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Abstract

For robot touch to converge with the human sense of touch, artificial transduction should
involve biologically-plausible population codes analogous to those of natural afferents. Using
a biomimetic tactile sensor with 3d-printed skin based on the dermal-epidermal boundary, we
propose two novel feature sets to mimic slowly-adapting SA-I and rapidly-adapting RA-I type-
I tactile mechanoreceptor function. Their plausibility is tested with three classic experiments
from the study of natural touch: impingement on a flat plate to probe adaptation and spatial
modulation; stimulation by spatially-complex ridged stimuli to probe single afferent responses;
and perception of grating orientation to probe the population response. Our results show a match
between artificial and natural afferent responses in their sensitivity to edges and gaps; likewise,
the human and robot psychometric functions match for grating orientation. These findings are of
benefit to robot manipulation, prosthetics and the neurophysiology of touch.
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1 Introduction
The fields of neuroscience and robotics are converging as machines approach animals in their capa-
bilities [1, 2]. Within the somatosensory modalities including touch, a natural convergence is around
the engineering of biologically-plausible artificial tactile sensory systems [3, 4]. A biomimetic tactile
fingertip or skin can inform about the neurophysiology of human touch [5, 6, 7], lead to improved
contact sensing for dexterous robots [8, 9, 10], and could enable neuroprosthetics to restore a sense
of touch in amputees [11, 12].

How stimuli are represented (coded) in the peripheral nervous system is important to the field of
neuroscience. Within the sense of touch, this includes: (i) the dynamics of local skin tissue to which
individual receptive units respond; (ii) how individual afferent nerve fibres represent these dynamics
when stimulated; and (iii) how the population of afferents represents the spatial and temporal as-
pects of the tactile stimulation. Here we propose that, for spatially-detailed static stimuli, the TacTip
biomimetic tactile sensor [13, 9] provides a suitable artificial analogue for all three aspects of this
process.

Our proposition is underpinned by two positions regarding peripheral neural codes in natural
touch. First, in many scenarios, such as those in the present study, spike rate of individual natural
afferents may be a suitable metric to model artificial tactile channels because of its correlation with
external stimuli [14]. There is a body of evidence which supports this position for touch [15, 16, 17,
18]. Second, population codes, more specifically, the spatial patterns of firing rates across afferent
populations, is essential and is the primary abstract coding scheme for many spatially-detailed static
stimuli in natural touch. Again, there is a body of evidence that supports this position [19, 20, 18, 15].

Specifically, the shallow layers of skin on the fingertip are structured to sense touch via the defor-
mation of its surface. These upper layers comprise an outer epidermis over an inner papillar dermis,
which interdigitate in a mesh of dermal papillae and epidermal intermediate ridges (Figure 1D). This
3D structure transmits shear and normal deformation of the skin surface into the displacement of two
shallow populations of slowly adapting (SA-I) and rapidly adapting (RA-I) sensory mechanorecep-
tors near the dermal-epidermal interface. Thus, the dermal papillae and intermediate ridges may act
as a mechanical amplifier [21] of skin deformation into slow (sustained contact) and fast (changing
contact) mechanoreceptor activity.

The TacTip design is based on the shallow layers of glabrous skin [13, 9]. It has an outer
biomimetic epidermis made from a rubber-like material over a soft inner biomimetic dermis made
from an elastomer gel (Figure 1E). These two materials interdigitate in a mesh of biomimetic interme-
diate ridges and dermal papillae, comprising stiff inner nodular pins that extend under the biomimetic
epidermis into the soft gel. This structure amplifies surface deformation of the skin into lateral move-
ment of visible markers on the pin tips. Markers are imaged optically by a USB camera and thus raw
tactile data is available as images of the shear-strain profile within the gel.

We propose two novel feature sets derived from the tactile images to mimic SA-I and RA-I af-
ferents in humans. Natural SA-I firing rates are modelled by the marker displacements from their
at-rest position and natural RA-I firing rates are modelled by the marker speeds. The basic rationale
behind these models is that marker displacement is sustained with a static stimulus and marker ve-
locity is non-zero only when the stimulus changes, e.g. presented or removed. Markers are arranged
in a 19×19 square array (∼500 mm2). Thus there are 361 artificial SA-I and RA-I afferents, with
a density of ∼70 cm-2 (∼1.2 mm separation) which is approximately half the innervation density of
type-I afferents in the human fingertip [22, 23].

To examine this proposal, we perform two studies of the response of artificial afferents to a nor-
mal force stimulation (Experiments 1a) and complex spatial stimuli (Experiment 1b), followed by
a perceptual experiment for assessing the validity of artificial population codes from these artificial
afferents (Experiment 2). Experiments 1b and 2 mirror two classic studies of human and primate
tactile population coding by Phillips and Johnson (1981) [16, 15]. We compare the specific dynamic
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Figure 1: (A,B) Perceptual pipelines of human and robot touch. Spatial encoding involves represent-
ing the stimulus in the spatial modulation of firing rates in populations of natural and artificial type-I
afferents. In human touch, decoding is performed in the somatosensory cortex (highlighted on the
brain image). Here, in robot touch, an artificial decoder is constructed from a CNN. Decision making
is depicted in a SDT framework, where the decoded decision variable is compared to a criterion. (C)
Exploded view of the BRL TacTip showing 3d-printed body and tip. (D) Diagram of human (hairless)
skin, e.g. the fingertip, showing the stiff epidermis (outer skin) with epidermal ridges protruding into
the softer dermis. Inset: Merkel cell complexes (SA-I mechanoreceptors) are located at the tips of
epidermal ridges. (E) Diagram of the TacTip with stiff artificial epidermis outer layer over a softer
artificial dermis (clear silicone gel). Natural epidermal ridges are replicated with stiff pins protruding
into the silicone gel. Inset: white markers from which artificial SA-I and RA-I afferents are derived,
are fused to the pin tips.

quantities of local skin tissue to which natural and artificial afferents respond, and the factors con-
tributing to spatial resolution in population coding. In addition to gaining insight into the capacity of
artificial type-I afferents to mediate salient population codes, a novel methodology is introduced for
psychophysical testing of robot touch using a well-established technique from psychology known as
signal detection theory (SDT) [24] (Material and Methods).

