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Downscaling GRaCE total water 
storage change using partial least 
squares regression
Bramha Dutt Vishwakarma  1 ✉, Jinwei Zhang2 & Nico Sneeuw2 ✉

the Gravity Recovery and Climate Experiment (GRaCE) satellite mission recorded temporal variations 
in the Earth’s gravity field, which are then converted to Total Water Storage Change (TWSC) fields 
representing an anomaly in the water mass stored in all three physical states, on and below the surface 
of the Earth. GRACE provided a first global observational record of water mass redistribution at 
spatial scales greater than 63000 km2. this limits their usability in regional hydrological applications. 
In this study, we implement a statistical downscaling approach that assimilates 0.5° × 0.5° water 
storage fields from the WaterGAP hydrology model (WGHM), precipitation fields from 3 models, 
evapotranspiration and runoff from 2 models, with GRACE data to obtain TWSC at a 0.5° × 0.5° grid. 
the downscaled product exploits dominant common statistical modes between all the hydrological 
datasets to improve the spatial resolution of GRACE. We also provide open access to scripts that 
researchers can use to produce downscaled TWSC fields with input observations and models of their 
own choice.

Background & Summary
GRACE based TWSC estimates have helped hydrologists and meteorologists to close the water budget, validate 
data products, estimate groundwater loss, study droughts and floods, monitor diminishing water bodies, and 
improve geophysical models1–4. Users can download global GRACE mass change estimates from various centres 
at three different levels: level 2, level 3 and time series level. Level 2 products are noisy geopotential spherical 
harmonic coefficients up to degree and order 96, which must be filtered and processed to obtain level 3 products 
usually sampled at 0.5° × 0.5° or 1° × 1° grid cell4–6. Computing catchment averages of level 3 monthly fields 
provides us with the time series of TWSC. GRACE products are an excellent dataset for studies concerning large 
catchments but are less effective for small scale studies1,4,7,8.

The ideal spatial resolution or the native resolution for the GRACE mission can be expressed as the minimum 
spherical distance between two resolvable Dirac pulses on the surface of the Earth, which has been shown to be 
≈3° for spherical harmonic fields up to maximum degree and order of 968,9. Filtering the GRACE spherical har-
monic fields degrades the signal quality and the spatial resolution further8,9. Therefore, level 3 products must be 
corrected for signal damage due to filtering5,10,11. Mascon products are another type of level 3 GRACE products 
that employ constrained regularization of inter-satellite range rate to estimate localized mass change12,13. They are 
known for reducing side effects of filtering: loss in the spatial resolution and signal quality, offering better signal 
to noise ratio at the spatial scales of ≈90000 km2 4,13. These high resolution mascon solutions at 0.5° or 1° grids 
are only interpolated samples of a coarse GRACE product, which means they are spatially correlated14. stated that 
the total energy in a mascon can be accounted for by aggregating all the mascons with a radius of 600 km and the 
spatial leakage errors in 1° × 1° mascons from Goddard Space Flight Center (GSFC) are equivalent to those of a 
gravity field filtered with a Gaussian 300 km filter. To conclude, available high resolution GRACE products do not 
contain physical information at a spatial scale better than the native resolution of GRACE13. Hence, in order to 
employ GRACE at finer spatial scales, we must downscale GRACE products by incorporating additional infor-
mation at a higher resolution. In general, there are two broad categories of downscaling approaches: dynamical 
and statistical. In dynamical downscaling large-scale and lateral boundary conditions are used to realistically 
simulate regional features, while in statistical downscaling predictor variables ate determined that represent the 
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statistical relationship between large-scale variable and small scale variables15. Both have their pros and cons, such 
as the former is physically based but computationally expensive and strongly dependent on boundary conditions, 
while the latter is computationally cheap and easy to implement but requires long and reliable observations and 
depends on choice of predictors and quality of input data.

