3.5.18)

The last N − L and N − l columns in Sλ and in Hν , respectively, are written in terms of
the Hermite polynomials using column operations, see Prop. 3.5.1. In addition, ψ(H)

λν can be
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expanded as a sum over the permutations of N :

ψ
(H)
λν =

1

Z
(H)
N 〈Hν ,Hν〉

×
∑
σ∈SN

sgn(σ)

∫
RN

N∏
i=1

e−
x2i
2 dxi

(
xλ1+N−1
σ(1) . . . xλL+N−L

σ(L) HN−L−1(xσ(N−L−1)) . . . H0(xσ(0))
)

×

∣∣∣∣∣∣∣∣∣∣
Hν1+N−1(x1) . . . Hνl+N−l(x1) HN−l−1(x1) . . . 1

Hν1+N−1(x2) . . . Hνl+N−l(x2) HN−l−1(x2) . . . 1
...

...
...

...
Hν1+N−1(xN ) . . . Hνl+N−l(xN ) HN−l−1(xN ) . . . 1

∣∣∣∣∣∣∣∣∣∣
.

(3.5.19)

Since the integrand is symmetric in xi, every term in the above sum gives the same contribution.
Therefore, it is sufficient to consider only the identity permutation. All the factors can be
absorbed into the determinant by multiplying the jth row with x

λj+N−j
j if j ≤ L, and with

HN−j(xN−j) if N ≥ j > L. Then, using the orthogonality of Hermite polynomials (3.2.4a) for
the last N − L rows results in

ψ
(H)
λν =

N !

Z
(H)
N 〈Hν ,Hν〉

(2π)
N−L

2

N∏
i=L+1

(N − i)! det

[∫
R
x
λj+N−j
j Hνk+N−k(xj)e

−
x2j
2
dxj

]
1≤j,k≤L

.

(3.5.20)

Expanding monomials in terms of Hermite polynomials with the formula

xn = n!

bn
2
c∑

m=0

1

2mm!(n− 2m)!
Hn−2m(x), (3.5.21)

and using orthogonality leads to (3.5.16). The determinant D(H)
λν is independent of N and ψ(H)

λν

is a polynomial in N , since ν ⊆ λ. �

Corollary 3.5.5. The roots of coefficients the ψ(H)
λν are integers given by the content of the

skew diagram λ− ν.

Proof. The skew diagram λ− ν is the set-theoretic difference of the Young diagrams of λ and
ν: the set of squares that belong to the diagram of λ but not to that of ν. Using (3.5.10),

ψ
(H)
λν =

1

2
|λ|−|ν|

2

Cλ(N)

Cν(N)
D

(H)
λν . (3.5.22)

Since ν ⊆ λ, the roots of ψ(H)
λν are integers and can be read from the skew diagram λ − ν

whenever D(H)
λν 6= 0. For example, if λ = (4, 1, 1) and ν = (2), then the roots of ψ(H)

λν are
{−3,−2, 1, 2}:

0 −1−2−3
1
2

(3.5.23)

�
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Corollary 3.5.6. The coefficient ψ(H)
λλ = 1.

Proof. If ν = λ,

ψ
(H)
λλ =

N !

Z
(H)
N 〈Hλ,Hλ〉

det

[∫
R
x
λj+N−j
j Hλk+N−k(xj)e

−
x2j
2 dxj

]
j=1,...,N

. (3.5.24)

By expanding the monomials in terms of the Hermite polynomials, only the diagonal terms
survive. �

The coefficient ψ(H)
λν for ν = 0 simplifies further and can be expressed in terms of a character

of the symmetric group. One way to compute the characters of the symmetric group is using
the Frobenius formula.

Proposition 3.5.7 (Frobenius formula [105]). Let χλµ be a character of the symmetric group
on the λth irreducible representation and the µth conjugacy class. Then the value of χλµ is the
coefficient of the monomial

x
λ1+l(λ)−1
1 x

λ2+l(λ)−2
2 . . . xλll (3.5.25)

in the product
Pµ(x1, . . . , xl(λ))

∏
1≤j<k≤l(λ)

(xj − xk). (3.5.26)

Proposition 3.5.8. The coefficient

ψ
(H)
λ0 =


Cλ(N)

2
|λ|
2
|λ|
2

!
χλ

(2|λ|/2)
, |λ| is even,

0, |λ| is odd,
(3.5.27)

where χλ
(2|λ|/2)

is the character of the λth irreducible representation evaluated on the elements

of cycle-type (2|λ|/2).

Proof. Since Hermite polynomials of odd and even degree do not mix, ψ(H)
λ0 = 0 when |λ| is

odd. When |λ| is even,

D
(H)
λ0 = det

1λj−j+k=0 mod 2
1(

λj−j+k
2

)
!

 . (3.5.28)

Denote n = |λ|/2, L = l(λ), g(x1, . . . , xL) to be a formal power series in variables xi, and
(k1, . . . , kL) to be a partition constructed from λ such that kj = λj + L− j, j = 1, . . . , L. Let

[g(x1, . . . , xL)](k1,...,kL) = coefficient of xk11 . . . xkLL . (3.5.29)

By using the Frobenius formula for the characters of the symmetric group,

χλ(2n) =
[
∆(x1, . . . , xL)(x2

1 + · · ·+ x2
L)n
]
(k1,...,kL)

=
∑

n1+···+nL=n

n!

n1! . . . nL!

[
det
[
xL−ji

]
x2n1

1 x2n2
2 . . . x2nL

L

]
(λ1+L−1,λ2+L−2,...,λL)

.
(3.5.30)
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After absorbing x2ni
i into the ith row of the determinant, for each ni at most one term in the ith

row has the exponent λi+L−i, say the (i, j)th element x2ni+L−j
i , which implies 2ni = λi−i+j.

For L-tuples {n1, . . . , nL} such that there is exactly one term in each row that has the required
exponent, the non-zero summands are given by n! sgn(σ)

∏
i((λi−i+σ(i)/2)!)−1 where σ ∈ SL.

Considering all such L-tuples and using the Laplace expansion for determinants proves the
proposition. �

Therefore, the expansion of Schur polynomials in terms of multivariate Hermite polynomials
can be written as

Sλ(x1, . . . , xN ) = Cλ(N)
∑
ν⊆λ

1

2
|λ|−|ν|

2

1

Cν(λ)
D

(H)
λν Hν(x1, . . . , xN ). (3.5.31)

In a similar way, by expanding Hermite polynomials in terms of monomials in the definition
of Hλ, multivariate Hermite polynomials can be written in the Schur basis as

Hλ =
∑
ν⊆λ

κ
(H)
λν Sν =

b |λ|
2
c∑

j=0

∑
ν`g(j)

κ
(H)
λν Sν , g(j) =

2j, |λ| is even,

2j + 1, |λ| is odd,
(3.5.32)

where

κ
(H)
λν =

(
−1

2

) |λ|−|ν|
2

D
(H)
λν

L∏
j=1

(λj +N − j)!
(νj +N − j)!

. (3.5.33)

Alternatively,

Hλ(x1, . . . , xN ) = Cλ(N)
∑
ν⊆λ

(
−1

2

) |λ|−|ν|
2 1

Cν(N)
D

(H)
λν Sν(x1, . . . , xN ), (3.5.34)

where |λ| − |ν| = 0 mod 2. This expansion should be compared with the classical Hermite
polynomial expansion

Hn(x) = n!
n∑
j=0

1n−j=0 mod 2
1(

n−j
2

)
!

(−1)
n−j
2

2
n−j
2 j!

xj , (3.5.35)

and (3.5.31) should be compared with

xn = n!
n∑
j=0

1n−j=0 mod 2
1(

n−j
2

)
!

1

2
n−j
2 j!

Hj(x), (3.5.36)

which is an alternate way of writing (3.5.21). Clearly, we see the analogies between classical
Hermite polynomials and their multivariate counterparts: the sum over j is replaced by the
sum over partitions; the role of monomials is played by Schur polynomials; the factorials are
replaced with Cλ(N).

Proposition 3.5.9. Let x1, . . . , xN and t1, . . . , tN be two sets of variables. The multivariate
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Hermite polynomials defined in (3.5.7) have the following generating function [21]:

∑
λ

Hλ(x)

Cλ(N)
Sλ(t) =

(∑
µ

Sµ(x)Sµ(t)
Cµ(N)

)∏
j

exp

(
−
t2j
2

)
. (3.5.37)

Several other analogues of the properties of the classical Hermite polynomials, including
an integral representation, summation, integration and differentiation formulae, are given for
β−ensembles in [21]. Note that in [21], Cαµ (α ∈ R) is used to denote Schur polynomials with
a specific normalisation, where as in this work Cµ(N) is a constant in N given in (3.5.10).

A few examples of (3.5.34) and (3.5.31) are given below. These expansions are given for
partitions of 4 with N variables.

H(4) = S(4) −
1

2

(N + 3)!

(N + 1)!
S(2) +

1

8

(N + 3)!

(N − 1)!

H(3,1) = S(3,1) −
1

2

(N + 2)!

N !
S(12) −

1

8

(N + 2)!

(N − 2)!

H(22) = S(22) −
1

2

N !

(N − 2)!
S(2) +

1

2

(N + 1)!

(N − 1)!
S(12) +

1

4

N !(N + 1)!

(N − 2)!(N − 1)!

H(2,12) = S(2,12) +
1

2

(N − 1)!

(N − 3)!
S(2) −

1

8

(N + 1)!

(N − 3)!

H(14) = S(14) +
1

2

(N − 2)!

(N − 4)!
S(12) +

1

8

N !

(N − 4)!

(3.5.38)

S(4) = H(4) +
1

2

(N + 3)!

(N + 1)!
H(2) +

1

8

(N + 3)!

(N − 1)!

S(3,1) = H(3,1) +
1

2

(N + 2)!

N !
H(12) −

1

8

(N + 2)!

(N − 2)!

S(22) = H(22) +
1

2

N !

(N − 2)!
H(2) −

1

2

(N + 1)!

(N − 1)!
H(12) +

1

4

N !(N + 1)!

(N − 2)!(N − 1)!

S(2,12) = H(2,12) −
1

2

(N − 1)!

(N − 3)!
H(2) −

1

8

(N + 1)!

(N − 3)!

S(14) = H(14) −
1

2

(N − 2)!

(N − 4)!
H(12) +

1

8

N !

(N − 4)!

(3.5.39)

Laguerre ensemble. LetM be an N×N LUE matrix with eigenvalues x1, . . . , xN . For γ > −1,
the j.p.d.f. of eigenvalues is

ρ(L)(x1, . . . , xN ) =
1

Z
(L)
N

∆2(x)
N∏
i=1

xγi e
−xi ,

Z
(L)
N = N !G0(N, γ)G0(N, 0),

(3.5.40)
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where Gλ(N, γ) is given in (3.2.6). The multivariate Laguerre polynomials defined by

L(γ)
λ (x) =

1

∆N

∣∣∣∣∣∣∣∣∣∣
L

(γ)
λ1+N−1(x1) L

(γ)
λ1+N−1(x2) . . . L

(γ)
λ1+N−1(xN )

L
(γ)
λ2+N−2(x1) L

(γ)
λ2+N−2(x2) . . . L

(γ)
λ2+N−2(xN )

...
...

...
L

(γ)
λN

(x1) L
(γ)
λN

(x2) . . . L
(γ)
λN

(xN )

∣∣∣∣∣∣∣∣∣∣
, (3.5.41)

l(λ) ≤ N , satisfy the orthogonality relation

〈
L(γ)
λ ,L(γ)

µ

〉
:=

1

Z
(L)
N

∫
RN+
L(γ)
λ (x)L(γ)

µ (x)∆2(x)
N∏
i=1

xγi e
−x dxi

=
Gλ(N, γ)

G0(N, γ)

1

Gλ(N, 0)

1

G0(N, 0)
δλµ.

(3.5.42)

The polynomials in the determinant (3.5.41) are normalized according to (3.2.4b).
The Schur polynomials can be expanded in terms of multivariate Laguerre polynomials as

Sλ =
∑
ν⊆λ

ψ
(L)
λν L

(γ)
ν , (3.5.43)

where

ψ
(L)
λν = (−1)|ν|+

1
2
N(N−1)Gλ(N, γ)

Gν(N, γ)
Gλ(N, 0)D

(L)
λν , (3.5.44)

D
(L)
λν = det

[
1λi−νj−i+j≥0 1

(λi−νj−i+j)!

]
i,j=1,...,l(λ)

. (3.5.45)

The coefficients ψ(L)
λν in (3.5.44) can be computed in a similar way as in Prop. 3.5.4. It is

interesting to note that the quantity |λ/ν|!D(L)
λν gives the number of standard Young tableaux

of shape λ/ν [221, p.344]. Multivariate Laguerre polynomials can also be expanded in the
Schur basis:

L(γ)
λ =

∑
ν⊆λ

κ
(L)
λν Sν ,

κ
(L)
λν = (−1)|ν|+

1
2
N(N−1)Gλ(N, γ)

Gν(N, γ)

1

Gν(N, 0)
D

(L)
λν .

(3.5.46)

Similar to the Hermite case, D(L)
λ0 turns out to be a character of the symmetric group.

Proposition 3.5.10. We have

D
(L)
λ0 =

χλ
(1|λ|)

|λ|!
=

dim Vλ
|λ|!

. (3.5.47)

Proof. Same as Prop. 3.5.8. Note that |λ|!D(L)
λ0 gives the number of standard Young tableaux

of shape λ. �

Expansions in (3.5.46) and (3.5.43) should be compared with the results of classical La-
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guerre polynomials:

L(γ)
n =

n∑
j=0

(−1)j
Γ(n+ γ + 1)

Γ(j + γ + 1)(n− j)!
xj

j!
,

xn = n!
n∑
j=0

(−1)j

(n− j)!
Γ(n+ γ + 1)

Γ(j + γ + 1)
L

(γ)
j (x).

(3.5.48)

The Gλ replaces the Gamma-function, the summation over j is replaced by the summation
over partitions, the Schur polynomials replace the monomials, and the L(γ)

λ replace the L(γ)
n .

The generating function for multivariate Laguerre polynomials [21] is

∑
ν

1

Gν(N, γ)
L(γ)
ν (x)Sν(t) = (−1)

N(N−1)
2

(∑
λ

Sλ(t)D(L)
λ0

)(∑
µ

(−1)|µ|

Gµ(N, γ)

Sµ(x)Sµ(t)
Gµ(N, 0)

)
,

(3.5.49)
or equivalently using (3.5.47),

∑
ν

1

Gν(N, γ)
L(γ)
ν (x)Sν(t) = (−1)

N(N−1)
2

(∑
µ

(−1)|µ|

Gµ(N, γ)

Sµ(x)Sµ(t)
Gµ(N, 0)

)
N∏
j=1

etj . (3.5.50)

Below, we give a few examples for explicit expansions of the L(γ)
λ in terms of the Sµ, and vice

versa.
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L(γ)
(4) =

N−1∏
j=0

(−1)j

j!

[
(N − 1)!

(N + 3)!
S(4) −

Γ(N + γ + 4)

Γ(N + γ + 3)

(N − 1)!

(N + 2)!
S(3) +

1

2

Γ(N + γ + 4)

Γ(N + γ + 2)

(N − 1)!

(N + 1)!
S(2)

−1

6

Γ(N + γ + 4)

Γ(N + γ + 1)

(N − 1)!

N !
S(1) +

1

24

Γ(N + γ + 4)

Γ(N + γ)

]
L(γ)

(3,1) =
N−1∏
j=0

(−1)j

j!

[
(N − 2)!

(N + 2)!
S(3,1) −

Γ(N + γ)

Γ(N + γ − 1)

(N − 1)!

(N + 2)!
S(3) −

Γ(N + γ + 3)

Γ(N + γ + 2)

(N − 2)!

(N + 1)!
S(2,1)

+
Γ(N + γ + 3)Γ(N + γ)

Γ(N + γ + 2)Γ(N + γ − 1)

(N − 1)!

(N + 1)!
S(2) +

1

2

Γ(N + γ + 3)

Γ(N + γ + 1)

(N − 2)!

N !
S(12)

−1

2

Γ(N + γ + 3)Γ(N + γ)

Γ(N + γ + 1)Γ(N + γ − 1)

(N − 1)!

(N + 1)!
S(1) +

1

8

Γ(N + γ + 3)

Γ(N + γ − 1)

]
L(γ)

(22)
=

N−1∏
j=0

(−1)j

j!

[
(N − 1)!(N − 2)

(N + 1)!N !
S(22) −

Γ(N + γ + 1)

Γ(N + γ)

(N − 2)!

(N + 1)!
S(2,1)

+
1

2

Γ(N + γ + 1)

Γ(N + γ − 1)

(N − 1)!

(N + 1)!
S(2) +

1

2

Γ(N + γ + 2)

Γ(N + γ)

(N − 2)!

N !
S(12)

−1

3

Γ(N + γ + 2)

Γ(N + γ − 1)

(N − 1)!

N !
S(1) +

1

12

Γ(N + γ + 2)Γ(N + γ + 1)

Γ(N + γ)Γ(N + γ − 1)

]
L(γ)

(2,1,1) =
N−1∏
j=0

(−1)j

j!

[
(N − 3)!

(N + 1)!
S(2,1,1) −

Γ(N + γ − 1)

Γ(N + γ − 2)

(N − 2)!

(N + 1)!
S(2,1) −

Γ(N + γ + 2)

Γ(N + γ + 1)

(N − 3)!

N !
S(13)

+
1

2

Γ(N + γ)

Γ(N + γ − 2)

(N − 1)!

(N + 1)!
S(2) +

Γ(N + γ + 2)Γ(N + γ − 1)

Γ(N + γ + 1)Γ(N + γ − 2)

(N − 2)!

N !
S(12)

−1

2

Γ(N + γ + 2)Γ(N + γ)

Γ(N + γ + 1)Γ(N + γ − 2)

(N − 1)!

N !
S(1) +

1

8

Γ(N + γ + 2)

Γ(N + γ − 2)

]
L(γ)

(14)
=

N−1∏
j=0

(−1)j

j!

[
(N − 4)!

N !
S(14) −

Γ(N + γ − 2)

Γ(N + γ − 3)

(N − 3)!

N !
S(13)

+
1

2

Γ(N + γ − 1)

Γ(N + γ − 3)

(N − 2)!

N !
S(12) −

1

6

Γ(N + γ)

Γ(N + γ − 3)

(N − 1)!

N !
S(1) +

1

24

Γ(N + γ + 1)

Γ(N + γ − 3)

]
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S(4) =

N−1∏
j=0

(−1)jj!
(N + 3)!

(N − 1)!

[
L(γ)

(4) −
Γ(N + γ + 4)

Γ(N + γ + 3)
L(γ)

(3) +
1

2

Γ(N + γ + 4)

Γ(N + γ + 2)
L(γ)

(2)

−1

6

Γ(N + γ + 4)

Γ(N + γ + 1)
L(γ)

(1) +
1

24

Γ(N + γ + 4)

Γ(N + γ)
L(γ)

0

]
S(3,1) =

N−1∏
j=0

(−1)jj!
(N + 2)!

(N − 2)!

[
L(γ)

(3,1) −
Γ(N + γ)

Γ(N + γ − 1)
L(γ)

(3) −
Γ(N + γ + 3)

Γ(N + γ + 2)
L(γ)

(2,1)

+
Γ(N + γ + 3)Γ(N + γ)

Γ(N + γ + 2)Γ(N + γ − 1)
L(γ)

(2) +
1

2

Γ(N + γ + 3)

Γ(N + γ + 1)
L(γ)

(12)

−1

2

Γ(N + γ + 3)Γ(N + γ)

Γ(N + γ + 1)Γ(N + γ − 1)
L(γ)

(1) +
1

8

Γ(N + γ + 3)

Γ(N + γ − 1)
L(γ)

0

]
S(22) =

N−1∏
j=0

(−1)jj!
(N + 1)!N !

(N − 1)!(N − 2)

[
L(γ)

(22)
− Γ(N + γ + 1)

Γ(N + γ)
L(γ)

(2,1) +
1

2

Γ(N + γ + 1)

Γ(N + γ − 1)
L(γ)

(2)

+
1

2

Γ(N + γ + 2)

Γ(N + γ)
L(γ)

(12)
− 1

3

Γ(N + γ + 2)

Γ(N + γ − 1)
L(γ)

(1) +
1

12

Γ(N + γ + 2)Γ(N + γ + 1)

Γ(N + γ)Γ(N + γ − 1)
L(γ)

0

]
S(2,1,1) =

N−1∏
j=0

(−1)jj!
(N + 1)!

(N − 3)!

[
L(γ)

(2,1,1) −
Γ(N + γ − 1)

Γ(N + γ − 2)
L(γ)

(2,1) −
Γ(N + γ + 2)

Γ(N + γ + 1)
L(γ)

(13)

+
1

2

Γ(N + γ)

Γ(N + γ − 2)
L(γ)

(2) +
Γ(N + γ + 2)Γ(N + γ − 1)

Γ(N + γ + 1)Γ(N + γ − 2)
L(γ)

(12)

−1

2

Γ(N + γ + 2)Γ(N + γ)

Γ(N + γ + 1)Γ(N + γ − 2)
L(γ)

(1) +
1

8

Γ(N + γ + 2)

Γ(N + γ − 2)
L(γ)

0

]
S(14) =

N−1∏
j=0

(−1)jj!
N !

(N − 4)!

[
L(γ)

(14)
− Γ(N + γ − 2)

Γ(N + γ − 3)
L(γ)

(13)
+

1

2

Γ(N + γ − 1)

Γ(N + γ − 3)
L(γ)

(12)

−1

6

Γ(N + γ)

Γ(N + γ − 3)
L(γ)

(1) +
1

24

Γ(N + γ + 1)

Γ(N + γ − 3)
L(γ)

0

]

Jacobi ensemble. LetM be anN×N JUE matrix with eigenvalues x1, . . . , xN . For γ1, γ2 > −1,
the j.p.d.f. of eigenvalues is

ρ(J)(x1, . . . , xN ) =
1

Z
(J)
N

∆2(x)
N∏
i=1

xγ1i (1− xi)γ2 ,

Z
(J)
N = N !

N−1∏
j=0

j! Γ(j + γ1 + 1)Γ(j + γ2 + 1)Γ(j + γ1 + γ2 + 1)

Γ(2j + γ1 + γ2 + 2)Γ(2j + γ1 + γ2 + 1)
.

