
                          

This electronic thesis or dissertation has been
downloaded from Explore Bristol Research,
http://research-information.bristol.ac.uk

Author:
Singh, Raghubir

Title:
Computation Offloading in Heterogeneous Multi-access Edge Computing

General rights
Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License.   A
copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode  This license sets out your rights and the
restrictions that apply to your access to the thesis so it is important you read this before proceeding.

Take down policy
Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research.
However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of
a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity,
defamation, libel, then please contact collections-metadata@bristol.ac.uk and include the following information in your message:

•	Your contact details
•	Bibliographic details for the item, including a URL
•	An outline nature of the complaint

Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible.



                          

This electronic thesis or dissertation has been
downloaded from Explore Bristol Research,
http://research-information.bristol.ac.uk

Author:
Singh, Raghubir

Title:
Computation Offloading inHeterogeneous Multi-access EdgeComputing

General rights
Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License.   A
copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode  This license sets out your rights and the
restrictions that apply to your access to the thesis so it is important you read this before proceeding.

Take down policy
Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research.
However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of
a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity,
defamation, libel, then please contact collections-metadata@bristol.ac.uk and include the following information in your message:

•	Your contact details
•	Bibliographic details for the item, including a URL
•	An outline nature of the complaint

Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible.



Computation Offloading in
Heterogeneous Multi-access Edge

Computing

By

RAGHUBIR SINGH

Department of Electrical and Electronic Engineering
UNIVERSITY OF BRISTOL

A dissertation submitted to the University of Bristol in accor-
dance with the requirements of the degree of DOCTOR OF

PHILOSOPHY in the Faculty of Engineering.

SEPTEMBER 2021

Word count: 38025





ABSTRACT

In recent years, there has been considerable interest in computational offloading from
mobile devices (such as smartphones) to reduce computational task completion time and
the associated energy consumption by battery-dependent mobile devices.

The most researched strategy involves offloading to Cloud Computing in Mobile Cloud
Computing, where the Cloud offers not only storage but Software as a Service. Resorting to
physically distant consolidated data centres, however, has excessive latency and low bandwidth
issues. Multi-access Edge Computing (MEC) networks offer improved solutions to real-time and
delay-sensitive mobile applications with closer proximity of cellular networks and potentially
much larger numbers of hardware units accessible by mobile devices.

This thesis explores different scenarios for offloading computational tasks to MEC servers
from multiple users with a range of mobile devices. A unified and coherent approach presents
detailed simulation data for how offloading can be beneficial to reduce total task completion time
and local (mobile device) energy use in MEC networks with varying quantitative mobile user
demand, heterogeneity in mobile device on-board and MEC processor speeds, communication
speeds, link access delays and mobile device numbers. The analysis is then extended to show
that the relationship between CPU workloads on the mobile device and a MEC server and the
link speed between them are crucial parameters that determine the success of offloading to the
MEC network to reduce total task completion time and mobile device energy use.

Furthermore, novel distributed heuristic algorithms have been developed that allow a mobile
device to decide how to select the least-time schedules of multiple jobs to be offloaded and
to identify least-time solutions for multiple mobile devices simultaneously offloading jobs to
multiple MEC servers. The proposed heuristic algorithms are tested in a range of numerical
simulations and the results demonstrate that the heuristic approach can produce reasonable
quality solutions in comparison with linear programming.

Heuristic algorithms have been extended to incorporate time and energy in a network
with multiple MEC servers and mobile devices MDs to focus on an objective function with
variable weighting factors for time and local energy use; this approach is designed to give the
use of a mobile device the maximum flexibility in choosing savings for time and energy use.
Numerical simulations in test cases, evaluate the impact of changing weighting factors. The
objective function shows a continuous variation as the emphasis is placed on either time or
energy saving by the weighting factors. The numerical tests also demonstrate that the proposed
heuristic algorithms produce near-optimal computational offloading solutions using a combined
weighted score for schedule task completion time and energy.

A preliminary multi-factorial analysis includes economic cost factors to explore how a
subscription service could reflect mobile device users’ varying requirements in minimising task
completion time or extending the battery lifetime of mobile devices.
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INTRODUCTION

An important aspect of Computing Science is efficient and economic problem-solving. Over the

years, significant advances have been made in enhancing computing capabilities for problem

solving. Figure 1.1 presents the timeline of historic advancements in the area of remote

computing. These advances include creating the world wide web in 1980 and the concept of

cloud computing in the late 1990s. More recently, advances in Artificial Intelligence have aided

applications in, for example, autonomous vehicles [45].

The reach of Computing Science applications in real-world problem solving is extensive.

This thesis is concerned with a particular area of Computing Science focused on enhancing

mobile device users’ experience using Multi-access Edge Computing (MEC) networks. MEC is a

paradigm of Edge Computing that offers improved solutions to real-time and delay-sensitive

mobile applications within the proximity of cellular networks [129]. It analyses, processes and

stores data closer to the customer, reduces latency and provides an improved experience for

latency-sensitive and high-bandwidth applications, whereas in Cloud Computing architecture

all data are sent to distant cloud data centres for processing.

The year 2020 saw the first commercial publication dedicated to Multi-access Edge Com-

puting: Multi-Access Edge Computing in Action [129]. The implication of the title is that the

deployment of MEC has reached a stage where an informed assessment could be made as to its

further development as an IT sector complementary to established Cloud Computing services.

A close reading of the volume reveals, however, that MEC remains at the level of working

groups, public-private initiatives, proof of concept studies and academic-private sector research

consortia. The central dilemma is that, while the emphasis is placed on the roles of innovators

and vendors to develop applications that take advantage of MEC services, the architecture and

provision of MEC platforms remain subjects for debate and rival proposals. In addition, MEC is

increasingly discussed as essential for the practical implementation of 5G technology; as stated

1
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1989 First proposal for the World Wide Web

1997 First definition of Cloud Computing

2000 First Microsoft “tablet computer”

2001 The concept of ”cyber forging” the initial idea of computation offloading

2006 Amazon Web Services launched as a commercial use of Cloud Computing

2007 iPhone first released

2009 The novel “cloudlet” paradigm of Edge Computing was introduced

2010 Apple iPad launched

2010 Research on offloading in Mobile Cloud Computing

2012 Cisco introduced the concept of Fog Computing

2014 First ETSI white paper on the concept of Mobile Edge Computing

2017 ETSI changed the name of Mobile Edge Computing to Multi-access Edge
Computing

2020 First 10 Proof of Concept studies for Multi-access Edge Computing completed

1

Figure 1.1: Evolution of Technologies Relevant to Multi-access Edge Computing
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in [129]:

MEC thus represents a key technology and architectural concept to enable the evolution to 5G,
since it helps advance the transformation of the mobile broadband network into a programmable
world and contributes to satisfying the demanding requirements of 5G in terms of expected
throughput, latency, scalability and automation.

A key word is “latency”. Edge Computing as a general concept is invariably contrasted to

Cloud Computing. In an IT world dominated by distant consolidated data centres, the finite

speed of electromagnetic waves imposes minimum round-trip times of 60 milliseconds or more

if a return trip of 20,000 kilometres is required. If applications cannot be successfully run

with latency times exceeding a few milliseconds, resort to distant consolidated data centres

is not viable. The full roll out of 5G communication links would, seen from this angle, be

essential for MEC deployment. However, relatively few applications will demand millisecond

resolution; of eight classes of 5G applications that are widely considered - Pervasive Video,

50+ Mbps Everywhere, High-Speed Train, Sensor Networks, Tactile Internet, Disaster Response,

eHealth services and broadcast services applications require end-to-end latencies as low as 1

millisecond [129].

Another reason for the slower-than-expected deployment of MEC is also implicit in its all-

inclusiveness [124, 125]. This continues to generate a confused literature in which the original

term “Mobile Edge Computing” is still used but where “Mobile” has different interpretations [49,

127, 164]. This aspect is discussed in more detail in Section 2.1.

Edge Computing is also not a necessary consequence of increasing traffic to consolidated data

centres (Figure 1.2). The year 2017 saw global internet traffic reach 1 zettabyte (1×1021 bytes)

but investment in the construction and commissioning of data centres is accelerating [126].

Neither is the energy demand of the worlds’ data centres a serious issue: 2018 data centre usage

was only 1% of global electricity demand and energy usage per server is predicted to decline as

larger data centres are built with more than 1×105 servers, especially in colder climates were

ambient air can be used for cooling [126].

1.1 Introduction to the Edge Computing Paradigm

As discussed in detail in Chapter 2, Edge Computing evolved to serve two distinct sectors:

1. The Internet of Things (IoT) and the Industrial Internet of Things (IIoT), i.e., devices with

connectivity which send steams of data to be analysed and stored remotely, for which Fog

Computing was designed.

2. Mobile computing and telecommunications devices such as laptops, tablets and smart-

phones; Mobile Edge Computing originally aimed to provide “IT and cloud-computing

capabilities within the Radio Access Network (RAN) in close proximity to mobile sub-

scribers” [52].

3
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[129] also considers the following broad service scenarios for MEC systems:

• Intelligent video acceleration

• Video stream analysis

• Augmented reality

• Assistance for intensive computation

• Enterprise

• Connected vehicle

• IoT gateway

Of these, one aspect of “assistance for intensive computation”, i.e. computational offloading,

forms the subject of this thesis. With the exception of augmented reality, the other items in the

list belong to the IoT or the IIoT.

In September 2020, the following enterprises offered Multi-access (or Multi Access) Edge

computing services on their websites:

• Verizon (telecommunications provider and supplier) – for business customers, faster

processing, increased bandwidth, ultra-low latency, localized data and expanded IoT

potential.

• Intel (semiconductor chip manufacture) – the Smart Edge offering is described as a MEC

platform commercialized for market use cases and on-premise enterprise deployments.

• Vodafone (telecommunications provider and supplier) – with mobile and IoT devices,

MEC services reduce network congestion and speed up application performance, with

high definition graphics, virtual reality, etc.

• Ericsson (networking and telecommunications) – assesses the majority of MEC/5G revenue

potential to come from enterprise and IoT services but, for private consumers, virtual

reality and gaming applications will be important features of MEC services.

• AT&T (telecommunications) – services in retail, manufacturing, healthcare and sports

stadium IT and data management.

• SkyLab Network (on-site data processing and analysis) – offers MEC devices deployed

at construction and engineering sites with video analytics and facility management

applications to monitor and process data from cameras and on-site sensors (motion, fire,

water, etc.).

4
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• Cisco (networking hardware, software, telecommunications equipment, etc.) - mobile

content delivery network for providers of video entertainment products.

The clear emphasis on IoT applications in the above examples is reinforced by the analysis

presented in [129] of MEC platforms offered to software developers for IoT devices: Cloud IoT

Edge (Google), Greengrass (Amazon Web Services) and Azure IoT Edge (Microsoft).

1.2 MEC/Human User Interfaces

A second medium is that of a private car, where safety information and context awareness as

well as video steaming, augmented reality and infotainment services can be efficiently operated

via MEC networks than by Cloud Computing [123].

Mobile devices such as smartphones are also self-evidently mobile in public service vehicles

and private cars. For this thesis, however, mobile devices will be considered to remain within

the base station Radio Access Network (RAN) of a single MEC service. The physical extent

of implemented MEC networks remains unclear; some authors consider whole cities or geo-

graphical regions to be a single network [27]. Most authors consider much smaller ranges for

RAN-assisted MEC networks.

The interfaces between human users of mobile devices and MEC networks is still very

much being defined for services and commercial offerings. The original motivation for Edge

Computing was straightforward in outline: Edge Computing proposes moving data processing

capability away from distant consolidated data centres “in the cloud” to servers usually (but not

exclusively) physically closer to the end user in order to support high Quality of Experience (QoE)

applications for heterogeneous mobile device users and fixed internet-connected streaming

devices via wireless networks. Of the four major paradigms for Edge Computing that were

advanced between 2008 and 2016, the human connections to Cloudlets, Mobile Edge Computing

Micro Data Centres were easily identified. In contrast, Fog Computing was put forward as the

optimal solution for IoT applications to minimize the time required for time-critical processing

and Big Data analytics.

The redefining of Mobile Edge Computing as Multi-access Edge Computing, however,

subsequently amalgamated all the paradigms under one overall concept in which the new key

criterion became that of access for mobile, fixed and vehicular devices for communication with

Edge Computing services. Both fixed and mobile devices can use RAN to access MEC servers.

For example, if a portable server is installed in a remote site, this becomes the “micro data

centre” or if a server is installed in a local enterprise (such as a coffee bar) with non-proprietary

software, the result is a “Cloudlet” (as originally defined). In many ways, Multi-access Edge

Computing combined Mobile Edge Computing with Fog Computing to become the totality of

Edge Computing concepts under one heading. For the analyses presented in this thesis, the

Mobile Edge Computing component of MEC networks is represented by mobile devices such as
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Figure 1.2: Historical and projected trend of the mobile data traffic (redrawn from data in [129])

tablet and smartphones communicating with local base stations to access superior computing

resources and to extend battery lifetime.

1.3 Motivation of this Thesis and Research Outcomes

1.3.1 Motivation

At the start of this research project, an increasing number of reports had been and were being

published about computation offloading to Cloud Computing centres; in contrast, offloading to

MEC networks was considerably less investigated. The aim of the research was to comprehen-

sively analyse offloading to heterogeneous MEC networks in which mobile device (“on-board”)

processor speeds, MEC server (“server-side”) processors speeds and communication link speeds

in the network to MEC servers were variables to reflect practical scenarios. The research out-

comes of this Thesis would be used to lead to conclusions for implementation strategies for MEC

networks offering offloading as a service as part of the assistance for intensive computation

provided by Edge Computing.
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1.3. MOTIVATION OF THIS THESIS AND RESEARCH OUTCOMES

Table 1.1: Summary of research questions and outcomes, their relevant chapters in the thesis
and the publications derived from the work
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CHAPTER 1. INTRODUCTION

1.3.2 Research Questions and Problem Formulations

The following research questions were formulated to translate the motivation of the project into

specific research topics.

[Q1]: What type of job on a mobile device (MD) benefits from offloading in terms of either

total task completion time and/or energy usage by the MD given inevitable limitations in

both hardware (communication link speeds, link access delays, fixed on-board processor

speeds, the number of MD users attempting to offload to a MEC server simultaneously, CPU

usage of the MEC server, etc.) and software considerations, in particular the computational

complexity of any task to be offloaded?

[Q2]: When a MD or multiple MDs offload multiple jobs to a MEC network with multiple

servers can a schedule be locally or centrally optimised to minimise total task completion

time?

[Q3]: Can both time and energy savings from offloading be combined to explore optima

either for a single MD or for multiple MD’s and, if the relationship between a MD and a

MEC network is on a subscription basis, can incurred costs of offloading be further used

with time and energy factors?

1.4 Thesis Outcomes

1.4.1 Contributions of the Thesis

The specific research questions that this thesis answers are listed in Section 1.3.2. The high-level

solutions to the research questions are provided in the Table 1.1. In terms of the subject-specific

contributions, this thesis contributes to the state-of-the-art in the following three ways:

• An investigation of the key factors that affect computation offloading from a single mobile

device in heterogeneous MEC networks to reduce task computation time and energy use

by the mobile device;

• Proposed heuristic approaches for near-optimal offloading in a MEC network using a

schedule approach of jobs to be offloaded from a single mobile device or from multiple

mobile devices to reduce task computation time;

• Proposed heuristic approaches for near-optimal offloading in a MEC network using a

schedule approach of jobs to be offloaded from a single mobile device or from multiple

mobile devices to incorporate savings in computation time and energy use by mobile

devices.

The contributions mentioned above are discussed in the following subsections.
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1.4. THESIS OUTCOMES

1.4.1.1 Factors Determining the Advantage of Computation Offloading in Multi-Access

Edge Computing

To identify answers to Q1, parameters in mathematical models require reliable quantitative

estimates. An exhaustive literature search located very few reports with definite numerical

values for computational task complexity, processor speeds or MD energy power ratings. One of

these reports outlined a conceptual and mathematical model for offloading in Mobile Cloud

Computing (MCC) and this model was initially adapted and extended for MEC networks to

answer Q1 (Table 1.1).

Several critical parameters are considered to see how a heterogeneous population of mobile

devices with different MEC server-side processors interact in decisions affecting offloading.

In particular, different mobile device and server-side processing speeds are considered with

respect to achieving successful offloading for shorter task completion time. Modelling how

link access delays, excessive MEC server load caused by large numbers of users and different

data transmission speeds to the MEC servers are considered. A detailed description of the

mathematical model and the results of numerical simulations are presented in Chapter 3. This

multi-variable analysis of the offloading process was an advance on previous studies and guided

the choice of numerical parameters for further work.

A new model was then constructed to include effects of CPU workloads in both on-board

and sever-side processors; the first case explored increasing activity on the MD while the second

was another reflection of overloading in the MEC network.

The amount of data transmitted from a MD was also investigated as a factor influencing

offload/local processing decisions (Q1).

1.4.1.2 A Heuristic Approach to Optimising Offloading Schedules in Heterogeneous

Multi-Access Edge Computing Networks

Work to identify answers to Q2 involved exploring the concept of the “makespan”, i.e. the last

operation to finish in a schedule of operations, to define total task completion time. Preliminary

direct-calculation studies with 81 or 1024 different offloading schedules from one MD to two

MEC servers were used to validate a linear programming approach.

With larger number and MDs, jobs and MEC servers, the numbers of possible solutions

increase dramatically and a heuristic approach to identifying near-optimal solutions was adopted

(Table 1.1). Several different heuristic algorithms were developed to run in a distributed manner

on individual MDs to investigate if this approach could closely rival optimum solutions from

linear processing. Centralised heuristic algorithms were then developed for multiple MDs

attempting to offload multiple jobs; such algorithms were envisaged as candidate central

resource allocators in a MEC network.
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1.4.1.3 Multi-Criteria Heuristic Optimization for Computational Offloading in

Multi-Access Edge Computing

To identify answers to Q3 (Table 1.1), preliminary studies with relatively small numbers of pos-

sible offloading schedules were performed to align results with those from linear programming.

Heuristic algorithms were then adapted to incorporate both time and energy factors for single

and multiple MDs.

To extend the analysis to economic costs, illustrative relative costs were taken from estab-

lished Internet services. The approach taken was to define if reduced task completion time,

reduced local energy use or lower incurred cost depending could be combined in a flexible

manner depending on individual circumstances; for example, low battery charge might favour

a high emphasis placed on offloading more jobs to minimise local energy use but avoiding high

costs of offloading might favour strategies to either minimise time or energy use.

1.4.2 Publications

The research presented in this thesis led to the publication of the following articles:

1.4.2.1 Published

1. R. Singh, S. Armour, A. Khan, M. Sooriyabandara and G. Oikonomou, “The Advantage

of Computation Offloading in Multi-Access Edge Computing”, Fourth IEEE International

Conference on Fog and Mobile Edge Computing (FMEC), Rome, Italy, 2019.

2. R. Singh, S. Armour, A. Khan, M. Sooriyabandara and G. Oikonomou, Identification of

the Key Parameters for Computational Offloading in Multi-Access Edge Computing, IEEE

Cloud Summit 2020

3. R. Singh, S. Armour, A. Khan, M. Sooriyabandara and G. Oikonomou, Towards Multi-

Criteria Heuristic Optimization for Computational Offloading in Multi-Access Edge Com-

puting, IEEE 21st International Conference on High Performance Switching and Routing,

2021

4. R. Singh, S. Armour, A. Khan, M. Sooriyabandara and G. Oikonomou, “Heuristic Ap-

proaches for Computational Offloading in Multi-Access Edge Computing Networks”, IEEE

International Symposium on Personal, Indoor and Mobile Radio Communications (IEEE

PIMRC 2020)
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1.5 Structure of the Thesis

Chapter 2 presents an in-depth analysis of how MEC evolved as a concept inside Edge Computing

and the several proposed implementations of Edge Computing.

Chapter 3 analyses how different parameters in a heterogeneous MEC network determine

whether or not offloading results in time and energy savings for the user (Q1).

Detailed numerical simulations were performed to explore how offloading can be beneficial

in a MEC network with varying quantitative mobile user demand, heterogeneity in mobile device

on-board and MEC processor speeds, computational task complexity, communication speeds,

link access delays and mobile device user numbers. The range of link speeds was deliberately

wide and two types of communication delay were also included.

A novel mathematical model of offloading was developed to include CPU workload in

both the on-board and server-side processors (Q1). With this model, the impact of changing

CPU workloads was investigated. Scenarios are developed using two applications of varying

complexity offloaded from the MD.

Data size (in MB) of the task to be offloaded, the balance between the CPU workloads on

the MD and MEC were investigated in relation to communication speeds required for shorter

completion time by offloading. In addition, MD energy usage, modelled to increase linearly as

MD CPU usage increases, was estimated for high-complexity and low-complexity application

tasks run on the MD or offloaded in the MEC network.

Chapter 4 presents a model of a system that consists of multiple MEC servers and multiple

MD users (Q2). Each MD was given multiple computational tasks to perform, and each task

could either be computed locally on the MD or be offloaded to one of the MEC servers. The

theoretical optimal allocation was computed with linear programming that minimises the time

required to complete the computation of all tasks.

A distributed heuristic algorithm was then devised that allows each MD to independently,

and using local knowledge only, decide how to handle each individual job. Three approaches

were tested in algorithms to decide whether to offload each individual job; three distinct

mechanisms were then used to determine which MEC server each task should be offloaded

to. Simulations were used to evaluate those approaches in terms of how well they could

approximate the theoretical optimum.

Chapter 5 describes a procedure to extend the model presented in Chapter 4 to incorporate

both time completion time and local (MD) energy use. In the simulated heterogeneous MEC

network, each MD had multiple computational jobs to process, and each task could again be

processed locally or offloaded to one of the MEC servers. Several heuristic offloading options

are developed and tested with an objective function for both time and energy with a range of

weightings for optimizing time and energy.

The approaches were demonstrated in three test cases, which evaluated the impact of

changing weighting factors for time and energy. The objective function was investigated as the
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CHAPTER 1. INTRODUCTION

emphasis was placed on either time or energy saving by changing the linked the weighting

factors. Numerical tests were used to explore if heuristic algorithms could produce near-optimal

computational offloading solutions at different combinations of weighting factors for schedule

task completion time and energy.

Chapter 6 summarises the research outcomes from Chapters 3-5 as conclusions and the

implications for the Quality of Experience for the users of mobile devices accessing MEC

networks. The discussion then analyses possible extensions of the work presented in this thesis,

with particular emphasis on how 5G networks will affect offloading efficiencies.
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MULTI-ACCESS EDGE COMPUTING: A LITERATURE SURVEY

2.1 Introduction

The purpose of this Chapter is to place Multi-access Edge Computing in the broader landscape of

Edge Computing and to trace its historical development via Mobile Edge Computing to identify

its particular characteristics to contribute to contemporary telecommunications and IT and its

suitability as a medium for computation offloading.

As presented by [98], IT developed after 2000 to offer new services and Cloud Computing

was established as a novel computing infrastructure for the internet, based on highly resourced

data centres. Interest in and adoption of Cloud Computing services has increased to the

extent that global Cloud IP traffic will account for more than 90% of total data centre traffic

by 2020 [36]. The main advantages of the Cloud computing paradigm remain “unlimited”

storage capacity and computing resources, reduced capital expenditure and minimized carbon

footprints [23, 25]. However, this technology faces key issues: speed of services and slow

connections, which are often combined as low bandwidth/high latency and jitter as mobile

devices offload computational and processing capacity to Cloud Computing services [30].

These challenges have been exacerbated by the continued proliferation of mobile and fixed

internet-connected devices.

Problems of high latency and narrow bandwidths with reduced Quality of Experience

(QoE) for users led to proposals to re-imagine the cloud: rather than being thought of as a

homogeneous entity, the cloud would have a distinct “edge” separate from the core in which

large-scale processing and storage would occur. Devices could, therefore, communicate with

local servers unless a need arose for contact with the cloud’s core competencies. This view was

first articulated as the challenge to the rapidly increasing reliance on mega-data centres for

hosting cloud computing [34]. These authors argued that geo-diverse multiple data centres
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would provide a superior model for applications such as email distribution, using “local” servers

to filter out spam and blocking undesirable forms of traffic closer to their points of origin. This

formed, in effect, the first proposal for “edge” computing based on the deployment of “micro

data centers” (mDCs) as advanced by Microsoft, Inc., which can be seen as a highly distributed

cloud focused on mobile users and connected devices and requiring the installation of a global

infrastructure of hardware sites, each with a limited number of servers (up to 10 per centre)

and supplied with several terabytes of memory [34, 12].

Shortly afterwards, the paradigm of the “cloudlet” for small numbers of casual and transient

mobile device users in locations such as coffee shops and restaurants etc. was articulated [137].

A third concept developed from the increasing availability and use of fixed internet-connected

sensors (the “Internet of Things”) requiring fast responses; this was structured as the “Fog

Computing” (FC) paradigm [18].

Mobile vendors have brought powerful smart mobile devices to change the fundamentals

of how people interact with IT and telecommunications. Due to greatly increased demands

of mobile devices such as smartphones and tablets and because intensive mobile applications

require high levels of processing and rely on remote data centres, accessing mobile services at

“anytime, anywhere” increasingly clashes with users’ QoE and their sense of personal privacy

and control [57]. By its very nature, Edge Computing must be accessible by (and respond to) a

heterogeneous collection of devices in wireless networks, which may be Wi-Fi, 3G, 4G and (in

the future) 5G. To ensure the key essentials of low latency and high bandwidth in this highly

flexible and highly changeable system, wireless interference must be minimized [52].

Multi Edge Computing initially emerged as an edge computing paradigm where a mobile

user does not need to access cloud computing for data or computing capabilities in remote data

centres but can use “edge” computing resources. The fundamentals were discussed in a white

paper published by the European Telecommunications Standards (ETSI) in 2014 [52]. The

concept of Mobile Edge Computing is simply to provide mobile and cloud computing services

within close proximity of the mobile user, i.e. the provision of computing power in a delocalized

manner close to mobile users (smartphones, tablets, etc.), aiming to decrease latency, achieve

as high throughput as possible and provide direct access to real-time network information.

The renaming of Mobile Edge Computing as Multi-Access Edge Computing reflects aims for

applications development in 2017 for non-mobile devices; this is a crucial change of direction

and its full implications will be discussed later in this Chapter 1.

The key objective of Edge Computing is to put resources within close proximity to the users

and sources of data and information to help overcome cloud computing’s recognised weaknesses

of high latency, jitter and narrow bandwidth [100, 137]. These performance parameters are

particularly important and relevant for wireless access networks in the context of a user’s

computing devices as well as in the Internet of Things (IoT):

1http://www.ETSI.org/news-events/news/1180-2017-03-news-etsi-

14

http://www.ETSI.org/news-events/news/1180-2017-03-news-etsi-
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• Agility of Services: Mobile devices and fixed IoT sensors generate enormous amounts of

data sent to the central Cloud. However, due to the centralized approach of the Cloud,

this has lacked various important features such as contextual and location awareness. If

Edge Computing processes data at the edge network, then context and location awareness

are much more readily obtainable and achievable.

• Low latency: Reducing the time required when a packet travels from a node to the

destination is critical in high processing applications such as augmented reality and

gaming where mobile users expect uninterrupted services from the content provider.

• Coherence: The Edge Computing architecture can determine where to offload data, either

on the local device or the edge network. Smart sensors make decisions and this improves

the performance of the overall network and sends only useful data to the cloud. For

example, a closed-circuit television (CCTV camera captures and transmits information

only when movement occurs in close proximity to the camera.

• No Single Point of Failure: Edge Computing stores the limited amount of resources

that allows applications to control computing offloading and networking resources to

achieve the high level of efficiency and performance. Additionally, the architecture of

Edge Computing provides a distributed approach if the primary edge network resources

pool fails, “instantaneously” redirecting traffic to alternative edge network resources.

With technologies, such as software-defined networking (SDN) and Network Function

Virtualisation (NFV), this enables reliability and robustness of the network and improves

integration with existing IoT environments.

Figure 2.1 illustrates the four Edge Computing paradigms in three-tier hierarchies and shows

where actual functionality can be implemented either at the end device or at the edge network.

FC end devices such as CCTVs can do some processing and send useful data fog nodes in the

Fog’s core. A simple cloudlet server at the business premise can perform processing itself rather

than at the end devices or in combination with end devices. An mDC processes multiple users’

requests locally. Mobile Edge Computing introduced a base station to act as the primary call

site for mobile devices. Lastly, the concept of Mobile Cloud Computing (MCC) repeats many

features of Cloud Computing but, because of the constraints of mobile devices (processing

power and battery life), data processing is forwarded to Cloud data centres and is therefore not

Edge Computing.

Each of these four Edge Computing concepts, Cloudlet, FC, Mobile Edge Computing and

mDCs, shares a perceived vision of the future of the internet that addresses the mismatch

between Cloud Computing (with its finite number of distant data centres) and the increasing

number of mobile users competing for access with a continued increase in edge devices [154].

In addition, studies have already begun to explore how edge servers will be able to adapt to the

anticipated heavy usage [135].
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Figure 2.1: The Three-tier relationship between users/devices and cloud computing and four
paradigms of intervening Edge Computing as well as MCC

Illustrative examples of the broad area of applications considered for Edge Computing are:

• Context aware applications: Previously, when the internet user frequently web surfed

to see favourite content, in order to fulfil the user’s request, the internet provider used

historic information in their database, but increasingly internet service providers can

provide users’ favourite contents via geographical locations or analysed information from

the application [111]. With Edge Computing, content providers can host services at the

edge of the network with accurate user location within a radio access network and this

can improve the QoE for mobile users.

• Smart Transport: Many cities are trying to implement various forms of this, for example
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Figure 2.2: MEC enabled Traffic safety service

when poor traffic decisions are made by traffic controllers, adverse weather conditions

and delays caused by road re-construction all add to traffic congestion and inefficient

fuel usage [38]. With Edge Computing, city traffic can be automatically managed by

edge servers via data collected from intelligent sensors at traffic lights and CCTV cameras

on highways (Figure 2.2). Each sensor detects car movements and makes decisions

accordingly and traffic lights can react to this processed information. Another important

scenario is smart car parking, where users will access information about urban car parking

spaces according to their precise geographical location. Currently, a smart transportation

environment uses cloud computing where all the processing is done at remote data centres

but cloud computing lacks key safety features in smart transportation. For example, if a

driver-less car needs to stop in case of a dangerous situation, it has to upload the data

to the cloud which then performs a computing process and sends the “stop” command

to the car, when the car finally acts upon the instruction. A more rapid solution is to

bring computation capability close and Edge Computing can provide limited levels of

computation capability to make quick (lower latency) decisions.

To more clearly define how Edge Computing paradigms have been unified in a multi-

access approach to heterogeneous networks that employ Wi-Fi technologies and which will
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evolve to utilize 5G technologies, the approach used in the Chapter is as follows. Section 2.2

briefly explores the background to individual variants proposed for the implementation of Edge

Computing. Section 2.3 analyses the limited number of published accounts of experimental

demonstrations of direct comparisons of communication speeds in Edge and Cloud Computing.

Section 2.4 presents a novel analysis that compares the different Edge Computing paradigms

from the viewpoints of applications, functionalities and technologies. Section 2.5 discusses

how FC and Mobile Edge Computing have been unified as Multi-access Edge Computing to

offer practical solutions to a range of Edge Computing requirements in heterogeneous wireless

networks. Finally, Section 2.6 links the concepts discussed in this Chapter to how computation

offloading , which was initially established in Mobile Cloud Computing, could use the resources

of Multi-access Edge Computing to develop improved offloading functionalities.

2.2 Edge Computing Approaches

2.2.1 Micro-Data Centres

Ruggedized mDCs, able to be sited out of doors, are already available for installation in remote

sites, for example for oil/gas exploration, and any industrial application requiring sensor data,

machine-to-machine communication and control and automation technologies will be amenable

to this form of edge computing. Bahl [12] discusses mobile devices with wireless connections to

mDCs achieving improved battery life between recharging events and high-end game stream

but many applications are clearly IoT-related. Juniper presents industrial scenarios in which

locatable mDCs can be operated in extreme environments or on a temporary basis [20, 23].

2.2.2 Cloudlets

The concept of the cloudlet was derived from two basic premises: firstly, mobile devices

(excluding laptops and notebooks) were “resource poor”, i.e. compared to static PCs and

laptops/notebooks, mobile devices have little computing power; secondly, providing a “data

centre in a box” offered a small number of mobile device users in a private business (for example,

a coffee store) the ability to leverage computing power [137]. “Computing power” was – in this

original context – a suite of open-access software options incorporating Linux applications for

word processing, spreadsheet data processing, etc. These resources would be combined in a

maintenance-free virtual machine environment with post-use clean-up for users accessing the

cloudlet transiently via short-range Wi-Fi connections.

Cloudlets as a business concept have failed to gain traction and the default offering from

small enterprises has become free Wi-Fi for mobile devices (including laptops and notebooks).

The driver for this has undoubtedly been the near-pervasive use of social media by mobile users,

the vast majority of whom have shown little taste or need for a “data centre in a box”. This
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in turn evolved the cloudlet concept into providing one link in a three-tier hierarchy: mobile

device/cloudlet/Cloud [136].

Such an arrangement was made explicit in an application demonstrated for cloudlet comput-

ing in cognitive assistance [136]. This proof of concept study utilized Google Glass, streaming

video from the Google Glass device to the cloudlet. The cloudlet can subsequently link with

the “traditional” Cloud for services including centralized error reporting, usage logging and

pre-collection of data. Logically, this hierarchical architecture has gradually linked cloudlets to

other forms of Edge Computing, in particular as local solutions to high latency and low band-

width problems for IoT applications [138]. In practical terms, this closer proximity might be

implementable by augmenting Wi-Fi access points by adding processing, memory and storage; a

desirable side-effect of such an arrangement would be to extend the battery life of the expected

mobile device by requiring less energy usage for transactions with the cloudlet [65].

Application use cases proposed for cloudlets have included linking mobile devices to large

public screens [37], applications such as face and speech recognition, object identification,

physical simulation and rendering and Augmented Reality [64] and cognitive assistance [136].

Such experimental demonstrations have shown the power of a local cloudlet in accelerating

the completion of computing tasks by resource-poor mobile devices. In other words, it is not

the lack of effective functioning of cloudlets that have made the commercial take up of the

cloudlet paradigm minimal, rather it is the lack of profitability in the conceptual business

model. Therefore, dynamic cloudlets were proposed from any mobile devices in the network

that possessed the necessary computing resources [97, 155]. In this analysis, an infrastructure

co-located with the Wi-Fi access point was proposed which was also capable of discovery locally

devices that could share computing resources. The same fundamental idea has been elaborated

into the FemtoCloud proposal, in which mobile devices with significant idle computing power

can link via a client service installed on the devices [65].

Attempts to standardise cloudlet technologies have been made by the Open Edge Computing

project 2.

2.2.3 Fog Computing

The origins of Fog Computing (FC) can be traced to a conference presentation by Cisco Systems,

Inc. in 2012 [18]. The authors considered the problems inherent in devices accessing cloud

computing resources and, like the cloudlet architecture, proposed the insertion of an extra layer

between the end user device and the cloud: embedded systems and sensors linked first to a

“field area network” that comprised the FC (“distributed intelligence”) element which itself

communicated with the Cloud.

As FC ideas expanded, a concept advanced by Cisco became much-quoted: “Analysing data

close to the device that collected the data can make the difference between averting disaster

2http://openedgecomputing.org
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and a cascading system failure”. Furthermore, the same document [35] states “Any device with

computing, storage, and network connectivity can be a fog node. Examples include industrial

controllers, switches, routers, embedded servers, and video surveillance cameras”. This explicit

linkage to fixed devices with connectivity and intelligent data analysing and data processing

capabilities clearly distinguished FC from cloudlets. The scenarios of interest identified were:

networks of wireless sensors, connected vehicles, smart grid distribution networks and in any

context where data is collected at the “edge”: vehicles, ships, factory floors, roadways, railways,

etc. [18]. The great value of this approach was noted as the dense geographical distribution

with a local focus which can analyse big data faster [132].

Smart traffic lights in vehicular networks, self-driving vehicles, smart meters monitoring

domestic energy use and, pipeline monitoring, wind farms, closed loop control of industrial

systems, and applications in the oil and gas sector were soon added to the list of things and

fog functional relationships [17, 147, 153]. The relationship between FC and the Cloud was

succinctly described as: “Thus, the solution to this problem is a multi-tiered architecture (with

at least three tiers) whereby an IoT application is deployed as follows: a part on the “thing” (e.g.

a car), a second part on the fog platform (e.g. a roadside cabinet or a router in a wireless access

network or an LTE base station), and in the case of three tiers a final third part in a data-centre

of the main cloud (e.g. Amazon EC2)” [86]. However, even by 2013, degradation of the link

between the IoT and FC began to be evident. One of the features of FC was claimed to be the

“great support for mobility”, although “mobility” was not further defined [132]. Furthermore,

[32] included 5G mobile devices along with the IoT, cyber-physical systems and data analytics

in the applications open to FC. Similarly, mobile users were considered to use applications that

could benefit from FC [42, 101, 107, 150].

Nevertheless, focusing FC concepts on real-time data processing and analytics as opposed

to the human user-generated demand for computing and processing power was emphasised

in a proposal for “Edge-centric Computing” [57]. These authors also asserted that trust in the

security of personal and social sensitive data would be increased if the management of such

sensitive data could be ensured at the edge, rather than being centred in distant data centres.

The authors of [151] discussed five likely areas for Fog Computing deployment: healthcare,

smart grids, smart vehicles, urgent computing and Augmented Reality. Healthcare applications

have been extensively investigated [5, 39, 56, 141, 147]. Other authors [112] studied smart

grids based on meters in domestic and industrial settings to provide real-time data on power.

