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Abstract 

Bayesian optimization (BO) methods often rely 

on the assumption that the objective function is 

well-behaved, but in practice, this is seldom true 

for real-world objectives even if noise-free 

observations can be collected. Common 

approaches, which try to model the objective as 

precisely as possible, often fail to make progress 

by spending too many evaluations modeling 

irrelevant details. We address this issue by 

proposing surrogate models that focus on the 

well-behaved structure in the objective function, 

which is informative for search, while ignoring 

detrimental structure that is challenging to 

model from few observations. First, we 

demonstrate that surrogate models with 

appropriate noise distributions can absorb 

challenging structures in the objective function 

by treating them as irreducible uncertainty. 

Secondly, we show that a latent Gaussian 

process is an excellent surrogate for this 

purpose, comparing with Gaussian processes 

with standard noise distributions. We perform 

numerous experiments on a range of BO 

benchmarks and find that our approach 

improves reliability and performance when 

faced with challenging objective functions. 

1. Introduction 

Bayesian optimization (BO) (Snoek et al., 2012a) is a 

method for finding the optimum of functions that are 

unknown and expensive to evaluate. By fitting a surrogate 

model to the samples of an unknown objective, the BO 

procedure iteratively picks the new samples of the 

objective believed to be the most informative about 

where the optimum is located. 
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Model misspecification has significant negative 

implications for any machine learning tasks. This is 

especially true for sequential decision making tasks such 

as BO, where the model is used not only to locate the 

optimum based on the collected data but also to decide 

where to collect data for future decisions. If the surrogate 

model is misspecified, it is likely to acquire samples that 

are less informative about the optimum, which will lead to 

a less efficient optimization. Therefore the quality of the 

surrogate model is essential to achieve both efficient and 

reliable results. 

Many works have been done towards avoiding model 

misspecification in the surrogate model for BO, such as 

handling non-stationary objective functions with warpings 

(Snoek et al., 2014), tree-structured dependencies in the 

search space (Jenatton et al., 2017), and searching the 

optimum from piecewise comparisons (Gonzalez et al.´ , 

2017). Comparing with the Gaussian process (GP) 

regression model in the standard BO setting, these 

methods avoid model misspecification in real-world 

problems by using more sophisticated surrogate models 

that are suitable for the corresponding problems. Bayesian 

inference with more sophisticated surrogate models will 

often require additional data to reduce uncertainty and 

confirm beliefs, because it considers more possibilities. 

Importantly the ultimate goal of BO is to find the optimum, 

not to model the unknown objective as precisely as 

possible. In practice, this means that using a surrogate 

with high complexity might perform worse compared to a 

simpler class even if the former contains the true objective 

function. 
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Instead of building a complex surrogate model with 

minimal model misspecification, we propose an 

alternative approach which allows trading off accuracy in 

modeling the objective with efficiency of capturing 

informative structures from small amounts of data. For 

example, we observe that structures such as local 

oscillations and discontinuities are less important to 

capture for the purposes of BO. Such details often require 

a lot of data to be closely captured in a surrogate model 

but do not help the search for the optimum, unless the 

search reaches the last stage of pinpointing the exact 

location of the optimum. To ignore these details, we 

associate an independent random input variable with 

every evaluation of the unknown function. As the random 

variables associated with new evaluations are 

conditionally independent of the posterior random 

variables associated with observed 

data given the function, this is referred to as irreducible 

uncertainty. Such variables are similar to the noise 

variables in regression models, which are used to capture 

measurement noise and the data variance that cannot be 

attributed to the input variables. In contrast to noise 

variables for noisy outcomes, where there is irreducible 

uncertainty about the data, there is now irreducible 

uncertainty in the model of the function. 

We propose to use the surrogate models that are specified 

over well-behaved approximations of the objectives, 

which can be more useful for the search of the optimum 

(see Figure 1), augmented with flexible “noise” 

distributions to treat the nuisance parameters. We will 

demonstrate that, using the same function approximation, 

a surrogate model with a more flexible nuisance 

parameter distribution is more robust against challenging 

structures. In this paper we focus on noise-free objectives 

with complicated, oscillatory or discontinuous structures. 

In particular, we propose to use a Latent Gaussian process 

(LGP) (Pfingsten et al., 2006; Wang & Neal, 2012; Yousefi 

et al., 2016; Bodin et al., 2017) as the surrogate model due 

to its flexible nuisance parameter distribution and show 

that it outperforms the surrogate models with less flexible 

distributions such as GPs with additive likelihoods. LGP 

allows us to disentangle the complicated structures a GP 

surrogate struggles to model while highlighting important 

structures. 

Our main contributions are: 

• We propose to address challenging objective 

functions for BO by using a distribution in the 

surrogate model to explain structure that is 

challenging to model with few observations. 

• We propose to use latent Gaussian processes (LGP) 

as surrogate models, which support non-stationary 

and non-Gaussian residuals. 

• With experiments on multiple BO benchmarks, we 

show that our method significantly outperforms 

existing approaches. 

2. Modulating Surrogates 

Let f : X → R be an unknown, noise-free objective 

function defined on a bounded subset X ⊂ RQ. The goal of 

BO is to solve the global optimization problem of finding 

xmin = argminf(x). (1) x∈X 

In real world problems, the objective function is often not 

a well-behaved function and a suitable model is difficult 

to specify. Instead of applying an automated model 

selection method (Malkomes & Garnett, 2018), we 

 

Figure 1. An illustrative example of the posterior surrogate function density obtained given observations of a 1D nonsmooth function 

using a noise-free GP, a GP with homoscedastic Gaussian noise, and using a LGP model. The posterior belief for the noise-free and 

homoscedastic GP surrogates results in the EI acquisition function, shown in blue, making poorly informed decisions for the next query. 