(3.5.51)

Classical Jacobi polynomials are given by

J (γ1,γ2)
n (x) =

Γ(n+ γ1 + 1)

Γ(n+ γ1 + γ2 + 1)

n∑
j=0

(−1)j

j!(n− j)!
Γ(n+ j + γ1 + γ2 + 1)

Γ(j + γ1 + 1)
xj , (3.5.52)

and satisfy the orthogonality relation (3.2.4c). The multivariate Jacobi polynomials are

J (γ1,γ2)
λ (x) =

1

∆N

∣∣∣∣∣∣∣∣∣∣
J

(γ1,γ2)
λ1+N−1(x1) J

(γ1,γ2)
λ1+N−1(x2) . . . J

(γ1,γ2)
λ1+N−1(xN )

J
(γ1,γ2)
λ2+N−2(x1) J

(γ1,γ2)
λ2+N−2(x2) . . . J

(γ1,γ2)
λ2+N−2(xN )

...
...

...
J

(γ1,γ2)
λN

(x1) J
(γ1,γ2)
λN

(x2) . . . J
(γ1,γ2)
λN

(xN )

∣∣∣∣∣∣∣∣∣∣
, (3.5.53)
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l(λ) ≤ N , and obey the orthogonality relation

〈
J (γ1,γ2)
λ ,J (γ1,γ2)

µ

〉
:=

1

Z
(J)
N

∫
[0,1]N

J (γ1,γ2)
λ (x)J (γ1,γ2)

µ (x)∆2(x)
N∏
i=1

xγ1i (1− xi)γ2 dxi

=
N !

Z
(J)
N

Gλ(N, γ1)Gλ(N, γ2)

Gλ(N, γ1 + γ2)Gλ(N, 0)

N∏
j=1

(2λj + 2N − 2j + γ1 + γ2 + 1)−1δλµ.

(3.5.54)

The expansion of the Schur polynomials in terms of multivariate Jacobi polynomials is

Sλ =
∑
ν⊆λ

ψ
(J)
λν J

(γ1,γ2)
ν , (3.5.55)

where

ψ
(J)
λν = (−1)|ν|+

1
2
N(N−1)Gλ(N, γ1)

Gν(N, γ1)
Gν(N, γ1 + γ2)Gλ(N, 0)

×D(J)
λν

N∏
j=1

(2νj + 2N − 2j + γ1 + γ2 + 1),

(3.5.56)

and

D(J)
λν = det

[
1λj−νk−j+k≥0((λj − νk − j + k)! Γ(2N + λj + νk − j − k + γ1 + γ2 + 2))−1

]
1≤j,k≤N .

(3.5.57)

When N = 1, (3.5.55) coincides with the one variable analogue

xn = n! Γ(n+ γ1 + 1)
n∑
j=0

(−1)j

(n− j)!
(2j + γ1 + γ2 + 1)Γ(j + γ1 + γ2 + 1)

Γ(j + γ1 + 1)Γ(n+ j + γ1 + γ2 + 2)
J

(γ1,γ2)
j (x). (3.5.58)

Multivariate Jacobi polynomials can be expanded in Schur polynomials via

J (γ1,γ2)
λ =

∑
ν⊆λ

κ
(J)
λν Sν , (3.5.59)

where

κ
(J)
λν = (−1)|ν|+

1
2
N(N−1)Gλ(N, γ1)

Gν(N, γ1)

1

Gλ(N, γ1 + γ2)Gν(N, 0)
D̃(J)
λν , (3.5.60)

D̃(J)
λν = det

[
1λj−νk−j+k≥0

Γ(2N + λj + νk − j − k + γ1 + γ2 + 1)

(λj − νk − j + k)!

]
1≤j,k≤N

. (3.5.61)

Below, we give a few examples for explicit expansions of the J (γ1,γ2)
λ in terms of the Sµ, and

vice versa.
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J (γ1,γ2)
(2) =

Γ(N + γ1 + γ2)

Γ(N + γ1 + γ2 + 2)Γ(2N + γ1 + γ2 − 1)

N−1∏
j=0

(−1)j
Γ(2j + γ1 + γ2 + 1)

j!Γ(j + γ1 + γ2 + 1)

×
[
Γ(2N + γ1 + γ2 + 3)

(N − 1)!

(N + 1)!
S(2) − Γ(2N + γ1 + γ2 + 2)

Γ(N + γ1 + 2)

Γ(N + γ1 + 1)

(N − 1)!

N !
S(1)

+
1

2
Γ(2N + γ1 + γ2 + 1)

Γ(N + γ1 + 2)

Γ(N + γ1)

]
J (γ1,γ2)

(12)
=

Γ(N + γ1 + γ2 − 1)

Γ(N + γ1 + γ2 + 1)

1

Γ(2N + γ1 + γ2 − 1)Γ(2N + γ1 + γ2 − 3)

N−1∏
j=0

(−1)j
Γ(2j + γ1 + γ2 + 1)

j!Γ(j + γ1 + γ2 + 1)

×
[
Γ(2N + γ1 + γ2 + 1)Γ(2N + γ1 + γ2 − 1)

(N − 2)!

N !
S(12)

−Γ(2N + γ1 + γ2 + 1)Γ(2N + γ1 + γ2 − 2)
Γ(N + γ1)

Γ(N + γ1 − 1)

(N − 1)!

N !
S(1)

+
Γ(N + γ1 + 1)

Γ(N + γ1 − 1)

(
Γ(2N + γ1 + γ2)Γ(2N + γ1 + γ2 − 2)− 1

2
Γ(2N + γ1 + γ2 − 1)2

)]

S(2) = (2N + γ1 + γ2 − 1)
(N + 1)!

(N − 1)!

N−1∏
j=0

(−1)j
j!Γ(j + γ1 + γ2 + 1)

Γ(2j + γ1 + γ2 + 1)

×
[

1

Γ(2N + γ1 + γ2 + 3)

Γ(N + γ1 + γ2 + 2)

Γ(N + γ1 + γ2)
J (γ1,γ2)

(2)

− (2N + γ1 + γ2 + 1)

Γ(2N + γ1 + γ2 + 3)

Γ(N + γ1 + γ2 + 1)

Γ(N + γ1 + γ2)

Γ(N + γ1 + 2)

Γ(N + γ1 + 1)
J (γ1,γ2)

(1)

+
1

2

(2N + γ1 + γ2 − 1)

Γ(2N + γ1 + γ2 + 2)

Γ(N + γ1 + 2)

Γ(N + γ1)
J (γ1,γ2)

0

]
S(12) = (2N + γ1 + γ2 − 1)(2N + γ1 + γ2 − 3)

N !

(N − 2)!

N−1∏
j=0

(−1)j
j!Γ(j + γ1 + γ2 + 1)

Γ(2j + γ1 + γ2 + 1)

×
[

(2N + γ1 + γ2 + 1)(2N + γ1 + γ2 − 1)

Γ(2N + γ1 + γ2 + 2)Γ(2N + γ1 + γ2)

Γ(N + γ1 + γ2 + 1)

Γ(N + γ1 + γ2 − 1)
J (γ1,γ2)

(12)

− (2N + γ1 + γ2 + 1)(2N + γ1 + γ2 − 3)

Γ(2N + γ1 + γ2 + 2)Γ(2N + γ1 + γ2 − 1)

Γ(N + γ1 + γ2 + 1)

Γ(N + γ1 + γ2)

Γ(N + γ1)

Γ(N + γ1 − 1)
J (γ1,γ2)

(1)

+
(2N + γ1 + γ2 − 1)(2N + γ1 + γ2 − 3)

Γ(2N + γ1 + γ2 + 1)Γ(2N + γ1 + γ2 − 1)

Γ(N + γ1 + 1)

Γ(N + γ1 − 1)
J (γ1,γ2)

0

−1

2

(2N + γ1 + γ2 − 1)(2N + γ1 + γ2 − 3)

Γ(2N + γ1 + γ2)2

Γ(N + γ1 + 1)

Γ(N + γ1 − 1)
J (γ1,γ2)

0

]

3.6 Correlation functions of characteristic polynomials

The main tool to compute the correlations of characteristic polynomials and the spectral
moments is Lemma. 3.2.1, which was proved in Prop. 2.1.26 of Ch. 2. Recall

p∏
i=1

q∏
j=1

(ti − xj) =
∑
λ⊆(qp)

(−1)|λ̃|Φλ(t1, . . . , tp)Φλ̃(x1, . . . , xq). (3.6.1)

When the polynomials ϕj(x) in (2.1.143) are not monic, we have the following identity for
generalised dual Cauchy identity.
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Proposition 3.6.1. If Aj are the leading coefficients of ϕj(x), then

p∏
i=1

q∏
j=1

(ti − xj) =

p+q−1∏
j=0

A−1
j

∑
λ⊆(qp)

(−1)|λ̃|Φλ(t)Φλ̃(x), (3.6.2)

where λ̃ = (p− λ′q, . . . , p− λ′1).

The proposition can be proved in a similar way to Prop. 2.1.26 by using (3.5.5) instead of
(3.5.1) after (2.1.165).

Proof of Thm. 3.2.2. Unlike Hermite polynomials, the univariate Laguerre and Jacobi polyno-
mials that obey (3.2.4) are not monic. This fact is reflected in the normalisation in (3.4.2) and
also in the following formulae,

p∏
i=1

N∏
j=1

(ti − xj) =
∑

λ⊆(Np)

(−1)|λ̃|Hλ(t1, . . . , tp)Hλ̃(x1, . . . , xN )

p∏
i=1

N∏
j=1

(ti − xj) =

p+N−1∏
j=0

(−1)jj!

 ∑
λ⊆(Np)

(−1)|λ̃|L(γ)
λ (t1, . . . , tp)L(γ)

λ̃
(x1, . . . , xN )

p∏
i=1

N∏
j=1

(ti − xj) =

p+N−1∏
j=0

(−1)jj!
Γ(j + γ1 + γ2 + 1)

Γ(2j + γ1 + γ2 + 1)


×

∑
λ⊆(Np)

(−1)|λ̃|J (γ1,γ2)
λ (t1, . . . , tp)J (γ1,γ2)

λ̃
(x1, . . . , xN )

(3.6.3)

After taking the expectation value, the non-zero contribution comes from λ̃ = 0 because of
(3.2.1). Therefore, λ′ = (pN ) which implies λ = (Np). It remains now to evaluate the
multivariate polynomials at the zero partition. Since Hermite polynomials are monic, by using
Prop. 3.5.1,

H0(x1, . . . , xN ) =
1

∆(x)
det[HN−j(xk)]1≤j,k≤N = 1. (3.6.4)

On the other hand, the leading coefficients of Laguerre and Jacobi polynomials of degree j are

(−1)j

j!
, and

(−1)j

j!

Γ(2j + γ1 + γ2 + 1)

Γ(j + γ1 + γ2 + 1)
, (3.6.5)

respectively. Now, using Prop. 3.5.2 gives

L(γ)
0 (x1, . . . , xN ) =

N−1∏
j=0

(−1)j

j!
, (3.6.6)

J (γ1,γ2)
0 (x1, . . . , xN ) =

N−1∏
j=0

(−1)j

j!

Γ(2j + γ1 + γ2 + 1)

Γ(j + γ1 + γ2 + 1)
. (3.6.7)

Inserting (3.6.4), (3.6.6) and (3.6.7) in (3.6.3) proves the result. �
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Corollary 3.6.2. Let λ = (Np). If ti = t in Thm. 3.2.2, then

E(H)
N [(det(t−M))p] = Cλ(p)

∑
ν⊆λ

(
−1

2

) |λ|−|ν|
2 dimVν

|ν|!
D

(H)
λν t

|ν|,

E(L)
N [(det(t−M))p] = (−1)p(p+N−1)Gλ(p, γ)

Gλ(p, 0)

G0(p, 0)

∑
ν⊆λ

(−1)|ν|

|ν|!Gν(p, γ)
dimVνD

(L)
λν t

|ν|,

E(J)
N [(det(t−M))p] =

p+N−1∏
j=N

1

Γ(2j + γ1 + γ2 + 1)

 (−1)p(p+N−1)Gλ(p, γ1)Gλ(p, 0)

G0(p, 0)

×
∑
ν⊆λ

(−1)|ν|

|ν|!Gν(p, γ1)
dimVνD̃(J)

λν t
|ν|,

(3.6.8)

where dimVν is given in (3.5.11).

Proof. Since Schur polynomials are homogeneous,

Sν(t, . . . , t︸ ︷︷ ︸
p

) = t|ν|Sν(1, . . . , 1︸ ︷︷ ︸
p

) =
dim Vν
|ν|!

Cν(p) t|ν|. (3.6.9)

First, consider the Gaussian ensemble. We have

E(H)
N [(det(t−M))p] = H(Np)(t

p). (3.6.10)

Using (3.5.34) and calculating Cλ for λ = (Np),

C(Np)(p) =

p∏
j=1

(N + p− j)!
(p− j)!

, (3.6.11)

proves the statement. Similarly, the Laguerre and Jacobi cases can be computed in a similar
way by using

Gλ(p, 0) = Cλ(p)G0(p, 0). (3.6.12)

�

The Cauchy identity can be written as

q∏
i=1

N∏
j=1

1

(Ti − xj)
=

1∏q
j=1 T

N
j

∑
λ

∑
µ⊆λ

ψλµSλ(T−1
1 , . . . , T−1

q )Φµ(x1, . . . , xN ), (3.6.13)

where Φµ is one of the generalised polynomials Hµ, L(γ)
µ or J (γ1,γ2)

µ . By using orthogonality of
multivariate polynomials (3.5.8), (3.5.42) and (3.5.54), we have the following proposition.
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Proposition 3.6.3. Let t1, . . . , tp and T1, . . . , Tq be two sets of variables. Then

p∏
j=1

q∏
k=1

E(H)
N

[
det(tj −M)

det(Tk −M)

]
=

q∏
j=1

1

TNj

∑
λ⊆(Np)

s.t. λ̃=ν

∑
µ

∑
ν⊆µ

(−1)|ν|

2
|µ|−|ν|

2

Cµ(N)D(H)
µν Hλ(t)Sµ(T−1)

p∏
j=1

q∏
k=1

E(L)
N

[
det(tj −M)

det(Tk −M)

]
=

p+N−1∏
j=N

(−1)jj!

q∏
k=1

1

TNk

×
∑

λ⊆(Np)

s.t. λ̃=ν

∑
µ

∑
ν⊆µ

Gµ(N, γ)

G0(N, γ)

Cµ(N)

Cν(N)
D(L)
µν L

(γ)
λ (t)Sµ(T−1)

p∏
j=1

q∏
k=1

E(J)
N

[
det(tj −M)

det(Tk −M)

]
=

p+N−1∏
j=N

(−1)jj!
Γ(j + γ1 + γ2 + 1)

Γ(2j + γ1 + γ2 + 1)

N−1∏
k=0

Γ(2k + γ1 + γ2 + 2)

q∏
l=1

1

TNl

×
∑

λ⊆(Np)

s.t. λ̃=ν

∑
µ

∑
ν⊆µ

Gµ(N, γ1)

G0(N, γ1)

Gν(N, γ2)

G0(N, γ2)

Cµ(N)

Cν(N)
D(J)
µν J

(γ1,γ2)
λ (t)Sµ(T−1)

(3.6.14)

Note that the RHS is a formal power series in the variables T .

3.6.1 Moments of Schur polynomials

Gaussian ensemble. Similar to the moments of monomials with respect to the Gaussian weight,

1√
2π

∫
R
x2ne−

x2

2 dx = (−1)nH2n(0) =
2n!

2nn!
,

1√
2π

∫
R
x2n+1e−

x2

2 dx = 0,

(3.6.15)

the moments of Schur polynomials associated to a partition λ are given by

E(H)
N [Sλ] =

(−1)
|λ|
2 Hλ(0N ), |λ| is even,

0, |λ| is odd,
(3.6.16)

where

Hλ(0N ) =
(−1)

|λ|
2

2
|λ|
2
|λ|
2 !
Cλ(N)χλ

(2|λ|/2)
. (3.6.17)

This can be easily seen from (3.5.15), (3.5.27) and (3.5.34) by observing that Sλ = 1 for λ = (),
and Sλ(0N ) = 0 for any non-empty partition λ. Using (3.5.8), E(H)

N [Sλ] is a polynomial in N
with integer roots given by the content of λ whenever χλ

2|λ|/2
is non-zero. Below, we give a few
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examples of the moments of Schur polynomials corresponding to partitions of 4:

E(H)
N

[
S(4)

]
=

1

8
N(N + 1)(N + 2)(N + 3)

E(H)
N

[
S(3,1)

]
= −1

8
(N − 1)N(N + 1)(N + 2)

E(H)
N

[
S(2,2)

]
=

1

4
(N − 1)N2(N + 1)

E(H)
N

[
S(2,1,1)

]
= −1

8
(N − 2)(N − 1)N(N + 1)

E(H)
N

[
S(14)

]
=

1

8
(N − 3)(N − 2)(N − 1)N

(3.6.18)

Laguerre ensemble. The univariate moments are

1

Γ(γ + 1)

∫ ∞
0

xn+γe−x dx =
Γ(n+ γ + 1)

Γ(γ + 1)
= n!L(γ)

n (0). (3.6.19)

The moments of the Schur polynomials with respect to the Laguerre weight can be computed
using (3.5.43),

E(L)
N [Sλ] =

Cλ(N)

|λ|!
Gλ(N, γ)

G0(N, γ)
χλ

(1|λ|)

= (−1)
N(N−1)

2 Gλ(N, 0)L(γ)
λ (0N ).

(3.6.20)

Like in the the Hermite case, E(L)
N (Sλ) are polynomials in N with roots i − j and i − j − γ,

where (i, j) ∈ λ as discussed in Sec. 3.5.
A few examples are

E(L)
N

[
S(4)

]
=

1

24

(N + 3)!

(N − 1)!

Γ(N + γ + 4)

Γ(N + γ)

E(L)
N

[
S(3,1)

]
=

1

8

(N + 2)!

(N − 2)!

Γ(N + γ + 3)

Γ(N + γ − 1)

E(L)
N

[
S(2,2)

]
=

1

12

(N + 1)!N !

(N − 1)!(N − 2)!

Γ(N + γ + 2)Γ(N + γ + 1)

Γ(N + γ)Γ(N + γ − 1)

E(L)
N

[
S(2,1,1)

]
=

1

8

(N + 1)!

(N − 3)!

Γ(N + γ + 2)

Γ(N + γ − 2)

E(L)
N

[
S(14)

]
=

1

24

N !

(N − 4)!

Γ(N + γ + 1)

Γ(N + γ − 3)

(3.6.21)

Jacobi ensemble. We have∫ 1

0
xn+γ1(1− x)γ2 dx = n!

Γ(γ1 + 1)Γ(γ2 + 1)

Γ(n+ γ1 + γ2 + 2)
J (γ1,γ2)
n (0)

=
Γ(n+ γ1 + 1)Γ(γ2 + 1)

Γ(n+ γ1 + γ2 + 2)
.

(3.6.22)
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Similarly,

E(J)
N [Sλ] =

Gλ(N, γ1)

G0(N, γ1)
Cλ(N)D

(J)
λ0

= (−1)
N(N−1)

2
D

(J)
λ0

D̃(J)
λ0

Gλ(N, γ1 + γ2)Gλ(N, 0)J (γ1,γ2)
λ (0N ),

(3.6.23)

where

J (γ1,γ2)
λ (0N ) = (−1)

N(N−1)
2

Gλ(N, γ1)

Gλ(N, γ1 + γ2)G0(N, γ1)G0(N, 0)
D̃(J)
λ0 , (3.6.24)

and D(J)
λ0 and D̃(J)

λ0 are given in (3.2.10) and (3.5.60), respectively.
The following are a few examples:

E(J)
N

[
S(4)

]
=

1

24

(N + 3)!

(N − 1)!

Γ(N + γ1 + 4)

Γ(N + γ1)

Γ(2N + γ1 + γ2)

Γ(2N + γ1 + γ2 + 4)

E(J)
N

[
S(3,1)

]
=

1

8

(N + 2)!

(N − 2)!

Γ(N + γ1 + 3)

Γ(N + γ1 − 1)

Γ(2N + γ1 + γ2 − 1)

Γ(2N + γ1 + γ2 + 3)

E(J)
N

[
S(2,2)

]
=

1

12

(N + 1)!N !

(N − 1)!(N − 2)!

Γ(N + γ1 + 2)Γ(N + γ1 + 1)

Γ(N + γ1)Γ(N + γ1 − 1)

× Γ(2N + γ1 + γ2 − 2)Γ(2N + γ1 + γ2 − 3)

Γ(2N + γ1 + γ2 + 2)Γ(2N + γ1 + γ2 + 1)

E(J)
N

[
S(2,1,1)

]
=

1

8

(N + 1)!

(N − 3)!

Γ(N + γ1 + 2)

Γ(N + γ1 − 2)

Γ(2N + γ1 + γ2 − 2)

Γ(2N + γ1 + γ2 + 2)

E(J)
N

[
S(14)

]
=

1

24

N !

(N − 4)!

Γ(N + γ1 + 1)

Γ(N + γ1 − 3)

Γ(2N + γ1 + γ2 − 3)

Γ(2N + γ1 + γ2 + 1)

(3.6.25)

3.7 Joint moments of traces

Recently, the study of moments and joint moments of Hermitian ensembles have attracted
considerable interest [57, 58, 75, 127]. Here we give new and self contained formulae for the
joint moments of unitary ensembles in terms of the characters of the symmetric group. We
focus on the GUE but exactly the same method applies to the LUE and JUE.

Using (2.1.82) and (3.5.15), power sum symmetric polynomials can be written in terms of
multivariate Hermite polynomials

Pµ =
∑
λ

∑
ν⊆λ

χλµψ
(H)
λν Hν . (3.7.1)

Proof of Thm. 3.2.3. When |µ| is odd Pµ is a sum of product of monomials in xi with the

degree of at least one xi being odd. Since the generalised weight ∆2
N (x)

∏N
i=1 e

−x
2
i
2 is an even

function and Pµ(x) is odd, E(H)
N [Pµ] vanishes.