Vehicular FC is a novel proposal to combine computational devices both on board vehicles and

the power and resources of Edge Computing [71]. As mentioned above, urgent computing in

disaster and emergency situations is an FC application that can greatly speed up response times

and optimize responses [151].

To summarise, FC is focused on IoT and IIoT applications with services offering computation,

data storage and networking among devices [19, 165]. The standardisation of FC technolo-

20



2.2. EDGE COMPUTING APPROACHES

gies has been addressed by the OpenFog Computing project 3 and the Industrial Internet

Consortium 4.

2.2.4 Mobile Edge Computing

The definition provided by the first paper was “Mobile-Edge Computing provides IT and cloud

computing capabilities within the RAN in close proximity to mobile subscribers” [52]. This

highlighted the role of telecommunications in Mobile Edge Computing, which could be viewed

as uniting the telecommunications industry with IT at the mobile network edge. A variant term

- “mobile edge cloud computing” - has also been used but this is conceptually indistinguishable

from Mobile Edge Computing [30].

As its core concept, Mobile Edge Computing re-configures the devices already deployed

at the mobile edge as mobile access points, i.e. base stations forward traffic but also add

computing and storage capabilities to act as Mobile Edge Computing servers [14]. Four distinct

stakeholders contributed to this early vision of Mobile Edge Computing: mobile users connecting

to base stations, Mobile Edge Computing servers and other hardware owned and maintained by

network operators, while Internet providers added connectivity to Cloud elements (data centres

and content distribution networks) in which application service providers host applications.

This architecture aims to reduce latency, improve bandwidth and enhance scalability for mobile

users while catalysing the development of entirely new services.

The original ETSI white paper [52] envisaged six use cases: active device location tracking,

Augmented Reality content delivery, video analytics, “Radio Access Network” (RAN) aware

content optimization, distributed content and domain name system caching and application-

aware performance optimization. Of these, video analytics was presented as an IoT application

use case in which video streams from cameras were utilized for public safety and smart city

data collection. The other five were, however, genuinely aimed at mobile device users.

Subsequently, ETSI sponsored proof of concept (PoC) studies intended to demonstrate the

viability of the Mobile Edge Computing concept 5; these studies included:

• PoC 1: Video User Experience Optimization via Mobile Edge Computing. This Mobile

Edge Computing application is intended to recognize paid video streams from the content

provider and to assign a higher priority to those streams, providing them with a higher bit

rate. Paid subscribers would, therefore, have a higher QoE.

• PoC 2: Edge Video Orchestration and Video Clip Replay. This application running on the

Mobile Edge Computing server enables the mobile user to receive live video streams

from professional stadium cameras, choosing camera angles, etc. This model potentially

3https://www.w3.org/2017/05/wot-f2f/slides/OpenFog-Overview-W3C-Open-Day-in-May-2017.pdf
4https://opcfoundation.org/markets-collaboration/openfog/
5https://www.etsi.org/technologies/multi-access-edge-computing/mec-poc
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enables unique stadium services, such as the ability to view in-game “player cams” to

enrich fan experience or could support venue services such as food ordering.

• PoC 3: Healthcare-Dynamic Hospital User, IoT and Alert Status management. A typical

‘Healthcare’ application is considered in which a hospital can devise a cellular access

hierarchy and open access to local systems based on managed access rights. This PoC has

strong IoT Component.

Mobile Edge Computing evolved rapidly. In addition to, or in place of base stations, Mobile

Edge Computing could utilize more cost-effective points in Internet Protocol (IP) networks to

adopt Network Functions Virtualization technologies in distributed Mobile Edge Computing

platforms [20]. However, another trend was that of incorporating IoT in Mobile Edge Computing

schemes and implementation scenarios [130]. This was at least partly envisaged by the original

document for Mobile Edge Computing including machine-to-machine scenarios connecting

sensors to Mobile Edge Computing servers [12]; an IoT Gateway was subsequently discussed

in an ETSI white paper [73]. This was unfortunate because confusion with Fog Computing

was made possible [101, 107, 113, 152]. Nevertheless, different drivers have been emphasized

when these two edge computing paradigms are compared and a key difference between FC

and Mobile Edge Computing was that wireless IoT networks could be viewed as the principal

driver for FC whilst low latency and resource efficiency in cellular networks were dominant

considerations for Mobile Edge Computing [139]. ETSI’s Mobile Edge Computing Industry

Specification Group (Mobile Edge Computing ISG) was formed in 2014 to begin the process of

standardisation [12].

2.3 Direct Experimental Comparison of Edge and Cloud

Computing

Other than speculating on business models, the original presentation of the cloudlet concept left

unanswered important questions concerning how much computing power would be required

and the acceptable access time for any individual user [137]. More detailed analysis of the

operating parameters of a cloudlet required specific application use cases and a seminal one

was provided by a study of cloudlet functioning to facilitate the appropriation of a digital screen

by a mobile device user [37]. The scenario envisioned was dramatic but realistic: a doctor

(physician) was interrupted over dinner in a restaurant and asked to scrutinize a pathology

slide in real time as a surgical operation continued; a smartphone was used to access a large

lobby screen to fully visualize the medical state of affairs. To simulate this, a simple display

screen game was played using cloudlets and a commercial cloud to assess the impact of physical

distance on user experience (Table 2.1).
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To some extent at least, physical proximity must reduce latency; considerably longer latency

delays have, under experimental conditions, been measured than the “ideal” latencies imposed

by geographical distance, due to queuing and other delays (Table 2.1). In the study reported

in [37], a mobile device in the UK experienced latencies while connecting to cloudlet computers

in Europe that were as little as 17.5% those with distant Cloud centres; connecting to a more

physically distant cloudlet produced much longer latencies. Roundtrip times could be reduced

by up to 90% and mobile device energy use by up to 88% [64, 72]. In a separate practical test

of cloudlet versus Cloud, reductions in power usage by 95, and a nearly 10-fold reduction in

task completion time were achieved [78].

These positive results for cloudlets were extended in a study of cloudlet versus Cloud perfor-

mance using both Wi-Fi and radio access Long-Term Evolution (LTE) means of communication

from mobile devices [37]. With a variety of applications, the use of a local cloudlet greatly

improved response times (in some instances by a factor of approximately five-fold); the greater

the geographical distance to the Cloud, the more the response time was elongated (Table 2.1).

In addition, energy usage by the cloudlet was always reduced when compared with any Cloud

option, in some cases by factors of 7-10 [64, 72]. In a separate practical test of cloudlet versus

Cloud, reductions in power usage by 50%, a nearly 10-fold reduction in delay time and an

increased throughput of 10-fold were achieved using a single-device cloudlet with one mobile

user [78].

Data from [37, 64, 78] were captured using free and research-grade applications using

study groups in the UK, Eastern US and Central Europe sending and receiving messages to and

from laboratory cloudlets in the UK, Central Europe and the US or to and from four commercial

clouds. However, the cloudlet model has been shown to suffer performance degradation if

too many intermediary steps (“hops”), where bandwidth was reduced were required between

the mobile user and the cloudlet target in a simulation study [53]. With one or two cloudlet

wireless “hops” used to transfer data, the cloudlet outperformed the cloud-based approach for

application scenarios that included file editing and video streaming; with more intermediate

steps, the cloud option performed better because of smaller request transfer delays.

On a much larger scale – considering an area of 931 km2 with approximately one base

station per 2 km2 and servicing 180,000 users generating daily traffic in excess of 10 TB, a

“cloudlet network” has been simulated and mathematically analysed in [28]. The results suggest,

however, that the problem addressed in that study was more related to Mobile Edge Computing

than to cloudlets because so many devices were included in the network. While these authors

did not explicitly compare Mobile Edge Computing and Cloud performance parameters, the

results demonstrated advantages in an optimized “cloudlet network” in terms of traffic volume

and reduction of latency [28].

Extrapolating from results with various definitions of cloudlets, it can be concluded from the

published work that interposing edge servers between users and the Cloud is a viable means of
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Table 2.1: Selected Performance Metrics for Edge Computing/Cloud Comparisons

Source Connection Mean
Latency
(ms)

Mean
Round
Trip
Time
(ms)

Energy
(J)

Time
to com-
pletion
(s)

[37]

Cloudlet EU 93
Cloudlet UK 59
Cloudlet US 186
Cloudlet IRL 91
Cloud US-East 161
Cloud US-West 228
Cloud Asia 337

[78]
Cloudlet 103 226
Cloud 2052 2223

[64]

Cloudlet 80 1.1
Cloud EU 420 5.2
Cloud US-East 260 3.1
Cloud US-West 420 5.2
Cloud Asia 800 9.4

[72]

Cloudlet 80 0.3
Cloud EU 500 1
Cloud US-East 320 0.3
Cloud US-West 420 0.9
Cloud Asia 770 1.2

improving QoE and overall system performance in terms of latency, bandwidth and consistency

of service. Edge Computing is particularly applicable in the case of wireless networks where

bandwidth is limited and latency could be high.

2.4 Comparison of Edge Computing Paradigms

The Edge Computing paradigms are clearly related but can be distinguished on the bases of

applications, functionalities, technology and implementation (commercialization and business

models). A “taxonomy” for Edge Computing is presented in (Tables 2.2-2.5). The majority of

the criteria used were derived from tables, data and text in published sources [137, 153, 132,

12, 19, 101, 140]

The principal differentiators of the paradigms are the intended users of Edge Computing

(Table 2.2). From the viewpoint of applications in Edge Computing, the application domains

and the compatible devices are clearly differentiated (Table 2.3). Applications which have been

promoted for Edge Computing include Smart Parking [13, 24], Smart Energy cars [106], drones
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Table 2.2: Proposed Characteristics for Variants of Edge Computing

Cloudlets Fog Computing Mobile Edge Micro-Data Centre
Computing

Rapid Response No Yes Yes Yes

Latency Low Low Low Low

Mobility Yes Yes Yes Yes

User
Local and Smart

City
Security industry and

network providers
Telecommunication and

Software Providers Hardware

Security Provider None Service Provider
Service Provider and

Hosted Service Provider

Service Level Agreement None Essential Essential Essential

Academic research input High Moderate Moderate Low

Table 2.3: Proposed Taxonomy for Variants of Edge Computing, Application-Driven View

Cloudlets Fog Computing Mobile Edge Computing Micro-Data Centre

Application Domain Mobile IoT and Mobile Mobile IIoT

Real-time interaction Yes Yes Yes Yes

5G No Yes Yes Linked to/with

Tactile Internet Not Possible Possible Possible Possible

Smart City No Yes Yes Yes

Working Environment
“Data centre in a box”

at the business premises Indoor and Outdoor Indoor and Outdoor Indoor and Outdoor

Service type Mobile Device Fixed Device Mobile Device Movable Device

in IIoT [23], Mobile Health and eHealth [22, 39, 56] and Augmented Reality [9, 169].

Functionality-Driven View assesses different functionalities for application scenarios in

Edge Computing, all of these which can be incorporated into the overall aim of performance

enhancement (Table 2.4). Examples include resource management [69, 109, 160], energy

efficiency [48, 79, 134], data analysis [43, 82], data traffic caching and storage [2, 82],

distributed data mining [170], smart sensors [55], network resilience [50] and – the central

research area of this thesis – computation offloading [16, 67, 113, 119, 6].

From the Technology-Driven View, a major strategy of Edge Computing is to focus around

virtualization and industrialised applications at the edge network (Table 2.5). Such an evolution

to Edge Computing would be enabled by technologies such as Software Defined Network-

ing [19, 77], Network Functions Virtualization [19, 139], Information Centric Networking [4, 1],

and emerging simulation tools [62, 132, 63, 133]. These new technologies provide novel tools

that increase flexibility in designing networks. Complementary technologies will enable pro-

grammability of control and network functions and eventual migration of these key constituents

of the network to Cloud Computing.
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Table 2.4: Proposed Taxonomy for Variants of Edge Computing, Functionality-Driven View

Cloudlets Fog Computing Mobile Edge Computing Micro-Data Centre

Location Awareness Limited Unlimited Unlimited Limited

Number of users
Few users at a time

25–50
Many Users at a time

100 –2000
Many Users at a time

100–1000
Many Users at a time

100–4000

Content Consumption Fixed locale Anywhere Anywhere Fixed but mobile

Mobile Management Yes No Yes No

Table 2.5: Proposed Taxonomy for Variants of Edge Computing, Technology-Driven View

Cloudlets Fog Computing Mobile Edge Computing Micro-Data Centre

Connectivity WLAN and Wired
WLAN, Wired,

Cellular
WLAN, Wired,

Cellular WLAN and Wired

Numbers of servers One Numerous Numerous Numerous

Client Hardware
requirements

Local mobile
device Distributed/Hierachical Distributed/Hierachical Local-mobile

2.5 Multi-access Edge Computing and its Deployment

An important term used by the authors of [129] when described Multi-access Edge Computing

(MEC) is “chimera”, i.e. an animal with head, body and tail from different biological species;

MEC was described as being formed “from the convergence of several disparate trends” and

these trends were micro-data centres, cloudlets, FC and Mobile Edge Computing. The change

from Mobile Edge to Multi-access was presented as being to “better reflect non-cellular operators’

requirements” and broaden its relevance to the IoT. This explicitly incorporates mobile and

fixed devices and – following the approach adopted in this Chapter – amalgamates all forms of

Edge Computing and their different network architectures [28, 95, 135] under one heading.

The assumption is that MEC systems will evolve to offer a broad range of services to

users [101, 12, 27]. This broadening of service options will bring inevitable challenges and

there is an urgent requirement to develop experimental test beds for a wide variety of purposes,

including deployment scenarios and economic modelling [15, 110] as well as the security of

personal data [128], network flexibility and recovery from failures [135] and users’ QoE [142,

14, 57]. In addition, this process of development and deployment must content with very

fragment markets of widely different sizes [122]. Industrial users are increasingly seeing

potential benefits to productivity from linking IoT devices to MEC systems and it is this sector that

may show the largest long-term benefit from technological changes in this area [127, 41, 118].

Nevertheless, people-oriented applications are very likely to be developed for devices such as

smartphones [54].

The implementation of MEC systems for applications targeting users of MDs faces an
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unavoidable problem: that of highly fluctuating user demand, which can be on an hour-by-hour

basis. MEC servers will not only receive and download potentially vast amounts of data but

will need to adapt to very different computational demands [103]. This could easily lead to an

over-structured and oversupplied hardware infrastructure which is often underused but with

high economic capital costs and operational costs [104]. Using city-wide data arrays from MDs,

adding information about required computational and processing requirements for MEC servers

to the amounts and types of data from MDs has been shown to yield valuable information on

how to more efficiently configure MEC networks [103].

As noted by the authors of [129], MEC technologies are not part of 5G but MEC systems

and networks can benefit greatly from wireless communication speeds of 100-250 Mbps (i.e.

up to 10 times faster than 4G services). If 5G can give ultra-low latency to MEC networks, an

viable architecture could redirect Cloud Computing requests from the IoT to an accessible MEC

system using Software-Defined Networking [66].

MEC networks are considered to be particularly valuable for vehicular communications

because of low latency and high bandwidth provision; sensors and other hardware can be

deployed in road infrastructure [59]. This approach can be extended to include other forms

of traffic on streets and roads (pedestrians and cyclists) using smartphones to access MEC

networks [108]. Future autonomous operation of robots and vehicles could benefit from

blockchains, distributed peer-to-peer networks in which all network participants have access

to a central ledger and its unchangeable record of transactions; this would provide security in

providing services and managing resources in MEC systems [120].

Inherent in the concept of MEC is a multi-path transmission of information and service

requests; both wired (fixed) and wireless (mobile) access routes have been incorporated into

fibre-wireless access networks, which have been tested in experimental set-ups and shown to

have improved performance [99]. If a heterogeneous collection of IoT devices connect to a MEC

network, an application resource allocation mechanism (to decide the computing resources

to be allocated to each application on MEC servers to efficiently process tasks within delay

requirements) and a task scheduler (determining the order in which tasks are processed) are

necessary [7]. Ultimately, however, MEC network congestion will erode any benefits of using

the system and an architecture has been proposed by which users of the network could access

real-time information about the state of the network [146].

While the issue of high energy usage in Cloud Computing consolidated data centres is

known to be problematic and the subject of much research [44], energy use in MEC networks is

more difficult to assess because of the complexity of traffic between multiple servers in MEC

networks and Cloud Computing storage [81]. A ground-breaking analysis of possible energy

savings by using MEC rather than Cloud Computing concluded that energy savings increased

as the numbers of MEC users increased and that the total Cloud plus Edge Computing energy

consumption could be reduced by 50% by careful scheduling of tasks [93].
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Non-Orthogonal-Multiple-Access is a multiple access technique planned to be used for 5G

cellular wireless networks with massive connectivity and potential overloading of the network;

power allocation, time slot scheduling and offloading task assignment can be jointly optimised

to minimize energy consumption in a MEC system [94].

2.6 Computation Offloading in MCC and MEC

2.6.1 Modalities of Cloud and Edge Computing interacting with MDs

In principle, there are three different modalities which could relate MDs to superior computing

power in Edge Computing networks and Cloud Computing data centres:

1. MD to Edge – a one-to-one communication between an individual MD and a base station

in direct linkage to one or more MEC servers. This basic modality assumes a client-service

provider relationship at the level of the MEC network only, in which an MD offloads

computational tasks to a MEC network whose servers possess all the computational

functionalities to complete the requested task and transmitted processed data back to the

MD.

2. MD to Edge to Cloud – initially a one-to-one communication between MD and MEC

network but which then hands on complex computational tasks to Cloud Computing

providers for processing before returning data back to the MD. This has been described as

an architectural flow from edge devices via edge nodes to Cloud data centres [98].

3. MD to Edge to Edge – initially a one-to-one communication between MD and MEC network

but which then hands on either complex computational tasks to another linked MEC

network with the requisite software or routine tasks which cannot be rapidly processed

(within the terms of a Service Level Agreement between the user and a service provider)

because of overloading of the first-contact MEC network.

Superimposed on these three different modalities is the storage of data from any of the three

to Cloud data centres for data storage and Big Data analytics [98]. This additional layer in the

overall relationships does not affect the mechanism of offloading as perceived by the user of the

MD because parameters such as task completion time and local (MD) energy use would not be

affected; issues such as data security, confidentiality and privacy are, however, highly pertinent

to any involvement of Cloud data centres not clearly specified by the terms of a Service Level

Agreement between the user and a service provider or with this form of involvement which may

be subject to malicious attack on either Edge or the Cloud components in the relationship.
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2.6.2 Cloud-dependent offloading

The MD to Edge to Cloud modality has no self-evident advantage over MCC; the comparative

immaturity of MEC technologies may, however, pose operating challenges which could persuade

IT enterprises to incorporate the Cloud as an initial service offering [83].

Computational offloading has been a topic explored in depth for MCC scenarios [47, 171].

Computational offloading is a means of transferring computing-intensive tasks over to Cloud

resources to overcome technical limitations in mobile devices, in particular to improve battery

life of the mobile devices and increase computational performance but also to reduce the total

energy consumed [33, 90]. Direct testing under defined experimental conditions has confirmed

the benefits (shorter processing times and reduced energy consumption) of computational

offloading from, for example, smartphones [40, 87, 89].

A specialised form of Cloud-dependent offloading could be a Software as a Service offering;

this is a mature area in which major commercial enterprises operate and can provide tailored,

specific software applications [76]. The implementation of MEC networks has, as its central

logic, supplanting dependency on Cloud data centres to support novel IT services for MDs [83].

2.6.3 Cloud-independent offloading

While the fine details of computational offloading in Edge Computing may not always precisely

mirror those in MCC, the benefits are anticipated to be broadly similar [89, 114, 167].

For optimal offloading in MEC, both radio/wireless and computation resources must be

considered for multiple users; a study with a single MEC server considered users being able

offload its various proportions of task and being allocated only some of the total computation

power available but with the aim of minimizing the time required for each user task [91].

Edge-to-Edge communication has been considered essential to provide resilience to MEC

networks [135].

Functionally, the Edge can be divided into “near” and “far” components [83]. For fixed

devices in Fog Computing, data processing is performed in the “near Edge” with a maximum

latencies of a few milliseconds in, for example, industrial gateways. MDs would, correspondingly

communicate with 5G base stations. The “far Edge” processes data within approximately 10

milliseconds and could be features of smart city applications. These times contrast greatly with

Cloud data centres, where full processing might require more than hundreds of milliseconds.

2.6.4 Research questions in offloading to MEC networks

Assuming that appropriate computational resources are available in the “edge”, quantitative

decisions on computational offloading must be seamless and automatically made if MDs are

to function effectively in such an architecture using computation offloading algorithms to find

effective and (for mobile devices) energy-efficient solutions [7].
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These considerations were central to framing the Research Questions for this thesis (Chapter

1, Section 1.3.2). Understanding what types of application and computational tasks from MDs

could benefit or benefit most from offloading (Research Question 1) implies a knowledge of

what types of software would be available to process offloaded jobs. The original proposal for

cloudlets [137] envisaged non-proprietary software only and this would greatly limit the options

for users of MD seeking to offload (for example, word processing). Mobile Edge Computing

offered servers or server clusters and MEC implicitly continued this scenario; however, the

full portfolio of software accessible by MD users remains undefined. The assumption made

in this thesis is that a MEC server (stand-alone or in a cluster much smaller than in a remote

consolidated data centre for Cloud Computing) would host software useful for applications such

as Augmented Reality or facial recognition to meet ad hoc demands from MD users without the

necessity to route offloaded jobs to Cloud Computing centres. The shorter round-trip times of

“local” MEC servers would be better suited to low- and ultra-low-latency tasks.

Unlike fixed devices [42], MDs forward distinct data sets (for example, multiple digital

photographic image files) in a sporadic basis and both Mobile and Multi-access Edge Computing

were designed for this type of demand rather than Fog Computing and its continuous stream of

data for analysis (Research Question 1).

The provision of multiple base stations for MEC networks addresses the problem of conges-

tion and queuing (Research Question 1) by increasing the number of first-access points for MD

users seeking to offload tasks beyond those already available in the distant consolidated data

centres [30, 34].

Some early Proof of Concept studies for Mobile Edge Computing implied a subscription

basis for individual users of MDs (Section 2.2.4). This would accelerate service innovation and

deployment but economic cost factors must be included in in-depth analyses of subscription-

based offloading where hardware limitations might occur due to limited or delayed upgrades

(Research Question 3).

For these reasons, offloading to a selected MEC network as a service provider without

referral of jobs to either Cloud data centres or linked MEC networks was selected as the basis for

constructing and testing mathematical models (Research Question 1) and heuristic algorithms

(Research Question 2-3) in a defined environment to explore the flexibility and capability of the

offloading process.

2.6.5 Research trends in offloading to MEC systems

Selected published reports of computation offloading in MCC and MEC are given a detailed

presentation in later Chapters of this thesis where key technical aspects are discussed:

1. Quantitative parameters used for numerical simulation tests (Chapter 3)

2. Features of mathematical modelling of the offloading process (Chapters 3 and 4)
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3. Task scheduling (Chapter 4 and 5)

4. Multi-factorial optimisation (Chapter 5).

Recent trends in MEC R&D relevant to Edge-to-Device communication will now be addressed.

2.6.5.1 Partitioning of tasks for offloading

While an entire task can be offloaded to shorten computation time or conserve energy in

MDs, a different approach is to partition resource-intensive of tasks so that only part of an

individual task needs to be offloaded; this can be described as task/component offloading [98].

This approach was initially investigated in MCC but much of the work was focused on the

development of novel applications for the MCC environment rather than optimising client-

initiated offloading [46]. Partitioning of sub-tasks between the MD and the Cloud was also

shown to reduce MD energy usage [74, 159].

In Mobile/Multi-access Edge Computing, task partitioning has been investigated for Vir-

tual Reality and Augmented Reality applications [163]. The detailed partitioning mechanism

adopted, however, is highly dependent on the application considered and conclusions may not

be portable to other and even similar applications [98].

2.6.5.2 Caching mechanisms and strategies in MEC

In the broadest perspective, Edge-to-Cloud and Cloud-to-Edge transfer of software and data

greatly increases the capacity of MEC networks to store data and access multiple (including

specialised) applications [98]. Network architecture can, however, be a problematical in such

communication links because of backhaul and latency delays; new system architectures have

been explored to which bring both functions and contents closer to Edge components [158].

One example of this caching via intermediate servers is that of video content; distributed

caching mechanism have been proposed for video files at base stations in Edge networks to

increase video capacity and enhance user experience [3]. This issue has also been explored for

Augmented Reality [51] and data-intensive applications [98]. Content popularity could impose

major ”spikes” in demand and proactive caching has been proposed based on high prediction

accuracy using neural network approaches [8], a collaborative effort between Edge servers and

MD users using Federated Learning [168] and learning-based optimisation [70]. In contrast,

reactive strategies have been proposed but these either seek to harmonise Cloud-to-Edge and

Edge-to-Device transfer rates [85] or use Deep Learning approaches [148].

A similar problem is that of storing software programs in Edge servers when local storage

capacity is limited; this was analysed in detail for the special case of the user of a MD seeking

to offload customised code to perform offloaded computational tasks where Integer Linear

Programming could identify optimum solutions given constraints in software and hardware [11].
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In these and similar scenarios, policies for MEC networks must be developed for the management

of caching insertion and expulsion [131].

2.6.5.3 Dynamic pricing for MEC access

In a model with a single MEC server accessed by multiple MDs, algorithms have been proposed

for dynamic pricing strategies to maximise revenues for the service provider [29, 31].

For all Edge Computing paradigms (including MEC), auction-based access is always possible

but a uniform-pricing mechanism may be subjectively more attractive to MD users [11]. Sub-

scribers to a MEC service may prefer fixed-price schemes (per MB uploaded or downloaded)

and ETSI Proof-of-Concept studies emphasised guaranteed Service Level Agreements 6 “Guest”

users of MEC services may, of course, be open to dynamic or volatile costs for access.

2.7 Simulation approaches to MEC systems

A dedicated simulation package for Edge Computing has been presented [145]. EdgeCloudSim

included a wireless local area network (WLAN) and a Wide Area Network (WAN) communication

model, incorporated mobile nodes and mobility support and included a virtual machine (VM)

utilization model and could, therefore, be considered as a suitable simulation software for MEC.

In the published account of EdgeCloudSim, the WAN link functioned to send information to

and from Cloud facilities and this generated two architectures: a 1-tier Edge with no link to the

Cloud and a 2-tier Edge/Cloud. The study only presented results for Edge delays, Edge/Cloud

delays and offloaded task failures. The Edge delays were much shorter than Edge/Cloud delays

and both types of delay increased as the number of mobile devices increased from 50 to 250; the

numbers of failures also increased as the total mobile devices increased even with a maximum

CPU workload of 10% in the Edge; increasing the WAN speed by ten-fold did not improve the

failure rates.

2.8 MEC Proof of Concept Studies Relevant to this Thesis

As discussed in Section 2.2.4, Proof of Concept studies in Mobile Edge Computing and (later)

in Multi-access Edge Computing, had specific aims and ambitions. By 2020, 13 such studies

were underway or had been completed 7. None of these targeted computation offloading

from MDs and only one explicitly targeted MDs (PoC 13, “MEC infotainment for smart roads

and city hot spots”). PoC 13 focused on 4G/5G infotainment services for pedestrians and car

drivers/passengers in smart roads and city hot spots.

6:https://www.etsi.org/newsroom/news/1037-2015-12-etsi-mobile-edge-computing-isg-announces-first-proofs-of-concept.
7https://mecwiki.etsi.org/index.php?title=Ongoing_PoCs
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The PoCs can be viewed as demonstrating an “Edge-to-Device” formalism designed for

telecommunications and related industries with subscribers accessing premium services. These

PoCs included:

1. PoC 1, Video User Experience Optimization via MEC

2. PoC 2, Edge Video Orchestration and Video Clip Replay via MEC

3. PoC 3, Radio aware video optimization in a fully virtualized network

4. PoC 7, Multi-Service MEC Platform for Advanced Service Delivery

5. PoC 13, MEC infotainment for smart roads and city hot spots. A second set of PoCs included

areas of Fog Computing in which fixed devices communicated in a Device-to-Edge manner,

for example:

6. PoC 6, Healthcare – Dynamic Hospital User, IoT and Alert Status management

7. PoC 8, Video Analytics

8. PoC 9, MEC platform to enable low-latency Industrial IoT

9. PoC 11, Communication Traffic Management for V2X.

PoCs 4, 5, 10 and 12 were aimed at developing or assisting enterprise-level operations.

None of the PoCs, therefore, involved studies which overlapped with the work to be presented

in this Thesis. Nevertheless. the expanding literature on academic research into offloading in

MEC provides evidence of the continued interest in this aspect of the relationship between MDs

and Edge Computing [98, 80].

For the technical chapters of this Thesis, the implicit assumption is made that the software

shared between MDs and MEC servers is at the level of and covers aspects of Video Analytics,

for example facial recognition, which would be of broad interest to users of MDs. This level

of Device-Edge/Edge-Device interaction has been discussed previously [166]. A potential

associated service could be user-initiated parking space searching in urban environments [60].

2.9 Conclusions Relevant to Offloading to Edge Computing

Networks

As discussed in Chapter 1, MEC is an evolving technology and its implementation is fragmentary.

The Proof-of-Concept studies referenced in this Chapter acted as introductions to MEC concepts

for telecommunications and other providers and to explore possible service offerings.

Based on this literature review, conclusions could be drawn to better focus the work

presented in this Thesis:
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1. To analyse the Edge-to-Device component in depth and to include as many hardware and

software features potentially involved in the offloading process, only full offloading of a

task would be considered because task partitioning is too dependent on the exact task

and results would not be fully portable.

2. The software capabilities for task computation in both MD and MEC server would be

matched because offloading program code or Cloud-to-Edge transfer of program code

would potentially greatly extend total task completion time and reduce any advantage of

offloading.

3. No data caching from the offloading process – other than in very transient events in data

processing and return the MD – is required; this is equivalent to each offloaded task being

unique and not repeatable for offloading. This also avoids any issues of data security of

user privacy.

4. The approach for assessing offloading optimisation would take the novel approach of

considering offloading multiple files as a scheduling exercise which could use linear

programming or heuristic algorithms to provide solutions.

5. Optimal scheduling would be twofold: for an individual MD and for multiple MDs without

any functional linkages between them.

6. Resource allocation and management in MEC networks would be approached from the

standpoint of strategies to avoid overloading of a “first contact” MEC server/base station

combination - as quantified via CPU workloads and access delays that result from excessive

numbers of MD users simultaneously accessing a MEC network.

7. The application paradigm would be a facial recognition software for digital images of

small to moderate size (for example, 4 MB). This would generate, for an individual MD, a

task schedule which would later be repeated sequentially but for a different set of files

and, for multiple MDs, a schedule which would be terminated for all MDs at closely

similar times and subsequently lead to a ”n+1” set of tasks to be analysed to identify a

scheduling optimum. In this second scenario, the resource allocator in the MEC network

would be continuously seeking optimum schedules without resorting to the “first come,

first served” option to be run ad hoc once the initial optimum solution had terminated 8.

8. Access to MEC services is assumed to be on a subscription basis with known costs, although

service providers may offer premium-rate services in addition to the terms of Service Level

Agreements with subscribers.

8https://www.etsi.org/newsroom/news/1037-2015-12-etsi-mobile-edge-computing-isg-announces-first-proofs-of-concept
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3
KEY FACTORS DETERMINING THE ADVANTAGE OF COMPUTATION

OFFLOADING IN MEC

3.1 Introduction

Although computation offloading in both Mobile Cloud Computing (MCC) and Multi-Access

Edge Computing (MEC) has, as was discussed in Chapter 2, been researched and different

mechanisms for offloading from mobile devices (MDs) to either the Cloud or to MEC servers

have been proposed, the central question has been rarely approached: which computational

tasks on MDs benefit from computation offloading?

In part, this research topic in computation offloading has been relatively slow to develop

because, as will be argued in this Chapter, the question requires detailed numerical analysis for

its investigation and this inhibits the testing of generic approaches. In addition, any of the key

parameters are not available for the general hardware and software involved in computation

offloading. Multiple parameters require quantifying for any mathematical model defining task

completion times to be rigorously tested; likely relevant factors include processor speeds, file

sizes, communication speeds, the computational complexity of tasks and the ease of access (or

not, in the case of congested networks and overloaded servers) to servers for task offloading.

Finally, in order to quantify the energy consumption and consequent savings that could be made

by reducing completion time, power rating of each model device needs to be defined before

solving the problem.

Key Research Question: What are the important factors in quantitative models that affect

computation offloading for reducing task completion times and/or energy usage by MDs?

This Chapter makes two major contributions:

• An in-depth analysis of the effects of multiple factors on the advantages of offloading

35



CHAPTER 3. KEY FACTORS DETERMINING THE ADVANTAGE OF COMPUTATION
OFFLOADING IN MEC

tasks to a MEC server in terms of reduced task completion time and reduced energy use

by a MD.

• The development of a new model to incorporate CPU workloads into the savings in time

and MDenergy use possible by offloading in a MEC network.

3.1.1 Publications

The work presented in this chapter has led to the publication of the following two articles.

• R. Singh, S. Armour, A. Khan, M. Sooriyabandara and G. Oikonomou, “The Advantage

of Computation Offloading in Multi-Access Edge Computing”, Fourth IEEE International

Conference on Fog and Mobile Edge Computing (FMEC), Rome, Italy, 2019.

• R. Singh, S. Armour, A. Khan, M. Sooriyabandara and G. Oikonomou, “Identification of

the Key Parameters for Computational Offloading in Multi-Access Edge Computing”, IEEE

Cloud Summit 2020.

3.2 Relevant Studies in Computation Offloading: What to

Offload?

In [87], the authors developed Mobile Augmentation Cloud Services (MACS) middle ware to

offload Android applications from a MD in MCC and tested the offloading process empirically

using designated hardware and two applications: a mathematical puzzle “N-Queens Problem”

and facial detection and recognition from video files of increasing length and increasing file

size. The conclusions from their study was that not every application is suitable for offloading,

however, offloading provides advantages for applications which require high computational

processing power.

In [105], a broader range of scientific software applications was considered (including

computational programs for computational chemistry, astronomy and hydrology) because the

authors were able to access critical data for these, specifically the ratios of bits to instructions for

the applications. With this parameter, file sizes and processor speeds could be directly converted

to task completion times. The conclusions from quantitative testing in MCC) scenarios were that

the critical parameters to ensure offloading would result in smaller task completion times were:

• the on-board and server-side processor speeds;

• the minimum (“bottleneck”) data transfer link speed (either 1 kbps or 1 Mbps);

• the computational complexity of the application.
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Crucial to the analysis presented in [105] was the bits per instruction parameter. Even with

a data file size of 1 MB, the simplest of the 9 programs considered in [105] required (7.7×1011)

instructions per bit. Other authors [84] used (2×108) instructions for per “task” but used

much slower processor speeds than in [105]: a smartphone processor approximately 100-times

slower than the faster on-board processor in [105] and a MCC server processor approximately

1000-times slower than the fastest server-side processor in [105].

The choice of scientific programs in [105] was made for practical reasons, i.e. using com-

putational workload data from an advanced computing centre. The numerical simulations

reported in [84] used much smaller numbers of instructions for image processing tools but also

in applications for mathematical and scientific purposes. The pragmatic choice of the least com-

putationally complex application from the data supplied by [105] was made to perform detailed

quantitative analyses of the offloading process assuming that an application was pre-existing on

a server in the MEC network which could run at far higher processing speeds than on a MD.

Consequently, no programming code was to be included as code to be transmitted from the

MD; the necessity to install an application of a MCC) server would not only increase the amount

of data transmitted but also require an installation process of unknown duration.

The processor speed for any processor can be calculated but the required information is

seldom available. The calculation for instructions per second given in [68] is: processor speed

(IPS) = clock rate (MHz or GHz) /cycles per instruction where the clock rate is readily available

but cycle per instruction (CPI) requires considerable knowledge of processor functions, in

particular pipeline and cache CPI) values. Three examples discussed in [68] (Page 248) had

CPI values in the range 1.2-2.4 cycles per instruction; a website source gives 2.5 cycles per

instruction 1.

The authors of [75] used this approach with a small data file (420 KB) which required

(1×109) cycles in processor of clock rate (4×109) Hz (cycles per s) but did not provide any

justification or calculation for the number of cycles required. For energy use, an important

linking factor was km, a “coefficient depending on the chip architecture”, which was quoted to

be (5×10−27) [75]. The basis for this value was another source [117], which in turn referred

to a third source [156]. The third source refers to the parameter as “the effective coefficient

that depends on the chip architecture” but gives the value as (10−28) and does not provide any

calculation basis or reference to manufacturers’ data.

All of the above highlights the significant problems faced when selecting quantitative

parameters for use in numerical simulations and experimentation, standard procedures when

testing out novel processes and system models in computation offloading [74].

Neither [87] nor [105] considered congested networks and their analyses used very differ-

ent link speeds in MCC. However, both studies emphasized the importance of being able to

perform detailed calculations using numbers of instructions in computational operations so as

1CPU Performance Evaluation: Cycle per instruction (CPI)):
http://meseec.ce.rit.edu/eecc550-winter2011/550-12-6-2011.pdf
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to accurately identify times required for task completion either on a MD or by offloading. The

calculations required for offloading were far more complex than local processing on the MD

and in particular required knowledge of the “bottleneck” link speed for communication and

data transfer between an MD and distant MCC servers.

The remainder of this Chapter will, firstly, use the basic mathematical model proposed

by [105] and expand it to incorporate factors such as network congestion and link delays

(“latency”); the analysis is then used as a platform with which to determine energy savings

possible to MDs when both MDs and MEC servers form a heterogeneous network with varying

processing speeds (Sections 3.3-3.4). The Chapter will then present a more generalized mathe-

matical model to incorporate factors such as Central Processing Unit (CPU) workload to analyse

network congestion in greater depth (Sections 3.5 - 3.7). Finally, the implications of the results

for users and providers of offloading to MEC networks are discussed.

