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Abstract

Background: Understanding the interplay between educational attainment and genetic

predictors of cardiovascular risk may improve our understanding of the aetiology of edu-

cational inequalities in cardiovascular disease.

Methods: In up to 320 120 UK Biobank participants of White British ancestry (mean

age¼57 years, female 54%), we created polygenic scores for nine cardiovascular risk fac-

tors or diseases: alcohol consumption, body mass index, low-density lipoprotein choles-

terol, lifetime smoking behaviour, systolic blood pressure, atrial fibrillation, coronary

heart disease, type 2 diabetes and stroke. We estimated whether educational attainment

modified genetic susceptibility to these risk factors and diseases.

Results: On the additive scale, higher educational attainment reduced genetic suscepti-

bility to higher body mass index, smoking, atrial fibrillation and type 2 diabetes, but in-

creased genetic susceptibility to higher LDL-C and higher systolic blood pressure. On the

multiplicative scale, there was evidence that higher educational attainment increased
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genetic susceptibility to atrial fibrillation and coronary heart disease, but little evidence

of effect modification was found for all other traits considered.

Conclusions: Educational attainment modifies the genetic susceptibility to some cardio-

vascular risk factors and diseases. The direction of this effect was mixed across traits

considered and differences in associations between the effect of the polygenic score

across strata of educational attainment was uniformly small. Therefore, any effect modi-

fication by education of genetic susceptibility to cardiovascular risk factors or diseases is

unlikely to substantially explain the development of inequalities in cardiovascular risk.

Key words: Polygenic scores, education, inequalities, cardiovascular disease, gene*environment interactions

Introduction

Socioeconomically deprived individuals have a greater risk

of cardiovascular disease (CVD) than less deprived individu-

als.1 Most cardiovascular outcomes are multifactorial dis-

eases with environmental and genetic aetiology.2–4

Therefore, it is plausible that socioeconomic position (SEP)

may interact with, or modify, genetic susceptibility to CVD.

Large genome-wide association studies (GWASs) have

identified many genetic variants associated with liability to

CVD and its risk factors.5–7 Polygenic scores (PGSs) can

subsequently be constructed, explaining substantial frac-

tions of variation. Using UK Biobank, two studies have

demonstrated that individuals with a higher Townsend

deprivation index score have an accentuated risk of obesity

in genetically susceptible adults.8,9 However, previous

studies in the UK and Finland did not find evidence that

education modified the effect of genetic susceptibility to

high body mass index (BMI) on measured BMI.9,10

Whilst educational attainment, a measure of SEP, has

been shown to modify the association of cardiovascular

risk factors on CVD,1,11 it is unclear whether educational

attainment modifies the effect of genetic susceptibility to a

wide range of cardiovascular risk factors. If higher levels of

education mitigate some of the genetic risk of

cardiovascular risk (‘gene*environment interaction’), this

may contribute to educational inequalities in CVD.12

Where two variables are known risk factors for an out-

come, evidence of effect modification is expected on both,

or one of, the additive or the multiplicative scale.13

Therefore, we carry out analyses on both scales.

Identifying the magnitude and direction of any effect modi-

fication is of greatest importance for public health and in

understanding the aetiology of cardiovascular inequalities.

Methods

UK Biobank

UK Biobank recruited 503317 adults from the UK between

2006 and 2010, aged 37–73years.14 Participants attended

baseline assessment centres involving questionnaires, interviews

and anthropometric, physical and genetic measurements.14,15

We use �320120 individuals of White British ancestry

(Supplementary Figure S1, available as Supplementary data at

IJE online).

Educational attainment

Participants reported their highest qualification achieved,

which was converted to the International Standard

Key Messages

• The role of educational attainment in modifying the effect of polygenic scores for a wide range of cardiovascular risk

factors or diseases has not previously been studied.

• We explore whether educational attainment modifies the effects of polygenic susceptibility to alcohol consumption,

body mass index, low-density lipoprotein cholesterol, lifetime smoking behaviour, systolic blood pressure, atrial

fibrillation, coronary heart disease, type 2 diabetes and stroke.

