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ARTICLE

A dynamical quantum Cheshire Cat effect and
implications for counterfactual communication
Yakir Aharonov1,2, Eliahu Cohen3 & Sandu Popescu4✉

Here we report a type of dynamic effect that is at the core of the so called “counterfactual

computation” and especially “counterfactual communication” quantum effects that have

generated a lot of interest recently. The basic feature of these counterfactual setups is the

fact that particles seem to be affected by actions that take place in locations where they

never (more precisely, only with infinitesimally small probability) enter. Specifically, the

communication/computation takes place without the quantum particles that are supposed to

be the information carriers travelling through the communication channel or entering the

logic gates of the computer. Here we show that something far more subtle is taking place: It is

not necessary for the particle to enter the region where the controlling action takes place; it is

enough for the controlled property of the particle, (i.e., the property that is being controlled

by actions in the control region), to enter that region. The presence of the controlled

property, without the particle itself, is possible via a quantum Cheshire Cat type effect in

which a property can be disembodied from the particle that possesses it. At the same time,

we generalize the quantum Cheshire Cat effect to dynamical settings, in which the property

that is “disembodied” from the particle possessing it propagates in space, and leads to a flux

of “disembodied” conserved quantities.
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Quantum mechanics is a notoriously counterintuitive the-
ory. More than ninety years after its basic laws were
discovered, there is a widespread agreement that we do

not yet really understand what is going on. Nevertheless, in recent
years considerable progress has been made, especially in under-
standing entanglement and Bell-type non-locality. However, the
focus of that research is essentially kinematic—these effects
depend only on the Hilbert space structure of the set of quantum
states. On the other hand, the fundamental dynamic aspects of
the theory have been far less investigated, though, undoubtedly,
they are equally rich, if not richer. Here we describe a “Dynamic
Quantum Cheshire Cat effect”.

In the original Quantum Cheshire Cat effect1, it was shown
that physical properties can be disembodied from the objects to
which they belong. For example, we may find an electron in one
location and its spin in a different location. The original effect is
however essentially kinematic. Here we show that the dis-
embodied property has a dynamics of its own. Once disembodied
from the particle to which it belongs, it can be subsequently
affected by external actions even though the particle is not pre-
sent. In particular, we describe the spatial propagation of such a
property, specifically a flux of spin without its corresponding
particle.

The motivation that led us to this effect is the desire to better
understand “counterfactual computation”2–8 and especially
“counterfactual communication” quantum effects9–24. These are
information processing tasks with a very strange property: the
particles that are supposed to be the information carriers seem to
not actually enter the information processing devices. The start-
ing point of this class of phenomena was the discovery by Elitzur
and Vaidman of the so-called “interaction-free measurement”25,
arguably one of the most striking effects in quantum physics. The
basic set-up consists of an object—a “bomb” in the original
example—that is ultra-sensitive to photons. Whenever a photon
impinges on it, the bomb explodes. What Elitzur and Vaidman
showed is that the bomb could nevertheless be investigated with
photons without triggering it, if photons are prepared in a
coherent superposition of impinging and not impinging on it.

Subsequent work26 refined the original interaction-free mea-
surement protocol, which had a failure probability (the bomb
exploding) of 50% and raised the probability of success infinite-
simally close to 1.

The ideas behind the interaction-free measurements have then
been used to design information-processing protocols such as
computation and communication, having the same basic char-
acteristic, namely particles being affected by what happens in
regions where they do not enter, similar to the probe in the
interaction-free measurement. Ever since the discovery of
interaction-free measurement and of the subsequent counter-
factual information processing protocols there has been an
intensive effort to understand what is behind these very puzzling
effects.

In the present paper, inspired by the above, we construct a
different set-up, that leads us to formulate the dynamic quantum
Cheshire Cat effect. In this effect, a physical property can be
disembodied from the particle to which it belongs, and can be
subsequently affected by external actions even though the particle
is not present. Clearly, this could be the key for understanding
what happens in counterfactual information processing effects,
where information can be accumulated, processed, stored and
communicated without particles being present. We believe that in
fact, this is the core of all such effects.

The main body of the paper is focused on the dynamic
quantum Cheshire Cat effect itself, since it is important and
interesting in itself, and its implications are likely to extend well
beyond the counterfactual effects that motivated this research.

The connection with counterfactual communication will be dis-
cussed in the “Discussion” section.

Results
The set-up. The experiment at the core of our paper is deceptively
simple. We will be interested in some particular cases of the
following set-up, illustrated in Fig. 1. Consider a spin 1/2 particle
in a box of length D. The left wall of the box is completely
reflective; the right wall is spin-dependent: it is completely
transparent for "z

�� �
and it completely reflects #z

�� �
. For example,

we can take the interaction Hamiltonian between the particle and
the spin-dependent wall to be

Ĥint ¼
1� σz

2
V0δðx � xRÞ ð1Þ

where x denotes the location of the particle, xR is the location of
the right wall, and V0 is very large, essentially infinite. This can be
arranged physically by, say, having inside the wall a strong
magnetic field along the z-axis, plus some other, constant, non-
spin dependent, potential. In addition, the box is divided in the
middle by a spin-independent partition wall through which the
particle can tunnel, but whose transmission coefficient will be
taken to be very small.