3.3 Theoretical analysis and quantitative models for offloading to

a MEC network

The overall scheme of the data transfers from MDs to a MEC network are shown in Figure. 3.1.

The users of MDs are assumed to include smartphones, tablet computers and laptops. Of these

MDs, smartphones suffer severely from battery lifetime issues as well as limited on-board

processing power. Tablet and laptop computers have much longer working battery lifetimes

(when unplugged) but their users may still welcome access to the much greater computing

power of MCC or MEC networks. In heterogeneous populations of MDs in a MEC network,

processing capacities and remaining battery lifetimes are likely to show high variabilities.

3.3.1 Improved Execution Speed

In an MCC model [105] for offloading to result in a faster execution time for a task the

following inequality was required:

Γ

(
1
α
− 1
β

)
> XMD

CMD (3.1)

where Γ is the link speed (bps), α is the execution rate of the local computing device in

instructions per second (IPS), β is the execution rate of the server in instructions per second

(IPS), XMD is the data (bits) transferred over the MEC network and CMD is the size of the

computational job (instructions) and the units for both sides of the equation are bits per

instruction. If the left-hand side exceeded the right-hand side, computation offloading was

favorable, i.e. the achieved task execution was faster by offloading to the external MEC server.
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Computation task offloading from the mobile device to the MEC. 

server. atBS. 

 Computation task can be performed locally.  

MEC at Base Station 

Computation resultant data back to the mobile device from the MEC. 

server ..atBS. 

Figure 3.1: An illustrative diagram of a MEC system with multiple users. The arrows represents
channels via which the mobile users can access the computational power of a MEC.

This inequality was a contraction of a more general inequality:

Γ

(
1
α
− 1
β
− H

CMD

)
> XMD

CMD (3.2)

where H
CMD was the time per instruction that degrades the performance of the offloading system

as a result of communication problems if H > 0. The authors of the study [105] equated H to

zero and only considered an uncongested network but we have considered multi-user congestion

in our analysis. The XMD

CMD term in equations 3.1 and 3.2 refers to bits per instruction values

computed for the 9 applications listed in Table 3.2, data from [105]. The XMD

CMD term is inversely

proportional to the computational complexity of the application.

[105] only considered two link speeds, 1 kbps and 1 Mbps for offloading. Here, we extend

the range of link speeds up to 64 Mbps and include two types of communication delay: link

access delays independent of the number of users and a user number-dependent reduction of

the 1
β

term in equation (3.1).
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Table 3.1: On-board and server-side processor speeds used in the illustrative examples through-
out the thesis [105].

Processor IPS

MSP430 1.6×107

Apple A9 3.6×109

Intel Celeron 6.40×109

Xeon processor 1.40×1011

Table 3.2: Computational requirements of 9 selected applications. The applications are taken
from [105].

Application Name Bits/Instruction

1 siesta 5.29×10−5

2 charmm 7.34×10−5

3 mdrun_mpi 1.08×10−4

4 nwchem 1.80×10−4

5 vasp_ncl 2.86×10−4

6 cocmomc 4.84×10−4

7 lmp_stampede 9.53×10−4

8 namd2 1.01×10−3

9 fvcom 2.27×10−3

3.3.2 Reduced Mobile Device Energy Usage

[90] presented an outline mathematical model for computing energy saving by offloading which

relied on the inequality that the energy used by the mobile device was more than the energy of

that mobile device in offloading; this can be written as:

CMD ×PMD

α
> CMD ×P idle

β
+ XMD × (Psend +Prec)

Γ
(3.3)

where the power terms for the MD are taken from [90], β represents the processing speed

of the server and α the processing speed of the MD ; other symbols have the definitions used

for Equations (3.1) and (3.2). XMD is considered to be the dominant contributor to any data

exchange between the MD and MEC server, i.e. relatively little data is transmitted back to the

MD. The authors of [90] quoted three values for power required by a MD: PMD is the power

required to compute a job on the MD (0.9 W), P idle is the power required of the MD while

idling (0.3 W) and Psend and Prec are the powers required while transmitting and receiving

information and were assumed to be equal (1.3 W). These values have been used in the

calculations of the energy used by a mobile device computing locally or offloading to a MEC

server.

If the left-hand side of equation (3.8) exceeds the right-hand side, the energy use by the
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mobile device will be reduced by offloading to the MEC server. This will be advantageous to the

user of the mobile device in, for example, extending the battery life.

Other studies have used different power ratings; the authors of [84] stated that the lack

of detailed power rating information for commercially sourced processors greatly limited the

ability of researchers to fully analyse power rating by MDs and used a PMD value of (0.735 W)

and a P idle value of (0.096 W) but used an energy value per MB instead of Psend and Prec. The

numerical analyses in [87] used the following values: PMD (0.4 W), P idle (0.05 W) and Psend

and Prec (0.75 W) power rating of PMD (0.6 W) (>75% CPU usage), P idle 0.06-0.98 (W) in

Wi-Fi mode and Psend and Prec (1.4 W) at 1 Mbps in 3G were used in [116].

The authors of [100] state that transmission power is variable but do not provide any source

for this statement or give any example of what conditions affect transmission power. However,

any consistent set of power ratings will enable numerical simulations to provide a reliable

estimate of percentage energy savings possible by offloading for a MD if data transfer and

processing times and power ratings are combined in the calculations.

3.4 Effects of Various Parameters on Task Completion Time

Using the mathematical model described in Section 3.3. of this Chapter, a number of scenarios

were analysed to explore the impact of changing parameter values on the offloading process

and whether or not task completion times was reduced by offloading compared with local

computation on the MD.

The motivation was to include the effects of multiple factors - on-board and MEC processor

speeds, computational task complexity, a wide range of communication speeds, link access delay

and the number of mobile users - on the success of offloading using task completion time as the

sole criterion.

In addition, quantifying any reduction in energy use by MDs made possible by offload-

ing to MEC servers was analysed with different processor speed combinations and varying

communications link speeds.

3.4.1 Improved Execution Speed

Figure 3.2 shows the slower on-board processor (MSP430) with the slowest of the two server-

side processors (Celeron, with a server-side:on-board processor speed ratio of 402:1). The

calculated bits per instruction values were favoured offloading for shorter task completion times

for all 9 applications at a link speed of 64 kbps or more. With even a low link speed of 1 kbps,

the more computationally complex application siesta was offloaded.

In contrast, Figure 3.3 shows that the faster (A9) on-board processor required much faster

link speeds to justify offloading (in order to achieve lower task completion time): 33 Mbps

with the slower (Celeron), with a server-side processor speed ratio of 1.7:1) and 16.4 Mbps
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Figure 3.2: Effect of link speed on the offloading threshold for shorter task completion time:
MSP430 on-board processor offloading to the Celeron server-side processor; siesta and fvcom
are the most computationally complex applications and the least, respectively.

for the faster (Xeon) server-side processor speed ratio of 39:1). In general, the higher the bits

per instruction value of an application, the higher was the minimum link speed required for a

shorter task completion time to be possible by offloading. Table 3.3 enumerates the required

link speed for all 9 applications in Table 3.2 with three combinations of mobile and server

processors presented in Section 3.3.1.

Mobile devices with low-speed processors would, therefore, find offloading advantageous

for shorter task completion time even when accessing wireless personal area networks with

limited ranges and low link speeds 250 kbps), i.e. those specified in IEEE 802.15.4. Devices

with faster on-board processors would benefit by offloading computations to MEC networks

with link speeds comparable to current 4G 2 and WiFi networks [92].

3.4.2 Offloading from Mobile Device with Different Processor Speeds

A necessary corollary of the results presented with different combinations of processors with

varying speeds is that, as the proportion of faster on-board processor mobile users in the user

population increases, the success of offloading for faster task completion at a constant link

speed decreases; this is because, with higher on-board processor speeds, the left-hand term in

Equation 3.1 decreases.

If the user population in range of a MEC base station and server is composed of equal

numbers of devices with on-board processor speeds covered by the range in Section 3.4.1,

2European Telecommunications Standards Institute (ETSI):
https://www.etsi.org/technologies/mobile/4g.
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Figure 3.3: Effect of link speed on the offloading threshold for shorter task completion time: A9
on-board processor offloading to the Celeron or Xeon server-side processor; siesta and fvcom
are the most computationally complex applications and the least, respectively.

Table 3.3: Minimum Link speed for offloading applications with different processor combinations
for shorter task completion time

Application MSP430 to Celeron A9 to Celeron A9 to Xeon
(kbps) (kbps) (kbps)

siesta 0.8 433.6 195.9
charmm 1.2 601.6 271.9
mdrun_mpi 1.7 885.2 400.0
nwchem 2.9 1475.4 666.7
vasp_ncl 4.6 2344.3 1059.3
cocmomc 7.8 3967.2 1792.6
lmp_stampede 15.3 7811.5 3529.6
namd2 16.2 8278.7 3740.7
fvcom 36.4 18606.6 8407.4
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Figure 3.4: Effect of on-board processor speed on computed bits per instruction values required
for offloading to a MEC server-side processor (Xeon) at different link speeds: e.g. siesta app is
always offloaded.

approximately 2% found offloading for shorter task completion time is possible at a link speed

of 250 kbps, 12% found offloading for shorter task completion time advantageous at a link

speed of 1 Mbps whereas 64% benefited at a link speed of 5 Mbps, as shown in Figure 3.4.

This analysis assumes a uniform distribution of processor speeds in mobile devices in the user

population attempting to offload the application with the greatest computation complexity (the

lowest XMD

CMD value, see Equation 3.1 and Table 3.2) to a MEC server with the Xeon processor.

When applications with lower bits per instruction were considered, the percentage of

mobile devices successfully offloading for shorter task completion time increased at a fixed link

speed. If the link speed exceeded 8.4 Mbps (Table 3.3), all the mobile devices offloaded all

the applications in (Table 3.2) for a shorter task completion time. Mobile devices with faster

on-board processors than those considered would require faster link speeds when offloading to

the Xeon server-side processor.

3.4.3 Link Access Delays

A positive H
CMD term in Equation (3.2) adds a link access delay to the communication link

between the mobile device and the MEC server and reduces the left-hand side of the Equation

until eventually the inequality shown in Equation (3.2) fails and offloading does not result

in short task completion times. Table 3.4 presents maximum computed link access delays for

the 9 applications with three combinations of on-board and MEC server-side processors. With

the MSP430 on-board processor in combination with any of the three server-side processors,

offloading required progressively higher bandwidths until, at a link access delay factor exceeding
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Table 3.4: Maximum Link access delay for offloading applications with different processor
combinations for shorter completion time at 20 Mbps

Application MSP430 to Celeron A9 to Celeron A9 to Xeon
(ms) (ms) (ms)

siesta 62.3 0.12 0.27
charmm 62.3 0.12 0.27
mdrun_mpi 62.3 0.12 0.26
nwchem 62.3 0.11 0.26
vasp_ncl 62.3 0.11 0.26
cocmomc 63.3 0.10 0.25
lmp_stampede 62.3 0.07 0.22
namd2 62.2 0.07 0.22
fvcom 62.2 0.01 0.16

Table 3.5: Maximum number of mobile devices for offloading to shorten completion time with
different processor combinations

Application MSP430 to Celeron A9 to Xeon

(250 kbps) (20 Mbps)

siesta 400 36
charmm 399 36
mdrun_mpi 398 36
nwchem 396 36
vasp_ncl 394 35
cocmomc 388 34
lmp_stampede 376 30
namd2 375 30
fvcom 342 21

62.3 ms per 106 instructions at a link speed of 20 Mbps, offloading failed entirely to result

in a short task completion time at any link speed, as shown in Table 3.4. The combination

of the faster (A9) on board processor with the Celeron server-side processor did not tolerate

link access delays factors greater than 0.12 ms per for 106 instructions, as shown in Table 3.4,

while the A9/Xeon combination failed to offload at any link speed when link access delays

factor exceed 0.27 ms per 106 instructions. Faster on-board processors therefore required a less

interrupted and more seamless communication link in order to make offloading beneficial for

shorter task completion times.
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Figure 3.5: Effect of number of mobile users on the offloading for shorter task completion time:
MSP430 on-board processor offloading to the Celeron server-side processor;siesta and fvcom
are the most and least computationally complex applications, respectively (Table 3.2).

3.4.4 Offloading and Network Congestion

Ideally, any mobile device would have unimpeded access to the MEC server for offloading.

When large numbers of users attempt to access the same MEC server, to avoid network overload,

queuing and scheduling strategies have been proposed [102]. In the extreme case, an overloaded

MEC server might also be able to share computational jobs with other servers [135].

To include an analysis of the effects of the number of mobile devices attempting to connect

simultaneously to a MEC server, Equation (3.2) was modified as:

Γ

(
1
α
− D
β

)
> XMD

CMD (3.4)

where D represents the number of users; this introduces a reduction in communication link

speed depend on the number of users. In effect, overloading the MEC servers reduced the ratio

of the server:mobile processor speeds. For the slower MSP430 processor with the slower Celeron

server processor, a link speed of 250 kbps was sufficient to offloaded most of the applications for

up to 400 users, as shown in Table 3.5. With the faster A9 processor with the faster Xeon server

processor, even a link speed of 20 Mbps only offloaded much smaller numbers of mobile users.

Figure 3.5 shows that the most computationally complex application siesta was always

offloaded for faster completion time from an on-board MSP430 processor to a MEC server

(Celeron) until the number of mobile users exceeded 400 while the least computationally

complex application (fvcom) was preferentially computed locally when the user number ex-

ceeded 342. Figure 3.6 shows that the most computationally complex application siesta was

always offloaded for faster completion time from an on-board A9 processor to a MEC server
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Figure 3.6: Effect of number of mobile users on the offloading for shorter task completion time:
A9 on-board processor offloading to the Xeon server-side processor; siesta and fvcom are the
most and least computationally complex applications, respectively (Table 3.2).

(Xeon) until the number of mobile users exceeds 36 while the least computationally complex

application (fvcom) was preferentially computed locally when the user number exceeded 21.

In general, the less computationally applications tolerated smaller maximum user numbers

because they required higher differentials in the relative speeds of the server and on-board

processors to achieve shorter task completion times (Table 3.5).

3.4.5 Energy Saving by Mobile Devices

Using Equation (3.8), combining the slower (MSP430) on-board processor with any of the three

server-side processors resulted in major energy savings for the mobile device (up to 99%) at

low link speeds (100-200 kbps) but the faster (A9) on-board processor required much faster

link speeds for maximum energy savings (Figure 3.7). Even with a relatively low link speed

of 1 Mbps, an energy saving of 80% was possible with the A9/Xeon combination. Calculations

showed that combining the A9 processor with either of the two faster server-side processors

could give energy savings for the mobile user exceeding 90% at high link speeds (50-100 Mbps).

The metric used here for energy savings by the MD was the difference between the energy used

for local processing minus the energy used by the MD in in transmitting information and in

idling while the server processed the transmitted data as a percentage of the energy used for

local processing.

Major savings were found to be possible with applications across the entire spectrum of

complexity (Figure 3.8). With the lowest-complexity application, however, much faster link

speeds were necessary: the lowest-complexity application required link speeds of 2 Mbps for

energy savings while the highest-complexity application could show energy savings with link
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speeds as low as 0.1 Mbps.

3.4.6 Summary of Key parameters affecting Offloading in a Heterogeneous
MEC Network

The contributions made by the work described in Sections 3.4.1-3.4.5. Illustrate how a het-

erogeneous population of mobile devices with different MEC server-side processors can make

decisions affecting offloading, specifically:

• Effects of different MD on-board processor speeds on the achieving successful offloading

for shorter task completion time.

• Effects of different MEC server processor speeds on the achieving successful offloading for

shorter task completion time.
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• Effects of widely differing data transmission speeds to the MEC servers on the achieving

successful offloading for shorter task completion time.

• Modelling how link access delay and reduced link speed caused by network congestion

caused by widely differing numbers of users reduces the success of offloading in achieving

faster task completion time.

• Energy savings achieved by mobile devices with various combinations of on-board and

server-side processor speeds with different data transmission speeds to MEC networks.

The detailed numerical simulation data for how offloading can be beneficial in a MEC

network with varying quantitative mobile user demand, heterogeneity in mobile device on-

board and MEC processor speeds, computational task complexity, communication speeds, link

access delays and mobile device user numbers.

More computationally complex applications are offloaded preferentially (especially with the

higher server:on-board processor speed ratios) while low link speeds and any delays caused by

network delays or excessive user numbers degrade any advantages in reduced task completion

times offered by offloading. Additionally, significant savings in energy usage by mobile devices

are guaranteed except at very low link speeds.

3.5 Offloading Model to Reduce Task Completion Time and Local

Energy

As discussed in Chapter 2, a major perceived limitation of MCC) is that of link delays in

communication that is required between MD and physically remote data centres. This has been

an argument used in favour of Edge Computing but the potential numbers of users of MDs

introduces the complication of localised overloading of MEC servers [135].

The authors of [135] proposed two mechanisms to alleviate problems to users attempting

to offload caused by overloaded MEC servers: either a MEC server shares its task burden with

nearby MEC servers or MDs can themselves act as relay nodes to connect the mobile users

originally connected to a non-responsive MEC server to another MEC server not in direct contact

with the non-responsive server.

A more direct analysis of server overload, however, can use server CPU workload as the

primary determinant. In the extreme case, an overloaded server CPU could result in a Denial-of-

Service to users of MDs attempting to offload; in less extreme scenarios, response times and

round-trip times (from MD to MEC server to MD) would increase.
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3.5.1 Problem Formulation

Let u j,c be the binary variable that models the offloading of a job j on a MEC c , respectively.

The binary variable is defined as follows:

u j,c =
1 if job j is offloaded to c,

0 otherwise
(3.5)

The offloading decision-making strategy deals with determining, for a given computation

task j, whether to compute it locally on an MD or leverage the computing facilities offered

by a MEC server c. In other words, the computational offloading decision is to determine the

set: {u j,c : j ∈ J, c ∈ C}, that models the decision on each job that needs to be processed. In

the following subsections, mathematical relations are derived that model the dynamics of the

computational offloading.

3.5.2 Computational processing time on a mobile device

Considering a mobile device ‘MD’, let XMD
j denote the computational data (in bits) to be

processed. Let λi denote the complexity of the application that processed the data (in bits

per instruction). The total numbers of instructions, CMD
j , are calculated using the following

equation:

CMD
j =

XMD
j

λi
(3.6)

Let αi be the on-board processor speed of a MD (in instructions per second) and (1− LMD
i

100 )

be the CPU workload on a MD. The time to compute the job on MD i is given as follows:

TMD
i =

∑
j∈J XMD

j u j,c

(1− LMD
i

100 )×αi

(3.7)

Equation (3.7) provides a relationship between the completion time, computational data,

MD load and the processing speed of the device. From this equation, we note that the completion

time is directly proportional to the computational data and mobile device loading. In contrast,

completion time is inversely proportional to the processing speed of the device.

3.5.3 Local Energy Consumption

Processing a computational task on an MD will require a certain amount of energy. Let PMD
i

be the power required of the embedded processor on MD i. The energy consumption can be

quantified as follows:

EMD
i = PMD

i ×TMD
i (3.8)
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where TMD
i is obtained from the solution of Equation (3.7).

3.5.3.1 Computational processing time on a MEC

Let XMEC
j denote the computational data (in bits) as the size of input data that needs to be

processed from an application that is running on a MEC at λc (in bits per instruction). Let βc

be the on-board processor speed of MEC c (in instructions per second) and (1− LMEC
c

100 ) be the

server-side processor workload of MEC c. The computational time to process a job on a MEC

server is given as follows:

TMEC
c =

∑
j∈J XMEC

j u j,c

(1− LMEC
c

100 )βcλc

(3.9)

Let γUL
c be the up-link speed (in bits/second). The following equation gives the time to send

the job over the link.

TUL
c =

∑
j∈J u j,c XMD

j

γUL
c

(3.10)

Let γDL
c be the downlink speed (in bits/second). The receiving time of the processed data can

be calculated as follows:

TDL
c =

∑
j∈JΠXMEC

j

γDL
c

(3.11)

where Π (0≤Π≤ 1) is defined as the proportion of data size reduction after a job is processed.

Furthermore, we assume that the links between the MD and MEC are symmetric, which means

MD can send and receive data to and from MEC at the same rate without the loss of generality

i.e. γUL = γDL =Γ.

Equations. 3.9, 3.10 and 3.11 can be represented as:

TTotal
c =

∑
j∈J XMEC

j u j,c

(1− LMEC
c

100 )βcλc︸ ︷︷ ︸
MEC Processing Time

+
∑

j∈J u j,c XMD
j

γUL
c︸ ︷︷ ︸

Transmission Time

+
∑

j∈JΠXMEC
j

γDL
c︸ ︷︷ ︸

Receiving Time

(3.12)
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Table 3.6: A list of parameters used in numerical experiments; MD and MEC processing speeds
taken from from [105]

Entity Parameter Value Unit

Jobs Size XMD 1 MB

MD α 3.60×109 IPS

MEC β 1.40×1011 IPS

Application 1 CMD 3.7×109 Ins/MB

Application 2 CMD 3.7×108 Ins/MB

Network Γ 20 Mbps

3.5.4 Offload Energy Consumption

Here we are only concerned with the energy consumption of the mobile device. Let Psend and

Prec denote the power required of the MD to send and receive the request for offloading the job

(in W) respectively. The total energy consumption for this step is given as:

(
EUL

i,c ,EDL
i,c

)
=

(
Psend

i ×TUL
i,c ,Prec

i ×TDL
i,c

)
(3.13)

Let P idle denote the power rating of the MD (in W) when it is in the idle state and is waiting

to receive the solution of the computational task back from the MEC. The energy consumption

of the idle state is given as follows:

Eidle
i = P idle

i ×TMEC
c (3.14)

The total energy consumption of processing all jobs on a mobile device i are given as follows:

ETotal
i = Psend

i ×TUL
i,c︸ ︷︷ ︸

Transmit energy consumption

+ P idle
i ×TMEC

c︸ ︷︷ ︸
Idling energy consumption

+ Prec
i ×TDL

i,c︸ ︷︷ ︸
Receiving energy consumption

(3.15)

3.6 Numerical Results

This section demonstrates the use of the mathematical model presented in Section 3.5.1 in

numerical simulations with two applications whose parameters are presented in Table 3.6. The

values used for Application 1 are taken from [105]. Application 2 had 10-fold reduction in the

numbers of instructions generated, following the ratio proposed in [84] for MCC to distinguish

between the high- and low-complexity applications considered for offloading.
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Figure 3.9: Effect of computational data size on task completion time with the higher complexity
application 1 at a 20 Mbps communication link speed to/from a MEC server.

The authors of [90] quote three values for power rating by a mobile device: PMD is the

power rating of a mobile device while computing (0.9 W), P idle is the power rating of a device

while idling (0.3 W) and PSend and Prec are the power rating of a device while transmitting

and receiving information (1.3 W). These values have been used for calculating the energy

used by a MD computing locally or offloading to a MEC server. Furthermore, the value of

Π= 0.4 is assumed in Equation (3.11), which means that the data returned from a MEC server

is 60% less than the data which is sent to the server. The following subsections investigate the

impact of increasing job data size, MEC workload, MD workload and link speed on the overall

computational time and energy usage by the MD.

3.6.1 The impact of increasing job data size on the completion time

Job size and completion time have a linear relation as shown in Equations (3.7, 3.9). Figure 3.9

shows the effect of increasing job (from 1 MB to 20 MB) size on the total completion when

computing locally or offloading files for Application 1. Three cases are plotted: 1% MD CPU

loading, 60% MEC CPU loading and 80% MEC CPU loading. Each case showed a linear increase

in the total completion time. Even with the very low (1%) MD loading, the local job completion

time was longer than offloading the task to the MEC server at any job size and at either server

CPU workload.

3.6.2 The impact of MEC workload on the completion time

Figure 3.10 presents the results with the two applications when the MEC CPU workload was

increased from 1% to 99%. Figure 3.10(a) shows that the total task completion time with the

higher complexity Application 1 increased greatly as the MEC server CPU workload approached
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(b) Application 2: Offloaded and local computational times at MD CPU workloads of 50%, 80% and 90%.

Figure 3.10: Effect of varying MEC server CPU workload on task completion time for 1 MB
data file offloaded at 20 Mbps connection link speed or processed locally at selected MD CPU
workloads.

100%. Nevertheless, offloading could result in a shorter task completion time even at a >90%

MEC CPU workload if the CPU workload on the MD processor was >50%. Figure 3.10(b) shows

that, whatever the MEC server CPU workload, local computation was faster with the lower

complexity Application 2 until the MD CPU workload became high.

3.6.3 The impact of MD workload on the completion time

Figure 3.11 presents the results with the two applications with the MD CPU varying up to 99%.

Figure 3.11(a) shows that local computation was faster at low MD CPU workloads (<20%) but

at higher MD CPU workloads offloading was beneficial for reducing task completion time at a

MEC server CPU workload of 96%; even at 99% server CPU workload, offloading was beneficial

if the MD CPU workload exceeded 70%. Figure 3.11(b) shows that local computation was faster

with the lower complexity Application 2 than offloading to a very high CPU workload server
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Figure 3.11: Effect of varying of MD server CPU workload on task completion time for a 1 MB
data file offloaded at 20 Mbps connection link speed or processed locally at selected MEC server
CPU workloads.

until the MD CPU workload approached 90%.

3.6.4 The impact of link speed on offloading decision

The higher the MD processor CPU workload, the lower was the minimum communication

link speed required for shorter total task completion time by offloading; this is shown in

Figure 3.12(a). With the much smaller local computation demands required for Application

2, minimum communication link speeds required for shorter total task completion time by

offloading were much higher than for Application 1; this is shown in Figure 3.12(b). At high MD

CPU workloads, link speeds were compatible with 4G wireless networks but 5G range speeds

were required if local computation was performed at low MD CPU workloads.
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(a) Application 1: Minimum link speed required for shorter completion time by offloading at
different MD CPU workloads.
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(b) Application 2: Minimum link speed required for shorter completion time by offloading at
different MD CPU workloads.

Figure 3.12: Effect of varying MEC server CPU workload on the minimum link speed required
for shorter task completion time with a 1 MB data at selected MD CPU workloads.

3.6.5 Energy Usage by a MD

Figure 3.13(a) shows that energy usage for local processing by the MD increased as the MD

CPU workload increased with the higher complexity Application 1. In contrast, MD energy

usage while offloading increased only very little when very high MD CPU workloads were

reached. The energy saving for the MD occurred at all MD CPU workloads but increased greatly

as MD CPU workloads increased and reached nearly 90% of local energy use when the CPU

workload reached 90%. With the lower complexity Application 2, however, no energy savings

were possible for the MD by offloading until the MD CPU workload approached 90%, as shown

in Figure 3.13(b). This was because the low complexity of the application resulted in very short

completion times when computed locally and communication times with the MEC network
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(a) Application 1: Energy use by a mobile device computing locally or offloading to a MEC server.
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(b) Application 2: Energy use by a mobile device computing locally or offloading to a MEC server.

Figure 3.13: Effect of varying CPU workloads on energy consumption by an MD for a 1 MB data
processed locally or offloaded at 20 Mbps.

caused total task completion times by offloading to be longer than local processing.

3.7 Discussion

The advantages of computation offloading to a MEC server for the users of MDs for shorter

task completion times are critically dependent on the interaction of four independent variables:

on-board processor CPU workload, server-side CPU workload, communication link speed and

task complexity.

As an illustration, relatively slow on-board processors can advantageously (for task comple-

tion time) offload to MEC servers at very low link speeds provide by low-bandwidth networks
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because the ratio of server-side processor speed to on-board processor speed is high. However,

a MEC network should have the flexibility to adapt to widely fluctuating numbers of mobile

devices seeking connections with different processor speeds and differing task complexities in

an environment where available bandwidth could decrease rapidly. In addition, MEC service

suppliers will increasingly be required to provide the greatest processor speed edge over cur-

rently available mobile devices together with the highest economically practical bandwidth for

data transmission and return to ensure maximal user Quality of Experience (QoE).

MDs are increasingly engineered with high processing powers and this increased com-

putational power of MDs puts limits on how much benefit can be achieved in terms of task

completion time by offloading. With a higher computational task complexity, only very high

server-side CPU workloads prevent offloading having shorter task completion times and even

this factor is overcome as the on-board processor CPU workload increases. Energy savings for

the MD are important even at very high MEC server CPU workloads. However, with a ten-fold

lower computational task complexity, data transmission time is the dominant factor in rejecting

offloading but higher link speeds eliminate any advantage of a high-power MD processor.

Interruptions and delays in the ability of mobile devices to access MEC servers (“link access

delays”) greatly reduce the ability of offloading to offer benefits for task completion times. This

problem is magnified if a higher-speed on-board processor is used in the mobile device. The load

on a MEC network caused by increasing numbers of mobile users can erode any task completion

time advantage by offloading as the differential between the MEC server and on-board processor

speeds decreases.

The energy savings mobile devices by offloading to a MEC server are major even at low or

modest available bandwidths in a 4G network. In practice, with fast server-side processors and

high bandwidths, the default option for the users of mobile devices could be to offload primarily

or solely for energy (battery lifetime) savings even if execution times were not improved by

offloading because of the very marked effect on energy use by the mobile device. This not

only increases the demand pressure to offload to the MEC system on the supplier side but also

necessitates (on the user side) a decision-making process in which both task execution time and

energy saving factors can be assessed.

Energy usage by the MD is not reduced by offloading until the MD CPU workload is very

high. For a MEC network, therefore, ease of use and the QoE for mobile users and subscribers

can only be established if the network functions smoothly and efficiently. For this, high link

speeds for data transmission and reception, the highest possible ratio of server-side to on-board

processor speeds and the avoidance of overuse of the server CPU are essential. A congested

MEC network will disappoint users of MDs with high on-board processor speeds searching for

faster task completion times, although energy use reduction will be paramount for some users

with low MD battery charge.

Any decision-making process for offloading must be able to compute advantages of task
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completion time and energy savings in a dynamic environment where widely fluctuating user

numbers are to be expected in, for example, city centres. Similarly, the provider of Edge

Computing facilities must build in sufficient flexibility to cope with peak demand without

overloading the network or to link servers to back-up servers in larger and responsive network

architectures.

Finally, the results demonstrate that as 5G wireless technologies introduce faster connection

speeds, more medium- to low-intensity computational tasks will be able to be offloaded to

reduce task completion time and energy usage by mobile devices. This will increase CPU

demands in MEC servers and lead to potential overloading, which will require attention to

capacity factors in MEC networks.

The research work described in this Chapter was designed to answer Research Questions 1-6

(Chapter 1, Section 1.3.2). One of the main conclusions is that factors affecting the success of

offloading tasks from MDs are highly interconnected. As demonstrated by the results presented

in this Chapter, it can be seen that the advantages of computation offloading to a MEC server for

the users of MDs for shorter task completion times are critically dependent on the interaction of

five network and user variables: communication link speed, the increases in processor speed

represented by the MEC server over the MD, task complexity, on-board processor CPU workload

and server-side CPU workload. In contrast, the size of the data file to be transmitted from the

MD is neutral for offloading versus local processing while link access delays are important and

network congestion manifests itself as problems in both excessive server CPU workloads and

reduced bandwidth.
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4
A HEURISTIC APPROACH TO OPTIMIZING OFFLOADING SCHEDULES IN

HETEROGENEOUS MEC NETWORKS

4.1 Introduction

The major conclusions from the work presented in Chapter 3 was that most jobs could be

offloaded to reduce computation time and energy usage by a MD unless link speeds were

extremely slow or if the ratio of processor speed in a MEC server to processor speed in the MD

was critically low as the result of server overload and CPU workloads approaching 100%.

Given this optimistic result, the next logical question is how to schedule multiple jobs for

offloading from single or cluster of MDs to MEC servers with differing computing powers

over links of variable connection speeds. An example of multiple jobs for offloading is that of

successive frames in a video file to be processed by facial recognition software. At the network-

wide level, this resolves into the problem of resource allocation if large numbers of users of

MDs are attempting to offload jobs simultaneously and is the topic of much research in Cloud

Computing for hardware resources [58].

From an extensive survey of published material, the authors of [58] concluded that effective

cloud resource scheduling can minimize the makespan of the workflow while reducing execution

time and computation time of workloads in Cloud Computing. The word “makespan” is of key

importance in this context because it defines the least-time scheduling option when multiple

options are possible. Makespan analysis is widely practised in studies of logistics and supply

chains where parallel processing of mechanical tasks is the default scenario; an example is [21]

which provides a formal definition of makespan as: the time at which machines complete

processing of the last job.

For the user of an MD attempting to execute multiple jobs this may involve parallel processing
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using the MD as well as the available MEC servers. The precise balance of the parallel processing

will be determined by the parameters of the MD and MEC server connection: processor speeds,

link speeds, job sizes and CPU usages.

Key research question: Can the minimum global time for the offloading of multiple compu-

tational jobs from an individual MD (as a decentralized form of resource allocation) or from

multiple MDs in a heterogeneous MEC network (as a centralised form of resource allocation)

be identified?

This Chapter makes the following two major contributions:

• A proposed use of scheduling to optimise the offloading of multiple jobs from an MD which

is verified by linear programming and direct spreadsheet calculations for a heterogeneous

MEC network with multiple servers.

• Novel heuristic algorithms to rapidly achieve near-optimal solutions to offloading scenarios

where very numbers of schedules are possible in a heterogeneous MEC network.

This work was published in: R. Singh, S. Armour, A. Khan, M. Sooriyabandara and G.

Oikonomou, “Heuristic Approaches for Computational Offloading in Multi-Access Edge Comput-

ing Networks”, IEEE International Symposium on Personal, Indoor and Mobile Radio Communi-

cations, 2020.

The remainder of this Chapter is arranged as follows: the concept of a least-time schedule is

investigated in a relatively small network of one MD and up to 3 MEC servers with up to 5 jobs

for offloading by manual calculation verified by a linear programming optimization approach; a

heuristic is then developed for larger numbers of MDs and total job numbers to obviate the need

for proprietary software and provide a faster means of identifying least-time schedules close to

global optimum times as deduced by linear programming optimization; finally, the outcomes

are discussed in relation to users of MDs offloading to heterogeneous MEC networks can assess

time advantages presented by offloading schedules and the implications for the providers of

MEC networks faced with potential high use of offloading and consequent server overloading.

4.2 A Mathematical model

Let us consider a system comprising of MDs denoted as i = {1, . . . ,m}. Let Ji denote the set of all

jobs on a mobile device i. Also, let c = {1, . . . ,n} denote MECs at a local base station represent

the set of MEC servers available for the data requests from the given set of mobile users. Note

that every MD is independent of the other and computation tasks offloaded on the MEC servers
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are processed on first in first out basis. Let u j,c be the binary variable that models the offloading

of a job j on MEC c, respectively. The binary variable is defined as follows:

u j,c =
1 if job j is offloaded to c,

0 otherwise
(4.1)

where Ji ∩ Ji′ = φ ∀ i, i′ ∈ M i 6= i′.
Let A i represents the allocation matrix of a MD i. The matrix A i consists of binary variables

in each row and column and represents the offloading decision as described by Equation 4.1.

The allocation matrix is given as follows:

A i =



u j1,c1 u j1,c2 . . . u j1,cn

u j2,c1 u j2,c2 . . . u j2,cn

...
...

...
...

...
...

...
...

...

u jmi ,c1 u jmi ,c2 . . . u jmi ,cn


Note that the sum of a row (and a column) is always less than or equal to 1. When the sum

of a row is equal to zero, that means the job is processed locally on a mobile device.

4.2.1 Constraints for local computation

Let XMD
j denote the computational data (in bits) as the size of input data that needs to be

processed from an application that is running on MD i. The total numbers of instructions, CMD
i ,

can be calculated as:

CMD
j =

XMD
j

λi
(4.2)

where λi (bits per instruction) represents the complexity of the job at hand.

Let αi be the on-board processor speed in (instructions per second). The completion time of

a computational task on the MD i, TMD
i , is defined as follows:

TMD
i =

∑
j∈Ji CMD

j (1−∑
c∈C u j,c)

αi
(4.3)

Let DMD
i denote the total amount of data processed on the MD i. The total amount of data

processed on the mobile device depends on the offloading decisions and therefore it is defined

as follows as a function of the offloading binary decision variables.

DMD
i = ∑

j∈Ji

XMD
j (1− ∑

c∈C
u j,c) (4.4)
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If a job is offloaded, it is offloaded to a unique MEC server c. Therefore, the sum
∑

c∈C u j,c

returns 1 for all offloaded jobs and hence the data for such jobs is not included in calculation of

data processed locally in Equation 4.4.

4.2.2 Constraints for transmission data

Let γUL denote the speed of uplink (in bits per second). The total processing time Ti,c, j of

transmitting data from MD i to MEC c is given as follows:

Ti,c, j =
∑

j∈Ji u j,c XMD
j

γUL (4.5)

All the data on the MD i which need to be processed is equal to sum of the data that is

processed on the mobile device i locally and the data that flows over the link γUL.

∑
j∈Ji

XMD
j = DMD

i +∑
Fi,c (4.6)

The transmission links that connects mobile devices and MEC servers have finite capacities.

In order to implement the transmission capacity constraints, first we need to quantify the

amount of data that can flow on a given let. Let Fi,c denote the data flow over the link between

the MD i and the MEC c. This data flow depends on the number of jobs that are offloaded from

the MD i to MEC server c over the link that connects them, and the equation modelling this is

given as follows:

Fi,c =
∑
j∈Ji

XMD
j u j,c (4.7)

A constraint on the flow Fi,c, is implemented as follows:

0≤ Fi,c ≤ SMax
i,c (4.8)

where SMax
i,c is the transmission capacity of the link (i, c).