2 Results

2.1 Experiment 1a: Response to Normal Pressure
This experiment was designed to understand the degree to which artificial SA-I and RA-I afferents
model their natural counterparts when stimulated with a simple normal force applied by a flat surface.
First, we consider adaption rates and compare the response of artificial type-I afferents to the firing
rates of individual natural type-I afferents in several studies that use the same stimulation conditions
[25, 26, 27, 28]. Following this comparison, we consider the spatial modulation of artificial afferent
responses across the entire population. We asses the nature of the skin dynamics to which individual
artificial afferents respond and make a preliminary hypothesis about the ability for these artificial
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tactile channels to mediate population codes.

2.1.1 Artificial Type-I Afferents Model Natural Afferent Adaption Rates

Artificial SA-I afferents responded to the stimulus onset and hold phase but not the offset (Figures
3A,F). Artificial RA-I afferents responded strongly to the stimulus onset and offset but not the hold
phase (Figures 3B,G). These patterns of activity are strongly indicative of their natural counterparts,
which we now examine in more detail.

Natural SA-I afferent firing rates are known to increase with indentation depth [27]. This cor-
relation between indentation depth and firing rate is mirrored in the artificial SA-I afferents, which
demonstrate a trapezoid response curve with steady activity over the hold phase increasing with in-
dentation depth (Figures 3A,F; both slow and fast presses). Further supporting the likeness of artificial
SA-I afferents to their natural counterparts, both natural and artificial SA-I afferent responses fell to
zero with removal of the stimulus [26, 27].

Natural SA-I afferents are known to fire maximally during the dynamic phase of the stimulus
presentation, with a slow reduction of activity under constant stimulation (slow adaption) [26]. The
artificial SA-I afferents diverged from this: artificial SA-I response rose steadily as the TacTip was
pressed onto the stimulus, then sustained their maximal activity (i.e. had no slow adaption). We
comment that all biological sensory systems adapt to stimulation for complex neurophysiological
reasons (signalling pathways etc), whereas artificial sensors are designed for repeatable operation. It
is reasonable that ‘slow adaptation’ becomes ‘no adaptation’.

Natural RA-I afferents are known to respond only during dynamic phases of stimulus presentation,
i.e. rapidly adapt during stimulus onset and offset [26]. In agreement with this pattern of adaptation,
artificial RA-I afferents exhibited distinct transience: for both slow and fast presses, artificial RA-I
channels responded only during the dynamic phases of the experiment (Figures 3B,G; slow and fast
presses). Furthermore, the peak response of the artificial RA-I afferents was greater for fast presses.
This behaviour is also indicative of natural RA-I afferents, which show monotonically increasing
firing rates with increased indentation speed [28].

2.1.2 Individual Artificial Type-I Afferents Encode Local Shear and Population Response En-
codes Shape

Both the artificial SA-I and RA-I afferents are good candidates for providing viable codes to represent
static extended stimuli via spatial modulation, because the spatial arrangement of artificial responses
provides information about the contact shape. This capability is also posited for the firing rates of
both natural SA-I and RA-I afferents [20, 18].

The spatial arrangement of the artificial SA-I population response shows an approximately circular
central region where minimal activity occurs, even at times of peak stimulation (Figures 3C,H; slow
and fast presses). Radiating away from this central region, afferents exhibit increased activity. This
spatial pattern can be understood by considering a basic physical model of the interaction between
the biomimetic fingertip’s skin and the stimulus: when the slightly-rounded tip is pressed onto a flat
surface, a circular area of the tip compresses and conforms to the surface (Figures 4A,B; non-contact
and stimulated tips). The size of this area depends on how strongly the fingertip is pressed onto the
surface, with the markers away from the center spreading outwards as the skin flattens. Thus, the
central SA-I afferent has minimal activity, which increases for afferents further way from the centre
(Figures 4A,B; marker displacements increase radially).

At peak amplitudes of the artificial RA-I response, i.e. during the dynamic phase, the activity
is also low in the central region and increases outwards (Figures 3D,I; 2nd and 4th images), giving
an approximately radial population response. According to our model (Figures 4A,B), each marker
moves in one direction during the press phase (towards the circumference) and in the opposite direc-
tion during the release phase (towards the centre). The artificial RA-I afferent response is a measure of
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Figure 2: (A) Robot setup: TacTip mounted as an end-effector to the ABB robot arm, collecting data
on aperiodic grating stimuli (Experiment 1b). (B) Plan view of flat plate stimulus (Experiment 1a
and Experiment 2) (left); plan views of a periodic grating stimulus (Experiment 2) at two orthogonal
orientations. (C) Plan view of the seven aperiodic gratings (Experiment 1b).

marker displacement per frame, which is the local shear-velocity magnitude. Thus, in this particular
example, the spatial arrangements of artificial SA-I and RA-I responses are similar.

Given that our model of the biomimetic fingertip’s skin (Figure 4) implies that individual artificial
SA-I and RA-I afferents encode local shear strain, the spatial modulation of each artificial afferent
response will depend on the local stimulation. Hence, the shape of the stimulus will determine the
pattern of activity across the entire tip.

2.2 Experiment 1b: Response to Bars, Edges and Gratings
This experiment mirrors a classic (1981) neurphysiological study into peripheral neural representa-
tions of spatially complex tactile stimuli (edges and bars) in monkey primary afferents by Phillips and
Johnson [16]. Preceded by a psychophysics study into human perception of tactile stimuli (including
gratings) via spatial neural mechanisms [15], the purpose of their two studies was to understand the
“coding mechanisms underlying the human’s ability to resolve gratings”.

Here we compare the activity of centrally-located artificial type-I afferents and natural type-I
afferents taken from [16] when undergoing the same complex stimulation with grating stimuli (Table
S1). In addition to comparing artificial and natural mechanoreception, we use this experiment in
accordance with the original study to understand the biomimetic fingertip’s ability to spatially resolve
grating stimuli.

As in [16], results are displayed in the form of spatial-response profiles (SRPs). In the case of
the measured artificial afferents, SRPs show the mean response over the entire pressing phase at
each position, separated by 400µm. We present the results in the context of three stimulus features,
approximately mirroring the original study: (i) sensitivity to edges; (ii) sensitivity to bars; and (ii) the
effect of neighbouring edges and bars.
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Figure 3: Artificial SA-I, RA-I response and image data collected during a press on a flat surface
at slow 3 mms-1 (panels A-E) and fast 10 mms-1 motion speeds (panels F-J). (A,F;B,G) show the
SA-I and RA-I responses vs time for slow and fast presses respectively. (C,H;D,I) show the spatial
arrangement of SA-I afferents and RA-I afferents with their respective response profiles (depicted by
opacity of each colour) at the indicated times. (E,J) show raw images of marker displacements at the
same time instances as above.