Suppose the particle is prepared initially in a small wavepacket
moving with velocity v. The particle will move back and forth in
the box, colliding with the box walls and the partition, and
leaking out of the box via the right wall. For simplicity, we take
the particle to have a large mass, and the velocity v high enough,
so that during the entire duration of the experiment the spread of
the wavepacket is negligible.

For the partition, we take the reflection and transmission
amplitudes to be cos ϵ and sin ϵ respectively, with ϵ= π/2N and N
integer. Eventually, we will take ϵ to be very small (N to be large).

The experiment. We are interested in what happens in the par-
ticular case when we start with the particle next to the left wall,
moving towards the partition, a state that we denote Lj i, and
being polarized "z

�� �
. We are interested in what happens by time

t= 2NT, where T is the time required to move the distance D, the
length of the box, (which is also the time required to bounce once
back and forth inside half of the box).

To start with, we note that "z

�� �
is a constant of motion: the

only place where there is any spin-dependent interaction is at
the right wall, and "z

�� �
is an eigenstate of that interaction. Hence

the particle’s spin remains "z

�� �
for all times. In this situation, the

right wall is completely transparent for the particle.
The time evolution can easily be solved. It is convenient to

consider the state of the particle at times tn= nT with n a positive
integer. Apart from the state Lj i defined above, other states that
will be of interest for us are kj i, with k a positive integer, which
denotes the wavepacket situated outside the box, at a distance kD
from its right end, moving away from the box. In particular, the

Fig. 1 The set-up. A spin 1/2 particle in a box with a completely reflective
wall on the left, a spin-independent, partially transparent partition in the
middle with, very small transmissivity, and a spin-dependent wall on the
right, which is totally reflective for spin "z

�� �
and totally transparent for #z

�� �
.

The particle starts in a wavepacket Lj i, next to the left wall, moving right
and with spin "z

�� �
.
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state 0j i means the particle is just outside the right wall (see
Fig. 2).

Let Û denote the time evolution operator for a time T. We have

Û
��L� "z

�� � ¼ cos ϵ
��L� "z

�� �þ sin ϵ
��0� "z

�� �
Û
��k� "z

�� � ¼ ðkþ 1Þ
�� � "z

�� � ð2Þ

What happens is that when the particle starts in the state Lj i,
next to the left wall, it moves towards the partition and collides
with it at time T/2. As a result of this collision, with amplitude
cos ϵ, the wavepacket is reflected, moves back towards the left
wall, and at time T collides with it and is reflected, ending in the
state Lj i, as it was initially, but with corresponding reduced
amplitude, while with amplitude sin ϵ, the wavepacket is
transmitted through the partition and at time T it emerges from
the box, ending in state 0j i with the corresponding reduced
amplitude. On the other hand, if the particle is already outside the
box, in state kj i, then after time T it evolves to ðkþ 1Þ

�� �
, a state

further away from the box by the distance D. The operator Û
describes this entire process.

It is now trivial to calculate what happens at time nT, with 1 ≤
n, when Ψð0Þ

�� � ¼ ��L� "z

�� �
. The state becomes��ΨðnTÞ� ¼ Û

n��L� "z

�� �

¼ cosnϵ
��L� "z

�� �þ ∑
n�1

k¼0
sin ϵcoskϵ n� 1� kj i "z

�� � ð3Þ

After every collision with the partition, the wavepacket in the
left side of the box loses a fraction of its amplitude, generating a
wavepacket that tunnels to the right through the partition, and
which then goes out of the box. Eventually, the particle will leak
out of the box almost entirely, but this takes a long time, of order
of N2T.

Importantly for us, however, in the limit of small transmissivity
(large N), for times of order NT the particle is essentially still on
the left side, leaking out of the box only with an infinitesimal
probability of order O(1/N), i.e.,

Ψð2NTÞ
�� � ¼ Û

2N ��L� "z

�� � ¼ ��L� "z

�� �þ Oð1=NÞ
�� � ð4Þ

where Oð1=NÞ
�� �

denotes corrections of order 1/N.

We can see this by directly calculating the probability of
remaining on the left side, cos2Nϵ ¼ cos2Nðπ=2NÞ ¼ 1� Oð1=NÞ
but it is actually illuminating to calculate instead the probability
of leaving the box. The important feature is that the tunnelled
wavepackets do not overlap with each other so when determining
the total probability of leaving they add up in probability, not in
amplitude

∑
N�1

k¼0
ðsin ϵcoskϵÞ2 ≤ ∑

N�1

k¼0
sin2ϵ � Nϵ2 ¼ π

2
ϵ ¼ π2

4N
ð5Þ

which goes to zero in the limit of small transmissivity (large N).