4.2.3 Constraints for MEC computation

We consider that there are {c = 1, . . . ,n} MEC servers deployed at the local cellular network. Let

XMEC
c denote the computational data (in bits) as the size of input data that need to be processed

from an application that is running on a MEC c at λc (in bits per instruction). The total numbers

of instructions, CMEC
c on a MEC c can be calculated as:

CMEC
c = XMEC

c

λc
(4.9)

The processing time of the task on the MEC server can be formulated from CMEC
c , the

computational task size (in instructions) and βc, MEC processor speed (in instructions per
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second). The offloading time of computational task on a MEC server, TMEC
c , can be calculated

as:

TMEC
c =

∑
j∈J CMEC

c u j,c

βc
(4.10)

Let us denote the downlink speed as γDL (bits per second). We assume that the total data

size is reduced by a factor of Π. The total reception time of all the offloaded jobs is given as

follows:

Tc,i, j =
∑

j∈JiΠ× XMEC
c

γDL (4.11)

Adding the Equations. (4.5),(4.10) and (4.11), the total computational time for all offloaded

jobs is given as follows:

TMEC
c =

∑
j∈Ji u j,c XMD

j

γUL︸ ︷︷ ︸
Transmission Time

+
∑

j∈J CMEC
c u j,c

βc︸ ︷︷ ︸
MEC processing time

+
∑

j∈JiΠ×u j,c XMEC
c

γDL︸ ︷︷ ︸
Receiving Time

(4.12)

Furthermore, a binary variable u j,c is constrained to respect the following constraint:

∑
j∈Ji

u j,c ≤ 1 ∀ i ∈ M, c ∈ C (4.13)

When the job is processed locally, the right-hand side of the equation is equal to zero. When

the task is offloaded on a server, the constraint ensures that it is not offloaded on more than

one MEC server.

Let DMEC
c denote the total amount of data that processed on a MEC c. The amount of data

processed on a MEC depends on the number of jobs offloaded from the given number of mobile

devices. The following equation determines the total computational data that is process of a

MEC server c:

DMEC
c = ∑

j∈Ji

XMD
j u j,c (4.14)

4.2.4 Objective Function and Overall Formulation

A scheduling optimisation problem is considered in which all the jobs are assigned to MECs at

particular times and only one job can be processed at a given time on any individual MECs and

evaluate that MD i given mi jobs of varying processing times, which need to be scheduled on

MECs with varying processing power and different link access speeds.
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The overall objective of the optimisation problem is to minimise the total time needed to

execute a given number of jobs. Mathematically this objective function is formulated as follows:

TTotal =max


max{Ti : i ∈ M}︸ ︷︷ ︸

Local Time

,max{Tc : c ∈ C}+ ∑
(i,c, j)

(2−Π)Ti,c, j︸ ︷︷ ︸
MEC Processing Time


(4.15)

where Ti is the total jobs processing time on a MD i. There are three components in the

equation. The first component is the local computation time of the jobs. The second component

is the computation time of MEC servers and the third component is the transmission and

reception time.

This problem can be formulated as a mixed integer linear programming (MILP), in which

the objective function and the constraints are linear. The optimization mathematical model has

been developed in Pyomo 1 using a solver from IBM called CPLEX 2. It is not a recommendation,

of course, that MDs utilize the IBM software programme; the use of CPLEX was solely to offer a

theoretical solution for a global scheduling optimum. This approach was designed to investigate

the use of makespan analysis in scheduling for offloading jobs from an MD.

4.3 Numerical Testing

The proposed linear programming model described in the earlier section is tested on two cases.

As noted earlier, the model needs information about a range of parameters. These parameters

are taken from a publication [105]. The complexity of an application which is defined by λm

is assumed to take the value of (2.27×10−3) instructions per bit. The following two processor

speeds of MEC are considered are: (for on-board device) Apple A9 (3.6×109 IPS) and (for

server-side processor) the Intel Xeon processor (1.40×1011 IPS).

4.3.1 Illustrative example of a user-run optimization program – 81 scheduling
options

In this section, we present numerical results to verify our analysis and validate the performance

of the proposed model; the outcome of the optimization model was verified by manual spread-

sheet calculations. In the first case, one mobile device sought to offload 4 jobs to one or both

MECs. The parameters chosen for numerical simulation are shown in Table 4.1. The number

of scheduling options was given by (n+1)m, where n represents the number of MECs and m

represents the number of jobs; in this case the total number of distinct scheduling options was

1Python PYOMO formulating, solving, and analyzing optimization models:
http://www.pyomo.org/about

2IBM CPLEX Linear programming problem solver:
https://www.ibm.com/pt-en/products/ilog-cplex-optimization-studio

66

http://www.pyomo.org/about
https://www.ibm.com/pt-en/products/ilog-cplex-optimization-studio


4.3. NUMERICAL TESTING

Table 4.1: Parameters values used for illustrative example (Case 1)

Entity Parameter Value Unit

Jobs Size XMD 1 - 4 MB

MD α 3.60×109 IPS

MEC1 β1 1.40×1011 IPS

MEC2 β2 1.40×1011 IPS

Network

MD - MEC 1 15 Mbps

MD - MEC 2 28 Mbps
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Figure 4.1: Cumulative Frequency Distribution plot of the maximum times for 81 scheduling
options.

81. The full list of schedules used for 1 MD offloading up to 4 jobs to 2 MEC servers is contained

in the Appendix, Table A.1.

The linear optimization program identified a unique solution of 2.85 (s) in which three jobs

were offloaded (one to MEC 1 and 2 to MEC 2) with the fourth job performed locally on the

MD i. The optimal time was 28% of that required for all jobs to be performed locally on the MD

i i.e. 3.6 times faster.

Fig. 4.1 shows the cumulative distribution plot of the schedule times. Only 5% of the 81

scheduling options are within 10% of the optimal time, suggesting that there is significant scope

to achieve a very bad outcome if jobs are not allocated well. The shortest schedule with all 4
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Figure 4.2: Effect of link speeds on optimal time that are submitted by the mobile devices.

jobs offloaded required a 20% longer completion time than the optimum which also suggests

that a simple “always offload” decision process can be significantly sub-optimal.

Further analysis investigated the effects of total job size and link speed on the success of

offloading jobs to the MEC network. Progressive increases in the total job size from 10 MB to

34 MB did not result in complete offloading. Increasing the link speed, however, had a more

pronounced effect. Fig. 4.2 shows how the optimal time decreased with increasing link speed.

Table 4.2: Scheduling Options vs Link Speed

Link
speeds
increase
(%)

Optimal
Time (s)

Schedule
option

Schedule
Time for
all jobs
offloaded
(s)

Schedule
within
10% of the
Optimum

Schedule
within
25%
of the
Optimum

Schedule
within
50%
of the
Optimum

0 2.85 6 3.42 5 15 41
10 2.64 6 3.16 2 15 28
20 2.46 6 2.95 0 6 28
30 2.43 6 2.77 2 6 28
40 2.34 5 2.62 2 11 37
50 2.19 5 2.48 1 11 35
75 1.90 26 2.21 1 10 21
100 1.68 26 2.01 0 10 21
225 1.02 68/73 1.02 5 1 20
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Figure 4.3: Jobs offloaded for the 81 scheduling options from 1 MD to 2 MEC servers.

Figure 4.3 does not show the fine granularity of the results. If the link speeds used in

Table 4.1 are increased by 10% increments, the least-time schedule option changes twice while

still offloading 3 of the 4 jobs (Table 4.21). Only by increasing from 100% to 225% of the

original link speeds do 2 scheduling options with all 4 jobs offloaded become the least-time

(optimal) solutions. Until the speeds have increased by this factor, a time penalty is incurred

if all 4 jobs are offloaded, ranging from 12-20% longer than the optimal time. In general,

the higher the link speeds, the more isolated the optimal solution becomes, i.e. fewer other

scheduling options give times within 10%, 25% or 50% of the optimal (Table 4.21).

The effects of increasing the job sizes are very different (Table 4.3). The total job size

represented by (Table 4.1) is 10 MB. If this is increased in 4 MB increments, although the

least-time scheduling option changes, the same 3 jobs are offloaded. The interpretation is that

transmission and receiving times during offloading greatly outweigh the faster processing time

on the MEC servers, by factors of 2000-13000. As the total job size increases, the optimal time

increases but the time penalty incurred by offloading all 4 jobs also increases.

Intuitively, if the CPU workload of MEC servers becomes too high, the optimum schedule for

offloading multiple jobs from a single MD would be expected to shift to less jobs being offloaded

and more being processed locally (Chapter 3, Section 3.6). Numerical analysis showed, however,

that the impact of CPU workload began to be apparent at only moderate workloads (Table 4.4).

By 40% CPU usage, the optimum schedule changed from a unique schedule to two different

schedules sharing the optimum time but having 3 or 2 jobs offloaded. This result requires a

policy to be pre-existing on the MD to choose either to offload the greater number of jobs or the

69



CHAPTER 4. A HEURISTIC APPROACH TO OPTIMIZING OFFLOADING SCHEDULES IN
HETEROGENEOUS MEC NETWORKS

Table 4.3: Scheduling Options vs Job (MB)

Job Size
(MB)

Total Job
Size (MB)

Optimal
Time (s)

Schedule
Number

Schedule
Time for
all
jobs of-
floaded
(s)

Schedule
within
10% of the
Optimum

Schedule
within
25% of
the Opti-
mum

Schedule
within
50% of
the Opti-
mum

1-4 10 2.85 6 3.42 5 15 41
2-5 14 3.42 10 4.86 0 6 27
3-6 18 4.56 10 6.47 0 9 23
4-7 22 5.70 10 7.41 5 7 23
5-8 26 6.84 10 8.90 5 14 23
6-9 30 7.98 10 10.25 5 14 23
7-10 34 9.12 10 12.41 5 14 23

Table 4.4: Effect of MEC Server CPU Workload on Optimum Schedule Selection (81 Distinct
Schedule Options)

CPU
Usage (%)

Optimal
Time

Option
Number

Jobs Offloaded

0 2.85 6 3
20 2.98 6 3
30 3.05 6 3
40 3.08 13,42 3,2
80 3.84 18,43 3,2
90 4.19 32,51 3,2
94 4.89 32,51 3,2
95 5.13 59 2
96 5.77 39 2
97 6.20 46 2
98 6.31 46 2
99 8.21 64 1

larger total MB offloaded or to select the optimum by reference to local energy use or financial

cost of accessing the offloading service (Chapter 5). By 95% CPU usage, a unique optimum

schedule is again identified but with only 2 jobs offloaded and by 99% CPU usage only a single

job is offloaded in the optimum-time schedule (Table 4.4).

70



4.3. NUMERICAL TESTING

4 6 8 10 12 14 16
Maximum Processing Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

la
tiv

e 
Fr

eq
ue

nc
y

Figure 4.4: Cumulative Frequency Distribution plot of the maximum times for 1024 scheduling
options

Table 4.5: Parameters Selected for Experimentation (Case 2)

Entity Parameter Value Unit

Jobs Size XMD 1 - 4 MB
MD αi 3.60×109 IPS
MEC1 β1 1.40×1011 IPS
MEC2 β2 1.40×1011 IPS
MEC3 β3 3.68×1010 IPS

Network
MD - MEC 1 15 Mbps
MD - MEC 2 28 Mbps
MD - MEC 3 25 Mbps
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Table 4.6: Effect of MEC Server CPU Workload on Optimum Schedule Selection (1024 Distinct
Schedule Options)

CPU Workload
(%)

Optimum
Schedule

Optimum
Time

Jobs Offloaded

0 124 2.67 4
20 124 2.71 4
30 124 2.74 4
40 124 2.78 4
50 124 2.83 4
60 124 2.91 4
70 68 3.08 2
80 68 3.08 2
90 68 3.42 2
95 68 4.74 2
96 68 5.40 2
97 457 6.16 2
98 457 6.16 2
99 457 9.18 2

4.3.2 Illustrative example of a user-run optimization program – 1024
scheduling options

The full list of schedules used for 1 MD offloading up to 5 jobs to 3 MEC servers is contained

in in the Appendix, Table A.2. The parameters chosen for numerical simulation are shown in

Table 4.5. Of the 1024 distinct scheduling options, a unique least-time option (no 124) was

identified by both direct calculation and by application of the CPLEX program.

Figure 4.4 shows the CDF plot for the results. The least-time option was relatively isolated

with only 0.4% of the other schedule options within 10% of the optimum time, 4.3% within 25%

and 12.1% within 50%; these percentages are markedly smaller than found with the 81-option

analysis (Table 4.6).

The optimum schedule time was 17.4% of the time required for the MD to process all 5 jobs

but only 4 jobs were offloaded (Job 1 with a 2 MB file size was processed locally). The shortest

schedule with all 5 jobs offloaded had a 16.7% longer time then the optimum.

As observed with the 81-option analysis, increasing the total job size (up 10-fold larger total

MB) had no effect on the choice of optimum-time schedule option but increasing the link speeds

by 100% resulted in two schedule options (no. 844 with Job 3 processed locally and no. 892

with all 5 jobs offloaded) sharing the optimum time.

As the MEC server CPU workload increased, the same optimum schedule was maintained

until the workload reached 70% when a major shift occurred and the new optimum schedule

only offloaded 2 of the 5 jobs (Table 4.6). At very high CPU workloads (97-99%), the optimum

schedule changed again but still showed 2 jobs being offloaded.
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4.4 The Heuristic Approach and the Problem of Scalability

Using the formula for the number of scheduling options given in Section 4.3.1 as (1+ n)m,

the number of distinct schedules for a single MD offloading m jobs to n MEC servers rapidly

increases; for example if m = 10 and n = 4, the number of distinct schedules becomes (9.8×106).

With massive numbers of possible schedules possible for relatively small numbers of users

attempting to offload multiple jobs to a MEC network, the need arises for a generic and

fast solution to achieving non-optimal but close-to-optimum scheduling solutions. Heuristic

approaches provide such solutions and will form the topic explored in the remainder of this

Chapter. A relevant example of this approach is that of [27] which analyzed the matching if

user demand to MEC infrastructure in a large-scale simulations that covered an entire city

(Milan, Italy) or a region (Trentino, Italy) using a publicly accessible telecommunications data

set; “demand” was not precisely defined in [27] but the text did not specify “offloading” in the

activities.

4.4.1 Methodology

To validate and to provide a comparison benchmark for results generated by the heuristic

algorithms, linear programming optimization was performed using CPLEX. Using this mathe-

matical model, we compute the optimum job allocation. Sub-optimal job allocations generated

by the heuristic algorithms are then compared to this theoretical optimal allocation to assess the

performance of the heuristic under different combinations of MDs and MEC servers. A heuristic

algorithm can be modified to include user-selected features, for example, to introduce run-time

constraints or fine-tune initial solutions by considering additional parameters [26]. Different

algorithms were, therefore, developed to analyze how selected features affected the achieving

of near-optimal solutions.

4.5 Heuristic Algorithms for Computation Offloading

This section presents a heuristic algorithm that is aimed at finding a near-optimal scheduling

solution for a given number of job from MDs to a given set of MECs. The scheduling algorithm

then proposes a solution for solving these jobs while minimizing the overall computational time.

Fig. 4.5 presents a flowchart of the proposed heuristic method. J represents the set of all

jobs. The two key decision-making steps in the algorithm:

• For each job, whether to offload to a MEC or compute locally on the MD?

• If the decision from the above step is to offload, to which MEC that job is offloaded.

A total of nine policies (3 options each of the above two decision questions) are tested.

These versions differed for the allocation of an offloading probability for an individual job on
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Table 4.7: Notations used in the section.

Symbol Definition

Lc Loading on MEC c in bits
P i

j Probability of job j on MD i

ODD Offloading decision based on data size
ODFP Offloading decision based on fixed probability
ODPD Offloading decision based on probability distribution
MR Random allocation of MECs
MJ MECs allocation based on job size
MT MECs allocation based on computational time

j = 1

j ≤ | J |

Offload job j
Mark for local
computation

Determine the
MEC to offload

j=j+1

Start local
computations

Yes

No

NoYes

Figure 4.5: Flowchart of the heuristic algorithm for computation offloading.
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each MD as shown by (“ j ≤ | J |”) in the flowchart) and the allocation of a MEC server in the

network to process an individual job as (indicated by “Determine the MEC to offload” in the

flowchart). The detail regarding these policies is provided in the following subsections.

4.5.1 The offloading decision

Three different strategies were adopted for allocating the offloading probability of individual

jobs on a MD. Generate a random number between 0 and 1 and if that number is less than P i
J

then offload. If not, execute on the MD.

4.5.1.1 Probability calculations for job offloading based on data file size (“ODD”)

The algorithm follows the formula of job probability. The algorithm uses the following method

to determine the offloading probability of individual jobs:

P i
j =

Ji∑
j∈Ji

(4.16)

where Ji is a job on MD i,
∑

j∈Ji is a total data of all the jobs on MD i. The motivation here

was to bias the algorithm to preferentially offload the larger job sizes, which would be most

advantageous to reduce completion time on the faster server processors.

4.5.1.2 Offloading based on a fixed probability (“ODFP”)

Each job has the same probability of being offloaded regardless of data size; in our experiments,

we used a fixed probability of P i
j = 0.5. The motivation here was to test how giving each job

the same possibility would impact on the total tasks offloaded by the algorithm.

4.5.1.3 Offloading based on a known probability distribution (“ODPD”)

In this policy, the probability of offloading is kept fixed for each job on the individually mobile

device. The probability may be obtained by pre-solving job allocation solution of the local

sub-problem on each mobile device. A further weighting is added that includes the number

of MDs and MECs a system to influence the probability. The main aim of this policy is that a

mobile device may have a preference for offloading a certain number of jobs to the MEC server.

The resulting probability can be derived as follows:

P i
j =

OJ
i

TJ
i

× TMEC

TMDs (4.17)

where OJ
i is the total number of jobs offloaded, TJ

i is the total number of jobs on the MD i,

respectively. TMEC denotes the total number of MECs and TMDs is the total number of MDs.
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In the case when the number of MDs is less than the number of MEC servers, the formula in

Equation (4.17) is simplified as follows:

P i
j =

OJ
i

TJ
i

(4.18)

4.5.2 MEC allocation of offloaded jobs

4.5.2.1 Random allocation of MEC (“MR”)

After a job offload decision is made, the job is allocated to a random MEC server {c = 1, . . . ,n}

in the network without knowledge of how busy the MEC is. All MECs are equally likely to be

selected.

4.5.2.2 Offloading based on the job size (“MJ”)

In this offloading policy, the jobs are assigned to MECs based on their current loading. This

policy ensures that the next offloading job is assigned to the MEC that has the least loading.

Mathematically, the offloading is achieved using the following equation:

MECL,Offload =min{L1,L2, . . . ,Ln} (4.19)

where Lc is the loading on MEC c, and is defined as follows:

Lc =
∑
j∈J

X j,cu j,c

4.5.2.3 Minimum MEC computational time (“MT”)

After a job offload decision is made, the job is allocated to the MEC server, which is calculated to

complete job processing quickest. This policy requires knowledge of a MEC processing capability

to calculate the minimum computational time.

MECT,Offload =min{T1,T2, . . . ,Tn} (4.20)

where Tc is the computational time on MEC c, and is defined as follows:

Tc = XMEC
c × (

1
βcλc

)

76



4.6. NUMERICAL TESTING OF HEURISTIC ALGORITHMS FOR COMPUTATION OFFLOADING

Table 4.8: Parameters Selected for Experimentation (Case 1)

Entity Parameter Value Unit

Jobs Size XMD 2 - 9 MB
MD1 α1 3.60×109 IPS
MEC1 β1 1.40×1011 IPS
MEC2 β2 1.40×1011 IPS
MEC3 β3 3.68×1010 IPS

Network
MD - MEC 1 15 Mbps
MD - MEC 2 28 Mbps
MD - MEC 3 25 Mbps

4.6 Numerical Testing of Heuristic Algorithms for Computation

Offloading

In this section, the performance of the heuristics under systems consisting of various numbers

of MDs, jobs and MECs is investigated. This explored the scalability of the algorithms and how

the performance of methods for assigning the probabilities of offloading individual jobs varied

with increasing job numbers and total data sizes. A value of (2.27×10−3) instructions per bit

again [105] was again chosen for the numerical simulations. Each heuristic algorithm was

allowed 100 iterations to reach a least-time solution for comparison with CPLEX solutions for

the individual cases considered below.

4.6.1 Offloading from a single MD (20 Jobs)

The parameters for this simulation are included in Table 4.8. Fig. 4.6 shows combined results

from 20 jobs on the single MD in the form of a cumulative distribution; the least-time solutions

are normalised, i.e. expressed relative to the optimal solution from CPLEX. The algorithm was

assumed to be run on the MD or (on a one-to-one basis) server-side.

Offloading based on a fixed probability (“ODFP”) and offloading based on probability dis-

tribution (“ODPD”) with three different mechanisms for server allocation (random (“MR”),

job size (“MJ”) or minimum remaining computational time (“MT”) performed far better than

calculating the probability for job offloading based on data file size (“ODD”). The best version of

the algorithm with offloading based on probability distribution with minimum remaining MEC

computation time reached the least-time schedules within 1% of the optimum time as identified

by linear programming. The worst least-time solutions were all reached by offloading based

on data file size (“ODD”), from 153% to 157% longer than the CPLEX optimum time, 10.7 (s)

(Table 4.9).
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Figure 4.6: Cumulative Distribution Function graphs for heuristic algorithm outputs of schedule
times for Case 1 (1 MD, 3 MEC servers, 20 jobs).
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Figure 4.7: Cumulative Distribution Function graphs for heuristic algorithm outputs of schedule
times for Case 2 (4 MDs, 3 MEC servers, 8 jobs).
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Table 4.9: Least-time Schedules Identified by Heuristic Algorithms for 1 MD Offloading up to 20
Jobs to 3 MEC Servers

Algorithm Least-Time Schedule
(s)

Least-Time Schedule
(normalised to CPLEX)

ODPD/MT 10.7 1.00
ODPD/MJ 11.0 1.02
ODFP/MT 11.0 1.03
ODFP/MJ 11.5 1.07
ODPD/MJ 11.7 1.08
ODFP/MR 11.9 1.11
ODD/MR 27.9 2.53
ODD/MJ 27.9 2.54
ODD/MT 28.1 2.57

Table 4.10: Parameters Selected for Experimentation (Case 2)

Entity Parameter Value Unit

Jobs XMD 2 - 9 MB
MDs α1−4 3.60×109 IPS
MEC1 β1 1.40×1011 IPS
MEC2 β2 1.40×1011 IPS
MEC3 β3 3.68×1010 IPS

Network
MDs - MEC 1 15 Mbps
MDs - MEC 2 25 Mbps
MDs - MEC 3 28 Mbps

4.6.2 Offloading from multiple MDs (8 jobs)

The parameters for this simulation are included in Table 4.10 with a small number of jobs

distributed across 4 MDs, offloading based on a fixed probability (“ODFP”), offloading based on

probability distribution (“ODPD”) and offloading based on data file size (“ODD”) could all reach

very similar least-time solutions: 1.17 × CPLEX optimum (“ODPD”) and 1.18 × CPLEX optimum

(“ODFP and ODD”); the worst least-time solution was 33% longer than the CPLEX optimum time,

6.2 s (Table 4.11). The CDF plots (Figure 4.7) showed the superiority of (“ODPD”) combined

with minimum remaining computational time (MT).

4.6.3 Offloading from multiple MDs (72 jobs)

The parameters for this network simulation are included in Table 4.12. In this simulation, 10

MDs attempted to offload a total of 72 jobs to 3 MEC servers. Fig. 4.8 shows that the three

different approaches in the algorithms yielded different best schedule times but that offloading

based on probability distribution (“ODPD”) with minimum remaining MEC computation time
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Table 4.11: Least-time Schedules Identified by Heuristic Algorithms (Case 2) for 4 MDs Offload-
ing up to 8 Jobs to 3 MEC Servers

Algorithm Least-Time Schedule
(s)

Least-Time Schedule
(normalised to CPLEX)

ODPD/MT 7.2 1.17
ODPD/MJ 7.2 1.17
ODFP/MT 7.3 1.18
ODFP/MJ 7.3 1.18
ODD/MJ 7.3 1.18
ODD/MR 7.3 1.18
ODFP/MR 7.4 1.21
ODD/MT 7.8 1.27
ODPD/MR 8.2 1.33

Table 4.12: Parameters Selected for Experimentation (Case 3)

Entity Parameter Value Unit
Jobs Size XMD 1 - 7 MB
MD α 3.60×109 IPS
MEC1 β1 1.40×1011 IPS
MEC2 β2 3.68×1010 IPS
MEC3 β3 1.40×1011 IPS

Network
MDs - MEC 1 15 Mbps
MDs - MEC 2 28 Mbps
MDs - MEC 3 25 Mbps

(“MT”) could reach a schedule time only 13% greater than the optimum value as identified by

linear programming. The variation in performance between the nine versions of the algorithm

was less pronounced than in the scenario of case 1 and all schedules were within 55% longer

times than the optimum as deduced by linear programming.

With the 9-fold larger number of jobs compared to Section 4.6.2, the variation in least-time

schedule solutions found by the different forms of the heuristic algorithm was greater with the

worst least-time solution 54% longer than the CPLEX optimum time, 15.4 s (Table 4.13).

4.6.4 Offloading from multiple MDs (115 Jobs)

The parameters for this larger network simulation are included in Table 4.14. In this simulation,

13 MDs attempted to offload a total of 115 jobs to 3 MEC servers. Fig. 4.9 shows that calculating

the probability for job offloading based on data file size (ODD) was much inferior to offloading

based on a fixed probability (“ODFP”) and offloading based on probability distribution (“ODPD”).

Offloading based on probability distribution (“ODPD”) with minimum remaining MEC computa-

tion time (“MT”) could reach a schedule time within 20% of the optimum value as identified by
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Table 4.13: Least-time Schedules Identified by Heuristic Algorithms for (Case 3) 10 MDs
Offloading up to 72 Jobs to 3 MEC Servers

Algorithm Least-Time Schedule
(s)

Least-Time Schedule
(normalised to CPLEX)

ODPD/MT 17.5 1.13
ODFP/MT 18.6 1.21
ODPD/MR 19.5 1.27
ODD/MR 19.8 1.29
ODFP/MJ 21.0 1.37
ODPD/MJ 22.6 1.47
ODD/MT 22.6 1.47
ODD/MJ 23.6 1.54
ODFP/MR 23.6 1.54
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Figure 4.8: Cumulative Distribution Function graphs for heuristic algorithm outputs of schedule
times for Case 3 (10 MDs, 3 MEC servers, 72 jobs).

linear programming.

With the largest number of jobs considered, the variation in least-time schedule solutions

found by the different forms of the heuristic algorithm was again greater with the worst

least-time solution 160% longer than the CPLEX optimum time, 25.7 s (Table 4.16).
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Table 4.14: Parameters Selected for Experimentation (Case 4)

Entity Parameter Value Unit

Jobs Size XMD 1 - 6 MB
MD αi 3.60×109 IPS
MEC1 β1 1.40×1011 IPS
MEC2 β2 3.68×1010 IPS
MEC3 β3 3.68×1010 IPS

Network
MDs - MEC 1 15 Mbps
MDs - MEC 2 28 Mbps
MDs - MEC 3 25 Mbps
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Figure 4.9: Cumulative Distribution Function graphs for heuristic algorithm outputs of schedule
times for Case 4 (13 MDs, 3 MEC servers, 115 jobs).
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Table 4.15: Least-time Schedules Identified by Heuristic Algorithms Case 4 for 13 MDs Offloading
up to 115 Jobs to 3 MEC Servers

Algorithm Least-Time Schedule
(s)

Least-Time Schedule
(relative to CPLEX)

ODPD/MT 30.3 1.18
ODFP/MR 30.8 1.20
ODD/MR 31.8 1.24
ODD/MT 34.2 1.33
ODPD/MR 38.0 1.48
ODFP/MT 43.7 1.70
ODD/MJ 63.6 2.48
ODPD/MJ 65.7 2.56
ODFP/MJ 66.7 2.60

Table 4.16: Analysis of a highly heterogeneous MEC network. The diversity in processing speeds
of all MDs and MECs were introduced to examine the performance of our heuristic algorithm.

Parameter Time (s)

CPLEX optimum 33.8
ODFP/MT Least-Time Schedule 40.4

SD 0.59
CI 95% 0.12
CI 99% 0.15

Table 4.17: Statistics for scheduling identify by heuristic algorithms for case 4

Heuristic
Algo-
rithms

CPLEX
Optimum
Schedule
Time (s)

Mean
Least
Schedule
Time (s)

95% Con-
fidence In-
terval (s)

99% Con-
fidence In-
terval (s)

Least-
time:
Optimum
Ratio

ODFP /MT 25.20 30.75 ±1.10 ±1.45 1.22
ODRP /MT 25.20 31.33 ±2.50 ±3.25 1.24
ODRP /MR 25.20 34.80 ±0.99 ±1.30 1.38
ODFP /MR 25.20 34.93 ±1.70 ±2.23 1.39
ODRP /MJ 25.20 35.59 ±1.71 ±2.23 1.41
ODRP /MT 25.20 35.64 ±2.30 ±3.03 1.41
ODD /MT 25.20 64.33 ±3.73 ±4.91 2.55
ODD /MJ 25.20 66.38 ±1.77 ±2.33 2.63
ODD /MR 25.20 66.38 ±2.42 ±3.18 2.63
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4.6.5 Analysis of offloading in a highly heterogeneous MEC network

Case 4 (Section 4.6.4) was modified to generate a greater degree of heterogeneity in the

MEC network. The results of this experiment are presented in Table 4.16), and the method of

experiment is described as follow:

• All the 13 MDs had different processor speeds that covered a 25-fold range;

• The MEC servers had processor speeds that covered a 7.6-fold range;

• The link speeds to the servers had a broader (3.5-fold) range of values;

• The maximum job size was increased to 10 MB.

The best-performing heuristic algorithm (ODFP /MT) was used to identify near-optimum

least-schedule times and was, as previously, compared with CPLEX. The results from three

separate runs with the algorithm are contained in Table 4.17.

The heuristic algorithm achieved a least-time schedule within 20% (mean value 19.4%)

of the CPLEX optimum. The CPLEX value was clearly outside the 95% and 99% confidence

intervals calculated from the heuristic algorithm data.

The relative performances of CPLEX and the heuristic algorithm were very similar to results

obtained with a much narrower range of parameter values in Case 4 (Section 4.6.4).

Examination of the outcomes of the CPLEX optimum solution showed that no jobs were

offloaded from the 5 MDs with the fastest on-board processors. This illustrates a potential

practical difficulty with central resource allocation in a MEC network, i.e., that faster-processor

MDs may “subsidise” slower-processor MDs because jobs will be preferentially from slower-

processor MDs who will contain the makespan schedule times. Service Level agreements may

require, therefore, at least one job to be offloaded from all MDs simultaneously requesting

offloading.

4.6.6 Detailed Comparison of Heuristic and CPLEX Outcomes

4.6.6.1 Total jobs and job sizes offloaded

Since optimal-time solutions are associated with parallel processing, offloading all jobs from

a MD incurs a time penalty (as discussed in Sections 4.3.1-4.3.2). The longer schedule times

identified by the best heuristic approach were longer than times identified by CPLEX and,

therefore, an analysis was made of how the two procedures differed in the total numbers of

jobs offloaded and the total data sizes of the associated files (Table 4.16).

Compared with CPLEX optima, the best-performing heuristic algorithm offloaded both

more jobs and a greater total data size. For CPLEX, the mean job size offloaded was 3.59 MB;

for algorithm (“ODPD, MT”), the mean job size offloaded was 2.82 MB. As demonstrated in
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Table 4.18: Comparison between CPLEX and the Best Performing Heuristic Algorithm for Job
Numbers and Total Data Offloaded

MDs MECs MD
jobs

CPLEX
jobs
offloaded

CPLEX
data of-
floaded
(MB)

ODPD/
MT jobs
offloaded

ODPD/
MT jobs
offloaded
(MB)

1 2 20 11 39 15 42

10 3 72 24 74 36 111

13 3 115 29 120 57 147

Sections 4.3.1-4.3.2 and with relatively small numbers of schedule options, offloading all the

jobs from the MD incurred a time penalty, i.e. the schedule times were longer than optima

identified by CPLEX and verified by direct calculation. In the scenarios summarized in Table 4.16,

the heuristic algorithm identified longer least-time schedules than CPLEX but this allowed those

least-time solutions to include more offloaded jobs. Although mean job data sizes decreased

by approximately 21%, the increase in job numbers offloaded more than compensated for this

effect.

4.6.6.2 Statistical analysis of heuristic algorithm performance

Statistical data for the performance of the heuristic algorithms in Case 4 are collected in Table

4.16. Each of the 9 algorithms was run three times, each with 100 iterations. From the results,

means and confidence intervals were calculated.

The outcomes show that even with 99% confidence intervals the differences between

the increased least schedule times and the optimum were all considerably greater than the

confidence intervals, ranging from 1.9-fold for ODRP /MT to 15.7-fold for ODD /MJ . This confirms

that the algorithms can identify reproducible least-time schedules within 100 iterations.

The effect of increasing the number of iterations on the identified least-time schedule was

carried out with the data for the three worst-performing algorithms (a data set which contained

the largest 95% and 99% confidence intervals). Increasing the number of iterations from 30 to

40 clearly reduced the manual time identified but the trend continued (although much more

slowly) at up to 10 iterations. The variability (as indicated by the standard deviations) did not

become smaller as the number of iterations increased, indicating that each iteration was random

event and was no influenced by previous iterations . Incorporation of Artificial Intelligence or

Machine Learning into the algorithm approach could guide the process to more rapidly identify

solutions closer to the optimum.

The effect of increasing the number of iterations on the identified least-time schedule was

carried out with the data for the three worst-performing algorithms (a data set which contained
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the largest 95% and 99% confidence intervals, Table 4.19). Increasing the number of iterations

from 30 to 40 clearly reduced the manual time identified but the trend continued (although

much more slowly) at up to 100 iterations.

The variability (as indicated by the standard deviations) did not become smaller as the

number of iterations increased, indicating that each iteration was random event and was not

influenced by previous iterations.

Incorporation of Artificial Intelligence or Machine Learning into the algorithm approach

could guide the process to more rapidly identify solutions closer to the optimum.

Table 4.19: Effect of increasing the number of algorithm iterations on the numerical value of
the least-schedule time using ODD /MT , ODD /MJ and ODD /MR in Case 4.

Iterations Least-Time
Schedule (s)

Standard Devia-
tion (s)

20 68.89 3.88
30 68.66 3.80
40 66.27 3.96
60 66.04 3.89
80 66.04 3.76
100 65.70 3.76

4.6.6.3 Program run times

As expected, the run time for the CPLEX program increased greatly with increasing number

of schedules options (Table 4.20). In contrast, the run time for the best-performing algorithm

(“ODPD, MT”) were much shorter and the discrepancy between the CPLEX and (“ODPD, MT”),

run times increased greatly with increasing number of schedules options. With the largest

numbers of MDs and jobs, the heuristic algorithm had a run time only 0.2% that of CPLEX

(Table 4.20).

Table 4.20: Comparison between CPLEX and the Best Performing Heuristic Algorithm for Run
Times

MDs MECs MD jobs CPLEX
run time
(s)

ODPD/MT

run time
(s)

ODPD/MT (%) of
CPLEX

1 2 20 1.23 0.16 13.0
10 3 72 3.36 0.26 7.7
13 3 115 342 0.60 0.2
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4.7 Analysis of an Impaired MEC Network

4.7.1 Case 4: 13 MDs, 3 MEC servers, 115 jobs

The analyses presented in Sections 4.4-4.6 assumed a fully functional MEC network with no

problems, i.e., very low server CPU workloads, accessibility to all servers and maximum link

speeds (15-25 Mbps). The best-performing heuristic algorithm, ODFP/MT (Table 4.17), was

subsequently used in three scenarios where Case 4 was modified to impair the functioning of

the network:

1. Only two of the three servers were accessible, indicative of link unreliability

2. The link speeds were reduced by 50%, indicative of network congestion

3. The server CPU workloads were high, indicative of server overload (95% server MEC #1,

97% server MEC #2, and 99% server MEC #3).

The results are collected in Table 4.20. Three separate runs with the algorithm were used to

set a statistical baseline. Compared with the fully functional network:

• Link unreliability increased the identified minimum schedule time and decreased the

total number of jobs offloaded and the total data size of jobs offloaded outside the 99%

confidence interval but the median offloaded job size was unaffected.

• Network congestion increased the identified minimum schedule time and decreased the

total number of jobs offloaded and the total data size of jobs offloaded outside the 99%

confidence interval but the mean offloaded job size was unaffected.

• Server overload increased the identified minimum schedule time and decreased the total

number of jobs offloaded, the total data size of jobs offloaded and the mean offloaded job

size outside the 99% confidence interval.

4.7.2 1 MD, 3 MEC servers, 5 jobs

This much smaller scenario was run (from the MD side assuming an on-board optimisation

program) to investigate simultaneous variation in MD and MEC server workloads and in link

speeds but with all servers accessible:

• MD CPU workload randomly varied in the range 20-80%

• Server CPU workloads randomly varied in the range 80-99%

• Link speeds random varied from 0-100% of the baseline values (15 Mbps for MEC #1, 25

Mbps for MEC #2 and 28 Mbps for MEC #3).
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Table 4.21: The impact of component outages and CPU workload on job offloading and compu-
tational times.

Scenarios Minimum Time Jobs Offloaded Data Offloaded Mean Offload

(s) (MB) (MB)

Full Network 25.7 33 129 3.9

Outage of MEC#1 30.8 29 113 3.9

Outage of MEC#2 31.8 30 105 3.5

Outage of MEC#3 30.8 25 96 3.8

50% link speed: 33.9 23 90 3.9

95-99% CPU workload 50.1 16 40 2.5

The results and their statistical analysis are contained in Tables 4.22 and 4.23.