• Effect modification by education was observed for some polygenic scores for cardiovascular risk factors, but not all.

• Effects were not always in the hypothesized direction and were dependent on the scale of analysis.

• Modification of the effect of genetic susceptibility to cardiovascular risk factors or cardiovascular disease by

educational attainment is unlikely to substantially explain the development of inequalities in cardiovascular risk.
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Classification for Education (ISCED) coding for years of

education (Supplementary Table S1, available as

Supplementary data at IJE online).16 This definition has

been used previously,17 including in UK Biobank.18

Cardiovascular risk factors and cardiovascular

disease

Cardiovascular risk factors were included if there was evi-

dence for them being a causal risk factor for CVD from ran-

domized–controlled trials, Mendelian randomization studies

or clinical studies (see Supplementary Table S2, available as

Supplementary data at IJE online) with suitable GWAS sum-

mary statistics available. Additionally, we included PGSs for

several CVD outcomes. In total, nine PGSs were included in

analyses: alcohol consumption,19 BMI,20 type 2 diabetes,21

low-density lipoprotein cholesterol (LDL-C),22 lifetime

smoking behaviour,23 systolic blood pressure,18 atrial

fibrillation,5 coronary heart disease (CHD)6 and stroke.7

Cardiovascular risk factors were measured at baseline, whilst

incident cardiovascular outcomes (atrial fibrillation, CHD,

stroke and type 2 diabetes) were determined prospectively

by linked mortality records and hospital inpatient records

(see Supplementary Table S3, available as Supplementary

data at IJE online). A full description of how each risk fac-

tor/outcome was measured phenotypically and genetically is

presented in the Supplementary Methods (available as

Supplementary data at IJE online).

Deriving polygenic scores

Summary statistics of the associations of the single-nucleotide

polymorphisms (SNPs) with each cardiovascular risk factor/

outcome were downloaded from MR-Base24 or directly from

the relevant GWAS. We used the most recent GWAS for each

risk factor/outcome excluding UK Biobank participants to

avoid bias by sample overlap (See Table 1).

Table 1 Summary characteristics for each GWAS used to derive external weights in polygenic scores

Phenotype Author/consortium Population Sample size (cases) Unit

Alcohol consumption GWAS and Sequencing

Consortium of Alcohol

and Nicotine Use19

European ancestry (sum-

mary statistics exclud-

ing UK Biobank)

630 154 Drinks per week

Body mass index Genetic Investigation of

Anthropometric

Traits20

European ancestry 339 224 SD (kg/m2)

Low-density lipoprotein

cholesterol

Global Lipids Genetics

consortium22

European ancestry 188 578 SD (circulating lipids)

Smoking Wootton et al.23 White British (split sam-

ple GWAS of UK

Biobank; see

Supplementary

Methods, available as

Supplementary data at

IJE online)

318 147 SD (lifetime smoking index)

Systolic blood pressure Carter et al.18 White British (split sam-

ple GWAS of UK

Biobank; see

Supplementary

Methods, available as

Supplementary data at

IJE online)

318 147 SD (mm/Hg)

Atrial fibrillation Ellinor et al.5 European ancestry 59 133 (6 707) Log odds ratio

Coronary heart disease CARDIoGRAMplusC4D6 Predominantly European

(77%)

184 305 (60 801) Log odds ratio

Type 2 diabetes DIAbetes Genetics

Replication And Meta-

analysis21

European ancestry 159 208 (26 276) Log odds ratio

Stroke MEGASTROKE7 Predominantly European

(85%)

521 612 (67 162) Log odds ratio

SD, standard deviation; GWAS, genome-wide association study.
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The 1000 Genomes Project was used to find proxy

SNPs in linkage disequilibrium (LD) with SNPs not found

in UK Biobank. Pruning of SNPs was carried out using the

clump command in PLINK using an r2 parameter of 0.25

and a physical-distance threshold for clumping of 500 kB.

PGSs were constructed using a range of P-value thresholds:

P� 5� 10–8 (genome-wide significant), �0.05 and �0.5.