The paradox. The situation seems completely trivial: the particle
bounces back and forth in the left half of the box, leaking infi-
nitesimally small wavepackets via tunnelling, and its spin remains
undisturbed, "z

�� �
. Yet, at a closer look, we see that something

quite interesting happens.
Consider the spin along x. Since the particle is prepared

polarized in the z-direction, the x component is undefined: it is an
equal superposition of "x

�� �
and #x

�� �
, namely

"z

�� � ¼ 1ffiffi
2

p
� "x

�� �þ #x

�� ��
. Furthermore, since "z

�� �
is a constant

of motion, this superposition of "x

�� �
and #x

�� �
, remains the same

at all times. However, each component changes with time.
Specifically, as we will show, if at time 2NT we find the particle in
the left half of the box—which we can arrange to happen with
probability as close to 1 as we desire—the spin along the x-axis
flips: "x

�� � ! #x

�� �
and #x

�� � ! "x

�� �
.

Another way to look at the situation is to note that when we
look at the x-spin observable, i.e., at the σx operator, its
Heisenberg equation of motion tells us that if we find the particle
in the left half of the box then σx(t= 2NT)=−σx(t= 0) (see the
proof in the next section).

The fact that there are situations in which the quantum state
of a system does not change but nevertheless some observables
change is actually extremely common, though, as far as we
know, the very existence of this effect and its implications are
not widely appreciated (for various discussions of this see
refs. 27–29 where the notion of two-time observables was
introduced and analyzed, and30–34 where the disturbance due to
measurements and its implications for the Heisenberg uncer-
tainties are studied). This situation occurs every time when a
particle is in an eigenstate of a non-zero Hamiltonian. This is
not what is interesting in our example. What is interesting is
how this happens in our case.

To put things in perspective, a trivial example is that of a spin
1/2 particle prepared in the state "z

�� �
and placed in a magnetic

field oriented along the z-axis. In this case, the state is an
eigenstate of the Hamiltonian and remains unchanged (up to an
unobservable overall phase factor), but all the spin components in
the plane orthogonal to z undergo Larmor precession, which we
see if we solve their Heisenberg equations of motion. If we were to
measure their values at any time, the outcomes of the
measurement would be completely random, but if we look at
the correlations between their values at different moments in
time, we find that they change.

The above case is trivial, and we understand very well why
these spin components change: the magnetic field acts upon
them. And here lies our paradox: if at the end of the experiment
we find the particle in the left-side of the box, the particle must
have stayed there for the entire duration of the experiment. But
there is no magnetic field there—the only place where there is a
magnetic field is in the spin-dependent wall, at the right-end of
the box. Indeed, up to terms whose total magnitude we can make
as small as we want by decreasing the transmissivity of the

Fig. 2 States of interest. Various wavepackets mentioned in the
experiment. The arrows denote the direction of movement of the
wavepackets. These are various wavepackets that may result at various
stages, when a particle starts in an initial wavepacket, Lj i next to the left
wall, moving towards right, and then is reflected by, or tunnels through, a
semi-transparent partition in the middle or a spin-dependent wall at the
right end of the box. Rj i is a wavepacket inside the box, next to the right
wall, moving towards left and 0j i is a wavepacket next to the right wall but
outside the box, moving to the right. The wavepacket 1j i is a distance D,
equal to the length of the box, away from the right wall; it is here where the
wavepacket 0j i will get after a time T= D/v. Other states 2j i, 3j i,... are
situated further away, to the right, at intervals D from one another and are
not illustrated in the figure. The wavepacket τj i represents a particle
localized in the right half of the box, moving towards right, at a distance vτ
from the left wall, with T/2≤ τ < T. Note that not all these wavepackets are
simultaneously present during the experiment. Also, the spin degree of
freedom, and the normalization with which various wavepackets may
appear at various times in the experiment are not marked in the figure.
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partition, the wavefunction remained localized in the left-side of
the box for the entire duration of the experiment where there is
no magnetic field. Moreover, even the infinitesimally small wave-
packets that leaked out of the left-side of the box and reached the
spin-dependent wall on the right could not contribute to what is
happening on the left-side, as for them the spin-dependent wall is
fully transparent, so they exit the box and never return.
Nevertheless, the Heisenberg equations of motion tell that the
x-component of the spin changes.

Even more surprising, looking solely at the solution of
the Schrödinger equation, the situation in our experiment seems
to be identical to the case in which there is no wall at all closing
the right end of the box. Indeed, when initially the particle is
prepared "z

�� �
the solutions of the Schrödinger equation with

spin-dependent wall or no wall at all are identical, as the particle
simply does not see the wall even if the wall is there. Yet, when
the wall is present the x-spin component flips, while when there is
no wall, it does not.

The time evolution of σx. In the previous section we simply
claimed that by time 2NT the x-spin component flips; we will
now prove it. Rather than attempting to calculate the evolution of
σx by solving the Heisenberg equations of motion directly, it is
simpler to go via an indirect route. Consider first what happens if
instead of starting with the initial state

��L� "z

�� �
we would start

with Φð0Þ
�� � ¼ ��L� #z

�� �
. In this case, the particle sees the box

closed on the right by a completely reflecting wall, hence the box
is now closed at the two ends.