In the 49 randomly chosen parameters, all five jobs were offloaded in four instances, all

with high MD CPU workloads compared with the baseline (MD CPU 20%). The median number

of jobs offloaded, however, remained unchanged (at 4) despite minimum schedule times being

up to four-times higher than the baseline.

The results demonstrated that parallel processing was an important feature of the offloading

process, i.e., the MD processor was involved in most optimum schedules in parallel with the

network servers. This gives a stability to the offloading process in terms of jobs offloaded despite

serious impairments to the MEC network’s functioning.

4.8 Discussion of Numerical Result Outcomes

This Chapter was concerned with multiple jobs to be offloaded from single or multiple MDs

in heterogeneous MEC networks and addressed Research Questions 7 and 8 (Chapter 1, Sec-

tion 1.3.2).

With a single MD and relatively small numbers of MEC servers and jobs for offloading, the

major conclusion was that the optimum schedule (verified by both linear programming and

manual spreadsheet calculations) used parallel processing with the whole of the processor

capabilities accessed (including the MD). This was an important conclusion because it showed

that, when only total task completion time was the criterion, offloading all jobs from the MD

incurred a time penalty because the processing ability of the MD was ignored.

With increasing MEC server CPU workload, the effect of network congestion became im-

portant for the optimum solution time and for the numbers of jobs offloaded. This reduced

efficiency of offloading was apparent at server CPU workloads as low as 70% and reinforces the
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conclusion as drawn in Chapter 3 that overloading MEC serves with excessive numbers of users

will degrade offloading efficiency and the advantages of offloading.

With increasing numbers of MDs, jobs and MEC servers, the numbers of distinct offloading

schedules rapidly become very large and heuristic approaches offer the only practical means

of rapidly approaching least-time solutions without resorting to proprietary software. The

heuristic framework presented in this Chapter found non-optimal time-based solutions for the

computational offloading of tasks from one or more mobile devices to one or more MEC. In

total, nine approaches were devised, which differed in how the offloading probability for an

individual job was calculated and in which MEC server was then selected for offloading.

Numerical experiments showed that the solution obtained by this heuristic approach was

between 1% and 20% longer than the global optimal solution obtained by linear programming

with CPLEX. It was observed that the best solutions are obtained by using a known probability

distribution for offloading decision (“ODPD”) and choosing a MEC with minimum solution time

(“MT”); this conclusion became better defined with increasing numbers of MDs, MEC servers and

jobs to be offloaded. The reason for this best combination may reside in the second component

(“MT”): because a least-time schedule is being sought by the algorithm, only the (“MT”) option

directly included a minimum time in the assessment. However, different combinations of the

“O” and “M” components could closely approach the (ODPD)/(“MT”) least-time solution and

further work is required to conclusively identify the explanation for the relative performances

of different heuristic algorithms.

More conclusive, however, was the result that the heuristic algorithm approach out-performed

linear optimisation for the numbers of jobs offloaded and the total data offloaded. The explana-

tion for this could have been that, because longer schedule times were selected, this allowed

more jobs to be offloaded, i.e. the conclusion reached from analysis of much smaller numbers

of possible schedules. Alternatively, the mechanisms of the algorithms activity selected larger

numbers of smaller jobs. Users of MDs may prefer larger numbers of jobs to be offloaded by the

MEC service.

The heuristic algorithms developed in this research can be run on individual MDs for

identify least-time schedules if there is a “trust relationship” between the MEC network and

the individual subscriber such that the MD can access the full knowledge required to perform

the calculations (including MEC server link speed and CPU workload). If this access is not

granted – for example, in an ad hoc relationship between the user of a MD and a MEC network

– the decision making must be performed by a server-side program that can access the MD

processor speed, the number of jobs for offloading and their job sizes. When multiple MDs

attempt to offloaded simultaneously, however, a network resource allocator may be invoked to

maximise the efficient (but limited) resources of the network. This latter case involved “time

slicing”: at time zero, a number of MDs attempt to offloaded simultaneously; the allocation

procedure allocates jobs to be offloaded and does not resurvey MDs and jobs until the first batch
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of offloaded jobs are completed – at that time, the allocation process can recommence with a

second batch of MDs. For the network, the priority is to minimise the time any one batch of MDs

requires to process jobs so that the next batch can be accommodated. The network resource

allocator may, furthermore, have a maximum number of jobs and/or users at any one time to

more equably share out offloading time among multiple users (all of whom will, probably, be

accessing the MEC service on a subscription basis).

While it is anticipated that MEC networks will rely on multiple servers and have back-up

processing power available in case of network overloads, providers of MEC services may not

always be able to accurately predict total user demand and the proposed “time slicing” approach

may help to avoid network overload.

In general, users of MDs with faster on-board processors will expect to offload fewer jobs if

total completion time is the sole criterion. However, as link speeds increase with the further

development of 5G networks, the advantages of offloading to users of MDs will significantly

increase because data transfer times in 3G and 4G networks greatly exceed server processing

times.

Impaired MEC networks with problems with link unreliability, network congestion or net-

work server overload will offload fewer jobs from MDs and this will be a major practical

challenge for commercial MEC network service providers. Highly heterogeneous MEC networks

in which MDs have very variable on-board processor speeds can be analysed rapidly by the

heuristic algorithms developed in the work for this Thesis; the use of either optimisation

programs or algorithms for centralised resource management when multiple MDs attempt to

offload simultaneously, however, may experience practical issues because jobs from MDs with

slower on-board processors distort the offloading schedules and extension of critical parameters

to include, for example, energy lifetimes in MDs may be preferable to relying solely on total

processing time minimisation.
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Table 4.22: Effect of random changes in CPU workload and link speed with 5 offloaded jobs

MD
CPU
(%)

MEC1
CPU
(%)

MEC2
CPU
(%)

MEC3
CPU
(%)

MEC1
LS
(Mbps)

MEC2
LS
(Mbps)

MEC3
LS
(Mbps)

ScheduleTime
(s)

Relative Jobs
Of-
floaded

20 80 80 80 15.0 25.0 28.0 168 3.66 1.0 4
59 94 93 82 3.8 7.6 26.4 224 7.04 1.9 4
66 90 80 84 8.8 20.1 27.1 460 4.78 1.3 4
49 86 88 83 2.2 19.0 10.6 799 7.27 2.0 4
72 81 86 84 7.6 10.7 18.0 712 6.72 1.8 4
31 86 94 86 14.4 6.2 1.3 526 7.11 1.9 3
20 91 80 80 6.9 7.9 6.5 765 7.75 2.1 4
55 84 83 89 1.4 16.8 13.8 207 7.64 2.1 3
78 92 94 93 9.9 0.1 12.0 272 9.47 2.6 4
37 81 80 80 3.5 10.3 23.8 144 5.64 1.5 3
66 95 87 87 13.8 7.9 4.4 218 9.04 2.5 3
43 87 84 83 0.3 11.2 16.8 204 6.82 1.9 3
35 80 92 82 7.9 0.6 6.4 14 9.48 2.6 2
47 87 94 87 12.2 9.3 18.8 808 5.81 1.6 4
34 87 86 88 12.3 0.9 17.3 372 6.22 1.7 4
22 87 82 82 15.3 4.6 14.0 528 6.20 1.7 3
73 87 89 93 7.9 3.0 24.8 232 7.60 2.1 4
69 94 92 95 10.8 0.9 8.3 798 9.93 2.7 4
21 91 89 83 9.0 15.3 25.8 404 5.20 1.4 4
51 93 86 91 7.8 17.8 22.1 124 5.67 1.5 4
38 88 87 82 6.4 20.1 9.5 79 6.79 1.9 3
31 94 91 84 8.5 16.5 23.8 80 5.92 1.6 3
33 90 87 85 6.0 11.4 14.8 436 6.13 1.7 4
35 80 94 94 13.4 17.2 3.3 526 6.32 1.7 3
23 90 89 83 11.9 13.3 20.6 168 5.00 1.4 4
22 84 88 87 0.9 12.1 1.2 549 10.53 2.9 3
21 89 81 93 8.5 18.4 23.1 76 4.86 1.3 3
46 93 95 92 1.4 5.1 8.0 528 8.94 2.4 3
31 86 94 94 14.8 16.5 15.5 766 4.91 1.3 5
59 93 95 81 2.6 15.1 23.9 544 7.51 2.1 4
36 80 83 88 10.3 3.9 10.8 994 6.54 1.8 4
30 94 81 82 14.9 8.4 17.4 168 4.90 1.3 4
30 86 92 94 12.1 19.1 7.2 526 5.87 1.6 3
45 89 90 85 3.9 22.2 2.6 799 9.35 2.6 4
47 86 84 80 2.0 2.2 24.9 800 6.63 1.8 4
50 88 88 85 1.1 13.3 9.8 528 8.21 2.2 3
37 83 80 91 10.9 16.6 2.2 380 6.17 1.7 5
50 91 83 84 8.6 24.7 17.0 124 5.13 1.4 4
26 91 91 85 23.4 0.2 0.7 65 16.65 4.5 1
29 83 90 88 2.3 20.8 15.5 528 5.78 1.6 3
71 85 87 89 6.6 23.6 9.1 111 7.62 2.1 4
60 84 94 84 5.2 3.0 3.4 526 12.13 3.3 3
46 81 85 85 9.7 22.8 10.5 79 5.93 1.6 3
60 85 90 91 8.0 19.3 11.7 92 6.59 1.8 4
21 82 87 89 5.7 12.2 10.9 765 6.50 1.8 4
64 92 82 80 14.8 8.9 8.5 766 6.07 1.7 5
47 85 83 85 7.3 17.7 25.5 220 5.09 1.4 4
47 81 95 87 7.8 18.5 7.2 143 8.24 2.3 3
71 85 94 92 12.5 22.2 7.3 158 7.73 2.1 4
46 95 93 95 13.7 8.2 24.3 568 6.07 1.7 4
74 86 83 82 4.3 2.7 1.8 526 15.79 4.3 3
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Table 4.23: Statistical analysis of random changes in CPU workload and link speed with 5
offloaded jobs

MD
CPU
(%)

MEC1
CPU
(%)

MEC2
CPU
(%)

MEC3
CPU
(%)

MEC1
LS
(Mbps)

MEC2
LS
(Mbps)

MEC3
LS
(Mbps)

Optimum
Sched-
ule Time
(s)

Relative
Opti-
mum

Jobs
Of-
floaded

Median:56.0 87.0 92.0 90.5 7.6 12.2 14.1 7.3 2.0 4.0
Mean: 49.1 88.4 90.5 90.6 8.2 12.9 13.7 8.0 2.2 3.7
STDEV: 18.76 5.23 5.73 5.64 4.35 7.43 7.24 2.16 0.59 0.68
95%
CI:

5.25 1.46 1.60 1.58 1.22 2.08 2.03 0.60 0.17 0.19

99%
CI:

6.90 1.92 2.11 2.07 1.60 2.73 2.67 0.79 0.22 0.25
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5
MULTI-OBJECTIVE OPTIMISATION FRAMEWORK FOR COMPUTATIONAL

OFFLOADING

5.1 Introduction

In Chapter 3, the analysis of computation offloading was focused on identifying the operating

conditions and parameters that gave advantages in task completion time for individual jobs on a

MD and that minimized local energy usage on the MD. In Chapter 4, the analysis was extended

to find heuristic least-time solutions for offloading multiple jobs from single or multiple MDs.

Several studies have claimed major savings in both task completion time and energy usage

by the MD offloading to both MCC and MEC environments [115, 157, 96, 162, 61, 143]. In

such studies, task completion time and local energy use were treated as independent variables

in the context of finding either the shortest total computation times or minimal energy usage by

the MD. In this context, an ambitious and a challenging question is: can time and energy savings

be simultaneously maximized in a MEC network? A conclusion from the work presented in

Chapter 4 was that least-time schedules for offloading multiple jobs preferentially uses parallel

processing with both MD and MEC server processors rather than offloading all jobs, especially

when link speeds are not sufficiently high; this implies a trade-off between achieving minimum

task completion time and minimizing local energy usage by the MD is unavoidable. This has

been described as the “divergent goals” problem [149].

Forming a link between time and energy parameters is straightforward if two weighting

factors are used, the sum of the weighting factors being fixed. This is explained in more detail

in Section 5.2.1. Multi-objective analysis of the offloading process simultaneously incorporated

energy consumption, execution delay and the price cost of offloading in what was (in 2017)

known as Mobile Edge Computing [100]. In this study, execution delay was a consequence of a
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queuing process for multiple MDs and local energy consumption decreases as the probability

of a job being offloaded increased. The authors of [100] aimed to find a global optimum that

minimized an objective function that integrated all three parameters, each multiplied by an

appropriate weighting factor. Only one set of weighting factors was used in numerical analyses

in [100] and the sole evidence for such a global optimization was a minimization with respect

to transmission power (expressed, presumably as relative values) of the MD; however, no

explanation was given as to what factors influenced the transmission power of the MD or if this

was in any way modifiable by the user of the MD.

Key Research Question: Can time, energy and other factors be combined to identify a

multi-factorial optimal solution for offloading multiple jobs from a single MD or from multiple

MDs in a heterogeneous MEC network? This question combines Research Questions 9 and 10

(Chapter 1, Section 1.3.2)

The main contributions made by work presented in this Chapter:

• Heuristic algorithms were developed to incorporate time and local energy use using

weighting factors to achieve sub-optimal solutions close to optimal solutions provided by

linear optimization using CPLEX.

• Investigation of varying weighting factors for time and energy showed that time and local

energy savings could be selected by the MD user but that no global optimum solution

could be identified, i.e. only trade-offs between the two factors were possible.

• Mathematical approaches were developed to incorporate time, energy and economic

(price) cost factors into a tri-factorial analysis and preliminary studies were performed to

identify successful combinatorial methodologies.

A part of the research findings presented in this chapter are published to the 20th IEEE

International Conference on Scalable Computing and Communications: R. Singh, S. Armour, A.

Khan, M. Sooriyabandara and G. Oikonomou, “Towards Multi- Criteria Heuristic Optimization

for Computational Offloading in Multi-Access Edge Computing”.

The remainder of this Chapter will, firstly, use the mathematical models presented in

Sections 3.5.2-3.5.4 and Section 4.2 to combine calculations of time and energy for the 81-

schedule and 1024-schedule scenarios discussed in Chapter 4 and to use these computations to

validate a program designed in CPLEX for linear optimization; secondly, heuristic approaches

are then presented to find comparable solutions to the use of CPLEX with larger numbers of

jobs offloaded from multiple MDs in heterogeneous MEC networks; thirdly, this approach is

expanded to incorporate cost in a subscription MEC system to explore achievable optimisation

strategies.
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5.2 Basic System Model

The mathematical models presented in Sections 3.5.2-3.5.4 and in Section 4.2 and were

used to perform calculations of total task completion time and local (MD) energy use for the

multiple-schedule scenarios Appendix Tables A.1-A.2.

5.2.1 Overall Problem Formulation

The overall objective of our problem is to minimise the computational time and energy con-

sumption across all the jobs on the given mobile devices.

5.2.2 Computational Time

The overall computational time of processing the jobs is given as follows:

TTotal =max


max{Ti : i ∈ M}︸ ︷︷ ︸

Local Time

,max{Tc : c ∈ C}+ ∑
(i,c, j)

(2−Π)Ti,c, j︸ ︷︷ ︸
MEC Processing Time


(5.1)

where Ti is the total jobs processing time on a MD i. There are three components in the equation.

The first component is the local computation time of the jobs. The second component is the

computation time of MEC servers and the third component is the transmission and reception

time.

5.2.3 Computational Energy

The overall computational energy consumption of all mobile devices to process all the jobs is

given as follows:

ETotal = ∑
i∈M

PMD
i Ti︸ ︷︷ ︸

Mobile energy consumption

+ ∑
i∈M

P idle
i max{0,max{Tc; c ∈ C}}︸ ︷︷ ︸
Idling energy consumption

+ ∑
(i,c, j)

(2−π)Ti,c, jP
Send,Rec
i︸ ︷︷ ︸

Transmission and receiving energy consumption

(5.2)

There are three components in Equation 5.2. The first component defines the energy

consumption while the jobs are being processed on MEC servers and the MDs are in idle state.

The second component defines the energy consumption due to transmission and receiving of

data. We ignore the computational energy consumption of MEC servers. The third component is

the energy consumption on the mobile side.
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5.2.4 Multi-objective optimization formulation

The weighted multi-objective function is given as follows:

min (wt × TTotal

Tmax
+we × ETotal

Emax
) (5.3)

where wt and we are the weightings on computational time and computational energy consump-

tion, respectively; additionally, wt+ we = 1. Further, Tmax and Emax are the expected worse case

computational times and energy, respectively. The worst case options can be determined by

solving all the jobs locally (for time) and (for energy) either when tasks are performed locally or

when using the slowest MEC link and/or processor speeds, depending on the numerical values

selected. We assume that the weighting factor can be adjusted according to MD users’ needs or

by the MEC service provider at the local cell station when a “cluster” of MD users attempt to

connect simultaneously.

To correct for large numerical discrepancies in the ranges of absolute values taken by the

different variables, a Bias Correction Coefficient (BCC) η= Emax
Tmax

was introduced in the objective

function as follows:

min (wt × ηTTotal

Tmax
+we × ETotal

ηEmax
) (5.4)

5.3 Numerical Results

The performance of the mathematical model presented in Section 5.2 is tested on two small-

scale networks. In order to evaluate the performance of heuristic algorithm, exhaustive search

for all possible solutions were conducted for these two networks. The performance of the

proposed model on the two chosen networks is described in detail in the following subsections.

5.3.1 A MD with 4 jobs offloading on 2 MEC servers

This is the same example that was used in the previous chapter. The parameters used in this

example are provided in Table 4.1.

We have tested the following three options for the objective function:

• un-normalised time and energy components in the objective function i.e. removing Tmax

and Emax from Equation (5.3)

• normalising time and energy components in the objective function with the worst case

solution i.e. Equation (5.3)

• BCC-normalised time and energy components: the objective function is defined by Equa-

tion (5.3)
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Table 5.1: Optimal schedules based on minimal Weighted Scores for 1 MD offloading up to 4
jobs to 2 MEC servers (un-normalised times and energies)

Time
Weighting
Factor

Energy
Weighting
Factor

Schedule
option

Time Energy Weighted
Score

Jobs
Offloaded

0 1 3 5.70 6.41 6.41 4
0.1 0.9 3 5.70 6.41 6.34 4
0.2 0.8 3 5.70 6.41 6.27 4
0.3 0.7 3 5.70 6.41 6.20 4
0.4 0.6 19,41 3.99 7.26 5.95 3,2
0.5 0.5 6 2.85 8.13 5.49 3
0.6 0.4 6 2.85 8.13 4.96 3
0.7 0.3 6 2.85 8.13 4.43 3
0.8 0.2 6 2.85 8.13 3.91 3
0.9 0.1 6 2.85 8.13 3.38 3
1 0 6 2.85 8.13 2.85 3

Table 5.2: Optimal schedules based on minimal Weighted Scores for 1 MD offloading up to 4
jobs to 2 MEC servers (normalised times and energies)

Time
Weighting
Factor

Energy
Weighting
Factor

Schedule
option

Normalised
Time

Normalised
Energy

Weighted
Score

Jobs
Offloaded

0 1 3 0.56 0.63 0.63 4
0.1 0.9 3 0.56 0.63 0.62 4
0.2 0.8 3 0.56 0.63 0.61 4
0.3 0.7 3 0.56 0.63 0.61 4
0.4 0.6 19,41 0.39 0.71 0.58 3,2
0.5 0.5 6 0.28 0.79 0.54 3
0.6 0.4 6 0.28 0.79 0.48 3
0.7 0.3 6 0.28 0.79 0.43 3
0.8 0.2 6 0.28 0.79 0.38 3
0.9 0.1 6 0.28 0.79 0.33 3
1 0 6 0.28 0.79 0.28 3

The aforementioned three objective function choices were investigated. The results are

presented in Tables 5.1-5.3. The three sets of data show identical trends in Weighted Score with

a decrease as the weighting factor for time increased (and the weighting factor for MD energy

decreased).

As the weighting factor for time increased, the optimum time decreased proportionally more

rapidly than the local energy term increased. At the least value for weighting factor for time,

one extra job was offloaded but this impacted on the local energy less than the advantage of
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Table 5.3: Optimal schedules based on minimal Weighted Scores for 1 MD offloading up to 4
jobs to 2 MEC servers (normalised times and energies) with BCC

Time
Weighting
Factor

Energy
Weighting
Factor

Schedule
option

Normalised
Time

Normalised
Energy

Weighted
Score

Jobs
Offloaded

0 1 3 0.56 0.63 0.63 4
0.1 0.9 3 0.56 0.63 0.62 4
0.2 0.8 3 0.56 0.63 0.61 4
0.3 0.7 3 0.56 0.63 0.61 4
0.4 0.6 19,41 0.39 0.71 0.58 3,2
0.5 0.5 6 0.28 0.79 0.54 3
0.6 0.4 6 0.28 0.79 0.49 3
0.7 0.3 6 0.28 0.79 0.43 3
0.8 0.2 6 0.28 0.79 0.38 3
0.9 0.1 6 0.28 0.79 0.33 3
1 0 6 0.28 0.79 0.28 3

using parallel processing with all three processors in the network when a high weighting factor

for time was applied.

The transition from schedule 3 to schedule 6 occurred when weighting factor for time

reached 0.4 when two schedules gave the same Weighted Score values (to 10 decimal places)

even though different numbers of jobs were offloaded. Use of CPLEX validated these solutions.

With the small number of schedules involved and the overlapping numerical ranges for time

and energy, unnormalised, normalised and normalised with BCC all gave the same schedule

options and overall trends in Weighted Scores as weighting factors changed.

5.3.2 A MD with 5 jobs offloading on 3 MEC servers

This is the same example that was used in the previous chapter and the parameters used in this

example are provided in Table 4.5.

Similarly, in this example the three options for the objective function choice were used. The

results are presented in Tables 5.4-5.6. The three sets of data show similar trends in Weighted

Score with a decrease as the weighting factor for time increased (and the weighting factor for

MD energy decreased).

As the weighting factor for time increased, the optimum time decreased proportionally more

rapidly than the local energy term increased. At the least value for weighting factor for time,

one extra job was offloaded but this impacted on the local energy less than the advantage of

using parallel processing with all four processors in the network when a high time weighting

factor was applied. The transition from schedule 1024 occurred when the weighting factor for

time reached 0.2 when three schedules gave the same Weighted Score values (to 10 decimal
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Table 5.4: Optimal schedules based on minimal Weighted Scores for 1 MD offloading up to 5
jobs to 3 MEC servers (un-normalised times and energies)

Time
Weighting
Factor

Energy
Weighting
Factor

Schedule
option

Normalised
Time

Normalised
Energy

Weighted
Score

Jobs
Offloaded

0.1 0.9 1024 6.69 8.30 8.21 5
0.2 0.8 688,764,10074.01 8.82 7.86 5, 5, 5
0.3 0.7 688,764,10074.01 8.82 7.38 5, 5, 5
0.4 0.6 688,764,10074.01 8.82 6.90 5, 5, 5
0.5 0.5 716 3.57 9.19 6.38 4
0.6 0.4 207,812,831 3.12 9.85 5.81 3, 4, 4
0.7 0.3 124 2.67 10.81 5.11 4
0.8 0.2 124 2.67 10.81 4.30 4
0.9 0.1 124 2.67 10.81 3.49 4
1.0 0.0 124 2.67 10.81 2.67 4

Table 5.5: Optimal schedules based on minimal Weighted Scores for 1 MD offloading up to 5
jobs to 3 MEC servers (normalised times and energies)

Time
Weighting
Factor

Energy
Weighting
Factor

Schedule
option

Normalised
Time

Normalised
Energy

Weighted
Score

Jobs
Offloaded

0.1 0.9 1024 0.43 0.48 0.48 5
0.2 0.8 688, 764,

1007
0.26 0.51 0.46 5, 5, 5

0.3 0.7 688, 764,
1007

0.26 0.51 0.44 5, 5, 5

0.4 0.6 688, 764,
1007

0.26 0.51 0.41 5, 5, 5

0.5 0.5 716 0.23 0.53 0.38 4
0.6 0.4 207, 812,

831
0.20 0.57 0.35 3, 4, 4

0.7 0.3 124 0.17 0.63 0.31 4
0.8 0.2 124 0.17 0.63 0.26 4
0.9 0.1 124 0.17 0.63 0.22 4
1.0 0.0 124 0.17 0.63 0.17 4

places).

A second transition occurred when the weighting factor for time reached 0.5 to a single

optimum schedule; this change occurred earlier, however, when the BCC was applied, at a

weighting factor for time of 0.4.

Use of CPLEX validated these solutions. In both cases with relatively small numbers of

schedule options, the choice of weighting factors was crucial. As the weighting factor for time
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Table 5.6: Optimal schedules based on minimal Weighted Scores for 1 MD offloading up to 5
jobs to 3 MEC servers (normalised times and energies) with BCC

Time
Weighting
Factor

Energy
Weighting
Factor

Schedule
option

Time Energy Weighted
Score

Jobs
Offloaded

0.1 0.9 1024 6.69 8.30 0.44 5
0.2 0.8 688,764,10074.01 8.82 0.42 5, 5, 5
0.3 0.7 688,764,10074.01 8.82 0.41 5, 5, 5
0.4 0.6 716 3.57 9.19 0.39 4
0.5 0.5 716 3.57 9.19 0.37 4
0.6 0.4 207,812,831 3.12 9.85 0.34 3, 4, 4
0.7 0.3 124 2.67 10.81 0.30 4
0.8 0.2 124 2.67 10.81 0.27 4
0.9 0.1 124 2.67 10.81 0.23 4
1.0 0.0 124 2.67 10.81 0.19 4

was increased, the Weighted Score continuously decreased but no maximum or minimum was

apparent. The effect on the Weighted Score was mediated by a greater proportional change

in schedule time than local energy and applying data normalisation or the BCC factor did not

change this.

With the proposed definition of the objective function, the user of a MD can choose a

weighting for energy and time components according to their preference. From the results,

a clear trade-off is apparent between energy consumption and computational time as the

weightings change.

5.4 Development of Heuristic Algorithms

As the numbers of jobs to be offloaded increase, the numbers of possible schedules rise rapidly,

as discussed in Chapter 4. Heuristic algorithms were developed to incorporate time and energy

factors.

The two most successful heuristic algorithms presented in [144] and Chapter 4 were

extended here to include both time and MD energy factors. The generic heuristic algorithm

has two stages of decision making: (a) whether to offload a job or not, (b) if a job is offloaded,

which MEC to offload it to. The first decision of whether to offload or not is governed by

probabilities and we have consider two options for these probabilities: offloading based on

a single fixed probability (“ODFP”) and offloading based on a known probability distribution

(“ODPD”). These steps were each combined with three policies for offloading to specific MEC

servers; two polices were described in [144]: offloading based on offloading based the job

size (“MJ”) and offloading based on the minimum remaining MEC computational time (“MT”).

Further, a new MEC offloading option is constructed on the fastest link MEC connection (“MW”).
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j = 1

j ≤ | J |

Offload job j
Mark for local
computation

Determine the
MEC to offload

j=j+1

Start local
computations

Yes

No

NoYes

Figure 5.1: Flowchart of the heuristic algorithm for computation offloading.

The motivation is to offload a job from an individual MD to the MEC with the most agile

bandwidth connection to reduce the minimum score. As was demonstrated in Chapter 3, the

faster the link speed between an MD and a MEC server, the shorter is the time required for data

transmission and reception and the less MD energy is expended in sending and receiving data.

Figure 5.1 is identical to Fig 4.5 presented in Chapter 4 and is included in this chapter again

for convenience.

In addition to the two approaches described above and, an additional heuristic offloading

approach, “(OGS)”, is defined as follows.

1. A solution is obtained by one of the two heuristic approaches and scores for all the jobs

are calculated

2. Allocation of the n f ix jobs with minimum scores is fixed and step 1 is repeated.

3. Step (1) and (2) are repeated until all the jobs have been allocated.
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Table 5.7: Parameters used for numerical simulations in Cases 1,2 & 3

Entity Parameter Value Unit

Jobs Size XMD 2-9 (1), 1-7 (2), 1-6 (3) MB

MDs αi 3.60×109 IPS

MEC1 β1 1.40×1011 IPS

MEC2 β2 1.40×1011 (1), IPS

3.68×1010 (2 & 3)

MEC3 β3 1.40×1011 (2) IPS

3.68×1010 (1 & 3)

Network MDs - MECs 15-28 Mbps
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Figure 5.2: Performance of the proposed heuristic approaches in MEC network with 1MD and
20 Jobs. The solution for each heuristic approach was the best solution from 100 runs.

Each job’s score is calculated based on its time and energy and divided by the local worst

time and energy. This strategy is a guided search, as the score reflects the computational load of

mobile devices and MEC servers.

5.4.1 Numerical Results

The numerical values for the parameters used in simulations are presented in Table 5.7 using

processor speeds and power ratings from [105] and [90]. Three cases were considered: one

with jobs offloaded from a single MD and two cases where multiple MDs attempted to offload;

all three cases were in heterogeneous MEC networks.
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Figure 5.3: Cumulative Distribution Function graphs for heuristic algorithm outputs of schedule
times and energy for Case 1 with wt : 0.1 we : 0.9 (1 MD, 2 MEC servers, 20 jobs).

5.4.2 Case 1: Offloading from a single MD

In this scenario, heuristic algorithms were assumed to run on a single MD that has 20 jobs and is

connected to 2 MEC servers. Figure 5.2 presents the minimum Weighted Score as a function of

the weighting factor for time. Because the weighting factors for time and local energy are linked,

i.e. their sum is equal to 1, as the weighting factor for the time was increased, the weighting

factor for local energy. Figure 5.2 presents the optimal solution from Linear Programming and

three heuristic approaches. As the time weighting was increased, all three heuristic approaches

were able to closely approximate the optimal solution within 100 runs.

Cumulative Distribution Frequency plots with a low weighting factor for time (0.1) are

shown in Figure 5.3. The closest approximation to the optimal value (2% greater Weighted

Score) was achieved by the (“OGS, MW”) algorithm. The (“ODRP, MW”) algorithm was 7% greater

than the optimal least Weighted Score. The (“ODFP, MW”) algorithm gave a poor match to the

optimal solution and is not included in Figure 5.3.

Cumulative Distribution Frequency plots with equal weighting factors for time and local

energy are shown in Figure 5.4. Six algorithms gave close approximations to the optimal value

(up to 4 % greater Weighted Score). The (“OGS, MW”) and (“ODRP, MW”) algorithms were only

1% greater than the optimal least Weighted Score. The (“ODFP, MW”)algorithm again gave a
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Figure 5.4: Cumulative Distribution Function graphs for heuristic algorithm outputs of schedule
times and energy for Case 1 with wt : 0.5 we : 0.5 (1 MD, 2 MEC servers, 20 jobs).

poor match to the optimal solution and is not included in Figure 5.5.

Cumulative Distribution Frequency plots with a high weighting factor for time (0.9) are

shown in Figure 5.5. Four algorithms gave close approximations to the optimal value (up to 4%

greater Weighted Score). The (“OGS, MT”) and (“ODRP, MT”) algorithms equalled the optimal

least Weighted Score within 100 runs. The (“ODFP, MW”) algorithm again gave a poor match to

the optimal solution and is not included in Figure 5.5.

5.4.3 Case 2: Offloading from 10 MDs

In this scenario, heuristic algorithms were assumed to run on a centralized resource-allocator

with a client cluster of MDs attempting to offload a maximum of 72 jobs. The minimum weighted

score, normalised and using the BCC, computed by linear programming with CPLEX, again

decreased continuously as the weighting factor for time increased (Figure 5.6).

Cumulative Distribution Frequency plots with a low weighting factor for time (0.1) are

shown in Figure 5.7. The closest approximation to the optimal value (11% greater Weighted

Score) was achieved by the (“OGS, MW”)algorithm. Seven algorithms were within 17% higher

than the optimal least Weighted Score.

Cumulative Distribution Frequency plots with equal weighting factors for time and local
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Figure 5.5: Cumulative Distribution Function graphs for heuristic algorithm outputs of schedule
times and energy for Case 1 with wt : 0.9 we : 0.1 (1 MD, 2 MEC servers, 20 jobs).
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Figure 5.6: Performance of the proposed heuristic approaches in MEC network with 10MD and
72 Jobs. The solution for each heuristic approach was the best solution from 100 runs.
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Figure 5.7: Cumulative Distribution Function graphs for heuristic algorithm outputs of schedule
times and energy for Case 2 with wt : 0.1 we : 0.9 (10 MDs, 3 MEC servers, 72 jobs).

energy are shown in Figure 5.8. Five algorithms gave close approximations to the optimal value

(up to 8% greater Weighted Score). The (“ODRP, MW”) algorithm was only 4% greater than the

optimal least Weighted Score.

Cumulative Distribution Frequency plots with a high weighting factor for time (0.9) are

shown in Figure 5.9. The algorithms could not give very close approximations to the optimal

value but the (“ODRP, MT”) algorithm was 22% higher the optimal least Weighted Score within

100 runs. Averaging least Weighted Scores over all 9 algorithms, the OGS group were the best,

followed by (“ODRP and then ODFP)”.

5.4.4 Case 3: Offloading from 13 MDs

In this scenario, heuristic algorithms were assumed to run on a centralized resource-allocator

with a client cluster of MDs that have 115 jobs for processing. The minimum weighted score,

normalised and using the BCC, computed by linear programming with CPLEX, again decreased

continuously as the weighting factor for time increased (Figure 5.10).

At the lowest weighting factor for time, the closest match to the minimum weighted score

was that generated by (“OGS, MW”) (+7%). At the highest weighting factor for time, the

algorithms could not so closely approach the minimum weighted score; the closest match was

106



5.5. DISCUSSION OF RESULTS WITH HEURISTIC ALGORITHMS

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1
0

0.5

1

Normalised Weighted Score (relative to optimum)

Pr
ob

ab
ili

ty

ODFP MJ

ODFP MT

ODFP MW

ODRP MJ

ODRP MT

ODRP MW

OGS MJ

OGS MT

OGS MW

Figure 5.8: Cumulative Distribution Function graphs for heuristic algorithm outputs of schedule
times and energy for Case 2 with wt : 0.5 we : 0.5 (10 MDs, 3 MEC servers, 72 jobs).

that generated by (“ODFP, MW”) (+26%).

Cumulative Distribution Frequency plots with a low weighting factor for time (0.1) are

shown in Figure 5.11. The closest approximation to the optimal value (7% greater Weighted

Score) was achieved by the (“OGS, MW”) algorithm. The (“ODRP, MW”) algorithm was 10%

higher than the optimal least Weighted Score.

Cumulative Distribution Frequency plots with equal weighting factors for time and local

energy are shown in Figure 5.12. All 3 algorithms based on (“OGS”) gave close approximations

to the optimal value (1-2% greater Weighted Score).

Cumulative Distribution Frequency plots with a high weighting factor for time (0.9) are

shown in Figure 5.13. The algorithms could not give very close approximations to the optimal

value but the (“OGS, MJ”) algorithm was 26% higher the optimal least Weighted Score within

100 runs. The next best algorithm was (“OGS, MT”) (+29%).

5.5 Discussion of Results with Heuristic Algorithms

In general, the new algorithm (“OGS”) performed better than algorithms with job probabilities

in achieving offloading algorithms in achieving least values for Weighted Scores which were

closest to the optimal values identified by CPLEX.
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Figure 5.9: Cumulative Distribution Function graphs for heuristic algorithm outputs of schedule
times and energy for Case 2 with wt : 0.9 we : 0.1 (10 MDs, 3 MEC servers, 72 jobs).
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Figure 5.10: Performance of the proposed heuristic approaches in MEC network with 13 MDs
and 20 Jobs. The solution for each heuristic approach was the best solution from 100 runs.)
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Figure 5.11: Cumulative Distribution Function graphs for heuristic algorithm outputs of schedule
times and energy for Case 3 with wt : 0.1 we : 0.9 (13 MDs, 3 MEC servers, 115 jobs).

The probable explanation for this difference in relative performance was that the guided-

search algorithms were focused on identifying minimum Weighted Scores for each iteration

with jobs yet to be allocated to MEC servers.

Changing the weighting factors, however, greatly affected the results because the time and

energy factors were linked, especially if the connection speed to a MEC server was the important

criterion for allocating a job to a MEC server. Connection speeds dominate total task completion

times and, therefore, local energy use if data require longer times to be transmitted and received

at constant power ratings for MDs transmitting and receiving data.

The heuristic approach has been successful with an individual MD and with multiple MDs

but the detailed results in the three cases simulated numerically differed. With a single MD, the

algorithms matched the CPLEX results better at higher weighting factors for time while this

trend was not apparent with multiple MDs. Further numerical simulations with larger numbers

of iterations could demonstrate the consistency of trends with changing weighting factors and

explore how random and statistical effects determine overall outcomes of employing heuristic

algorithms.

In general, low time weighting factors resulted in higher minimum weighted scores; greater

emphasis on energy use encouraged more jobs to be offloading and this caused queuing at MEC

servers which significantly increased task completion times. In contrast, higher emphasis on
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Figure 5.12: Cumulative Distribution Function graphs for heuristic algorithm outputs of schedule
times and energy for Case 3 with wt : 0.5 we : 0.5 (13 MDs, 3 MEC servers, 115 jobs).

time saving resulted in more parallel processing, using the full computational resources of the

MEC network.

For the user of a MD, the choice between time and local energy use will be determined by

the individual circumstances; for example, low battery charge will favour low MD energy use.

Conversely, for a network with multiple devices attempting to connect, time is more favourable

a parameter for centralised resource allocation because this will reduce time occupancy on the

servers.