When |µ| is even, writing Pµ in terms of multivariate Hermite polynomials (3.7.1) and using
the orthogonality of Hν along with (3.5.27) proves the first line of (3.2.7). �
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Corollary 3.7.1. Correlators of traces in the L.H.S. of (3.2.7) are either even or odd polyno-
mials in N . More precisely, we have

E(H)
N [Pµ] l(µ) |µ|/2

Even polynomial
even even
odd odd

Odd polynomial
even odd
odd even

Proof. Let |µ| be even. Since E(H)
N [Sµ] is a polynomial in N of degree |µ| and the characters

χµλ are integers, E(H)
N [Pλ] is also a polynomial in N . Now for any partitions λ and µ,

χλ
′
µ = (−1)|µ|−l(µ)χλµ,

Cµ′(N) = Cµ(−N).
(3.7.2)

Thus,

E(H)
N [Pµ] =

1

2

∑
λ

(
χλµE

(H)
N [Sλ] + χλ

′
µ E

(H)
N [Sλ′ ]

)
=

1

2
|µ|+2

2
|µ|
2 !

∑
λ

χλ
(2|λ|/2)

χλµ

(
Cλ(N) + (−1)

|µ|
2
−l(µ)Cλ(−N)

)
.

(3.7.3)

The corollary is proved by noticing that the symmetric and anti-symmetric combination of
Cλ(N) and Cλ(−N) is an even and odd polynomial in N , respectively. �

Remark 3.7.2. When |µ| is even, the orthogonality of characters indicate that E(H)
N [(TrM2)

|µ|
2 ]

is a polynomial in N of degree |µ|. The polynomial degree of all other joint moments corre-
sponding to partitions of |µ| is strictly less than |µ|.

Since E(H)
N [Pµ] are polynomials in N , the domain of N can be analytically continued from

integers to the whole complex plane. In [58], it is shown that E(H)
N [TrM2j ], j ∈ N, are Meixner-

Pollaczek polynomials,

E(H)
N

[
TrM2j

]
= N(2j − 1)!!i−j

1

j + 1
P

(1)
j

(
iN,

π

2

)
(3.7.4)

= N(2j − 1)!!2F1

(
−j, 1−N

2
; 2

)
, (3.7.5)

where P (1)
k (iN, π/2) is a Meixner-Pollaczek polynomial that satisfies∫ ∞

−∞
P (λ)
m (x, φ)P (λ)

n (x, φ) |Γ(λ+ ix)|2e(2φ−π)x dx =
2πΓ(n+ 2λ)

(2 sinφ)2λn!
δnm, λ > 0, 0 < φ < π.

(3.7.6)
Here 2F1(. . . ) is a terminating hypergeometric series in the standard notation,

pFq

(
a1 . . . ap
b1 . . . bq

;x

)
=

∞∑
j=0

(a1)j . . . (ap)j
(b1)j . . . (bq)j

xj

j!
, (3.7.7)
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where (q)n = Γ(q + n)/Γ(q). From (3.7.4) and (3.7.6) it can be seen that the zeros of
E(H)
N

[
TrM2j

]
lie on the line Re(N) = 0.

Correlators of traces are combinatorial objects as they are connected to enumeration of
ribbon graphs [32, 143, 228]. This connection is briefly discussed in App. A. By counting
ribbon graphs, it can be easily seen that

E(H)
N

[
TrM2k−1 TrM

]
= (2k − 1)E(H)

N [TrM2k−2]

= N(2k − 1)!!i−k+1 1

k
P

(1)
k−1

(
iN,

π

2

)
.

(3.7.8)

Therefore, E(H)
N [Pµ], µ = (2k−1, 1), is also a polynomial in N with roots on the line Re(N) = 0.

But in general, this phenomenon is not observed for all partitions µ i.e. the zeros of E(H)
N [Pµ]

doesn’t lie on the imaginary axis for any partition. For example,

E(H)
N [TrM8 TrM6] = 5N(14N8 + 578N6 + 6881N4 + 16170N2 + 3384) (3.7.9)

whose zeros are not on the line Re(N) = 0.
In Table. 3.1, we give the moments of traces of the GUE corresponding to the first 8

partitions. The Fig. 3.2 shows the roots of these polynomials corresponding to partitions of 6.
The moments E(L)

N [TrM j ] of the Laguerre ensemble can be expressed as continuous dual Hahn
polynomials [58]. For the Jacobi ensemble, the moments E(J)

N [TrM j ] are not polynomials in N .
But by treating j as a complex number, E(J)

N [TrM j ] can be written as a Wilson polynomial [58],
which is a hypergeometric orthogonal polynomial. In Table. 3.2 and Table. 3.3, we give mixed
moments of traces for the LUE and the JUE.

Figure 3.2: Zeros of polynomials E(H)
N [Pµ(M)] when µ runs over all partitions of 6. When

µ is a partition of a larger integer, the zeros of E(H)
N [Pµ(M)] tend to deviate from the line

Re(N) = 0.
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(a) γ = 0.01 (b) γ = 1.1

(c) γ = 5 (d) γ = 8

Figure 3.3: Zeros of E(L)
N [Pµ(M)] for different values of γ when µ runs over all partitions of 6.

Pµ E(H)
N [Pµ]

p2
N2

p2
1 N

p4
N(2N2 + 1)

p3p1
3N2

p2
2 N2(N2 + 2)

p2p
2
1 N(N2 + 2)

p4
1 3N2

p6
5N2(N2 + 2)

( To be continued)
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Pµ E(H)
N [Pµ]

p5p1
5N(2N2 + 1)

p4p2
N(2N2 + 1)(N2 + 4)

p4p
2
1 N2(2N2 + 13)

p2
3 3N(4N2 + 1)

p3p2p1
3N2(N2 + 4)

p3p
3
1 3N(3N2 + 2)

p3
2 N2(N2 + 2)(N2 + 4)

p2
2p

2
1 N(N2 + 2)(N2 + 4)

p2p
4
1 3N2(N2 + 4)

p6
1 15N3

p8
7N(2N4 + 10N2 + 3)

p7p1
35N2(N2 + 2)

p6p2
5N2(N2 + 2)(N2 + 6)

p6p
2
1 5N(N4 + 14N2 + 6)

p5p3
15N2(3N2 + 4)

p5p2p1
5N(2N4 + 13N2 + 6)

p5p
3
1 15N2(2N2 + 5)

p2
4 N2(4N4 + 40N2 + 61)

p4p3p1
3N(2N4 + 25N2 + 8)

( To be continued)
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Pµ E(H)
N [Pµ]

p4p
2
2 N(2N2 + 1)(N2 + 4)(N2 + 6)

p4p2p
2
1 N2(N2 + 6)(2N2 + 13)

p4p
4
1 3N(2N4 + 25N2 + 8)

p2
3p2

3N(4N2 + 1)(N2 + 6)

p2
3p

2
1 15N2(2N2 + 5)

p3p
2
2p1

3N2(N2 + 4)(N2 + 6)

p3p2p
3
1 3N(3N2 + 2)(N2 + 6)

p3p
5
1 15N2(3N2 + 4)

p4
2 N2(N2 + 2)(N2 + 4)(N2 + 6)

p3
2p

2
1 N(N2 + 2)(N2 + 4)(N2 + 6)

p2
2p

4
1 3N2(N2 + 4)(N2 + 6)

p2p
6
1 15N3(N2 + 6)

p8
1 105N4

Table 3.1: Mixed moments of traces of the GUE for the first 8 partitions. Only even partitions
are listed since E(H)

N [Pµ(M)] = 0 for odd |µ|.

Pµ E(L)
N [Pµ]

p1 N(N + γ)

p2
N(N + γ)(2N + γ)

p2
1 N(N + γ)(N2 + γN + 1)

p3
N(N + γ)(5N2 + 5γN + γ2 + 1)

( To be continued)
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Pµ E(L)
N [Pµ]

p2p1
N(N + γ)(2N + γ)(N2 + γN + 2)

p3
1 N(N + γ)(N2 + γN + 1)(N2 + γN + 2)

p4
N(N + γ)(2N + γ)(7N2 + 7γN + a2 + 5)

p3p1
N(N + γ)(N2 + γN + 3)

(
5N2 + 5γN + a2 + 1

)
p2

2 N(N + γ)
(
4N4 + 8γN3 + (5γ2 + 18)N2 + γ(γ2 + 18)N

+4γ2 + 2
)

p2p
2
1 N(N + γ)(2N + γ)(N2 + γN + 2)(N2 + γN + 3)

p4
1 N(N + γ)(N2 + γN + 1)(N2 + γN + 2)(γ2 + γN + 3)

p5
N(N + γ)

(
42N4 + 84γN3 + 14(4γ2 + 5)N2

+14γ(γ2 + 5)N + γ4 + 15γ2 + 8
)

p4p1
N(N + γ)(2N + γ)(N2 + γN + 4)(7N2 + 7γN + γ2 + 5)

p3p2
N(N + γ)(2N + γ)

(
5N4 + 10γN3 + (6γ2 + 37)N2

+γ(γ2 + 37)N + 6(γ2 + 3)
)

p3p
2
1 N(N + γ)(N2 + γN + 3)(N2 + γN + 4)(5N2 + 5γN + γ2 + 1)

p2
2p1

N(N + γ)(N2 + γN + 4)
(
4N4 + 8γN3 + (5γ2 + 18)N2

+γ(γ2 + 18)N + 2(2γ2 + 1)
)

p2p
3
1 N(N + γ)(2N + γ)(N2 + γN + 2)(N2 + γN + 3)(N2 + γN + 4)

p5
1 N(N + γ)(N2 + γN + 1)(N2 + γN + 2)(N2 + γN + 3)

× (N2 + γN + 4)

p6
N(N + γ)(2N + γ)

(
66N4 + 132γN3 + 42(2γ2 + 5)N2

+6γ(3γ2 + 35)N + γ4 + 35γ2 + 84
)

( To be continued)
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Pµ E(L)
N [Pµ]

p5p1
N(N + γ)(N2 + γN + 5)

(
42N4 + 84γN3 + 14(4γ2 + 5)N2

+14γ(γ2 + 5)N + γ4 + 15γ2 + 8
)

p4p2
N(N + γ)

(
28N6 + 84γN5 + 5(19γ2 + 60)N4 + 50γ(γ2 + 12)N3

+3(4γ4 + 135γ2 + 120)N2 + γ(γ4 + 105γ2 + 360)N

+8(γ4 + 10γ2 + 4)
)

p4p
2
1 N(N + γ)(2N + γ)(N2 + γN + 4)(N2 + γN + 5)

× (7N2 + 7γN + γ2 + 5)

p2
3 N(N + γ)

(
25N6 + 75γN5 + 5(17γ2 + 62)N4

+5γ(9γ2 + 124)N3 + (11γ4 + 420γ2 + 349)N2

+γ(γ4 + 110γ2 + 349)N + 3(3γ4 + 25γ2 + 12)
)

p3p2p1
N(N + γ)(2N + γ)(N2 + γN + 5)

(
5N4 + 10γN3

+(6γ2 + 37)N2 + γ(γ2 + 37)N + 6(γ2 + 3)
)

p3p
3
1 N(N + γ)(N2 + γN + 3)(N2 + γN + 4)(N2 + γN + 5)

(5N2 + 5γN + γ2 + 1)

p3
2 N(N + γ)(2N + γ)

(
4N6 + 12γN5 + (13γ2 + 54)N4

+6γ(γ2 + 18)N3 + (γ4 + 66γ2 + 222)N2 + 6γ(2γ2 + 37)N

+40(γ2 + 2)
)

p2
2p

2
1 N(N + γ)(N2 + γN + 4)(N2 + γN + 5)

(
4N4 + 8γN3

+(5γ2 + 18)N2 + γ(γ2 + 18)N + 2(2γ2 + 1)
)

p2p
4
1 N(N + γ)(2N + γ)(N2 + γN + 2)(N2 + γN + 3)

(N2 + γN + 4)(N2 + γN + 5)

p6
1 N(N + γ)(N2 + γN + 1)(N2 + γN + 2)(N2 + γN + 3)

(N2 + γN + 4)(N2 + γN + 5)

Table 3.2: Mixed moments of traces of the LUE for the first 6 partitions.
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Pµ E(J)
N [Pµ]

p1 N(N + γ1)

2N + γ1 + γ2

p2
N(N + γ1)

3N2 + (3γ1 + 2γ2)N + γ2
1 + γ1γ2 − 1

(2N + γ1 + γ2 − 1)(2N + γ1 + γ2)(2N + γ1 + γ2 + 1)

p2
1

N(N + γ1)
2N3 + (3γ1 + γ2)N2 + (γ2

1 + γ1γ2)N + γ2

(2N + γ1 + γ2 − 1)(2N + γ1 + γ2)(2N + γ1 + γ2 + 1)

p3
N(N + γ1)

Γ(2N + γ1 + γ2 − 2)

Γ(2N + γ1 + γ2 + 3)

×
(
10N4 + 2(10γ1 + 7γ2)N3 + ((γ1 + γ2)(16γ1 + 5γ2)− 14)N2

+(γ1((γ1 + γ2)(6γ1 + 5γ2)− 14)− 8γ2)N + γ4
1 + 2γ3

1γ2

+γ2
1(γ2

2 − 5)− 4γ1γ2 + γ2
2 + 4

)
p2p1

N(N + γ1)
Γ(2N + γ1 + γ2 − 2)

Γ(2N + γ1 + γ2 + 3)

×
(
6N5 + (15γ1 + 7γ2)N4 + 2(7γ2

1 + 7γ1γ2 + γ2
2 − 3)N3

+3(2γ3
1 + 3γ2

1γ2 + γ1(γ2
2 − 3) + γ2)N2

+(γ4
1 + 2γ3

1γ2 + γ2
1(γ2

2 − 3) + 3γ1γ2 + 4γ2
2)N

+2γ2(γ2
1 + γ1γ2 − 2)

)
p3

1 N(N + γ1)
Γ(2N + γ1 + γ2 − 2)

Γ(2N + γ1 + γ2 + 3)

×
(
4N6 + 4(3γ1 + γ2)N5 + (13γ2

1 + 10γ1γ2 + γ2
2 − 2)N4

+2(γ1(γ1 + γ2)(3γ1 + γ2)− 2) + 3γ2)N3

+(γ4
1 + 2γ3

1γ2 + γ2
1(γ2

2 − 2) + 9γ1γ2 + 3γ2
2 − 2)N2

+(γ1(3γ2(γ1 + γ2)− 2)− 4γ2)N + 2γ2(γ2 − γ1))

Table 3.3: Mixed moments of traces of the JUE for the first 3 partitions.
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Chapter 4

Bounds in central limit theorem

This chapter is a part of the paper Symmetric function theory and unitary invariant ensembles,
which is a joint work with J. P. Keating and F. Mezzadri. The present author entirely carried
the project with the advisement from J. P. Keating and F. Mezzadri. We also thank Tamara
Grava and Sergey Berezin for helpful discussions.

The last section of [165] is rephrased into this chapter with more details and additional
examples. The notation has also been changed to be consistent with the rest of this thesis. All
such changes and inclusions are due to the present author.

4.1 Introduction

In this chapter, we are interested in the global fluctuations of the spectra of Hermitian en-
sembles. To set it more clearly, we consider the GUE, a paradigmatic ensemble for random
matrices. For a GUE matrix M of size N , consider the rescaled matrix M = M/

√
4N with

j.p.d.f.
(4N)

N2

2

(2π)
N
2
∏N
j=1 j!

∏
1≤i<j≤N

(xi − xj)2
N∏
j=1

e−2Nx2j . (4.1.1)

This choice of scaling is to make the eigenvalue support compact in the limit N → ∞. Note
that the scaling is different from Ch. 11. As a result, the asymptotic spectral density, namely
the semi-circle law, is confined between -1 and 1 instead of -2 and 2:

ρsc =
2

π

√
1− x2, −1 ≤ x ≤ 1. (4.1.2)

Therefore, for a well-defined function g,

1

N

N∑
j=1

g(xj)→
2

π

∫ 1

−1
g(x)

√
1− x2 dx, as N →∞. (4.1.3)

1Different scalings are chosen in each chapter to make our results consistent with the literature.
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An interesting object to study is the linear statistic
∑

j g(xj) and its fluctuations around the
semi-circle. In [157], Johansson proved that as N →∞, the centered random variable

Tr g(M)− E(H)
N [Tr g(M)] (4.1.4)

converges in distribution to a normal random variable with mean zero and variance that de-
pends on g. Note the absence of 1/

√
N normalisation typically seen in the CLT in probability

theory. This is due to very effective cancellations involved in (4.1.4).
Even for any finite N , normal random variables are closely connected to the GUE in the

sense that the real and complex matrix entries are i.i.d. Gaussians. This close representation
also appears in the large N limit as discussed above.

In Ch. 3, Sec. 3.3, we have seen that the correlators of traces of a Haar distributed unitary
matrix are exactly equal to that of complex Gaussians. For U ∈ U(N), the random variable
TrU j converges in distribution to

√
jZj , where Zj are independent complex normal random

variables. More generally, for a real-valued function g on the unit circle, the linear statistic
Tr g(U) converges in distribution to a normal random variable. Alternatively, the fluctuations
of Tr g(U) can also be studied using Szegő’s theorem, which we state below.

Theorem 4.1.1 (Szegő [227]). Let g be a continuous function on the unit circle with Fourier
coefficients ĝj, −∞ < j <∞. If

∑∞
j=−∞ |j||ĝj |2 <∞, then

EU(N)[e
Tr g(U)] = exp

Nĝ0 +

∞∑
j=1

jĝ−j ĝj + o(1)

 , as N →∞. (4.1.5)

The above theorem can be proved by using the properties of Toeplitz determinants:

EU(N)

[
eTr g(U)

]
= EU(N)

[ N∏
j=1

eg(e
iθj )
]

(4.1.6)

which is a Toeplitz determinant with symbol eg. For a proof of Szegő’s theorem see one of
the following [27,128,142,166,227]. For a proof of Szegő’s theorem using symmetric functions,
see [45]. The central limit theorem for Tr g(U) can be recovered from Szegő’s theorem as
follows.

Corollary 4.1.2. For each ξ ∈ R and a real-valued function g such that ĝ0 = 0 with

A(g) =

∞∑
j=1

j|ĝj |2 <∞, (4.1.7)

we have
EU(N)[e

iξTr g(U)]→ exp(−ξ2A(g)), (4.1.8)

i.e. Tr g(U) converges in distribution to a normal random variable with mean 0 and variance
2A(g).
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Consider the random variable

Z =
m∑
j=1

ξ2j−1

√
2

j
Re TrU j + ξ2j

√
2

j
Im TrU j = Tr g(U) (4.1.9)

where

g(eiθ) =

m∑
j=−m

cje
ijθ, (4.1.10)

with
cj =

1√
2j

(ξ2j−1 − iξ2j), c−j = cj , c0 = 0. (4.1.11)

As an immediate consequence of the Szegő’s theorem, we have that the random variable eiZ

has the limit

EU(N)[e
iZ ]→ exp

(
−‖ξ‖

2

2

)
(4.1.12)

as N →∞ for a fixed m. That is, if we denote

X2j−1 =

√
2

j
Re TrU j , X2j =

√
2

j
Im TrU j , 1 ≤ j ≤ m, (4.1.13)

then the vector X = (X1, . . . , X2m) converges in distribution to independent normal random
variables as the matrix size goes to infinity,

X = (X1, . . . , X2m)
d
=⇒ (r1, . . . , r2m) = r. (4.1.14)

Here rj are independent Gaussians with mean zero and variance 1, and d
=⇒ means convergence

in distribution.
The result in (4.1.14) also follows from the fact that joint moments of X1, . . . , X2m are

equal to the joint moments of r1, . . . , r2m up to very high orders, see Ch. 3, Sec. 3.3. Due
to this exact equality, Diaconis and Shashahani predicted that the random variable Z should
converge very fast to the normal random variable N (0, ‖ξ2‖). Johansson showed that the rate
of convergence is super-exponential by giving an estimate for the total variation distance,

dTV(Z,N (0, ‖ξ‖2)) ≤ CN−δN (4.1.15)

for some constants C and δ which do not have any explicit expressions. More recently, Johans-
son and Gaultier [160] studied the multivariate rate of convergence of the vector X to r in the
total variation distance as the variable m increases with N . In addition to showing that the
rate is super-exponential, they also gave explicit expressions for the constants that appear in
the CLT.

We now return to the random Hermitian matrices. Similar to the unitary group, for all
sufficiently nice functions g, a version of the strong Szegő’s theorem holds for Hermitian random
matrices [157]. In particular for the GUE, we have the following theorem.
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Theorem 4.1.3. For a locally Hölder continuous function g : R→ R, N →∞,

logE(H)
N

exp

∑
j

g(xj)

−N ∫
R
g(t)ρsc(t) dt→

1

8

∞∑
k=1

ka2
k, (4.1.16)

where

ak =
2

π

∫ π

0
g(cos θ) cos kθ dθ (4.1.17)

are the coefficients in the Chebyshev expansion of g(t).

The proof involves variational formulae, the properties of orthogonal polynomials and tools
from analysis. We do not discuss the proof here but interested readers can refer to [157].

If g in (4.1.16) is a real-valued function such that A(g) = 1
8

∑∞
k=1 ka

2
k <∞, then∫

exp

(
iξTr

(
g(M)−

∫
R
g(t)ρ(t) dt

))
dM→ exp(−ξ2A(g)) (4.1.18)

as N →∞ for each ξ ∈ R. Here dM is the uniform probability measure on the space of N ×N
rescaled Hermitian matrices, and ρ(x) is the eigenvalue density. Analogous results holds other
β−ensembles and for weight functions different from the Gaussian weight.

Remark 4.1.4. It is worth mentioning that the variance A(g) depends on the geometry in-
volved. For the unitary group, we have geometry of the unit circle, and for the Hermitian
ensembles we have the geometry of an interval.

In particular, let the function g in (4.1.16) be Chebyshev polynomial of the first kind Tk
of degree k. Chebyshev polynomials appear naturally in the GUE, more generally in Wigner
random matrices: Chebyshev polynomials of the second type are orthogonal with respect to
the semi-circle law. If

Xk = TrTk(M)− E(H)
N [TrTk(M)], k = 0, 1, . . . , (4.1.19)

then [157]
(X1, . . . , X2m)

d
=⇒ (1

2r1, . . . ,
√

2m
2 r2m), (4.1.20)

where rj are independent standard normal random variables.
The central limit theorem for Hermitian random matrix ensembles has been the focus of

numerous studies. For example see [28, 37, 101, 174, 176, 197, 201, 214, 215, 250] and references
therein. The main tools used to prove the CLT in the case of Hermitian and Wigner ensembles
have been orthogonal polynomial techniques, Riemann-Hilbert methods, the Stein’s method
etc. In this chapter, as an example of an application of the general approach taken in Ch. 3,
we apply our results to establish explicit asymptotic formulae for the rate of convergence of
the moments and cumulants of Xk to those of a standard normal distribution when the matrix
size tends to infinity.
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4.1.1 Statement of results

Define

En,k := E(H)
N [Xn

k ]−

(√
k

2

)n
E[rnk ]. (4.1.21)

The formalism that we developed to study moments of traces in Ch. 3 allow us to derive explicit
estimates for the error En,k as a function of matrix size N . For the rescaled Gaussian matrices,
the correlators of traces are Laurent polynomials in N . This fact can be seen from (3.2.7)
when applied to rescaled matrices. Consequently, the moments of polynomial test functions
are also Laurent polynomials in N . In particular, for the Chebyshev polynomials, we have the
following theorem.