With Rj i denoting the wavepacket inside the box, next to the
right wall, and moving to the left, towards the partition, we have

Û
��L� #z

�� � ¼ cos ϵ
��L� #z

�� �þ sin ϵ
��R� #z

�� � ð6Þ

Û
��R� #z

�� � ¼ cos ϵ
��R� #z

�� �� sin ϵ
��L� #z

�� �
: ð7Þ

What happens is that the particle, starting in state Lj i, next to
the left wall and moving towards the centre, traverses the left
side of the box, and hits the partition at time T/2. Then it gets
partially reflected by the partition, with amplitude cos ϵ,
traverses back the left side of the box collides with the left
wall and at time T it gets again in state Lj i, with the reduced
amplitude cos ϵ, while with amplitude sin ϵ the particle tunnels
through the partition, traverses the right side of the box and
gets reflected by the right wall, ending at time T in state Rj i with
the corresponding amplitude, sin ϵ. A similar thing happens
when starting in the state Rj i. The operator Û describes this
whole evolution.

The evolution for a time nT leads to

Û
n��L� #z

�� � ¼ cosðnϵÞ
��L� #z

�� �þ sinðnϵÞ
��R� #z

�� �
: ð8Þ

Û
n��R� #z

�� � ¼ cosðnϵÞ
��R� #z

�� �� sinðnϵÞ
��L� #z

�� �
: ð9Þ

In particular, we see that starting in the state Lj i #z

�� �
the

particle oscillates between the left and right side of the box, with
period Tosc= 4NT= 2πT/ϵ. We are interested in what happens at
time 2NT, at half the period. By this time the particle would have
first transitioned to the right side of the box, in state Rj i, where it
got at time NT and then, at t= 2NT, the particle is again in the
left side, where it started, but in state � Lj i, the state has acquired
a negative sign. In other words,

Û
2N ��L� #z

�� � ¼ �
��L� #z

�� � ð10Þ

Suppose now that we start with the state Lj i "x

�� �
. We then have

Û
2N ��L� "x

�� � ¼ Û
2N ��L� 1ffiffiffi

2
p � "z

�� �þ #z

�� ��

¼
��L� 1ffiffiffi

2
p � "z

�� �� #z

�� ��þ Oð1=NÞ
�� �

¼
��L� #x

�� �þ Oð1=NÞ
�� �

:

ð11Þ

That is, if we start with spin "x

�� �
, after time 2N it flips to #x

�� �
, up

to corrections of O(1/N). Similarly,

Û
2N ��L� #x

�� � ¼ ��L� "x

�� �þ Oð1=NÞ
�� �

: ð12Þ
Hence we can now obtain the Heisenberg evolution:

Û
y2N ��L��L��σxÛ2N ¼

��L��L��ð�σxÞ þ Oð1=NÞ: ð13Þ
On the other hand, when there is no wall closing the right side

of the box, the evolution of "z

�� �
and #z

�� �
is identical, so they

accumulate no phase difference; hence their superposition "x

�� � ¼
1ffiffi
2

p
� "z

�� �þ #z

�� ��
remains "x

�� �
all the time, i.e., σx does not flip.

Observational consequences. As discussed in the above sections,
the Heisenberg equations of motion show that when at time t=
2NT we find the particle in the left half of the box—which is
almost always when the transmission coefficient ϵ is infinitesi-
mally small—the spin component in the x-direction flips from
what it was at the start of the experiment. In other words, the
correlation between the initial and final values of the x-spin
components changes due to the presence of the spin-dependent
wall. But that was a purely mathematical analysis—no measure-
ments were considered that could verify the effect. We will do
that now. The challenge is to observe this without disrupting the
original set-up.

Of course, if we attempt to start by measuring σx at t= 0, in
order to see how it changes by t= 2NT, we disturb the initial state
"z

�� �
and generate a #z

�� �
component. This component then

propagates up to the spin-dependent wall and bounces back from
there, ending back on the left side at t= 2NT, so there would be
no surprise that the particle’s spin feels the magnetic field. To
avoid this, we start by measuring σx “weakly”, i.e., in a
manner that will produce as small disturbance as we desire.
Of course, such a measurement cannot be precise, but repeating
the experiment many times, we can extract the desired
information. (A similar procedure, in the context of Heisenberg’s
measurement−disturbance relation, was considered in ref. 33 and
was experimentally implemented in ref. 34).

To this end, we use a measuring device with a pointer q̂,
prepared in the initial state (up to normalization)

ϕðqÞ ¼ e�
q2

4Δ2 ; ð14Þ
where Δ determines the uncertainty in the initial position of the
pointer. We couple this test particle to our spin by the interaction
Hamiltonian

Ĥtest ¼ λδðtÞp̂σx: ð15Þ
where p̂ is the momentum conjugate to q̂ and λ is a numerical
constant, which has the role of a coupling constant. We can then
make the disturbance as small as we want by taking λ
appropriately small.

The time evolution operator that describes the measuring
interaction is

V̂ ¼ e�
i
_λp̂σx ð16Þ

which is the shift operator that shifts q by the value λσx. In other
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words, the pointer q̂ moves proportionally to the value of σx, with
proportionality constant λ.