As the P-value threshold increases, the variance explained

by the PGS typically increases. However, increasing the

numbers of SNPs increases the risk of pleiotropy and false-

positive effects. Pruned SNPs from each GWAS were har-

monized with SNPs from UK Biobank, aligning the effect

estimates and alleles. Any SNPs that could not be harmo-

nized, palindromic SNPs (where alleles on the forward and

reverse strand are read the same) or triallelic SNPs were ex-

cluded. PGSs were created by multiplying the number of

effect alleles for each participant by the association of the

SNP with the phenotype in the GWAS, then summed

across all SNPs for each phenotype. PGSs were standard-

ized for use in analyses and reflect a 1 SD change.

Main analyses are presented using PGSs at the genome-

wide significance threshold with other thresholds presented

in the supplement.

Exclusion criteria

Reverse causality can introduce bias when the temporality

of the exposure and outcome is mis-specified and the out-

come itself affects the exposure.25 Although CVD in adult-

hood cannot alter genetic variants determined at

conception, and indeed is unlikely to change educational

attainment typically determined in early adulthood, a diag-

nosis may lead to behavioural or lifestyle changes that

change the relative importance of the PGS in determining

the outcome. Participants were therefore excluded if they

had experienced at least one diagnosis of any of the out-

comes considered before baseline (atrial fibrillation, CHD,

stroke and type 2 diabetes) or any one of myocardial in-

farction, angina, transient ischaemic attack, peripheral

arterial disease, familial hypercholesterolaemia, type 1 dia-

betes and chronic kidney disease. These diagnoses can all

result in statins being prescribed to prevent CVD, which

may lead to behaviour change and therefore reverse causal-

ity.26 Diagnoses were ascertained through linked mortality

data and hospital inpatient records using ICD-9 and ICD-10

codes (Supplementary Table S4, available as Supplementary

data at IJE online).

Quality control of the genetic data was carried out

using the Medical Research Council Integrative

Epidemiology Unit quality-control pipeline, described in

full previously.27 In brief, individuals were excluded if their

genetic sex differed to their gender reported at baseline or

for having aneuploidy of their sex chromosomes (non-XX

or -XY chromosomes). Further individuals were excluded

for extreme heterozygosity or a substantial proportion of

missing genetic data. Related individuals were excluded,

removing those related to the greatest number of other par-

ticipants until no related pairs were left.27 This exclusion

list was derived in-house using an algorithm applied to the

list of all the related pairs provided by UK Biobank (third-

degree or closer) (Supplementary Figure S1, available as

Supplementary data at IJE online). Individuals were ex-

cluded if they had withdrawn from UK Biobank or were,

or may be, pregnant at baseline.

Individuals were further excluded if they were missing

data for education, age and sex. Individuals were excluded

from specific analyses if they were missing phenotypic

measurements of the risk factor/outcome under consider-

ation (see Supplementary Figure S1, available as

Supplementary data at IJE online).

Statistical analysis

Association of educational attainment with outcomes

Multivariable linear regression (adjusting for age and sex)

was carried out to estimate the association between educa-

tional attainment and cardiovascular risk factors/

outcomes.

Association between each polygenic score and observed

phenotype

For each cardiovascular risk factor/outcome, we estimated

the association between each PGS and the phenotype using

multivariable regression, adjusting for age, sex and 40

genetic principal components to control for population

structure. For continuous risk factors, measures were stan-

dardized, so estimates reflect the mean difference in SD of

the phenotype, or natural log of the phenotype, per 1 SD

higher PGS. For binary outcomes, estimates reflect the risk

difference or odds ratio of the outcome per 1 SD higher

PGS.

Effect modification by educational attainment on

polygenic scores for cardiovascular risk

To test for effect modification, the linear model was strati-

fied by years of educational attainment. To estimate the

magnitude and direction of the effect modification, an in-

teraction term was included in the linear model [e.g.

PGS*education (continuous)]. Analyses were adjusted for

age, sex and 40 genetic principal components. As effect

modification is scale-dependent, tests of effect modifica-

tion were carried out on both the additive and
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multiplicative scales.13 Additive and multiplicative effects

were carried out as previously defined.13

Secondary analyses

All analyses were replicated for PGSs at P-value thresholds

of �0.05 and �0.5.