2.2.1 Sensitivity to Edges

The central artificial SA-I afferent exhibits preferential sensitivity to “edges facing a large gap” (Fig-
ure 5A), which is a characteristic mirrored in natural SA-I afferents [16]. This pattern is most clearly
seen in panel A7, where the response of natural and artificial SA-I afferents were attenuated by three
bars and amplified by the six associated edges. This characteristic is also seen on the approach and
departure for each of the other gratings, where the gratings exhibit rising and falling edges before and
after free space respectively.

Likewise, the central artificial RA-I afferent exhibits preferentially sensitivity for edges (Figure
5B). (Note that SRPs are not shown for natural RA-I afferents because they were only available in [16]
for some stimuli.) This distinguishes the measured artificial RA-I afferent from its natural counterpart,
which was not observed to show any evidence of edge enhancement [16]. That said, the degree of
edge enhancement for the artificial RA-I afferents was lower than that of artificial SA-I afferents and
modulated around an overall high-level of activity, which is most noticeable on stimuli 6 and 7 (panels
B6,7).

In the case of artificial afferents, edge enhancement can be explained with our basic model of local
shear strain within the biomimetic fingertip (Figure 4). For an edge stimulus, the marker undergoes
shear strain due to levering of the papillae-like nodule as the skin bends, causing both the artificial
SA-I and RA-I afferents to respond (Figures 4C,D).

Phillips and Johnson hypothesised that the difference in SRPs between natural SA-I and RA-I
afferents was a consequence of an “intrinsic difference in the spatial organization of their receptor
mechanisms” [16]. However, in our study the spatial arrangement of receptive fields of artificial SA-I
and RA-I afferents are necessarily identical, being derived from the same markers. Why then do the
artificial RA-I afferents still respond less strongly? Instead, we attribute this to small perturbations in

6



Figure 4: (A,B) Simplified diagram of TacTip deformation when pressed onto a flat plate. (A) At rest,
i.e. no deformation, and (B) pressed flat. (C-G) Simplified diagram of the TacTip’s central artificial
afferent pressed onto features of aperiodic gratings: at rest (C), an edge (D), an isolated bar (E), and
an edge neighbouring two gaps (F,G).

marker position which happen very quickly during the initial and final stages of the press. (For ex-
ample, from low amplitude transient pressure waves in the sensor or inaccuracies in the setup causing
micro shear forces even on a flat surface.) Due to their low amplitude and short time-scale, when tak-
ing the derivative, these perturbations will be amplified with respect to the more sustained response,
i.e. the shear strain from an edge stimulus. Thus, the artificial RA-I responses shows less edge en-
hancement due to a higher noise floor. If, like artificial afferents, natural SA-I and RA-I afferents are
responsive to some specific skin dynamic and its rate of change respectively, as suggested in [29], it
is possible that reduced edge enhancement in natural RA-I afferents is also simply a consequence of
noise amplification.

2.2.2 Sensitivity to Bars

A consequence of amplified edge response, seen in both natural SA-I and artificial SA-I and RA-I
afferents, is a comparatively diminished response to isolated bars. Diminished response to isolated
bars is limited to broad bars only for natural SA-I afferents, where single peaks are observed due
to some narrow isolated bars (Figure 5, panel A1, A2); however, the central artificial SA-I afferent
appears to respond exclusively to edges.

The exclusive response of artificial type-I afferents to edges can again be understood with a shear
model of TacTip skin dynamics (Fig 4). Bars can be considered flat surfaces and thus, when the
artificial afferent is located directly above the bar it will not produce any response in said afferent,
regardless of bar width (Figure 4E). (However, in practice some response is still observed, in particular
in artificial RA-I afferents, which we attribute to transient contact induced pressure or inaccuracies in
the experimental setup.)

This is an intriguing result which alludes to some differences in either the precise skin dynam-
ics to which natural and artificial type-I afferents respond or additional population processing in the
periphery of the natural somatosensory system prior to recording. Nevertheless, for the purpose of un-
derstanding neurophysiology of touch, it highlights the value in comparing the response of individual
artificial afferents in a biomimetic tactile sensor to their natural counterparts.
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Figure 5: (A) Stimulus response profiles for a single monkey SA-I afferent collected on seven gratings
taken from Phillips and Johnson [16] and corresponding SRPs for the central artificial SA-I afferent
(green) collected on gratings (black). (B) SRPs for the central RA-I afferent (red) collected on gratings
(black). In A and B, grating dimensions used with artificial afferents (x-axis) are doubled compared
with those used with natural afferents in [16].

2.2.3 Effect of Neighbouring Bars and Edges

The sensitivity of both individual natural and artificial type-I afferents to edge and bar features was
attenuated with reduced gap width. For example, both natural and artificial SA-I afferents show
reduced edge amplification from right to left as gaps between the edges become smaller (Figure 5A).

For artificial afferents, this attenuation can be explained by extending our basic model of the
biomimetic fingertip (Figure 4). The amount of marker deflection is reduced with decreasing gap
width owing to a finite flexibility of the fingertip’s skin. In essence, the skin acts as a low-pass filter
that attenuates the response to high spatial frequencies of the stimulus (Figures 4E,F,G; central marker
on an edge with reducing gap width).

In the original experiments, it was observed that “as the bars are spaced more closely than 3.0 mm
the heights of the associated response peaks are diminished” [16]. Likewise, the artificial SA-I af-
ferents show diminished response peaks for narrower gap widths (Figure 5A). This effect is more
pronounced for the artificial afferents than their natural counterparts because of a larger length scale
where artificial edge responses begin to be diminished (visible at 10 mm in aperiodic gratings 1, 2, 3
and 7, and 6 mm in aperiodic gratings 4, 5 and 6). In all cases, the associated peaks become increas-
ingly diminished as gaps become smaller until SRPs do not represent spatial structure of the stimulus;
instead, the natural and artificial SA-I afferents respond as though the stimulus were an individual bar
or flat surface. This effect occurred at gap widths of .1 mm and .3 mm for natural and artificial SA-I
afferents respectively.
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Both natural and artificial RA-I afferents also exhibit attenuation in the amount of stimulus detail
represented within their associated SRPs with reducing gap width (Figure 5B for artificial RA-I af-
ferent SRPs; see [16] for natural RA-I afferent SRPs). Furthermore, both natural and artificial RA-I
afferents exhibit faster attenuation in response to reducing gap width than their SA-I counterparts. For
natural RA-I afferents, “the profiles of all five fibers were clearly modulated by the 5.0 mm gap in the
stimulus, but gaps of 0.5-1.0 mm were not represented in any of the five profiles” [16]. The central
artificial RA-I afferent profile similarly shows modulation to 10 and 6 mm gaps but edges bounded by
gaps of 1-4 mm were not represented.