After measuring σx in this weakly disturbing way at t= 0, just
after we prepared the initial state, we let the particle and
measuring device evolve until t= 2NT. At that moment their
state is

Û
2N
V̂ "z

�� ���L�e� q2

4Δ2 : ð17Þ
We then check to see if it is on the left side of the box and

perform there an ideal (strong) measurement of σx. We are
interested to see how the σx values measured at t= 0 and t= 2NT
correlate.

When the final measurement finds σx=+1, the state of the
pointer q, used for measuring σx at t= 0 is

�
L
�� "x

� ��Û2N
V̂ "z

�� ���L�e� q2

4Δ2 ¼ 1ffiffiffi
2

p e�
ðqþλσwx Þ2

4Δ2 þOðλ2Þ ð18Þ

where we have used the first-order approximation of V̂ in λ and
where

σwx ¼
�
L
�� "x

� ��Û2N
σx "z

�� ���L��
L
�� "x

� ��Û2N "z

�� ���L� ð19Þ

is the so-called “weak” value of σx between the initial state "z

�� �
Lj i

and the final state
�
L
�� "x

� ��Û2N
(which is the state corresponding

to the result of the final measurement, i.e., that the particle was
found at t= 2NT in the left side of the box, with σx=+1,
propagated backwards in time to t= 0). This is an instance of the
general result that the state of the pointer used in a weak
measurement of an observable Â indicates the weak value

Aw ¼ hΨf jŴðtf ; t0ÞÂŴðt0; tiÞjΨii
hΨf jŴðtf ; tiÞjΨii

ð20Þ

where jΨii and jΨf i are the pre and post-selected states, ti and tf
are the times of the initial preparation and post-selection
respectively, t0 is the time when the measurement occurred and
Ŵ is the time evolution operator35 (see also “Methods”,
subsection Weak measurements).

Using Eqs. (11) and (12) we find that

σwx ¼ �1þO
� 1
N

	
: ð21Þ

Putting all together, we see that when the measurement
performed at t= 2NT found the spin in the left side of the box,
(which happens with probability close to 1) and σx=+1, the
pointer q of the measuring device used to measure the σx at t=
0 shifted to the value −λ. Of course, with λ small, the shift in the
position of the pointer q is smaller than its uncertainty, but
repeating the experiment many times we are able to determine
the shift with as much precision as desired.

As the pointer q̂ moves proportionally to the value of σx, with
proportionality constant λ, this means that the pointer indicates
that at t= 0, the x-spin component was σx=−1, confirming our
claim that the value of σx at t= 0 is opposite to that at the final
time t= 2NT.

A similar conclusion also holds when at time t= 2NT we found
the spin in the left side of the box but with σx=−1.

The flux of spin without particles. We now come to a very
interesting aspect of our problem. Spin is a conserved quantity as
long as the particle moves in a region where there is no magnetic
field. As we have seen, the x-component of the spin in the left half
of the box changes, but the only place where there is a magnetic
field is in the right end of the box, in the spin-dependent wall. But

how does it get there? Recall that the overall probability of the
particle to reach the spin-dependent wall can be made as small as
we want. Furthermore, even this infinitesimally small amount of
cases cannot have any effect on what happens on the left side of
the box, since in all the cases when the particle did reach the spin-
dependent wall they leave the box and never return to the left
side, as the time evolution (3) shows. Hence, if at the end of the
experiment we find the particle in the left half of the box, it must
have been there all the time.

The answer, we will show, is that there is a flux of spin without
particles that carry it, in a version of the “Quantum Cheshire Cat”
effect1, in which properties can be disembodied from the particle
that possesses them, like the grin from the famous cat.

Even more interesting, the spin flux originates from the left half
of the box and propagates to the right, and not from the region of
the wall towards the particle. In other words, the particle has to
originate this flux. But while the particle is in the left half of the
box, it has no knowledge whether or not at the right there is a
spin-dependent wall or not, which raises the question of how does
the particle knows when to originate the flux and when not?

Equation (3), of course, describes the evolution of the particle
when no measurement to test it is performed. Again, to observe it,
we will perform weak measurements that only infinitesimally
disturb the particle, similarly to that described before.

To observe the details of the spin flow, we need to analyze the
experiment in more detail. Up to this point, we only looked at
times t= nT, multiples of the period of the bouncing back and
forth inside one half of the box. We need now to look at more
intermediate times.

Let U(τ), with 0 ≤ τ < T represent the time evolution for a time
τ shorter than the period T.

Suppose that at time t= nT+ τ we test whether the particle is
on the right-hand half of the box, given that we find it on the left
side at time t= 2NT, (which is, as we have shown, almost always).
The times of interest are in the second part of each period (i.e., T/
2 ≤ τ < T), which is when a tunnelled wavepacket is formed and
traverses the right half of the box on its way out.