Theorem 4.1.5. Fix k ∈ N and let kn ≤ N . With the notation introduced above the following
statements hold as N →∞.

1. For k odd and k > 1,

En,k =

0, if n is odd,

d1(n, k) 1
N2 +O

(
1
N4

)
, if n is even,

(4.1.22)

where, when n→∞ with k fixed,

d1(n, k) << A
3n
k π−

n
2 2

7nk
8
− 13n

8
+ n

6k k
3n
8

(k+2)+n
8

+ n
4kn

3n
8

(k+1)− k
4

+ 7
8

× e−
n
8

(k+1)+ 9n
4

+ 5n
8k

+π
√

n
3

(k+1).
(4.1.23)

When k = 1, En,k = 0.

2. For k even,

En,k =


d2(n, k) 1

N +O
(

1
N3

)
, if n is odd,

d3(n, k) 1
N2 +O

(
1
N4

)
, if n is even,

(4.1.24)

where, when n→∞ with k fixed,

d2(n, k) << A
3n
k π−

n
2 2

3nk
8
−3n+ n

6k k
3nk
8

+n
2

+ 9n
4k n

3nk
8

+ 2n
k
− k

2
− 3

8 e
−n

8
(k−18)+π

√
nk
3
− 19n

8k ,

d3(n, k) << A
3n
k π−

n
2 2

3nk
8
−3n+ n

6k k
3nk
8

+n
2

+ 9n
4k n

3nk
8

+ 2n
k
− k

2
+ 5

8 e
−n

8
(k−18)+π

√
nk
3
− 19n

8k

.

(4.1.25)

Here A = 1.2824 . . . is the Glaisher–Kinkelin constant [50].

Along with the moments, we also give an estimate for the cumulants of random variables
Xk. Computing cumulants from (3.2.7) is not straightforward. We instead employ the well
established connection between correlators of traces and the enumeration of ribbon graphs to
estimate the cumulants. The results are elaborated in Section 4.2.2.

To summarise, for a fixed n and k, we show that the nth moment of Xk converges to the
nth moment of independent scaled Gaussian variable as N−1 or N−2 depending on the parity
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of n; and the nth cumulant of Xk converges to 0 as Nn−2 for n > 2. Theorem 4.1.5 provides
explicit asymptotic estimates for the rate of convergence of the moments.

4.2 Eigenvalue fluctuations

4.2.1 Moments

Here we focus on the GUE but the Laguerre and Jacobi ensembles can be studied in a similar
way.

Proposition 4.2.1. We have

E(H)
N

[
(TrM)2n

]
=

2n!

23nn!
. (4.2.1)

Proof. When µ = (12n) in (3.2.7), using (3.5.10) and the fact that χλ(12n) = dimVλ,

E(H)
N

[
(TrM)2n

]
=

2n!

23nn!

1

Nn

∑
λ`2n

χλ(2n)Sλ(1N ). (4.2.2)

Using (2.1.82) and Pν(1N ) = N l(ν),

E(H)
N

[
(TrM)2n

]
=

2n!

23nn!

1

Nn
P(2n)(1

N ) =
2n!

23nn!
. (4.2.3)

�

The R.H.S. is the 2nth moment of r1/2 where r1 ∼ N (0, 1). This exact equality of moments
with the moments of Gaussian normals is special to E(H)

N

[
(TrM)2n

]
. In general, one can

consider moments of the form E(H)
N [(Tr g(M))n] for a well-defined function g.

Johansson [157] showed that when g is the Chebyshev polynomial of the first kind of degree
k, the random variable

Xk = TrTk(M)− E(H)
N [TrTk(M)], k = 0, 1, . . . , (4.2.4)

converges in distribution to the Gaussian variable N (0, k/4). In this section we prove Theorem
4.1.5, which implies that

E(H)
N [Xn

k ] =

(√
k

2

)n
n!

2
n
2

(
n
2

)
!
ηn + d(n, k)

1

N1+mk,n
+O(N−2), (4.2.5)

where ηn = 1 if n is even and 0 otherwise, and where mk,n is either 0 or 1, with asymptotic
estimates for d(n, k). Results for k = 1 are already discussed in Prop. 4.2.1. We first consider
X2 and discuss results for general values of k in Sec. 4.2.1.2.
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4.2.1.1 Second degree

One sees that

E(H)
N [(TrM2)n] =

1

(4N)n

n−1∏
j=0

(N2 + 2j). (4.2.6)

For a fixed n, this can be obtained by substituting in the character values of S2n in (3.2.7).
Alternatively, a proof by counting topologically invariant ribbon graphs is sketched in App. A.
Clearly, the nth moment of X2 is equal to

E(H)
N [Xn

2 ] = E(H)
N

[(
2 TrM2 − N

2

)n]
=

n∑
j=0

(
n

j

)(
−N

2

)n−j
E(H)
N [(2 TrM2)j ]

=
Nn

2n+1

n∑
j=0

(−1)n−j2jN2−2j

(
n

j

)Γ
(
N2

2 + j
)

Γ
(
N2

2 + 1
) .

(4.2.7)

The asymptotic expansion for the ratio of Gamma functions is [103]

Γ(z + a)

Γ(z + b)
∼ za−b

∞∑
l=0

1

zl

(
a− b
l

)
B

(a−b+1)
l (a), a, b ∈ C, z →∞, (4.2.8)

where B(l)
j are generalised Bernoulli polynomials. Hence,

E(H)
N [Xn

2 ] =
Nn

2n

n∑
j=1

j−1∑
l=0

(−1)n−j+l
2l

N2l

(
n

j

)(
j − 1

l

)
B

(j)
l (0). (4.2.9)

In arriving at (4.2.9) we used
B

(j)
l (j) = (−1)lB

(j)
l (0). (4.2.10)

Here B(j)
l (0) are generalised Bernoulli numbers and the first few numbers are given below:

B
(j)
0 (0) = 1

B
(j)
1 (0) = − j

2

B
(j)
2 (0) =

j2

4
− j

12

B
(j)
3 (0) = −j

3

8
+
j2

8
.

(4.2.11)
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By inserting (4.2.11) into (4.2.9),

Coef. of Nn :
1

2n

n∑
j=1

(−1)n−j
(
n

j

)
= 0

Coef. of Nn−2 :
1

2n

n∑
j=2

(−1)n−j
(
n

j

)
j(j − 1)

=
n

2n

n∑
j=2

(−1)n−j(j − 1)

(
n− 1

j − 1

)
= 0.

(4.2.12)

Calculating the coefficient of Nn−2l for arbitrary n and l is not straightforward because
there are no simple expressions for generalised Bernoulli numbers. Though these numbers
can be written in terms of Stirling’s numbers of first kind, the coefficients can be explicitly
computed only for small values of l. It can be shown for a given n that

Coef. of Nn−2k = 0, for 0 ≤ k < bn/2c,

Coef. of N0 =
n!

2n
(
n
2

)
!
ηn,

(4.2.13)

where ηn = 1 if n is even and 0 otherwise. Our goal is not to compute these coefficients
more generally, but rather to give an estimate for the sub-leading term in (4.2.5). Since the
Chebyshev polynomials of even and odd degree do not mix, the moments of Xk show a similar
behaviour as in Corollary. 3.7.1 in Ch. 3:

E(H)
N [Pµ(M)] l(µ)

Odd Laurent polynomial odd

Even Laurent polynomial even

Table 4.1: Parity dependence of E(H)
N [Pµ(M)].

Therefore,

E(H)
N [Xn

2 ] =

d2(n, 2) 1
N +O(N−3), if n is odd,

n!
2n(n2 )!

+ d3(n, 2) 1
N2 +O(N−4), if n is even.

(4.2.14)

Coefficients d2(n, 2) and d3(n, 2) can be estimated using (4.2.9). In Table. 4.2, we give the
results for E(H)

N [Xn
2 ] along with the coefficients d2(n, 2) and d3(n, 2). In the next section, we

give an estimate of d2(n, k) and d3(n, k) for arbitrary values of n and k.

4.2.1.2 General degree

The explicit expressions for the joint moments of eigenvalues in Thm. 3.2.3 in Ch. 3 allows us
to obtain Thm. 4.1.5. Consequently, Xk converges to a normal random variable. For a fixed k
and n,

Xk →
√
k

2
N (0, 1) as N →∞. (4.2.15)

105



n E(H)
N [Xn

2 ]

1 0

2 1
2

3 1
N

4 3
4 + 3

N2

5 5
N + 12

N3

6 15
8 + 65

2N2 + 60
N4

7 105
4N + 231

N3 + 360
N5

8 105
16 + 595

2N2 + 1827
N4 + 2520

N6

9 315
2N + 3304

N3 + 16056
N5 + 20160

N7

10 945
32 + 11025

4N2 + 75915
2N4 + 155844

N6 + 181440
N8

Table 4.2: The first 10 moments of X2 = TrT2(M)− E(H)
N [TrT2(M)].

In reality, the correct bounds in Thm. 4.1.5 are much more smaller than given. This is due to
sequential cancellations in the sum ∑

λ

χλµχ
λ
(2|µ|/2)

Cλ(N) (4.2.16)

and in the Chebyshev expansion

Tr Tk(M) =
k

2

b k
2
c∑

j=0

(−1)j
(k − j − 1)!

j!(k − 2j)!
2k−2jMk−2j . (4.2.17)

The bounds in Thm. 4.1.5 are better for smaller moments.
To prove Thm. 4.1.5, we first need to estimate the coefficient of the 1/N term in the

Laurent series of E(H)
N [Pµ] of rescaled matrices, which leads to estimating the characters of the

symmetric group. All the characters of the symmetric group are integers and satisfy

|χλµ|
χλ

(1|µ|)

< 1. (4.2.18)

It turns out that under suitable assumptions, the ratios |χλµ|/χλ(1|µ|) are very small, sometimes
exponentially and super-exponentially small [94, 209]. Particularly useful bounds are of the
form

|χλµ| ≤ (χλ
(1|µ|))

aµ , (4.2.19)

where aµ depends on µ.
The frequency representation of a partition µ = (1b12b2 . . . kbk) also represents a permuta-

tion cycle of an element in S|µ|. The number bj gives the number of j−cycles in µ, 1 ≤ j ≤ k.
For example, if b1 = 0 then are no 1-cycles. In other words, there are no fixed points when
b1 = 0. The only obstruction to the small character values of |χλµ| is when µ has many short
cycles [177]. With this information,
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Proposition 4.2.2.

(a) Given any λ ∈ Irr(Sn), let µ = (mn/m), then [94]

|χλµ| ≤ c n
1
2(1− 1

m)
(
χλ

(1|µ|)

) 1
m
, (4.2.20)

where c is an absolute constant.

(b) If µ ∈ Sn is fixed-point-free, or has no(1) fixed points, then for any λ ∈ Irr(Sn) [177],

|χλµ| ≤
(
χλ

1|µ|

) 1
2

+o(1)
. (4.2.21)

(c) Fix a ≤ 1 and let µ ∈ Sn with at most na cycles. Then for any λ ∈ Irr(Sn) [177],

|χλµ| ≤
(
χλ

(1|µ|)

)a+o(1)
. (4.2.22)

Proposition 4.2.3. For a given µ, E(H)
N [Pµ] is a Laurent polynomial in N with

Coefficient of 1/N q in E(H)
N [Pµ] << 2−

|µ|
2
−q− 3

2 |µ|
3|µ|
4
− 11

8
+qe
− |µ|

4
+π
√

2
3
|µ|
. (4.2.23)

Here q is a positive even (odd) integer when l(µ) is even (odd).

Proof. For rescaled matrices, the expected value of Pµ is

E(H)
N

[ l∏
j=1

TrMµj
]

=


1

(8N)
|µ|
2
|µ|
2

!

∑
λ`|µ| χ

λ
(2|λ|/2)

χλµCλ(N), |µ| is even,

0, otherwise,

(4.2.24)

Using (3.5.10), we obtain

Γ(N + 1)

Γ(N − |λ|+ 1)
≤ Cλ(N) ≤ Γ(N + |λ|)

Γ(N)
. (4.2.25)

Using the asymptotics of Gamma functions, as N →∞,

Γ(N + |λ|)
Γ(N)

∼ N |λ|
∞∑
l=0

1

N l

(
|λ|
l

)
B

(|λ|+1)
l (|λ|), (4.2.26)

where B(j)
l (x) are generalised Bernoulli polynomials of degree l. Thus, the coefficient of 1/N q

in (3.2.7) is bounded by

Coefficient of 1/N q in E(H)
N [Pµ] ≤ 1

8
|µ|
2
|µ|
2 !

( |µ|
|µ|
2 + q

)
B

(|µ|+1)
|µ|
2

+q
(|µ|)

∑
λ

|χλµ||χλ2|µ|/2 |. (4.2.27)

Using (4.2.19) and (4.2.20), the R.H.S. of (4.2.27) is bounded from above by

c

8
|µ|
2
|µ|
2 !

( |µ|
|µ|
2 + q

)
|µ|

1
4 (χλ

1|µ|)
aµ+ 1

2
max # par(|µ|)B(|µ|+1)

|µ|
2

+q
(|µ|). (4.2.28)
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The maximum of the dimension of the irreducible representation is [184]

(χλ
1|µ|)max ≤ (2π)

1
4 |µ|

|µ|
2

+ 1
4 e−

|µ|
2 , (4.2.29)

and number of partitions grow as [137,232]

# par(|µ|) ∼ 1

4
√

3|µ|
exp

(
π

√
2|µ|

3

)
, as |µ| → ∞. (4.2.30)

Polynomials B(j)
l (x) satisfy

B
(j+1)
l (x) =

(
1− l

j

)
B

(j)
l (x) + l

(
x

j
− 1

)
B

(j)
l−1(x). (4.2.31)

Hence,

B
(|µ|+1)
|µ|
2

+q
(|µ|) =

(
1

2
− q

|µ|

)
B

(|µ|)
|µ|
2

+q
(|µ|) ∼ 1

2
|µ|
2

+q+1
|µ|
|µ|
2

+q. (4.2.32)

Inserting aµ = 1, (4.2.29) and (4.2.32) in (4.2.28), the coefficient of 1/N q in E(H)
N [Pµ] is bounded

from above by
1

22|µ|+q+3

1
|µ|
2 !

( |µ|
|µ|
2 + q

)
|µ|

5|µ|
4
− 3

8
+qe
−3
|µ|
4

+π
√

2
3
|µ|
. (4.2.33)

The bound in (4.2.33) is much larger than the original value due to cancellations involved in
(4.2.24). Now using Stirling’s approximation,

n! =
√

2πnn+ 1
2 e−n, n→∞, (4.2.34)

proves the proposition. �

Proof of Thm. 4.1.5. Using (4.2.24), it can be seen that the joint moments of traces of rescaled
matrices are Laurent polynomial in N with rational coefficients. Thus the central moments
of traces of Chebyshev polynomials are also Laurent polynomials. Since Xk(M) converges
in distribution to a normal random variable as N → ∞, E(H)

N [Xn
k ] is a polynomial in 1/N

with constant term given in (4.1.22) and (4.1.24) depending on whether k is odd and even,
respectively. To estimate the sub-leading term in E(H)

N [Xn
k ], we consider k even and odd cases

separately.
(1) For k odd, E(H)

N [Tr Tk(M)] = 0. Using the expansion of Chebyshev polynomials of the first
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kind,

E(H)
N [Xn

k ]

=E(H)
N [(Tr Tk(M))n]

=E(H)
N


k k−1

2∑
j=0

(−1)
k−1
2
−j (k−1

2 + j)!

(k−1
2 − j)!(2j + 1)!

22j Tr M2j+1

n
=kn

∑
n0+···+n k−1

2
=n

(
n

n0, . . . , n k−1
2

) k−1
2∏
j=0

(−1)
k−1
2
nj−jnj

(
(k−1

2 + j)!

(k−1
2 − j)!(2j + 1)!

)nj
22jnj

× E(H)
N [Pµ] ,

(4.2.35)

where

E(H)
N [Pµ] = E(H)

N

 k−1
2∏
l=0

(Tr M2l+1)nl

 , µ = (1n03n1 . . . k
n k−1

2 ). (4.2.36)

The odd moments of Tr Tk(M) are identically zero because E(H)
N [Pµ] = 0 when |µ| is odd, see

(4.2.24). When n is even, the leading term is given by the nth moment of
√
krk/2, rk ∼ N (0, 1),

according to Szegő’s theorem. For n even, l(µ) is always even. Hence the sub-leading term in
(4.2.35) is O(N−2) (see Table. 4.1).

The maximum possible degree of µ is |µ| = nk when n k−1
2

= n, nj = 0 for j = 0, . . . , k−3
2 ,

and the minimum degree is |µ| = n when n0 = n, nj = 0 for j = 1, . . . , k−1
2 . The coefficient

of 1/N2 in (4.2.35) is estimated using (4.2.23) by choosing an appropriate µ. Note that
the multinomial coefficient is maximum when all nj ’s are approximately equal. In this case
µ = (1

2n
k+1 3

2n
k+1 . . . k

2n
k+1 ) and |µ| = n(k+1)/2. For a fixed k as n increases, the number of short

cycles in µ increases. Using (4.2.22),

|χλµ| ≤ χλ(1|µ|), (4.2.37)

which implies aµ = 1 in (4.2.23).
Let

d1(n, k) =
[
E(H)
N [(Tr Tk(M))n]

]
1/N2 (4.2.38)

denote the coefficient of 1/N2 in E(H)
N [(Tr Tk(M))n]. Putting q = 2 in (4.2.23),

d1(n, k) ≤ kn n!(
2n
k+1 !

) k+1
2

 k−1
2∏
j=0

(k−1
2 + j)!

(k−1
2 − j)!(2j + 1)!


2n
k+1

22|µ|[E(H)
N [Pµ]

]
1/N2 . (4.2.39)

Now,

k−1
2∏
j=0

(k−1
2 + j)!

(k−1
2 − j)!(2j + 1)!

= 2−
5
24
− 1

4
k(k+2)e

1
8π

1
4

(k+2) 1

A
3
2

G(k + 1)

G
(
k
2 + 2

)
G
(
k+1

2

) (
G
(
k+3

2

))2 , (4.2.40)
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where we have used the relations

k−1
2∏
j=0

(k−1
2 + j)!

(k−1
2 − j)!

=
G(k + 1)

G
(
k+1

2

) (
G
(
k+3

2

)) ,
k−1
2∏
j=0

1

(2j + 1)!
= 2−

5
24
− 1

4
k(k+2)e

1
8π

1
4

(k+2) 1

A
3
2

1(
G
(
k
2 + 2

))
G
(
k+3

2

) .
(4.2.41)

Here G(x) is Barnes-G function and A = 1.2824 . . . is the Glaisher-Kinkelin constant.
Using the asymptotics of Barnes-G functions,

G(x+ 1) ∼ 1

A
(2π)

x
2 x

x2

2
− 1

12 e−
3x2

4 , as x→∞, (4.2.42)

and Stirling’s approximation, we obtain

 k−1
2∏
j=0

(k−1
2 + j)!

(k−1
2 − j)!(2j + 1)!


2n
k+1

∼ A
3n
k π−

n
2 2

nk
2
−n+ n

6k k−
3n
2

+ n
4k e

9n
4

+ 5n
8k ,

n!(
2n
k+1 !

) k+1
2

∼ 1

π
k−1
4

1

2n+ k
2

n−
k−1
4 (k + 1)n+ k+1

4 .

(4.2.43)

By combining all the results that came along,

d1(n, k) << A
3n
k π−

1
4

(2n+k)2
7nk
8
− 13n

8
+ n

6k
− k

2n
3n
8

(k+1)− k
4

+ 7
8k

3n
8

(k+2)+n
8

+ n
4k

+ k
4

+ 7
8

× e−
n
8

(k+1)+ 9n
4

+ 5n
8k

+π
√

n
3

(k+1).
(4.2.44)

We are interested to find the order of the coefficient of 1/N as n increases for a fixed k. To
capture the right behaviour, it is sufficient to approximate (4.2.44) to

d1(n, k) <<A
3n
k π−

n
2 2

7nk
8
− 13n

8
+ n

6k k
3n
8

(k+2)+n
8

+ n
4kn

3n
8

(k+1)− k
4

+ 7
8 e−

n
8

(k+1)+ 9n
4

+ 5n
8k

+π
√

n
3

(k+1)

(4.2.45)

(2) When k is even, let

ck =
1

N
E(H)
N [Tr Tk(M)]. (4.2.46)
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We have,

E(H)
N [Xn

k ] = E(H)
N [(Tr Tk(M)−Nck)n]

= E(H)
N


N ((−1)

k
2 − ck

)
+ k

k
2∑
j=1

(−1)
k
2
−j (k2 + j − 1)!

(k2 − j)!(2j)!
22j−1 Tr M2j

n


=
∑

n0+···+n k
2

=n

(
n

n0, . . . , n k
2

)
Nn0

(
(−1)

k
2 − ck

)n0

×

k
2∏
j=1

(−1)
k
2
nj−jnjknj

(
(k2 + j − 1)!

(k2 − j)!(2j)!