It has been shown that the effective resolution can be improved by assimilating information at a better spa-
tial resolution16–20. Various data assimilation techniques have been devised and successfully implemented, for 
example, in improving operational weather forecast, predicting ocean dynamics, and modelling soil moisture 
content18,21,22. Recently several studies have assimilated hydro-geodetic data and hydrological models to esti-
mate, calibrate, or validate hydrological flux variables. For example: modelling river runoff with the help of 
hydro-geodetic approaches23,24, estimating catchment-scale water budget using a Kalman filter framework25,26, 
and calibration or/and validation of hydrological model outputs using GRACE27,28. The ensemble Kalman 
approach filter has been used effectively to assimilate GRACE TWSC into a Land Surface Model (LSM) to 
improve model performance17,28–30. Several non-parametric methods have also been proposed to improve 
spatio-temporal knowledge of hydrological variables. For example31, predicted ground water level changes by 
incorporating GRACE with hydro-meteorological variables in an Artificial Neural Network (ANN) framework.32 
demonstrated the efficacy of ANN to predict TWSC from precipitation, soil moisture, and temperature, and33,34 
used ANN and Machine Learning to produce high-resolution TWS estimates. Recently35 demonstrated that sta-
tistical downscaling can help us fill temporal gaps in GRACE data and36 developed a statistical downscaling 
approach that uses evapotranspiration data to downscale GRACE TWSC.

Inspired by recent developments in assimilating models and hydro-geodetic observations, we present a sta-
tistical downscaling approach that improves the spatial resolution of GRACE from ≈3° to 0.5° grid. The method 
employs a multivariate regression model that integrates multiple components of water budget (WaterGAP hydrol-
ogy model (WGHM) TWSC, GRACE TWSC, several estimates of precipitation, evapotranspiration and runoff). 
The regression is carried out at a residual signal level obtained by removing the dominant seasonal signal and linear 
trend. It also accounts for time lag and lead between various water budget components. The method finds com-
mon spatiotemporal modes by employing Partial Least-squares Regression (PLR), and then uses these modes to 
reconstruct (redistribute) GRACE observed mass change at the spatial resolution of WGHM. We demonstrate that 
our method is able to learn from high resolution model TWSC and resolve spatial features such as river channels, 
which is not possible from conventional GRACE products. Since the information on high resolution mass change 
is obtained from high resolution model, the downscaled product is expected to vary with the input data. In this 
study our aim is to provide users with a framework that they can use to obtain better resolved TWSC estimates 
with datasets and models they are confident of. Hence we refrain from commenting on the best dataset on the input 
side because robust validation of TWSC at the grid scale is not possible. We demonstrate that the method ensures 
conservation of GRACE-derived mass at catchment scale for 160 catchments spread over the globe.

Methods
Complex mechanisms drive spatiotemporal variability in hydrological flux variables, which are related to each 
other via the water budget equation. Our aim is to relate hydrological flux variables to grid scale TWSC. This can 
be achieved by employing a multivariate linear regression model that relates the predictand (S) (the signal to be 
predicted) to the predictor (L) (obtained from set of observations) as

=S LH, (1)

where S(n × g) is a matrix with n rows, one for each epoch, and g columns, one for each grid cell in a river catch-
ment. The predictor matrix L(n × d) has n rows, one for each epoch, and d columns containing Precipitation P, 
Evapotranspiration ET, Runoff R, and catchment average of TWSC. In other words, each column vector in L is a 
time series with n epochs. H(d × g) is the prediction matrix.

Setting up L efficiently is crucial for the success of (1). Since many data products are available for each 
water budget component and their performance varies with space and time, using multiple products for each 
variable provides the regression model with flexibility to rely relatively more on a dataset that offers stronger 
spatio-temporal common modes. Secondly, the water budget components are known to have temporal lead or lag 
with respect to each other37–39, and the dominant signal is driven by the annual water cycle. Therefore, the regres-
sion in (1) will be more efficient, if we i) expand the observation space by including k time shifted versions of each 
flux variable, and ii) operate at the residual signal level. We demonstrate this with an example: assume we have 
total m products for P, ET, R, and TWSC for a time period from January 2003 to December 2015. First, we expand 
P, ET, and R, to get a matrix where number of rows correspond to number of epochs and number of columns 
represent number of grid cells corresponding to a catchment, then we obtain k shifted versions of equal length 
time series, for example: for k = 12, we will obtain 12 equal length time series for each precipitation grid cell in the 
catchment we are interested in, where the first will start at January 2003 and end at December 2014, the second 
time series starting at February 2003 and ending at January 2015, and so on. Then we remove a cyclo-stationary 
mean from the corresponding shifted time series to obtain ΔP, ΔET, and ΔR. A cyclo-stationary mean is an 
annual cycle that represents the mean behaviour over the observation period. ΔTWSC is the time series from 
GRACE with cyclo-stationary mean signal and a linear trend removed. Hence L becomes,
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ΔPm kp
g  is a column vector of length equal to the number of epochs n. mp

g  is the product of number of precipitation 
products mp and the number of grid cells in the catchment g. This means the dimension of ΔP will be 
n × (mp × g × k). Hence the number of columns in L depends on the number of models for each variable 