Therefore, the effect of neighbouring edges and bars appears to be similar for natural and artificial
type-I afferents, except the length scale for artificial afferents is larger (6-10 mm) than for natural
afferents (3.0 mm). We attribute this to differing dynamic properties of natural and artificial skin: the
artificial skin is thicker and less flexible than its natural counterpart. Other than this difference, there
was significant convergence between the artifical and natural systems.

2.3 Experiment 2: Grating Resolution
This experiment mirrors a classic (1981) two-interval same-different psychophysical task carried out
by Johnson and Phillips [15], where the ability for human participants to discriminate grating orien-
tation is affected by spatial periods of the grating stimuli. We use an identical set of seven periodic
grating stimuli with grating periods ranging from 1 to 5 mm and we use an additional eighth stimu-
lus with a grating period of 0 mm (completely flat), essentially as a control (Figure 6; left column).
Grating orientation was of particular interest because non-spatial stimulus features, e.g. total stimulus
area and edge content, are consistent between the first and second interval of each trial (ψ = ±45◦),
thus inhibiting non-spatial mechanisms [15]. For this reason, many experimenters have subsequently
used grating orientation as a tool for measuring tactile spatial acuity [30, 31, 32].

First, we consider the structure of artificial SA-I and RA-I tactile images when stimulated with
gratings, in relation to their ability to spatially-resolve grating stimuli. Following, we examine the
psychometric functions for artificial SA-I and artificial RA-I afferents resulting from performing the
two-interval same-different grating resolution task with the robot in terms of their ability to spatially
resolve grating stimuli in comparison with human performance.

2.3.1 Artificial SA-I Spatial Structure Increases with Grating Period

The efficacy of the artificial SA-I afferent population for transducing grating orientation through spa-
tial structure was attenuated by a reduction in grating period: artificial SA-I images have a visible
fine-spatial structure only for the coarser gratings with periods of 3 mm or more (Figure 6, centre col-
umn). SA-I tactile images from periods of 2.5 mm or less exhibit a diminished structure, appearing
qualitatively similar in having a central dark region of relatively low response within an active sur-
round (aside from unimportant variations in the location of the central region, due to the experimental
protocol of perturbing randomly the contact location and angle). In particular, SA-I tactile images
collected on gratings with periods 0-2.5 mm do not appear to show any structure that indicates the
grating orientation.

This attenuation in spatial structure of artificial SA-I tactile images appears, in-part, to be a con-
sequence of the same effect that produced spatial attenuation in Experiment 1b (response to bars,
edges and gratings). For the artificial afferents, we explained this effect with a basic model of the
biomimetic fingertip, in which the tangential stiffness of the skin means it cannot perfectly conform
to narrow ridges (Figure 4). Qualitatively, the same effect appears here.

There is, however, a curious mismatch between the spatial sensitivity of the tactile images in this
Experiment 2 and that of a single SA-I artificial afferent in Experiment 1b. Spatial frequencies of
2.5 mm or more are perceivable for gratings with gap widths of 1.25 mm or more (Figure 6, centre
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column); however, spatial features were not distinguishable at 3 mm or less on the ridged stimuli
(Figure 5, centre row). It seems that the nature of the spatial filtering applied by the skin has a
complex relation to the relative geometry between local skin and the stimulus features. The primary
feature of all artificial SA-I tactile images stimulated by a flat stimulus was low response in the centre
of each image with increasing response radiating away from this central region (Experiment 1a) as
predicted from the SRPs (Figure 5). However, in gratings with spatial frequencies of 2.5 mm or more,
the majority of grating-like structure is seen on the periphery of the tactile images where the afferent
response is usually greater. More specifically, the most salient regions of tactile images are the top
right and bottom left for ψ = −45° and vice versa for ψ = 45°. Thus, the skin is more able to conform
to aspects of the local stimulus structure where the grating orientation is orthogonal to direction of
greatest slope of the TacTip’s resting skin shape (corresponding to the radial direction; see Figure
4A).
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Figure 6: Examples of artificial SA-I and RA-I tactile images (centre and bottoms rows) collected on
grating stimuli (to same scale; top rows). For each grating period (0-5 mm), both possible orientations
(−45° and 45°) are displayed. The colour of each pixel represents the response of the associated
artificial afferent: lighter corresponds to higher responses.
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Figure 7: (A1,A2,A3) Yes-no SDT covert decision models for artificial SA-I afferents in the grating
orientation two-interval same-different task, with grating periods of 0, 2.5 and 5 mm respectively.
(B) Robot (artificial SA-I and RA-I) and human psychometric functions for grating resolution, two-
interval same-different task, according to the conditional probabilities for responding ‘different’ (R(2))
given a different stimulus presentation in the second interval (S(2); right) or given the same stimulus
presentation (S(1); left). (C) Behavioral separation index (d′) versus grating period for the decision
model according to artificial SA-I afferents compared with mean of human participants.

2.3.2 Artificial RA-I Images do not Resemble Grating Orientation

Unlike artificial SA-I images, the RA-I images do not exhibit any visible spatial structure indicative
of orientation of grating stimuli (Figure 6, right). All artificial RA-I tactile images appear indistin-
guishable (aside from unimportant variations in the location and size of the central dark region, for
the same reasons as for the SA-I afferents).

At first sight, this lack of grating-like structure in artificial RA-I tactile images would seem related
to the relative lack of detail exhibited in single artificial RA-I afferent activity in Experiment 1b
(Figure 5B) compared to artificial SA-I activity (Figure 5A). While this effect may have contributed,
it is also likely that the data preparation also contributed. Tactile images were constructed from the
single frame which produced the highest total response for each press (Methods). For artificial RA-I
afferents this is likely to be somewhere near the middle of the press whereas for SA-I this is likely to
be at the bottom of a press. It appears that the TacTip skin begins to conform to the grating structure
at later stages of the press when pressure is greater.

2.3.3 Artificial SA-I Afferents Outperform Artificial RA-I Afferents in Grating Resolution
Task

Mirroring the original study [15], we implemented a robot psychophysical two-interval same-different
task, where our artificial tactile system was “required to judge whether two gratings with the same pe-
riod, presented sequentially, were presented with the same alignment, S(1), or with orthogonal align-
ments, S(2)” [15]. More explicitly, S(1) and S(2) correspond to AA and AB respectively where A
corresponds to ψ = −45◦ and B corresponds to ψ = 45◦ (see Figure 6).