An important conclusion from the numerical simulations was that the choice of weighting

factors is crucial. Total task completion times and local energy use are both dependent on the

selection of weighting factors but there is no optimal solution which combines both. An arbitrary

choice of weighting factors, for example in [100], does not allow an individual user to tailor

solutions that meet immediate needs (time savings or MD energy savings).

For both an individual user and a network resource allocator, the choice of the best heuristic

algorithm will depend on the parameter of higher value (total task completion time or local

energy use) and from a suite of algorithms can be built into devices to adapt to changing user

demands.

The results demonstrate that the choice of heuristic algorithm depends on the choice of

weightings on energy and time components in the objective function. We have seen that
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Figure 5.13: Cumulative Distribution Function graphs for heuristic algorithm outputs of schedule
times and energy for Case 3 with wt : 0.9 we : 0.1 (13 MDs, 3 MEC servers, 115 jobs).

(“OGS, MT”) performs better when weighting for time is higher and (“OGS, MW”) performs

better otherwise.

5.6 Extending Optimisation to Incorporate Economic Cost Factors

In the MEC networks described in Chapter 3 and 4 and in Sections 5.1-5.5. the implicit

assumption has been made that users subscribe for premium services with Service Level

Agreements (SLA). The cost of offloading can be modelled on a relative basis with different

servers having different costs because of their link speeds and processor speeds, which together

offer users of MDs faster or slower total task completion times and different local energy savings.

As an example of the range of economic costs incurred by users, photography software services

in Cloud Computing differ approximately two-fold between entry and premium offerings 1.

Google’s G Suite Cloud Computing service has a “Business” plan costing twice that of a “Basic”

plan. Subscription-based offloading to a MEC network can, therefore, be anticipated to have

a similar range of price plans 2 For offloading, the size of the job offloaded is likely to be the

1Adobe Creative Cloud:
https://www.adobe.com/uk/creativecloud/plans.html?promoid=NV3KR7S1&mv=other

2Google GSUITE :
https://gsuite.google.com/pricing.html).
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determining factor for a subscriber. The cost of the offloading process can be simply modelled

as a unit price per MB × job size.

Placing the emphasis on cost minimization, i.e. a high weighting factor for cost relative to

time and local energy, poses an immediate problem in that maximum cost reduction implies

restricted or prohibited offloading. Cost has, therefore, an inverse relationship to local energy

savings: whereas a high weighting factor for energy favours the offloading of most or all

jobs from an MD, a high weighting factor for cost inhibits offloading. Task completion time,

as discussed in Chapters 3 and 4, aims at maximising parallel processing using all the CPU

resources available in the multi-server MEC network. A preliminary analysis of the interaction of

the three factors (time, local energy and cost) has been performed using the single MD/multiple

MEC server cases used in Sections 5.3.1-5.3.2.

5.6.1 Generalising model using to multiple components

So far, minimisation of time and energy have been considered. Other components in the

objective function can also be introduced in a similar manner. The following equation is a

generalised formulation of a multi-objective function consisting of N components.

min
N∑

i=1
wiCi (5.5)

where wi is the weighting factor of the function component Ci, respectively. The sum of the

weighting factors is constrained to be 1, i.e.
∑N

i=1 wi = 1.

With cost incorporated into the analysis, the Weighted Sum is the sum of three components:

wt ×T +we ×E+wc ×C (5.6)

where T, E and C represent time, energy and cost terms normalised to the maximum values.

5.6.2 Time-Energy-Cost Performance Analysis of the 81-schedule Scenario: 1
MD Offloading up to 4 Jobs to 2 MEC Servers

Of the two MEC servers included in this network, one has a higher link while the other has a

higher processor speed. Since is link speed the dominant factor in determining task completion

time and local energy use in offloading, the server (MEC 2) with the 25 Mbps link speed is

given a unit cost factor of 1.5 while MEC 1 (15 Mbps) is given the unit cost factor of 1.0. To

offload all 4 jobs (10 MB), the cost to the user is 10 units when offloading to MEC1 and 15

units when offloading to MEC 2.

Using normalised data (parameter/maximum parameter), the effects of introducing costs

and cost weighting factors were investigated by sequentially increasing the cost weighting factor

(with the sum of the three weighting factors = 1). Table 5.8 presents the outcomes using a

cost weighting factor of 0.1 (the value selected in [100]). At time weighting factors of 0.2 and
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0.3, two different schedules had the same Weighted Scores. As the weighting factor for time

increased, the Weighted Score decreased, the local energy increased while the time and cost

decreased. Table 5.9 uses a cost weighting factor of 0.2. The outcomes are very similar to those

in Table 5.6, although the cost values are more erratic. Table 5.10 uses a cost weighting factor of

0.3. With a zero-value weighting factor for time, no jobs were offloaded. As the weighting factor

for time increased, jobs were offloaded (2 or 3 out of 4) and the Weighted Score decreased.

Local energy use showed a weak minimum at weighting factors for time of 0.2 and 0.3.

Table 5.8: Optimal schedules based on minimal Weighted Scores for 1 MD offloading up to 4
jobs to 2 MEC servers (normalised times, energies and costs); wc=0.1.

Time
Weighting
Factor

Energy
Weighting
Factor

Cost
Weighting
Factor

Schedule
option

Time Energy Cost Weighted
Score

Jobs
Offloaded

0 0.9 0.1 3 0.56 0.627 1.00 0.664 4
0.1 0.8 0.1 3 0.56 0.627 1.00 0.657 4
0.2 0.7 0.1 19,41 0.39 0.710 0.70 0.645 3,2
0.3 0.6 0.1 19,41 0.39 0.710 0.70 0.612 3,2
0.4 0.5 0.1 17 0.33 0.747 0.67 0.574 3
0.5 0.4 0.1 6 0.28 0.795 0.70 0.527 3
0.6 0.3 0.1 6 0.28 0.795 0.70 0.475 3
0.7 0.2 0.1 6 0.28 0.795 0.70 0.423 3
0.8 0.1 0.1 6 0.28 0.795 0.70 0.372 3
0.9 0 0.1 6 0.28 0.795 0.70 0.320 3

Table 5.9: Optimal schedules based on minimal Weighted Scores for 1 MD offloading up to 4
jobs to 2 MEC servers (normalised times, energies and costs); wc=0.2.

Time
Weighting
Factor

Energy
Weighting
Factor

Cost
Weighting
Factor

Schedule
option

Time Energy Cost Weighted
Score

Jobs
Offloaded

0 0.8 0.2 3 0.56 0.627 1.00 0.701 4
0.1 0.7 0.2 19,41 0.39 0.710 0.70 0.676 3,2
0.2 0.6 0.2 35,49 0.40 0.737 0.60 0.642 3,2
0.3 0.5 0.2 17,35,49 0.33 0.747 0.67 0.607 3,3,2
0.4 0.4 0.2 14 0.30 0.785 0.63 0.561 3
0.5 0.3 0.2 14 0.30 0.785 0.63 0.512 3
0.6 0.2 0.2 14 0.30 0.785 0.63 0.464 3
0.7 0.1 0.2 13,42 0.30 0.823 0.60 0.412 3,2
0.8 0 0.2 13,42 0.30 0.823 0.60 0.360 3,2

Table 5.11 uses a cost weighting factor of 0.4. No jobs were offloaded until the weighting

factor for time reached 0.3. A poorly defined minimum energy and a poorly defined maximum

for the Weighted Score occurred at a time weighting factor of 0.3. Table 5.12 uses a cost

weighting factor of 0.5. No jobs were offloaded until the weighting factor for time reached 0.4.

Poorly defined maxima for the Weighted Score and local energy occurred at a time weighting

factor of 0.3 and 0.4, respectively. These results show that incorporating cost into the analysis

did not result in a minimal value for Weighted Score. Maximal values for Weighted Score were,
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Table 5.10: Optimal schedules based on minimal Weighted Scores for 1 MD offloading up to 4
jobs to 2 MEC servers (normalised times, energies and costs); wc=0.3.

Time
Weighting
Factor

Energy
Weighting
Factor

Cost
Weighting
Factor

Schedule
option

Time Energy Cost Weighted
Score

Jobs
Offloaded

0 0.7 0.3 1 1.00 0.903 0.00 0.632 0
0.1 0.6 0.3 35 0.40 0.737 0.60 0.629 3
0.2 0.5 0.3 35,49 0.40 0.737 0.60 0.629 3,2
0.3 0.4 0.3 14,49 0.30 0.785 0.63 0.594 3,2
0.4 0.3 0.3 14 0.30 0.785 0.63 0.545 3
0.5 0.2 0.3 13,42 0.30 0.823 0.60 0.495 3,2
0.6 0.1 0.3 13,42 0.30 0.823 0.60 0.442 3,2
0.7 0 0.3 13,42 0.30 0.823 0.60 0.390 3,2

Table 5.11: Optimal schedules based on minimal Weighted Scores for 1 MD offloading up to 4
jobs to 2 MEC servers (normalised times, energies and costs); wc=0.4.

Time
Weighting
Factor

Energy
Weighting
Factor

Cost
Weighting
Factor

Schedule
option

Time Energy Cost Weighted
Score

Jobs
Offloaded

0 0.6 0.4 1 1.00 0.903 0.00 0.542 0
0.1 0.5 0.4 1 1.00 0.903 0.00 0.561 0
0.2 0.4 0.4 1 1.00 0.903 0.00 0.561 0
0.3 0.3 0.4 53 0.70 0.820 0.27 0.563 2
0.4 0.2 0.4 29 0.40 0.926 0.43 0.518 3
0.5 0.1 0.4 29 0.40 0.926 0.43 0.466 3
0.6 0 0.4 29 0.40 0.926 0.43 0.413 3

Table 5.12: Optimal schedules based on minimal Weighted Scores for 1 MD offloading up to 4
jobs to 2 MEC servers (normalised times, energies and costs); wc=0.5.

Time
Weighting
Factor

Energy
Weighting
Factor

Cost
Weighting
Factor

Schedule
option

Time Energy Cost Weighted
Score

Jobs
Offloaded

0 0.5 0.5 1 1.00 0.903 0.00 0.452 0
0.1 0.4 0.5 1 1.00 0.903 0.00 0.471 0
0.2 0.3 0.5 1 1.00 0.903 0.00 0.471 0
0.3 0.2 0.5 1 1.00 0.903 0.00 0.481 0
0.4 0.1 0.5 36 0.50 0.950 0.33 0.462 3
0.5 0 0.5 29,36 0.40 0.926 0.43 0.417 3,3

however, apparent with weighting factors for cost of 0.4 or 0.5. Minimal values for Weighted

Score always occurred at the highest possible values for the time weighting factor. With cost

weighting factors above 0.2, the maximum number of jobs offloaded clearly decreased.
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5.6.3 Time-Energy-Cost Performance Analysis of the 1024-schedule Scenario: 1
MD Offloading up to 5 Jobs to 3 MEC Servers

The corresponding outcomes for 1 MD Offloading up to 5 Jobs to 3 MEC Servers are presented

in Tables 5.13-5.17. At weighting factors for cost of 0.1 and 0.2, Weighted Scores decreased as

time weighting factors increased. At higher cost weighting factors, however, cost and energy

values and jobs offloaded became erratic at low time weighting factors. Poorly defined maxima

for Weighted Scores were identifiable at cost weighting factors of 0.3-0.5.

Table 5.13: Optimal schedules based on minimal Weighted Scores for 1 MD offloading up to 5
jobs to 3 MEC servers (normalised times, energies and costs); wc=0.1.

Time
Weighting
Factor

Energy
Weighting
Factor

Cost
Weighting
Factor

Schedule
option

Time Energy Cost Weighted
Score

Jobs
Offloaded

0.1 0.8 0.1 688,764,10070.43 0.481 1.00 0.528 5
0.2 0.7 0.1 1023 0.29 0.505 0.92 0.503 5
0.3 0.6 0.1 716 0.23 0.533 0.83 0.472 4
0.4 0.5 0.1 207,812,831 0.20 0.571 0.72 0.439 3, 4, 4
0.5 0.4 0.1 207,812,831 0.20 0.571 0.72 0.402 3, 4, 4
0.6 0.3 0.1 124 0.17 0.626 0.70 0.362 4
0.7 0.2 0.1 124 0.17 0.626 0.70 0.317 4
0.8 0.1 0.1 124 0.17 0.627 0.70 0.271 4

Table 5.14: Table 5.13: Optimal schedules based on minimal Weighted Scores for 1 MD offload-
ing up to 5 jobs to 3 MEC servers (normalised times, energies and costs); wc=0.2.

Time
Weighting
Factor

Energy
Weighting
Factor

Cost
Weighting
Factor

Schedule
option

Time Energy Cost Weighted
Score

Jobs
Offloaded

0.1 0.7 0.2 688,764,10070.26 0.510 0.90 0.563 5
0.2 0.6 0.2 1023 0.29 0.505 0.92 0.544 5
0.3 0.5 0.2 207,812,831 0.20 0.568 0.72 0.488 3, 4, 4
0.4 0.4 0.2 207,812,831 0.20 0.568 0.72 0.452 3, 4, 4
0.5 0.3 0.2 207,812,831 0.20 0.568 0.72 0.415 3, 4, 4
0.6 0.2 0.2 124 0.17 0.626 0.70 0.369 4
0.7 0.1 0.2 124 0.17 0.626 0.70 0.324 4
0.8 0 0.2 124 0.17 0.627 0.70 0.279 4

5.7 Conclusions

This Chapter extended the heuristic approaches described for task completion time only in

Chapter 4 to include local (MD) energy savings and a preliminary analysis of the economic cost

of accessing offloading services on a subscription or other basis. This work addressed Research

Questions 9 and 10 (Chapter 1, Section 1.3.2).
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Table 5.15: Optimal schedules based on minimal Weighted Scores for 1 MD offloading up to 5
jobs to 3 MEC servers (normalised times, energies and costs); wc=0.3.

Time
Weighting
Factor

Energy
Weighting
Factor

Cost
Weighting
Factor

Schedule
option

Time Energy Cost Weighted
Score

Jobs
Offloaded

0.1 0.6 0.3 99 0.40 0.686 0.35 0.557 3
0.2 0.5 0.3 1023 0.29 0.505 0.92 0.585 5
0.3 0.4 0.3 207,812,831 0.20 0.568 0.72 0.503 3, 4, 4
0.4 0.3 0.3 79,287 0.20 0.653 0.62 0.461 3, 4
0.5 0.2 0.3 79,287 0.26 0.628 0.62 0.441 3, 4
0.6 0.1 0.3 199,823 0.21 0.681 0.58 0.369 3, 4
0.7 0 0.3 199,823 0.21 0.681 0.58 0.322 3, 4

Table 5.16: Optimal schedules based on minimal Weighted Scores for 1 MD offloading up to 5
jobs to 3 MEC servers (normalised times, energies and costs); wc=0.4.

Time
Weighting
Factor

Energy
Weighting
Factor

Cost
Weighting
Factor

Schedule
option

Time Energy Cost Weighted
Score

Jobs
Offloaded

0.05 0.55 0.4 1 1.00 0.510 0.00 0.331 0
0.1 0.6 0.4 1024 0.43 0.481 1.00 0.732 5
0.2 0.4 0.4 99 0.40 0.686 0.35 0.494 3
0.3 0.3 0.4 99 0.40 0.686 0.35 0.466 3
0.4 0.2 0.4 99 0.20 0.568 0.35 0.335 3
0.5 0.1 0.4 355,522,674 0.27 0.735 0.47 0.393 4, 3, 4
0.55 0.05 0.4 355,522,674 0.27 0.735 0.47 0.370 4, 3, 4
0.6 0 0.4 355,522,674 0.27 0.735 0.47 0.347 4, 3, 4

Table 5.17: Optimal schedules based on minimal Weighted Scores for 1 MD offloading up to 5
jobs to 3 MEC servers (normalised times, energies and costs); wc=0.5.

Time
Weighting
Factor

Energy
Weighting
Factor

Cost
Weighting
Factor

Schedule
option

Time Energy Cost Weighted
Score

Jobs
Offloaded

0.05 0.45 0.5 1 1.00 0.804 0.00 0.412 0
0.1 0.4 0.5 1023 0.29 0.505 0.92 0.689 5
0.2 0.3 0.5 1 1.00 0.804 0.00 0.441 0
0.3 0.2 0.5 99 0.40 0.686 0.35 0.432 3
0.4 0.1 0.5 99 0.40 0.686 0.35 0.404 3
0.45 0.05 0.5 99 0.40 0.686 0.35 0.389 3
0.5 0 0.5 26 0.33 0.774 0.40 0.367 3

The heuristic approach has been successful with an individual MD and with multiple MDs

but the detailed results in the three cases simulated numerically differed. With a single MD, the

algorithms matched the CPLEX results better at higher weighting factors for time while this

trend was not apparent with multiple MDs. Further numerical simulations with larger numbers

of iterations could demonstrate the consistency of trends with changing weighting factors and

explore how random and statistical effects determine overall outcomes of employing heuristic

algorithms.
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In general, low time weighting factors resulted in higher minimum weighted scores; greater

emphasis on energy use encouraged more jobs to be offloading and this caused queuing at MEC

servers which significantly increased task completion times. In contrast, higher emphasis on

time saving resulted in more parallel processing, using the full computational resources of the

MEC network.

For the user of a MD, the choice between time and local energy use will be determined by

the individual circumstances; for example, low battery charge will favour low MD energy use.

Conversely, for a network with multiple devices attempting to connect, time is more favourable

a parameter for centralised resource allocation because this will reduce time occupancy on the

servers.

An important conclusion from the numerical simulations was that the choice of weighting

factors is crucial. Total task completion times and local energy use are both dependent on

the selection of weighting factors but there is no optimal solution which combines both. An

arbitrary choice of weighting factors, for example in [84], does not allow an individual user

to tailor solutions that meet immediate needs (time savings or MD energy savings). For both

an individual user and a network resource allocator, the choice of the best heuristic algorithm

will depend on the parameter of higher value (total task completion time or local energy use)

and from a suite of algorithms can be built into devices to adapt to changing user demands.

Machine Learning can be deployed to use historical data from individual MD users or network

resource allocators to automate decision making to make the offloading process more efficient

and more responsive in the face of rapidly changing user numbers and network overloading.

When the analysis presented in this Chapter was extended to include a preliminary analysis

of the economic cost with three weighting factors included for time, local energy and economic

cost, no minimal Weighting Scores were apparent. Time, energy and cost can, therefore, be

viewed as parameters that cannot be combined into global optima by this approach; instead,

trade-offs were identified which would prove useful for the users of MDs, when task completion

time, local energy usage or cost to the user become important relative to each other and can

awarded variable weighting factors by the user.

For example, low battery charge will probably always emphasise energy and require a high

energy weighting factor and the offloading of all or most jobs; this has an associated economic

cost but may not result in the shortest task completion times. Conversely, when battery charge

is not an issue, an individual user can make a selection between offloading or local processing;

this is a choice based on cost grounds.

A possible implementation for users of MDs is a linked triple sliding scale on screen which

is user-determined and would work within the limitation that the sum of the three weighting

factors must be constant.
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CONCLUSIONS AND IMPLICATIONS FOR FUTURE WORK

6.1 Conclusions

Chapter 1 reviewed the present status of Multi-access Edge Computing (MEC) and noted the

persistent confusion over nomenclature and its growing interactions with 5G technologies. Still

in a pre-deployment state, MEC suffers from major economic and commercial uncertainties. As

the authors of the reference most cited in Chapter 1 [129] conclude, an “approach that provides

a reasonable immediate return on investment while also representing a significant long-term

opportunity” has not yet been identified.

Chapter 2 presented an in-depth analysis of how the various proposal for Edge Computing

evolved and advances the view that, semantically, “Multi-access Edge Computing” can be viewed

as Edge Computing, with various deployment strategies from single-enterprise to regional levels.

Nevertheless, the unifying factor is the access to servers which are much physically closer than

those in distant consolidated data centres at which extra latency is added because of delays in

job processing. In Figure 6.1., the analyses presented in this thesis focus on the relationship

between MDs and the Edge Nodes, minimising latency and other delays inherent in multi-stage

transfer of information; this will be particularly valuable for MD applications which are highly

latency-sensitive.

Chapter 3 analysed the considerations in a heterogeneous MEC network that determine the

advantages and the success (or not) of the offloading strategy from MDs viewed in its most basic

form: one MD attempting to offload one task (job) to a single MEC server over a wireless link.

Major advantages in total task completion time and local energy saving over values computed

for local processing can be demonstrated but multiple parameters must be considered: on-board

and server-side processing speeds, link communication speeds, task computational complexity,

network congestion and latency and the CPU workloads of the MD and MEC server.
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Figure 6.1: Interfaces between Edge Computing and Cloud Computing (redrawn from [129].

Chapter 4 extended the analysis to consider multiple jobs to be either offloaded or processed

locally on the MD in networks with increasing numbers of MEC servers. The approach employed

is that of assessing possible schedules of operations (i.e. offloading and local processing) from

which an optimal strategy to minimise total task completion time can be computed. Using only

task completion time as the criterion, multiple parallel processing, using all the processing

capacity in the network, was found to be essential for optimal solutions.

Chapter 5 then incorporated local energy savings into the analysis with heuristic algorithms

extended to incorporate both time and local energy factors; results from numerical simulations

showed clearly that only trade-offs between the two goals could be achieved; this was because,

using weighting factors to balance the different aims of minimising total task completion time

and local energy use, no independent variables could be included – mathematically, the two

weighting values are inextricably linked and act as mutual constraints. Even adding in economic

cost as a third consideration failed to identify “global” minima, although weak maxima were

apparent

6.2 Implications of the Research Outcomes

6.2.1 Offloading decision-making programmes

To the question “Which computational tasks benefit most from offloading?”, the answer is

complex because of the effects of several distinct parameters. Task complexity is a crucial

determinant but only when combined with connection speed. Other parameters are, however,

important:

• On-board and server-side processor speeds

• MD and MEC server CPU workloads
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• Latency or access delays

• Network load

The file size of the data to be offloaded is not in itself important but will affect the benefits

to be gained in terms of shorter task completion times and local (MD) energy savings. If the

full list of information and parametric values is accessible to a single MD accessing the MEC

network, a computational programme can be written to assess whether or not an individual task

would benefit from offloading in terms of task completion time and reduced local energy use.

If the totality of information is not directly accessible, a centralised resource allocator in

the MEC network would take on the role of offload decision maker. This would be essential

for offloading to save MD battery charge because offloading is not guaranteed to result in

MD energy savings if link speeds are low and the data transmission/reception cycle is lengthy.

Access to and the actions of such a centralised decision maker would be included in the Service

Level Agreement between MD users and a commercial MEC network.

6.2.2 Heuristic Optimisation of Offloading Schedules for Shorter Task
Completion Times

Offloading multiple jobs from a single MD to multiple MEC servers can generate very large

numbers of possible schedules. Linear optimisation can identify unique optimum solutions but

to avoid time-consuming analyses, heuristic approaches were adopted.

Heuristic algorithms were constructed which could closely (sometimes, within 1%) match

the times of optimum solutions for offloading multiple jobs from an individual MD to multiple

MEC servers and for multiple MDs to offload jobs to multiple MEC servers. The functioning

of distributed heuristic algorithms assumes that full knowledge of network parameters can be

accessed by individual MDs; if full knowledge of the parameters is reserved to a centralised

resource allocator in the network, communication between MDs and the network will provide

to an individual MD user the offloading decisions in an near-optimal schedule.

The advantage of a centralised offloading decision maker is that network status – in particu-

lar, the number of users per server and server CPU workloads – is constantly monitored and

offloading demands and network traffic can be balanced to avoid severe network congestion

or to access back-up MEC servers or cloud servers. Commercial MEC network providers will

probably impose fair-use policies in Service Level Agreements to fine-tune offloading demands

and network traffic to prevent network congestion.

6.2.3 Multi-Factor Heuristic Optimisation of Offloading to Minimise Time,
Energy and Cost

Combining time and local energy introduces a new relationship into the MEC network. The

most efficient solution for individual MD users is for them to set the weighting factors to reflect
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their circumstances (low battery charge or time demands). The weighting factors, therefore,

become parameters communicated by the MD to the MEC network and, as in Section 6.2.2, the

network’s status with respect to traffic and offloading requests can be used to accept or modify

identified schedules chosen by heuristic algorithms.

6.3 Aspects of MEC offloading not considered in this thesis

As discussed in Section 2.8, several authors have proposed features of the offloading process that

were not incorporated into the mathematical modelling of Chapter 3-5. The resulted presented in

Chapter 3-5 have, nevertheless, implications for offloading processes with significant differences

from the processes from individual or multiple MDs described in Chapter 3-5.

Task partitioning: this form of offloading divides the task into sub-tasks, only some of

which are offloaded. The results of Chapter 4 indicate that where multiple tasks are being

offloaded, the optimum solution is to include the on-board processor to work in parallel with

the MEC servers. This parallel processing can be simply extended to imply that task partitioning

would also be beneficial for total task completion time; if, however, only the least computational

complex sub-tasks were to be performed locally, the impact on total task completion time would

be minimal. The overall effect would be highly dependent on how the task is partitioned [98].

Application migration: the program code for highly specialised applications could be

transferred from the MD to the MEC servers or Cloud-to-Edge transfer of program code might

be required. The results of Chapter 3 imply that either form of application migration would

greatly extend total task completion time and reduce any advantage of offloading.

Data caching: if a user seeks to repeat processing of previously processed data files, stored

data would, on the basis of results presented in Chapter 3, greatly reduce total task completion

time because data transfer times generally outweigh MEC server processing times, especially if

link communication speeds are slow. The main issues here are data security and user privacy

and strict protocols would need to be incorporated into the contractual relationship between

and service provider.

Multiple-hop networks: transfer of data from server to server and, in the extreme case,

MEC network to Cloud data centre may be required in case of sever overload. The results

from Chapter 3 imply an erosion of the advantages of offloading (in terms of both total task

completion time and MD energy use) if longer times to receive data are incurred and MDs

spend longer times in “idling” mode before data is received back from the MEC network.

Resource allocation and management strategies in MEC networks: Chapters 4 and

5 assumed an “instant” response to any requestions from single MDs (where the optimal

scheduling is identified locally) or from multiple MDs simultaneously (where the optimum

schedule is identified centrally). Other management protocols might impose queuing and

network-based analysis of the types of tasks to be offloaded might, in the extreme, “quarantine”
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some task to improve work flow inside the network server (s); for example, lengthy processing

times for some user requests could be postponed to maximise server use but avoid excessive

CPU workloads. This type of micro-management would be expected to impose longer total task

completion times but is a stochastic problem because of the essentially unpredictable nature of

network traffic in different time periods.

Non-subscription access to MEC services: if only “guest” users interact with a MEC

network on an ad hoc basis, dynamic pricing would result in the maximisation of revenues for

the service provider. Under some circumstances, however, periods of low demand would enable

users to access services on a more economic basis. From Chapter 5, this would translate into a

reduced cost and encourage users to shift attention to time and energy to identify best solutions

for offloading schedules.

Offloaded data for applications beyond facial recognition of digital images: other

forms of Visual Analytics (for example, object recognition) and Augmented Reality, which

have been combined in an interactive perception application [121], are examples to which the

results presented in this Thesis could be extended. While smartphones are highly unlikely to be

involved in Big Data analytics, high-end tablet computers could seek to offload large data sets

(100 MB – 1 GB) for analysis by applications other than spreadsheet (for example, Excel) or

statistical programs (for example, SigmaPlot. In such cases, the analyses presented in Chapters

3-5 would be directly applicable for total task completion times; battery lifetimes are generally

considered much longer in tablet devices than in older laptop computers and smartphones and

energy use is less likely to be a major consideration.

6.4 Future Work

In this section, I will outline my possible future research in MEC networks and then briefly

consider work in related fields.

6.4.1 The impact of 5G Technologies on MEC Networks

A key parameter identified in Chapters 3-5 for successful offloading to a MEC network was the

link speed at which MDs transmit and receive data from MEC servers. As 5G technologies in-

crease communications speeds, less computationally complex jobs would be open for offloading

with shorter task completion times and reduced local energy use.

To illustrate this effect, Figure Figure 3.8 can provide a baseline, where a low-complexity

application requires a much faster link speed to achieve very high energy savings for the MD.

If – and has almost certainly already occurred – both the on-board and server-side processor

speeds have increased in the telecommunications and IT industries from the values quoted in

2017 [105], the demands for faster link speeds become important for offloading.
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Figure 6.2: Local energy savings by offloading with higher- and lower-applications with two-fold
increases in processor speeds.
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Figure 6.3: Local energy savings by offloading with higher- and lower-applications with five-fold
increases in processor speeds.

Figure 6.2 updates Figure 3.8 to twice the processor speeds used earlier. For full energy

savings by offloading, link speeds approaching 10 Mbps are required. Figure 6.3 further increases

processor speeds to five-fold higher than in the baseline scenario and link speeds exceeding 10

Mbps are required to achieve maximum energy savings.

The introduction of 5G technologies, therefore, allows increasingly powerful MDs with

faster on-board processors to benefit from offloading. Conversely, the introduction of MDs

with increasingly powerful processors will require 5G link speeds to find advantages in task

completion time and achieve the greatest local energy savings. This is a demonstration of the

links between 5G and MEC systems deployment.

As more jobs and tasks benefit from offloading, however, the threat of network overloading

and congestion increases and the pressure on MEC service providers to meet peak demand

periods becomes more intense. Back-up MEC servers are one solution; resorting to transferring
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jobs without critical latency requirements to cloud servers is another (Figure 6.1).

Consequently, a key management task in deployed MEC networks will be in the filtering of

offloaded jobs into time-critical, latency-intolerant and a third category where neither time nor

latency is crucial for the offloading process. Future work could focus on identifying informational

clues associated with tasks to be offloaded which to be used to make this categorisation by a

network resource allocator.

6.4.2 Green Energy Price Costing for Offloading

Chapter 3 and 5 considered only the energy usage by individual MDs. To understand the full

energy requirement for the offloading process, however, requires to compute more than the

transmission, idling and receiving phases (plus display and storage events) in the MD. MEC

systems will probably have clusters of servers housed in much smaller aggregates than are

customary for distant consolidated date centres and will not, therefore, be able to increase

energy efficiency to the same extent.

Nevertheless, experimental investigation is possible to define the energy requirements for

discrete job processing in a MEC server. If the totality of energy usage during offloading from

the MD to the MEC system is less than the energy required for local processing on the MD, the

opportunity arises from Green Tariffs to encourage energy efficiency.

A further strategy for the providers of MEC services would be to offer reduced prices (for

other than time-critical offloaded jobs) during off-peak periods to reduce network congestion

and increased power consumption by high-workload servers or to divert suitable tasks to

cloud servers (Figure 6.1). This implies a continuing but evolving relationship between Edge

Computing and Cloud Computing with co-operation (or joint ownership) between service

providers to maximise the Quality of Experience of MD users.

6.4.3 Possible paths of future research

The examples given in Section 6.4.1-6.4.2 are straightforward extensions of the work presented

in Chapters 3 4.

More radical research areas include those of software-defined batteries for mobile devices

(i.e., the fusion of multiple battery chemistries which are differentially adapted to different

tasks and power demands) to challenge the physical resource-poor nature of smartphones [10],

the adoption of blockchain decentralized data management frameworks for MEC [161] and

Software-Defined Networking, which is claimed to improve network management and facilitate

network evolution [88], each of which individually could greatly affect the relationships between

MDs and MEC networks.
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APPENDIX A. APPENDIX

Table A.1: Schedule Options for Offloading

with 81 Distinct Schedules

Option Job 1 Job 2 Job 3 Job 4

1 J1-0 J2-0 J3-0 J4-0
2 J1-C1 J2-C1 J3-C1 J4-C1
3 J1-C2 J2-C2 J3-C2 J4-C2
4 J1-0 J2-C1 J3-C1 J4-C1
5 J1-0 J2-C1 J3-C1 J4-C2
6 J1-0 J2-C1 J3-C2 J4-C2
7 J1-0 J2-C1 J3-C2 J4-C1
8 J1-0 J2-C2 J3-C1 J4-C1
9 J1-0 J2-C2 J3-C1 J4-C2

10 J1-0 J2-C2 J3-C2 J4-C1
11 J1-0 J2-C2 J3-C2 J4-C2
12 J1-C1 J2-0 J3-C1 J4-C1
13 J1-C1 J2-0 J3-C1 J4-C2
14 J1-C1 J2-0 J3-C2 J4-C2
15 J1-C1 J2-0 J3-C2 J4-C1
16 J1-C2 J2-0 J3-C1 J4-C1
17 J1-C2 J2-0 J3-C1 J4-C2
18 J1-C2 J2-0 J3-C2 J4-C1
19 J1-C2 J2-0 J3-C2 J4-C2
20 J1-C1 J2-C1 J3-0 J4-C1
21 J1-C1 J2-C1 J3-0 J4-C2
22 J1-C1 J2-C2 J3-0 J4-C2
23 J1-C1 J2-C2 J3-0 J4-C1
24 J1-C2 J2-C1 J3-0 J4-C1
25 J1-C2 J2-C1 J3-0 J4-C2
26 J1-C2 J2-C2 J3-0 J4-C1
27 J1-C2 J2-C2 J3-0 J4-C2
28 J1-C1 J2-C1 J3-C1 J4-0
29 J1-C1 J2-C1 J3-C2 J4-0
30 J1-C1 J2-C2 J3-C2 J4-0
31 J1-C1 J2-C2 J3-C1 J4-0
32 J1-C2 J2-C1 J3-C1 J4-0
33 J1-C2 J2-C1 J3-C2 J4-0
34 J1-C2 J2-C2 J3-C1 J4-0
35 J1-C2 J2-C2 J3-C2 J4-0
36 J1-0 J2-0 J3-C1 J4-C1
37 J1-0 J2-0 J3-C2 J4-C1
38 J1-0 J2-0 J3-C1 J4-C2
39 J1-0 J2-0 J3-C2 J4-C1
40 J1-0 J2-C1 J3-0 J4-C1
41 J1-0 J2-C2 J3-0 J4-C2
42 J1-0 J2-C1 J3-0 J4-C2

Option Job 1 Job 2 Job 3 Job 4

43 J1-0 J2-C2 J3-0 J4-C1
44 J1-0 J2-C1 J3-C1 J4-0
45 J1-0 J2-C2 J3-C2 J4-0
46 J1-0 J2-C1 J3-C2 J4-0
47 J1-0 J2-C2 J3-C1 J4-0
48 J1-C1 J2-0 J3-0 J4-C1
49 J1-C2 J2-0 J3-0 J4-C2
50 J1-C1 J2-0 J3-0 J4-C2
51 J1-C2 J2-0 J3-0 J4-C1
52 J1-C1 J2-0 J3-C1 J4-0
53 J1-C2 J2-0 J3-C2 J4-0
54 J1-C1 J2-0 J3-C2 J4-0
55 J1-C2 J2-0 J3-C1 J4-0
56 J1-C1 J2-C1 J3-0 J4-0
57 J1-C2 J2-C2 J3-0 J4-0
58 J1-C1 J2-C2 J3-0 J4-0
59 J1-C2 J2-C1 J3-0 J4-0
60 J1-0 J2-0 J3-0 J4-C1
61 J1-0 J2-0 J3-0 J4-C2
62 J1-0 J2-0 J3-C1 J4-0
63 J1-0 J2-0 J3-C2 J4-0
64 J1-C1 J2-0 J3-0 J4-0
65 J1-C2 J2-0 J3-0 J4-0
66 J1-0 J2-C1 J3-0 J4-0
67 J1-0 J2-C2 J3-0 J4-0
68 J1-C1 J2-C1 J3-C2 J4-C2
69 J1-C1 J2-C2 J3-C1 J4-C2
70 J1-C2 J2-C1 J3-C1 J4-C2
71 J1-C2 J2-C1 J3-C2 J4-C1
72 J1-C1 J2-C2 J3-C2 J4-C1
73 J1-C2 J2-C2 J3-C1 J4-C1
74 J1-C1 J2-C1 J3-C1 J4-C2
75 J1-C1 J2-C1 J3-C2 J4-C1
76 J1-C2 J2-C1 J3-C1 J4-C1
77 J1-C1 J2-C2 J3-C1 J4-C1
78 J1-C2 J2-C2 J3-C2 J4-C1
79 J1-C2 J2-C2 J3-C1 J4-C2
80 J1-C2 J2-C1 J3-C2 J4-C2
81 J1-C1 J2-C2 J3-C2 J4-C2
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Table A.2: Schedule Options for Offloading

with 1024 Distinct Schedules

Option Job 1 Job 2 Job 3 Job 4 Job 5

1 J1-0 J2-0 J3-0 J4-0 J5-0
2 J1-0 J2-0 J3-0 J4-0 J5-C1
3 J1-0 J2-0 J3-0 J4-0 J5-C2
4 J1-0 J2-0 J3-0 J4-0 J5-C3
5 J1-0 J2-0 J3-0 J4-C1 J5-0
6 J1-0 J2-0 J3-0 J4-C1 J5-C1
7 J1-0 J2-0 J3-0 J4-C1 J5-C2
8 J1-0 J2-0 J3-0 J4-C1 J5-C3
9 J1-0 J2-0 J3-0 J4-C2 J5-0