In contrast, the LGP using our proposed setup is able to reduce the influence of the rapid oscillations that do not match the GP prior 

by explaining part of the variation using the latent input. As a result, the acquisition function can utilize a confidently discovered global 

trend to increase the efficiency of the search. In this example, σh is set to  of the domain range to allow ignorance of oscillations at 

that scale. 
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propose to model only the essential structure of the 

objective function that is well-behaved and leave the rest 

of the function details to be absorbed in a noise 

distribution. 

We consider the family of objective functions f that can be 

represented as a composition of a well-behaved function 

and another arbitrary, latent function capturing the 

challenging details, i.e. 

 f(x) := g(x,h), h := h(x), (2) 

where g is a well-behaved function that can be nicely 

modeled by a surrogate model of choice, which is a 

Gaussian process (GP) in this paper, and the vector-valued 

function h(x) encodes the structures which the surrogate 

model struggles to capture. In general this composition 

allows for complicated interactions between x and h, 

producing complicated realizations of the function which 

is observed through data. A simple, special case of a 

function composition is additive structure 1, i.e. f(x) = g(x) 

+ h(x). 

Instead of modeling h(x) as part of the surrogate model, 

we propose to ignore the structure of the objective 

function in h(x) by replacing h(x) with a random variable 

h per data point. The random variables h for different data 

points are independent among each other. The objective 

function becomes a function of two variables g(x,h), in 

which h is a random variable which explain the data 

variance that cannot be explained by x. In this paper, we 

use a normal distribution for the prior of h, h ∼ N(0,I). 

Note that, although the distribution of h(x) induced by the 

data distribution for x may not be zero-mean and unit-

variance, it is easy to reformulate it as a linear 

transformation of a normal distribution with zero-mean 

and unit-variance and the resulting linear transformation 

can be absorbed into the function g. For further details on 

the definition, see the supplement. 

With the above formulation, a BO method can be 

developed by constructing a model of the well-behaved 

function g and a model of h. At each step of the BO 

optimization, a set of input and output pairs of the 

objective function has been collected, denoted as X = 

(x1,...,xN)> and F = (f1,...,fN)>. The output F denotes the 

noise-free observations of the objective function. The 

Bayesian inference of the model aims at inferring the 

posterior distribution 

 
1 Note that in the additive case, h(x) must match the output 

in shape, i.e. be one-dimensional. 

 p(H,θ|X,F) ∝ p(F |X,H,θ)p(H)p(θ) (3) 

where θ are the hyperparameters of the surrogate model 

and H = (h1,...,hN)> is the concatenation of the nuisance 

parameters associated with the individual data points. 

The location of the next evaluation is determined 

according to an acquisition function, which uses the 

predictive distribution p(f∗|x∗,X,F) of the surrogate model, 

Z p(f∗|x∗,X,F) =

 p(f∗|x∗,h∗,X,F,H,θ) 

(4) 

p(H,θ|X,F)p(h∗)dH dθ dh∗, 

where x∗ is the input of the prediction and f∗ is the 

noisefree observation at the location x∗. The predictive 

distribution of the latent variable p(h∗) associated with 

new evaluations is as of the i.i.d. assumption equal to the 

prior. As such p(h∗) contains model uncertainty irreducible 

by the active sampling loop, which we suggest to ignore 

via augmentation, see the supplement for details. 

With the predictive distribution Eq. 4, the expectation of 

the acquisition function is derived as 

Z α(x∗) = U(f∗,x∗,X,F)p(f∗|x∗,X,F)df∗, (5) 

where the acquisition function of choice is denoted U. 

Note that the predictive distribution due to the 

marginalization over H and θ generally has a complicated 

form and that the above integral often requires 

approximate methods. 

3. Latent GP surrogates and other choices 

In the previous section we presented the BO formulation. 

We will now proceed to implement the formulation, and 

address the choice of surrogate model for the function 

(Eq. 2). 

Additive noise model. As briefly mentioned in the previous 

section, a simple case of the composition (Eq. 2) is an 

additive structure, f(x) = g(x) + h(x). Following the process 

of replacing h(x) with the random variable h, the resulting 

surrogate model of the objective function is 

 f(x) = g(x) + h, h ∼ N(0,σ(x)2), (6) 

where the variance of h is assumed to be σ2 in order to 

adapt to the value range of f. With a GP surrogate model 
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for g, the above model recovers the GP regression model 

with the Gaussian likelihood. 

A typical choice in the above model is to assume σ2 to be 

constant, leading to a homoscedastic model. A limitation 

of noise variances being the same across all the datapoints 

is that it limits the capability of the model in terms of 

absorbing irregular variance. A straight-forward extension 

of the above model is the GP with heteroscedastic noise, 

in which the noise variance σ2 is allowed to be different 

among data points (Goldberg et al., 1998; Lazaro-Gredilla´ 

& Titsias, 2011). Another choice could be specifying a GP 

prior for h(x) and thus recover an additive GP model for f 

(Bernardo et al., 1998; Duvenaud et al., 2011). Other 

available choices for an additive noise model include 

Student’s t-distribution (Jylanki et al.¨ , 2011), Laplace 

(Kuss, 2006) or mixture of Gaussian likelihoods as (Kuss, 

2006; Stegle et al., 2008; Naish-Guzman & Holden, 2008) 

where (NaishGuzman & Holden, 2008) considers the 

heteroscedastic case. 