)nj
2(2j−1)njE(H)

N [Pµ] ,

(4.2.47)

where

E(H)
N [Pµ] = EN

 k
2∏
l=0

(Tr M2l)nl

 , µ = (2n14n2 . . . k
n k

2 ). (4.2.48)

According to Szegő’s theorem, when n is even the leading order term in the R.H.S. of (4.2.47)
is given by E[(

√
krk/2)n], rk ∼ N (0, 1). The sub-leading term is d3(n, k)N−2. When n is

odd, the leading term in the R.H.S. is given by d2(n, k)N−1. Next we compute the coefficients
d2(n, k) and d3(n, k).
Coefficient d2(n, k): ck decays as 1/N2 for k > 2, so we neglect it in (4.2.47). Note that µ
in (4.2.48) doesn’t have any 1-cycles. So µ is fixed-point-free and (4.2.21) can also be used to
estimate characters χλµ in Prop. 4.2.3. Here we just use (4.2.23) for q = 2 and follow the exact
same calculation as k odd. This leads to

d2(n, k) << A
3n
k π−

n
2 2

3nk
8
−3n+ n

6k k
3nk
8

+n
2

+ 9n
4k n

3nk
8

+ 2n
k
− k

2
− 3

8 e
−n

8
(k−18)+π

√
nk
3
− 19n

8k . (4.2.49)

Similarly, d3(n, k) can be approximated as

d3(n, k) << A
3n
k π−

n
2 2

3nk
8
−3n+ n

6k k
3nk
8

+n
2

+ 9n
4k n

3nk
8

+ 2n
k
− k

2
+ 5

8 e
−n

8
(k−18)+π

√
nk
3
− 19n

8k . (4.2.50)

�

4.2.2 Cumulants

In general, the moments and the cumulants are related by the recurrence relation

κn = mn −
n−1∑
j=1

(
n− 1

j − 1

)
κjmn−j . (4.2.51)
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Cumulants and moments can also be expressed in terms of each other through a more elegant
formula. For a partition λ = (1b12b2 . . . rbr), define

κλ :=
r∏
j=1

κ
bj
j , mλ :=

r∏
j=1

m
bj
j . (4.2.52)

One has that

mn =
∑
λ

dλκλ,

κn =
∑
λ

(−1)l(λ)−1(l(λ)− 1)!dλmλ,
(4.2.53)

where
dλ =

n!

(1!)b1b1! . . . (r!)brbr!
(4.2.54)

is the number of decompositions of a set of n elements into disjoint subsets containing λ1, . . . , λl

elements.
In this section, we give an estimate on the cumulants of random variables Xk and to do

so we rely on the well studied connection between GUE correlators and enumerating ribbon
graphs which has been briefly discussed in App. A.

4.2.2.1 Connections to Ribbon graphs

The mixed moments of traces are combinatorial objects and count the ribbon graphs, which are
graphs that can be drawn on surfaces. This connection is captured by the following theorem
due to Brézin-Itzykson-Parisi-Zuber [42].

Theorem 4.2.4. The joint moments of traces of the Gaussian matrix model are the sums of
weighted ribbon graphs,

E(H)
N

 n∏
j=1

1

nj !

(
N

j
TrMj

)nj =
∑

Ribbon Graphs G

1

#Aut(G)
4−#edgesNχ(G), (4.2.55)

where the sum is over non-topologically equivalent ribbon graphs G with nj vertices, each with
j valencies, and #Aut(G) is the number of automorphisms of G.

Each graph G in (4.2.55) is either connected or disconnected. To study the cumulants, we
require to count only the connected graphs. When the summation over graphs in (4.2.55) is re-
stricted to connected ribbon graphs, we obtain the connected components of E(H)

N

[∏n
j=1

(
TrMj

)nj]
indicated by E(H)

N

[∏n
j=1

(
TrMj

)nj]
c
. That is,

E(H)
N

 n∏
j=1

(
TrMj

)nj
c

: counts only connected ribbon graphs. (4.2.56)
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A few examples of connected components of traces are listed below:

E(H)
N [TrMl1 ]c = E(H)

N [TrMl1 ]

E(H)
N [TrMl1 TrMl2 ]c = E(H)

N [TrMl1 TrMl2 ]− E(H)
N [TrMl1 ]E(H)

N [TrMl2 ]

E(H)
N [TrMl1 TrMl2 TrMl3 ]c = E(H)

N [Ml1 TrMl2 TrMl3 ]− E(H)
N [Ml1 ]E(H)

N [TrMl2 TrMl3 ]

− E(H)
N [Ml2 ]E(H)

N [TrMl1 TrMl3 ]− E(H)
N [Ml3 ]E(H)

N [TrMl1 TrMl2 ]

+ 2E(H)
N [Ml1 ]E(H)

N [TrMl2 ]E(H)
N [TrMl3 ]

(4.2.57)

Corollary 4.2.5. Connected integrals in the Gaussian matrix model are the sum of weighted
connected ribbon graphs,

E(H)
N

 n∏
j=1

1

nj !

(
N

j
TrMj

)nj
c

=
∑

Connected ribbon Graphs G

1

#Aut(G)
4−#edgesNχ(G). (4.2.58)

Alternatively for µ = (µ1, . . . , µl) = (1n1 . . . knk), such that |µ| is even,

E(H)
N

 l∏
j=1

Tr Mµj


c

≡ E(H)
N

 k∏
j=1

(Tr Mj)nj


c

=
∑

0≤g≤ |µ|
4
− l

2
+ 1

2

1

2|µ|
ag(µ1, . . . , µl)N

2−2g−l.

(4.2.59)
Here g is the genus of the graph, and

ag(µ1, . . . , µl) = #{connected oriented labelled ribbon graphs

of genus g with l vertices of valencies µ1, . . . , µl}

= l!
∑

Γ

1

#Sym(Γ)
,

(4.2.60)

where Γ is a connected (unlabelled) ribbon graph of genus g with l vertices of valencies
µ1, . . . , µl, #Sym(Γ) is the order of the symmetry group of Γ, and the last summation is
taken over all such Γ. Table. 4.3 gives a few examples of connected components of traces
corresponding to partitions of 6. For more examples and explicit results for expectations of
connected traces, see [75]. Special cases of connected correlators such as

E(H)
N [(TrM j)k]c, j ≥ 3, k ≥ 1, (4.2.61)

count polygon numbers on Riemann surfaces and can be determined exactly by certain algo-
rithms.

We now return to the cumulants of random variables Xk. Consider the formal matrix
integral over the space of N ×N rescaled GUE matrices,

ZN (s, ξ) = es0Nξ
∫
e−2N Tr M2

eξTr V (M) dM. (4.2.62)
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Pµ E(H)
N [Pµ]c

p6
5N
64 + 5

32N

p5p1
5
32 + 5

64N2

p4p2
1
8 + 1

16N2

p4p
2
1

3
16N

p2
3

3
16 + 3

64N2

p3p2p1
3

16N

p3p
3
1

3
32N2

p3
2

1
8N

p2
2p

2
1

1
8N2

p2p
4
1

3
16N

p6
1

15
64

Table 4.3: E(H)
N [Pµ(M)]c when µ is a partition of 6.

Here the formal series V (M) depends on the parameters s = {s1, . . . , sk}, and has the form

V (M) =
k∑
j=1

sjM
j . (4.2.63)

The integral in (4.2.62) can be considered as a formal expansion in the set of parameters sj
and ξ. Now,

Z(s, ξ)
Z(0, ξ)

=
∑

n0,n1,...,nk

ξ
∑
nj

(s0N)n0

n0!

sn1
1

n1!
. . .

snkk
nk!

E(H)
N

 k∏
j=1

(Tr Mj)nj


=
∑
n≥0

ξn
∑

n0+···+nk=n

(s0N)n0

n0!

sn1
1

n1!
. . .

snkk
nk!

E(H)
N

 k∏
j=1

(Tr Mj)nj

 .
(4.2.64)

By choosing sj to be the coefficients of Chebyshev polynomials in (4.2.64), we recover the
moments of Xk. Thus, (4.2.64) is the moment generating function of Xk. For a given k, by
fixing sj to be the Chebyshev coefficients in Tk,

E(H)
N

[
eξXk

]
=
∑
n≥0

ξn

n!
E(H)
N [Xn

k ] =
Z(s, ξ)
Z(0, ξ)

. (4.2.65)

By matching the terms in the L.H.S. and R.H.S. of (4.2.65) by powers in ξ, we recover the
moments of Xk. The correlators of Tr Mj are connected to the problem of enumerating ribbon
graphs as discussed above. The trace correlators count ribbon graphs that are connected and
also multiplicatively count ribbon graphs that are disconnected. When we have a generat-
ing series that counts disconnected objects multiplicatively, taking the logarithm counts only
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connected objects [138]. Hence, the cumulant generating function is given by

logE(H)
N

[
eξXk

]
= log

Z(s, ξ)
Z(0, ξ)

=
∑
n≥1

ξn

n!
κn

= s0Nξ +
∑
n≥1

ξn
∑

n1···+nk=n

sn1
1

n1!
. . .

snkk
nk!

E(H)
N

 k∏
j=1

(Tr Mj)nj


c

.

(4.2.66)

For µ = (1n1 . . . knk) ≡ (µ1, . . . , µl), the connected correlators in (4.2.66) are given by (4.2.58).
We are now ready to estimate the cumulants of Xk. We treat k even and odd cases

separately.
(1) k odd : In this case, the parameters s2j = 0 for 0 ≤ j ≤ k−1

2 , and

s2j+1 = (−1)
k−1
2
−jk

(k−1
2 + j)!

(k−1
2 − j)!(2j + 1)!

22j , 0 ≤ j ≤ k − 1

2
. (4.2.67)

When k is odd, all the odd moments are zero. Hence all the odd cumulants are also zero. By
inserting (4.2.58) in (4.2.66), the even cumulants are given by

κ2n =
2n!

N2n−2

∑
g

∑
n1+n3+···+nk=2n

1

2
∑
j jnj

ag
N2g

sn1
1

n1!

sn3
3

n3!
. . .

snkk
nk!

. (4.2.68)

(2) k even: In this case, the parameters s2j+1 = 0 for 0 ≤ j ≤ k
2 − 1, and

s0 = (−1)
k
2 − ck,

s2j = (−1)
k
2
−jk

(k2 + j − 1)!

(k2 − j)!(2j)!
22j−1, 1 ≤ j ≤ k

2
.

(4.2.69)

The first cumulant is zero by the definition of Xk. So the first term in (4.2.66) is cancelled by
n = 1 contribution coming from the second term. Hence,

logE(H)
N

[
eξXk

]
=
∑
n≥2

ξn
∑

n2+···+nk=n

sn2
2

n2!

sn4
4

n4!
. . .

snkk
nk!

E(H)
N

k/2∏
j=1

(Tr M2j)n2j


c

. (4.2.70)

By inserting (4.2.58) in (4.2.66), the cumulants are given by

κn =
n!

Nn−2

∑
g

∑
n2+···+nk=n

1

2
∑
j jnj

ag
N2g

sn2
2

n2!

sn4
4

n4!
. . .

snkk
nk!

, n ≥ 2. (4.2.71)

Third and higher order cumulants of a Gaussian random variable are identically equal to
zero. Since Xk converges to N (0, k/4) as N → ∞, the cumulants of Xk, κn → 0 as N → ∞
for all n ≥ 3. For a fixed n, we see from (4.2.68) and (4.2.71) that κn decay as N−n+2.
Example: The simplest non-trivial example is to calculate the cumulants of X2. By mapping
the problem to counting ribbon graphs (see App. A),

E(H)
N [(TrM2)n]c =

1

(4N)n
2n−1(n− 1)!N2 = (n− 1)!

1

2n+1

1

Nn−2
. (4.2.72)
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For X2, s0 = −1
2 , s2 = 2, and sj = 0 for j 6= 0, 2. Hence

κn = sn2 E(H)
N [Tr(M2)n]c =

1

2

(n− 1)!

Nn−2
. (4.2.73)

4.2.3 Laguerre and Jacobi ensembles

The correlators and the connected correlators of traces of the LUE and the JUE also have
combinatorial interpretations. For the LUE, the joint moments of traces can be expressed in
terms of double monotone Hurwitz numbers [57] and Hodge integrals [73,74,127]. In a similar
spirit, JUE correlators are related to triple monotone Hurwitz numbers [126].

For the LUE, consider the rescaled matrix M = M/(2N). The random variables

Yk(M) = TrTk(M− 1)− E(L)
N

[
TrTk(M− 1)

]
, k ∈ N, (4.2.74)

converge in distribution to N (0, k/4) as N →∞. More generally,

(Y1, . . . , Y2m)
d
=⇒
(

1
2r1, . . . ,

√
2m
2 r2m

)
. (4.2.75)

Similarly, for a JUE matrix M of size N , the random variables

Zk = TrTk(2M − 1)− E(J)
N

[
TrTk(2M − 1)

]
, k ∈ N, (4.2.76)

have the Gaussian distribution in the limit N →∞,

Zk
d
=⇒
√
k

2
rk. (4.2.77)

Furthermore, variables Zk also satify the multivariate CLT,

(Z1, . . . , Z2m)
d
=⇒
(

1
2r1, . . . ,

√
2m
2 r2m

)
. (4.2.78)

For the Jacobi ensemble, the support of eigenvalues is compact. Therefore, no further rescaling
is required unlike the Gaussian and Laguerre ensembles. For special values of γ1 and γ2 in
the JUE, namely γ1, γ2 = ±1/2, the j.p.d.f. of eigenvalues represents that of compact groups
O(2N)±, O(2N + 1)±, Sp(2N). In [156], Johansson studied the rate of convergence in the
CLT for these groups. Error estimates in Thm. 4.1.5 can also be calculated for the Laguerre
and Jacobi ensembles using the machinery discussed in Sec. 4.2.

4.3 Mixed moments

Since Xk converges to independent Gaussian normals, the correlators of Xk also converge to
random Gaussian variables as N →∞. For instance,

E(H)
N [XiXj ] =

√
ij

4
E[rirj ] +O(N−1). (4.3.1)
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For µ = (1a1 . . . kak), let

Xµ =
k∏
j=1

X
aj
j . (4.3.2)

Then,

E(H)
N [Xµ] = E(H)

N

 k∏
j=1

X
aj
j

 = E

 k∏
j=1

j
aj
2

2aj
r
aj
j

+O(N−1). (4.3.3)

In this work, we do not pursue the correlations of Xj in detail, but we give explicit expressions
in the following tables. Results similar to (4.3.3) also hold for the variables Yk and Zk.

Xµ E(H)
N [Xµ]

X2 0

X2
1

1
4

X4 0

X3X1 0

X2
2

1
2

X2X
2
1

1
4N

X4
1

3
16

X6 0

X5X1
5

4N2

X4X2
1
N2

X4X
2
1

1
2N

X2
3

3
4 + 3

4N2

X3X2X1
3

4N

X3X
3
1

3
8N2

X3
2

1
N

X2
2X

2
1

1
8 + 1

2N2

X2X
4
1

3
8N

X6
1

15
64

Table 4.4: Mixed moments of Chebyshev polynomials of traces of the GUE. Since
E(H)
N [Xµ(M)] = 0 for odd |µ|, we listed correlations corresponding to partitions of even in-

tegers.
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Yµ E(L)
N [Yµ]

Y1 0

Y2 0

Y 2
1

1
4 + γ

4N

Y3 0

Y2Y1
γ

2N + γ2

2N2

Y 3
1

1
4N + γ

4N2

Y4 0

Y3Y1
3γ
4N + 3(2γ2 + 1) 1

4N2 + 3γ(γ2 + 1) 1
4N3

Y 2
2

1
2 + γ

N + (3γ2 + 1) 1
2N2 + γ(2γ2 + 1) 1

2N3

Y2Y
2

1
1

2N + 5γ
4N2 + 3γ2

4N3

Y 4
1

3
16 + 3γ

8N + 3(γ2 + 2) 1
16N2 + 3γ

8N3

Y5 0

Y4Y1
γ
N +4(γ2 +1) 1

N2 +γ(4γ2 +9) 1
N3 +γ2(γ2 +5) 1

N4

Y3Y2 3γ
2N + 3(3γ2 + 2) 1

N2 + 3γ(3γ2 + 5) 1
2N3 + 3γ2(γ2 + 3) 1

2N4

Y3Y
2

1
3

4N + 15γ
4N2 + 3(3γ2 + 1) 1

N3 + 3γ(γ2 + 1) 1
N4

Y 2
2 X1

1
N + 4γ

N2 + (5γ2 + 1) 1
N3 + γ(2γ2 + 1) 1

N4

Y2Y
3

1
3γ
8N + 3(γ2 + 2) 1

4N2 + 3γ(γ2 + 8) 1
8N3 + 3γ2

2N4

Y 5
1

5
8N + 5γ

4N2 + (5γ2 + 6) 1
8N3 + 3γ

4N4

Y6 0
Y5Y1 5γ

4N + 5(6γ2 + 11) 1
4N2 + 5γ(11γ2 + 41) 1

4N3

+ 5(7γ4 + 45γ2 + 8) 1
4N4 + 5γ(γ4 + 12γ2 + 8) 1

4N5

Y4Y2 2γ
2N + 3(3γ2 + 4) 1

N2 + 2γ(8γ2 + 23) 1
N3 + (11γ4 + 54γ2 + 8) 1

N4

+ 2γ(γ4 + 10γ2 + 4) 1
N5

Y4Y
2

1 1
N + 17γ

2N2 + (18γ2 + 13) 1
N3 + γ(26γ2 + 51) 1

2N4 + 5γ2(γ2 + 5) 1
2N5

( To be continued)
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Yµ E(L)
N [Yµ]

Y 2
3 3

4 + 9γ
4N + 3(6γ2 + 7) 1

2N2 + 3γ(11γ2 + 29) 1
2N3

+ 9(8γ4 + 23γ2 + 4) 1
4N4 + 3γ(3γ4 + 25γ2 + 12) 1

4N5

Y3Y2Y1 3
2N + 39γ

4N2 + 3(27γ2 + 14) 1
4N3 + 3γ(21γ2 + 29) 1

4N4

+ 15γ2(γ2 + 3) 1
4N5

Y3Y
3

1 9γ
16N + 3(9γ2 + 25) 1

16N2 + 3γ(9γ2 + 80) 1
16N3

+ 3(3γ4 + 75γ2 + 20) 1
16N4 + 15γ(γ2 + 1) 1

4N5

Y 3
2 2

N + 11γ
N2 + 2(11γ2 + 4) 1

N3 + 18γ(γ2 + 1) 1
N4 + 5γ2(γ2 + 2) 1

N5

Y 2
2 Y

2
1 1

8 + 3γ
8N + (9γ2 + 37) 1

8N2 + γ(13γ2 + 122) 1
8N3

+ (6γ4 + 125γ2 + 20) 1
8N4 + 5γ(2γ2 + 1) 1

2N5

Y2Y
4

1 3
4N + 25γ

8N2 + (8γ2 + 9) 1
2N3 + γ(13γ2 + 66) 1

8N4 + 15γ2

4N5

Y 6
1 15

64 + 45
64N + 5(9γ2 + 26) 1

64N2 + 5γ(3γ2 + 52) 1
64N3

+ 5(13γ2 + 12) 1
32N4 + 15γ

8N5

Table 4.5: Mixed moments of Chebyshev polynomials of traces of the LUE.

Zµ E(J)
N [Zµ]

Z1 0

Z2 0

Z2
1 Γ(2N + γ1 + γ2)

Γ(2N + γ1 + γ2 + 2)

Γ(2N + γ1 + γ2 − 1)

Γ(2N + γ1 + γ2 + 1)

× 4N(N + γ1)(N + γ2)(N + γ1 + γ2)

Z3 0

Z2Z1 Γ(2N + γ1 + γ2)

Γ(2N + γ1 + γ2 + 3)

Γ(2N + γ1 + γ2 − 2)

Γ(2N + γ1 + γ2 + 1)

× 16(γ2
1 − γ2

2)N(N + γ1)(N + γ2)(N + γ1 + γ2)

( To be continued)
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Zµ E(J)
N [Zµ]

Z3
1 − 1

(2N + γ1 + γ2)

Γ(2N + γ1 + γ2)

Γ(2N + γ1 + γ2 + 3)

Γ(2N + γ1 + γ2 − 2)

Γ(2N + γ1 + γ2 + 1)

× 16(γ2
1 − γ2

2)N(N + γ1)(N + γ2)(N + γ1 + γ2)

Table 4.6: Mixed moments of Chebyshev polynomials of traces of the JUE.
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Chapter 5

Asymptotics

This chapter is a part of the paper On the moments of characteristic polynomials [164], which
is a joint work with J. P. Keating and F. Mezzadri. The present author entirely carried the
project with the advisement from J. P. Keating and F. Mezzadri.

5.1 Introduction

Characteristic polynomials of random matrices have received considerable attention in the
recent years. As discussed in Ch. 1, one of the main motivations is due to the connection
to number theory to study the Riemann zeta function and other families of L−functions.
[145, 171, 172]. The non-trivial zeros of the Riemann zeta function ζ(s) and the eigenvalues
of random unitary matrices, both on the scale of their mean spacing, have the same limiting
distribution. Not just the unitary matrices, but a wide class of Hermitian random matrices
share this remarkable resemblance to the ζ−function.

Consider a rescaled GUE matrix M = M/
√
N . We choose the rescaling parameter to be√

N instead of
√

4N to make the results consistent with the literature. With this scaling, the
asymptotic spectral density is

%sc(x) =
1

2π

√
4− x2 1x∈[−2,2], (5.1.1)

In this chapter, we study the large N limits of correlations EN [
∏
j det(tj −M)], and moments

EN [det(t−M)p] of characteristic polynomials of N−dimensional unitary invariant Hermitian
random matrices.

For the GUE, Brezin and Hikami [40] showed that in the Dyson limit, N →∞, ti− tj → 0

and N(ti − tj) is finite, the moments of characteristic polynomials are equal to

E(H)
N

[
det(t−M)2p

]
= e−NpeNp

t2

2 (2πN%sc(t))
p2
p−1∏
j=0

j!

(p+ j)!
. (5.1.2)

This should be compared to the 2pth moment of the zeta function which is conjectured to
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be [55,171]
1

T

∫ T

0
|ζ(1

2 + it)|2p dT ∼ ap(log T )p
2
p−1∏
j=0

j!