We implemented two artificial decoders from convolution neural networks for artificial SA-I and
RA-I afferents which were proposed to decode grating angle encoded spatially within tactile images
of artificial SA-I and RA-I response. Decision making was performed by using methods from SDT
and equating the continuous output of these artificial decoders to a decision variable (Methods).
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In psychophysics, the just-noticable difference (JND), also called the distance threshold, is a stan-
dard metric of perceptual performance that corresponds to measuring the amount a stimulus must
change for the difference to be noticeable. Here, it is defined as the grating period at which humans
and the robot gave a correct response 75% of the time in the task. JNDs are ∼2.4 mm and >5 mm for
artificial SA-I and artificial RA-I afferents respectively (Figure 7B).

Conditional probabilities of responses, P(R(2)|S(2)) and P(R(2)|S(1)), for artificial SA-I afferents
approximate a sigmoid function, typical of psychometric data. 100% of responses were correct for
grating periods .3 mm (Figure 7B). In contrast, the psychometric function for artificial RA-I afferents
does not demonstrate any clear improvement above baseline level within the scale of grating period
used in this experiment (Figure 7B). This result is in agreement with the observation from artificial
RA-I tactile images that they do not reflect grating orientation (Figure 6). It seems plausible that tactile
images constructed from artificial RA-I afferent response contain little to no spatial information that
encodes grating orientation.

The finding that artificial SA-Is outperform artificial RA-Is is consistent with human touch: John-
son and Phillips observed that by vibrating stimuli at 40 Hz, in order to additionally excite RA-I
afferents, there was only a very small improvement in the performance of participants in the grating
orientation task [15].

2.3.4 Artificial SA-I Performance is Comparable with Humans

Artificial SA-I attained perfect performance where grating periods were ≥3 mm, which is roughly
comparable with performance of the three human participants who reached near perfect performance
at grating periods of 2.5-4 mm, depending on the participant (Figure 7B). Comparable JNDs were
observed: JNDs for participants SJ, JM and JA were ∼1.7, 1.7 and 2.1 mm respectively, compared
with ∼2.4 mm for artificial SA-I afferents (Figure 7B).

Johnson and Phillips stress the relevance of the presented grating resolution task due to the full
range of performance (0.5-1) between chance and perfect discrimination. Chance-level was attained at
grating periods of 1 mm, leading the authors to conclude that purely spatial mechanisms are responsi-
ble for the decision performance in the human grating resolution task [15]. Although the full range of
performance was not quite observed for artificial SA-I afferents (Figure 7B, range 0.55-1), the sensi-
tivity index (a dimensionless statistic indicating the discriminability of S(1) and S(2); for its calculation
see SI appendix), d′, for artificial SA-I afferents demonstrates a similar relationship to grating period
as that of humans, where grating periods are≥2 mm (Figure 7C). Above-baseline performance on the
smooth stimulus is likely to be caused by some non-grating cue which systematically varies with the
sensor’s angle relative to the stimulus and is available on all stimuli. The relationship between d′ and
grating period for artificial SA-I afferents demonstrates this dual-cue mechanism (Figure 7C) where
d′ is relatively consistent for grating periods ≤2 mm (σd′ = 0.24), an inflection point is observed at
grating periods of 2 mm, above which the d′ gradient increases significantly owing to the availability
of the more salient population code of grating cues (σd′ = 1.97). Above the critical grating period
(2 mm), the primary feature driving perception is a population code of grating orientation and thus it
seems plausible that similar spatial mechanisms are responsible for the decision process in humans
and the robot.

3 Discussion
In human touch, the importance of mechanical variability of the transformation of stimuli into the
response of primary afferents located in the skin has been acknowledged [33], although the precise
aspects of contact-induced skin dynamics to which primary afferents respond is not yet fully under-
stood. Likewise, for artificial touch, the responses of individual afferents greatly affected the tactile
images and thus the ability to reliably decode stimulus properties. We demonstrated that the shear
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strain model of the TacTip (Figure 4) accounts for much of the similarity between artificial and natural
type-I afferent SRPs, in particular the preferential sensitivity of SA-I afferents for edges, the attenua-
tion in response with reducing gap width, and the reduced sensitivity of RA-I afferents (Experiment
1b: Response to bars, edges and gratings).

Natural SA-I afferents, however, were responsive to narrow bars whereas artificial SA-I afferents
were responsive exclusively to edges. One explanation for this discrepancy is a different aspect of
skin dynamics to which natural and artificial afferents respond at the length scale of narrow bars.
Indeed, a subsequent study by Phillips and Johnson (1981) [34] found that natural SA-I and RA-I
afferent SRPs were most closely correlated with continuum mechanics models of compressive and
tensile strain respectively. That said, the true nature of contact mechanics at the length scales of
mechanoreceptors may differ from those of the macroscopic laws of continuum mechanics due to
assumptions in the models [6]; for example, inhomogeneities in skin structure may be important at
the scale of mechanoreceptors [35].

The spatial sensitivity to gratings is similar to the artificial afferent spacing (1.2 mm), as spatial
frequencies of 2.5 mm are clearly distinguishable in Experiment 2 corresponding to gap widths of
1.25 mm. Although the perception of grating orientation is poorer for finer gratings, there is some
improvement in the range 0-2 mm, which we attribute to hyperacuity due to spatial mechanisms aris-
ing from population coding. Tactile hyperacuity has been observed in other studies of artificial touch,
where it is considered a biomimetic form of superresolution [36, 37]. It is tempting to invoke a lack
of physical resolution as an explanation for why single SA-I afferent SRPs in Experiment 1b could
not distinguish spatial features at 3 mm on the ridged stimuli (compared with 1.25 mm gap widths for
gratings). However, we do not view population coding as the sole difference in this case, as there also
seems to be subtle spatial filtering affects depending on the relative geometry between skin and local
stimulus features that affect the ability to conform to local stimulus structure.

Regardless of important details such as the nature of mechanoreceptor responses, the coding
schemes within individual afferents, and the neural processing involved in population coding, the
present study has demonstrated the value in examining population codes of biomimetic artificial tac-
tile sensors and a careful comparison to the natural systems which they aim to mimic. As the fields
of neuroscience and robotics continue to converge, there is an opportunity to improve artificial tactile
perception and build knowledge of natural touch with potentially important future implications for
robotic manipulation, neuroprosthetics and the neurophysiology of touch.