We already know that the amplitude to find the particle on the
right-hand side after the n-th collision with the partition is
sin ϵcosnϵ, so very low to start with. But if we further condition it
by the fact that at the final time t= 2NT we find the particle on
the left side, we now expect the probability to find it at the
intermediate time in the right side should be strictly zero: indeed,
given that the spin is "z

�� �
, each tunnelled wavepacket

subsequently emerges from the box and never comes back. The
only way to find it on the left side at the final time is therefore not
to have tunnelled at all. This intuition is confirmed by the weak
measurement: if we weakly measure PR, the projector on the right
side at any arbitrary time t= nT+ τ we find that the pointer
indicates zero. Indeed, the pointer will be displaced to the "weak
value" of PR (see Eq. (20))

P̂
w
R ¼

�
L
�� "x

� ��Û2N�n�1
ÛðT � τÞP̂RÛðτÞÛn "z

�� ���L��
L
�� "x

� ��Û2N "z

�� ���L� ¼ 0: ð22Þ

This weak value is equal to zero because P̂RÛðτÞÛn "z

�� ���L� is a
wavepacket localized in the right half of the box, originated from
tunnelling during the n-th collision and, by the final time t= 2NT
is outside of the box, i.e., up to a normalization factor,

Û
2N�n�1

ÛðT � τÞP̂RÛðτÞÛn "z

�� ���L� ¼ "z

�� �
N � nj i ð23Þ

and it is orthogonal to "z

�� ���L�, hence the numerator in (22)
is zero.
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(In the above we assumed that the measurement of the spin at
the end of the measurement yielded σx= 1; the same holds if this
measurement yields σx=−1.)

Therefore, indeed, in the case that at the end we find the
particle in the left half, there is no flux of particles traversing the
right half of the box. Yet, its x-spin component changes. The spin
difference must leak out somehow.

Let us ask now whether there is a spin in the right half of the
box. This seems silly, as we have just proven that there are no
particles there at any time. Yet, let us ask. If we perform a weak,
very non-disruptive measurement of P̂Rσx at time t= nT+ τ with
T/2 ≤ τ < T, and suppose that at the end of the experiment, a
measurement of position and spin of the particle finds the particle
in the left side of the box, with spin σx= 1, the measurement at
t= T+ τ yields (see “Methods”, subsection Spin measurements).

ðP̂RσxÞw

¼
�
L
�� "x

� ��Û2N�n�1
ÛðT � τÞP̂RσxÛðτÞÛn "z

�� ���L��
L
�� "x

� ��Û2N "z

�� ���L�
¼ � cosnϵ sin ϵ sinð2N � n� 1Þϵ

cos2Nϵ

ð24Þ

which is different from zero, even though there is no
particle there.

We can in fact study the evolution in more detail. Instead of
just checking for the existence of the spin in the whole right half
of the box, we check its precise position and how it changes in
time. We can do this by measuring at time t= nT+ τ the
operator P̂R;τσx where P̂R;τ is the projector on the location in the
right half of the box where the tunnelled wavepacket is at time τ
after the tunnelling occurred. We find that the entire spin in the
right half of the box is actually concentrated in this region, i.e.,

ðP̂R;τσxÞw ¼ ðP̂RσxÞw ð25Þ
while if at the same time we measure the spin at other locations in
the right half of the box we find zero.

Finally, we can also check for the existence of a particle
and spin outside the box. A similar calculation to the one
above, taking into account that the propagation of a
wavepacket is spin-independent, Û kj i "z

�� � ¼ kþ 1j i "z

�� �
and

Û kj i #z

�� � ¼ kþ 1j i #z

�� �
, shows that, given that at the end of

the experiment we find the particle in the left half of the box,
there is neither a particle nor a spin outside the box at any time.

We, therefore, see that every period T, a pulse of spin
propagates from the partition towards the spin-dependent wall
and it is absorbed by the wall.

The total spin that left the left half of the box, propagated to the
wall and got absorbed there can be found by summing the spin
carried in each pulse during the experiment:

∑
2N�1

n¼0

cosnϵ sin ϵ sinð2N � n� 1Þϵ
cos2Nϵ

¼ �2þO
� 1
N

	
ð26Þ

(see “Methods”, subsection Spin flux), meaning that the spin in
the left half of the box increased by 2þOð 1NÞ, which is precisely
the difference between the initial spin, which we argued is σx=
−1 and the final spin, which we measured to be σx=+1.

Discussion
In this paper we analyzed a set-up that is at the core of a host of
“counterfactual” phenomena. What all these phenomena have in
common is that events in a given space region depend on what
happens in a different space region (the “control” region) despite
the particle having infinitesimally small probability of ever
entering that region. What we have shown here is that this

apparent paradox can be explained by the fact that it is not
important for the particle to enter the control region; it is enough
for the controlled property, (i.e., the property that is being con-
trolled by actions in the control region), of the particle to enter
that region. The presence of the controlled property, without the
particle itself, is possible via a quantum Cheshire Cat effect.