Latent Gaussian process. A major limitation of the additive 

noise models in general is the inability to capture the 

interaction between the input x and the noise h. Another 

choice that produces a more flexible noise distribution is 

to introduce additive noise in the input of a GP 

(McHutchon & Rasmussen, 2011; Girard et al., 2003; 

Girard, 2004). This would correspond to the case of f(x) = 

g(x+h). A further more general case of the proposed 

methodology is to allow non-linear interactions between 

the random variable h and x. This can be formulated as 

 f(x) = g(x,h), g ∼ GP, h ∼ N(0,I). (7) 

This formulation aligns with the general assumptions 

proposed in the previous section. In particular, the well-

behaved function g is assumed to follow a GP prior 

distribution, and the random variable derived from the 

challenging details of the objective function h feeds 

directly into the GP surrogate model. This allows for an 

arbitrary interaction between h and x, as specified by the 

covariance function. The introduction of the random 

variable h in the input results in a flexible 

noise distribution, as the GP model can warp the normal 

distribution of h into a sophisticated distribution and allow 

non-linear interactions between h and x. This GP model in 

(7) is also known as a latent Gaussian process (LGP) 

(Pfingsten et al., 2006; Wang & Neal, 2012; Yousefi et al., 

2016; Bodin et al., 2017), which is developed for regression 

with heteroscedastic noise and non-Gaussian residuals. 

The non-Gaussian marginals arise as a consequence of the 

latent covariates and their nonlinear transformation 

through the covariance function. 

Function modulation via H If we assume a stationary 

kernel over the product space X × H, a constant hn for all 

observations can be interpreted as the H subspace having 

no influence. This is due to the stationary property of the 

kernel, where covariances are determined only by the 

distances between points. 

With everything else held constant, if an observation is 

moved away from other observations in the H space, the 

covariances between that observation and the others are 

reduced. Similarly, if the length scale in X-direction is 

shortened, the covariances between that observation and 

the others can be equally reduced, but that also reduces 

the covariances between all other observations due to the 

global influence of the hyperparameter. 

 

Figure 2. Input-related invariance. Each plot is showing the resulting modulated function posterior using the LGP model and setting 

σh in p(h) to a size corresponding to the red line at the bottom of respective plot. The posterior is shown with mean and two 

standard deviations. The true function is shown in black. Note how the value of the prior σh sets the scale in relation to X on how 

much detail is ignored. A connection can be made to low-pass filtering of higher frequencies, but where the filter varies between 

observations as of the posterior and where each filter is implicitly determined by fit to the function prior. 
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Structures in the data could be explained solely by 

reducing the X-direction length scale adequately. In that 

case, evaluating the posterior at h∗ = 0 would yield exactly 

the posterior of a standard GP. Conversely, structures 

could be explained solely as observations being 

adequately far from each other in the H space while 

maintaining a longer X length scale. Evaluating the 

posterior at h∗ = 0 then yields a posterior that is both 

influenced by the longer length scale and which has lower 

covariances with the data, effectively producing a 

posterior over smoother functions. If the posterior inputs 

H are sufficiently far away with respect to the H-direction 

length scale, all data variation will be captured in H and 

the posterior of the function at h∗ = 0 will in effect ignore 

the data. 

The posterior weighting over this range of solutions is 

determined by the trade-off between the GP function 

prior and the prior of the latent inputs. As such, by 

controlling this trade-off, we can control properties of 

structures to be ignored and the ones to be used for search 

(see Figure 2). Important to note is that the mentioned 

data ignorance effect affects individual data points via the 

posterior of the corresponding latent input hn, which is 

influenced by the local and global fit of the function prior. 

Reparameterization of LGP for ease of specifying the 

modulation prior In a BO setting, some prior knowledge 

about what constitutes a significant change in the input 

space is often available. We would like to specify a joint 

prior of the GP and the latent inputs to ignore structures 

at the appropriate scale. In order to do this, we (re)-

parametererise it in the following way. We set the 

lengthscale in the H-direction to be the same as in the X-

direction and parameterize the latent input prior as 

N(hn|0,σh2I) instead of a unit Gaussian. There is an 

equivalence between parameterizing σh or setting this 

trade-off via a separate lengthscale for H as in (Wang & 

Neal, 2012). However, by using the above 

parameterization there is a direct correspondence in 

covariance reduction from moving an observation in H as 

in X, and the prior for the latent inputs can be interpreted 

as a prior over the coarseness of the function we wish to 

exploit for search. As such, intuitions about the scale in X 

directly translate into the parameterization of the prior. 

See Figure 2 for a visualization of how changing σh in the 

prior affects the modulated function posterior. To make 

the σh parameterization relevant across input sizes and 

dimensionalities, we rescale the input domain X to be a 

unit hyper-cube and set σh proportionally to the length of 

the diagonal of the√ 

 
domain Q (where Q is the number of dimensions). 

Posterior inference and acquisition calculation. In BO we 

assume that N pairs of inputs and outputs X = (x1,...,xN)> 

and F = (f1,...,fN)> have been collected. To suggest the 

location for the next evaluation, we first need to infer the 

posterior distribution of the latent variables, which are H 

and θ in LGP, and then search for the maximum of the 

acquisition function α(x). 