Results

UK Biobank cohort

Eligible UK Biobank participants (55% female) had a mean

age of 57 (SD¼ 8.00) years. A higher proportion of partici-

pants (33%) left school after 20 years (equivalent to obtaining

a degree) compared with those who left school after 7 years

(equivalent to no formal qualifications) (16%) (Table 2).

For a P-value of �5� 10–8, the PGSs explained between

0.06% (atrial fibrillation) and 14% (systolic blood pres-

sure) of variance in the phenotypes (Supplementary Table

S5, available as Supplementary data at IJE online).

Association between educational attainment,

polygenic scores and cardiovascular risk factors use

Educational attainment was associated with all cardiovas-

cular risk factors/outcomes, except for LDL-C, although

for all outcomes the effect was small (Supplementary Table

S6, available as Supplementary data at IJE online). Except

for alcohol consumption, higher educational attainment

led to a reduction in the mean difference of all risk factors/

outcomes (Supplementary Table S6, available as

Supplementary data at IJE online).

Effect modification by educational attainment of

genetic susceptibility to cardiovascular risk

factors

For most PGSs, there was evidence that educational attain-

ment modified the effect of the PGS on either the additive

or multiplicative scale (Figures 1–3 and Supplementary

Table S7 and S8, available as Supplementary data at IJE

online). The exception was alcohol consumption, for

which there was little evidence on either scale.

On the additive scale, higher educational attainment

protected against genetic susceptibility to higher BMI,

smoking, atrial fibrillation and type 2 diabetes (Figures 1

and 2). For example, a 1 SD increase in PGS for smoking

increased the mean difference in lifetime smoking by 0.05

SD [95% confidence interval (CI): 0.04 to 0.06] for those

with 7 years of education and by 0.03 SD (95% CI: 0.02 to

Table 2 Descriptive characteristics of the main analysis sample compared with all individuals in UK Biobank at baseline who

have not since withdrawn from the study

Variable Analysis sample Full UK Biobank

(N¼320 120) (N¼502 156)

Continuous variables N Mean (SD) N Mean (SD)

Age 320 120 56.66 (8.00) 502 156 56.54 (8.09)

Drinks per week 318 300 8.17 (9.05) 497 917 7.79 (9.05)

Body mass index 319 201 27.3 (4.72) 499 065 27.43 (4.8)

Low-density lipoprotein cholesterol 304 700 3.61 (0.86) 468 390 3.56 (0.87)

Systolic blood pressure 292 277 138.16 (18.58) 456 647 137.79 (18.62)

Smoking (lifetime behaviour) 301 684 0.32 (0.66) 318 112 0.34 (0.67)

Categorical variables N Frequency (%) N Frequency (%)

Sex Female 320 120 175 108 (55) 502 156 273 025 (54)

Years of education 7 years 320 120 52 012 (16) 493 033 84 648 (17)

10 years 54 899 (17) 82 357 (17)

13 years 17 355 (5) 26 857 (5)

15 years 39 144 (12) 58 271 (12)

19 years 51 418 (16) 77 668 (16)

20 years 105 292 (33) 163 232 (33)

Atrial fibrillation (incident) Control 316 912 307 352 (97) 495 772 480 007 (97)

Case 9560 (3) 15 765 (3)

Coronary artery disease (incident) Control 317 055 302 574 (95) 481 533 458 689 (95)

Case 14 481 (5) 22 844 (5)

Type 2 diabetes (incident) Control 316 406 305 327 (96) 492 726 472 098 (96)

Case 11 079 (4) 20 628 (4)

Stroke (incident) Control 320 120 314 191 (98) 497 151 487 084 (98)

Case 5929 (2) 10 067 (2)
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0.03) for people with 20 years of education (Figures 1 and

2 and Supplementary Table S7, available as Supplementary

data at IJE online).