As we mentioned in the “Introduction”, our work was inspired
by the desire to better understand the so-called counterfactual
information processing protocols. The connection to counter-
factual communication is immediate. Imagine the set-up descri-
bed in our paper, with Alice next to the left-side of the box and
Bob next to the right-side. Bob could communicate information
to Alice by inserting or not inserting the spin-dependent wall.
Say, when Bob wants to communicate a “0” he could leave the
right-end of the box open, while when he wants to communicate
a “1” he could insert the spin-dependent wall. In her turn,
Alice could perform a weak measurement of σx at the start of the
protocol and a strong measurement of σx at the end. In both cases
(i.e., when Bob sends a “0” or a “1”) the particle remains at all
time next to Alice (except an infinitesimally small number of
cases). Yet, by detecting if σx flipped or not, Alice can learn the bit
sent by Bob. Hence this constitutes counterfactual communica-
tion. All of our analysis and insight can now be seen to apply to
counterfactual communication. That is, even though the particle
which was supposed to be the carrier is not sent through the
channel, our results show that the disembodied information
carrier, the spin, is in fact sent.

True, the above particular protocol, while exhibiting counter-
factual communication, is quite inefficient. Indeed, in one round
of the protocol, the weak measurement provides only very little
information about the initial value of σx; to decide whether σx flips
or not requires the protocol to be repeated many times, so the
communication rate is very small. But this protocol is just a
simple, direct, and unsophisticated application of our set-up,
while efficient counterfactual communication protocols are far
more complex. Analyzing those more complex examples in the
light of the present insights is left for future work.

It is also interesting to compare the effect present in this paper
with the so-called “negative-result measurements”, a class of
effects in which in some sense—different from ours—a particle is
influenced by actions in a region where the particle is not
found36, 37. The famous example by Dicke37 is that of a particle in
the ground state of a box. A measurement of position is made by
sending a beam of light through the right half of the box. There is
a probability of 50% of finding the particle there. The interesting
case is when the light is not scattered, i.e., the particle is not found
in the right half of the box. However, although the light is not
scattered, the wavefunction of the particle is changed. Before the
measurement the wavefunction was the ground state, which is
spread on both sides of the box; after the measurement the
wavefunction it is collapsed to the left side only. So although the
particle was not found on the right side and the light beam was
not scattered, the particle gained energy (the post-measurement
state is a superposition of ground plus excited states, while
initially it was ground state only). The difference between this
effect and ours is that in the case of the “negative-result mea-
surements” a significant part of the wavefunction is initially in the
interaction region, (i.e., the right side of the box, where the beam
of light was sent, in Dicke’s example). Crucially, the size of the
effect depends on the overlap of the wavefunction with the
interaction region. Had the particle in Dicke’s example been
prepared in a state with small overlap with the right side of the
box, the state would have been only a little perturbed by the beam
of light; in the limit of zero initial overlap, the particle would have
not been perturbed at all and the effect vanishes. In our case,
the overlap of the wavefunction with the interaction region can be
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made as close to zero as we want, and the effect remains. This
shows the different nature of the two effects.

Finally, in this work, we present a dynamic Cheshire Cat effect.
We would like to emphasize that our analysis is not instead of
solving the Schrödinger equation, rather, it shows more details of
the phenomena involved. In doing so we hope to achieve a better
understanding of the true nature of quantum mechanics.

Methods
Weak measurements. The weakly disturbing measurement discussed here was
first introduced in ref. 35. We give the main result here, for convenience.

In order to measure an arbitrary observable Â at time t= t0 we follow the von
Neumann measuring formalism. We consider a measuring device with a pointer q̂

prepared in the initial state (up to normalization) ϕðqÞ ¼ e�
q2

4Δ2 where Δ is the
uncertainty in the initial position of the pointer, and couple the measuring device
to the measured system via the interaction Hamiltonian

Ĥ ¼ λδðt � τÞÂp̂ ð27Þ

where p̂ is the momentum canonically conjugate to the pointer position q̂. We will
be interested in the case in which the coupling constant λ is small. In the rest of the
time, the measuring device is supposed to remain unchanged, i.e., to have zero
Hamiltonian. The unitary evolution corresponding to the interaction is

V̂ ¼ e�i λ Â p̂ ð28Þ

which is the shift operator, which shifts the pointer by the value of Â.
Here we are interested in performing the measurement on a system

that was prepared at the initial time t= ti in the initial state Ψi

�� �
and which,

except for t= t0 when the measurement is performed evolves under the time
evolution operator Ŵ. Furthermore, we are interested in the result of this weak
measurement in the case in which a second, later measurement, of some other
operator B, taking place at t= tf happened to yield the eigenvalue corresponding to
its eigenstate jΨf i.