10 J1-0 J2-0 J3-0 J4-C2 J5-C1
11 J1-0 J2-0 J3-0 J4-C2 J5-C2
12 J1-0 J2-0 J3-0 J4-C2 J5-C3
13 J1-0 J2-0 J3-0 J4-C3 J5-0
14 J1-0 J2-0 J3-0 J4-C3 J5-C1
15 J1-0 J2-0 J3-0 J4-C3 J5-C2
16 J1-0 J2-0 J3-0 J4-C3 J5-C3
17 J1-0 J2-0 J3-C1 J4-0 J5-0
18 J1-0 J2-0 J3-C1 J4-0 J5-C1
19 J1-0 J2-0 J3-C1 J4-0 J5-C2
20 J1-0 J2-0 J3-C1 J4-0 J5-C3
21 J1-0 J2-0 J3-C1 J4-C1 J5-0
22 J1-0 J2-0 J3-C1 J4-C1 J5-C1
23 J1-0 J2-0 J3-C1 J4-C1 J5-C2
24 J1-0 J2-0 J3-C1 J4-C1 J5-C3
25 J1-0 J2-0 J3-C1 J4-C2 J5-0
26 J1-0 J2-0 J3-C1 J4-C2 J5-C1
27 J1-0 J2-0 J3-C1 J4-C2 J5-C2
28 J1-0 J2-0 J3-C1 J4-C2 J5-C3
29 J1-0 J2-0 J3-C1 J4-C3 J5-0
30 J1-0 J2-0 J3-C1 J4-C3 J5-C1
31 J1-0 J2-0 J3-C1 J4-C3 J5-C2
32 J1-0 J2-0 J3-C1 J4-C3 J5-C3
33 J1-0 J2-0 J3-C2 J4-0 J5-0
34 J1-0 J2-0 J3-C2 J4-0 J5-C1
35 J1-0 J2-0 J3-C2 J4-0 J5-C2
36 J1-0 J2-0 J3-C2 J4-0 J5-C3
37 J1-0 J2-0 J3-C2 J4-C1 J5-0
38 J1-0 J2-0 J3-C2 J4-C1 J5-C1
39 J1-0 J2-0 J3-C2 J4-C1 J5-C2
40 J1-0 J2-0 J3-C2 J4-C1 J5-C3
41 J1-0 J2-0 J3-C2 J4-C2 J5-0
42 J1-0 J2-0 J3-C2 J4-C2 J5-C1

Option Job 1 Job 2 Job 3 Job 4 Job 5

43 J1-0 J2-0 J3-C2 J4-C2 J5-C2
44 J1-0 J2-0 J3-C2 J4-C2 J5-C3
45 J1-0 J2-0 J3-C2 J4-C3 J5-0
46 J1-0 J2-0 J3-C2 J4-C3 J5-C1
47 J1-0 J2-0 J3-C2 J4-C3 J5-C2
48 J1-0 J2-0 J3-C2 J4-C3 J5-C3
49 J1-0 J2-0 J3-C3 J4-0 J5-0
50 J1-0 J2-0 J3-C3 J4-0 J5-C1
51 J1-0 J2-0 J3-C3 J4-0 J5-C2
52 J1-0 J2-0 J3-C3 J4-0 J5-C3
53 J1-0 J2-0 J3-C3 J4-C1 J5-0
54 J1-0 J2-0 J3-C3 J4-C1 J5-C1
55 J1-0 J2-0 J3-C3 J4-C1 J5-C2
56 J1-0 J2-0 J3-C3 J4-C1 J5-C3
57 J1-0 J2-0 J3-C3 J4-C2 J5-0
58 J1-0 J2-0 J3-C3 J4-C2 J5-C1
59 J1-0 J2-0 J3-C3 J4-C2 J5-C2
60 J1-0 J2-0 J3-C3 J4-C2 J5-C3
61 J1-0 J2-0 J3-C3 J4-C3 J5-0
62 J1-0 J2-0 J3-C3 J4-C3 J5-C1
63 J1-0 J2-0 J3-C3 J4-C3 J5-C2
64 J1-0 J2-0 J3-C3 J4-C3 J5-C3
65 J1-0 J2-C1 J3-0 J4-0 J5-0
66 J1-0 J2-C1 J3-0 J4-0 J5-C1
67 J1-0 J2-C1 J3-0 J4-0 J5-C2
68 J1-0 J2-C1 J3-0 J4-0 J5-C3
69 J1-0 J2-C1 J3-0 J4-C1 J5-0
70 J1-0 J2-C1 J3-0 J4-C1 J5-C1
71 J1-0 J2-C1 J3-0 J4-C1 J5-C2
72 J1-0 J2-C1 J3-0 J4-C1 J5-C3
73 J1-0 J2-C1 J3-0 J4-C2 J5-0
74 J1-0 J2-C1 J3-0 J4-C2 J5-C1
75 J1-0 J2-C1 J3-0 J4-C2 J5-C2
76 J1-0 J2-C1 J3-0 J4-C2 J5-C3
77 J1-0 J2-C1 J3-0 J4-C3 J5-0
78 J1-0 J2-C1 J3-0 J4-C3 J5-C1
79 J1-0 J2-C1 J3-0 J4-C3 J5-C2
80 J1-0 J2-C1 J3-0 J4-C3 J5-C3
81 J1-0 J2-C1 J3-C1 J4-0 J5-0
82 J1-0 J2-C1 J3-C1 J4-0 J5-C1
83 J1-0 J2-C1 J3-C1 J4-0 J5-C2
84 J1-0 J2-C1 J3-C1 J4-0 J5-C3
85 J1-0 J2-C1 J3-C1 J4-C1 J5-0
86 J1-0 J2-C1 J3-C1 J4-C1 J5-C1
87 J1-0 J2-C1 J3-C1 J4-C1 J5-C2
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88 J1-0 J2-C1 J3-C1 J4-C1 J5-C3
89 J1-0 J2-C1 J3-C1 J4-C2 J5-0
90 J1-0 J2-C1 J3-C1 J4-C2 J5-C1
91 J1-0 J2-C1 J3-C1 J4-C2 J5-C2
92 J1-0 J2-C1 J3-C1 J4-C2 J5-C3
93 J1-0 J2-C1 J3-C1 J4-C3 J5-0
94 J1-0 J2-C1 J3-C1 J4-C3 J5-C1
95 J1-0 J2-C1 J3-C1 J4-C3 J5-C2
96 J1-0 J2-C1 J3-C1 J4-C3 J5-C3
97 J1-0 J2-C1 J3-C2 J4-0 J5-0
98 J1-0 J2-C1 J3-C2 J4-0 J5-C1
99 J1-0 J2-C1 J3-C2 J4-0 J5-C2

100 J1-0 J2-C1 J3-C2 J4-0 J5-C3
101 J1-0 J2-C1 J3-C2 J4-C1 J5-0
102 J1-0 J2-C1 J3-C2 J4-C1 J5-C1
103 J1-0 J2-C1 J3-C2 J4-C1 J5-C2
104 J1-0 J2-C1 J3-C2 J4-C1 J5-C3
105 J1-0 J2-C1 J3-C2 J4-C2 J5-0
106 J1-0 J2-C1 J3-C2 J4-C2 J5-C1
107 J1-0 J2-C1 J3-C2 J4-C2 J5-C2
108 J1-0 J2-C1 J3-C2 J4-C2 J5-C3
109 J1-0 J2-C1 J3-C2 J4-C3 J5-0
110 J1-0 J2-C1 J3-C2 J4-C3 J5-C1
111 J1-0 J2-C1 J3-C2 J4-C3 J5-C2
112 J1-0 J2-C1 J3-C2 J4-C3 J5-C3
113 J1-0 J2-C1 J3-C3 J4-0 J5-0
114 J1-0 J2-C1 J3-C3 J4-0 J5-C1
115 J1-0 J2-C1 J3-C3 J4-0 J5-C2
116 J1-0 J2-C1 J3-C3 J4-0 J5-C3
117 J1-0 J2-C1 J3-C3 J4-C1 J5-0
118 J1-0 J2-C1 J3-C3 J4-C1 J5-C1
119 J1-0 J2-C1 J3-C3 J4-C1 J5-C2
120 J1-0 J2-C1 J3-C3 J4-C1 J5-C3
121 J1-0 J2-C1 J3-C3 J4-C2 J5-0
122 J1-0 J2-C1 J3-C3 J4-C2 J5-C1
123 J1-0 J2-C1 J3-C3 J4-C2 J5-C2
124 J1-0 J2-C1 J3-C3 J4-C2 J5-C3
125 J1-0 J2-C1 J3-C3 J4-C3 J5-0
126 J1-0 J2-C1 J3-C3 J4-C3 J5-C1
127 J1-0 J2-C1 J3-C3 J4-C3 J5-C2
128 J1-0 J2-C1 J3-C3 J4-C3 J5-C3
129 J1-0 J2-C2 J3-0 J4-0 J5-0
130 J1-0 J2-C2 J3-0 J4-0 J5-C1
131 J1-0 J2-C2 J3-0 J4-0 J5-C2
132 J1-0 J2-C2 J3-0 J4-0 J5-C3

Option Job 1 Job 2 Job 3 Job 4 Job 5

133 J1-0 J2-C2 J3-0 J4-C1 J5-0
134 J1-0 J2-C2 J3-0 J4-C1 J5-C1
135 J1-0 J2-C2 J3-0 J4-C1 J5-C2
136 J1-0 J2-C2 J3-0 J4-C1 J5-C3
137 J1-0 J2-C2 J3-0 J4-C2 J5-0
138 J1-0 J2-C2 J3-0 J4-C2 J5-C1
139 J1-0 J2-C2 J3-0 J4-C2 J5-C2
140 J1-0 J2-C2 J3-0 J4-C2 J5-C3
141 J1-0 J2-C2 J3-0 J4-C3 J5-0
142 J1-0 J2-C2 J3-0 J4-C3 J5-C1
143 J1-0 J2-C2 J3-0 J4-C3 J5-C2
144 J1-0 J2-C2 J3-0 J4-C3 J5-C3
145 J1-0 J2-C2 J3-C1 J4-0 J5-0
146 J1-0 J2-C2 J3-C1 J4-0 J5-C1
147 J1-0 J2-C2 J3-C1 J4-0 J5-C2
148 J1-0 J2-C2 J3-C1 J4-0 J5-C3
149 J1-0 J2-C2 J3-C1 J4-C1 J5-0
150 J1-0 J2-C2 J3-C1 J4-C1 J5-C1
151 J1-0 J2-C2 J3-C1 J4-C1 J5-C2
152 J1-0 J2-C2 J3-C1 J4-C1 J5-C3
153 J1-0 J2-C2 J3-C1 J4-C2 J5-0
154 J1-0 J2-C2 J3-C1 J4-C2 J5-C1
155 J1-0 J2-C2 J3-C1 J4-C2 J5-C2
156 J1-0 J2-C2 J3-C1 J4-C2 J5-C3
157 J1-0 J2-C2 J3-C1 J4-C3 J5-0
158 J1-0 J2-C2 J3-C1 J4-C3 J5-C1
159 J1-0 J2-C2 J3-C1 J4-C3 J5-C2
160 J1-0 J2-C2 J3-C1 J4-C3 J5-C3
161 J1-0 J2-C2 J3-C2 J4-0 J5-0
162 J1-0 J2-C2 J3-C2 J4-0 J5-C1
163 J1-0 J2-C2 J3-C2 J4-0 J5-C2
164 J1-0 J2-C2 J3-C2 J4-0 J5-C3
165 J1-0 J2-C2 J3-C2 J4-C1 J5-0
166 J1-0 J2-C2 J3-C2 J4-C1 J5-C1
167 J1-0 J2-C2 J3-C2 J4-C1 J5-C2
168 J1-0 J2-C2 J3-C2 J4-C1 J5-C3
169 J1-0 J2-C2 J3-C2 J4-C2 J5-0
170 J1-0 J2-C2 J3-C2 J4-C2 J5-C1
171 J1-0 J2-C2 J3-C2 J4-C2 J5-C2
172 J1-0 J2-C2 J3-C2 J4-C2 J5-C3
173 J1-0 J2-C2 J3-C2 J4-C3 J5-0
174 J1-0 J2-C2 J3-C2 J4-C3 J5-C1
175 J1-0 J2-C2 J3-C2 J4-C3 J5-C2
176 J1-0 J2-C2 J3-C2 J4-C3 J5-C3
177 J1-0 J2-C2 J3-C3 J4-0 J5-0
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178 J1-0 J2-C2 J3-C3 J4-0 J5-C1
179 J1-0 J2-C2 J3-C3 J4-0 J5-C2
180 J1-0 J2-C2 J3-C3 J4-0 J5-C3
181 J1-0 J2-C2 J3-C3 J4-C1 J5-0
182 J1-0 J2-C2 J3-C3 J4-C1 J5-C1
183 J1-0 J2-C2 J3-C3 J4-C1 J5-C2
184 J1-0 J2-C2 J3-C3 J4-C1 J5-C3
185 J1-0 J2-C2 J3-C3 J4-C2 J5-0
186 J1-0 J2-C2 J3-C3 J4-C2 J5-C1
187 J1-0 J2-C2 J3-C3 J4-C2 J5-C2
188 J1-0 J2-C2 J3-C3 J4-C2 J5-C3
189 J1-0 J2-C2 J3-C3 J4-C3 J5-0
190 J1-0 J2-C2 J3-C3 J4-C3 J5-C1
191 J1-0 J2-C2 J3-C3 J4-C3 J5-C2
192 J1-0 J2-C2 J3-C3 J4-C3 J5-C3
193 J1-0 J2-C3 J3-0 J4-0 J5-0
194 J1-0 J2-C3 J3-0 J4-0 J5-C1
195 J1-0 J2-C3 J3-0 J4-0 J5-C2
196 J1-0 J2-C3 J3-0 J4-0 J5-C3
197 J1-0 J2-C3 J3-0 J4-C1 J5-0
198 J1-0 J2-C3 J3-0 J4-C1 J5-C1
199 J1-0 J2-C3 J3-0 J4-C1 J5-C2
200 J1-0 J2-C3 J3-0 J4-C1 J5-C3
201 J1-0 J2-C3 J3-0 J4-C2 J5-0
202 J1-0 J2-C3 J3-0 J4-C2 J5-C1
203 J1-0 J2-C3 J3-0 J4-C2 J5-C2
204 J1-0 J2-C3 J3-0 J4-C2 J5-C3
205 J1-0 J2-C3 J3-0 J4-C3 J5-0
206 J1-0 J2-C3 J3-0 J4-C3 J5-C1
207 J1-0 J2-C3 J3-0 J4-C3 J5-C2
208 J1-0 J2-C3 J3-0 J4-C3 J5-C3
209 J1-0 J2-C3 J3-C1 J4-0 J5-0
210 J1-0 J2-C3 J3-C1 J4-0 J5-C1
211 J1-0 J2-C3 J3-C1 J4-0 J5-C2
212 J1-0 J2-C3 J3-C1 J4-0 J5-C3
213 J1-0 J2-C3 J3-C1 J4-C1 J5-0
214 J1-0 J2-C3 J3-C1 J4-C1 J5-C1
215 J1-0 J2-C3 J3-C1 J4-C1 J5-C2
216 J1-0 J2-C3 J3-C1 J4-C1 J5-C3
217 J1-0 J2-C3 J3-C1 J4-C2 J5-0
218 J1-0 J2-C3 J3-C1 J4-C2 J5-C1
219 J1-0 J2-C3 J3-C1 J4-C2 J5-C2
220 J1-0 J2-C3 J3-C1 J4-C2 J5-C3
221 J1-0 J2-C3 J3-C1 J4-C3 J5-0
222 J1-0 J2-C3 J3-C1 J4-C3 J5-C1

Option Job 1 Job 2 Job 3 Job 4 Job 5

223 J1-0 J2-C3 J3-C1 J4-C3 J5-C2
224 J1-0 J2-C3 J3-C1 J4-C3 J5-C3
225 J1-0 J2-C3 J3-C2 J4-0 J5-0
226 J1-0 J2-C3 J3-C2 J4-0 J5-C1
227 J1-0 J2-C3 J3-C2 J4-0 J5-C2
228 J1-0 J2-C3 J3-C2 J4-0 J5-C3
229 J1-0 J2-C3 J3-C2 J4-C1 J5-0
230 J1-0 J2-C3 J3-C2 J4-C1 J5-C1
231 J1-0 J2-C3 J3-C2 J4-C1 J5-C2
232 J1-0 J2-C3 J3-C2 J4-C1 J5-C3
233 J1-0 J2-C3 J3-C2 J4-C2 J5-0
234 J1-0 J2-C3 J3-C2 J4-C2 J5-C1
235 J1-0 J2-C3 J3-C2 J4-C2 J5-C2
236 J1-0 J2-C3 J3-C2 J4-C2 J5-C3
237 J1-0 J2-C3 J3-C2 J4-C3 J5-0
238 J1-0 J2-C3 J3-C2 J4-C3 J5-C1
239 J1-0 J2-C3 J3-C2 J4-C3 J5-C2
240 J1-0 J2-C3 J3-C2 J4-C3 J5-C3
241 J1-0 J2-C3 J3-C3 J4-0 J5-0
242 J1-0 J2-C3 J3-C3 J4-0 J5-C1
243 J1-0 J2-C3 J3-C3 J4-0 J5-C2
244 J1-0 J2-C3 J3-C3 J4-0 J5-C3
245 J1-0 J2-C3 J3-C3 J4-C1 J5-0
246 J1-0 J2-C3 J3-C3 J4-C1 J5-C1
247 J1-0 J2-C3 J3-C3 J4-C1 J5-C2
248 J1-0 J2-C3 J3-C3 J4-C1 J5-C3
249 J1-0 J2-C3 J3-C3 J4-C2 J5-0
250 J1-0 J2-C3 J3-C3 J4-C2 J5-C1
251 J1-0 J2-C3 J3-C3 J4-C2 J5-C2
252 J1-0 J2-C3 J3-C3 J4-C2 J5-C3
253 J1-0 J2-C3 J3-C3 J4-C3 J5-0
254 J1-0 J2-C3 J3-C3 J4-C3 J5-C1
255 J1-0 J2-C3 J3-C3 J4-C3 J5-C2
256 J1-0 J2-C3 J3-C3 J4-C3 J5-C3
257 J1-C1 J2-0 J3-0 J4-0 J5-0
258 J1-C1 J2-0 J3-0 J4-0 J5-C1
259 J1-C1 J2-0 J3-0 J4-0 J5-C2
260 J1-C1 J2-0 J3-0 J4-0 J5-C3
261 J1-C1 J2-0 J3-0 J4-C1 J5-0
262 J1-C1 J2-0 J3-0 J4-C1 J5-C1
263 J1-C1 J2-0 J3-0 J4-C1 J5-C2
264 J1-C1 J2-0 J3-0 J4-C1 J5-C3
265 J1-C1 J2-0 J3-0 J4-C2 J5-0
266 J1-C1 J2-0 J3-0 J4-C2 J5-C1
267 J1-C1 J2-0 J3-0 J4-C2 J5-C2
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268 J1-C1 J2-0 J3-0 J4-C2 J5-C3
269 J1-C1 J2-0 J3-0 J4-C3 J5-0
270 J1-C1 J2-0 J3-0 J4-C3 J5-C1
271 J1-C1 J2-0 J3-0 J4-C3 J5-C2
272 J1-C1 J2-0 J3-0 J4-C3 J5-C3
273 J1-C1 J2-0 J3-C1 J4-0 J5-0
274 J1-C1 J2-0 J3-C1 J4-0 J5-C1
275 J1-C1 J2-0 J3-C1 J4-0 J5-C2
276 J1-C1 J2-0 J3-C1 J4-0 J5-C3
277 J1-C1 J2-0 J3-C1 J4-C1 J5-0
278 J1-C1 J2-0 J3-C1 J4-C1 J5-C1
279 J1-C1 J2-0 J3-C1 J4-C1 J5-C2
280 J1-C1 J2-0 J3-C1 J4-C1 J5-C3
281 J1-C1 J2-0 J3-C1 J4-C2 J5-0
282 J1-C1 J2-0 J3-C1 J4-C2 J5-C1
283 J1-C1 J2-0 J3-C1 J4-C2 J5-C2
284 J1-C1 J2-0 J3-C1 J4-C2 J5-C3
285 J1-C1 J2-0 J3-C1 J4-C3 J5-0
286 J1-C1 J2-0 J3-C1 J4-C3 J5-C1
287 J1-C1 J2-0 J3-C1 J4-C3 J5-C2
288 J1-C1 J2-0 J3-C1 J4-C3 J5-C3
289 J1-C1 J2-0 J3-C2 J4-0 J5-0
290 J1-C1 J2-0 J3-C2 J4-0 J5-C1
291 J1-C1 J2-0 J3-C2 J4-0 J5-C2
292 J1-C1 J2-0 J3-C2 J4-0 J5-C3
293 J1-C1 J2-0 J3-C2 J4-C1 J5-0
294 J1-C1 J2-0 J3-C2 J4-C1 J5-C1
295 J1-C1 J2-0 J3-C2 J4-C1 J5-C2
296 J1-C1 J2-0 J3-C2 J4-C1 J5-C3
297 J1-C1 J2-0 J3-C2 J4-C2 J5-0
298 J1-C1 J2-0 J3-C2 J4-C2 J5-C1
299 J1-C1 J2-0 J3-C2 J4-C2 J5-C2
300 J1-C1 J2-0 J3-C2 J4-C2 J5-C3
301 J1-C1 J2-0 J3-C2 J4-C3 J5-0
302 J1-C1 J2-0 J3-C2 J4-C3 J5-C1
303 J1-C1 J2-0 J3-C2 J4-C3 J5-C2
304 J1-C1 J2-0 J3-C2 J4-C3 J5-C3
305 J1-C1 J2-0 J3-C3 J4-0 J5-0
306 J1-C1 J2-0 J3-C3 J4-0 J5-C1
307 J1-C1 J2-0 J3-C3 J4-0 J5-C2
308 J1-C1 J2-0 J3-C3 J4-0 J5-C3
309 J1-C1 J2-0 J3-C3 J4-C1 J5-0
310 J1-C1 J2-0 J3-C3 J4-C1 J5-C1
311 J1-C1 J2-0 J3-C3 J4-C1 J5-C2
312 J1-C1 J2-0 J3-C3 J4-C1 J5-C3
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313 J1-C1 J2-0 J3-C3 J4-C2 J5-0
314 J1-C1 J2-0 J3-C3 J4-C2 J5-C1
315 J1-C1 J2-0 J3-C3 J4-C2 J5-C2
316 J1-C1 J2-0 J3-C3 J4-C2 J5-C3
317 J1-C1 J2-0 J3-C3 J4-C3 J5-0
318 J1-C1 J2-0 J3-C3 J4-C3 J5-C1
319 J1-C1 J2-0 J3-C3 J4-C3 J5-C2
320 J1-C1 J2-0 J3-C3 J4-C3 J5-C3
321 J1-C1 J2-C1 J3-0 J4-0 J5-0
322 J1-C1 J2-C1 J3-0 J4-0 J5-C1
323 J1-C1 J2-C1 J3-0 J4-0 J5-C2
324 J1-C1 J2-C1 J3-0 J4-0 J5-C3
325 J1-C1 J2-C1 J3-0 J4-C1 J5-0
326 J1-C1 J2-C1 J3-0 J4-C1 J5-C1
327 J1-C1 J2-C1 J3-0 J4-C1 J5-C2
328 J1-C1 J2-C1 J3-0 J4-C1 J5-C3
329 J1-C1 J2-C1 J3-0 J4-C2 J5-0
330 J1-C1 J2-C1 J3-0 J4-C2 J5-C1
331 J1-C1 J2-C1 J3-0 J4-C2 J5-C2
332 J1-C1 J2-C1 J3-0 J4-C2 J5-C3
333 J1-C1 J2-C1 J3-0 J4-C3 J5-0
334 J1-C1 J2-C1 J3-0 J4-C3 J5-C1
335 J1-C1 J2-C1 J3-0 J4-C3 J5-C2
336 J1-C1 J2-C1 J3-0 J4-C3 J5-C3
337 J1-C1 J2-C1 J3-C1 J4-0 J5-0
338 J1-C1 J2-C1 J3-C1 J4-0 J5-C1
339 J1-C1 J2-C1 J3-C1 J4-0 J5-C2
340 J1-C1 J2-C1 J3-C1 J4-0 J5-C3
341 J1-C1 J2-C1 J3-C1 J4-C1 J5-0
342 J1-C1 J2-C1 J3-C1 J4-C1 J5-C1
343 J1-C1 J2-C1 J3-C1 J4-C1 J5-C2
344 J1-C1 J2-C1 J3-C1 J4-C1 J5-C3
345 J1-C1 J2-C1 J3-C1 J4-C2 J5-0
346 J1-C1 J2-C1 J3-C1 J4-C2 J5-C1
347 J1-C1 J2-C1 J3-C1 J4-C2 J5-C2
348 J1-C1 J2-C1 J3-C1 J4-C2 J5-C3
349 J1-C1 J2-C1 J3-C1 J4-C3 J5-0
350 J1-C1 J2-C1 J3-C1 J4-C3 J5-C1
351 J1-C1 J2-C1 J3-C1 J4-C3 J5-C2
352 J1-C1 J2-C1 J3-C1 J4-C3 J5-C3
353 J1-C1 J2-C1 J3-C2 J4-0 J5-0
354 J1-C1 J2-C1 J3-C2 J4-0 J5-C1
355 J1-C1 J2-C1 J3-C2 J4-0 J5-C2
356 J1-C1 J2-C1 J3-C2 J4-0 J5-C3
357 J1-C1 J2-C1 J3-C2 J4-C1 J5-0
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358 J1-C1 J2-C1 J3-C2 J4-C1 J5-C1
359 J1-C1 J2-C1 J3-C2 J4-C1 J5-C2
360 J1-C1 J2-C1 J3-C2 J4-C1 J5-C3
361 J1-C1 J2-C1 J3-C2 J4-C2 J5-0
362 J1-C1 J2-C1 J3-C2 J4-C2 J5-C1
363 J1-C1 J2-C1 J3-C2 J4-C2 J5-C2
364 J1-C1 J2-C1 J3-C2 J4-C2 J5-C3
365 J1-C1 J2-C1 J3-C2 J4-C3 J5-0
366 J1-C1 J2-C1 J3-C2 J4-C3 J5-C1
367 J1-C1 J2-C1 J3-C2 J4-C3 J5-C2
368 J1-C1 J2-C1 J3-C2 J4-C3 J5-C3
369 J1-C1 J2-C1 J3-C3 J4-0 J5-0
370 J1-C1 J2-C1 J3-C3 J4-0 J5-C1
371 J1-C1 J2-C1 J3-C3 J4-0 J5-C2
372 J1-C1 J2-C1 J3-C3 J4-0 J5-C3
373 J1-C1 J2-C1 J3-C3 J4-C1 J5-0
374 J1-C1 J2-C1 J3-C3 J4-C1 J5-C1
375 J1-C1 J2-C1 J3-C3 J4-C1 J5-C2
376 J1-C1 J2-C1 J3-C3 J4-C1 J5-C3
377 J1-C1 J2-C1 J3-C3 J4-C2 J5-0
378 J1-C1 J2-C1 J3-C3 J4-C2 J5-C1
379 J1-C1 J2-C1 J3-C3 J4-C2 J5-C2
380 J1-C1 J2-C1 J3-C3 J4-C2 J5-C3
381 J1-C1 J2-C1 J3-C3 J4-C3 J5-0
382 J1-C1 J2-C1 J3-C3 J4-C3 J5-C1
383 J1-C1 J2-C1 J3-C3 J4-C3 J5-C2
384 J1-C1 J2-C1 J3-C3 J4-C3 J5-C3
385 J1-C1 J2-C2 J3-0 J4-0 J5-0
386 J1-C1 J2-C2 J3-0 J4-0 J5-C1
387 J1-C1 J2-C2 J3-0 J4-0 J5-C2
388 J1-C1 J2-C2 J3-0 J4-0 J5-C3
389 J1-C1 J2-C2 J3-0 J4-C1 J5-0
390 J1-C1 J2-C2 J3-0 J4-C1 J5-C1
391 J1-C1 J2-C2 J3-0 J4-C1 J5-C2
392 J1-C1 J2-C2 J3-0 J4-C1 J5-C3
393 J1-C1 J2-C2 J3-0 J4-C2 J5-0
394 J1-C1 J2-C2 J3-0 J4-C2 J5-C1
395 J1-C1 J2-C2 J3-0 J4-C2 J5-C2
396 J1-C1 J2-C2 J3-0 J4-C2 J5-C3
397 J1-C1 J2-C2 J3-0 J4-C3 J5-0
398 J1-C1 J2-C2 J3-0 J4-C3 J5-C1
399 J1-C1 J2-C2 J3-0 J4-C3 J5-C2
400 J1-C1 J2-C2 J3-0 J4-C3 J5-C3
401 J1-C1 J2-C2 J3-C1 J4-0 J5-0
402 J1-C1 J2-C2 J3-C1 J4-0 J5-C1

Option Job 1 Job 2 Job 3 Job 4 Job 5

403 J1-C1 J2-C2 J3-C1 J4-0 J5-C2
404 J1-C1 J2-C2 J3-C1 J4-0 J5-C3
405 J1-C1 J2-C2 J3-C1 J4-C1 J5-0
406 J1-C1 J2-C2 J3-C1 J4-C1 J5-C1
407 J1-C1 J2-C2 J3-C1 J4-C1 J5-C2
408 J1-C1 J2-C2 J3-C1 J4-C1 J5-C3
409 J1-C1 J2-C2 J3-C1 J4-C2 J5-0
410 J1-C1 J2-C2 J3-C1 J4-C2 J5-C1
411 J1-C1 J2-C2 J3-C1 J4-C2 J5-C2
412 J1-C1 J2-C2 J3-C1 J4-C2 J5-C3
413 J1-C1 J2-C2 J3-C1 J4-C3 J5-0
414 J1-C1 J2-C2 J3-C1 J4-C3 J5-C1
415 J1-C1 J2-C2 J3-C1 J4-C3 J5-C2
416 J1-C1 J2-C2 J3-C1 J4-C3 J5-C3
417 J1-C1 J2-C2 J3-C2 J4-0 J5-0
418 J1-C1 J2-C2 J3-C2 J4-0 J5-C1
419 J1-C1 J2-C2 J3-C2 J4-0 J5-C2
420 J1-C1 J2-C2 J3-C2 J4-0 J5-C3
421 J1-C1 J2-C2 J3-C2 J4-C1 J5-0
422 J1-C1 J2-C2 J3-C2 J4-C1 J5-C1
423 J1-C1 J2-C2 J3-C2 J4-C1 J5-C2
424 J1-C1 J2-C2 J3-C2 J4-C1 J5-C3
425 J1-C1 J2-C2 J3-C2 J4-C2 J5-0
426 J1-C1 J2-C2 J3-C2 J4-C2 J5-C1
427 J1-C1 J2-C2 J3-C2 J4-C2 J5-C2
428 J1-C1 J2-C2 J3-C2 J4-C2 J5-C3
429 J1-C1 J2-C2 J3-C2 J4-C3 J5-0
430 J1-C1 J2-C2 J3-C2 J4-C3 J5-C1
431 J1-C1 J2-C2 J3-C2 J4-C3 J5-C2
432 J1-C1 J2-C2 J3-C2 J4-C3 J5-C3
433 J1-C1 J2-C2 J3-C3 J4-0 J5-0
434 J1-C1 J2-C2 J3-C3 J4-0 J5-C1
435 J1-C1 J2-C2 J3-C3 J4-0 J5-C2
436 J1-C1 J2-C2 J3-C3 J4-0 J5-C3
437 J1-C1 J2-C2 J3-C3 J4-C1 J5-0
438 J1-C1 J2-C2 J3-C3 J4-C1 J5-C1
439 J1-C1 J2-C2 J3-C3 J4-C1 J5-C2
440 J1-C1 J2-C2 J3-C3 J4-C1 J5-C3
441 J1-C1 J2-C2 J3-C3 J4-C2 J5-0
442 J1-C1 J2-C2 J3-C3 J4-C2 J5-C1
443 J1-C1 J2-C2 J3-C3 J4-C2 J5-C2
444 J1-C1 J2-C2 J3-C3 J4-C2 J5-C3
445 J1-C1 J2-C2 J3-C3 J4-C3 J5-0
446 J1-C1 J2-C2 J3-C3 J4-C3 J5-C1
447 J1-C1 J2-C2 J3-C3 J4-C3 J5-C2
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448 J1-C1 J2-C2 J3-C3 J4-C3 J5-C3
449 J1-C1 J2-C3 J3-0 J4-0 J5-0
450 J1-C1 J2-C3 J3-0 J4-0 J5-C1
451 J1-C1 J2-C3 J3-0 J4-0 J5-C2
452 J1-C1 J2-C3 J3-0 J4-0 J5-C3
453 J1-C1 J2-C3 J3-0 J4-C1 J5-0
454 J1-C1 J2-C3 J3-0 J4-C1 J5-C1
455 J1-C1 J2-C3 J3-0 J4-C1 J5-C2
456 J1-C1 J2-C3 J3-0 J4-C1 J5-C3
457 J1-C1 J2-C3 J3-0 J4-C2 J5-0
458 J1-C1 J2-C3 J3-0 J4-C2 J5-C1
459 J1-C1 J2-C3 J3-0 J4-C2 J5-C2
460 J1-C1 J2-C3 J3-0 J4-C2 J5-C3
461 J1-C1 J2-C3 J3-0 J4-C3 J5-0
462 J1-C1 J2-C3 J3-0 J4-C3 J5-C1
463 J1-C1 J2-C3 J3-0 J4-C3 J5-C2
464 J1-C1 J2-C3 J3-0 J4-C3 J5-C3
465 J1-C1 J2-C3 J3-C1 J4-0 J5-0
466 J1-C1 J2-C3 J3-C1 J4-0 J5-C1
467 J1-C1 J2-C3 J3-C1 J4-0 J5-C2
468 J1-C1 J2-C3 J3-C1 J4-0 J5-C3
469 J1-C1 J2-C3 J3-C1 J4-C1 J5-0
470 J1-C1 J2-C3 J3-C1 J4-C1 J5-C1
471 J1-C1 J2-C3 J3-C1 J4-C1 J5-C2
472 J1-C1 J2-C3 J3-C1 J4-C1 J5-C3
473 J1-C1 J2-C3 J3-C1 J4-C2 J5-0
474 J1-C1 J2-C3 J3-C1 J4-C2 J5-C1
475 J1-C1 J2-C3 J3-C1 J4-C2 J5-C2
476 J1-C1 J2-C3 J3-C1 J4-C2 J5-C3
477 J1-C1 J2-C3 J3-C1 J4-C3 J5-0
478 J1-C1 J2-C3 J3-C1 J4-C3 J5-C1
479 J1-C1 J2-C3 J3-C1 J4-C3 J5-C2
480 J1-C1 J2-C3 J3-C1 J4-C3 J5-C3
481 J1-C1 J2-C3 J3-C2 J4-0 J5-0
482 J1-C1 J2-C3 J3-C2 J4-0 J5-C1
483 J1-C1 J2-C3 J3-C2 J4-0 J5-C2
484 J1-C1 J2-C3 J3-C2 J4-0 J5-C3
485 J1-C1 J2-C3 J3-C2 J4-C1 J5-0
486 J1-C1 J2-C3 J3-C2 J4-C1 J5-C1
487 J1-C1 J2-C3 J3-C2 J4-C1 J5-C2
488 J1-C1 J2-C3 J3-C2 J4-C1 J5-C3
489 J1-C1 J2-C3 J3-C2 J4-C2 J5-0
490 J1-C1 J2-C3 J3-C2 J4-C2 J5-C1
491 J1-C1 J2-C3 J3-C2 J4-C2 J5-C2
492 J1-C1 J2-C3 J3-C2 J4-C2 J5-C3