Also on the additive scale, higher educational attain-

ment increased genetic susceptibility to LDL-C and systolic

blood pressure. For example, for those with 7 years of edu-

cation, an increase of 1 SD in the PGS for LDL-C increased

mean LDL-C by 0.19 SD (95% CI: 0.18 to 0.19) compared

with 0.22 SD (95% CI: 0.22 to 0.23) for people with

20 years of education per SD increase in PGS (Figures 1

and 2 and Supplementary Table S7, available as

Supplementary data at IJE online).

On the multiplicative scale, there was evidence that

higher educational attainment increased genetic suscepti-

bility to atrial fibrillation and CHD. For example, for a 1

SD increase in atrial fibrillation PGS, the odds ratio for

atrial fibrillation in individuals with 7 years of education

was 1.59 (95% CI: 1.45 to 1.57) and for people with

20 years of educational attainment the odds ratio was

1.65 (95% CI: 1.59 to 1.71) (Figures 1 and 3 and

Supplementary Table S8, available as Supplementary data

at IJE online). There was little evidence of modification

by education on the multiplicative scale for all other

PGSs.
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Figure 1 Coefficient for educational attainment as an effect modifier of polygenic susceptibility to cardiovascular risk factors or diseases on the addi-

tive and multiplicative scale. Analyses adjusted for age, sex and 40 genetic principal components. Alcohol¼drinks per week; BMI¼body mass index;

LDL-C¼ low-density lipoprotein cholesterol; smoking¼ lifetime smoking behaviour; SBP¼ systolic blood pressure; AF¼ atrial fibrillation;

CHD¼ coronary heart disease; T2D¼ type 2 diabetes. Analyses for binary outcomes on the multiplicative scale are presented as log odds ratios
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For all outcomes, the size of the coefficients for effect

modification was small. Non-linear effects by strata of ed-

ucational attainment were observed for a number of out-

comes, including LDL-C, smoking, atrial fibrillation, CHD

and type 2 diabetes. For some outcomes, such as with

BMI, the effect modification is observed at a single level of

educational attainment (Figures 2 and 3).

Secondary analyses

Analyses using more liberal P-value thresholds for the PGS

were broadly consistent with the main results. Similar

directions of effect were observed, e.g. on the additive

scale, a one-unit increase in educational attainment pro-

tected against genetic susceptibility to BMI and lifetime

smoking behaviour (Supplementary Table S9 and S10,

available as Supplementary data at IJE online).

Discussion

In this analysis of UK Biobank, we found evidence that ed-

ucational attainment modified the risk of genetic suscepti-

bility to some, but not all, cardiovascular risk factors/
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outcomes. Our a priori hypothesis was that higher levels of

education would mitigate genetic susceptibility to cardio-

vascular risk. However, in several cases, the effect modifi-

cation was in the other direction, i.e. higher education

accentuated genetic predisposition. Furthermore, the mag-

nitude of the differences in associations between PGSs and

cardiovascular risk factors/outcomes across levels of edu-

cational attainment was small in all cases. These results

suggest that modification of the effect of PGSs by

educational attainment is unlikely to play a substantial role

in the generation of educational inequalities in CVD.

Results in context

A number of studies have sought to identify the interplay be-

tween genetic susceptibility to cardiovascular risk factors

with a range of lifestyle and environmental factors.28–33

However, few have considered the role of SEP interacting
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with genetic risk or investigated a wide range of cardiovas-

cular risk factors/outcomes.

Two recent studies using UK Biobank demonstrated

that a greater Townsend deprivation index score accentu-

ated the genetic risk of obesity.8,9 In contrast to our results,

the previous literature has not found evidence that educa-

tion modifies the genetic risk of obesity.9,10 This may be re-

lated to power, where previous studies have used smaller

sample sizes to estimate interactions.

These differences could also be due to the education defi-

nition used. Here, we used the ISCED years of schooling

measure, whereas previous research has used age of com-

pleting full-time education9 and highest qualification.10

Typically, non-linear associations were observed when

stratifying by years of education, demonstrating that years

of education is not a homogenous exposure. For many out-

comes, including LDL-C, smoking, atrial fibrillation, CHD

and type 2 diabetes, effect modification was driven by indi-

viduals with the lowest levels of education. These non-

linear effects may be explained by later measures of adult

SEP. Much of the variation in educational attainment is

determined by early adulthood and therefore does not

capture later-life factors that may be important in the de-

velopment of cardiovascular inequalities, such as occupa-

tion or income.