4 Methods

4.1 Sensor Design
Here we describe the key operating principles of the TacTip biomimetic optical tactile sensor. For
the manufacturing procedure please refer to SI appendix. For a detailed explanation of the design
concepts, we refer the reader to a paper on ‘the TacTip family’ by Ward-Cherrier et al. (2018) [9].

The TacTip (Figure 1C) features a black flexible skin covering a clear silicone gel (Figure 1E).
The artificial epidermis and dermis provide contrasting stiffness which is proposed to mimic the
corresponding layers of natural skin. The artificial epidermis is initially completely flat although,
once the tip is filled with gel, forms a slight convex bulge owing to pressure within the tip (Figure 4A;
cross-sectional diagram of unstimulated tip).

In the human fingertip, Merkel cell complexes (SA-I afferents) are situated in the dermis at the
tips of stiff epidermal ridges which protrude into the softer dermis (Figure 1D). This morphology is
mimicked in the TacTip with stiff epidermal pins that protrude into the soft gel. A white marker on the
tip of each pin provides an optical signature of local shear strain imaged using a USB camera (Figure
1C) (Figure 4); although the use of optics is clearly non-biomimetic, we consider the skin morphology
and transduction of contact to be based on the physiology of human skin. 361 white markers arranged
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in a 19×19 square grid (∼500 mm2) yield a marker density of ∼70 cm-2 (∼1.2 mm separation) which
is approximately half the innervation density of type-I afferents in the human fingertip [22, 23].

4.2 Feature Extraction
4.2.1 Artificial SA-I Afferents

Firing rates of natural SA-I afferents are modelled using marker displacements (shear-strain magni-
tude), since these should remain consistent with sustained deformation, thus modelling slow adaption.

4.2.2 Artificial RA-I Afferents

To account for the phasic nature of Meisner corpuscles, RA-I firing is modelled as marker speed. This
model is similar to other proposed transduction models of RA-I firing, where the first derivative of
pressure is used as the primary input to a biological neuron model [38, 39, 40].

4.3 Experiment 1a: Response to Normal Pressure
4.3.1 Collection Procedure

The same robotic platform is used for all experiments. Details are provided in SI appendix. The
TacTip begins in free-space at 2 mm above a flat 3D-printed surface (Figure 2B left). Video data is
recorded from the TacTip as the TacTip is simultaneously moved downward until a compression of
2.5 mm is achieved. At the bottom of the press the TacTip is held stationary for 3 seconds before
returning to its initial position where recording is terminated. To examine the effects of stimulation
speed on artificial afferent response, the data collection procedure is repeated twice with the robot
moving at 3 and 10 mms-1. Artificial SA-I and RA-I responses are extracted off-line for each frame
subsequent to data collection as described in Feature Extraction above.

4.4 Experiment 1b: Response to Bars, Edges and Gratings
4.4.1 Stimuli

A set of seven 3D-printed gratings (Figure 2C and SI appendix, Table S1) corresponding to those in
the experimental study [16] are used. Bar and gap widths vary in the same proportions as those used
in [16]; however the scaling is doubled, thus all bars and gaps are twice as wide. This scaling was
chosen because the innervation density of markers in the TacTip (∼70 cm-2) is approximately half that
of SA-I afferents in the human fingertip.

4.4.2 Collection Procedure

The TacTip is successively pressed onto a stimulus indenting the skin by 1 mm, with each press taking
∼0.8 s. The TacTip is held stationary at the bottom of a press for 0.5 s. Between each press the TacTip
is moved 200µm perpendicular to the bar/gap axis, starting in free space on the left-hand side of the
stimlus and moving over the entire stimulus until free space is again reached. Tactile image data is
recorded for the entire downward phase and stationary period of each press. This process is repeated
seven times, once for each stimulus. Artificial SA-I and RA-I responses are extracted off-line as
described in Feature Extraction above.
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4.5 Experiment 2: Grating Resolution
4.5.1 Stimuli

Seven square-wave grating stimuli were produced by cutting grooves (depth 1.5 mm) in plastic blocks
with a CNC milling machine (example depicted in Figure 2B). The periodicity of the gratings, 1, 1.5,
2, 2.5, 3, 4 and 5 mm, correspond to those used in the analogous psychophysical grating resolution
experiment [15]. Additionally, we use an eighty completely smooth surface, considered as a grating
of periodicity 0 mm.

4.5.2 Collection Procedure

Data are collected by pressing the TacTip skin onto the grating stimuli so that a compression of
2.5 mm is achieved, after which it is held stationary for 1 s. Tactile image data is recorded for the
entire downward phase and stationary period of the press.

For each grating, data is collected in two distinct phases: one for training and validation, the other
for testing. For training and validation, the yaw angle, ψ, of the sensor relative to each grating is
treated as a label, and randomly sampled from a uniform distribution within a 180◦range, −90◦ ≤
ψ ≤ 90◦, by rotating the wrist joint of the robot. The extremes ψ = ±90◦ are arranged so that grating
grooves align with the rows/columns of TacTip markers.

Roll (φ), pitch (θ), x, y and z are randomly sampled within ranges ±2◦, ±2◦, ±2.5 mm, ±2.5 mm
and ±0.15 mm respectively, but not retained as labels for the data. We introduce this variability to
avoid systematic variation in these dimensions as a consequence of variation in the rotation angle ψ,
which the neural network could otherwise use to distinguish grating orientation.

The training/validation set consists of 1000 samples per grating, giving a total of N = 7000
samples.

Seven distinct test sets are collected, one for each grating. On each grating, 300 samples are
collected at ψ = −45◦ and 300 samples are collected at ψ = 45◦. We denote these, conditions A
and B, such that stimuli A and B are perpendicular and equidistant from the lower (-90◦) and upper
(90◦) bounds of the training data. As with the training data, φ, θ, x, y and z are all randomly sampled
within their above ranges.

4.5.3 Sample Preparation

For training, validation and testing, artificial SA-I and RA-I responses are extracted off-line for each
frame as described in Feature Extraction above.

SA-I and RA-I samples are tactile images of their respective afferent responses over the surface
of the tip (Figure 6). In both cases, for each press, only the frame with largest total response across
the tip is used for the analysis.

4.5.4 Perceptual Model and Training

For predicting the angle ψ, two convolutional neural network (CNN) regression models, CNN-SA1
and CNN-RA1, for artificial SA-I and artificial RA-I afferents respectively are implemented. CNN-
SA1 and CNN-RA1 are trained to predict ψ using their respective afferent responses extracted from
training data on all seven gratings (Ntrain = 5250) and likewise validated on all seven gratings (Nval =
1750). Details of model architecture and training procedure are provided in SI appendix.