(p+ j)!
, as T →∞. (5.1.3)

Here ap, given in (1.6.16), is a constant related to the Dirichlet coefficient. As already discussed
in Sec. 1.6, random matrices and ζ−function have several features in common: characteristic
polynomial replaces the Riemann ζ−function, one-point density 2πN%sc(t) replaces log T , and∏p−1
j=0 j!/(p+ j)! is a universal constant that holds its place.
In this chapter, we investigate the conditions under which the semi-circle law in (5.1.2) is

recovered. As mentioned in Ch. 3, the correlations of characteristic polynomials have a deter-
minantal structure involving classical orthogonal polynomials. For the GUE, these correlations
are given by

E(H)
N

[ 2p∏
j=1

det(tj −M)
]

=
1

∆(t1, . . . , t2p)
det[N−

N−j
2
−pHN+2p−j(

√
Ntk)]1≤j,k≤2p. (5.1.4)

As a consequence, the moments also take a determinantal form comprising derivatives of Her-
mite polynomials. But the Hermite polynomials depend on the parity of the degree n via

Hn(−x) = (−1)nHn(x). (5.1.5)

Therefore, the moments of characteristic polynomials also depend on the parity of the degree,
which in turn depends on the parity of the dimension of the matrix N . As a result, we expect
that the asymptotic behaviour of the moments of characteristic polynomials should be different
for even and odd dimensional matrices. This parity dependence of Hermite polynomials is
captured by our approach and is reflected in the large N limit. This is in contrast to other
Hermitian ensembles such as the LUE and the JUE. For the LUE and the JUE, both even and
odd dimensional matrices have the same contribution to the moments.

In [40], the authors used orthogonal polynomial techniques to arrive at (5.1.2). In fact,
all the studies on the asymptotics of the moments of characteristic polynomials rely on the
orthogonal polynomial and saddle point techniques [19, 40, 41], the Riemann-Hilbert method
[224], Hankel determinants with Fisher-Hartwig symbols [95, 121, 175], and supersymmetric
tools [12,107,118,226]. In the present chapter, we express moments in terms of the multivariate
orthogonal polynomials and take a combinatorial approach to compute the asymptotics of
moments using the properties of these polynomials. By doing so, we discover that the even
and odd dimensional GUE matrices give different contributions in the large N limit, and that
only a formal average between these two contributions gives the semi-circle law. In Sec. 5.4.2.1,
this phenomenon is discussed in detail for the second moment of the characteristic polynomial.

In addition to connections with number theory, characteristic polynomials have found nu-
merous applications in quantum chaos [12], mesoscopic systems [106], quantum chromody-
namics [61], and in a variety of combinatorial problems [71, 223]. The asymptotic study of
negative moments and ratios of characteristic polynomials is another active area of research,
see for example Sec. 1.7 in Ch. 1 and also [7,19,31,36,39,96,108,110,120,224]. More recently,
the statistics of the maximum of the characteristic polynomial are being extensively studied,
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motivated by the relations to logarithmically correlated Gaussian processes. For example,
see [109, 111, 113, 115] and references therein. We expect that the techniques developed here
will have applications to those calculations as well.

This chapter is structured as follows. After introducing the required tools in Sec. 5.2, we
recall the moments of characteristic polynomials of the GUE, LUE and JUE in Sec. 5.3. In
Sec. 5.4, we compute the asymptotics of moments of the GUE and illustrate how to recover
the semi-circle law in the limit as the matrix size goes to infinity. In the last section Sec. 5.5,
as an application of the results discussed, we compute the correlators of secular coefficients,
which are the coefficients of a characteristic polynomial when expanded as a function of the
spectral variable.

5.2 Background

The joint probability density function for the rescaled GUE, LUE and JUE is

ρ(H)(x1, . . . , xN ) =
1

Z
(H)
N

∆2(x1, . . . , xN )

N∏
j=1

e−
Nx2j
2 , (5.2.1)

ρ(L)(x1, . . . , xN ) =
1

Z
(L)
N

∆2(x1, . . . , xN )

N∏
j=1

xγj e
−2Nxj , (5.2.2)

ρ(J)(x1, . . . , xN ) =
1

Z
(J)
N

∆2(x1, . . . , xN )
N∏
j=1

xγ1j (1− xj)γ2 , (5.2.3)

with

Z
(H)
N =

(2π)
N
2

N
N2

2

N∏
j=1

j!, (5.2.4)

Z
(L)
N =

N !

(2N)N(N+γ)
G0(N, γ)G0(N, 0), (5.2.5)

Z
(J)
N = N !

N−1∏
j=0

j! Γ(j + γ1 + 1)Γ(j + γ2 + 1)Γ(j + γ1 + γ2 + 1)

Γ(2j + γ1 + γ2 + 2)Γ(2j + γ1 + γ2 + 1)
. (5.2.6)

Note that Z(J)
N is same as Z(J)

N in (3.5.51) as no rescaling is required for the Jacobi ensemble.
Here Gλ(N, γ) is given in (3.2.6). The multivariate polynomials

Hµ(x1, . . . , xn) =
det[N−

1
2

(µj+n−j)Hµj+n−j(
√
Nxk)]

∆(x1, . . . , xn)
, (5.2.7)

L(γ)
µ (x1, . . . , xn) =

det[
(−1

2N

)µj+n−j (µj + n− j)!L(γ)
µj+n−j(2Nx)]

∆(x1, . . . , xn)
, (5.2.8)

J(γ1,γ2)
µ (x1, . . . , xn) =

det[(−1)µj+n−j(µj + n− j)! Γ(µj+n−j+γ1+γ2+1)
Γ(2(µj+n−j)+γ1+γ2+1)J

(γ1,γ2)
µj+n−j(x)]

∆(x1, . . . , xn)
, (5.2.9)
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are orthogonal with respect to the densities in (5.2.1), (5.2.2) and (5.2.3). The orthogonality
relations read to be

1

Z
(H)
n

∫
(−∞,∞)n

Hµ(x)Hν(x)∆2(x)
n∏
j=1

e−
Nx2j
2 dxj =

1

N |µ|
Cµ(n)δµν , (5.2.10)

1

Z
(L)
n

∫
[0,∞)n

Lµ(x)Lν(x)∆2(x)

n∏
j=1

xγj e
−2Nxj dxj =

1

(2N)2|µ|
Gµ(n, γ)

G0(n, γ)
Cµ(n)δµν , (5.2.11)

1

Z
(J)
n

∫
[0,1]n

J(γ1,γ2)
µ (x)J(γ1,γ2)

ν (x)∆2(x)

n∏
j=1

xγ1j (1− xj)γ2 dxj

=
N∏
j=1

Γ(2n− 2j + γ1 + γ2 + 1)Γ(2n− 2j + γ1 + γ2 + 2)

Γ(2λj + 2n− 2j + γ1 + γ2 + 1)Γ(2λj + 2n− 2j + γ1 + γ2 + 2)

× Gµ(n, γ1 + γ2)Gµ(n, γ1)Gµ(n, γ2)

G0(n, γ1 + γ2)G0(n, γ1)G0(n, γ2)
Cµ(n)δλµ, (5.2.12)

where Cµ is given in (3.2.6).
The polynomials Hµ, L

(γ)
µ and J

(γ1,γ2)
µ are chosen such that the leading coefficient of these

polynomials in the Schur basis is 1. More precisely,

Φλ(x1, . . . , xn) =
∑
µ⊆λ

ΥλµSµ(x1, . . . , xn), (5.2.13)

where Φλ is one of the Hλ, L
(γ)
λ , J(γ1,γ2)

λ , and

Υ
(H)
λµ =

1

N
|λ|−|µ|

2

κ
(H)
λµ

=

(
−1

2N

) |λ|−|µ|
2 Cλ(n)

Cµ(n)
D

(H)
λµ , (5.2.14)

Υ
(L)
λµ =

(−1)|λ|+
1
2
N(N−1)

(2N)|λ|−|µ|
Gλ(N, 0)κ

(L)
λµ

=

(
−1

2N

)|λ|−|µ| Gλ(n, γ)Gλ(n, 0)

Gµ(n, γ)Gµ(n, 0)
D

(L)
λµ , (5.2.15)

Υ
(J)
λµ = (−1)|λ|+

1
2
n(n−1) Gλ(n, γ1 + γ2)Gλ(n, γ1)∏n

j=1 Γ(2λj + 2n− 2j + γ1 + γ2 + 1)
κ

(J)
λµ

= (−1)|λ|+|µ|

 n∏
j=1

1

Γ(2λj + 2n− 2j + γ1 + γ2 + 1)

 Gλ(n, γ1)Gλ(n, 0)

Gµ(n, γ1)Gµ(n, 0)
D̃(J)
λµ . (5.2.16)

Here κ(H)
λµ , κ(L)

λµ and κ(J)
λµ are given in (3.5.16), (3.5.44) and (3.5.56), respectively; and D(H)

λν ,

D
(L)
λν and D

(J)
λν are given in (3.5.17), (3.5.45) and (3.5.61), respectively. Equivalently, Schur

polynomials can be expanded as

Sλ(x1, . . . , xn) =
∑
ν⊆λ

ΨλνΦν(x1, . . . , xn), (5.2.17)
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where

Ψ
(H)
λν =

1

N
|λ|−|ν|

2

ψ
(H)
λν

=

(
1

2N

) |λ|−|ν|
2 Cλ(n)

Cν(n)
D

(H)
λν , (5.2.18)

Ψ
(L)
λν =

(−1)|ν|+
1
2
n(n−1)

(2N)|λ|−|ν|
1

Gν(n, 0)
ψ

(L)
λν

=
1

(2N)|λ|−|ν|
Gλ(n, γ)Gλ(n, 0)

Gν(n, γ)Gν(n, 0)
D

(L)
λµ , (5.2.19)

Ψ
(J)
λν = (−1)|ν|+

1
2
n(n−1)

∏n
j=1 Γ(2νj + 2n− 2j + γ1 + γ2 + 1)

Gν(n, γ1 + γ2)Gν(n, 0)
ψ

(J)
λµ

=
Gλ(n, γ1)Gλ(n, 0)

Gν(n, γ1)Gν(n, 0)

 n∏
j=1

Γ(2νj + 2n− 2j + γ1 + γ2 + 2)

D(J)
λν , (5.2.20)

with D(J)
λν same as given in (3.5.57), and ψ(H)

λν , ψ(L)
λν , ψ(J)

λν are given in (3.5.16), (3.5.44), (3.5.56),
respectively.

5.3 Moments of characteristic polynomials

The identity in (2.1.164) is the main tool to study the moments of characteristic polynomials.

Proposition 5.3.1. We have,

(a) E(H)
N

[ p∏
j=1

det(tj −M)
]

= H(Np)(t1, . . . , tp) (5.3.1a)

(b) E(L)
N

[ p∏
j=1

det(tj −M)
]

= L
(γ)
(Np)(t1, . . . , tp) (5.3.1b)

(c) E(J)
N

[ p∏
j=1

det(tj −M)
]

= J
(γ1,γ2)
(Np) (t1, . . . , tp) (5.3.1c)

Note that the polynomials used in (5.2.7), (5.2.8) and (5.2.9) are monic, which is why there
are no pre factors in (5.3.1) as compared to Thm. 3.2.2 in Ch. 3. Moments can be readily
computed from the above formulae by taking the limit tj → t for j = 1, . . . , p. This leads to a
determinantal formula for the moments involving the derivatives of orthogonal polynomials:

(−1)
1
2
p(p−1)∏p−1

j=0 j!

∣∣∣∣∣∣∣∣∣∣
ϕN (t) ϕN+1(t) . . . ϕN+p−1(t)

ϕ′N (t) ϕ′N+1(t) . . . ϕ′N+p−1(t)
...

...
...

ϕ
(p−1)
N (t) ϕ

(p−1)
N+1 (t) . . . ϕ

(p−1)
N+p−1(t)

∣∣∣∣∣∣∣∣∣∣
. (5.3.2)

Here ϕn(t) are the rescaled Hermite, Laguerre and Jacobi polynomials for the GUE, LUE and
JUE, respectively. The polynomials ϕn(t) are rescaled to account for rescaling the matrix and
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to make ϕn(t) monic. By expressing the multivariate polynomials in the Schur basis and using

Cλ(n) =

l(λ)∏
j=1

(λj + n− j)!
(n− j)!

= |λ|!Sλ(1n)

dimVλ
, (5.3.3)

we have the following proposition.

Proposition 5.3.2. Let λ = (Np). The moments of the characteristic polynomial are given
by

E(H)
N [det(t−M)p] = Cλ(p)

∑
ν⊆λ

(
−1

2N

) |λ|−|ν|
2 dimVν

|ν|!
D

(H)
λν t

|ν| (5.3.4)

E(L)
N [det(t−M)p] =

(
−1

2N

)Np Gλ(p, γ)Gλ(p, 0)

G0(p, 0)

∑
ν⊆λ

(−2N)|ν|

Gν(p, γ)

dimVν
|ν|!

D
(L)
λν t

|ν| (5.3.5)

E(J)
N [det(t−M)p] =

N+p−1∏
j=N

1

Γ(2j + γ1 + γ2 + 1)

 (−1)Np
Gλ(p, γ1)Gλ(p, 0)

G0(p, 0)

×
∑
ν⊆λ

(−1)|ν|

|ν|!Gν(p, γ1)
dimVνD̃(J)

λν t
|ν| (5.3.6)

These expansions are exact and hold for any finite N . In the next section we are concerned
with the large N asymptotics of the moments of characteristic polynomials. In the large N
limit, only even moments are interesting since the odd moments result in oscillatory behaviour.

5.4 Asymptotics

In the rest of the chapter, we consider the asymptotics of the moments of characteristic poly-
nomials for the GUE. By exploiting the integral representation of classical orthogonal poly-
nomials, Brezin and Hikami [40] showed that in the Dyson limit, N → ∞, ti − tj → 0 and
N(ti − tj) is finite, the moments of characteristic polynomials behave as

E(H)
N

[
det(t−M)2p

]
= e−NpeNp

t2

2 (2πN%sc(t))
p2
p−1∏
j=0

j!

(p+ j)!
, as N →∞, (5.4.1)

where the asymptotic eigenvalue density is

%sc(x) =
1

2π

√
4− x2. (5.4.2)

Using (5.3.4), we show in Sec. 5.4.1 that

E(H)
N

[
det(M)2p

]
= e−Np(2N)p

2
p−1∏
j=0

j!

(p+ j)!
, (5.4.3)

which coincides with (5.4.1) for t = 0. For t 6= 0, we discover that the asymptotic behaviour
is different for even and odd dimensional GUE matrices and these contributions combine in a
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special way to produce the semi-circle law. These cases are discussed in Sec. 5.4.1 and Sec. 5.4.2
in more detail.

5.4.1 At the center of the semi-circle

Let λ = (N2p). For any finite N ,

E(H)
N

[
detM2p

]
=

(
− 1

2N

)Np
Cλ(2p)D

(H)
λ0 . (5.4.4)

Proposition 5.4.1. We have

D
(H)
λ0 =

p−1∏
j=0

j!2

(m+ j)!2
, N = 2m, m ∈ N,

D
(H)
λ0 = (−1)p

m!

(m+ p)!

p−1∏
j=0

j!2

(m+ j)!2
, N = 2m+ 1, m ∈ N.

(5.4.5)

Proof. If N = 2m, then

D
(H)
λ0 = det

[
1k−j=0 mod 2

(
(m+ k−j

2 )!
)−1

]
1≤j,k≤p

=

p−1∏
j=0

1

(m+ j)!2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 m 0 . . . m!
(m−p+1)! 0

0 1 0 m . . . 0 m!
(m−p+1)!

1 0 m+ 1 0 . . . (m+1)!
(m−p+2)! 0

0 1 0 m+ 1 . . . 0 (m+1)!
(m−p+2)!

...
1 0 m+ p− 1 0 . . . (m+p−1)!

m! 0

0 1 0 m+ p− 1 . . . 0 (m+p−1)!
m!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(5.4.6)

Do the row operations R2j = R2j − R2j−2, R2j−1 = R2j−1 − R2j−3 with j running from
p, p− 1, . . . , 2 in that order. Using the Pascal’s rule for binomial coefficients,(

n

k

)
−
(
n− 1

k − 1

)
=

(
n− 1

k

)
, (5.4.7)

we obtain

D
(H)
λ0 = (p− 1)!2

p−1∏
j=0

1

(m+ j)!2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 m 0 . . . m!
(m−p+1)! 0

0 1 0 m . . . 0 m!
(m−p+1)!

0 0 1 0 . . . m!
(m−p+2)! 0

0 0 0 1 . . . 0 m!
(m−p+2)!

...
0 0 1 0 . . . (m+p−2)!

m! 0

0 0 0 1 . . . 0 (m+p−2)!
m!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (5.4.8)
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Next perform R2j = R2j − R2j−2, R2j−1 = R2j−1 − R2j−3 with j running from p, p− 1, . . . , 3

in that order. Repeat this process p− 2 more times to reach an upper triangular matrix, with
1’s on the diagonal, whose determinant is given in (5.4.5). Similarly, D(H)

λ0 can be calculated
for N odd. �

Define

De(N) =

p−1∏
j=0

j!2

(m+ j)!2
, N = 2m,

Do(N) = (−1)p
m!

(m+ p)!

p−1∏
j=0

j!2

(m+ j)!2
, N = 2m+ 1.

(5.4.9)

Using this notation, (5.4.4) reads to be

E(H)
N

[
(detM)2p

]
=

(
− 1

2N

)Np
×

Cλ(2p)De(N), N even,

Cλ(2p)Do(N), N odd,
(5.4.10)

The functions Cλ(2p)De(N) and Cλ(2p)Do(N), λ = (N2p), are the ratios of the factorials:

C(N2p)(2p)De(N) =

p−1∏
j=0

(2m+ j)!(2m+ p+ j)!

(m+ j)!2
j!

(p+ j)!
, N = 2m,

C(N2p)(2p)Do(N)

= (−1)p
m!

(m+ p)!

p−1∏
j=0

(2m+ 1 + j)!(2m+ 1 + p+ j)!

(m+ j)!2
j!

(p+ j)!
, N = 2m+ 1.

(5.4.11)

Denote

γp =

p−1∏
j=0

j!

(p+ j)!
. (5.4.12)

It is interesting to note the presence of the universal constant γp in the moments for any finite
N . To compute the large N limit, we require the asymptotic expansion of (5.4.11). In App. B,
we compute the first few terms in this expansion. As N →∞,

C(N2p)(2p)De(N) ∼ e−Np(2N)Np+p
2
γp

[
1 +

p

6N
(4p2 + 1) +O(N−2)

]
, N even,

C(N2p)(2p)Do(N) ∼ (−1)pe−Np(2N)Np+p
2
γp

[
1 +

p

3N
(2p2 − 1) +O(N−2)

]
, N odd.

(5.4.13)

Plugging (5.4.13) in (5.4.10), the leading term in the moments is

e−Np(2N)p
2
γp, (5.4.14)

for both N even and N odd, which coincides with (5.4.1) for t = 0. On the other hand, the
sub-leading behaviour depends on the parity of N .
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5.4.2 Outside the centre of the semi-circle

For tj = t, by using (5.3.3),

E(H)
N

[
det(t−M)2p

]
= Cλ(2p)

∑
ν⊆λ

(
− 1

2N

) |λ|−|ν|
2 dimVν

|ν|!
D

(H)
λν t

|ν|. (5.4.15)

To compute the asymptotics near the center of the semi-circle, t 6= 0, we need to evaluate D(H)
λν

for a non-empty partition ν. In Table. 5.1, we give the values of D(H)
λν when ν runs over the

first few partitions.

D
(H)
λν N = 2m N = 2m+ 1

D
(H)
λ0 De Do

D
(H)
λ(2) mpDe mpDo

D
(H)
λ(12)

−mpDe −(m+ 1)pDo

D
(H)
λ(4)

1
2m(m− 1)p(p+ 1)De

1
2m(m− 1)p(p+ 1)Do

D
(H)
λ(3,1) −1

2m(m− 1)p(p+ 1)De −1
2m(m+ 1)p(p+ 1)Do

D
(H)
λ(22)

m2p2De m(m+ 1)p2Do

D
(H)
λ(122)

−1
2m(m+ 1)p(p− 1)De −1

2m(m+ 1)p(p− 1)Do

D
(H)
λ(14)

1
2m(m+ 1)p(p− 1)De

1
2(m+ 2)(m+ 1)p(p− 1)Do

D
(H)
λ(6)

1

6

m!

(m− 3)!

(p+ 2)!

(p− 1)!
De

1

6

m!

(m− 3)!

(p+ 2)!

(p− 1)!
Do

D
(H)
λ(5,1) −1

6

m!

(m− 3)!

(p+ 2)!

(p− 1)!
De −1

6

(m+ 1)!

(m− 2)!

(p+ 2)!

(p− 1)!
Do

D
(H)
λ(4,2)

1

2
m2(m− 1)p2(p+ 1)De

1

2

(m+ 1)!

(m− 2)!
p2(p+ 1)Do

D
(H)
λ(124)

−1

3

(m+ 1)!

(m− 2)!

(p+ 1)!

(p− 2)!
De −1

3

(m+ 1)!

(m− 2)!

(p+ 1)!

(p− 2)!
Do

D
(H)
λ(32)

−1

2
m2(m− 1)p2(p+ 1)De −1

2
m2(m+ 1)p2(p+ 1)Do

D
(H)
λ(3,2,1) 0 0

D
(H)
λ(133)

1

3

(m+ 1)!

(m− 2)!

(p+ 1)!

(p− 2)!
De

1

3

(m+ 2)!

(m− 1)!

(p+ 1)!

(p− 2)!
Do

D
(H)
λ(23)

1

2
m2(m+ 1)p2(p− 1)De

1

2
m(m+ 1)2p2(p− 1)Do

( To be continued)
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D
(H)
λν N = 2m N = 2m+ 1

D
(H)
λ(1222)

−1

2
m2(m+ 1)p2(p− 1)De −1

2

(m+ 2)!

(m− 1)!
p2(p− 1)Do

D
(H)
λ(142)

1

6

(m+ 2)!

(m− 1)!

p!

(p− 3)!
De

1

6

(m+ 2)!

(m− 1)!

p!

(p− 3)!
Do

D
(H)
λ(16)

−1

6

(m+ 2)!

(m− 1)!

p!

(p− 3)!
De −1

6

(m+ 3)!

m!

p!

(p− 3)!
Do

D
(H)
λ(8)

1

24

m!

(m− 4)!

(p+ 3)!

(p− 1)!
De

1

24

m!

(m− 4)!

(p+ 3)!

(p− 1)!
Do

D
(H)
λ(7,1) − 1

24

m!

(m− 4)!

(p+ 3)!

(p− 1)!
De − 1

24

(m+ 1)!

(m− 3)!

(p+ 3)!

(p− 1)!
Do

D
(H)
λ(6,2)

1

6
m

m!

(m− 3)!
p

(p+ 2)!

(p− 1)!
De

1

6

(m+ 1)!