Strengths and weaknesses, and caveats to the

analysis of effect modification

There are a number of strengths in this study. Many previ-

ous analyses of gene*environment interactions in CVD

rely on candidate gene studies,32,34,35 often resulting in

spurious associations.36 We have used PGSs for nine car-

diovascular risk factors/outcomes. Whilst candidate gene

studies focus on a single genetic variant, or a small group

of (common) genetic variants that individually explain a

large(r) amount of the variance in the trait, PGSs include a

large number of genetic variants, each explaining a small

amount of the variation, but cumulatively explaining a

large amount.37,38 For most diseases, including CVD, poly-

genic inheritance of these common variants plays a greater

role than rare monogenic mutations.38,39 Therefore, the

broad measure of genetic susceptibility used here is likely

to represent a greater number of biological pathways for

the aetiology of CVD.

We created PGSs at a range of P-value thresholds. At a

more stringent threshold (e.g. P�5�10–8), the genetic

variants included are less likely to be pleiotropic (i.e. also

associated with different phenotypes), but the variance

explained by the PGS may be lower than with a more lib-

eral threshold (e.g. P� 0.5). Additionally, less-stringent

clumping thresholds were used to improve polygenic pre-

diction, but this may introduce pleiotropic SNPs.

The lack of evidence for effect modification between ed-

ucation and the PGS for alcohol consumption observed

here could be due to insufficient power to detect an inter-

action or because of the variable definition. Alcohol con-

sumption was defined as drinks per week, but the type of

alcoholic drink consumed may be an important factor.

Additionally, alcohol consumption was self-reported by

participants, which is prone to recall bias.40,41 If this recall

bias is differential by educational attainment, this may

mask any effect modification between educational attain-

ment and genetic susceptibility to alcohol consumption.

Alternatively, different patterns of drinking may occur by

strata of educational attainment. It has been shown that

individuals of lower SEP are more likely to drink to ex-

treme levels,42 but individuals of higher SEP consume simi-

lar or even greater amounts of alcohol.43

Where effect modification was found, should different

definitions of the outcome variables be used, e.g. smoking

initiation as opposed to lifetime smoking behaviour, the

observed evidence of effect modification may change.

Similarly, the effect modification identified here may differ

for alternative measures of SEP.

These results may be specific to the model used to derive

PGSs. For example, a recent GWAS of systolic blood pres-

sure demonstrated that educational attainment interacts

with the genetic architecture of blood pressure.44 If these

interactions were accounted for when deriving the PGS,

different results may be observed.

Low statistical power reduces the chance of detecting a

true effect should one exist.45 Although some power calcu-

lators have been developed to calculate power in gene*en-

vironment interaction analyses,46 to our knowledge, none

has been developed for use with PGSs. Additionally, power

calculations rely on making assumptions about the true

effect size, which is difficult to estimate in this case.

Therefore, we believe it is more informative to interpret

the results and likely power based on the point estimates,

standard errors and width of the confidence intervals.

However, it is possible that we did not detect effect modifi-

cation by education on the effects of alcohol consumption

due to insufficient power to detect an interaction, as dem-

onstrated by small point estimates and wide confidence

intervals.

Studies of effect modification can be biased by reverse

causality and confounding. Analyses of CVD outcomes

were restricted to incident cases to avoid bias from behav-

iour changes following a CVD diagnosis to avoid reverse

causality. Genetic variants are determined at conception

and therefore not affected by unmeasured later-life con-

founding factors. However, they can be confounded by
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population structure.47 In this analysis, we controlled for

genetic principal components to minimize this bias.

It has been suggested that further to controlling for con-

founders, the interaction between the (i) confounders and

environmental exposure and (ii) confounders and genetic

exposure should be controlled for.48,49 This avoids specifi-

cation error by accounting for the covariation between the

confounders and the interactions tested. However, due to

the large number of principal components included as con-

founders in these analyses, there is not enough variation in

the data to include these additional covariates. Therefore,

these analyses may be biased by residual confounding.