Option Job 1 Job 2 Job 3 Job 4 Job 5

493 J1-C1 J2-C3 J3-C2 J4-C3 J5-0
494 J1-C1 J2-C3 J3-C2 J4-C3 J5-C1
495 J1-C1 J2-C3 J3-C2 J4-C3 J5-C2
496 J1-C1 J2-C3 J3-C2 J4-C3 J5-C3
497 J1-C1 J2-C3 J3-C3 J4-0 J5-0
498 J1-C1 J2-C3 J3-C3 J4-0 J5-C1
499 J1-C1 J2-C3 J3-C3 J4-0 J5-C2
500 J1-C1 J2-C3 J3-C3 J4-0 J5-C3
501 J1-C1 J2-C3 J3-C3 J4-C1 J5-0
502 J1-C1 J2-C3 J3-C3 J4-C1 J5-C1
503 J1-C1 J2-C3 J3-C3 J4-C1 J5-C2
504 J1-C1 J2-C3 J3-C3 J4-C1 J5-C3
505 J1-C1 J2-C3 J3-C3 J4-C2 J5-0
506 J1-C1 J2-C3 J3-C3 J4-C2 J5-C1
507 J1-C1 J2-C3 J3-C3 J4-C2 J5-C2
508 J1-C1 J2-C3 J3-C3 J4-C2 J5-C3
509 J1-C1 J2-C3 J3-C3 J4-C3 J5-0
510 J1-C1 J2-C3 J3-C3 J4-C3 J5-C1
511 J1-C1 J2-C3 J3-C3 J4-C3 J5-C2
512 J1-C1 J2-C3 J3-C3 J4-C3 J5-C3
513 J1-C2 J2-0 J3-0 J4-0 J5-0
514 J1-C2 J2-0 J3-0 J4-0 J5-C1
515 J1-C2 J2-0 J3-0 J4-0 J5-C2
516 J1-C2 J2-0 J3-0 J4-0 J5-C3
517 J1-C2 J2-0 J3-0 J4-C1 J5-0
518 J1-C2 J2-0 J3-0 J4-C1 J5-C1
519 J1-C2 J2-0 J3-0 J4-C1 J5-C2
520 J1-C2 J2-0 J3-0 J4-C1 J5-C3
521 J1-C2 J2-0 J3-0 J4-C2 J5-0
522 J1-C2 J2-0 J3-0 J4-C2 J5-C1
523 J1-C2 J2-0 J3-0 J4-C2 J5-C2
524 J1-C2 J2-0 J3-0 J4-C2 J5-C3
525 J1-C2 J2-0 J3-0 J4-C3 J5-0
526 J1-C2 J2-0 J3-0 J4-C3 J5-C1
527 J1-C2 J2-0 J3-0 J4-C3 J5-C2
528 J1-C2 J2-0 J3-0 J4-C3 J5-C3
529 J1-C2 J2-0 J3-C1 J4-0 J5-0
530 J1-C2 J2-0 J3-C1 J4-0 J5-C1
531 J1-C2 J2-0 J3-C1 J4-0 J5-C2
532 J1-C2 J2-0 J3-C1 J4-0 J5-C3
533 J1-C2 J2-0 J3-C1 J4-C1 J5-0
534 J1-C2 J2-0 J3-C1 J4-C1 J5-C1
535 J1-C2 J2-0 J3-C1 J4-C1 J5-C2
536 J1-C2 J2-0 J3-C1 J4-C1 J5-C3
537 J1-C2 J2-0 J3-C1 J4-C2 J5-0
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538 J1-C2 J2-0 J3-C1 J4-C2 J5-C1
539 J1-C2 J2-0 J3-C1 J4-C2 J5-C2
540 J1-C2 J2-0 J3-C1 J4-C2 J5-C3
541 J1-C2 J2-0 J3-C1 J4-C3 J5-0
542 J1-C2 J2-0 J3-C1 J4-C3 J5-C1
543 J1-C2 J2-0 J3-C1 J4-C3 J5-C2
544 J1-C2 J2-0 J3-C1 J4-C3 J5-C3
545 J1-C2 J2-0 J3-C2 J4-0 J5-0
546 J1-C2 J2-0 J3-C2 J4-0 J5-C1
547 J1-C2 J2-0 J3-C2 J4-0 J5-C2
548 J1-C2 J2-0 J3-C2 J4-0 J5-C3
549 J1-C2 J2-0 J3-C2 J4-C1 J5-0
550 J1-C2 J2-0 J3-C2 J4-C1 J5-C1
551 J1-C2 J2-0 J3-C2 J4-C1 J5-C2
552 J1-C2 J2-0 J3-C2 J4-C1 J5-C3
553 J1-C2 J2-0 J3-C2 J4-C2 J5-0
554 J1-C2 J2-0 J3-C2 J4-C2 J5-C1
555 J1-C2 J2-0 J3-C2 J4-C2 J5-C2
556 J1-C2 J2-0 J3-C2 J4-C2 J5-C3
557 J1-C2 J2-0 J3-C2 J4-C3 J5-0
558 J1-C2 J2-0 J3-C2 J4-C3 J5-C1
559 J1-C2 J2-0 J3-C2 J4-C3 J5-C2
560 J1-C2 J2-0 J3-C2 J4-C3 J5-C3
561 J1-C2 J2-0 J3-C3 J4-0 J5-0
562 J1-C2 J2-0 J3-C3 J4-0 J5-C1
563 J1-C2 J2-0 J3-C3 J4-0 J5-C2
564 J1-C2 J2-0 J3-C3 J4-0 J5-C3
565 J1-C2 J2-0 J3-C3 J4-C1 J5-0
566 J1-C2 J2-0 J3-C3 J4-C1 J5-C1
567 J1-C2 J2-0 J3-C3 J4-C1 J5-C2
568 J1-C2 J2-0 J3-C3 J4-C1 J5-C3
569 J1-C2 J2-0 J3-C3 J4-C2 J5-0
570 J1-C2 J2-0 J3-C3 J4-C2 J5-C1
571 J1-C2 J2-0 J3-C3 J4-C2 J5-C2
572 J1-C2 J2-0 J3-C3 J4-C2 J5-C3
573 J1-C2 J2-0 J3-C3 J4-C3 J5-0
574 J1-C2 J2-0 J3-C3 J4-C3 J5-C1
575 J1-C2 J2-0 J3-C3 J4-C3 J5-C2
576 J1-C2 J2-0 J3-C3 J4-C3 J5-C3
577 J1-C2 J2-C1 J3-0 J4-0 J5-0
578 J1-C2 J2-C1 J3-0 J4-0 J5-C1
579 J1-C2 J2-C1 J3-0 J4-0 J5-C2
580 J1-C2 J2-C1 J3-0 J4-0 J5-C3
581 J1-C2 J2-C1 J3-0 J4-C1 J5-0
582 J1-C2 J2-C1 J3-0 J4-C1 J5-C1
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583 J1-C2 J2-C1 J3-0 J4-C1 J5-C2
584 J1-C2 J2-C1 J3-0 J4-C1 J5-C3
585 J1-C2 J2-C1 J3-0 J4-C2 J5-0
586 J1-C2 J2-C1 J3-0 J4-C2 J5-C1
587 J1-C2 J2-C1 J3-0 J4-C2 J5-C2
588 J1-C2 J2-C1 J3-0 J4-C2 J5-C3
589 J1-C2 J2-C1 J3-0 J4-C3 J5-0
590 J1-C2 J2-C1 J3-0 J4-C3 J5-C1
591 J1-C2 J2-C1 J3-0 J4-C3 J5-C2
592 J1-C2 J2-C1 J3-0 J4-C3 J5-C3
593 J1-C2 J2-C1 J3-C1 J4-0 J5-0
594 J1-C2 J2-C1 J3-C1 J4-0 J5-C1
595 J1-C2 J2-C1 J3-C1 J4-0 J5-C2
596 J1-C2 J2-C1 J3-C1 J4-0 J5-C3
597 J1-C2 J2-C1 J3-C1 J4-C1 J5-0
598 J1-C2 J2-C1 J3-C1 J4-C1 J5-C1
599 J1-C2 J2-C1 J3-C1 J4-C1 J5-C2
600 J1-C2 J2-C1 J3-C1 J4-C1 J5-C3
601 J1-C2 J2-C1 J3-C1 J4-C2 J5-0
602 J1-C2 J2-C1 J3-C1 J4-C2 J5-C1
603 J1-C2 J2-C1 J3-C1 J4-C2 J5-C2
604 J1-C2 J2-C1 J3-C1 J4-C2 J5-C3
605 J1-C2 J2-C1 J3-C1 J4-C3 J5-0
606 J1-C2 J2-C1 J3-C1 J4-C3 J5-C1
607 J1-C2 J2-C1 J3-C1 J4-C3 J5-C2
608 J1-C2 J2-C1 J3-C1 J4-C3 J5-C3
609 J1-C2 J2-C1 J3-C2 J4-0 J5-0
610 J1-C2 J2-C1 J3-C2 J4-0 J5-C1
611 J1-C2 J2-C1 J3-C2 J4-0 J5-C2
612 J1-C2 J2-C1 J3-C2 J4-0 J5-C3
613 J1-C2 J2-C1 J3-C2 J4-C1 J5-0
614 J1-C2 J2-C1 J3-C2 J4-C1 J5-C1
615 J1-C2 J2-C1 J3-C2 J4-C1 J5-C2
616 J1-C2 J2-C1 J3-C2 J4-C1 J5-C3
617 J1-C2 J2-C1 J3-C2 J4-C2 J5-0
618 J1-C2 J2-C1 J3-C2 J4-C2 J5-C1
619 J1-C2 J2-C1 J3-C2 J4-C2 J5-C2
620 J1-C2 J2-C1 J3-C2 J4-C2 J5-C3
621 J1-C2 J2-C1 J3-C2 J4-C3 J5-0
622 J1-C2 J2-C1 J3-C2 J4-C3 J5-C1
623 J1-C2 J2-C1 J3-C2 J4-C3 J5-C2
624 J1-C2 J2-C1 J3-C2 J4-C3 J5-C3
625 J1-C2 J2-C1 J3-C3 J4-0 J5-0
626 J1-C2 J2-C1 J3-C3 J4-0 J5-C1
627 J1-C2 J2-C1 J3-C3 J4-0 J5-C2

135



APPENDIX A. APPENDIX

Option Job 1 Job 2 Job 3 Job 4 Job 5

628 J1-C2 J2-C1 J3-C3 J4-0 J5-C3
629 J1-C2 J2-C1 J3-C3 J4-C1 J5-0
630 J1-C2 J2-C1 J3-C3 J4-C1 J5-C1
631 J1-C2 J2-C1 J3-C3 J4-C1 J5-C2
632 J1-C2 J2-C1 J3-C3 J4-C1 J5-C3
633 J1-C2 J2-C1 J3-C3 J4-C2 J5-0
634 J1-C2 J2-C1 J3-C3 J4-C2 J5-C1
635 J1-C2 J2-C1 J3-C3 J4-C2 J5-C2
636 J1-C2 J2-C1 J3-C3 J4-C2 J5-C3
637 J1-C2 J2-C1 J3-C3 J4-C3 J5-0
638 J1-C2 J2-C1 J3-C3 J4-C3 J5-C1
639 J1-C2 J2-C1 J3-C3 J4-C3 J5-C2
640 J1-C2 J2-C1 J3-C3 J4-C3 J5-C3
641 J1-C2 J2-C2 J3-0 J4-0 J5-0
642 J1-C2 J2-C2 J3-0 J4-0 J5-C1
643 J1-C2 J2-C2 J3-0 J4-0 J5-C2
644 J1-C2 J2-C2 J3-0 J4-0 J5-C3
645 J1-C2 J2-C2 J3-0 J4-C1 J5-0
646 J1-C2 J2-C2 J3-0 J4-C1 J5-C1
647 J1-C2 J2-C2 J3-0 J4-C1 J5-C2
648 J1-C2 J2-C2 J3-0 J4-C1 J5-C3
649 J1-C2 J2-C2 J3-0 J4-C2 J5-0
650 J1-C2 J2-C2 J3-0 J4-C2 J5-C1
651 J1-C2 J2-C2 J3-0 J4-C2 J5-C2
652 J1-C2 J2-C2 J3-0 J4-C2 J5-C3
653 J1-C2 J2-C2 J3-0 J4-C3 J5-0
654 J1-C2 J2-C2 J3-0 J4-C3 J5-C1
655 J1-C2 J2-C2 J3-0 J4-C3 J5-C2
656 J1-C2 J2-C2 J3-0 J4-C3 J5-C3
657 J1-C2 J2-C2 J3-C1 J4-0 J5-0
658 J1-C2 J2-C2 J3-C1 J4-0 J5-C1
659 J1-C2 J2-C2 J3-C1 J4-0 J5-C2
660 J1-C2 J2-C2 J3-C1 J4-0 J5-C3
661 J1-C2 J2-C2 J3-C1 J4-C1 J5-0
662 J1-C2 J2-C2 J3-C1 J4-C1 J5-C1
663 J1-C2 J2-C2 J3-C1 J4-C1 J5-C2
664 J1-C2 J2-C2 J3-C1 J4-C1 J5-C3
665 J1-C2 J2-C2 J3-C1 J4-C2 J5-0
666 J1-C2 J2-C2 J3-C1 J4-C2 J5-C1
667 J1-C2 J2-C2 J3-C1 J4-C2 J5-C2
668 J1-C2 J2-C2 J3-C1 J4-C2 J5-C3
669 J1-C2 J2-C2 J3-C1 J4-C3 J5-0
670 J1-C2 J2-C2 J3-C1 J4-C3 J5-C1
671 J1-C2 J2-C2 J3-C1 J4-C3 J5-C2
672 J1-C2 J2-C2 J3-C1 J4-C3 J5-C3

Option Job 1 Job 2 Job 3 Job 4 Job 5

673 J1-C2 J2-C2 J3-C2 J4-0 J5-0
674 J1-C2 J2-C2 J3-C2 J4-0 J5-C1
675 J1-C2 J2-C2 J3-C2 J4-0 J5-C2
676 J1-C2 J2-C2 J3-C2 J4-0 J5-C3
677 J1-C2 J2-C2 J3-C2 J4-C1 J5-0
678 J1-C2 J2-C2 J3-C2 J4-C1 J5-C1
679 J1-C2 J2-C2 J3-C2 J4-C1 J5-C2
680 J1-C2 J2-C2 J3-C2 J4-C1 J5-C3
681 J1-C2 J2-C2 J3-C2 J4-C2 J5-0
682 J1-C2 J2-C2 J3-C2 J4-C2 J5-C1
683 J1-C2 J2-C2 J3-C2 J4-C2 J5-C2
684 J1-C2 J2-C2 J3-C2 J4-C2 J5-C3
685 J1-C2 J2-C2 J3-C2 J4-C3 J5-0
686 J1-C2 J2-C2 J3-C2 J4-C3 J5-C1
687 J1-C2 J2-C2 J3-C2 J4-C3 J5-C2
688 J1-C2 J2-C2 J3-C2 J4-C3 J5-C3
689 J1-C2 J2-C2 J3-C3 J4-0 J5-0
690 J1-C2 J2-C2 J3-C3 J4-0 J5-C1
691 J1-C2 J2-C2 J3-C3 J4-0 J5-C2
692 J1-C2 J2-C2 J3-C3 J4-0 J5-C3
693 J1-C2 J2-C2 J3-C3 J4-C1 J5-0
694 J1-C2 J2-C2 J3-C3 J4-C1 J5-C1
695 J1-C2 J2-C2 J3-C3 J4-C1 J5-C2
696 J1-C2 J2-C2 J3-C3 J4-C1 J5-C3
697 J1-C2 J2-C2 J3-C3 J4-C2 J5-0
698 J1-C2 J2-C2 J3-C3 J4-C2 J5-C1
699 J1-C2 J2-C2 J3-C3 J4-C2 J5-C2
700 J1-C2 J2-C2 J3-C3 J4-C2 J5-C3
701 J1-C2 J2-C2 J3-C3 J4-C3 J5-0
702 J1-C2 J2-C2 J3-C3 J4-C3 J5-C1
703 J1-C2 J2-C2 J3-C3 J4-C3 J5-C2
704 J1-C2 J2-C2 J3-C3 J4-C3 J5-C3
705 J1-C2 J2-C3 J3-0 J4-0 J5-0
706 J1-C2 J2-C3 J3-0 J4-0 J5-C1
707 J1-C2 J2-C3 J3-0 J4-0 J5-C2
708 J1-C2 J2-C3 J3-0 J4-0 J5-C3
709 J1-C2 J2-C3 J3-0 J4-C1 J5-0
710 J1-C2 J2-C3 J3-0 J4-C1 J5-C1
711 J1-C2 J2-C3 J3-0 J4-C1 J5-C2
712 J1-C2 J2-C3 J3-0 J4-C1 J5-C3
713 J1-C2 J2-C3 J3-0 J4-C2 J5-0
714 J1-C2 J2-C3 J3-0 J4-C2 J5-C1
715 J1-C2 J2-C3 J3-0 J4-C2 J5-C2
716 J1-C2 J2-C3 J3-0 J4-C2 J5-C3
717 J1-C2 J2-C3 J3-0 J4-C3 J5-0
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718 J1-C2 J2-C3 J3-0 J4-C3 J5-C1
719 J1-C2 J2-C3 J3-0 J4-C3 J5-C2
720 J1-C2 J2-C3 J3-0 J4-C3 J5-C3
721 J1-C2 J2-C3 J3-C1 J4-0 J5-0
722 J1-C2 J2-C3 J3-C1 J4-0 J5-C1
723 J1-C2 J2-C3 J3-C1 J4-0 J5-C2
724 J1-C2 J2-C3 J3-C1 J4-0 J5-C3
725 J1-C2 J2-C3 J3-C1 J4-C1 J5-0
726 J1-C2 J2-C3 J3-C1 J4-C1 J5-C1
727 J1-C2 J2-C3 J3-C1 J4-C1 J5-C2
728 J1-C2 J2-C3 J3-C1 J4-C1 J5-C3
729 J1-C2 J2-C3 J3-C1 J4-C2 J5-0
730 J1-C2 J2-C3 J3-C1 J4-C2 J5-C1
731 J1-C2 J2-C3 J3-C1 J4-C2 J5-C2
732 J1-C2 J2-C3 J3-C1 J4-C2 J5-C3
733 J1-C2 J2-C3 J3-C1 J4-C3 J5-0
734 J1-C2 J2-C3 J3-C1 J4-C3 J5-C1
735 J1-C2 J2-C3 J3-C1 J4-C3 J5-C2
736 J1-C2 J2-C3 J3-C1 J4-C3 J5-C3
737 J1-C2 J2-C3 J3-C2 J4-0 J5-0
738 J1-C2 J2-C3 J3-C2 J4-0 J5-C1
739 J1-C2 J2-C3 J3-C2 J4-0 J5-C2
740 J1-C2 J2-C3 J3-C2 J4-0 J5-C3
741 J1-C2 J2-C3 J3-C2 J4-C1 J5-0
742 J1-C2 J2-C3 J3-C2 J4-C1 J5-C1
743 J1-C2 J2-C3 J3-C2 J4-C1 J5-C2
744 J1-C2 J2-C3 J3-C2 J4-C1 J5-C3
745 J1-C2 J2-C3 J3-C2 J4-C2 J5-0
746 J1-C2 J2-C3 J3-C2 J4-C2 J5-C1
747 J1-C2 J2-C3 J3-C2 J4-C2 J5-C2
748 J1-C2 J2-C3 J3-C2 J4-C2 J5-C3
749 J1-C2 J2-C3 J3-C2 J4-C3 J5-0
750 J1-C2 J2-C3 J3-C2 J4-C3 J5-C1
751 J1-C2 J2-C3 J3-C2 J4-C3 J5-C2
752 J1-C2 J2-C3 J3-C2 J4-C3 J5-C3
753 J1-C2 J2-C3 J3-C3 J4-0 J5-0
754 J1-C2 J2-C3 J3-C3 J4-0 J5-C1
755 J1-C2 J2-C3 J3-C3 J4-0 J5-C2
756 J1-C2 J2-C3 J3-C3 J4-0 J5-C3
757 J1-C2 J2-C3 J3-C3 J4-C1 J5-0
758 J1-C2 J2-C3 J3-C3 J4-C1 J5-C1
759 J1-C2 J2-C3 J3-C3 J4-C1 J5-C2
760 J1-C2 J2-C3 J3-C3 J4-C1 J5-C3
761 J1-C2 J2-C3 J3-C3 J4-C2 J5-0
762 J1-C2 J2-C3 J3-C3 J4-C2 J5-C1

Option Job 1 Job 2 Job 3 Job 4 Job 5

763 J1-C2 J2-C3 J3-C3 J4-C2 J5-C2
764 J1-C2 J2-C3 J3-C3 J4-C2 J5-C3
765 J1-C2 J2-C3 J3-C3 J4-C3 J5-0
766 J1-C2 J2-C3 J3-C3 J4-C3 J5-C1
767 J1-C2 J2-C3 J3-C3 J4-C3 J5-C2
768 J1-C2 J2-C3 J3-C3 J4-C3 J5-C3
769 J1-C3 J2-0 J3-0 J4-0 J5-0
770 J1-C3 J2-0 J3-0 J4-0 J5-C1
771 J1-C3 J2-0 J3-0 J4-0 J5-C2
772 J1-C3 J2-0 J3-0 J4-0 J5-C3
773 J1-C3 J2-0 J3-0 J4-C1 J5-0
774 J1-C3 J2-0 J3-0 J4-C1 J5-C1
775 J1-C3 J2-0 J3-0 J4-C1 J5-C2
776 J1-C3 J2-0 J3-0 J4-C1 J5-C3
777 J1-C3 J2-0 J3-0 J4-C2 J5-0
778 J1-C3 J2-0 J3-0 J4-C2 J5-C1
779 J1-C3 J2-0 J3-0 J4-C2 J5-C2
780 J1-C3 J2-0 J3-0 J4-C2 J5-C3
781 J1-C3 J2-0 J3-0 J4-C3 J5-0
782 J1-C3 J2-0 J3-0 J4-C3 J5-C1
783 J1-C3 J2-0 J3-0 J4-C3 J5-C2
784 J1-C3 J2-0 J3-0 J4-C3 J5-C3
785 J1-C3 J2-0 J3-C1 J4-0 J5-0
786 J1-C3 J2-0 J3-C1 J4-0 J5-C1
787 J1-C3 J2-0 J3-C1 J4-0 J5-C2
788 J1-C3 J2-0 J3-C1 J4-0 J5-C3
789 J1-C3 J2-0 J3-C1 J4-C1 J5-0
790 J1-C3 J2-0 J3-C1 J4-C1 J5-C1
791 J1-C3 J2-0 J3-C1 J4-C1 J5-C2
792 J1-C3 J2-0 J3-C1 J4-C1 J5-C3
793 J1-C3 J2-0 J3-C1 J4-C2 J5-0
794 J1-C3 J2-0 J3-C1 J4-C2 J5-C1
795 J1-C3 J2-0 J3-C1 J4-C2 J5-C2
796 J1-C3 J2-0 J3-C1 J4-C2 J5-C3
797 J1-C3 J2-0 J3-C1 J4-C3 J5-0
798 J1-C3 J2-0 J3-C1 J4-C3 J5-C1
799 J1-C3 J2-0 J3-C1 J4-C3 J5-C2
800 J1-C3 J2-0 J3-C1 J4-C3 J5-C3
801 J1-C3 J2-0 J3-C2 J4-0 J5-0
802 J1-C3 J2-0 J3-C2 J4-0 J5-C1
803 J1-C3 J2-0 J3-C2 J4-0 J5-C2
804 J1-C3 J2-0 J3-C2 J4-0 J5-C3
805 J1-C3 J2-0 J3-C2 J4-C1 J5-0
806 J1-C3 J2-0 J3-C2 J4-C1 J5-C1
807 J1-C3 J2-0 J3-C2 J4-C1 J5-C2
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808 J1-C3 J2-0 J3-C2 J4-C1 J5-C3
809 J1-C3 J2-0 J3-C2 J4-C2 J5-0
810 J1-C3 J2-0 J3-C2 J4-C2 J5-C1
811 J1-C3 J2-0 J3-C2 J4-C2 J5-C2
812 J1-C3 J2-0 J3-C2 J4-C2 J5-C3
813 J1-C3 J2-0 J3-C2 J4-C3 J5-0
814 J1-C3 J2-0 J3-C2 J4-C3 J5-C1
815 J1-C3 J2-0 J3-C2 J4-C3 J5-C2
816 J1-C3 J2-0 J3-C2 J4-C3 J5-C3
817 J1-C3 J2-0 J3-C3 J4-0 J5-0
818 J1-C3 J2-0 J3-C3 J4-0 J5-C1
819 J1-C3 J2-0 J3-C3 J4-0 J5-C2
820 J1-C3 J2-0 J3-C3 J4-0 J5-C3
821 J1-C3 J2-0 J3-C3 J4-C1 J5-0
822 J1-C3 J2-0 J3-C3 J4-C1 J5-C1
823 J1-C3 J2-0 J3-C3 J4-C1 J5-C2
824 J1-C3 J2-0 J3-C3 J4-C1 J5-C3
825 J1-C3 J2-0 J3-C3 J4-C2 J5-0
826 J1-C3 J2-0 J3-C3 J4-C2 J5-C1
827 J1-C3 J2-0 J3-C3 J4-C2 J5-C2
828 J1-C3 J2-0 J3-C3 J4-C2 J5-C3
829 J1-C3 J2-0 J3-C3 J4-C3 J5-0
830 J1-C3 J2-0 J3-C3 J4-C3 J5-C1
831 J1-C3 J2-0 J3-C3 J4-C3 J5-C2
832 J1-C3 J2-0 J3-C3 J4-C3 J5-C3
833 J1-C3 J2-C1 J3-0 J4-0 J5-0
834 J1-C3 J2-C1 J3-0 J4-0 J5-C1
835 J1-C3 J2-C1 J3-0 J4-0 J5-C2
836 J1-C3 J2-C1 J3-0 J4-0 J5-C3
837 J1-C3 J2-C1 J3-0 J4-C1 J5-0
838 J1-C3 J2-C1 J3-0 J4-C1 J5-C1
839 J1-C3 J2-C1 J3-0 J4-C1 J5-C2
840 J1-C3 J2-C1 J3-0 J4-C1 J5-C3
841 J1-C3 J2-C1 J3-0 J4-C2 J5-0
842 J1-C3 J2-C1 J3-0 J4-C2 J5-C1
843 J1-C3 J2-C1 J3-0 J4-C2 J5-C2
844 J1-C3 J2-C1 J3-0 J4-C2 J5-C3
845 J1-C3 J2-C1 J3-0 J4-C3 J5-0
846 J1-C3 J2-C1 J3-0 J4-C3 J5-C1
847 J1-C3 J2-C1 J3-0 J4-C3 J5-C2
848 J1-C3 J2-C1 J3-0 J4-C3 J5-C3
849 J1-C3 J2-C1 J3-C1 J4-0 J5-0
850 J1-C3 J2-C1 J3-C1 J4-0 J5-C1
851 J1-C3 J2-C1 J3-C1 J4-0 J5-C2
852 J1-C3 J2-C1 J3-C1 J4-0 J5-C3
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853 J1-C3 J2-C1 J3-C1 J4-C1 J5-0
854 J1-C3 J2-C1 J3-C1 J4-C1 J5-C1
855 J1-C3 J2-C1 J3-C1 J4-C1 J5-C2
856 J1-C3 J2-C1 J3-C1 J4-C1 J5-C3
857 J1-C3 J2-C1 J3-C1 J4-C2 J5-0
858 J1-C3 J2-C1 J3-C1 J4-C2 J5-C1
859 J1-C3 J2-C1 J3-C1 J4-C2 J5-C2
860 J1-C3 J2-C1 J3-C1 J4-C2 J5-C3
861 J1-C3 J2-C1 J3-C1 J4-C3 J5-0
862 J1-C3 J2-C1 J3-C1 J4-C3 J5-C1
863 J1-C3 J2-C1 J3-C1 J4-C3 J5-C2
864 J1-C3 J2-C1 J3-C1 J4-C3 J5-C3
865 J1-C3 J2-C1 J3-C2 J4-0 J5-0
866 J1-C3 J2-C1 J3-C2 J4-0 J5-C1
867 J1-C3 J2-C1 J3-C2 J4-0 J5-C2
868 J1-C3 J2-C1 J3-C2 J4-0 J5-C3
869 J1-C3 J2-C1 J3-C2 J4-C1 J5-0
870 J1-C3 J2-C1 J3-C2 J4-C1 J5-C1
871 J1-C3 J2-C1 J3-C2 J4-C1 J5-C2
872 J1-C3 J2-C1 J3-C2 J4-C1 J5-C3
873 J1-C3 J2-C1 J3-C2 J4-C2 J5-0
874 J1-C3 J2-C1 J3-C2 J4-C2 J5-C1
875 J1-C3 J2-C1 J3-C2 J4-C2 J5-C2
876 J1-C3 J2-C1 J3-C2 J4-C2 J5-C3
877 J1-C3 J2-C1 J3-C2 J4-C3 J5-0
878 J1-C3 J2-C1 J3-C2 J4-C3 J5-C1
879 J1-C3 J2-C1 J3-C2 J4-C3 J5-C2
880 J1-C3 J2-C1 J3-C2 J4-C3 J5-C3
881 J1-C3 J2-C1 J3-C3 J4-0 J5-0
882 J1-C3 J2-C1 J3-C3 J4-0 J5-C1
883 J1-C3 J2-C1 J3-C3 J4-0 J5-C2
884 J1-C3 J2-C1 J3-C3 J4-0 J5-C3
885 J1-C3 J2-C1 J3-C3 J4-C1 J5-0
886 J1-C3 J2-C1 J3-C3 J4-C1 J5-C1
887 J1-C3 J2-C1 J3-C3 J4-C1 J5-C2
888 J1-C3 J2-C1 J3-C3 J4-C1 J5-C3
889 J1-C3 J2-C1 J3-C3 J4-C2 J5-0
890 J1-C3 J2-C1 J3-C3 J4-C2 J5-C1
891 J1-C3 J2-C1 J3-C3 J4-C2 J5-C2
892 J1-C3 J2-C1 J3-C3 J4-C2 J5-C3
893 J1-C3 J2-C1 J3-C3 J4-C3 J5-0
894 J1-C3 J2-C1 J3-C3 J4-C3 J5-C1
895 J1-C3 J2-C1 J3-C3 J4-C3 J5-C2
896 J1-C3 J2-C1 J3-C3 J4-C3 J5-C3
897 J1-C3 J2-C2 J3-0 J4-0 J5-0
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898 J1-C3 J2-C2 J3-0 J4-0 J5-C1
899 J1-C3 J2-C2 J3-0 J4-0 J5-C2
900 J1-C3 J2-C2 J3-0 J4-0 J5-C3
901 J1-C3 J2-C2 J3-0 J4-C1 J5-0
902 J1-C3 J2-C2 J3-0 J4-C1 J5-C1
903 J1-C3 J2-C2 J3-0 J4-C1 J5-C2
904 J1-C3 J2-C2 J3-0 J4-C1 J5-C3
905 J1-C3 J2-C2 J3-0 J4-C2 J5-0
906 J1-C3 J2-C2 J3-0 J4-C2 J5-C1
907 J1-C3 J2-C2 J3-0 J4-C2 J5-C2
908 J1-C3 J2-C2 J3-0 J4-C2 J5-C3
909 J1-C3 J2-C2 J3-0 J4-C3 J5-0
910 J1-C3 J2-C2 J3-0 J4-C3 J5-C1
911 J1-C3 J2-C2 J3-0 J4-C3 J5-C2
912 J1-C3 J2-C2 J3-0 J4-C3 J5-C3
913 J1-C3 J2-C2 J3-C1 J4-0 J5-0
914 J1-C3 J2-C2 J3-C1 J4-0 J5-C1
915 J1-C3 J2-C2 J3-C1 J4-0 J5-C2
916 J1-C3 J2-C2 J3-C1 J4-0 J5-C3
917 J1-C3 J2-C2 J3-C1 J4-C1 J5-0
918 J1-C3 J2-C2 J3-C1 J4-C1 J5-C1
919 J1-C3 J2-C2 J3-C1 J4-C1 J5-C2
920 J1-C3 J2-C2 J3-C1 J4-C1 J5-C3
921 J1-C3 J2-C2 J3-C1 J4-C2 J5-0
922 J1-C3 J2-C2 J3-C1 J4-C2 J5-C1
923 J1-C3 J2-C2 J3-C1 J4-C2 J5-C2
924 J1-C3 J2-C2 J3-C1 J4-C2 J5-C3
925 J1-C3 J2-C2 J3-C1 J4-C3 J5-0
926 J1-C3 J2-C2 J3-C1 J4-C3 J5-C1
927 J1-C3 J2-C2 J3-C1 J4-C3 J5-C2
928 J1-C3 J2-C2 J3-C1 J4-C3 J5-C3
929 J1-C3 J2-C2 J3-C2 J4-0 J5-0
930 J1-C3 J2-C2 J3-C2 J4-0 J5-C1
931 J1-C3 J2-C2 J3-C2 J4-0 J5-C2
932 J1-C3 J2-C2 J3-C2 J4-0 J5-C3
933 J1-C3 J2-C2 J3-C2 J4-C1 J5-0
934 J1-C3 J2-C2 J3-C2 J4-C1 J5-C1
935 J1-C3 J2-C2 J3-C2 J4-C1 J5-C2
936 J1-C3 J2-C2 J3-C2 J4-C1 J5-C3
937 J1-C3 J2-C2 J3-C2 J4-C2 J5-0
938 J1-C3 J2-C2 J3-C2 J4-C2 J5-C1
939 J1-C3 J2-C2 J3-C2 J4-C2 J5-C2
940 J1-C3 J2-C2 J3-C2 J4-C2 J5-C3
941 J1-C3 J2-C2 J3-C2 J4-C3 J5-0
942 J1-C3 J2-C2 J3-C2 J4-C3 J5-C1

Option Job 1 Job 2 Job 3 Job 4 Job 5

943 J1-C3 J2-C2 J3-C2 J4-C3 J5-C2
944 J1-C3 J2-C2 J3-C2 J4-C3 J5-C3
945 J1-C3 J2-C2 J3-C3 J4-0 J5-0
946 J1-C3 J2-C2 J3-C3 J4-0 J5-C1
947 J1-C3 J2-C2 J3-C3 J4-0 J5-C2
948 J1-C3 J2-C2 J3-C3 J4-0 J5-C3
949 J1-C3 J2-C2 J3-C3 J4-C1 J5-0
950 J1-C3 J2-C2 J3-C3 J4-C1 J5-C1
951 J1-C3 J2-C2 J3-C3 J4-C1 J5-C2
952 J1-C3 J2-C2 J3-C3 J4-C1 J5-C3
953 J1-C3 J2-C2 J3-C3 J4-C2 J5-0
954 J1-C3 J2-C2 J3-C3 J4-C2 J5-C1
955 J1-C3 J2-C2 J3-C3 J4-C2 J5-C2
956 J1-C3 J2-C2 J3-C3 J4-C2 J5-C3
957 J1-C3 J2-C2 J3-C3 J4-C3 J5-0
958 J1-C3 J2-C2 J3-C3 J4-C3 J5-C1
959 J1-C3 J2-C2 J3-C3 J4-C3 J5-C2
960 J1-C3 J2-C2 J3-C3 J4-C3 J5-C3
961 J1-C3 J2-C3 J3-0 J4-0 J5-0
962 J1-C3 J2-C3 J3-0 J4-0 J5-C1
963 J1-C3 J2-C3 J3-0 J4-0 J5-C2
964 J1-C3 J2-C3 J3-0 J4-0 J5-C3
965 J1-C3 J2-C3 J3-0 J4-C1 J5-0
966 J1-C3 J2-C3 J3-0 J4-C1 J5-C1
967 J1-C3 J2-C3 J3-0 J4-C1 J5-C2
968 J1-C3 J2-C3 J3-0 J4-C1 J5-C3
969 J1-C3 J2-C3 J3-0 J4-C2 J5-0
970 J1-C3 J2-C3 J3-0 J4-C2 J5-C1
971 J1-C3 J2-C3 J3-0 J4-C2 J5-C2
972 J1-C3 J2-C3 J3-0 J4-C2 J5-C3
973 J1-C3 J2-C3 J3-0 J4-C3 J5-0
974 J1-C3 J2-C3 J3-0 J4-C3 J5-C1
975 J1-C3 J2-C3 J3-0 J4-C3 J5-C2
976 J1-C3 J2-C3 J3-0 J4-C3 J5-C3
977 J1-C3 J2-C3 J3-C1 J4-0 J5-0
978 J1-C3 J2-C3 J3-C1 J4-0 J5-C1
979 J1-C3 J2-C3 J3-C1 J4-0 J5-C2
980 J1-C3 J2-C3 J3-C1 J4-0 J5-C3
981 J1-C3 J2-C3 J3-C1 J4-C1 J5-0
982 J1-C3 J2-C3 J3-C1 J4-C1 J5-C1
983 J1-C3 J2-C3 J3-C1 J4-C1 J5-C2
984 J1-C3 J2-C3 J3-C1 J4-C1 J5-C3
985 J1-C3 J2-C3 J3-C1 J4-C2 J5-0
986 J1-C3 J2-C3 J3-C1 J4-C2 J5-C1
987 J1-C3 J2-C3 J3-C1 J4-C2 J5-C2
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988 J1-C3 J2-C3 J3-C1 J4-C2 J5-C3
989 J1-C3 J2-C3 J3-C1 J4-C3 J5-0
990 J1-C3 J2-C3 J3-C1 J4-C3 J5-C1
991 J1-C3 J2-C3 J3-C1 J4-C3 J5-C2
992 J1-C3 J2-C3 J3-C1 J4-C3 J5-C3
993 J1-C3 J2-C3 J3-C2 J4-0 J5-0
994 J1-C3 J2-C3 J3-C2 J4-0 J5-C1
995 J1-C3 J2-C3 J3-C2 J4-0 J5-C2
996 J1-C3 J2-C3 J3-C2 J4-0 J5-C3
997 J1-C3 J2-C3 J3-C2 J4-C1 J5-0
998 J1-C3 J2-C3 J3-C2 J4-C1 J5-C1
999 J1-C3 J2-C3 J3-C2 J4-C1 J5-C2
1000 J1-C3 J2-C3 J3-C2 J4-C1 J5-C3
1001 J1-C3 J2-C3 J3-C2 J4-C2 J5-0
1002 J1-C3 J2-C3 J3-C2 J4-C2 J5-C1
1003 J1-C3 J2-C3 J3-C2 J4-C2 J5-C2
1004 J1-C3 J2-C3 J3-C2 J4-C2 J5-C3
1005 J1-C3 J2-C3 J3-C2 J4-C3 J5-0
1006 J1-C3 J2-C3 J3-C2 J4-C3 J5-C1
1007 J1-C3 J2-C3 J3-C2 J4-C3 J5-C2
1008 J1-C3 J2-C3 J3-C2 J4-C3 J5-C3
1009 J1-C3 J2-C3 J3-C3 J4-0 J5-0
1010 J1-C3 J2-C3 J3-C3 J4-0 J5-C1
1011 J1-C3 J2-C3 J3-C3 J4-0 J5-C2
1012 J1-C3 J2-C3 J3-C3 J4-0 J5-C3
1013 J1-C3 J2-C3 J3-C3 J4-C1 J5-0
1014 J1-C3 J2-C3 J3-C3 J4-C1 J5-C1
1015 J1-C3 J2-C3 J3-C3 J4-C1 J5-C2
1016 J1-C3 J2-C3 J3-C3 J4-C1 J5-C3
1017 J1-C3 J2-C3 J3-C3 J4-C2 J5-0
1018 J1-C3 J2-C3 J3-C3 J4-C2 J5-C1
1019 J1-C3 J2-C3 J3-C3 J4-C2 J5-C2
1020 J1-C3 J2-C3 J3-C3 J4-C2 J5-C3
1021 J1-C3 J2-C3 J3-C3 J4-C3 J5-0
1022 J1-C3 J2-C3 J3-C3 J4-C3 J5-C1
1023 J1-C3 J2-C3 J3-C3 J4-C3 J5-C2
1024 J1-C3 J2-C3 J3-C3 J4-C3 J5-C3
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