(m− 3)!
p

(p+ 2)!

(p− 1)!
Do

D
(H)
λ(126)

−1

8

(m+ 1)!

(m− 3)!

(p+ 2)!

(p− 2)!
De −1

8

(m+ 1)!

(m− 3)!

(p+ 2)!

(p− 2)!
Do

D
(H)
λ(5,3) −1

6
m

m!

(m− 3)!
p

(p+ 2)!

(p− 1)!
De −1

6
m

(m+ 1)!

(m− 2)!
p

(p+ 2)!

(p− 1)!
Do

D
(H)
λ(5,2,1) 0 0

D
(H)
λ(135)

1

8

(m+ 1)!

(m− 3)!

(p+ 2)!

(p− 2)!
De

1

8

(m+ 2)!

(m− 2)!

(p+ 2)!

(p− 2)!
Do

D
(H)
λ(42)

1

4
m2(m− 1)2p2(p+ 1)2De

1

4
m

(m+ 1)!

(m− 2)!
p2(p+ 1)2Do

D
(H)
λ(4,3,1) − 1

12
m

(m+ 1)!

(m− 2)!
p

(p+ 1)!

(p− 2)!
De − 1

12
m

(m+ 1)!

(m− 2)!
p

(p+ 1)!

(p− 2)!
Do

D
(H)
λ(224)

1

3
m

(m+ 1)!

(m− 2)!
p

(p+ 1)!

(p− 2)!
De

1

3
(m+ 1)

(m+ 1)!

(m− 2)!
p

(p+ 1)!

(p− 2)!
Do

D
(H)
λ(1224)

−1

4
m

(m+ 1)!

(m− 2)!
p

(p+ 1)!

(p− 2)!
De −1

4

(m+ 2)!

(m− 2)!
p

(p+ 1)!

(p− 2)!
Do

D
(H)
λ(144)

1

8

(m+ 2)!

(m− 2)!

(p+ 1)!

(p− 3)!
De

1

8

(m+ 2)!

(m− 2)!

(p+ 1)!

(p− 3)!
Do

D
(H)
λ(232)

−1

4
m

(m+ 1)!

(m− 2)!
p

(p+ 1)!

(p− 2)!
De −1

4
m2(m+ 1)2p

(p+ 1)!

(p− 2)!
Do

D
(H)
λ(1232)

1

3
m

(m+ 1)!

(m− 2)!
p

(p+ 1)!

(p− 2)!
De

1

3
m

(m+ 2)!

(m− 1)!
p

(p+ 1)!

(p− 2)!
Do

D
(H)
λ(3,2,2,1) − 1

12
m

(m+ 1)!

(m− 2)!
p

(p+ 1)!

(p− 2)!
De − 1

12
(m+ 1)

(m+ 2)!

(m− 1)!
p

(p+ 1)!

(p− 2)!
Do

D
(H)
λ(1323)

0 0

D
(H)
λ(153)

−1

8

(m+ 2)!

(m− 2)!

(p+ 1)!

(p− 3)!
De −1

8

(m+ 3)!

(m− 1)!

(p+ 1)!

(p− 3)!
Do

D
(H)
λ(24)

1

4
m2(m+ 1)2p2(p− 1)2De

1

4
(m+ 1)

(m+ 2)!

(m− 1)!
p2(p− 1)2Do

( To be continued)
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D
(H)
λν N = 2m N = 2m+ 1

D
(H)
λ(1223)

−1

6
m

(m+ 2)!

(m− 1)!
p

p!

(p− 3)!
De −1

6
(m+ 1)

(m+ 2)!

(m− 1)!
p

p!

(p− 3)!
Do

D
(H)
λ(1422)

1

6
m

(m+ 2)!

(m− 1)!
p

p!

(p− 3)!
De

1

6

(m+ 3)!

(m− 1)!
p

p!

(p− 3)!
2Do

D
(H)
λ(162)

− 1

24

(m+ 3)!

(m− 1)!

p!

(p− 4)!
De − 1

24

(m+ 3)!

(m− 1)!

p!

(p− 4)!
Do

D
(H)
λ(18)

1

24

(m+ 3)!

(m− 1)!

p!

(p− 4)!
De

1

24

(m+ 4)!

m!

p!

(p− 4)!
Do

Table 5.1: The values of determinant D(H)
λν for λ = (N2p). The determinants De and Do are

given in (5.4.9).

Therefore,

E(H)
N

[
det(t−M)2p

]
=
∑
ν⊆λ

(
− 1

2N

) |λ|−|ν|
2 dimVν

|ν|!
t|ν| poly |ν|

2

(N, p)

×

Cλ(2p)De, N even,

Cλ(2p)Do, N odd,

(5.4.16)

where polyj(N, p) represents a polynomial of degree j in variables N , p, and the explicit
expressions are given in Table. 5.1 for j ≤ 8. By referring to (5.4.11), it is remarkable to see
that the universal constant γp is a factor of the moments for any finite N and for t 6= 0. The
first few terms in the moments of characteristic polynomials are

E(H)
N [det(t−M)2p] =

(
− 1

2N

)Np
Cλ(2p)De

×
[
1 +

(
22N2

4!

)
Np t4 +

(
23N3

6!

)
2Np(2p−N)t6

+

(
24N4

8!

)
Np(4N2 − 17Np+ 16p2 + 2)t8

+O(t10)
]
, N even,

E(H)
N [det(t−M)2p] =

(
− 1

2N

)Np
Cλ(2p)Do

[
1 +

(
2N

2!

)
pt2 +

(
22N2

4!

)
(p2 −Np) t4

+

(
23N3

6!

)
p(2N2 − 3Np+ p2)t6

+

(
24N4

8!

)
p(−4N3 + 15N2p− 6Np2 − 2N + p3 − 4p)t8

+ O(t10)
]
, N odd.

(5.4.17)

Up to a factor of (−1)p, both CλDe and CλDo have the same leading term,

e−Np(2N)Np+p
2
γp, (5.4.18)
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but they differ at sub-leading order as shown in (5.4.13). In App. B, we give the asymptotic
expansion of Cλ(N)De and Cλ(N)Do up to O(N−6). Note that the coefficients of t2j in (5.4.17)
are polynomials in N , and both CλDe and CλDo have an expansion in 1/N . Therefore for
higher values of j, more sub-leading terms in the expansion of Cλ(N)De and Cλ(N)Do are
required to compute the right coefficients of tj . But finding the exact asymptotic expansion
of CλDe and CλDo is far from trivial as it involves a sequence of ratios of factorials, whose
asymptotics is only known via recurrence relations.

In the next section, we focus on the second moment and show that we recover the semi-circle
law only after averaging over even and odd matrix dimensional contributions.

5.4.2.1 Second moment

The correlations of characteristic polynomials and the correlation functions of eigenvalues of
random matrices are related to each other [98, 186, 193]. This connection is briefly recalled in
the following proposition.

Proposition 5.4.2. The k−point correlation function of a rescaled GUE matrix given by

RN,p(t1, . . . , tp) =
N !

(N − p)!
1

Z
(H)
N

∫
∆2(t1, . . . , tN )e−

∑N
j=1

Nt2j
2 dtp+1 . . . dtN (5.4.19)

can be written in terms of the characteristic polynomial as

RN,p(t1, . . . , tp) =
N !

(N − p)!
Z

(H)
N−p

Z
(H)
N

exp

−N
2

p∑
j=1

t2j

∆2(t1, . . . , tp)E
(H)
N−p

 p∏
j=1

det(tj −M)2


(5.4.20)

Proof. Consider two parametersN and n. Here n is the matrix size which we fix later. Consider
the joint eigenvalue density function,

1

Z
(H)
n

∆2(x) exp

− n∑
j=1

Nx2
j

2

 . (5.4.21)

According to this measure, the correlations of characteristic polynomials are given by

E(H)
n

 p∏
j=1

det(tj −M)2

 =
1

Z
(H)
n

∫
e−
∑n
j=1

Nx2j
2 ∆2(x)

p∏
l=1

n∏
k=1

(tl − xk)2 dx1 . . . dxn

=
e
∑p
j=1

Nt2j
2

∆2(t)
1

Z
(H)
n

∫
e
∑p
l=1

∑n
j=1−

Nx2j
2
−Nt

2
l

2 ∆2(x)∆2(t)

×
p∏
l=1

n∏
k=1

(tl − xk)2 dx1 . . . dxn.

(5.4.22)

Up to a factor, the integrand in the R.H.S. is the p−point correlation function of a GUE matrix
of size n+ p. By using (5.4.19) and by choosing n = N − p, (5.4.20) is easily recovered. �
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In particular,

RN,1(t) =
N !

(N − 1)!

Z
(H)
N−1

Z
(H)
N

exp

(
−Nt

2

2

)
E(H)
N−1

[
det(t−M)2

]
, (5.4.23)

where RN,1 is the one-point density of eigenvalues of matrices of size N . It is natural to expect
the semi-circle law in the large N limit as the second moment of the characteristic polynomial
is related to the density of states.

For p = 1, (5.4.1) can be re written as

lim
N→∞

1

2N
eN exp

(
−Nt

2

2

)
E(H)
N

[
det(t−M)2

]
= π%sc(t), (5.4.24)

which as an expansion in t reads to be

lim
N→∞

1

2N
eN exp

(
−Nt

2

2

)
E(H)
N

[
det(t−M)2

]
= 1− 1

8
t2 − 1

128
t4 − 1

1024
t6 +O(t8). (5.4.25)

We now show that for p = 1, starting with (5.4.15) we arrive at (5.4.25). Inserting the
asymptotics of CλDe and CλDo in (5.4.17), one obtains

e−
Nt2

2 E(H)
N

[
det(t−M)2

]
= 2Ne−N

[
1 +

(
− 5

12
− 1

2
N

)
t2 +

(
− 811

77760
+

17

216
N +

19

72
N2 +

1

6
N3

)
t4

+

(
− 640879

587865600
+

799

1749600
N − 3667

291600
N2 − 323

6480
N3 − 31

540
N4 − 1

45
N5

)
t6

+O(t8)

]
, N even,

e−
Nt2

2 E(H)
N

[
det(t−M)2

]
= 2Ne−N

[
1 +

(
1

6
+

1

2
N

)
t2 +

(
− 101

19440
− 17

216
N − 19

72
N2 − 1

6
N3

)
t4

+

(
− 15853

18370800
− 799

1749600
N +

3667

291600
N2 +

323

6480
N3 +

31

540
N4 +

1

45
N5

)
t6

+O(t8)

]
, N odd.

(5.4.26)

Treating the above expansions as a formal series inN and taking their average gives (5.4.25). In
the next section, we show that the average over even and odd dimensional matrix contributions
coincides with the semi-circle law up to O(t10). Also, a general expression for the coefficient
of t2j in (5.4.15) is given for p = 1.

5.4.2.2 More on the second moment

Fix λ = (N,N). The second moment of the characteristic polynomial is given by

E(H)
N

[
det(t−M)2

]
=

(
−1

2N

)N
Cλ(2)

∑
ν⊆λ

1

|ν|!
(−2N)

|ν|
2 D

(H)
λν dimVν t

|ν|. (5.4.27)
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Let ν = (ν1, ν2) ⊆ λ. Since |ν| is even, either both ν1, ν2 are even or both of them are odd.
For N = 2m, m ∈ N,

D
(H)
λν =


1

(m− ν12 )!(m− ν22 )!
, ν1, ν2 are even,

− 1(
m− ν1+1

2

)
!
(
m− ν2−1

2

)
!
, ν1, ν2 are odd.

(5.4.28)

Therefore,

Cλ(2)D
(H)
λν = (2m)!(2m+ 1)!


1

(m− ν12 )!
1

(m− ν22 )!
, ν1, ν2 are even,

− 1(
m− ν1+1

2

)
!

1(
m− ν2−1

2

)
!
, ν1, ν2 are odd.

(5.4.29)

Similarly for N = 2m+ 1, m ∈ N,

D
(H)
λν =


− 1

(m− ν12 )!
(
m− ν2−2

2

)
!
, ν1, ν2 are even,

1(
m− ν1−1

2

)
!
(
m− ν2−1

2

)
!
, ν1, ν2 are odd,

(5.4.30)

and

Cλ(2)D
(H)
λν = (2m+ 1)!(2m+ 2)!


− 1

(m− ν12 )!
1(

m− ν2−2
2

)
!
, ν1, ν2 are even,

1(
m− ν1−1

2

)
!

1(
m− ν2−1

2

)
!
, ν1, ν2 are odd.

(5.4.31)

For a partition of length 2, ν = (ν1, ν2),

1

|ν|!
dimVν =

ν1 − ν2 + 1

(ν1 + 1)! ν2!
. (5.4.32)

Inserting (5.4.29), (5.4.31), (5.4.32) in (5.4.27), and observing that ν runs over all partitions
such that 0 ≤ |ν| ≤ 2N gives

E(H)
N

[
det(t−M)2

]
=

(
− 1

2N

)N
Cλ(2)D

(H)
λ0

N∑
k=0

(−2N)kt2k

×
[ b k−1

2
c∑

j=0

(
2k + 1− 4j

(2k + 1− 2j)!(2j)!
− 2k − 1− 4j

(2k − 2j)!(2j + 1)!

) (
N
2

)
!2

(N2 − k + j)!(N2 − j)!

+
1

k!(k + 1)!

(
N
2

)
!2(

N
2 −

k
2

)
!2
1k=0 mod 2

]
.

(5.4.33)
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for N even. Similarly for N odd, one gets

E(H)
N

[
det(t−M)2

]
=

(
− 1

2N

)N
Cλ(2)D

(H)
λ0

N∑
k=0

(−2N)kt2k

×
[ b k−2

2
c∑

j=0

(
− 2k − 1− 4j

(2k − 2j)!(2j + 1)!
+

2k − 3− 4j

(2k − 2j − 1)!(2j + 2)!

) (
N−1

2

)
!
(
N+1

2

)
!((

N+1
2

)
− k + j

)
!
((

N−1
2

)
− j
)
!

+
1

(2k)!

(
N−1

2

)
!((

N−1
2

)
− k
)
!
− 1

k!(k + 1)!

(
N−1

2

)
!
(
N+1

2

)
!((

N−1
2

)
− k−1

2

)
!2
1k=0 mod 1

]
.

(5.4.34)

Here

Cλ(2)D
(H)
λ0 =


N !(N+1)!

(N2 )!2
, N even,

− N !(N+1)!

(N−1
2 )!(N+1

2 )!
, N odd.

(5.4.35)

The asymptotics of the ratio of the factorials are already discussed in App. B. For the sake of
completion, here we again give the result for p = 1,

Cλ(2)D
(H)
λ0 ∼ e

−N (2N)N+1

[
1 +

5

6N
− 11

72N2
+

337

6480N3
+

985

31104N4
− 360013

6531840N5

− 46723609

1175731200N6
+

224766221

1410877440N7
+

41757020981

338610585600N8

− 889926952101377

1005673439232000N9
+O(N−10)

]
, N even,

Cλ(2)D
(H)
λ0 ∼ −e

−N (2N)N+1

[
1 +

1

3N
+

1

18N2
− 31

810N3
− 139

9720N4
+

9871

204120N5

+
324179

18370800N6
− 8225671

55112400N7
− 69685339

1322697600N8

+
1674981058019

1964205936000N9
+O(N−10)

]
, N odd.

(5.4.36)

Substituting the above asymptotic series in

(2N)−1eN−
Nt2

2 E(H)
N

[
det(t−M)2

]
(5.4.37)

and taking the average over N even and odd gives

lim
N→∞

1

2N
eN exp

(
−Nt

2

2

)
E(H)
N

[
det(t−M)2

]
=1− 1

8
t2 − 1

128
t4 − 1

1024
t6 − 5

32768
t8 − 7

262144
t10 +O(t12).

(5.4.38)

The R.H.S. in (5.4.38) coincides with π%sc(t) up to O(t10).
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5.4.2.3 Higher moments

We can infer from (5.4.20) that the correlations of characteristic polynomials of matrices of
size N − p are related to the correlation functions of the eigenvalues of matrices of size N .
The Dyson sine-kernel for the p−point correlation function and (5.4.1) for the moments of the
characteristic polynomial are recovered in the Dyson limit: ti− tj → 0, N →∞ and N(ti− tj)
is kept finite when |tj | < 2, j = 1, . . . , p.

In terms of the Schur polynomials, λ = (N2p),

E(H)
N

 2p∏
j=1

det(tj −M)

 = Cλ(2p)
∑
ν⊆λ

(
− 1

2N

) |λ|−|ν|
2 1

Cν(2p)
D

(H)
λν Sν(t1, . . . , t2p). (5.4.39)

Computing the asymptotics of the moments of the characteristic polynomials in the Dyson
limit using (5.4.39) is not straight-forward. Instead, we fix tj = t, j = 1, . . . , 2p, and give an
expansion of the moments as a function of t in the large N limit.

As N →∞, up to O(t2),

E(H)
N

[
det(t−M)2p

]
= (2N)p

2
e−Npγp

[
1 +O(t4)

]
, N even

E(H)
N

[
det(t−M)2p

]
= (2N)p

2
e−Npγp

[
1 + t2

(
Np+

p2

3
(2p2 − 1)

)
+O(t4)

]
, N odd.

(5.4.40)

Note that the coefficient of t2 is identically zero for even N , where as for odd N it is a
polynomial in N and p. Treating the above expansions as a formal series in N and taking their
average gives

(2N)p
2
e−Npγp

(
1 +

Npt2

2

)(
1− p2t2

8

)(
1 +

p

12N
(8p2 − 1)

)
. (5.4.41)

By comparing with (5.4.1), the terms in the first and second parenthesis of (5.4.41) are the

expansions of e
Npt2

2 and (π%sc(t))
p2 , respectively, up to O(t2). The last factor in (5.4.41) is

sub-leading. Thus at O(t2), moments of characteristic polynomials in the Dyson limit and in
the limit t→ 0 and N →∞ coincide.
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Similarly, as N →∞, up to O(t4),

E(H)
N

[
det(t−M)2p

]
= (2N)p

2
e−Npγp

[
1 + t4

N3p

6

(
1 +

p

6N
(4p2 + 1)

+
p2

72N2
(16p4 − 16p2 − 11) +

p

6480N3
(320p8 − 1200p6

+708p4 + 1265p2 − 756)
)

+O(t6)
]
, N even,

E(H)
N

[
det(t−M)2p

]
= (2N)p

2
e−Npγp

[
1 + t2

(
Np+

p2

3
(2p2 − 1)

)
+t4

N3p

6

(
− 1− 2p

3N
(p2 − 2)− p2

18N2
(4p4 − 22p2 + 13)

− p

405N3
(20p8 − 210p6 + 483p4 − 385p2 + 54)

)
+O(t6)

]
, N odd.

(5.4.42)

Taking average of the above series and factorising gives

(2N)p
2
e−Npγp

(
1 +

Npt2

2
+
N2p2t4

8
+O(t6)

)(
1− p2t2

8
+

t4

128
p2(p2 − 2) +O(t6)

)
×
[
1 +

1

N

(
p

12
(8p2 − 1) +

pt2

96
(13p2 − 1) +O(t4)

)
+

1

N2

(
p2

144
(32p4 − 56p2 + 17) +O(t2)

)]
,

(5.4.43)

where the first two brackets correspond to the expansion of e
Npt2

2 and (π%sc(t))
p2 , respectively,

up to O(t4), and the last factor is sub-leading. Thus, asymptotics calculated by letting first
t → 0 and then N → ∞ coincides with that of Dyson limit asymptotics up to O(t4). For
higher orders in t, mismatch between the two limits start to appear1.

5.5 Secular coefficients

Consider a matrix A of size N . Its characteristic polynomial can be expanded as

det(t−A) =
N∏
j=1

(t− xj) =
N∑
j=0

(−1)jScj(A)tN−j , (5.5.1)

where Scj is the jth secular coefficient of the characteristic polynomial. We have

Sc1(A) = TrA, ScN (A) = det(A). (5.5.2)
1Here we discuss in detail the result at O(t6). The average of N even and N odd asymptotic series obtained

by considering more terms in (5.4.42) can be factorised as shown in (5.4.43). When the Taylor expansions of

e
Npt2

2 and (π%sc(t))
p2 are separated as shown in (5.4.43), we are left with the sub-leading term. In the sub-

leading term obtained at the level O(t6), the coefficient of t2/N turns out to be different from that obtained
at the level O(t4). This indicates that discrepancies start to appear between the Dyson limit and the limit

N → ∞ and t → 0. The Dyson limit indicates the presence of e
Npt2

2 and (π%sc(t))
p2 in the asymptotics, but

when these are factorised as in (5.4.43), the sub-leading expansion is slightly different at each order in t starting
from O(t6).
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These secular coefficients are nothing but the elementary symmetric polynomials,

ej(x1, . . . , xN ) =
∑

1≤k1<k2<···<kj≤N
xk1xk2 . . . xkj , (5.5.3)

for j ≤ N and ej = 0 for j > N .
The correlations of secular coefficients and their connections to combinatorial objects are

well studied [71, 100]. For example, the joint moments of secular coefficients of the unitary
group are connected to the enumeration of magic squares: matrices with positive entries with
prescribed row and column sum. In a similar way, the joint moments of secular coefficients
of Hermitian ensembles, such as the GUE, are connected to matching polynomials of closed
graphs. In this section, we compute these correlations and indicate their combinatorial prop-
erties.
Gaussian ensemble: Since er = S(1r), elementary symmetric polynomials can be expanded in
terms of multivariate Hermite polynomials as

er(x1, . . . , xN ) =

b r
2
c∑

j=0

1

N j
ψ

(H)

(1r)(1r−2j)
H(1r−2j)(x1, . . . , xN ). (5.5.4)

Recall

ψ
(H)
λν =

1

2
|λ|−|ν|

2

D
(H)
λν

l(λ)∏
k=1

(λk +N − k)!

(νk +N − k)!
, (5.5.5)

where

D
(H)
λν = det

[
1λi−νk−i+k=0 mod 2

((
λi − νk − i+ k

2

)
!

)−1
]
i,k=1,...,l(λ)

. (5.5.6)

For λ = (1r) and ν = (1r−2j), it is straightforward to see that D(H)
λν simplifies as

D
(H)

(1r)(1r−2j)
= D

(H)

(12j)0

= det

[
11−i+k=0 mod 2

1(
1−i+k

2

)
!

]
i,k=1,...,2j

=
(−1)j

j!
.