Given the observed data, the probabilistic model of LGP is 

formulated as 

p(F |X,H,θ) = N(F|0,K), 

(8) p(H) =, 

where K is the covariance matrix computed using a chosen 

kernel function k(·,·) over the set of data points , 

and x¯n is the concatenation of two vectors . 

Because h>n enters the kernel function non-linearly, it is 

clear that the posterior distribution p(H,θ|F,X) is 

intractable. To ensure the quality of the acquisition 

function, usually, BO methods draw posterior samples of 

latent variables via Markov Chain Monte Carlo (MCMC) 

methods such as slice sampling (Snoek et al., 2012a) or 

Hamiltonian Monte Carlo (Duane et al., 1987). We follow 

this practice and provide details in the supplement. 

With the approximate posterior samples , we 

approximate the acquisition function with LGP in (5) with 

Monte Carlo samples, 

 , (9) 

where αˆ(x∗,Hi,θi) is the acquisition function given the 

latent variables of LGP, which is closed-form for common 

acquisition functions such as expected improvement (EI) 

and upper confidence bound (UCB). 

4. Related Work 

Performing BO on an objective function that is not 

wellbehaved is very challenging. Our method takes a 

Bayesian approach by incorporating a flexible noise 

distribution and utilising Bayesian inference to assign the 

challenging details of the objective function to the noise 

distribution. An alternative approach to this problem is to 

perform a model selection for the surrogate model, such 

that the choice of the surrogate model becomes a trade-
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off between the complexity of the model and the ability to 

locate the optimum under limited data, which has been 

explored in (Malkomes & Garnett, 2018). The approach 

uses a compositional kernel grammar from (Duvenaud et 

al., 2013) to induce a space of GP models to choose from. 

Although this and other model 

selection procedures (Malkomes et al., 2016; Duvenaud et 

al., 2013; Grosse et al., 2012; Gardner et al., 2017) 

themselves have shown promise, in addition to the 

computational overhead, the procedures are still reliant 

on the existence of suitable models in this space. It 

remains challenging to handle cases where the objective 

function contains structure that is both hard to specify a-

priori, and that is unhelpful in guiding the search to the 

optimum. 

The idea of making use of noise models for dealing with 

model mismatch to noise-free data is not in itself new. In 

(Gramacy & Lee, 2012) it was shown that introducing noise 

in the modelling of noise-free computer experiments can 

lead to models with better statistical properties such as 

predictive accuracy and coverage. In that work, 

homoscedatic noise was addressed and used in a 

regression context. 

In this paper we consider noise-free functions and address 

model misspecification of the function surrogate, but 

many works have been done to make BO resilient to noisy 

experiments. For example, robust noise distributions such 

as Student’s t-distribution have been used to make BO 

more resilient to noise outliers (Martinez-Cantin et al., 

2017a;b). Approaches to address noisy experiments, via 

the addition of likelihood functions, can be combined with 

our approach. 

Hierarchical surrogate models with input warpings have 

been proposed to tackle BO for non-stationary objective 

functions (Snoek et al., 2014; Oh et al., 2018; Calandra et 

al., 2016). A particularly successful application is 

hyperparameter optimization for machine learning 

methods, in which the parameters are often presented in 

logarithmic scales. In this case, the Beta cumulative 

distribution function, which only has two parameters, 

serves as a good warping function (Snoek et al., 2014). 

Such augmentation in surrogate models requires strong 

domain knowledge of the objective function, and one 

often still has to control the increased complexity of the 

surrogate model, which is orthogonal to our approach. 

5. Experiments 

In this section we will demonstrate the benefit of our 

approach empirically. As the approach is motivated by 

robustness to the presence of challenging structures in the 

objective function, we will test its ability to improve search 

efficiency on a range of functions exhibiting such 

structure. Visual examples of functions with typical 

properties are shown in Figure 3. As we will show, our 

approach increases reliability in the search when faced 

with detrimental structure (see Figure 4) that has a large 

negative impact on 

experiments, respectively. 

 

Figure 4. A comparison of experiments on the Holder Table 

benchmark (McCourt, 2016) (left) and a corrupted version with 

added nonsmooth structure (right). We show plots of the 

respective functions and performance in terms of regret so far 

(over 20 repetitions). We show both mean regret (line) and 

 

Figure 3. Surface plots of the benchmark functions Cross In Tray, Griewank, Shubert, Weierstrass and Deflected Corrugated Spring (Mc- 
Court, 2016), from the left. The two right-most functions are available in multiple dimensionalities, where 8D and 10D is used in the 
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standard deviation (shading). The nonsmooth structure is 

challenging for a noiseless GP to model and leads to a high 

variance in-between runs. Warped and homoscedasic GPs 

explain away the corruption, but their performance plateaus as 

no informative trends can be identified. LGP reliably identifies 

these trends and reliably finds good solutions. traditional 

surrogates. 

Baselines and metric We compare with and without 

function modulation (Section 2) - implemented as in 

Section 3 on a popular GP model setup for BO. In addition, 

we compare the LGP against other methods of handling 

challenging structure in the objective function, namely (i) 

a noiseless GP, (ii) a GP with homoscedastic noise, (iii) a GP 

with heteroscedastic noise and (iv) a non-stationary, 

Warped GP (Snoek et al., 2014). 