4.5.5 Testing: SDT Model of Two Interval Same-Different Task

Here we describe the general approach of how signal detection theory (SDT) may be used with
robotics and in particular how this applies to the two-interval same-different grating resolution task.
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A formal description of the exact method used in this study is provided in the SI appendix.
The two-interval same-different task is a psychophysical paradigm where participants are pre-

sented with two intervals per trial, with each interval presenting either stimulus A or stimulus B. Par-
ticipants are required to respond by stating whether the stimuli in the two intervals were the same or
different [41].

In the robot psychophysical task, A and B are ψ = −45◦ and 45◦ respectively. Mirroring a
psychophysical grating resolution experiment (Johnson and Phillips (1981) [15]), the possible pre-
sentations on each trial are either AA or AB, which we refer to as S(1) and S(2) respectively.

SDT is used to relate perception to sensitivity of sensory-driven neural activity. Central to SDT
is the decision variable, which is an interpretation of neural activity that guides decision making
[42]. The process of forming a decision variable from neural activity is often referred to as decoding
(Figures 1A, 1B; decoding phase). In SDT, the decision variable is compared to a criterion value for
decision making. Our approach to robot decision making for the two-interval same-different task is
underpinned by equating the continuous output of regression models to the decision variable of SDT.

First, probability distributions, f(x | A) and f(x | B) (Figure 7A1-3), are constructed from the
output of the trained SA-I regression model when presented with all 300 test samples at ψ = ±45°
respectively. From these distributions, we follow a standard SDT framework for the two interval
same-different task, characterised by individual yes-no covert decisions for each interval [43, 41],
in order to attain the true positive (P(R(2)|S(2))) and false positive (P(R(1)|S(2))) rates for each grating
period.

SDT deals with the problem of where to place the criterion value, c, representing the decision
goals sought by the observer. For yes-no covert decisions, we use a simple decision goal to maximise
the percentage of correct responses, i.e. to equally reward correct responses (a given A and b given
B) and to equally penalise incorrect responses (a given B and b given A). The criterion value for this
decision rule is shown in Figures 7A1-3.
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Tactile Information Probed with a Biomimetic Sensor. Science, 323(5920):1503–1506, March
2009. 200.

[6] Jonathan Platkiewicz, Hod Lipson, and Vincent Hayward. Haptic Edge Detection Through
Shear. Scientific Reports, 6:23551, March 2016.

17



[7] B. P. Delhaye, E. W. Schluter, and S. J. Bensmaı̈a. Robo-psychophysics: Extracting behaviorally
relevant features from the output of sensors on a prosthetic finger. IEEE Transactions on Haptics,
9(4):499–507, 2016.

[8] Z. Kappassov, J.-A. Corrales, and V. Perdereau. Tactile sensing in dexterous robot hands: a
review. Robotics and Autonomous Systems, 74:195 – 220, 2015.

[9] Benjamin Ward-Cherrier, Nicholas Pestell, Luke Cramphorn, Benjamin Winstone, Maria Elena
Giannaccini, Jonathan Rossiter, and Nathan F. Lepora. The TacTip Family: Soft Optical Tactile
Sensors with 3D-Printed Biomimetic Morphologies. Soft Robotics, 5(2):216–227, April 2018.

[10] Clementine M. Boutry, Marc Negre, Mikael Jorda, Orestis Vardoulis, Alex Chortos, Oussama
Khatib, and Zhenan Bao. A hierarchically patterned, bioinspired e-skin able to detect the direc-
tion of applied pressure for robotics. Science Robotics, 3(24), November 2018. 150.

[11] Calogero Maria Oddo, Stanisa Raspopovic, Fiorenzo Artoni, Alberto Mazzoni, Giacomo
Spigler, Francesco Petrini, Federica Giambattistelli, Fabrizio Vecchio, Francesca Miraglia,
Loredana Zollo, Giovanni Di Pino, Domenico Camboni, Maria Chiara Carrozza, Eugenio
Guglielmelli, Paolo Maria Rossini, Ugo Faraguna, and Silvestro Micera. Intraneural stimulation
elicits discrimination of textural features by artificial fingertip in intact and amputee humans.
eLife, 5:e09148, March 2016. 200.

[12] J. A. George, D. T. Kluger, T. S. Davis, S. M. Wendelken, E. V. Okorokova, Q. He, C. C. Duncan,
D. T. Hutchinson, Z. C. Thumser, D. T. Beckler, P. D. Marasco, S. J. Bensmaia, and G. A. Clark.
Biomimetic sensory feedback through peripheral nerve stimulation improves dexterous use of a
bionic hand. Science Robotics, 4(32), 2019.

[13] C. Chorley, C. Melhuish, T. Pipe, and J. Rossiter. Development of a tactile sensor based on
biologically inspired edge encoding. In 2009 International Conference on Advanced Robotics,
pages 1–6, 2009.

[14] Romain Brette. Philosophy of the spike: Rate-based vs. spike-based theories of the brain. Fron-
tiers in Systems Neuroscience, 9:151, 2015.

[15] K. O. Johnson and J. R. Phillips. Tactile spatial resolution. I. Two-point discrimination, gap
detection, grating resolution, and letter recognition. Journal of neurophysiology, 46(6):1177–
1192, 1981.

[16] J. R. Phillips and K. O. Johnson. Tactile spatial resolution. II. Neural representation of Bars,
edges, and gratings in monkey primary afferents. Journal of Neurophysiology, 46(6):1192–
1203, 1981.

[17] C E Connor, S S Hsiao, J R Phillips, and K O Johnson. Tactile roughness: neural codes that
account for psychophysical magnitude estimates. The Journal of neuroscience : the official
journal of the Society for Neuroscience, 10(12):3823–36, 1990.

[18] M. A. Srinivasan and R. H. LaMotte. Tactile discrimination of shape: responses of slowly
and rapidly adapting mechanoreceptive afferents to a step indented into the monkey fingerpad.
Journal of Neuroscience, 7(6):1682–1697, 1987.

[19] M. A. Srinivasan and R. H. LaMotte. Tactual discrimination of softness. Journal of Neurophys-
iology, 73(1):88–101, 1995.

[20] A. W. Goodwin, V. G. Macefield, and J. W. Bisley. Encoding of object curvature by tactile
afferents from human fingers. Journal of neurophysiology, 78 6:2881–8, 1997.