= + + +m m m m( 1)p e r , the number of grid cells in the region of interest, and the number of time-shifts k.
Equation (1) represents the ideal case, but in reality measurements suffer from noise. Therefore, the multivar-

iate regression model in (1) becomes

= + .S LH E (3)

Dimension reduction is crucial for multivariate regression analysis, which we achieve by using Partial Least 
Squares Regression (PLR), a non-parametric filtering technique developed by40. It decomposes the signal while 
minimizing the noise and preserving the mutual linear variability of measurements and unknown signals40,41. In 
other words, PLR aims to regress on those Principal Components (PCs) of measurements that highly correlate 
with the target signal42,43. Similar to Canonical Correlation Analysis (CCA), PLR obtains the PCs via Singular 
Value Decomposition (SVD) of the covariance matrix CLS between predictors and predictands41,44,45.

In the context of this study, S is obtained from a hydrology model that simulates TWSC at a higher spatial 
resolution compared to GRACE. For a given L, we can obtain the covariance matrix CLS(d × g), which can be 
decomposed using SVD:

= = ΣC L S U V , (4)LS
T

C C C
T

where UC(d × r) and VC(r × g) are joint normalized eigenvectors for L and S, which are also called the canonical 
modes, and ΣC(r × r) is a diagonal matrix containing covariance between L and S. r is the number of canonical 
modes from SVD, obtained as the rank of covariance matrix CLS

43. The PCs of L, which are significantly correlated 
with S, can be obtained by projecting L on UC to get UL(n × r):

= .U L U (5)L C

Hence, we can write =L U UL C
T, which can be substituted in (3):

= +S U U H E, (6)L C
T

which can also be written as

= +S U K E, (7)L

where K(r × g) is the transformed regression matrix obtained by projecting H on Uc. Since we do not expect the 
total mass change in a catchment to change after downscaling, we can use the mass conservation as a constraint:

= + = Δ .S U K E SA M, subject to (8)L w GRACE

where Aw is the area vector for grid cells belonging to the catchment and ΔMGRACE is the catchment average of 
TWSC from GRACE. Using (7) and (5) in the constraint, we get
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Bringing the constraint in the observation space and solving for K using the least squares method,
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UL(n × r) constitutes the PCs. ×�K r p( ) is the reformed regression matrix that can be combined with UC to obtain 
the optimal prediction matrix �H,

� �= .H U K (11)C

This concludes the training part, where we obtained a prediction matrix from known S and L. The prediction 
matrix can now be used to estimate the predictand S, that is, estimates of TWSC at a higher spatial resolution. 
Since we have regressed at the residual level, we can obtain the full downscaled product by restoring the part of 
TWSC signal that was removed earlier. To summarize, the statistical downscaling using PLR has five major steps:

 1. arrange global data products to obtain time series vectors representing hydrological flux variables,
 2. obtain dominant modes of variability between observations and a high resolution hydrology model,
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 3. estimating the prediction matrix from selected canonical modes,
 4. transforming the prediction matrix from mode space to signal space, and
 5. obtaining the downscaled GRACE product.

Step by step implementation. A conceptual flow chart of the process is provided in Fig. 1. The first step is 
to obtain datasets of P, ET, R, and TWSC. Usually the global products are available in grid cell format at different 
spatial resolutions. We choose P, ET, and R, at the same spatial resolution as WGHM. GRACE TWSC catchment 
averages are computed using the following relation,

∫ θ λ θ λ= Ω
Ω

f
A

f R1 ( , ) ( , )d ,
(12)

c
c

wherein fc is the catchment average of a global gridded field f(θ, λ). R(θ, λ) is the catchment mask with value 1 
inside the catchment and 0 outside. Ω represents the domain of the Earth’s surface, θ and λ are co-latitude and 
longitude, and dΩ is the infinitesimal surface element sin θdθdλ.