We follow the standard practice to compare across bench- 

marks and provide the mean gap estimated over 20 runs 

as in (Malkomes & Garnett, 2018). The gap measure is 

defined as f (fx(firstxfirst)−)−f(fx(optimumxbest)), where 

f(xfirst) is the minimum function value among the first 

initial random points, f(xbest) is the best function value 

found within the evaluation budget and f(xoptimum) is the 

function’s true optimum. Methods are judged to have very 

similar or equivalent performance to the best performing 

if not significantly different, determined by a two-sided 

paired Wilcoxon signed-rank test at 5% significance 

(Malkomes & Garnett, 2018). We also report regret (with 

mean and standard deviation) in the supplement. 

We use the Matern 5/2 kernel for all surrogates, the ex-´ 

pected improvement acquisition function (where not 

otherwise stated) and Bayesian hyperparameter 

marginalisation as in (Snoek et al., 2012a). For the 

maximization of the expected utility with respect to input 

location, we use δ-cover sampling, as in (De Freitas et al., 

2012). The Warped GP implementation and inference is 

from the Spearmint package (Snoek et al., 2014). For 

further details, we refer to the supplement. 

Benchmark datasets We perform the comparisons on 

benchmarks from (McCourt, 2016; Head et al., 2018) using 

the default domains provided by respective benchmark, 

detailed in the supplement. In addition, problems are 

marked with the descriptive properties given in (McCourt, 

2016) and in the supplement that can reflect the relative 

difficulty of the task. 

Priors on the latent input variables The prior p(hn) = 

N(0,σh2I) can be parameterized in relation to the relative 

scale of the characteristics to be ignored. We specify the 

function prior over the product space X × H using a kernel 

with common parameters for xn and hn. Thus, the standard 

deviation of the prior σh relates directly to distances in the 

X-direction. When domain-specific knowledge is available, 

p(H) may be specified at an appropriate scale. However, 

we often do not have access to such knowledge. In all our 

experiments, we adopt a hierarchical prior approach 

whereby σh is sampled uniformly from a small candidate 

set at each evaluation. Specifically,√ σh ∼ 

U({0.1d,0.01d,0}) 

 
where d = Q, the length of the diagonal of the unit 

Qdimensional hypercube. We found that this approach 

per- 
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formed well empirically and is applied consistently across 

all our experiments where not otherwise specified. A 

choice of σh → 0 corresponds to a noiseless GP without 

latent covariates. 

Evaluation on benchmark suite Table 1 presents 

results across a wide range of benchmark functions 

consisting of the SigOpt benchmark suite (McCourt, 

2016). Three additional real-world benchmarks (Head et 

al., 2018; Malkomes & Garnett, 2018; Kaelbling & Lozano-

Perez´ , 2017) are included in the bottom section of the 

table. The benchmarks from (McCourt, 2016) are popular 

functions used in both black-box optimization as well as 

classic optimization literature. As of the focus of the 

paper, benchmarks from the literature exhibiting 

challenging properties such as oscillatory local structures 

were included, in addition to simpler functions for 

reference. 

In general, the noise-free, homoscedastic and 

heteroscedastic noise GPs tend to either share best place 

with the LGP or be outperformed by it. The Warped GP, 

which warps the input space to obtain a tight fit to the 

data, consistently struggle with the complicated and 

oscillatory benchmarks. On some benchmarks there are 

large differences in favour of using noisy surrogates on the 

noise-free benchmarks. Such an example is Ackley 6D, 

which in the dataset is described as “technically 

oscillatory, but with such a short wavelength that its 

behavior probably seems more like noise” (McCourt, 

2016). Another example is the Shubert function, which has 

multiple sharp local optima surrounded by large 

oscillations. On 2 of 18 benchmarks, the LGP was not best 

(or within the two-sided Wilcoxon test), but instead the 

homoscedastic GP. These functions were Weierstrass, 

which has a homoscedastic characteristic (see Figure 3), 

and Deflected Corrugated Spring, on both of which the LGP 

obtained the second highest mean gap. In contrast to the 

LGP and the heteroscedastic GP, the noise model of the 

homoscedastic GP sometimes hurt performance in 

relation to the noise-free GP. Given the black-box nature 

of functions in BO, it is important that the surrogate noise 

model ’turns off’ adequately when not needed. The 

heteroscedastic GP provided significant benefit on two 

benchmarks over the GP, whereas the LGP provided such 

benefit on eight benchmarks. 

Real-world Apart from widely used synthetic functions, we 

also compare our method on three real-world problems. 

Table 1. Mean gap performance for various test functions; higher is better. The upper table shows the results after 50 objective function 

evaluations and the lower table after 100 evaluations. Due to computational cost, Warped GP results are only reported for 50 

evaluations. Methods not significantly different from the best performing method with respect by a two-sided paired Wilcoxon signed-

rank test at a 5% significance level over 20 repetitions are shown in bold (Malkomes & Garnett, 2018). For results in terms of regret, 

see the supplement. 
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The results are shown in the last three rows of Table 1. One 

of the benchmarks is an active learning task of a robot 

pushing a box within a simulation. As we show in Figure 5, 

the benchmark’s response surface is both nonsmooth and 

oscillatory. The LGP reliably found good solutions on the 

benchmark, while the other surrogates sometimes failed, 

resulting in high variances. The homoscedastic GP 

performed the worst, which we suspect is due to the 

nonsmooth and heavily oscillatory structures forces a high 

global noise level, which may lead to failure in utilising 

informative structure in other regions. 