(5.5.7)

Therefore, (5.5.4) simplifies to

ψ
(H)

(1r)(1r−2j)
= (−1)j

(N − r + 2j)!

2jj!(N − r)!
. (5.5.8)

Equivalently, we have

e2r =

r∑
j=0

1

N r−j ψ
(H)

(12r)(12j)
H(12j), e2r+1 =

r∑
j=0

1

N r−j ψ
(H)

(12r+1)(12j+1)
H(12j+1), (5.5.9)
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with

ψ
(H)

(12r)(12j)
= (−1)r−j

1

2r−j(r − j)!
(N − 2j)!

(N − 2r)!
,

ψ
(H)

(12r+1)(12j+1)
= (−1)r−j

1

2r−j(r − j)!
(N − 2j − 1)!

(N − 2r − 1)!
.

(5.5.10)

Because of the orthogonality of the Hµ, the first moment is

E(H)
N [Scr] = E(H)

N [er] =

(−1)
r
2

1

(2N)
r
2 r

2
!

N !
(N−r)! , if r is even,

0, if r is odd.
(5.5.11)

These expectations are nothing but the coefficients of the rescaled Hermite polynomial of degree
N . Thus, we have

E(H)
N [det(t−M)] =

bN
2
c∑

j=0

E(H)
N [Sc2j(M)]tN−2j = N−

N
2 HN (

√
Nt), (5.5.12)

which coincides with (5.3.1a) for p = 1. The expectation |N jE(H)
N [Sc2j(M)]| is equal to the

number of 2j matchings in a complete graph [71,100].
By using (5.5.4), the second moment of the secular coefficient can also be computed. Similar

to the univariate case, multivariate Hermite polynomials Hλ corresponding to even and odd
|λ| do not mix. Therefore,

E(H)
N [Sc2j(M)Sc2k+1(M)] = 0, (5.5.13)

and

E(H)
N [Sc2r(M)Sc2s(M)] =

r∑
j=0

s∑
k=0

1

N r+s−j−kψ
(H)

(12r)(12j)
ψ

(H)

(12s)(12k)
E(H)
N [H(12j)H(12k)]

=

min(r,s)∑
j=0

1

N r+s
ψ

(H)

(12r)(12j)
ψ

(H)

(12s)(12j)
C(12j)(N)

=

(
− 1

2N

)r+s min(r,s)∑
j=0

22j

(r − j)!(s− j)!
N !(N − 2j)!

(N − 2r)!(N − 2s)!
.

(5.5.14)

Similarly, one can compute that

E(H)
N [Sc2r+1(M)Sc2s+1(M)]

=

(
− 1

2N

)r+s min(r,s)∑
j=0

22j

(r − j)!(s− j)!
(N − 1)!(N − 2j − 1)!

(N − 2r − 1)!(N − 2s− 1)!
.

(5.5.15)

Calculating higher order correlations requires evaluating integrals involving a sequence of mul-
tivariate Hermite polynomials. Busbridge [47, 48] calculated these integrals for the univariate
case, but the results are still unknown for the multivariate generalisation. Instead, we take
a different approach to compute correlations by first expressing the product

∏
j(Scj(M))bj in
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terms of the Hµ, and then using orthogonality for the Hµ.

Proposition 5.5.1. Consider a partition λ = (λ1, . . . , λl). We have

E(H)
N

[ l∏
j=1

Scλj (M)
]

=


∑

µ
1

(2N)
µ
2
|µ|
2

!
Kλ′µχ

µ

(2|µ|/2)
Cµ(N), if |λ| is even,

0, otherwise.
(5.5.16)

Here Kλµ are Kostka numbers and χµν are the characters of the symmetric group.

Proof. For a partition λ, denote
eλ = eλ1eλ2 . . . . (5.5.17)

Elementary symmetric polynomials eλ can be expanded in Schur basis as

eλ =
∑
µ

Kλ′µSµ, (5.5.18)

where Kλµ are Kostka numbers [182] and µ is a partition of |λ|. Using (3.5.15), we obtain

eλ =
∑
µ`|λ|

∑
ν⊆µ

1

N
|µ|−|ν|

2

Kλ′µψ
(H)
µν Hν . (5.5.19)

When |λ| is odd, E(H)
N [eλ] = 0 due to the orthogonality of multivariate Hermite polynomials.

When |λ| is even,

E(H)
N [eλ] = E(H)

N

[ l∏
j=1

Scλj (M)
]

=
1

N
|µ|−|ν|

2

E(H)
N

[∑
µ

∑
ν

Kλ′µψ
(H)
µν Hν

]
=

1

N
|µ|
2

∑
µ`|λ|

Kλ′µψ
(H)
µ0 .

(5.5.20)

In Ch. 3, Prop. 3.5.8, we computed that

ψ
(H)
µ0 =

1

2
|µ|
2
|µ|
2 !
χµ

(2|µ|/2)
Cµ(N). (5.5.21)

Putting everything together completes the proof. �

Laguerre ensemble: All the calculations discussed for the Gaussian ensemble can be extended
to the Laguerre and Jacobi cases. Polynomials er can be expanded as

er(x1, . . . , xN ) =
r∑
j=0

(−1)j+
1
2
N(N−1)

(2N)r−j
1

G(1j)(N, 0)
ψ

(L)

(1r)(1j)
L

(γ)

(1j)
(x1, . . . , xN ). (5.5.22)
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By using (3.5.44), the coefficients simplify to

(−1)j+
1
2
N(N−1)

G(1j)(N, 0)
ψ

(L)

(1r)(1j)
=

1

(r − j)!
(N − j)!
(N − r)!

Γ(N − j + γ + 1)

Γ(N − r + γ + 1)
. (5.5.23)

By using (5.2.11), we arrive at

E(L)
N [Scr] = E(L)

N [er] =
1

(2N)r
1

r!

N !

(N − r)!
Γ(N + γ + 1)

Γ(N − r + γ + 1)
, (5.5.24)

which are the absolute values of the coefficients of the rescaled Laguerre polynomial of degree
N . Therefore, the first moment of the characteristic polynomial is

E(L)
N [det(t−M)] =

N∑
j=0

(−1)jE(L)
N [Scj(M)]tN−j =

(−1)NN !

(2N)N
L

(γ)
N (2Nt), (5.5.25)

which coincides with (5.3.1b) for p = 1. The correlations of secular coefficients can be computed
similar to the Gaussian case.

Proposition 5.5.2. For a partition λ = (λ1, . . . , λl), we have

E(L)
N

[ l∏
j=1

Scλj (M)
]

=
∑
µ`|λ|

1

(2N)|λ|
Gµ(N, γ)Gµ(N, 0)

G0(N, γ)G0(N, 0)

χµ
(1|µ|)

|λ|!
Kλ′µ (5.5.26)

Proof. The proof is similar to the Gaussian case. By writing

eλ =
∑
µ

∑
ν⊆|λ|

(−1)|ν|+
1
2
N(N−1)

(2N)|µ|−|ν|
1

Gν(N, 0)
Kλ′µψ

(L)
µν L

(γ)
ν , (5.5.27)

and using (5.2.11) along with the result (3.5.47) from Ch. 3, one obtains

(−1)
1
2
N(N−1)

G0(N, 0)
ψ

(L)
µ0 =

Gµ(N, γ)Gµ(N, 0)

G0(N, γ)G0(N, 0)

χµ
(1|µ|)

|µ|!
. (5.5.28)

Inserting (5.5.28) in (5.5.27) proves the proposition. �

Jacobi ensemble. The er can be expanded as

er(x1, . . . , xN )

=

r∑
j=0

ψ
(L)

(1r)(1j)

(−1)|ν|+
1
2
N(N−1)

Gν(N, γ1 + γ2)Gν(N, 0)

N∏
j=1

1

Γ(2νj + 2N − 2j + γ1 + γ2 + 1)

× J (γ1,γ2)

(1j)
(x1, . . . , xN ),

(5.5.29)

where ψ(J)
λν is given in (3.5.56). The expected values of er are related to the coefficients of the
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Jacobi polynomial of degree N ,

E(J)
N [det(t−M)] =

N∑
j=0

(−1)jE(J)
N [Scj(M)]tN−j = (−1)NN !

Γ(N + γ1 + γ2 + 1)

Γ(2N + γ1 + γ2 + 1)
J

(γ1,γ2)
N (t).

(5.5.30)
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Chapter 6

Conclusion

Diaconis, Shashahani, Bump and Gamburd very well illustrated the usefulness of symmetric
function theory in compact groups. This thesis provides insights into the role of symmetric
functions in unitary invariant Hermitian ensembles. By defining the generalised symmetric
polynomials as a determinantal formula with orthogonal polynomials as matrix entries, we
provide a concise way of computing the correlations of characteristic polynomials. One can
recover the moments of characteristic polynomials from these correlations by letting all the
spectral variables be the same. Our methods are different from those given in the classic
papers by Brezin and Hikami [40]; Baik, Deift, Strahov [19]; Strahov and Fyodorov [224]; and
Borodin and Strahov [36].

From the work of Breizin and Hikami [40], the large N limits of the moments of char-
acteristic polynomials for a broad class of Hermitian ensembles depend on the asymptotic
eigenvalue density along with a constant that also appears in number theory. This result can
also be proved using supersymmetric methods or by reformulating the problem into a Riemann-
Hilbert problem and using the Deift-Zhou steepest-descent method for the Riemann-Hilbert
problem. For the GUE, as discussed, the asymptotic spectral density is the semi-circle law.
Unlike the previous methods, we take a combinatorial approach to compute the asymptotics.
Our analysis unveils that the even and odd dimensional GUE matrices have different limits
for the moments of characteristic polynomials. We discover that the semi-circle law for the
moments is recovered only after a formal average between the even and odd dimensional con-
tributions. Evidence for this behaviour is provided for the second moment, but more analysis
is required for higher moments.

Theorem 3.2.3 gives an explicit expression for the joint moments of traces of the GUE,
LUE and JUE via the characters of the symmetric group. As emphasised, the correlations of
traces of the GUE are related to the enumeration of ribbon graphs. Therefore, Thm. 3.2.3
can be used to relate the combinatorial objects, such as the size of the automorphism group
of a ribbon graph of a certain genus, to the character theory of the symmetric group. The
results on correlations of traces can be used to study the limiting distributions of random
variables that are polynomial functions of random matrices. These polynomials are chosen to
be the Chebyshev polynomials of the first kind and we obtained estimates on the bounds of
the moments and cumulants of these random variables.
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Appendix A

Ribbon graphs and matrix integrals

Let x = (x1, . . . , xN ) be an N−dimensional random variable. Consider the normalised Gaus-
sian measure

dµ(x) = (2π)−
N
2

√
detAe−

1
2

∑
i,j xiAijxj

∏
k

dxk, (1.0.1)

where A is a positive definite symmetric matrix. The inverse

Bij = (A−1)ij (1.0.2)

is called the propagator.
Correlations of Gaussian random variables can be computed in a combinatorial way using

Wick’s theorem [243], also known as Isserlis’ theorem, which is stated below.

Theorem 1.0.1 (Wick’s theorem). The expectation value of product of Gaussian random
variables is

E[xi1xi2 . . . xin ] =


0 if n is odd,

Bi1i2 if n = 2,∑
pairings of (i1,...,in)

∏
pairs (k,l)Bikil , if n ≥ 2 and even.

(1.0.3)

For example,
E[xi1xi2xi3xi4 ] = Bi1i2Bi3i4 +Bi1i3Bi2i4 +Bi1i4Bi2i3 . (1.0.4)

Wick’s theorem becomes particularly useful when the indices ij are repeated. The problem
of computing the expectation values E[xb1i1 . . . x

bn
in

] can be mapped to counting the number
of ways of gluing n vertices with valencies b1, . . . bn, whose weights are determined by the
propagators that correspond to their edges.

E[xb1i1 . . . x
bn
in

] =
∑

Graphs G with n vertices
of valencies bj

∏
(ik, il) edge of G

Bikil . (1.0.5)

For example,
E[x2

i1x
2
i2 ] = Bi1i1Bi2i2 + 2B2

i1i2 . (1.0.6)

Clearly many graphs in (1.0.5) are topologically identical and have the same weight because
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of the symmetries among the edges and vertices. Let G be the group of these symmetries,
#gluings be the number of gluings of obtaining a graph, and Aut(G) be the automorphism
group of the graph. By orbit-stabiliser theorem,

#Aut(G)×#gluings = #G, (1.0.7)

where #G is the order of group relabelling. Wick’s theorem can be written only in terms of
non-equivalent graphs as follows:

1

#G
E
[∏

j

x
bj
ij

]
=

∑
Non-equivalent graphs G

1

#Aut(G)

∏
(i,j) edge of G

Bij . (1.0.8)

In the case of Gaussian matrix integrals, Wick’s theorem can be applied to compute corre-
lators of traces by studying fat graphs also called ribbon graphs.

Consider the Hermitian Gaussian matrix model with probability measure

dµ0(M) =
1

Z0
e−2N TrM2

N∏
j=1

dMjj

∏
j<k

dReMjk dImMjk, (1.0.9)

where

Z0 =
1

2N(N−1)

( π
N

)N2

2
. (1.0.10)

Note that here we have the rescaled GUE matrices which we denote by M.
The Wick’s propagator is

E(H)
N [MijMkl] ≡ 〈MijMkl〉 =

1

4N
δilδjk. (1.0.11)

As an example, consider

E(H)
N [(TrM3)2] =

∑
i,j,k,
l,m,n

E(H)
N [MijMjkMkiMlmMmnMnl] (1.0.12)

To map the problem to counting graphs, associate a vertex to each trace. The power of the
matrix inside the trace gives the number of half-edges as double lines with index associated to
each single line. The propagator in (1.0.11) can be used to glue these half-edges together to

TrM3

i

i

k k

j

j
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form a double line edge of the graph. Thus,

E(H)
N [(TrM3)2] =

∑
i,j,k
l,m,n

〈MijMjk〉〈MkiMlm〉〈MmnMnl〉+ 〈MijMki〉〈MjkMlm〉〈MmnMnl〉+ . . .

=
1

(4N)3

∑
i,j,k
l,m,n

δikδkmδilδml + δjkδjmδklδml + . . .

=
1

43

(
12 +

3

N2

)
.

(1.0.13)

There are in total 5!! = 15 graphs in (1.0.13) with only two topologically distinct graphs shown
below.

j

k

i

j

i

k

m

l

m

n

n

l

i j m n

l n

j

k

i k

m

l

N0 N−2

If we attach to each vertex a factor of N , the N dependence of a graph is: There is a factor
N per vertex, a factor N−1 per edge, a factor N for each single line when summed over indices.
The number of single lines remaining at the end is the number of faces of the graph. So the
total N dependency of a graph is

N#vertices−#edges+#faces = Nχ(G), (1.0.14)

where χ(G) is the topological invariant of the graph called its Euler-characteristic.
This notion of counting ribbon graphs can be extended to compute correlators of the form

E(H)
N [

∏
j(TrMj)bj ]. When divided by

∏
j j

bjbj !, the order of group relabelling, matrix integrals
takes a form similar to (1.0.8). This formula is due to Brezin-Itzykson-Parisi- Zuber in 1978 [42]

E(H)
N

 n∏
j=1

1

bj !

(
N

j
TrMj

)bj =
∑

Ribbon Graphs G

1

#Aut(G)
4−#edgesNχ(G), (1.0.15)

where the sum is over non-topologically equivalent ribbon graphs and #Aut(G) is the number
of automorphisms of G. There are a total of (

∑
j jbj − 1)!! graphs (counting equivalent and

non-equivalent graphs). The total number of vertices is b =
∑

j bj with j valencies for each
vertex and the total number of edges is (

∑
j jbj)/2.

1.0.1 Special cases

Here we consider two cases (i) E(H)
N [TrM2k−1 TrM] and (ii) E(H)

N [(TrM2)n].
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(i) E(H)
N [TrM2k−1 TrM]: We represent TrM2k−1 TrM as two vertices with 2k− 1 and 1 valen-

cies, respectively.

i1 i2

i2k−1
i1

i2k−1

i2k−2

i2ki2k

TrM2k−1 TrM

Since index i2k has 2k − 1 choices, by gluing the half-edges using (1.0.11),

E(H)
N [TrM2k−1 TrM] = (2k − 1)E(H)

N [TrM2k−2]

= N(2k − 1)!!i−k+1 1

k
P

(1)
k−1

(
iN,

π

2

)
,

(1.0.16)

where P (1)
k−1

(
iN, π2

)
is a Meixner-Pollaczek polynomial.

(ii) E(H)
N [(TrM2)n]: Here we sketch the idea to calculate moments of TrM2. We represent

(TrM2)n as n vertices each with two valencies as shown below. There are several ways of

i2i1

i2i1

i4i3

i4i3

i2ni2n−1

i2ni2n−1

TrM2 TrM2 TrM2

gluing this set of vertices and half-edges. Trivially ij can be glued with itself for j = 1, . . . , 2n

which gives a total contribution of N2n/(4N)n.
The next non-trivial contribution comes from choosing any two vertices and gluing their

valencies to form an edge between them. There are
(
n
2

)
ways of choosing two vertices. Let

(ip, ip+1) and (iq, iq+1), 1 ≤ p, q ≤ 2n, be the indices of the valencies of these two vertices. There
are two ways to pair (ip, ip+1) and (iq, iq+1). This gives a contribution of n(n− 1)N2/(4N)2.
The remaining n − 2 disconnected graphs multiplicatively gives N2n−4/(4N)n−2. Hence the
first two leading terms are

E(H)
N [(TrM2)n] =

1

(4N)n
(N2n + n(n− 1)N2n−2 + . . . ) (1.0.17)
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Remaining terms in the nth moment can be likewise computed.

E(H)
N [(TrM2)n] =

1

(4N)n

n−1∏
j=0

(N2 + 2j). (1.0.18)

Similar arguments can be used to show that

E(H)
N [(TrM2)n−k(TrM)2k] = (2k − 1)!!

1

(4N)n
Nk

n−1∏
l=k

(N2 + 2l) (1.0.19)

for k ∈ N.
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Appendix B

Asymptotics of the ratios of factorials

The asymptotics of the ratio of factorials can be computed as follows. First we look at Cλ(2p)De

with λ = (2m, . . . , 2m). Consider

(2m+ j)!(2m+ p+ j)!

(m+ j)!2
= (2m)p

(2m+ j)!2

(m+ j)!2

p∏
a=1

(
1 +

j + a

2m

)
. (2.0.1)

Now, one can see that
(2m+ j)!

(m+ j)!
= 2j+1 Γ(2m)

Γ(m)

j∏
a=0

1 + a
2m

1 + a
m

. (2.0.2)

Using the duplication formula for the Gamma functions

Γ(z)Γ

(
z +

1

2

)
= 21−2z√π Γ(2z) (2.0.3)

and Stirling’s series

Γ(z + h) ∼
√

2πe−zzz+h−
1
2

∞∏
j=2

exp

(
(−1)jBj(h)

j(j − 1)zj−1

)
, z →∞, (2.0.4)

the asymptotic expansion for the ratio of Gamma functions can be found. Here Bj is the
Bernoulli polynomial of degree j. Combining all the formulae, up to first order correction,

C((2m)2p)(2p)De ∼ e−2mp24mp+2p2m2mp+p2

p−1∏
j=0

j!

(p+ j)!

[1 +
p

12m
(4p2 + 1) +O(m−2)

]
.

(2.0.5)
Similarly for the case Cλ(2p)Do, we obtain

(2m+ 1 + p+ j)!(2m+ 1 + j)!

(m+ j)!2
= (2m+ 1)p

(2m+ 1 + j)!2

(m+ j)!2

p∏
a=1

(
1 +

j + a

2m+ 1

)
. (2.0.6)

Let z = m+ 1
2 , then

(2m+ 1 + j)!

(m+ j)!
=

Γ(2z + j + 1)

Γ(z + 1
2 + j)

= 2j+1z
Γ(2z)

Γ(z + 1
2)

j∏
a=1

1 + a
2z

1 + 2a−1
2z

, (2.0.7)
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and
m!

(m+ p)!
=

Γ(z + 1
2)

Γ(z + p+ 1
2)

=
1

zp

p∏
a=1

1

1 + 2a−1
2z

(2.0.8)

Combining the above formulae and using (2.0.3) and (2.0.4),

C((2m+1)2p)Do ≡ C((2z)2p)Do ∼(−1)pe−2zpzp
2+2pz22p2+4pz

p−1∏
j=0

j!

(p+ j)!


×
[
1 +

p

6z
(2p2 − 1) +O(z−2)

] (2.0.9)

Higher order corrections can also be calculated with some effort or using any commercial
software like Mathematica. Writing in terms of the matrix size N , as N →∞, we have

C(N2p)De ∼ e−Np(2N)Np+p
2

p−1∏
j=0

j!

(p+ j)!

[1 +
p

6N
(4p2 + 1) +

p2

72N2
(16p4 − 16p2 − 11)

+
p

6480N3
(320p8 − 1200p6 + 708p4 + 1265p2 − 756)

+
p2

155520N4
(1280p10 − 10240p8 + 25248p6 − 6400p4 − 56371p2 + 51408)

+
p

6531840N5

(
7168p14 − 98560p12 + 499072p10 − 982688p8 − 399844p6

+4606735p4 − 5598936p2 + 1607040
)

+
p2

1175731200N6

(
143360p16 − 3010560p14 + 25294080p12 − 103093760p10

+158864016p8 + 298943760p6 − 1697420809p4 + 2663679600p2 − 1390123296
)

+O

(
1

N7

)]
, N even.

(2.0.10)

C(N2p)Do ∼ (−1)pe−Np(2N)Np+p
2

p−1∏
j=0

j!

(p+ j)!

[1 +
p

3N
(2p2 − 1) +

p2

18N2
(4p4 − 10p2 + 7)

+
p

810N3
(40p8 − 240p6 + 516p4 − 455p2 + 108)

+
p2

9720N4
(80p10 − 880p8 + 3828p6 − 8356p4 + 9509p2 − 4320)

+
p

204120N5

(
224 p14 − 3920 p12 + 28616 p10 − 113428 p8 + 266818 p6

−372127 p4 + 255528 p2 − 51840
)

+
p2

18370800N6

(
2240 p16 − 57120 p14 + 628320 p12 − 3919160 p10 + 15363624 p8

−39481170 p6 + 65605589 p4 − 62864640 p2 + 25046496
)

+O

(
1

N7

)]
, N odd.

(2.0.11)
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