A pre-processing step is performed to subtract the dominant signals and retain the residuals from the data. 
First we shift grid scale time series for P, ET, R by k = 6. We choose k = 6 because we are confident of capturing 
seasonal lead and lag with this value. If readers are confident of capturing time lead or lag between budget com-
ponents with a different k, then they can use a different value. After obtaining time-shifted vectors, we remove a 
cyclo-stationary mean from the corresponding vector to obtain ΔP, ΔET, and ΔR. Hydrology model based 
estimates of TWSC have been shown to underestimate linear trends compared to GRACE observations46, thus, 
we remove the linear trend from TWSC. Here we have two TWSC estimates, one from the model at the grid scale 
and another from GRACE at the catchment scale. Let us represent the detrended TWSC time series from GRACE 
as MGRACE and its cyclo-stationary mean by ∼MGRACE. The residual ΔMGRACE is obtained by removing the 
cyclo-stationary mean from detrended GRACE TWSC Δ = −

∼M M MGRACE GRACE GRACE. The predictand matrix 
S consists of TWSC grid cells values from WGHM. The time series for each grid cell is first detrended and then 
the cyclo-stationary GRACE TWSC signal is removed, S M MWGHM GRACE= −

∼ . Please note that the GRACE 
TWSC estimates are obtained at catchment scale, and therefore, the same value is subtracted from every grid cell. 
Hence, the observations from GRACE, P, ET, and R are regressed on the difference between WGHM and GRACE. 
Therefore, the dominant part of TWSC from GRACE is maintained.

=

= Δ Δ Δ Δ .

S LH
P ET R M H H H H
,

[ ] [ ] (13)P ET R M
T

GRACE

H is unknown while L and S are known.
In the next step, we compute CLS and decompose it by SVD to get UC(d × r) and VC(r × g). r is the number 

of canonical modes from SVD and it can attain a maximum value that is the rank of covariance matrix CLS. In 
this study we choose r = 10, because including more modes does not affect the efficacy of PLR method20. We can 
obtain UL as

Model TWSC at grid scale
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Fig. 1 Flowchart of the downscaling approach.
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= .U L U (14)L C

Now we have all the components to implement equations in (10) and obtain �K . This leads to determination of the 
prediction matrix �H,

H U K (15)C
� �= .

�H can then be used to predict =� �S L H. The full downscaled product is obtained by adding back the linear trend 
and the cyclo-stationary mean signal to �S.

Data Records
We use GRACE Level 3 mascon products from Jet Propulsion Laboratory (JPL) and GRACE level 2 spherical 
harmonic coefficients provided by the Institute of Geodesy, Graz University of Technology (IFG)13,47,48. We use 
precipitation (P) datasets from three centres (CPC, DELAWARE, and GLDAS NOAH025 M 2.1)49–53, two model 
based estimates of evapo-transpiration (ET) products (GLDAS, SeB)53–55, and two model based runoff (R) esti-
mates (GLDAS and MERRA)53,56,57. We implement the method for 160 river catchments, where the smallest 
catchment is the Negro river basin in Uruguay with an area of 62518 km2 and the largest catchment is the Amazon 
river basin with an area of 4672876 km2. The catchment boundaries have been downloaded from GRDC58 (cf 
Fig. 2). The prior model information is obtained from WGHM, which is a global water resource and use model 
that simulates water flows among all relevant continental water storage compartments, including canopy, snow, 
soil, groundwater, lakes, reservoirs, rivers and wetlands. Despite the complex yet realistic model setup, the uncer-
tainties in climate forcing limit the accuracy of WGHM in monitoring large-scale water storage variation27,46,59,60. 
We obtained model TWSC at a spatial resolution of 0.5° × 0.5° for a period from January 2003 to December 
201659–61. Each dataset spans at least from January 2003 to December 2015. The data used in this study have been 
summarized in the Table 1.