Other aquisition functions We suggest that the problem 

with structures challenging to model is relevant to address 

irrespective of the acquisition function. To confirm that 

the method is applicable also using other acquisition 

functions we ran the Corrupted Exponential benchmark 

using both Expected Improvement (EI) and Lower 

Confidence Bound (LCB) with the default exploration 

weight (= 2.0) from GPyOpt (GPyOpt, 2016). As can be 

seen in Table 1, in the case of EI, the GP and the 

heteroscedastic GP performed worse than the 

homoscedastic GP and the LGP. The homoscedastic GP 

achieved the highest mean gap, but the difference was not 

significant under the Wilcoxon test to the LGP which 

obtained a similar mean gap. Using the LCB acquisition 

function the performance for the homescedastic GP 

decreased to 0.818 and the LGP increased to 0.858, and 

their difference in rank in favour of the LGP was significant 

under the test. The heteroscedastic GP increased using 

LCB to 0.797 and the GP to 0.751, remaining as worst 

performing. 

As the experimental evaluation demonstrates, our 

suggested approach for handling challenging structures in 

the objective function consistently improved reliability 

and performance over the traditional surrogate on a wide 

range of benchmarks. Importantly, on benchmarks where 

the extended methodology were not needed the 

performance aligned with that of the traditional surrogate. 

When it was needed, it was shown to often have a large 

positive impact on overall efficiency of the search. 

6. Conclusion 

We have presented an approach to Bayesian Optimization 

where the surrogate model is alleviated from needing to 

explain the observed objective function values perfectly, 

which is challenging for complicated or nonsmooth 

functions. Instead, we model the essential structure of the 

objective function that is well-behaved and leave the rest 

of the function details to be absorbed in a noise 

distribution. We show experimentally how our approach is 

able to solve synthetic and real-world benchmarks with 

challenging local structures reliably. Importantly our 

methodology can be applied to any surrogate model used 

for BO, and the specific case addressed in the paper can be 

included in any Gaussian process-based surrogate. 
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the different surrogates. As can be seen, the LGP found good solutions with low variance, improving reliability of the search. The 1D 

slices of the 4D function (the two from the left) was generated by fixing the initial y-position (param.) to the one of the goal position, 

the simulation steps (param.) to the center of its domain, and varying the initial angle (param.) or the x-position (param.), 

respectively, while keeping the other fixed at zero. Slicing the 4D function differently produced similar nonsmooth response curves. 
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Figure 6. Ignoring irreducible uncertainty from p(h∗) in the acquisition. The effect of marginalizing p(h∗) as per standard versus 

collapsing the irreducible uncertainty of h(x) as p(h∗) = δ(h∗) is shown on the left and the right, respectively. Note that p(H), associated 

with the observations, is marginalized in both cases. The acquisition (EI) and the next sample location is shown in blue. The posteriors 

are shown with mean and two standard deviations for display purposes, i.e. with estimated moments and approximated as Gaussian. 

Note that by incorporating variance induced from p(h∗), which cannot be reduced by acquiring data, the search can end up in a failure 

mode and get stuck by repeatedly evaluating in a region explained by high irreducible uncertainty in the objective function. By only 

considering model uncertainty in the function which is reducible by active sampling, i.e. collapsing the predictive p(h∗) associated 
with new evaluations, the exploration of the function continues. 

The predictive distribution of the latent variable for new evaluations p(h∗), even at observed inputs locations, will 

always by the i.i.d. assumption be equal to the prior. As such, this source of uncertainty cannot be reduced by active 

sampling, nor does it reflect observational stochasticity which is made clear by the noiseless experiments. Including it 

would simply include unhelpful artifacts in the decision upon where to collect data and in the worst case the search 

would be stuck, see Figure 6. The importance of special treatment of similar uncertainty within active sampling has been 

noted in (Gonzalez et al.´ , 2017). 

Noting the risk of ill-effects of simply marginalizing p(h∗), one might be tempted to introduce statistical dependencies in 

the model such that the belief about h∗ associated with a new evaluation is updated from e.g. neighbouring 

observations. However, such dependencies does not come for free, as they would by necessity limit the model’s 

capability to explain away via H. For example, by constraining nuisance parameters to be similar within neighbourhoods 

of X the ability to be robust to discontinuities such as step functions would be reduced. 

We suggest to remove the effect h∗ has on the predictive distribution of f∗. In the case of additive models this is easily 

achieved. For example, in the GP regression context with noisy observations the predictive distribution of the noise-

free latent function is easily derived by removal of the noise variable after the noise has been considered in the data. 

The reason why it is easy in the additive case is because the expectation is trivially separable, as E[g + h] = E[g] + E[h]. 