The system evolves from t= ti to t= t0 under the evolution operator Ŵðt0; tiÞ.
Then, the state of the system and measuring device immediately after the
measurement is given by

e�iλÂp̂Ŵðt0; tiÞ Ψi

�� �
e�

q2

4Δ2

����



ð29Þ

After the further evolution from t0 to tf and projecting on jΨf i, to select the cases in
which the second measurement yielded the result of interest for us, we find the first
measuring device to be left in the state

Ψf

D ���Ŵðtf ; t0Þe�iλÂp̂Ŵðt0; tiÞ Ψi

�� �
e�

q2

4Δ2

����



� Ψf

D ���Ŵðtf ; t0Þð1� iλÂp̂ÞŴðt0; tiÞ Ψi

�� �
e�

q2

4Δ2

����



¼ Ψf

D ���Ŵðtf ; tiÞ Ψi

�� �ð1� iλAwp̂Þ e� q2

4Δ2

����



� Ψf

D ���Ŵðtf ; tiÞ Ψi

�� �
e�iλAwp̂ e�

q2

4Δ2

����



¼ Ψf

D ���Ŵðtf ; tiÞ Ψi

�� �
e�

ðq�λAw Þ2
4Δ2

����



ð30Þ

where in the second line we have approximated the shift operator e�iλÂp̂ to the first
order in λ, in the third line we have factored out hΨf jŴðtf ; t0ÞŴðt0; tiÞjΨii, and we

have used the fact that Ŵðtf ; t0ÞŴðt0; tiÞ ¼ Ŵðtf ; tiÞ and where

Aw ¼
Ψf

D ���Ŵðtf ; t0ÞÂŴðt0; tiÞ Ψi

�� �
Ψf

D ���Ŵðtf ; tiÞ Ψi

�� � ; ð31Þ

in the fourth line, we used again the first-order approximation of the shift operator
and in the last line, we applied the shift operator to the state of the pointer. We
have this way proved that, for small enough λ, the measuring device indicates the
value Aw proving thus (20). (Note that the pre-factor hΨf jŴðtf ; tiÞjΨii is simply a
normalization factor, corresponding to the probability of the second measurement
to yield jΨf i.)

Spin measurements. Let us evaluate ðP̂RσxÞw , Eq. (24). To evaluate the numerator,
we first note that the projector P̂R measured at time nT+ τ selects the wavepacket
that is at this time in the right side of the box. This wavepacket originated from

tunnelling in the n+ 1 the collision. Hence

P̂RÛðτÞÛn "z

�� ���L� ¼ cosnϵ sin ϵ τj i ð32Þ
where τj i represents this wavepacket (see Fig. 2).

Next, the operator σx applied to the "z

�� �
spin flips it to #z

�� �
, which sees the

wall. The time evolution operator ÛðT � τÞ further propagates τj i up to the right
wall, where, due to the spin being #z

�� �
, it gets reflected: ÛðT � τÞ τj i #z

�� � ¼��R� #z

�� �
leading to

ÛðT � τÞσxP̂RÛðτÞÛn "z

�� ���L� ¼ cosnϵ sin ϵ
��R� #z

�� �
: ð33Þ

The evolution for the next (N− n− 1)T, given by Û
2N�n�1

can be computed
immediately, using (9), and we obtain

Û
2N�n�1

ÛðT � τÞP̂RσxÛðτÞÛn "z

�� ���L�
¼ cosnϵ sin ϵð cosð2N � n� 1Þϵ

��R�� sinð2N � n� 1Þϵ
��L�Þ #z

�� � ð34Þ

Finally, projecting on Lj i "x

�� �
yields

"x

� j�L��Û2N�n�1
ÛðT � τÞP̂RσxÛðτÞÛn��L� "z

�� �
¼ � 1ffiffiffi

2
p cosnϵ sin ϵ sinð2N � n� 1Þϵ

ð35Þ

The denominator is, using (3),�
Lj "x

� ��Û2N "z

�� ���L�
¼ �

L
�� "x

� ��cos2Nϵ��L� "z

�� �

þ �
L
�� "x

� �� ∑
2N�1

k¼0
sin ϵcoskϵ 2N � 1� kj i "z

�� �

¼ 1ffiffiffi
2

p cos2Nϵ

ð36Þ

From (35) and (36) we get (24):

ðP̂RσxÞw ¼
�
L
�� "x

� ��Û2N�n�1
ÛðT � τÞP̂RσxÛðτÞÛn "z

�� ���L��
L
�� "x

� ��Û2N "z

�� ���L�
¼ �cosnϵ sin ϵ sinð2N � n� 1Þϵ

cos2Nϵ

ð37Þ

Spin flux. Here we calculate the spin flux, Eq. (26):

∑
2N�1

n¼0
� cosnϵ sin ϵ sinð2N � n� 1Þϵ

cos2Nϵ

¼ �sin ϵ ∑
2N�1

n¼0
sinð2N � n� 1ÞϵþO 1

N

� � ð38Þ

where we approximated cosnϵ � 1 for 0 ≤ n ≤ 2N. Given that ϵ ¼ π
2N we get

� sin
π

2N

� 	
∑

2N�1

n¼0
sin ð2N � n� 1Þ π

2N

� 	

¼ �sin
π

2N

� 	
∑

2N�1

n¼0
sin ðnþ 1Þ π

2N

� 	

¼ �sin
π

2N

� 	
cot

π

4N

� 	
¼ �2cos2

π

4N

� 	

¼ �2þO 1
N

� �
ð39Þ

where we again approximated cos2ð π
4N Þ to 1 up to order 1/N.
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