Using these dataset we obtain downscaled TWS fields, which are available to users on figshare as netcdf files 
with four variables: Lat, Long, time and EWH_mm62. Lat and Long are latitude and longitude vectors of dimen-
sion 259200 × 1, representing the centre of a 0.5° × 0.5° grid cell on the surface of the Earth. EWH_mm is the 
TWS change in terms of mm Equivalent Water Height (EWH) for that grid cell with dimensions 259200 × 144, 
and time is a column vector of dimension 144 × 2 with year and month.

Fig. 2 160 catchments under investigation. We have labelled names of randomly selected 10 catchments just for 
illustration.

Dataset centre spatial resolution

*Precipitation

CPC 0.5° × 0.5°

DELAWARE 0.5° × 0.5°

GLDAS NOAH025 M 2.1 0.5° × 0.5°

*Evapotranspiration
GLDAS NOAH025 M 2.1 0.5° × 0.5°

SeB MOD16 averaged to 
0.5° × 0.5°

*Runoff
GLDAS NOAH025 M 2.1 0.5° × 0.5°

MERRA 0.5° × 0.5°

model TWSC WGHM 0.5° × 0.5°

*GRACE TWSC
JPL mascon, ITSG 3° × 3°

ITSG ≈65000 km2

Table 1. Datasets used.

https://doi.org/10.1038/s41597-021-00862-6
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technical Validation
Results. We demonstrate the method for two GRACE products: level 2 spherical harmonic coefficients from 
ITSG and the JPL mascon products. We do not endorse these products over other, we have just chosen one 
mascon solution and one spherical solution for demonstrative purposes. Furthermore, the difference between 
various GRACE product is not huge at catchment scale, therefore, choice of GRACE data is not critical. For the 
spherical harmonic product, coefficient C2.0 is replaced by more accurate estimates from satellite laser ranging 

Fig. 3 Maps of TWSC in terms of Equivalent Water Height (EWH) in units of mm for the month of March 
2006. The top row contains the JPL 3° mascon product, the second row contains the downscaled product 
derived from these mascons, and the last row contains the downscaled product derived from data-driven 
leakage corrected ITSG spherical harmonics.

https://doi.org/10.1038/s41597-021-00862-6
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and the missing degree 1 terms have been replaced by degree 1 coefficients estimated by63. The Glacial Isostatic 
Adjustment (GIA) signal is removed using the ICE-6G forward GIA model64. Since the spherical harmonic coef-
ficients are noisy, we filter them with a Gaussian filter of 400 km radius. Filtering affects the signal quality via 
attenuation and leakage11. Therefore, we use the data-driven method of deviation to repair the signal damage due 
to filtering65. The data-driven method of deviation has been shown to provide accurate mass change estimates for 
catchments larger than ≈65000 km2 8. The JPL GRACE mascon solutions do not need additional corrections and 
are available at sampling of 0.5° × 0.5° while their effective resolution is 3° × 3°13. We use 10 PCs to reconstruct 
the signal for 160 catchments from January 2004 to December 2015.

Fig. 4 Same as for Fig. 3, but for the month of September in the year 2006.

https://doi.org/10.1038/s41597-021-00862-6
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We show the coarse JPL mascon EWH maps and the downscaled maps for the month of March 2006 in Fig. 3 
and for September 2006 in Fig. 4. The Year 2006 was chosen arbitrarily, months March and September are six 
months apart and thus would show us out of phase TWSC maps. We did not use any interpolation scheme. We 
can see mass change following physical water bodies60,61, hence, the downscaled product is able to capture spatial 
features better than original GRACE product. This is further demonstrated for the Amazon catchment in Fig. 5, 
where we plot the TWSC maps from JPL GRACE mascon, downscaled products, and the WGHM model, for four 
selected months. We also plot the time series of catchment average for Amazon. It is clear that the downscaled 
product is able to deliver mass change estimates at a higher spatial resolution.