In this paper we consider the introduction of nuisance parameters in surrogates generally, including those with non-

linear interactions. In the general non-linear case how to remove the interaction is an open question. For these cases, 

when there is no available model-specific treatment, we propose the heuristic of collapsing the prior distribution of h∗ 

into a Dirac delta distribution centered at its mode h∗ = 0, which is consistent with the additive case. A.2. Further details 

on the objective function definition 

 f(x) = g(x,h), h ∼ N(0,I), (10) 

where g is a well-behaved function that can be nicely modeled by a surrogate model of choice, which is a Gaussian process 

(GP) in this paper, and the vector-valued function h(x) encodes the structures which the surrogate model struggles to 

capture. Let’s assume an uninformative prior distribution of x over X, e.g. a uniform distribution x ∼ U(X). We denote the 

mean and variance of h(x) under the prior distribution as µh = Ep(x)[h(x)] and Σh = Ep(x)[(h(x) − µh)(h(x) − µh)>], 

respectively. An important step to convert h into being part of a noise distribution is to treat it as random and 

independent of x, i.e. h becomes an independent random variable with respect to each data point, just like a standard 

noise term. In this paper, we use a normal distribution for h, h ∼ N(µh,Σh). In this way, the objective function becomes a 

function of two variables g(x,h), in which h is a random variable independent of x and which explain the data variance 

that cannot be explained by x. Note that the random variable h can be equivalently rewritten as h = µh + Lh¯, Σh = LL>, h¯ 

∼ N(0,I) and then the objective function becomes g(x,µh + Lh¯). As g is a non-linear function inferred during BO, the linear 

transform can be absorbed into the formulation. 

A.3. Step function example 
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Figure 7. Robustness to nonsmooth structures. The modulated function posterior (of the LGP) is shown in green with mean and two 

standard deviations. The posterior of f (with p(h∗) marginalized) is shown with two standard deviations from its mean in red. The 

true function is shown in black. Both posteriors are for display purposes approximated as Gaussian as in Figure 6. Note how some 

structure of f is ignored and treated as non-additive, heteroscedastic noise. 

A.4. Model setup, inference and auxiliary optimization 

We use the Warped GP (Snoek et al., 2014) surrogate model with default settings as provided by the Spearmint library 

(spe). We use the Matern 5/2 kernel for all surrogates and the model-marginalised expected improvement acquisition 

function as´ in (Snoek et al., 2012b). For all baselines we make us of hyper-parameter marginalisation via Markov Chain 

Monte Carlo (MCMC) (Shahriari et al., 2016). 

For the noise-free, homoscedastic GP and Warped GP (all with few parameters) we use slice sampling, as 

recommended for BO in (Snoek et al., 2012a) due to its automatic adjustment of the step size to match the local shape 

of the density function. The heteroscedastic GP has a latent noise variance per observation. Similarly, LGP has the latent 

inputs H associated with the observations, making inference impractical for both of these models using slice sampling 

as of comparably large dimensionalites. For these models, in all BO experiments, we use Hamiltonian Monte Carlo with 

step size adaptation. A burn-in of 30,000 steps and a thinning rate of x50 (select every 50th value) were used, and 100 

posterior samples collected. Step-size adaptation were made during 80% of the burn-in phase, with a target 

acceptance probabilty of 0.75 which is the center of asymptotically optimal rate for HMC (Betancourt et al., 2014). 

Observed outputs are normalized to have zero mean and unit variance (standard normalization) at each iteration. For the 

GP surrogate with and without the noise models as well using the latent input extension, we use a LogNormal(0, 1) prior 

for the lengthscale and noise variance parameters and use unit signal variance. We use one dimension for the latent 

variables hn in the comparisons with the baselines. For the maximization of the expected utility with respect to input 

location, we use δ-cover sampling, as in (De Freitas et al., 2012), for all models (where in our case the expected utility is 

the model-marginalised expected improvement). The sampling scheme works by iteratively sampling the utility more 

densely in X around the location of current highest obtained utility. Specifically, we double the concentration of an 

uniform sample density at each auxiliary iteration by multiplication of each side of the current sampling hypercube by a 

factor of 2−1/Q for 30 iterations. Without loss of generality, all function domains are re-scaled to unit hypercubes for a 

consistent parameterization of priors across functions. In all experiments we start from 2 uniformly drawn initial 

observations and stop after 50 and 100 observations, respectively, as indicated in the experiments. 

A.5. Benchmarks 

A.5.1. PROPERTY LABELS 

For benchmark property labels, see Table 2. 

Table 2. Function properties as defined in SigOpt (McCourt, 2016). 
Property Meaning 
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boring A mostly boring function that only has a small region of action 
oscillatory A function with a general trend and an short range oscillatory component 
complicated These are functions that may fit a behavior, but not in the most obvious or satisfying way 

A.5.2. DOMAINS 

pow10(x) = 10x (11) 

pow2int(x) = int(2x) (12) 

For benchmark domains, see Table 3. 

Table 3. Benchmark function domains used as specified in SigOpt (McCourt, 2016) ’evalset’. The domains of Corrupted Holder Table 

and Corrupted Exponential correspond to the ones of Holder Table and Exponential, respectively. 
Benchmark Dim Properties Domain 

Branin01 2 none [[−5,10],[0,15]] 
Branin02 2 none [[−5,15],[−5,15]] 
Powell Triple Log 12 none [−4,1]12 
Beale 2 boring [−4.5,4.5]2 
Hartmann 6 boring [0,1]6 
Griewank 2 oscillatory [−50,20]2 
Shubert01 2 oscillatory [−10,10]2 
Levy13 2 oscillatory [−10,10]2 
Cosine Mixture 10 oscillatory [−1,1]10 
Drop-Wave 10 oscillatory [−2,5.12]10 
Deflected Corrugated Spring 10 oscillatory [0,7.5]10 
Weierstrass 8 complicated [−0.5,0.2]8 
Cross In Tray 2 complicated, oscillatory [−10,10]2 
Holder Table 2 complicated, oscillatory [−10,10]2 
Ackley [−10,30]d 2 complicated, oscillatory [−10,30]2 
Ackley [−10,30]d 6 complicated, oscillatory [−10,30]6 
Corrupted Holder Table 2 complicated, oscillatory [−10,10]2 
Corrupted Exponential 8 complicated, oscillatory [−0.7,0.2]8 
NN Boston 9 unknown Table 4 
NN Climate Model Crashes 9 unknown Table 4 
Robot Pushing 4 unknown Table 5 

A.5.3. REGRET VERSION OF RESULTS 

For regret version of results table, see Table 6. 