UK Biobank participants are typically more highly edu-

cated and of a higher SEP than the UK population.14

Therefore, evidence of effect modification by education in

this sample may be due to collider bias caused by non-

random selection into the study.14,50

These results do not specifically identify what it is about

educational attainment that modifies genetic susceptibility

to cardiovascular risk. For example, remaining in educa-

tion may lead to an increased knowledge of the smoking

harms, even if they have genetic variants increasing their

susceptibility to heavier smoking.51 Indeed, a number of al-

ternative factors associated with educational attainment

could be contributing to the effect modification. For exam-

ple, parental genotype or family-level environmental fac-

tors may explain both educational attainment and

differential effects of PGSs by strata of education.

Due to limited power, we have not used causal inference

methods to test whether education is causal with respect to

all outcomes. To understand whether effect modification

by education is causal, exogenous exposures for education,

such as the Raising of the School Leaving Age (RoSLA),

could be used. However, it is challenging to identify suffi-

ciently large samples that were both exposed to the RoSLA

and have genotypic data.

Where educational attainment increased genetic suscepti-

bility to CVD, such as for atrial fibrillation, effect modifica-

tion may be due to differential rates of diagnosis, which

may independently contribute to cardiovascular inequalities.

Whilst risk factors such as BMI and smoking were measured

near universally in participants at baseline, CVD was ascer-

tained through linkage to hospital inpatient records.

Interpreting analyses of interaction and effect

modification

The terms interaction and effect modification are often

used interchangeably in modern epidemiology. Whilst sta-

tistically the same, the distinction can be made where an

interaction is defined in terms of the effects of two causal

risk factors, whereas effect modification specifies that the

effect of one risk factor varies by strata of a second factor,

the effect of which on the outcome is not necessarily

causal.52 We have used the term ‘effect modification’

throughout this analysis, where we specifically hypothesize

that the effect of the PGSs varies by strata of educational

attainment. This term also acknowledges that we have not

explicitly tested the causal associations between (i) educa-

tional attainment and (ii) PGSs on each outcome.

Interaction and effect modification have often been di-

chotomized into ‘biologic interaction’ and ‘statistical inter-

action’.53,54 Biologic interaction is said to be a deviation

from an additive effect of two risk factors on the risk dif-

ference of the outcome. However, this term has been criti-

cized for being difficult to interpret and giving potentially

misleading assurances about causal biological mechanisms

that have not been assessed.54

Statistical interaction is described as the deviation from

the expected effect of two joint risk factors, under the as-

sumption the risk factors are independent on the additive

or the multiplicative scale.54 When two risk factors are as-

sociated with the outcome, there should always be evi-

dence of an interaction on at least one scale, so we present

results on both the additive and the multiplicative scales.13

This is an important distinction from previous analyses,

which have typically only reported results on the additive

scale.8,9 A full discussion of additive and multiplicative

interactions can be found elsewhere.13

Public health relevance

To determine the public health relevance of these results, it

is important to interpret the magnitude and direction of

any effect modification. Coefficients for effect modifica-

tion were uniformly small in this analysis and the direction

of the effect across outcomes was not consistent. This indi-

cates that any effect modification by educational attain-

ment on the effect of genetic susceptibility to

cardiovascular risk factors/outcomes is unlikely to contrib-

ute to the development of inequalities in cardiovascular

risk. Although some results were scale-dependent—e.g.

greater evidence of effect modification by education on ge-

netic susceptibility to type 2 diabetes on the additive

scale—the direction of effect modification was generally

consistent within outcomes across both the additive and

multiplicative scales. Given the small coefficients for effect

modification, these differences in precision are likely

driven by low power.

Conclusions

In this study, we found that educational attainment modi-

fies genetic susceptibility to a number of cardiovascular
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risk factors/outcomes. The direction of this effect was

mixed and the size of the effect-modification coefficients

was small. This suggests that effect modification by educa-

tional attainment on the effect of genetic susceptibility to

cardiovascular risk factors/outcomes is unlikely to explain

the development of inequalities in cardiovascular risk.
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