Validation. Validating gridded downscaled TWSC for the 160 catchments is not possible as no other obser-
vational dataset is available for direct comparison. Therefore, we validate the efficacy of downscaled product by 

Fig. 5 Maps of TWSC in terms of Equivalent Water Height (EWH) in units of []mm over the Amazon 
catchment at different points in time. The first row contains JPL 3° mascon products, the second row contains 
the downscaled product derived from JPL mascons, and the last row contains the WGHM model. The last figure 
shows catchment averages of Equivalent Water Height (EWH) from different GRACE products and the WGHM 
model. The RMS of difference between time series from GRACE and downscaled product is written in the time 
series plot. RMSI corresponds to ITSG GRACE product while RMSJ represents JPL mascon product.

https://doi.org/10.1038/s41597-021-00862-6
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checking the conservation of mass at catchment scale. In Fig. 6, we show time series for 10 catchments of various 
shape, size, and climatic characteristics. We plot the Root Mean Square (RMS) of difference between the TWSC 
time series from GRACE and downscaled products for all the 160 catchments, which represents the error intro-
duced by the downscaling process. The RMS of the processing error is almost always smaller than the GRACE 
error that is typically around 20 to 30 mm4.

Fig. 6 Catchment averages of Equivalent Water Height (EWH) in units of []mm from different GRACE 
products and the WGHM model for 10 catchments labelled in Fig. 2. The plot at the bottom of the figure shows 
the RMS error of difference between time series from GRACE and downscaled product over 160 catchments. 
The RMS of difference between catchment averages of JPL GRACE product and the corresponding downscaled 
product is denoted by RMSJ, while for ITSG GRACE product is RMSI.

https://doi.org/10.1038/s41597-021-00862-6
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In Figs. 5 and 6, we compare catchment averages of GRACE products and their downscaled versions, along 
with the TWSC from WGHM model. A first observation is that the model simulations are not able to match 
GRACE observations, the difference is more prominent for catchments with poor data quality or availability, for 
example the Cauvery, the Tigris, or the Volga. Secondly, the downscaled product does not pick signal amplitude 
information from WGHM model. The catchment averages of downscaled TWSC match with the correspond-
ing GRACE product. The water mass is redistributed to reflect additional information on river channels and 
landscape properties (cf. Figure 5). The spatial correlation between high resolution WGHM time series and the 
downscaled products is shown in Fig. 7, which shows that WGHM plays a significant role in redistributing the 
water mass change from GRACE. Together from Figs. 5–7, we can safely conclude that WGHM informed the 
spatial redistribution and not the signal amplitude while the principle of conservation of mass is not violated. We 
have provided the RMS of the process error for downscaled GRACE from JPL solution (RMSj) and ITSG (RMSI) 
solution on the time series plot for 160 river catchments. These catchments are distributed all over the globe (cf 
Fig. 2) and the RMS of error is small for all of them. Therefore, we can safely conclude that the efficacy of the 
downscaling approach is not region-dependent.

Please note that we do not claim that the downscaled product corresponds to the ground truth, as the output is 
only as accurate as the information from the input datasets. If users find other models or datasets more plausible, 
we recommend them to use the Octave/MATLAB script for generating a downscaled product on their own. The 
methodology uses dominant modes of variability between observations and a high resolution hydrology model to 
obtain downscaled product. Analysis of the prediction matrix could help us understand the relative contribution 
of individual input data. In Supplementary Fig. 1 we show the relative percentage contribution from dominant 
input datasets for one grid cell (0.5° × 0.5°) in the Amazon catchment. We do not go into detailed analysis of the 
prediction matrix in this study as it is an enormous task as there are 1530 grid cells in the Amazon catchment 
alone (the prediction matrix for the Amazon river basin alone is 64261 by 1530). Analyzing prediction matrix and 
understanding influence of input dataset will be a future project.

Usage Notes
The scripts and the output data are available for download. The datsets for P, ET, R, and TWSC should be pre-
pared by the user following the instructions in the ReadMe file provided along with scripts and dataset. After you 
have Octave/MATLAB Data files for each variable, run the script statistical_downscaling_grids_TWS.m in com-
mand line following the instruction in ReadMe file. The command window will ask the user to select relevant files. 
These will then be used to obtain a downscaled product. A downscaled dataset from January 2004 to December 
2015, and an example dataset to guide users is also available.

Fig. 7 Maps of correlation between WGHM time series and downscaled TWSC time series from JPL GRACE 
product (a) and from ITSG GRACE product (b). There is a high correlation between high resolution WGHM 
product and the downscaled product, which demonstrates that the small scale features in downscaled product 
are driven by the WGHM model.
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Code availability
We have used Octave/MATLAB for processing the data. Along with the downscaled GRACE data, we also provide 
the script freely available for download from figshare https://figshare.com/s/a5771cf390087525b0f562.
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