18



[21] N. Cauna. Nature and functions of the papillary ridges of the digital skin. The Anatomical
record, 119 4:449–68, 1954.

[22] Roland S. Johansson and Ake B. Vallbo. Tactile sensory coding in the glabrous skin of the
human hand. Trends in Neurosciences, 6:27 – 32, 1983.

[23] R. Johansson and AB Vallbo. Tactile sensibility in the human hand: Relative and absolute
density of four types of mechanoreceptive units in glabrous skin. The Journal of physiology,
286:283–300, 02 1979.

[24] D. M. Green and J. A. Swets. Signal detection theory and psychophysics. Wiley, New York,
1966.

[25] Hannes P. Saal, Benoit P. Delhaye, Brandon C. Rayhaun, and Sliman J. Bensmaia. Simulating
tactile signals from the whole hand with millisecond precision. Proceedings of the National
Academy of Sciences, 2017.

[26] Per Jenmalm, Ingvars Birznieks, Antony W. Goodwin, and Roland S. Johansson. Influence of
object shape on responses of human tactile afferents under conditions characteristic of manipu-
lation. European Journal of Neuroscience, 18(1):164–176, 2003.

[27] Vernon B. Mountcastle, William H. Talbot, and Hans H. Kornhuber. The Neural Transformation
of Mechanical Stimuli Delivered to the Monkey’s Hand, chapter 19, pages 325–351. John Wiley
& Sons, Ltd, 1966.

[28] M. Knibestöl. Stimulus response functions of rapidly adapting mechanoreceptors in the human
glabrous skin area. The Journal of Physiology, 232(3):427–452, 1973.

[29] Arun P. Sripati, Sliman J. Bensmaia, and Kenneth O. Johnson. A continuum mechanical model
of mechanoreceptive afferent responses to indented spatial patterns. Journal of Neurophysiology,
95(6):3852–3864, 2006. PMID: 16481453.

[30] R. W. Van Boven and K. O. Johnson. The limit of tactile spatial resolution in humans. Neurology,
44(12):2361–2361, 1994.

[31] R. W. Van Boven, R. H. Hamilton, T. Kauffman, J. P. Keenan, and A. Pascual-Leone. Tactile
spatial resolution in blind braille readers. Neurology, 54(12):2230–2236, 2000.

[32] J. Tong, O. Mao, and D. Goldreich. Two-point orientation discrimination versus the traditional
two-point test for tactile spatial acuity assessment. Frontiers in Human Neuroscience, 7:579,
2013.

[33] Vincent Hayward, Alexander V. Terekhov, Sheng-Chao Wong, Pontus Geborek, Fredrik Bengts-
son, and Henrik Jörntell. Spatio-temporal skin strain distributions evoke low variability spike
responses in cuneate neurons. Journal of The Royal Society Interface, 11(93):20131015, 2014.

[34] JR Phillips and KO Johnson. Tactile spatial resolution. III. A continuum mechanics model of
skin predicting mechanoreceptor responses to bars, edges, and gratings. Journal of neurophysi-
ology, 46(6):1204—1225, December 1981.

[35] Vincent Hayward. Is there a plenhaptic function? Philosophical Transactions of the Royal
Society B: Biological Sciences, 366(1581):3115–3122, 2011.

[36] Nathan F Lepora, Uriel Martinez-Hernandez, Mathew J. Evans, Lorenzo Natale, Giorgio Metta,
and Tony Prescott. Tactile superresolution and biomimetic hyperacuity. IEEE Transactions on
Robotics, 31(3):605–618, June 2015.

19



[37] Youcan Yan, Zhe Hu, Zhengbao Yang, Wenzhen Yuan, Chaoyang Song, Jia Pan, and Yajing
Shen. Soft magnetic skin for super-resolution tactile sensing with force self-decoupling. Science
Robotics, 6(51), February 2021. 5.

[38] W. W. Lee, S. L. Kukreja, and N. V. Thakor. Discrimination of dynamic tactile contact by
temporally precise event sensing in spiking neuromorphic networks. Frontiers in Neuroscience,
11:5, 2017.

[39] S. Bensmaı̈a. A transduction model of the meissner corpuscle. Mathematical Biosciences,
176(2):203 – 217, 2002.

[40] S. S. Kim, S. Sripati, and S. Bensmaı̈a. Predicting the timing of spikes evoked by tactile stimu-
lation of the hand. Journal of neurophysiology, 104:1484–96, 09 2010.

[41] N.A. Macmillan and C.D. Creelman. Detection Theory: A User’s Guide. Taylor & Francis,
2004.

[42] Joshua Gold and Long Ding. How mechanisms of perceptual decision-making affect the psy-
chometric function. Progress in neurobiology, 103, 05 2012.

[43] Lawrence T. DeCarlo. Signal detection models for the same–different task. Journal of Mathe-
matical Psychology, 57(1):43–51, 2013.

20


	1 Introduction
	2 Results
	2.1 Experiment 1a: Response to Normal Pressure
	2.1.1 Artificial Type-I Afferents Model Natural Afferent Adaption Rates
	2.1.2 Individual Artificial Type-I Afferents Encode Local Shear and Population Response Encodes Shape

	2.2 Experiment 1b: Response to Bars, Edges and Gratings
	2.2.1 Sensitivity to Edges
	2.2.2 Sensitivity to Bars
	2.2.3 Effect of Neighbouring Bars and Edges

	2.3 Experiment 2: Grating Resolution
	2.3.1 Artificial SA-I Spatial Structure Increases with Grating Period
	2.3.2 Artificial RA-I Images do not Resemble Grating Orientation
	2.3.3 Artificial SA-I Afferents Outperform Artificial RA-I Afferents in Grating Resolution Task
	2.3.4 Artificial SA-I Performance is Comparable with Humans


	3 Discussion
	4 Methods
	4.1 Sensor Design
	4.2 Feature Extraction
	4.2.1 Artificial SA-I Afferents
	4.2.2 Artificial RA-I Afferents

	4.3 Experiment 1a: Response to Normal Pressure
	4.3.1 Collection Procedure

	4.4 Experiment 1b: Response to Bars, Edges and Gratings
	4.4.1 Stimuli
	4.4.2 Collection Procedure

	4.5 Experiment 2: Grating Resolution
	4.5.1 Stimuli
	4.5.2 Collection Procedure
	4.5.3 Sample Preparation
	4.5.4 Perceptual Model and Training
	4.5.5 Testing: SDT Model of Two Interval Same-Different Task