A.5.4. CORRUPTED HOLDER TABLE AND CORRUPTED EXPONENTIAL 

The following corruption functions in Figure 8 was used for the benchmarks Corrupted Holder Table and Corrupted 

Exponential. small corruption func and large corruption func was applied to the SigOpt benchmarks (McCourt, 2016) 

Holder Table 2D and Exponential 8D, respectively. The input dimensions are re-scaled to be between 0 and 1 before the 

corruption is applied. The new function minimum of each function (due to the corruption) was estimated via 1e6 

uniformly drawn samples in the domains. 

Table 4. Neural Network hyperparameter domains as from (Head et al., 2018). Categorical options are set as specified below. 

pow2int([1.0, 10.0]) 
alpha pow10([-5.0, -1]) 
batch size pow2int([5.0, 10.0]) 
max iter pow2int([5.0, 8.0]) 
learning rate init pow10([-5.0, -1]) 
power t [0.01, 0.99] momentum

 [0.1, 0.98] beta 1 [0.1, 0.98] beta 

2 [0.1, 0.9999999] learning 

rate constant 
solver adam 
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activation relu 
nesterovs momentum False 

 

Table 5. Active learning task of ’robot pushing’ as from (Kaelbling & Lozano-Perez´ , 2017). Code is available at https://github.com/zi-

w/Max-value-Entropy-Search. All instances of np.random.normal(0, 0.01) was replaced by np.random.normal(0, 1e-6) in push world.py 

to make the function virtually noise-free. The goal location was set to a fixed location for reproducibility, as specified below. 
Parameter Domain 

robotx [-5, 5] 
roboty [-5, 5] 
θinitial [0, 2π] 
simulation steps int([10., 300.]) 
goalx 3.0 
goaly 2.0 

Table 6. Regret for various test functions; lower is better. The upper table shows the results after 50 objective function evaluations and 

the lower table after 100 evaluations. Due to computational cost, Warped GP results are only reported after 50 evaluations. 
Benchmark Eval

s 
Di

m 
Func 

Max 
Func 

Min 
Initial regret G

P 
Warpe

d GP 
Homosce

d GP 
Heterosce

d GP 
LG

P 

[−10,30

]d 50 2 22.27 0.00 16.45 ± 4.202 

1.391 

± 

2.101 
12.79 ± 

3.550 
1.641 ± 

0.723 
1.282 ± 

2.481 
1.093 ± 

0.741 
     ± ± ± ± ± ± 

[−10,1

0]d 
10

0 2 210.45 

-

186.7

3 183.2 ± 9.820 

90.09 

± 

56.44 

 

88.72 ± 

50.59 
60.34 ± 

58.95 
22.70 ± 

45.82 
     ± ±  ± ± ± 

HPO: NN 

Boston 
10

0 9 5.00 -0.85 

 

0.886 

     

HPO: NN 

Climate Model 

Crashes 

10

0 
9 5.00 0.11 0.161      

Active learning: 

Robot Pushing 
10

0 
4 unknow

n 
0.00 3.783 ± 1.842 0.468 

± 

0.729 

 0.829 ± 

0.673 
0.369 ± 

0.537 
0.193 ± 

0.128 

import numpy as np from scipy 

import signal 
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def corruption(x, a0, a1, a2, a3): 
assert np.all(x >= 0) assert np.all(x <= 1) 

a = 0.0 + 1.0 * signal.square(4 * 2 * np.pi * x) b = 0.5 + 0.5 * 

signal.square(4 * 2 * np.pi * x) base = a * b 

p0 = 0.3 * np.pi p1 = 0 

p2 = np.pi p3 = 0.5 * 

np.pi 

s0 = a0 * signal.sawtooth(p0 + 15 * 2 * np.pi * x) s1 = a1 * 

signal.sawtooth(p1 + 10 * 2 * np.pi * x) s2 = a2 * signal.sawtooth(p2 + 30 * 2 

* np.pi * x) s3 = a3 * signal.sawtooth(p3 + 40 * 2 * np.pi * x) return base * 

(s0 + s1 + s2 + s3) 

def corrupt(func, bounds, f_min, f_max, corruption_func): f_range = f_max - f_min 

lower_limits = np.array([b[0] for b in bounds]) upper_limits = np.array([b[1] 

for b in bounds]) ranges = upper_limits - lower_limits def normalise(v): 
return (v - lower_limits) / ranges 

return lambda v: func(v) + \ f_range * np.max([corruption_func(v_dim_norm) for v_dim_norm in normalise(v)]) 

small_corruption_func = lambda x: corruption(x, a0=-0.03, a1=0.05, a2=0.08, a3=0.03) large_corruption_func = lambda x: 

corruption(x, a0=-0.03, a1=0.20, a2=0.16, a3=0.06) 

Figure 8. Corruption functions in Python. 


